
FlatFeeStack as a Decentralized
Autonomous Organization

Semester Assignment

Department of Computer Science
OST – Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term ����

Authors

Pascal Knecht & Andy P�ster

Supervision

Dr. Thomas Bocek

Co-Examiner

Dr. Guilherme Sperb Machado

December ��, ����

Abstract

The FlatFeeStack website allows developers to easily and transparently support open-
source projects by providing a �at fee of $��� per year. FlatFeeStack gives open-source
contributors funds based on their contribution to the project, calculated usingmetrics like
contributed lines of code. The platform accepts payment by credit card and makes pay-
outs using cryptocurrencies.

The community should operate and further develop FlatFeeStack, just like open-source
software. For handling payments, FlatFeeStack requires a legal entity. The concept of an
association under Swiss law can ful�ll these two demands. Which allows for the realiza-
tion of a collaborative cooperation that can act as a legal entity. Modeling the association
on the blockchain ensures a clean democratic process and enables cooperation beyond
Swiss borders. Based on the concept of a decentralized autonomous organisation (DAO),
smart contracts were written so that all legal requirements of a Swiss association aremet
and thus, all activities of an association can be performed via the blockchain. Addition-
ally, a frontend is provided for simple interaction with the smart contracts. This frontend
was integrated into the existing frontend of FlatFeeStack. Statutes have been developed
that are speci�cally adapted to the concepts of the DAO and the implementation of smart
contracts. These are required for the association to be able to act.

With all artifacts from this project, the "FlatFeeStack Association" is ready to be founded.

Keywords: Blockchain, Decentralized Autonomous Association, Technology and Law,
Fintech.

i

Executive Summary

Initial situation

FlatFeeStack is a website that simpli�es the process of supporting open-source projects
with a �xed annual payment of $���. The platform usesmetrics like lines of code to deter-
mine contributors’ contributions, and accepts payments by credit card. Payouts are made
in cryptocurrency.

Just like open-source software, FlatFeeStack should be developed and run by the commu-
nity. In order to handle payments, FlatFeeStack needs a legal entity. A Swiss association
can ful�ll these requirements, enabling the creation of a collaborative entity.

Additionally, the solution to be implemented should leverage blockchain technologies.

Procedure & Technologies

Theproject startedwith research. Existing solutions for governance systemson the Ethereum
blockchain were evaluated, as well as the association’s organizational structure to com-
bine Swiss law with blockchain technologies.

It was decided to use the existing Governor framework, provided by OpenZeppelin, and
to use the Ethereum blockchain, as its the most common blockchain to do development
on it. The association structure was kept close to the givens of the Governor framework.
The Governor framework’s mechanisms have only been altered as required by law. For
instance, Governor allows handing in proposals at any time [�]. Under Swiss Law, there
needs to be a set appointment where association members meet and vote on an agenda
[�]. Therefore, it was decided to implement the ballot vote on the blockchain, as it can
replace a physical assembly, and Swiss law doesn’t specify the medium on which the
ballot vote is hosted.

Once the fundamental structure was designed, the implementation of the smart con-
tracts started. Using the Solidity language for the smart contracts with Hardhat for unit
tests. In parallel, a frontend application was built to interact with the smart contracts in

ii

the Ethereum blockchain. The frontend was integrated into the existing frontend for Flat-
FeeStack, therefore using Svelte as the main framework.

After developing the initial structure for the association, bylawswerewritten to specify the
bridge between Swiss law and the code. The bylaws specify the system of the association
in more detail and determine how they are represented in code.

Final thoughts

The outcome of this project is a good starting point to start the FlatFeeStack associ-
ation. It also allows participants to elaborate further on building bridges between new
Blockchain technologies and existing law.

The project uncovered several topics thatwere previously not yet discovered. For instance,
every member has the right to contest an accepted proposal in court if the member didn’t
participate in the vote and the accepted proposal contradicts the law [�]. If the court rules
in favor of the member, the association’s council has to take action. What happens if they
do not act? Further developments are documented in a later chapter (�.�).

The chosenGovernor framework allows interoperabilitywith the existingGovernance ecosys-
tem so that the association can communicate on a code level with others. The developed
frontend allows for easier participation in the association even if a potential member
has never interacted with Blockchain technologies. The created bylaws accompany the
planned launch of the association and will help clarify the interactions between members
and smart contracts.

iii

Acknowledgment

We would like to thank the following people for helping with this semester assignment:
Dr. Thomas Bocek for the guidance and supervision during the course of this semester
assignment.

Dr. Guilherme Sperb Machado for sharing his valuable experience from launching the
GrantShares DAO and his inputs on software development on the blockchain.

Dr. Stephan D. Meyer for providing legal counsel and his experience with Decentralised
Autonomous Organisations projects.

Jamie Maier for proofreading the semester assignment.

iv

https://grantshares.io/

Contents

� Introduction �
�.� Assignment . �
�.� Basic Conditions . �

� Problem Analysis �
�.� Functional requirements . �

�.�.� Persona . �
�.�.� Use-Cases . �

�.� Non-functional requirements . �

� Research �
�.� Existing DAA smart contract . �
�.� Swiss Association Law . �
�.� On-chain Governance . ��

�.�.� OpenZeppelin Governor . ��

� Solution ��
�.� Structure . ��
�.� Application architecture . ��

�.�.� General . ��
�.� Smart contracts . �6

�.�.� Upgradable Contracts . �8
�.�.� Contract owner . ��
�.�.� Development environment . ��
�.�.� Membership . ��
�.�.� Ballot Vote . ��
�.�.6 Proposals . ��
�.�.� Voting . ��
�.�.8 Time . ��

v

�.� Frontend . �6
�.�.� User interface draft . �6
�.�.� Implementation . �8

�.� Non-functional requirements . ��
�.6 Bylaws . ��

�.6.� Articles . ��
�.6.� Hash and store . �6

� Conclusion ��
�.� Conclusion . ��
�.� Future Work . �8

�.�.� Discussion before creating a proposal �8
�.�.� Verify proposal content . ��
�.�.� Member register . ��
�.�.� Funding from the platform to the association ��

Glossary ��

List of Figures ��

List of Listings ��

Bibliography ��

A Project Documentation �6
A.� Assignment . ��
A.� Project Plan . 6�
A.� Time Tracking Report . 6�
A.� Personal Re�ections . 6�
A.� Meeting notes . 66

B Documents ��
B.� Eigenständigkeitserklärung . 8�
B.� Urheberrecht . 8�

C Design for the investor DAO 8�
C.� Structure . 8�
C.� Sponsor a project through FlatFeeStack DAA 8�
C.� Supported projects of the DAA . 8�

vi

Chapter �

Introduction

With the FlatFeeStackwebsite, donations becomemore accessible andmore transparent.
For ��� USD per year, any developer can support any open-source project - the donation is
equally split among the projects. If a developer supports more projects, then each project
will get proportionally less. For a company, this is easier to budget as it is a �at fee per
developer. Thismeans, for ten developers, the budget is ����USD - always. Since each de-
veloper in the company can support those libraries and frameworks that make their work
more ef�cient, there is no organizational overhead in deciding which projects to support.
Furthermore, the company has an up-to-date technical map of its IT landscape. The distri-
bution of funds to the open-source contributor is based on how much code was modi�ed
by the developer. Since an open-source project has its code publicly available, these met-
rics can be calculated automatically by FlatFeeStack.

The funds are distributed according to the contribution. The FlatFeeStack Application cal-
culates a contribution score based on lines of code and other metrics. Another advan-
tage is that the donation payment is made with credit cards, while the payout is done
with cryptocurrencies. Since the contribution and crypto currency transactions are pub-
licly available, FlatFeeStack is fully transparent.

In order to process credit card payments and have a bank account, FlatFeeStack needs
some kind of organization behind it to be a legal entity. Since FlatFeeStack is based in
Switzerland, there are some options like AG, GmbH, Non-Pro�t, or a Association (Verein).

An association is, in the case of FlatFeeStack an ideal way to be organized. The associa-
tion lives through its members, and everyone can co-determine where it should go in the
future.

A similar concept to the Association exists in the blockchain world, which is called a De-
centralized Autonomous Organization (DAO) [�]. A DAO is a member-owned community

�

Chapter �. Introduction �

without central leadership. Its rules are encoded into a computer program that runs on
the blockchain.

To combine the concept of the DAO and the association, MME introduced a new term
Decentralized Autonomous Association DAA (more on that in the chapter �). So a DAA is
the same as a DAO but with the requirement to be compliant with Swiss law.

�.� Assignment

This thesis has two primary objectives:

• Design and develop a DAO which is consistent with Swiss law.

• Develop a PoC Web Application to easily interact with the DAO.

�.� Basic Conditions

This work was done as part of a semester assignment (Studienarbeit). A time budget of
�8� hours is reserved for the work on this assignment and will be rewarded with eight
ECTS credits.

Chapter �

Problem Analysis

Functional and non-functional requirements are essential components of any software
system. They de�ne the capabilities and characteristics that a system must possess in
order tomeet the needs of its users and stakeholders. This chapter, describes the different
types of functional and non-functional requirements and how they are used to guide the
design and development of a system.

�.� Functional requirements

In this section are all functional requirements and personas listed, who are relevant for
this FlatFeeStack project.

�.�.� Persona

User: A user is a person who is not already part of the DAA, but has the intention of joining
it.

