OST

Eastern Switzerland
University of Applied Sciences

FlatFeeStack as a Decentralized
Autonomous Organization

Semester Assignment

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences
Campus Rapperswil-Jona

Autumn Term 2022

Authors
Pascal Knecht & Andy Pfister
Supervision
Dr. Thomas Bocek
Co-Examiner

Dr. Guilherme Sperb Machado

December 21,2022



Abstract

The FlatFeeStack website allows developers to easily and transparently support open-
source projects by providing a flat fee of $120 per year. FlatFeeStack gives open-source
contributors funds based on their contribution to the project, calculated using metrics like
contributed lines of code. The platform accepts payment by credit card and makes pay-
outs using cryptocurrencies.

The community should operate and further develop FlatFeeStack, just like open-source
software. For handling payments, FlatFeeStack requires a legal entity. The concept of an
association under Swiss law can fulfill these two demands. Which allows for the realiza-
tion of a collaborative cooperation that can act as a legal entity. Modeling the association
on the blockchain ensures a clean democratic process and enables cooperation beyond
Swiss borders. Based on the concept of a decentralized autonomous organisation (DAO),
smart contracts were written so that all legal requirements of a Swiss association are met
and thus, all activities of an association can be performed via the blockchain. Addition-
ally, a frontend is provided for simple interaction with the smart contracts. This frontend
was integrated into the existing frontend of FlatFeeStack. Statutes have been developed
that are specifically adapted to the concepts of the DAO and the implementation of smart
contracts. These are required for the association to be able to act.

With all artifacts from this project, the "FlatFeeStack Association" is ready to be founded.

Keywords: Blockchain, Decentralized Autonomous Association, Technology and Law,
Fintech.



Executive Summary

Initial situation

FlatFeeStack is a website that simplifies the process of supporting open-source projects
with a fixed annual payment of $120. The platform uses metrics like lines of code to deter-
mine contributors’ contributions, and accepts payments by credit card. Payouts are made
in cryptocurrency.

Just like open-source software, FlatFeeStack should be developed and run by the commu-
nity. In order to handle payments, FlatFeeStack needs a legal entity. A Swiss association
can fulfill these requirements, enabling the creation of a collaborative entity.

Additionally, the solution to be implemented should leverage blockchain technologies.
Procedure & Technologies

The project started with research. Existing solutions for governance systems on the Ethereum
blockchain were evaluated, as well as the association’s organizational structure to com-
bine Swiss law with blockchain technologies.

It was decided to use the existing Governor framework, provided by OpenZeppelin, and
to use the Ethereum blockchain, as its the most common blockchain to do development
on it. The association structure was kept close to the givens of the Governor framework.
The Governor framework’s mechanisms have only been altered as required by law. For
instance, Governor allows handing in proposals at any time [1]. Under Swiss Law, there
needs to be a set appointment where association members meet and vote on an agenda
[2]. Therefore, it was decided to implement the ballot vote on the blockchain, as it can
replace a physical assembly, and Swiss law doesn’t specify the medium on which the
ballot vote is hosted.

Once the fundamental structure was designed, the implementation of the smart con-
tracts started. Using the Solidity language for the smart contracts with Hardhat for unit
tests. In parallel, a frontend application was built to interact with the smart contracts in



the Ethereum blockchain. The frontend was integrated into the existing frontend for Flat-
FeeStack, therefore using Svelte as the main framework.

After developing the initial structure for the association, bylaws were written to specify the
bridge between Swiss law and the code. The bylaws specify the system of the association
in more detail and determine how they are represented in code.

Final thoughts

The outcome of this project is a good starting point to start the FlatFeeStack associ-
ation. It also allows participants to elaborate further on building bridges between new
Blockchain technologies and existing law.

The project uncovered several topics that were previously not yet discovered. For instance,
every member has the right to contest an accepted proposal in court if the member didn't
participate in the vote and the accepted proposal contradicts the law [2]. If the court rules
in favor of the member, the association’s council has to take action. What happens if they
do not act? Further developments are documented in a later chapter (5.2).

The chosen Governor framework allows interoperability with the existing Governance ecosys-
tem so that the association can communicate on a code level with others. The developed
frontend allows for easier participation in the association even if a potential member
has never interacted with Blockchain technologies. The created bylaws accompany the
planned launch of the association and will help clarify the interactions between members
and smart contracts.



Acknowledgment

We would like to thank the following people for helping with this semester assignment:
Dr. Thomas Bocek for the guidance and supervision during the course of this semester
assignment.