Member: A member is part of the DAA. They have the right to vote and make proposals.

Council Member: A council member is a member who has further obligations. They must
hold the ballot vote and represents the association to the outside.

�

Chapter �. Problem Analysis �

�.�.� Use-Cases

Figure �.�: UseCase diagram

• User can join DAA
AUser can request to be amember of the DAA. It is necessary to do a KYC validation
before a user is allowed to join.

• Member can leave DAA
A member can leave the association with immediate effect.

• Member can create and vote for proposal
Amember can create a proposal. A member can vote for a proposal. A member can
only vote once per proposal.

Chapter �. Problem Analysis �

• Member can propose and vote for new bylaws
If a member wants to change the bylaws they can create a proposal.

• Member can propose and vote for a new DAA code version
If a member wants to change the DAA’s underlying code, they can create a proposal.

• Member can propose and vote to add or remove a council member
A member can create a proposal to add or remove a council member.

• Member can propose and vote to dissolve the DAA
A member can create this speci�c proposal to dissolve the DAA. The speci�c steps
to dissolve are written in the bylaws. It requires a ��%quorum and a simplemajority.

• Member can propose and vote to expel a member
A member can create a proposal to expel a member.

• De�ne date for a ballot vote
A council member must set a date for next ballot vote. They must set the date at
least one month before the vote.

• Member can request an extraordinary ballot vote
Members can request an extraordinary ballot vote. This proposal passes if one �fth
of all members accept it. The voting duration is two weeks.

• Council member can cancel a ballot vote
If the council member has a good reason, they can cancel a ballot. There must be a
replacement date. All agenda items must be moved to the next vote.

�.� Non-functional requirements

The following non-functional requirements for this project have been identi�ed.

�. Functionality: Each story is a functional component and does not break the func-
tionality of others. Acceptance criteria: Unit Tests run for all subsystems in themain
branch.

�. Portability: The application must be portable and able to run on multiple platforms
or devices without requiring signi�cant modi�cation. Acceptance criteria: Manual
testing on different devices and browsers.

�. Extensibility: The application must be easy to maintain and update over time, with
clear documentation and support processes. Acceptance criteria: Time to �x bugs
or to install updates.

Chapter �. Problem Analysis 6

�. Robustness: The application must be robust and able to handle unexpected or in-
valid input without crashing or behaving unexpectedly. Acceptance criteria: Manual
testing with invalid or malicious input.

�. Code quality: The application must be written in clean, well-organized code that is
easy to understand and maintain. Acceptance criteria: Static analysis run with each
commit.

Chapter �

Research

This chapter delves into the existing research on decentralized autonomous organizations
(DAOs) and their smart contracts. It begins by reviewing the prototype DAA smart con-
tract developed by MME Compliance AG, including its functionalities and dependencies
on other smart contracts.

Next, the structure and requirements of Swiss association law are examined, as the DAA
is intended to mimic the structure of an association under Swiss law.

Finally, the existing literature on DAOs and their potential applications in various industries
is reviewed, including their advantages and challenges. This research provides a founda-
tion for the design and development of the DAA in subsequent chapters.

�.� Existing DAA smart contract

MME Compliance AG built a prototype of a decentralized autonomous organization [�].
They published a paper describing how the DAA mimics the existing Swiss law structure
for an association and which function calls on the smart contract will issue what effect.

At a talk at the EthCC ���� [�], the developers behind the smart contract itself gave more
insights about the functionalities. The important slides for this assignment are the ones
that show how different processes within an association are represented in the DAA. Fig-
ure �.� shows an overview of the different smart contracts that form the DAA.

The elected head of the association is here referred to as delegate, this semester assign-
ment refers to it as council member.

The responsibilities for the different smart contracts are as follows:

�

Chapter �. Research 8

Figure �.�: Smart contract architecture for a DAA

• Memberships: Keeps track of all members within the DAA including members that
are part of the membership approval committee or the delegate.

• Proposalmanager: As the name suggests, the proposalmanagermanages different
kinds of proposals that a member can propose and vote on at the general assem-
bly. The different kind of proposals are given by the proposal manager. The proposal
manager depends on the Memberships contract to know which members are eligi-
ble to vote and how many votes are needed to make certain proposals pass or fail.
Certain proposals, like expelling members, requires the applicant to be a delegate in
the DAA.

• General assemblymanager: The general assemblymanager holds information about
the general assembly of the association. It depends on both the Memberships and
the Proposal manager contract. The Memberships contract once again is used to
determine who is allowed to participate in the general assembly. The proposal man-
ager is only used twice within the general assembly manager:

�. In case a proposal for an extraordinary general assembly passed, the general
assembly re-schedules the next general assembly according to the passed pro-
posal.

�. If a proposal for new bylaws passed, the general assembly manager saves a
hash of its result.

Chapter �. Research �

• (Internal) Wallet: The internal wallet receivesmemberships fees. Via proposals, peo-
ple can request to get money from this wallet.

• External wallet: If a proposal allows it, members outside the DAA can sponsor it. The
external wallet is responsible to allocate received funds to proposals. A proposal
can have one or more addresses where donations can be sent. Funds for a proposal
need to be placed before voting concludes. If a proposal did not pass, the funds will
be sent back to the originators.

• Treasury: The treasury contract is equivalent to an accountant: It manages the inter-
nal and external wallet. Members pay their contribution fee to this contract or can
request towithdrawmoney fromeither wallet via a respective proposal. The treasury
contract is owner of both wallets, nobody else is eligible to manage the funds.

• DAA: The DAA contract knows all the contracts listed above. Once all contracts are
deployed and linked correctly, the DAA is of�cially active.

The code for the DAA is publicly available on Github [6].

�.� Swiss Association Law

The DAA should mimic the structure of an association under Swiss law [�]. Generally,
an association is a group of people who have a matching interest, like politics, sports,
economy etc. (Article 6�). An association allows this group to become a legal entity under
the Swiss law if they ful�ll certain requirements.

The requirements for the planned association are simple, as FlatFeeStack is neither sub-
ject to audit nor participates in commercial trade (Article 6�). FlatFeeStack needs to es-
tablish bylaws, so-called Statuten and a board of directors. Once both are con�rmed by
the founding members of the association at the �rst general assembly meeting, the asso-
ciation is active and can be added to the trade register.

The Swiss Civil Law article 6� to �� de�ne additional rules that an associationmay follow.
An association is allowed to override most of these rules (Article 6�), except:

• There can be an extraordinary assembly if one �fth of all members request it. (Article
6�, �)

• A general assembly can be cancelled by a council member for important reasons
(Article 6�, �)

• Members are not allowed to vote in proposals that involve themselves, their spouse
or �rst line relatives. This also includes other associations. (Article 68)

Chapter �. Research ��

• Members are only allowed to leave by the end of the year or, if the association de�nes
one, by the end of a �scal year. They need to announce it six months in advance
(Article ��, �)

• Accepted proposals that contradict either the bylaws or Swiss Law, can be chal-
lenged at court by a member who didn’t participant in the vote, within a month. (Ar-
ticle ��)

• If the association is insolvent or the council members are no longer available, the
association needs to be dissolved. (Article ��)

The integration of Swiss law and the DAO provides certain legal and organizational chal-
lenges [�]:

• The bylaws can override the exceptions listed above if they bene�t the members.
For example, it is allowed that the bylaws specify that members can leave at any
time instead of only by the end of the calendar year.

• There are two possibilities for implementing a DAA. The �rst variant is to build a
technical solution compliant with the law. The second variant is a DAO who is em-
bedded into the association, but all the legal matters are happening off-chain (e.g.
physical general assembly, voting, �nancials, etc.).

• The �rst general assembly establishes the association that con�rms the council
members and the bylaws. There is a possibility that the �rst general assembly is
replaceable with a ballot vote on the blockchain. Ballot votes can also replace the
general assembly held in person. Additional points were clari�ed in later mail ex-
change.

– A council member announces the date for the next ballot vote.

– Members can create proposals for the next ballot vote until a speci�c date.

– After the submission deadline, the submitted proposals compose the ballot
vote agenda.

– Voting is open for a particular time for all proposals submitted.

– Members need to have the possibility to add a reason to their vote.

– Note that Swiss law doesn’t specify whatmedium to use for the ballot vote. You
just need to document the voting process including the medium in the bylaws.
Additionally, you need to implement some kind of veri�cation process when
accepting new members so not everybody can just jump in and vote.

• bylaws can be in English.

Chapter �. Research ��

• Hostile takeovers should be taken in consideration. Often, speci�c mechanisms in
DAOs allow an attacker to take control of the DAO and ultimately drain its funds.
To counteract this problem, membership requests should need an approval by a
committee (who are existing members of the DAO) and also a KYC.

�.� On-chain Governance

An essential part of the blockchain world is that the majority must agree to any further
development or change to the system [8]. This means that no central body can decide
alone.

Blockchains have a built-in governance systems which are built on the protocol level of
the blockchain. This implementation varies from blockchain to blockchain. Developers
can state code changes through proposals and each participant votes for or against this
change.

At the level of smart contracts, the contract owner often holds the power of decision-
making. If youwant to delegate the decision-making to the community, youwill implement
a so-called governor contract.

�.�.� OpenZeppelin Governor

OpenZeppelin is an organization that provides a framework of reusable smart contracts
with high-security standards. For example, they provide smart contracts to easily imple-
ment an ERC-��� (NFT).

They also provide a set of contracts to have governance in smart contracts [�]. The con-
tracts are very modular and can be easily extended via solidity inheritance.

The key functionalities that a governor contract needs to take care of are:

• Proposals

• Votes

• Counting

Structure of the Governor contracts

Core

The core module contains all the logic. It is abstract and requires a vote module and a
counting module. You can either write them yourself or work with a provided one.

https://ethereum.org/en/developers/docs/standards/tokens/erc-721/

Chapter �. Research ��

You also need to set some parameters:

• votingDelay: How long after a proposal is created should voting power be �xed. A
large voting delay gives users time to unstake tokens if necessary.

• votingPeriod: how long the proposal is open to vote

Vote Modules

De�nes how voting power is determined and how many votes are needed for a quorum.
The idea is that the voting works with some kind of token. For ERC�� and ERC���, the
necessary contracts are provided.

Counting Module

De�nes the different options for voting. A simple module with the voting options against,
for and abstain is provided.

Timelock

Depending on the decision taken on a proposal, you might disagree and want to leave
the organization. Once a proposal is accepted, the content is transferred to a Timelock
module. It holds off the execution of the decision for a speci�c time. This mechanism
allows people to leave the organization in time before changes come into effect.

Proposal Lifecycle

A proposal is always a sequence of actions which will be executed if it passes the vote.
Each action consists of a target address, calldata encoding a function call, and an amount
of ETH to include.

When the proposal is active, members can cast their vote.

If the voting period is over, a quorum was reached and the majority voted in favor, the
proposal can proceed to be executed.

If a timelock is in place, the actions must be queued, otherwise the proposal can be ex-
ecuted immediately. The actions are not stored in the contract to save gas. Instead, a
hash of the proposal ID, function call, and function data is held in the chain. When calling
queue or execute on the Timelock contract, the action needs to be passed again as a pa-
rameter. The hash will be calculated from the parameter and compared against the stored
version.

Chapter �

Solution

This solution chapter examines the structure and responsibilities of the FlatFeeStack as-
sociation, including how it will fund its mission and address challenges such as vote ma-
nipulation and fraudulent proposals. It also describes the application architecture for the
association, including the use of smart contracts and the integration with the existing
frontend of FlatFeeStack. The chapter also discusses the implementation of various func-
tionalities for the association, includingmembershipmanagement and proposal manage-
ment.

�.� Structure

This section will look at how the association is structured and its responsibilities. It also
clari�es how the association can fund its mission.

The FlatFeeStack association is responsible tomaintain the platform. This includes to pay
for operating expenses, keep the platform up to date and develop new features.

In order to have enough funds available for those tasks the member pay a yearly mem-
bership fee. In addition, �% of all project donations on FlatFeeStack will be sent to the
association.

Every member can submit proposals to shape the future of the platform. Proposals can
be everything as long as they contribute to the further development of the platform or the
association. Figure �.� illustrates this process.

Every member has one vote for one proposal.

��

Chapter �. Solution ��

Figure �.�: DAA structure

Some challenges came up with this approach:

• If the membership fee is low, one could create many Ethereum wallets and join the
DAO to gain a majority of the votes. Since proposals are free-text, the attacker could
propose to send all of those DAOs funds to themselves. This proposal would pass
as the attacker has, as mentioned, a majority of the votes. Members have to be
approved by multiple council members to mitigate this risk. This risk is also known
as the Sybil attack.

• A member could propose to implement a feature for FlatFeeStack in exchange for
some funds. However, the receiver of the money could just run away after receiv-
ing the money without doing any work. The risk is not mitigated with the proposed
solution but could be solved as follows.:

– Members cannot request funds prior to implementation, but rather can request
money after they’ve done the work.

https://en.wikipedia.org/wiki/Sybil_attack

Chapter �. Solution ��

– Instead of paying everything upfront, the DAO would send e.g. ��% of the re-
quested fund. The remains would be sent once the DAO accepts implementa-
tion (via a separate proposal and vote).

• A user could join the association but loose interest over time and not participate
anymore. This risk is mitigated by implementing a function in the smart contract
that allows members to be removed if they do not pay their membership fee for a
certain amount of time.

�.� Application architecture

This chapter describes the implementation of the structure of the association, described
in �.�.

�.�.� General

Figure �.�: General application architecture

Chapter �. Solution �6

The general application architecture is similar to a typical decentralized application de-
sign.

• There is no backend application running to manipulate data. The frontend applica-
tion connects directly to the Ethereum blockchain, where compiled versions of the
smart contracts run.

• To connect to the Ethereum blockchain, a user needs a browser with MetaMask
installed. MetaMask is a free browser plugin that enables users to interact with the
Ethereum blockchain. MetaMask is used for two separate tasks.

�. MetaMask injects an object into the JavaScript runtime of the browser that
allows interaction with the Ethereum blockchain.

�. If a user needs to perform an action (e.g., place a vote) within the application,
it must be wrapped in a transaction. This transaction needs to be signed by
the user. MetaMask holds the user’s private key to their Ethereum accounts
and allows them to sign transactions. Therefore, the frontend does not need
to know the user’s private key but can dispatch a prepared transaction to the
MetaMask browser plugin with the command to sign it.

• The frontend integrates with the existing frontend of FlatFeeStack, which is written
in Typescript and Svelte.

• There are two different services with which the frontend interacts: A backend and
an authentication service. Those are required for the use of all functions of Flat-
FeeStack, but were created outside the semester assignment. More services are
part of the FlatFeeStack ecosystem but are not part of �gure �.� as they are irrele-
vant to thework. Complete documentation can be found in the semester assignment
of Armend Lesi and Marco Endres, chapter �.� [�].

�.� Smart contracts

The backend is not a traditional application, but rather a composite of several smart con-
tracts running on the Ethereum blockchain. This creates some unique circumstances on
how to draw the interaction between them.

• Solidity, the programming language for smart contracts on Ethereum, allows classes
to inherit from multiple base classes. Inheritance is drawn with empty arrowheads
in �.�.

• Deploying a smart contract creates an instance of it. It is possible to deploy multiple
instances of the same contract. However, the instances are not related, and there is

Chapter �. Solution ��

Figure �.�: Smart contract relations

no easy way to discover all deployed instances of a particular smart contract on the
Ethereum blockchain.

There are four smart contracts that compose together the DAA on the blockchain.

Generally, the implementation uses the Governor contracts fromOpenZeppelin �.�.�. This
provides a foundation for everyday tasks within the association, such as creating pro-
posals and voting on proposals. Usually, OpenZeppelin contracts can be referenced from
other contracts without anymodi�cations. However, to implement the ballot vote, the orig-
inal Governor contract (highlighted in green) had to be copied andmodi�cations had to be
made. Since the Governor contract was built using inheritance, several other smart con-
tracts had to be copied into the project. Those contracts are highlighted in blue. Irrelevant
code in these contracts was removed, but the program logic was not modi�ed.

TheGovernor contractwants a connection to another contract that implements the IVotable ê
interface to determine the number of votes per member. Due to the unique requirements
for joining the association compared to a regular DAO, a custommembership contract im-
plementation that inherits from IVotable was necessary. On the other hand, this abstrac-
tion allows someone else to take the DAA contract and connect it to any other IVotable-
compatible contract.

A separate wallet contract manages the funds for the association. This is for separation
of concerns.

The fourth contract is the time lock contract. With the default Governor contract, once a
proposal is accepted, any member can execute the proposal’s instructions immediately.
However, speci�c proposals might have drastic consequences on the DAO, and members
who voted against the proposal, but got outvoted by other members, want to leave the as-
sociation.With the time lock controller and theGovernormodule GovernorTimelockControl ê

Chapter �. Solution �8

, proposals are sent to a queue in the timelock controller after they are accepted. In the
case of the FlatFeeStack DAO, the proposals need to be in this queue for a day before
any member can execute them. This mechanism gives members who disagree with a
proposal time to leave the DAO.

�.�.� Upgradable Contracts

Bydesign, smart contracts are immutable on the EVM.A contract’s code cannot be changed
once it has been deployed on the blockchain. Often software needs to be able to change,
be it for bug �xing, further developments, etc.

For these scenarios, differentmechanismsexists to be able to upgrade smart contracts [��].
OpenZeppelin uses the proxy pattern for all of their upgradable contracts. Because this
project relies on OpenZeppelin contracts, the proxy pattern is the chosen mechanism for
contract upgrades.

The user calls a proxy contract as shown in �.�. This proxy is responsible for forwarding
transactions to the logic contract and back. The logic contract contains all the logic to
compute a transaction.

Figure �.�: Proxy Pattern

Both the proxy and the logic contract are immutable. In case of an upgrade, the logic
contract needs to be replaced with a new one as shown in �.�. After that, the address of
the new implementation is stored in the proxy contract.

Figure �.�: Proxy Pattern Upgrades

To make a contract upgradable, a developer has to pay attention to two things [��].

�. The contract must avoid storage collisions. Storage collision happens when the or-
der of variables between different contract versions changes.

�. The contract can not use a constructor. Instead, an initialize function should be used.

Chapter �. Solution ��

�.�.� Contract owner

Certain functions on the different smart contracts should only be called if a proposal is
passed.

The Governor framework has this mechanism by default. It has an attribute named execu-
tor, which resolves to an address that refers to itself or, when using the GovernorTimelockControl ê
module, to the timelock controller. When a member executes the proposal’s content, the
corresponding execute function executes the proposal contents in the name of the execu-
tor, not the member. When a protected function is called, the protected function checks
if the caller is the same as in the executor property. And since proposal contents are exe-
cuted in the name of the executor, the security check will pass.