Dr. Guilherme Sperb Machado for sharing his valuable experience from launching the
GrantShares DAO and his inputs on software development on the blockchain.

Dr. Stephan D. Meyer for providing legal counsel and his experience with Decentralised
Autonomous Organisations projects.

Jamie Maier for proofreading the semester assignment.


https://grantshares.io/

Contents

1 Introduction

1.1

Assignment . . . . .. L e e

1.2 BasicConditions . . . . . . . . .

2 Problem Analysis

2.1 Functionalrequirements . . . . . . .. .. ... ...
2711 Persona. . . ... e e e
212 Use-Cases . . . . . . i i e e

2.2 Non-functional requirements . . . . . . . . .. ... ... ...

3 Research

3.1 ExistingDAAsmartcontract . . ... ... ... ... ... .. ........

3.2 Swiss AssociationlLaw . . . ... ...

3.3 On-chainGovernance . . . .. . . . .. . . . e
3.3.1 OpenZeppelinGovernor. . . . . ... .. .. ... ...

4 Solution

471 Structure . . . . . e

4.2 Applicationarchitecture . . . . . .. ...
421 General . ... ... ...

43 Smartcontracts . . . ... ... ..
4.31 UpgradableContracts . . . .. ... ... ... ... ... .......
4.3.2 Contractowner . . . ... ... .. ... ...
4.3.3 Developmentenvironment . . ... ... .. .. ... ..., ....
43.4 Membership . ... ... .. ... ... ...
435 BallotVote . ... .. ... . ..
43.6 Proposals . . ... ... ...
437 Voting. . . .. . . e
438 TiMe . . . . . e e e



4.4 Frontend . . . . . ... e
441 Userinterfacedraft . . ... ... ... ... ... ... ... ..., .
442 Implementation . . ... ... ... ... ...

4.5 Non-functional requirements . . . . . . .. ... ... ... ... ..

4.6 Bylaws . . ... . ...
4.6.1 Articles . . . . . e
46.2 Hashandstore. .. .... ... ... ... .. ... ... .......

Conclusion

51 Conclusion . . . . . . e

52 FutureWork . . . . .
5.2.1 Discussion before creatingaproposal . ... ... ... .......
5.2.2 Verifyproposalcontent . . . . .. ... ... ... ... ... .. ...
52.3 Memberregister . . . . ... ...
5.2.4 Funding from the platform to the association . ... ... ... ...

Glossary

List of Figures

List of Listings

Bibliography

A

Project Documentation

AT Assignment. . . . . . ... e
A2 ProjectPlan . . . . . ..
A3 TimeTrackingReport . . . . . . . . . . . ... ...
A4 PersonalReflections . . . . .. ... .. .. ...
A5 Meetingnotes . . . . . . . .

Documents
B.1 Eigenstandigkeitserklarung . . . . . . . . . ... ... ...
B.2 Urheberrecht . . . . . . . . . . . .

Design for the investor DAO

C.1 Structure . . . . . . .
C.2 Sponsor a project through FlatFeeStack DAA . . . . . . . ... ... .. ...
C.3 Supported projectsof the DAA . . . . . . . . . . ... ... ... ..

vi

47
47
48
48
49
49
50

51

52

53

54

56
57
60
61
62
66

79
80
81



Chapter 1

Introduction

With the FlatFeeStack website, donations become more accessible and more transparent.
For 120 USD per year, any developer can support any open-source project - the donation is
equally split among the projects. If a developer supports more projects, then each project
will get proportionally less. For a company, this is easier to budget as it is a flat fee per
developer. This means, for ten developers, the budget is 1200 USD - always. Since each de-
veloper in the company can support those libraries and frameworks that make their work
more efficient, there is no organizational overhead in deciding which projects to support.
Furthermore, the company has an up-to-date technical map of its IT landscape. The distri-
bution of funds to the open-source contributor is based on how much code was modified
by the developer. Since an open-source project has its code publicly available, these met-
rics can be calculated automatically by FlatFeeStack.

The funds are distributed according to the contribution. The FlatFeeStack Application cal-
culates a contribution score based on lines of code and other metrics. Another advan-
tage is that the donation payment is made with credit cards, while the payout is done
with cryptocurrencies. Since the contribution and crypto currency transactions are pub-
licly available, FlatFeeStack is fully transparent.

In order to process credit card payments and have a bank account, FlatFeeStack needs
some kind of organization behind it to be a legal entity. Since FlatFeeStack is based in
Switzerland, there are some options like AG, GmbH, Non-Profit, or a Association (Verein).