Neither the Membership nor the Wallet contract know about the DAO contract. Also, this
executor property, given by the Governor’s framework, is private.

Therefore, theMembership andWallet contract inherits from the Owner contract provided
by OpenZeppelin. This adds a private property named owner to the smart contracts and
a function to verify if the caller is the contract owner. Once the timelock controller is de-
ployed, it owns both the Membership andWallet contract. When executing a proposal, the
caller is the timelock contract. And since the timelock controller cannot run anything that
wasn’t a successful proposal, the security mechanism of the contract owner is equal to
the executor property of the DAO contract.

�.�.� Development environment

The development environment for the smart contracts is based on Hardhat. It consists
of different components for editing, compiling, debugging, and deploying your smart con-
tracts and dApps, all of which work together to create a complete development environ-
ment [��].

Hardhat is based on NodeJS and can be installed using NPM. Once the package is in-
stalled, it allows you to set up new projects based on Javascript or Typescript. For the
DAA project, the Typescript setup was chosen to have type-safety.

Hardhat gives the following directory structure:
daa

.github – Github Actions Workflows
contracts — Smart Contracts
deploy — Blockchain deployment scripts
deployments — Deployment state to different networks
scripts — Helpful scripts
test — Unit tests for smart contracts

Chapter �. Solution ��

Testing

The test directory is used for writing unit tests. The unit tests themselves are written in
Typescript. Hardhat uses the chai and Mocha libraries for test assertions and adds a few
additional ones speci�c to Blockchains, e.g., expectations that a particular operation will
revert [��]. Hardhat compiles the Solidity code and boots up a temporary blockchain when
running the tests. The temporary blockchain will be deleted after all tests are completed.
The user is responsible for making sure the contracts are deployed prior to running the
tests. For the DAA tests, this is done by having a deployFixture method in each test �le
that sets up the smart contracts and all relevant con�gurations.

Below you can �nd a unit test example written using Hardhat:

� describe("increaseAllowance", () => {
� it("cannot increase more than total balance of wallet", async () => ê
{

� const { owner, otherAccount, wallet } = await deployFixture();
�

� await expect(
6 wallet
� .connect(owner)
8 .increaseAllowance(
� otherAccount.address,

�� ethers.utils.parseEther("200.0")
��)
��).to.be.revertedWith("Keep allowance below balance!");
�� });
�� });

Listing �.�: A unit test for the Wallet contract using HardHat

As shown in listing �.�, the �xtures are deployed �rst, which gives us back the owner of the
smart contract and ametaclass object from ether.js of theWallet contract [��]. Afterward,
it is expected that calling increaseAllowance with the parameter 200 ETH will revert with
the message Keep allowance below balance!.

When pushing code changes to the GitHub repository, the tests are run with GitHub Ac-
tions. Additionally, GitHub Actions will report the code coverage.

Deployment

Hardhat offers support to deploy contracts to a local chain, test networks, or the main
network using scripts written in Typescript. However, the deployment mechanism doesn’t
keep track of existing deployments, which is vital for the DAA, as the proxy contract ad-
dress should stay the same with each deployment.

Chapter �. Solution ��

Therefore, it was decided to use the community-maintained hardhat-deploy plugin. This
plugin saves the addresses of the deployed contracts in different JSON �les, including the
compiled code version that was deployed. Deployment scripts are idempotent, so rerun-
ning them without any change won’t trigger a new deployment [��].

The deployment scripts reside in the deploy folder, while the deployment states with the
mentioned JSON �les are saved to deployments.

Scripts

Hardhat allows one to writing scripts where one can access the Hardhat runtime environ-
ment. The DAA project contains several scripts.

• addMember: After deployment of the contract, this script allows to add a regularmem-
ber directly to the DAA. This script is used for setting up the local development
blockchain.

• addSlots: After deployment of the contract, this script creates a few voting slots
and one proposal to �ll the DAA with data. This script is used for setting up the local
development blockchain.

• mineBlocks: The DAA is heavily dependent on time. This script allows to mine a cer-
tain amount of blocks to fast-forward time on the blockchain itself.

• exportInterfacesToFrontend: This script reads the ABIs of the smart contracts and
exports them to the frontend repository, where they are used to generate the ether.js
meta classes.

• exportContractAddressesToPayout: Since the frontend fetches the smart contract
addresses from the payout service, this script allows to export the contract ad-
dresses stored in the JSON �les from hardhat-deploy to the payout service.

�.�.� Membership

Anyone can become amember of the FlatFeeStack DAO, but they should know blockchain
technology or be interested to learn it.

The Membership.sol Contract implements everything regarding membership.

Types

There are two different types of Members, with various rights and obligations.

Chapter �. Solution ��

The �rst type are the council members ("Vorstand"). They are the head of the association
and represent the association to the outside world. The bylaws contain a complete list of
their responsibilities (�.6).

The association needs at minimum two council members because two different council
members must approve new members to join the association.

The second type is the regular member.

States

There are four membership states: nonMember, requesting, approvedByOne and isMember.

If an Ethereum account address is not in the membership list, it has the status nonMember.

If a non-member wants to become part of the association, they can request a member-
ship (requestMembership). This adds them to the membership list and assigns the status
requesting.

Now a council member can approve the membership (approveMembership(address ê
_adr)) and with that, the status approvedByOne is assigned. After that, a second, differ-
ent council member must approve the membership for the second time. With that, the
member has the status isMember.

Until the member has paid his membership fee, they cannot participate in votes or create
proposals.

Fees

Every member has to pay membership fees (payMembershipFee()). They must be paid
once a year and are ��’��� Gwei. A list inside the contract keeps track of the member’s
next membership fee payment date. If a new member pays their membership fees, they
gain the right to vote and to create proposals. The voting rights are not revoked even if the
member does not pay the following membership fees.

Voting Power

The implementation of contracts according to the OpenZeppelin Governor standard re-
quires the integration of a module to determine an individual account’s voting power and
the total available voting power. In this case, every account has the same voting power. To
become a votes module, the membership contract implements IVotesUpgradeable. With
that also, two new structs are introduced _voteCheckpoints and _totalCheckpoints. The

Chapter �. Solution ��

_voteCheckpoints keeps track of the votes an account has. The _totalCheckpoints keeps
track of all the voting power in total.

These structs work with a history. This means the data is stored together with the block-
number in which the transaction ran. This gives the possibility to read voting power from
past snapshots.

�.�.� Ballot Vote

Asmentioned in �.� a ballot vote is an excellent way to substitute the concept of a general
assembly. It can be held digitally, which �ts perfectly with this blockchain project.

A council member announces a Ballot Vote. They have to announce the vote at least one
month before it takes place. After the announcement, all members have time to submit
proposals (see �.�.6) to this ballot vote. A ballot vote always has a start and an end. The
council member can specify the start. The smart contract calculates the end. So the du-
ration of a ballot vote is always the same.

A council member can cancel a ballot vote if they have a good reason (required by law).
That must happen at least one day before the vote. Already existing proposals in that
ballot vote will be moved to the following ballot vote. If there is no following vote the
council member won’t be able to cancel.

�.�.6 Proposals

Proposals are the instrument for the members of the organization to make changes. For
example, a member could propose getting some money from the organization for their
work.

Figure �.6 shows the states that a proposal goes through. It had to be adjusted a bit, as
in the original OpenZeppelin implementation (�.�.�). This was done because proposals
need to be assigned to a ballot vote.

Chapter �. Solution ��

Figure �.6: Proposal Lifecycle

Note that tv , tt, and tr are adjustable variables in the smart contract and, therefore, can
be changed via a proposal. tr sets the minimum time limit before the vote within which
proposals may be submitted.

Assign
The proposal will be assigned to the next possible ballot vote.

Review
Other members can review the proposal and form an opinion on whether they want to
support it. They have got at minimum tr amount of time for that.

Voting
All members have tv time to cast a vote for the proposal. If they want, they can give a
reason for a vote.

Queue
After the voting window is over and the proposal is approved, it can be queued into the
timelock. It needs an external invocation. For example, a council member can queue all
the proposals.

Chapter �. Solution ��

Timelock
The proposal is locked for tt time and can’t be executed. This is for security.

Execute
After the timelock is over, the proposal is ready to be executed. It needs an external invo-
cation. For example, the proposer can execute his proposal.

Executed
The proposal is executed. This is the end of a proposal lifecycle.

Rejected
The community rejected the proposal. There is no change to adjust the proposal for further
use. If something similar wants to be proposed, a new proposal has to be made.

�.�.� Voting

Every member can cast one vote per proposal, and everyone has the same voting power.
There are three types of votes:

• Against: If the member is against the proposal.

• For: If the member is in favor of the proposal.

• Abstain: If the member wishes to abstain from voting.

The votes are counted at the end, and a simple majority is suf�cient for the proposal to
be a success.

Founding Ballot Vote

Every association must have a founding meeting where the bylaws and the council mem-
ber must be approved. To achieve that, a ballot vote will be created on the deployment of
the smart contracts. This vote only consists of one proposal that updates the hash of the
bylaws on the DAO (�.6.�). The vote takes place one week after the deployment to allow
other members to join the association. A successful funding ballot vote establishes the
association as an independent legal entity.

�.�.8 Time

The DAO relies on time formost of its functionalities. One can only vote during a particular
time window. Members can create new proposals for a ballot vote until a speci�c time.

Ethereum generally knows two kinds of time: block numbers and timestamps. The block
number is the number of the block relative to the �rst block. The timestamp to the block

Chapter �. Solution �6

gets added by the miner based on their system time and can be manipulated to a cer-
tain extent [�6]. The DAO uses a mix of these two different time variations, below are the
important ones:

• The next membership fee payment for members is saved as a timestamp.

• Everything in the DAO is saved and calculated using block numbers. This was given
by the OpenZeppelin Governor.

• The time how long a proposal must be queued before execution is saved as a times-
tamp. This was given by the OpenZeppelin time lock conteract.

Roughly every twelve seconds, a new block gets created on the Ethereum network. When
dealing with future block numbers, the frontend takes the difference between the current
block number and the given future block. It multiplies it by twelve seconds to approximate
the date when the miners will create this speci�c block. However, it’s an approximation.
Especially since the Ethereum merge, the time between blocks has gone down massively
[��]. Therefore, it could be that this constant has to be adapted at some point depending
on the average block time.

�.� Frontend

This section focuses on the design and implementation of the frontend for the FlatFeeStack
association.

�.�.� User interface draft

One of the functional requirements is to build a frontend that allows users to interact with
the association on the blockchain. The DAA part of the frontend will be integrated into
the existing frontend of FlatFeeStack, so all information about FlatFeeStack is accessi-
ble from one location. Below are wireframes for the different views within the frontend
application.

Figure �.� shows the base layout for the application. On the left side is the navigation to
manage different aspects of the association. The existing frontend for FlatFeeStack also
incorporates the navigation on the left side, using icons and text to describe the items. The
center displays the upcoming and past ballot votes (named voting windows). Depending
on the state of the voting window, members can vote for proposals (see �gure �.�) or
submit new proposals (see �gure �.8).

Proposals will be grouped into voting windows. A voting windowmaps to the de�nition of
a ballot vote required by law (�.�).

Chapter �. Solution ��

Figure �.�: Start screen

Figure �.8: Create a proposal

The call to the blockchain to create a proposal in the association is quite complex. A
simple proposal form abstracts the complexity for standard proposals, like requesting
funds or an exchange of the representative. Therefore, the form changes the available
�elds based on the chosen proposal type, as shown in �gure �.8. The form will allow
advanced users to in�uence the parameters sent to the blockchain directly.

Chapter �. Solution �8

Figure �.�: Vote for propoals

Figure �.� shows the screen where users can submit votes. It will list all votes; for each,
the user can decide if they support the proposal, vote against it, or have no opinion about
it. For each vote, a user can add a reason.

�.�.� Implementation

General

As outlined in section �.�, the frontend for the DAO is integrated into the existing frontend
for FlatFeeStack. This frontend is built with the Svelte framework.

The frontend needs to know the addresses of the contracts on the blockchain and their
application binary interface to interact with them. Additionally, as mentioned in section
�.�, MetaMask is needed to connect to the blockchain and sign transactions for actions a
user executes. These interactions are enabled with the ether.js library, which was already
part of the frontend application, as it has existing functionality that fetches and sends
data to the Ethereum blockchain.

ether.js builds so-called JavaScript meta classes based on the ABIs and addresses for
a smart contract [��]. When any method on those meta classes is called, ether.js builds
the corresponding transaction and sends it to a provider. For FlatFeeStack, this is Meta-
Mask. MetaMask inspects the transaction: If it is a write operation, it requests the user to
con�rm the operation and signs the transaction with the user’s private key. Afterward, the
transaction is sent to the JSON RPC interface of Ethereum, which queues the transaction

Chapter �. Solution ��

and allows it to be included in the next block. The transaction goes directly to an Ethereum
node for evaluation [�8].

The Svelte framework organizes frontend code into a tree of smaller code snippets called
components. Data needed to render components is generally stored in each component
separately. Once a component is removed from the DOM, its stored data is also lost.

To preserve data across components, Svelte provides a store functionality that is based
on the observer pattern. Multiple components can subscribe to changes in the store.
When navigating in the frontend, the state in stores is preserved. A store can have an
initialize function when the �rst component subscribes to the store. For FlatFeeStack
DAO, this helps initialize the mentioned ethers.js meta classes.

A signi�cant part of the state needed to render the frontend of the DAO is preserved in
those Svelte stores:

• The current signer fetched from MetaMask.

• The meta classes for the smart contracts.

• Anydata that is needed acrossmultiple components, like the list of councilmembers
or a list of proposals.

This documentation will mention when Svelte components read or write data to Svelte
stores.

One signi�cant difference between traditional applications that interact with a regular
backend application and the FlatFeeStack DAO frontend is the shape of information. For
traditional applications, the entire state of an object is served in one reply, and the main
job of the frontend is to arrange the given information on the computer screen. However,
depending on the requested view, the FlatFeeStack DAO frontend needs to combine infor-
mation from multiple requests to get a complete state of the objects. For example, a �rst
call checks if the signer is known to the membership contract to retrieve the status of the
current logged-in signer (getMembershipStatus). A second call in parallel retrieves the list
of councilmembers. If the signer is amember of theDAO, the frontendwill check if they are
also a council member to display the correct membership status in the frontend. Fetching
this kind of information is usually just one call to the backend in a traditional application.
Therefore, some frontend components execute many parallel calls to the blockchain and
do the heavy lifting with object transformation to get a renderable state.

Chapter �. Solution ��

Figure �.��: Navigation with MetaMask wallet not connected

Navigation

The navigation component is rendered in all views of the DAO frontend. Views request to
be rendered inside theNavigation component, which places their content on the right-hand
side. The navigation also displays the currently connected user and navigation options.

The navigation component is vital to the frontend as it pre-�lls several essential stores.
Once a user clicks on the Connect wallet button shown in �gure �.��, the frontend saves a
signer object fromether.js into a Svelte store. This signer object allows identi�cation of the
user’s Ethereum address, which is used in several other �ltering mechanisms or to check
access in different views (e.g., council member functions). Before the connection to the
Ethereum wallet is established, an empty signer is used to read data from the blockchain.

Additionally, when the signer object changes, thementioned ether.js smart contract ether.js
contract meta classes are re-initialized so transactions from ether.js can be sent to Meta-
Mask.

With a connected wallet as shown in �gure �.��, the navigation displays the Ethereum
address of the connected user, allows to inspect the current membership status (�.�.�)
or to leave the DAO.

Chapter �. Solution ��

Overview of voting slots and proposals

Figure �.��: Overview of the voting slots with the MetaMask wallet connected

As shown in �gure �.��, the start page of the FlatFeeStack DAO frontend is the overview
of voting slots and proposals. The data is fetched in multiple calls:

�. As the blockchain cannot return array properties, the frontend �rst asks for the num-
ber of voting slots.

�. For the received number of voting slots, it receives their effective voting start date.

�. Based on this start date, the frontend fetches a list of proposal identi�ers for each
voting slot.

�. Finally, for the list of proposal identi�ers, the blockchain is searched for ProposalCreated ê
events that match the retrieved identi�ers. The ProposalCreated event contains
complete information about the proposal, like the proposer or the description.

The retrieved voting slots and proposals are saved in respective stores.

Depending on the current time, the user can execute various functions on this page.

• Create a new proposal for a voting slot if the slot still allows adding proposals. The
corresponding button takes the user to the create proposals form (�.�.�).

Chapter �. Solution ��

• The user can navigate to the voting form if the voting is open for a speci�c slot
(�.�.�).

• The user can navigate to Execute proposals if voting is concluded (�.�.�).

Create proposal form

Figure �.��: Create proposal form, �lled out to propose removing a council member

As shown in �gure �.��, the create proposal form allows users to create a new proposal
in a simpli�ed form. Usually, they need to provide target addresses that should be called
and encoded versions of the functions and parameters that should be called on those
addresses (see details in section �.�.�).

Chapter �. Solution ��

The proposal form abstracts this for typical proposals, like requesting funds from the
DAO or removing a member. When choosing a different proposal type in the form, the
Svelte component renders a child component that implements the required �elds for this
proposal. For example, in the case of requesting funds, the child component provides two
�elds: the targetwallet address and the amount. Each child component validates the �elds
on its own.

If the �elds are valid, the child component encodes the information as required by the
smart contract. It communicates the updated state via Svelte’s two-way binding to the
parent component. The parent component blocks the form submission if the child com-
ponent does not communicate valid encoded function calls. This abstraction allows us
to implement new proposal types quickly, as the required data by each proposal type are
de-coupled from each other.

Vote view

As shown in �gure �.��, the vote view aims to mimic a ballot vote: Each proposal for the
selected voting slot is listed with its proposer and description. A user can click on their
voting choice (either disapprove, approve or abstain) and, optionally, give a reason for their
vote. At the end of the page, all the votes can be submitted at once.

The view accesses the proposal and voting slot stores, loaded already when the user
opens up the start page. However, the view needs to check if the user is eligible to vote,
if the voting period for the selected slot is open, and if they have already voted, as votes
cannot be revised even if the voting slot is still open. This information is stored locally in
the component.