An association is, in the case of FlatFeeStack an ideal way to be organized. The associa-
tion lives through its members, and everyone can co-determine where it should go in the
future.

A similar concept to the Association exists in the blockchain world, which is called a De-
centralized Autonomous Organization (DAO) [3]. A DAO is a member-owned community



Chapter 1. Introduction 2

without central leadership. Its rules are encoded into a computer program that runs on
the blockchain.

To combine the concept of the DAO and the association, MME introduced a new term
Decentralized Autonomous Association DAA (more on that in the chapter 3). So a DAA is
the same as a DAO but with the requirement to be compliant with Swiss law.

1.1 Assignment

This thesis has two primary objectives:
+ Design and develop a DAO which is consistent with Swiss law.

+ Develop a PoC Web Application to easily interact with the DAO.

1.2 Basic Conditions

This work was done as part of a semester assignment (Studienarbeit). A time budget of
480 hours is reserved for the work on this assignment and will be rewarded with eight
ECTS credits.



Chapter 2

Problem Analysis

Functional and non-functional requirements are essential components of any software
system. They define the capabilities and characteristics that a system must possess in
order to meet the needs of its users and stakeholders. This chapter, describes the different
types of functional and non-functional requirements and how they are used to guide the
design and development of a system.

2.1 Functional requirements

In this section are all functional requirements and personas listed, who are relevant for
this FlatFeeStack project.

2.1.1 Persona

User: A user is a person who is not already part of the DAA, but has the intention of joining
it.

Member: A member is part of the DAA. They have the right to vote and make proposals.

Council Member: A council member is a member who has further obligations. They must
hold the ballot vote and represents the association to the outside.



Chapter 2. Problem Analysis

2.1.2 Use-Cases

FlatFeeStack DAA

Q\-\
Change DAA code | _—

ballot vote

Change bylaws

Add / Remove
Council member

Expel member

Dissolve DAA

Request extraordinary

A\

Council Member

Set ballot vote date

+ User can join DAA

Figure 2.1: UseCase diagram

A User can request to be a member of the DAA. It is necessary to do a KYC validation

before a user is allowed to join.

- Member can leave DAA

A member can leave the association with immediate effect.

* Member can create and vote for proposal

A member can create a proposal. A member can vote for a proposal. A member can

only vote once per proposal.



Chapter 2. Problem Analysis 5

+ Member can propose and vote for new bylaws
If a member wants to change the bylaws they can create a proposal.

* Member can propose and vote for a new DAA code version
If a member wants to change the DAA’s underlying code, they can create a proposal.

+ Member can propose and vote to add or remove a council member
A member can create a proposal to add or remove a council member.

+ Member can propose and vote to dissolve the DAA
A member can create this specific proposal to dissolve the DAA. The specific steps
to dissolve are written in the bylaws. It requires a 20% quorum and a simple majority.

« Member can propose and vote to expel a member
A member can create a proposal to expel a member.

+ Define date for a ballot vote
A council member must set a date for next ballot vote. They must set the date at
least one month before the vote.

+ Member can request an extraordinary ballot vote
Members can request an extraordinary ballot vote. This proposal passes if one fifth
of all members accept it. The voting duration is two weeks.

+ Council member can cancel a ballot vote
If the council member has a good reason, they can cancel a ballot. There must be a
replacement date. All agenda items must be moved to the next vote.

2.2 Non-functional requirements

The following non-functional requirements for this project have been identified.

1. Functionality: Each story is a functional component and does not break the func-
tionality of others. Acceptance criteria: Unit Tests run for all subsystems in the main
branch.

2. Portability: The application must be portable and able to run on multiple platforms
or devices without requiring significant modification. Acceptance criteria: Manual
testing on different devices and browsers.

3. Extensibility: The application must be easy to maintain and update over time, with
clear documentation and support processes. Acceptance criteria: Time to fix bugs
or to install updates.



Chapter 2. Problem Analysis 6

4. Robustness: The application must be robust and able to handle unexpected or in-
valid input without crashing or behaving unexpectedly. Acceptance criteria: Manual
testing with invalid or malicious input.

5. Code quality: The application must be written in clean, well-organized code that is
easy to understand and maintain. Acceptance criteria: Static analysis run with each
commit.



Chapter 3

Research

This chapter delves into the existing research on decentralized autonomous organizations
(DAOs) and their smart contracts. It begins by reviewing the prototype DAA smart con-
tract developed by MME Compliance AG, including its functionalities and dependencies
on other smart contracts.

Next, the structure and requirements of Swiss association law are examined, as the DAA
is intended to mimic the structure of an association under Swiss law.