The cast votes are fetched from the corresponding events. However, it is only possible to
�nd votes cast on the Ethereum blockchain by the signer’s address, not by proposal iden-
ti�er. Therefore, in the vote view component, the frontend �lters the retrieved events using
the proposal identi�ers from the selected voting slot. If the connected user has already
voted on one proposal, the view is pre-�lled with their choice and reason. Submission for
proposals where the signer has already cast their vote is blocked to prevent errors.

Execute proposals view

As explained earlier in section �.�, accepted proposals are not available for immediate
execution but need to be submitted to an execution queue. After a speci�c time, they can
be executed.

Chapter �. Solution ��

Figure �.��: View to cast votes.

Chapter �. Solution ��

Figure �.��: View to execute proposals. Vote for the �rst proposal did not pass, so no
further action is available, but the second proposal can be queued.

The Execute proposal view shown in �gure �.�� illustrates this work�ow. This view is avail-
able after voting for a slot is concluded. It reads data from the voting slot and proposal
store but fetches the individual state for each proposal and a property called proposal eta.
This property returns the seconds until the proposal can be executed.

The view covers the following states of a proposal:

• Defeated: The view mentions that the vote for the proposal did not pass, and no
actions are available on this page.

• The vote for the proposal passed. The view displays a button to send the proposal
to the execution queue.

• Queued: If the proposal eta is �, the view displays a button to execute the proposal.
Otherwise, it displays the remaining time.

• Executed: The view mentions that the proposals have been executed already.

Chapter �. Solution �6

Treasury

Figure �.��: Treasury view

The treasury view shown in �gure �.�� displays information from the Wallet contract. It is
divided into three sections.

The �rst part shows the current total of funds in the Wallet. Some of these funds can be
locked for members using the Request funds proposal, which is displayed in the second.
The last number shows how many funds are not allocated and could therefore be used to
pay for various things.

The second section allows the user to withdraw funds, if they have any.

The third section overviews all Wallet transactions within the last �� days. The Wallet
contract emits three relevant events that the frontend will fetch for this view.

Note that this Wallet view can only be accessed when somebody is an association mem-
ber. While the information is publicly available on the blockchain, the treasury’s money
should not be the primary incentive to join the association. Keeping this information se-
cret in the user interface should help with it.

Council member view

A council member has additional privileges in the DAO. Those additional functions can be
managed from the council member’s view shown in �gure �.�6 and are accessible from
the navigation.

This view covers two functions:

• The council member can create a new voting slot. The view will check if the voting
slot has been announced a month in advance.

Chapter �. Solution ��

Figure �.�6: Council member view

• The council member can cancel a voting slot and needs to provide a reason for it.
The view obtains the available voting slots from the voting slots store. The view also
veri�es that the cancellation happens not later than one day before the slot.

Chapter �. Solution �8

Figure �.��: Membership requests view

Membership requests view

As outlined in section �.�.�, membership to the DAO needs to be approved by two individ-
ual council members. Themembership requests view shown in �gure �.�� lists the current
membership requests.

The logic for obtaining membership requests is extensive. Members that need to be ap-
proved are either in amember state requested or approvedByOne. However, those changes
between states are not tracked directly on the membership contract, only in the
ChangeInMembershipStatus events. Therefore, the view collects the these events and ap-
plies a JavaScript �lter to sort out already con�rmed members.

Formembers in the state approvedByOne, the view checks if the current signer is the signer
who did the �rst approval. If the current signer did the �rst approval, the approve member-
ship button in the view is disabled.

Membership status view

From the DAO frontend navigation, members can inspect their current status. This view
shown in �gure �.�8 is available for everybody but is primarily interesting for people that
applied for membership and are waiting for their con�rmation.

Chapter �. Solution ��

Figure �.�8: Membership status modal

The view accesses themembership status store. If the current signer is already amember,
the view fetches the next date to pay themembership fee. The next payment date is stored
locally in the component.

The user has two available actions on this view:

• If they did not request membership to the FlatFeeStack DAO, they have a button
available to request it.

• If they still need to pay their membership fee, they have a button to pay it.

�.� Non-functional requirements

This section veri�es the non-function requirements listed in �.� against the �nal product.

Functionality: Each story is a functional component and does not break the functionality
of others.
Acceptance criteria: Unit Tests run for all subsystems in the main branch.
Result: Partially ful�lled.

The smart contracts were written with unit tests alongside from the �rst line of code.
There weren’t any merges to main branch unless the continuous integration passed suc-
cessfully. In the frontend, no unit tests were written and veri�cation was done manually.

Chapter �. Solution ��

This sometimes resulted in code getting merged that broke functionality in other parts of
the application.

Portability: The application must be portable and able to run on multiple platforms or
devices without requiring signi�cant modi�cation.
Acceptance criteria: Manual testing on different devices and browsers.
Result: Ful�lled.

This requirement does not apply to the smart contracts. The frontend was frequenty used
in different browsers and on different devices. There wasn’t any instance where the fron-
tend was broken because of a certain device type or browser.

Extensibility: The application must be easy to maintain and update over time, with clear
documentation and support processes.
Acceptance criteria: Time to �x bugs or to install updates.
Result: Ful�lled.

This requirement is ful�lled for now, for both the smart contracts and the frontend. Doc-
umentation was added to setup both the smart contracts development environment and
the frontend. The real test will follow once other people will continue the work on this
project.

Robustness: The application must be robust and able to handle unexpected or invalid
input without crashing or behaving unexpectedly.
Acceptance criteria: Manual testing with invalid or malicious input.
Result: Partially ful�lled.

These manual tests were conducted towards the end of the project.

The smarts contract are written to handle a lot of invalid cases. Additionally, the type
system on Solidity prevents cases where e.g. a number is expected, but a string is passed.

The frontend handles invalid numbers for the Create Proposal form. Any other exception
or invalid input neiter recorded nor properly captured. Given Svelte’s nature, the frontend
won’t be working anymore and a hard refresh is needed.

Code quality: The application must be written in clean, well-organized code that is easy
to understand and maintain.
Acceptance criteria: Static analysis run with each commit.
Result: Partially ful�lled.

The static analysis was added to the smart contracts and ran on each run of the continous
integration.

Chapter �. Solution ��

The frontend does not contain any static analysis tool and themoment. No tool was added
during this project.

�.6 Bylaws

The following bylaws were created based on the elaborated solution design from the pre-
vious chapter. They are based on the example bylaws from MME ([�]).

�.6.� Articles

NAME, DOMICILE AND PURPOSE

Art. � Name
Under the name of "FlatFeeStack DAO" hereinafter referred to as "DAA" an associa-
tion within the meaning of Article 6� et seqq. of the Swiss Civil Code exists for an
inde�nite term.

Art. � Domicile
The DAA has its domicile in Zürich.

Art. � Purpose
The purpose of the DAA is to directly or indirectly contribute to the success of the
FlatFeeStack-Platform with the goal to support and promote open source software
and its projects. The DAA can cooperate with or join other organisations that repre-
sent the same or similar interests. The DAA can provide services for the bene�t of its
members and member organisations or third parties and do anything that directly
or indirectly promotes the interests of the members.

STRUCTURE AND ORGANISATION

Art. � Bodies
DAA’s bodies are the:

• DAA Council Member ("Vorstand");

• DAA Ballot Vote ("Urabstimmung");

Art. � General Concept of Competences and Duties
The objective of DAA is to establish a decentralised and democratic association
with �at hierarchies. Therefore, the DAA Council member ("Vorstand") will have only
those competences, which actually require the action of an individual, natural per-
son, such as representation duties or the duty to keep the books. The DAA Ballot

Chapter �. Solution ��

Vote ("Urabstimmung") has those elementary competences, which are mandatory
stipulated for an association assembly by Swiss law (such as the change of statutes,
the liquidation of the association, and others). The DAA Ballot Vote will be held dig-
ital, allowing the proper democratic decision-making required by Swiss law. Addi-
tionally, the DAA Ballot Vote shall be the body, which can decide about the "daily
business" such as the proposal and support of projects and the funding allocation
to projects. The DAA Ballot Vote provides a blockchain-based technical infrastruc-
ture to ef�ciently, democratically and transparently propose and vote.

Art. 6 Underlying Technology
The DAA is technically built with EthereumSmart Contracts. All votingwill take place
on this technical infrastructure. The relevant technical functions are hereinafter writ-
ten in italic. To be able to vote, holding a certain amount of Ether is necessary for
every member (transaction fees, gas fees).

Art. � DAA Council member (Vorstand)
The DAA has atminimum two (�) council memberswith the following competencies
and duties:

(a) Representing the DAA to the outside world;

(b) Keeping the books and creating the necessary �nancial statements of the DAA;

(c) Preparing and calling the next DAA Ballot Vote (setVotingSlot);

(d) Canceling aDAABallot Vote, if they have a good reason for it (cancelVotingSlot);

(e) Reviewing member applicants on their eligibility to join the DAA. If the member
meets the requirements of Art. ��, the DAACouncil member will add their public
keys to the member registry (approveMembership);

(f) Remove Members who haven’t paid their membership fees (removeMember-
sThatDidntPay);

(g) Keeping the member registry (name, address, e-mail);

The term of of�ce for the DAA Council member starts with the foundation of this
DAA and ends when he’s been replaced via a proposal. If a DAA Council member be-
comes unable to act or loses his private key, hemust be replaced with a new council
member in the next DAA Ballot Vote. If all the DAA Council members are unable to
act, an extraordinary DAA Ballot Vote will be called and two new DAA Council mem-
bers must be elected. The personal liability of a DAA Council member is limited to
cases of gross negligence.

Chapter �. Solution ��

Art. 8 DAA Ballot Vote ("Urabstimmung")

�. Competences
TheDAABallot Vote shall be the highest governing body of theDAA. It is chaired
by one of the DAA Council members. The objective of the DAA Ballot Vote is to
allow every member to propose new DAA projects and to vote on the funding
allocation to those projects. The DAA Ballot Vote has the duty of collecting all
the votes on the proposals on that vote.

�. Voting Process
The whole voting process is purely digital and blockchain based. Themembers
have one day to vote for every proposal in the Ballot Vote.

�. Voting Majorities
Resolutions shall be adopted by a simplemajority of themembers participating
at the individual DAA Ballot Vote. At least �/� of the DAA Members must vote
on a proposal and a simple majority to become successful.

�. Election Process for DAA Council member
Anymember can propose themselves for candidacy as a council member (pro-
pose & addCouncilMember). If the proposal is successful the new DAA Council
member term starts at the execution of the proposal. Any member can also
propose to remove a council member (propose & removeCouncilMember)

�. Convocation
The DAA Ballot Vote shall be held in regular intervals. A DAA Council member
can set the date at least � month before the DAA Ballot Vote (setVotingSlot).
The DAA Council member will inform the members electronically on the date.
A DAA Ballot Vote lasts one full day.

Every member can propose an extraordinary DAA Ballot Vote (propose). If ��%
of all DAAmembers support the extraordinary DAABallot Vote, it will take place
on the speci�ed date.

6. Proposals & Agenda Items
Every member can submit a proposal to pay Ether to a destination address
(the amount can be zero). The funding allocation via the DAA Ballot Vote is
binding and technically non-reversible – not even by the DAA Council member.

Chapter �. Solution ��

Proposals from members must be submitted at least � days prior to the DAA
Ballot Vote using the speci�c DAO proposal function (propose).

MEMBERSHIP

Art. � Members & Membership Requirements
Natural persons, legal entities and organizations under public law can requestmem-
bership of the DAA. Legal entities and organizations under public law shall appoint
a representative who exercises membership rights at the DAA Ballot Vote. Every
member is responsible to gain the technological know-how to be able to participate
on votes on the DAA Assembly. In addition, every member has to assure to have a
suf�cient amount of Ether for the necessary transaction fees.

Art. �� Becoming a Member
Everyonewho is eligible for amembership canmake a request(requestMembership).
Every member has to do a KYC check. A new member has to be whitelisted by at
least twoDAACouncilmembers before joining(whitelistMember). After thewhitelist-
ing and the payment of the membership fee (payMembershipFee), the applicant be-
comes a DAA member and gains voting power for the next ballot vote.

Art. �� Awareness of Technological & Conceptual Risks
Blockchain is a new technology. The technical or conceptual structure of this DAA
and the DAA voting process may have weaknesses, as it is the case with every
blockchain project. Moreover, the DAA is dependent on the underlying Ethereumpro-
tocol. Therefore, it may be possible that the DAA loses part or the whole of its funds
or become incapable of acting. Every member explicitly declares to be aware of and
to agree to those risks.

TERMINATION OF MEMBERSHIP

Art. �� Resignation
DAA members can leave the DAA using removeMember. The resignation will be of
immediate effect. There is no entitlement to any refund of paid membership fees.
The membership fee remains owed in full for the current �scal year.

Art. �� Expiration
Membership in the DAA ends automatically:

• upon liquidation of the DAA;

• by the death of the speci�c member.

The membership fee remains owed in full for the current �scal year.

Chapter �. Solution ��

Art. �� Exclusion
Every member of the DAA can be expelled by the DAA Member Community. The
exclusion of a member can be proposed by every member (propose & removeMem-
ber). Members who did not pay their membership fees are excluded automatically
without voting process (removeMembersThatDidntPay).

The excluded member has no right to an explanation. The membership fee remains
owed in full for the current �scal year.

FINANCES

Art. �� Membership Contributions and Other Fundraising
The DAA is primarily �nanced by the contributions of its members (payMember-
shipFee). The Membership fee is ��’��� Gwei. The member contributions will be
set initially or can be changed via a proposal (propose & setMembershipFee).
In addition, theDAA is�nancedby a fee from the contributions from the FlatFeeStack-
Platform. The membership fees are due in intervals of �6� days after the individual
date of accession.

Art. �6 Fiscal Year
The �scal year is identical to the calendar year.

Art. �� Liability
The assets of the DAA shall be solely liable for the obligations of the DAA. Personal
liability of the members beyond the regularly adopted contributions is excluded.

ASSETS

Art. �8 Ownership Smart Contracts
The DAA has the ownership of following Ethereum Smart Contracts on the Mainnet:

• Name: DAA.sol Address: �x

• Name: Membership.sol Address: �x

• Name: Wallet.sol Address: �x

Art. �� Ownership Software Code
The DAA has the ownership of all the code who is written and stored on Github
https://github.com/flatfeestack. All codemust be licensed under an open
source license.

https://github.com/flatfeestack

Chapter �. Solution �6

UPDATE & DISSOLUTION

Art. �� Update of the Underlying Code
An update of the underlying smart contract code of the DAA can be adopted via the
DAA Ballot Vote.

Art. �� Dissolution & Liquidation
The dissolution of the DAA can be adopted with a proposal (propose). The funds
will be transferred to one of the DAA Council Members (speci�ed in the proposal),
who must carry out the liquidation process. If all council members aren’t available
anymore, the funds can also be transferred to a normal member.

FINAL PROVISIONS

Art. �� Entry into Force
TheseArticles of Association are basedon those of the foundingmeeting of DD.MM.YYYY
andwere adopted at the occasion of the inital DAABallot Vote of DD.MM.YYYY. They
enter into force immediately.

�.6.� Hash and store

Store space is expensive in EthereumSmart Contracts; therefore, only a hash of the bylaws
is stored in the smart contract. The bylaws are stored on Github ([��]). Every time there
is a change in this repository, a CI pipeline will run and calculate a SHA��6 hash. The
calculated hash can be used tomake a proposal in theDAA-Contract to change the bylaws.

Chapter �

Conclusion

This chapter re�ects on the goals and outcomes of the project to create an association
on the Ethereum blockchain for the FlatFeeStack platform. It begins by summarizing the
process of gathering knowledge on blockchain technologies and legal requirements, and
designing and implementing the association’s structure, smart contracts, and frontend.
Finally, the chapter explores potential further developments for the FlatFeeStack associ-
ation, including a discussion forum, veri�cation of proposal content, and integration of
external services.

�.� Conclusion

This assignment designed and implemented an association compliant with Swiss Law
based on blockchain technologies to maintain the FlatFeeStack platform. A set of smart
contracts on the Ethereum blockchain abstracts the different activities needed in an as-
sociation, namely managing members, discussing proposals, and voting. A frontend was
implemented to make the smart contract more accessible for people without in-depth
knowledge of the blockchain. A set of bylaws were written to connect the legal require-
ments with the developed application.

At the start of the assignment, themain focuswas to gather knowledgeon current blockchain
developments and the legal requirements for an association under Swiss law. Based on
those gatherings, �rst drafts of the association’s structurewere created, ultimately leading
to the bylaws written as part of the assignment.

The existing Governor framework by OpenZeppelin proved to be a good starting point
to comply with the already thriving governance ecosystem on Ethereum. Based on this
implementation, additional functionalitieswere introduced to ful�ll the requirements given

��

Chapter �. Conclusion �8

by the law. Due to unique requirements regarding votes per member and the approval
process, a smart contract still compatible with the Governor’s framework was written.

The frontend was integrated into the existing FlatFeeStack application. The framework
with Svelte.js and the library to interact with the Ethereum blockchain, ether.js, were al-
ready given. The frontend contributed during this assignment resides in its own space
within the application and is largely decoupled from the main application. One of the
challenges in implementing the frontend was displaying information retrieved from the
blockchain in a user-friendly manner whilemaintaining good performance. A solution was
found by implementing caching of information used in different views, adding loading in-
dicators, and creating a user interface draft in advance.

Digitalizing processes given by law in the form of an association proved to be a challenge.
However, the work produces in this assignment is a good starting point for launching the
FlatFeeStack association.

�.� Future Work

This section aims to identify potential areas for future work in the FlatFeeStack associa-
tion. These ideas have been identi�ed based on the current limitations and challenges.

�.�.� Discussion before creating a proposal

For most matters, a discussion is needed even before creating a proposal. Offering this
functionality can serve multiple purposes: Members of the association could �esh out an
idea together. A singlemember could post a draft of their proposal to see if theywill get the
needed majority on voting day. Questions could be clari�ed before creating the proposal
tomake sure themembers have a general understanding of what should be achieved with
a proposal.

A democratic institution should offer its members all the possibilities to allow them to
form an opinion independently. With the current implementation, this is very limited.

A possibility could be integrating a forum into the FlatFeeStack site, where members con-
nect with their MetaMask accounts. However, the data for the forum should be saved
outside the blockchain to save costs. The vital information, which is the content of a pro-
posal, will remain on the blockchain.

Chapter �. Conclusion ��

�.�.� Verify proposal content

The content of a proposal, especially targets and functions that will be called, is intention-
ally free-text to allow the DAO to perform any blockchain-based actions. However, this is
also a security risk: A member could describe that the proposal only sends � Ether to an
unknown sender, but in reality, it is ��� Ether.