Finally, the existing literature on DAOs and their potential applications in various industries
is reviewed, including their advantages and challenges. This research provides a founda-
tion for the design and development of the DAA in subsequent chapters.

3.1 Existing DAA smart contract

MME Compliance AG built a prototype of a decentralized autonomous organization [4].
They published a paper describing how the DAA mimics the existing Swiss law structure
for an association and which function calls on the smart contract will issue what effect.

At a talk at the EthCC 2019 [5], the developers behind the smart contract itself gave more
insights about the functionalities. The important slides for this assignment are the ones
that show how different processes within an association are represented in the DAA. Fig-
ure 3.1 shows an overview of the different smart contracts that form the DAA.

The elected head of the association is here referred to as delegate, this semester assign-
ment refers to it as council member.

The responsibilities for the different smart contracts are as follows:



Cha

pter 3. Research 8

4

ProposalManager Treasury Membership

......

I’I’I | 1

1
1
.
1
1
1

1
1
' 1
i . 1
' ] ' 1 1
v 1 : ! L I . v v :
TallyClerk | | 1 | GAManager lMinimaIProposaI : ExternalDepositWallet ‘ : Wallet ’Treasurylnterface 1
1 v v v 1
'y 1 ! 1 ! _ . '
: 1 ! jm—————— ! , ' 1 1
! ! v 2 X 1 v ' !
! ! ! ' 1 1
! ! Proposalinterface ! . Ownable| '
1 ! ! 1 1
- ! ! 1 L, ! ! 1 1
- ! 1 1 ! ! 1 1
' N dm - 1
) ! R s = P i ! '
! 1 1l e - i i R o —————— ! !
e e ot o B '
| ===———— (N T I Bttt el ] !
--------- Bl i N B P!
v v YYVvy YYVYVYYVY
Timed ‘SafeMath’ ‘ Accessible ‘ - = => Dependency ——& Composition
——> Association - - - Implementation
Library Instantiated Abstract

contract contract

Figure 3.1: Smart contract architecture for a DAA

+ Memberships: Keeps track of all members within the DAA including members that
are part of the membership approval committee or the delegate.

+ Proposal manager: As the name suggests, the proposal manager manages different
kinds of proposals that a member can propose and vote on at the general assem-
bly. The different kind of proposals are given by the proposal manager. The proposal
manager depends on the Memberships contract to know which members are eligi-
ble to vote and how many votes are needed to make certain proposals pass or fail.
Certain proposals, like expelling members, requires the applicant to be a delegate in
the DAA.

+ General assembly manager: The general assembly manager holds information about
the general assembly of the association. It depends on both the Memberships and
the Proposal manager contract. The Memberships contract once again is used to
determine who is allowed to participate in the general assembly. The proposal man-
ager is only used twice within the general assembly manager:

1. In case a proposal for an extraordinary general assembly passed, the general
assembly re-schedules the next general assembly according to the passed pro-
posal.

2. If a proposal for new bylaws passed, the general assembly manager saves a
hash of its result.



Chapter 3. Research 9

* (Internal) Wallet: The internal wallet receives memberships fees. Via proposals, peo-
ple can request to get money from this wallet.

+ External wallet: If a proposal allows it, members outside the DAA can sponsor it. The
external wallet is responsible to allocate received funds to proposals. A proposal
can have one or more addresses where donations can be sent. Funds for a proposal
need to be placed before voting concludes. If a proposal did not pass, the funds will
be sent back to the originators.

+ Treasury: The treasury contract is equivalent to an accountant: It manages the inter-
nal and external wallet. Members pay their contribution fee to this contract or can
request to withdraw money from either wallet via a respective proposal. The treasury
contract is owner of both wallets, nobody else is eligible to manage the funds.

« DAA: The DAA contract knows all the contracts listed above. Once all contracts are
deployed and linked correctly, the DAA is officially active.

The code for the DAA is publicly available on Github [6].

3.2 Swiss Association Law

The DAA should mimic the structure of an association under Swiss law [2]. Generally,
an association is a group of people who have a matching interest, like politics, sports,
economy etc. (Article 60). An association allows this group to become a legal entity under
the Swiss law if they fulfill certain requirements.

The requirements for the planned association are simple, as FlatFeeStack is neither sub-
ject to audit nor participates in commercial trade (Article 61). FlatFeeStack needs to es-
tablish bylaws, so-called Statuten and a board of directors. Once both are confirmed by
the founding members of the association at the first general assembly meeting, the asso-
ciation is active and can be added to the trade register.

The Swiss Civil Law article 60 to 79 define additional rules that an association may follow.
An association is allowed to override most of these rules (Article 63), except:

+ There can be an extraordinary assembly if one fifth of all members request it. (Article
64, 3)

+ A general assembly can be cancelled by a council member for important reasons
(Article 65, 3)

+ Members are not allowed to vote in proposals that involve themselves, their spouse
or first line relatives. This also includes other associations. (Article 68)



Chapter 3. Research 10

+ Members are only allowed to leave by the end of the year or, if the association defines
one, by the end of a fiscal year. They need to announce it six months in advance
(Article 70, 2)

+ Accepted proposals that contradict either the bylaws or Swiss Law, can be chal-
lenged at court by a member who didn't participant in the vote, within a month. (Ar-
ticle 75)

« If the association is insolvent or the council members are no longer available, the
association needs to be dissolved. (Article 77)

The integration of Swiss law and the DAO provides certain legal and organizational chal-
lenges [7]:

« The bylaws can override the exceptions listed above if they benefit the members.
For example, it is allowed that the bylaws specify that members can leave at any
time instead of only by the end of the calendar year.

+ There are two possibilities for implementing a DAA. The first variant is to build a
technical solution compliant with the law. The second variant is a DAO who is em-
bedded into the association, but all the legal matters are happening off-chain (e.g.
physical general assembly, voting, financials, etc.).

+ The first general assembly establishes the association that confirms the council
members and the bylaws. There is a possibility that the first general assembly is
replaceable with a ballot vote on the blockchain. Ballot votes can also replace the
general assembly held in person. Additional points were clarified in later mail ex-
change.

- A council member announces the date for the next ballot vote.
- Members can create proposals for the next ballot vote until a specific date.

— After the submission deadline, the submitted proposals compose the ballot
vote agenda.

- Voting is open for a particular time for all proposals submitted.
- Members need to have the possibility to add a reason to their vote.

- Note that Swiss law doesn’t specify what medium to use for the ballot vote. You
just need to document the voting process including the medium in the bylaws.
Additionally, you need to implement some kind of verification process when
accepting new members so not everybody can just jump in and vote.

+ bylaws can be in English.



Chapter 3. Research 1

+ Hostile takeovers should be taken in consideration. Often, specific mechanisms in
DAOs allow an attacker to take control of the DAO and ultimately drain its funds.
To counteract this problem, membership requests should need an approval by a
committee (who are existing members of the DAO) and also a KYC.

3.3 On-chain Governance

An essential part of the blockchain world is that the majority must agree to any further
development or change to the system [8]. This means that no central body can decide
alone.

Blockchains have a built-in governance systems which are built on the protocol level of
the blockchain. This implementation varies from blockchain to blockchain. Developers
can state code changes through proposals and each participant votes for or against this
change.

At the level of smart contracts, the contract owner often holds the power of decision-
making. If you want to delegate the decision-making to the community, you will implement
a so-called governor contract.

3.3.1 OpenZeppelin Governor

OpenZeppelin is an organization that provides a framework of reusable smart contracts
with high-security standards. For example, they provide smart contracts to easily imple-
ment an ERC-721 (NFT).

They also provide a set of contracts to have governance in smart contracts [1]. The con-
tracts are very modular and can be easily extended via solidity inheritance.

The key functionalities that a governor contract needs to take care of are:
* Proposals
* Votes

+ Counting

Structure of the Governor contracts

Core

The core module contains all the logic. It is abstract and requires a vote module and a
counting module. You can either write them yourself or work with a provided one.


https://ethereum.org/en/developers/docs/standards/tokens/erc-721/

Chapter 3. Research 12

You also need to set some parameters:

+ votingDelay: How long after a proposal is created should voting power be fixed. A
large voting delay gives users time to unstake tokens if necessary.

« votingPeriod: how long the proposal is open to vote
Vote Modules

Defines how voting power is determined and how many votes are needed for a quorum.
The idea is that the voting works with some kind of token. For ERC20 and ERC721, the
necessary contracts are provided.

Counting Module

Defines the different options for voting. A simple module with the voting options against,
for and abstain is provided.

Timelock

Depending on the decision taken on a proposal, you might disagree and want to leave
the organization. Once a proposal is accepted, the content is transferred to a Timelock
module. It holds off the execution of the decision for a specific time. This mechanism
allows people to leave the organization in time before changes come into effect.

Proposal Lifecycle

A proposal is always a sequence of actions which will be executed if it passes the vote.
Each action consists of a target address, calldata encoding a function call, and an amount
of ETH to include.