A copy of the used parameters and the generated proposal data could be sent to an off-
chain service when creating a proposal through the frontend. This off-chain service could
store this information. The frontend could talk with this service and mark the proposal as
safe if all parameters were veri�ed.

Proposals that are sent directly to the chain could be analyzed in hindsight as follows:

• The off-chain service needs to know the contracts related to the DAO (the DAO itself,
Membership, Wallet, and Timelock) and their ABIs.

• The mentioned off-chain service could listen to the Proposal created event. Once a
new proposal is created, it checks the targets to see if it matches any known con-
tracts.

• If it matches any known contract, it can decode the call data. The decoding works
by calculating the hash of every function using keccak��6 and reducing it to four
bytes. It is a known function if those four bytes match the start of any call data. If
it is a known function, the parameters can also be derived. This information can be
saved to the same database and the proposal can be marked as safe.

�.�.� Member register

Associations keep a register of their members. While the FlatFeeStack association has a
list of members in the form of Ethereum addresses, it does not have information about
their names or address.

If somebody wants to become a council member, those real-world pieces of information
would be needed, as they represent the association to the outside world However, the
question remains if there should be a register of all members, consisting of their name,
postal address, and Ethereum wallet address. How would one save this information in a
decentralized fashion without accidentally exposing these personal details? Should the
veri�cation be done automatically or old-fashioned, e.g., using a Zoom call?

Chapter �. Conclusion ��

�.�.� Funding from the platform to the association

Section �.� mentions that �% of all donations on the FlatFeeStack platform will be redi-
rected to the FlatFeeStack associations. This mechanism has not been implemented yet.

Glossary

bylaws Bylaws ("Statuten") containing the main rules and regulations governing an
association and its activities, including its goals, structure, membership,
decision-making processes, and the responsibilities of its organs. iii, �, 8–��, ��,
��, ��, �6, ��

DAA Decentralized Autonomous Association (DAA) follows the concepts of a DAO but
with the requirement to be compliant with Swiss law �–�, �–��, ��, ��, ��

DAO A Decentralized Autonomous Organization (DAO) is a type of organization that is
run using a set of rules encoded as smart contracts on a blockchain. These rules
allow the organization to operate in a transparent and democratic manner, without
the need for a central authority or traditional management structure. i, iv, �, �, �, ��,
��, ��, ��, ��, �8, ��, ��, �8–��, ��, �6, �8, ��, ��, ��, 8�, 8�

DOM When a web page is loaded, the browser creates a Document Object Model of the
page. JavaScript can interact with the DOM to manipulate it. ��

ECTS ECTS stands for the European Credit Transfer and Accumulation System. It is a
standardized system used by higher education institutions in the European Union
and other countries to evaluate, transfer, and recognize academic credits. �

EVM Deterministic runtime environment and computing engine in which the smart
contracts provided on Ethereum are executed �8

KYC Know your customer (KYC) is a process to verify the identity of a person. �, ��

��

List of Figures

�.� UseCase diagram . �

�.� Smart contract architecture for a DAA . 8

�.� DAA structure . ��
�.� General application architecture . ��
�.� Smart contract relations . ��
�.� Proxy Pattern . �8
�.� Proxy Pattern Upgrades . �8
�.6 Proposal Lifecycle . ��
�.� Start screen . ��
�.8 Create a proposal . ��
�.� Vote for propoals . �8
�.�� Navigation with MetaMask wallet not connected ��
�.�� Overview of the voting slots with the MetaMask wallet connected ��
�.�� Create proposal form, �lled out to propose removing a council member . . . ��
�.�� View to cast votes. ��
�.�� View to execute proposals. Vote for the �rst proposal did not pass, so no

further action is available, but the second proposal can be queued. ��
�.�� Treasury view . �6
�.�6 Council member view . ��
�.�� Membership requests view . �8
�.�8 Membership status modal . ��

A.� Breakdown per person . 6�

C.� Investment DAA structure . 8�
C.� Process to join the DAA . 8�

��

List of Listings

�.� A unit test for the Wallet contract using HardHat ��

��

Bibliography

[�] “On-chain governance open zeppelin,”
https://docs.openzeppelin.com/contracts/�.x/governance, Open Zeppelin,
accessed: ����-��-��.

[�] Schweizerisches zivilgesetzbuch.
https://fedlex.data.admin.ch/eli/cc/��/���_���_���. Bundesversammlung der
Schweizerischen Eidgenossenschaft. Accessed: ����-��-��.

[�] Decentralized autonomous organization.
https://en.wikipedia.org/wiki/Decentralized_autonomous_organization. Wikipedia.
Accessed: ����-��-��.

[�] “Model articles of association of a decentralized autonomous association (daa),”
https://fs.hubspotusercontent��.net/hubfs/�������/������_MME_DAA.pdf, MME
Compliance AG, accessed: ����-��-��.

[�] Q. Yu, “Ethcc ����,” in Beyond the technology, how about building a legally-compliant
DAO?, July ����.

[6] Decentralised autonomous association switzerland – daas.
https://github.com/validitylabs/daa. Validity Labs. Accessed: ����-��-�6.

[�] Pascal Knecht, Andy P�ster, “Meeting with mme, october ��, ����, meeting
minutes,” October ����.

[8] On-chain governance.
https://www.investopedia.com/terms/o/onchain-governance.asp. Investopedia.
Accessed: ����-��-�8.

[�] A. Lesi and M. Endres, “Kryptowährungen als zahlungsmittel bei �atfeestack,” April
����.

[��] Proxy patterns. https://blog.openzeppelin.com/proxy-patterns/. OpenZeppelin.
Accessed: ����-��-�6.

��

https://docs.openzeppelin.com/contracts/4.x/governance
https://fedlex.data.admin.ch/eli/cc/24/233_245_233
https://en.wikipedia.org/wiki/Decentralized_autonomous_organization
https://fs.hubspotusercontent00.net/hubfs/4431201/200511_MME_DAA.pdf
https://github.com/validitylabs/daa
https://www.investopedia.com/terms/o/onchain-governance.asp
https://blog.openzeppelin.com/proxy-patterns/

Bibliography ��

[��] Upgrading smart contracts.
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/. Ethereum.
Accessed: ����-��-�6.

[��] Hardhat - getting started.
https://hardhat.org/hardhat-runner/docs/getting-started#overview. Hardhat.
Accessed: ����-��-��.

[��] Hardhat - testing contracts.
https://hardhat.org/hardhat-runner/docs/guides/test-contracts. Hardhat.
Accessed: ����-��-��.

[��] ether.js meta classes. https://docs.ethers.io/v�/api/contract/contract/. ether.js.
Accessed: ����-��-�6.

[��] hardhat-deploy. https://github.com/wighawag/hardhat-deploy. wighawag.
Accessed: ����-��-��.

[�6] How to avoid making time-based decisions in contract business logic?
https://ethereum.stackexchange.com/questions/���8��/how-to-avoid-making-
time-based-decisions-in-contract-business-logic/���8��#���8��. Ethereum
StackExchange. Accessed: ����-��-��.

[��] The merge ethereum: an unforeseen effect on block time.
https://gettotext.com/the-merge-ethereum-an-unforeseen-effect-on-block-time/.
get to text. Accessed: ����-��-��.

[�8] “Metamask under the hood—not just a crypto wallet,”
https://chainstack.com/metamask-behind-the-scenes-not-only-a-crypto-wallet/,
Chainstack, accessed: ����-��-��.

[��] Flatfeestack bylaws. https://github.com/�atfeestack/bylaws. FlatFeeStack.
Accessed: ����-��-��.

https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://hardhat.org/hardhat-runner/docs/getting-started#overview
https://hardhat.org/hardhat-runner/docs/guides/test-contracts
https://docs.ethers.io/v5/api/contract/contract/
https://github.com/wighawag/hardhat-deploy
https://ethereum.stackexchange.com/questions/117813/how-to-avoid-making-time-based-decisions-in-contract-business-logic/117874#117874
https://ethereum.stackexchange.com/questions/117813/how-to-avoid-making-time-based-decisions-in-contract-business-logic/117874#117874
https://gettotext.com/the-merge-ethereum-an-unforeseen-effect-on-block-time/
https://chainstack.com/metamask-behind-the-scenes-not-only-a-crypto-wallet/
https://github.com/flatfeestack/bylaws

	1 Introduction
	1.1 Assignment
	1.2 Basic Conditions

	2 Problem Analysis
	2.1 Functional requirements
	2.2 Non-functional requirements

	3 Research
	3.1 Existing DAA smart contract
	3.2 Swiss Association Law
	3.3 On-chain Governance

	4 Solution
	4.1 Structure
	4.2 Application architecture
	4.3 Smart contracts
	4.4 Frontend
	4.5 Non-functional requirements
	4.6 Bylaws

	5 Conclusion
	5.1 Conclusion
	5.2 Future Work

	Glossary
	List of Figures
	List of Listings
	Bibliography
	A Project Documentation
	A.1 Assignment
	A.2 Project Plan
	A.3 Time Tracking Report
	A.4 Personal Reflections
	A.5 Meeting notes

	B Documents
	B.1 Eigenständigkeitserklärung
	B.2 Urheberrecht

	C Design for the investor DAO
	C.1 Structure
	C.2 Sponsor a project through FlatFeeStack DAA
	C.3 Supported projects of the DAA