When the proposal is active, members can cast their vote.

If the voting period is over, a quorum was reached and the majority voted in favor, the
proposal can proceed to be executed.

If a timelock is in place, the actions must be queued, otherwise the proposal can be ex-
ecuted immediately. The actions are not stored in the contract to save gas. Instead, a
hash of the proposal ID, function call, and function data is held in the chain. When calling
queue or execute on the Timelock contract, the action needs to be passed again as a pa-
rameter. The hash will be calculated from the parameter and compared against the stored
version.



Chapter 4

Solution

This solution chapter examines the structure and responsibilities of the FlatFeeStack as-
sociation, including how it will fund its mission and address challenges such as vote ma-
nipulation and fraudulent proposals. It also describes the application architecture for the
association, including the use of smart contracts and the integration with the existing
frontend of FlatFeeStack. The chapter also discusses the implementation of various func-
tionalities for the association, including membership management and proposal manage-
ment.

4.1 Structure
This section will look at how the association is structured and its responsibilities. It also
clarifies how the association can fund its mission.

The FlatFeeStack association is responsible to maintain the platform. This includes to pay
for operating expenses, keep the platform up to date and develop new features.

In order to have enough funds available for those tasks the member pay a yearly mem-
bership fee. In addition, 1% of all project donations on FlatFeeStack will be sent to the
association.

Every member can submit proposals to shape the future of the platform. Proposals can
be everything as long as they contribute to the further development of the platform or the
association. Figure 4.1 illustrates this process.

Every member has one vote for one proposal.

13



Chapter 4. Solution 14

1 Vittuske: 3 —7= [/ — £

o 7 ;m\‘v;)\/j

¢ lorke
o 1. O
A B [ 3 4
Z T’HELS%& 1 \‘IDZ

T = [ [ = 2
§ 3o M P S e <Y

Figure 4.1: DAA structure

Some challenges came up with this approach:

+ If the membership fee is low, one could create many Ethereum wallets and join the
DAO to gain a majority of the votes. Since proposals are free-text, the attacker could
propose to send all of those DAOs funds to themselves. This proposal would pass
as the attacker has, as mentioned, a majority of the votes. Members have to be
approved by multiple council members to mitigate this risk. This risk is also known
as the Sybil attack.

+ A member could propose to implement a feature for FlatFeeStack in exchange for
some funds. However, the receiver of the money could just run away after receiv-
ing the money without doing any work. The risk is not mitigated with the proposed
solution but could be solved as follows.:

- Members cannot request funds prior to implementation, but rather can request
money after they've done the work.


https://en.wikipedia.org/wiki/Sybil_attack

Chapter 4. Solution 15

- Instead of paying everything upfront, the DAO would send e.g. 50% of the re-
quested fund. The remains would be sent once the DAO accepts implementa-
tion (via a separate proposal and vote).

+ A user could join the association but loose interest over time and not participate
anymore. This risk is mitigated by implementing a function in the smart contract
that allows members to be removed if they do not pay their membership fee for a
certain amount of time.

4.2 Application architecture

This chapter describes the implementation of the structure of the association, described
in4.1.

4.2.1 General

1
o

Browser

S

FlatFeeStack Frontend
Svelte, Typescript

|

B >

 m
MetaMask

Signer / JSON RPC Bridge )
Ethereum blockchain

/N

(¢
(e

Fast Auth Backend

Figure 4.2: General application architecture



Chapter 4. Solution 16

The general application architecture is similar to a typical decentralized application de-

sign.

4.3

There is no backend application running to manipulate data. The frontend applica-
tion connects directly to the Ethereum blockchain, where compiled versions of the
smart contracts run.

To connect to the Ethereum blockchain, a user needs a browser with MetaMask
installed. MetaMask is a free browser plugin that enables users to interact with the
Ethereum blockchain. MetaMask is used for two separate tasks.

1. MetaMask injects an object into the JavaScript runtime of the browser that
allows interaction with the Ethereum blockchain.

2. If a user needs to perform an action (e.g., place a vote) within the application,
it must be wrapped in a transaction. This transaction needs to be signed by
the user. MetaMask holds the user’s private key to their Ethereum accounts
and allows them to sign transactions. Therefore, the frontend does not need
to know the user’s private key but can dispatch a prepared transaction to the
MetaMask browser plugin with the command to sign it.

The frontend integrates with the existing frontend of FlatFeeStack, which is written
in Typescript and Svelte.

There are two different services with which the frontend interacts: A backend and
an authentication service. Those are required for the use of all functions of Flat-
FeeStack, but were created outside the semester assignment. More services are
part of the FlatFeeStack ecosystem but are not part of figure 4.2 as they are irrele-
vant to the work. Complete documentation can be found in the semester assignment
of Armend Lesi and Marco Endres, chapter 4.2 [9].

Smart contracts

The backend is not a traditional application, but rather a composite of several smart con-

tracts running on the Ethereum blockchain. This creates some unique circumstances on

how to draw the interaction between them.

Solidity, the programming language for smart contracts on Ethereum, allows classes
to inherit from multiple base classes. Inheritance is drawn with empty arrowheads
in 4.3.

Deploying a smart contract creates an instance of it. It is possible to deploy multiple
instances of the same contract. However, the instances are not related, and there is



Chapter 4. Solution 17

Gover(r:\gg:(r’r:e JooK Governor GovernorQuorum GovernorCounting GovernorVotes 1> IVotes
A
1
v
Timelock DAA Membership

| |

TimelockController

Wallet

Figure 4.3: Smart contract relations

no easy way to discover all deployed instances of a particular smart contract on the
Ethereum blockchain.

There are four smart contracts that compose together the DAA on the blockchain.

Generally, the implementation uses the Governor contracts from OpenZeppelin 3.3.1. This
provides a foundation for everyday tasks within the association, such as creating pro-
posals and voting on proposals. Usually, OpenZeppelin contracts can be referenced from
other contracts without any modifications. However, to implement the ballot vote, the orig-
inal Governor contract (highlighted in green) had to be copied and modifications had to be
made. Since the Governor contract was built using inheritance, several other smart con-
tracts had to be copied into the project. Those contracts are highlighted in blue. Irrelevant
code in these contracts was removed, but the program logic was not modified.

The Governor contract wants a connection to another contract that implements the Tvotable o
interface to determine the number of votes per member. Due to the unique requirements

for joining the association compared to a regular DAO, a custom membership contractim-
plementation that inherits from IVotable was necessary. On the other hand, this abstrac-

tion allows someone else to take the DAA contract and connect it to any other Ivotable-
compatible contract.

A separate wallet contract manages the funds for the association. This is for separation
of concerns.

The fourth contract is the time lock contract. With the default Governor contract, once a
proposal is accepted, any member can execute the proposal’s instructions immediately.
However, specific proposals might have drastic consequences on the DAO, and members
who voted against the proposal, but got outvoted by other members, want to leave the as-
sociation. With the time lock controller and the Governor module GovernorTimelockControl



Chapter 4. Solution 18

, proposals are sent to a queue in the timelock controller after they are accepted. In the
case of the FlatFeeStack DAO, the proposals need to be in this queue for a day before
any member can execute them. This mechanism gives members who disagree with a
proposal time to leave the DAO.

4.3.1 Upgradable Contracts

By design, smart contracts areimmutable on the EVM. A contract’s code cannot be changed
once it has been deployed on the blockchain. Often software needs to be able to change,
be it for bug fixing, further developments, etc.

For these scenarios, different mechanisms exists to be able to upgrade smart contracts [10].
OpenZeppelin uses the proxy pattern for all of their upgradable contracts. Because this
project relies on OpenZeppelin contracts, the proxy pattern is the chosen mechanism for
contract upgrades.

The user calls a proxy contract as shown in 4.4. This proxy is responsible for forwarding
transactions to the logic contract and back. The logic contract contains all the logic to
compute a transaction.

——methodCall()—| ——methodCall()—>
User (Client Browser) Proxy Contract Logic Contract
€—returndata <«—returndata——

Figure 4.4: Proxy Pattern

Both the proxy and the logic contract are immutable. In case of an upgrade, the logic
contract needs to be replaced with a new one as shown in 4.5. After that, the address of
the new implementation is stored in the proxy contract.

_x_,

User (Client Browser) » Proxy Implementation 0

A 4

Implementation 1

Figure 4.5: Proxy Pattern Upgrades

To make a contract upgradable, a developer has to pay attention to two things [11].

1. The contract must avoid storage collisions. Storage collision happens when the or-
der of variables between different contract versions changes.

2. The contract can not use a constructor. Instead, an initialize function should be used.



Chapter 4. Solution 19

4.3.2 Contract owner

Certain functions on the different smart contracts should only be called if a proposal is
passed.

The Governor framework has this mechanism by default. It has an attribute named execu-

tor, which resolves to an address that refers to itself or, when using the GovernorTimelockControl
module, to the timelock controller. When a member executes the proposal’s content, the
corresponding execute function executes the proposal contents in the name of the execu-

tor, not the member. When a protected function is called, the protected function checks

if the caller is the same as in the executor property. And since proposal contents are exe-

cuted in the name of the executor, the security check will pass.

Neither the Membership nor the Wallet contract know about the DAO contract. Also, this
executor property, given by the Governor’s framework, is private.

Therefore, the Membership and Wallet contract inherits from the Owner contract provided
by OpenZeppelin. This adds a private property named owner to the smart contracts and
a function to verify if the caller is the contract owner. Once the timelock controller is de-
ployed, it owns both the Membership and Wallet contract. When executing a proposal, the
caller is the timelock contract. And since the timelock controller cannot run anything that
wasn't a successful proposal, the security mechanism of the contract owner is equal to
the executor property of the DAO contract.

4.3.3 Development environment

The development environment for the smart contracts is based on Hardhat. It consists
of different components for editing, compiling, debugging, and deploying your smart con-
tracts and dApps, all of which work together to create a complete development environ-
ment [12].

Hardhat is based on NodedS and can be installed using NPM. Once the package is in-
stalled, it allows you to set up new projects based on Javascript or Typescript. For the
DAA project, the Typescript setup was chosen to have type-safety.

Hardhat gives the following directory structure:
daa

.github — Github Actions Workflows
contracts — Smart Contracts
deploy — Blockchain deployment scripts
deployments — Deployment state to different networks
scripts — Helpful scripts
test — Unit tests for smart contracts



Chapter 4. Solution 20

Testing

The test directory is used for writing unit tests. The unit tests themselves are written in
Typescript. Hardhat uses the chai and Mocha libraries for test assertions and adds a few
additional ones specific to Blockchains, e.g., expectations that a particular operation will
revert [13]. Hardhat compiles the Solidity code and boots up a temporary blockchain when
running the tests. The temporary blockchain will be deleted after all tests are completed.
The user is responsible for making sure the contracts are deployed prior to running the
tests. For the DAA tests, this is done by having a deployFixture method in each test file
that sets up the smart contracts and all relevant configurations.

Below you can find a unit test example written using Hardhat:

describe("increaseAllowance", () => {
it("cannot increase more than total balance of wallet", async () =>

const { owner, otherAccount, wallet } = await deployFixture();

await expect(
wallet
.connect(owner)
.increaseAllowance(
otherAccount.address,
ethers.utils.parseEther("200.0")

)

).to.be.revertedWith("Keep allowance below balance!");

Listing 4.1: A unit test for the Wallet contract using HardHat

As shownin listing 4.1, the fixtures are deployed first, which gives us back the owner of the
smart contract and a metaclass object from ether.js of the Wallet contract [14]. Afterward,
it is expected that calling increaseAllowance with the parameter 200 ETH will revert with
the message Keep allowance below balance!

When pushing code changes to the GitHub repository, the tests are run with GitHub Ac-
tions. Additionally, GitHub Actions will report the code coverage.

Deployment

Hardhat offers support to deploy contracts to a local chain, test networks, or the main
network using scripts written in Typescript. However, the deployment mechanism doesn'’t
keep track of existing deployments, which is vital for the DAA, as the proxy contract ad-
dress should stay the same with each deployment.



Chapter 4. Solution 21

Therefore, it was decided to use the community-maintained hardhat-deploy plugin. This
plugin saves the addresses of the deployed contracts in different JSON files, including the
compiled code version that was deployed. Deployment scripts are idempotent, so rerun-
ning them without any change won't trigger a new deployment [15].

The deployment scripts reside in the deploy folder, while the deployment states with the
mentioned JSON files are saved to deployments.

Scripts

Hardhat allows one to writing scripts where one can access the Hardhat runtime environ-
ment. The DAA project contains several scripts.

+ addMember: After deployment of the contract, this script allows to add a regular mem-
ber directly to the DAA. This script is used for setting up the local development
blockchain.

+ addSlots: After deployment of the contract, this script creates a few voting slots
and one proposal to fill the DAA with data. This script is used for setting up the local
development blockchain.

« mineBlocks: The DAA is heavily dependent on time. This script allows to mine a cer-
tain amount of blocks to fast-forward time on the blockchain itself.

+ exportInterfacesToFrontend: This script reads the ABls of the smart contracts and
exports them to the frontend repository, where they are used to generate the ether.js
meta classes.

+ exportContractAddressesToPayout: Since the frontend fetches the smart contract
addresses from the payout service, this script allows to export the contract ad-
dresses stored in the JSON files from hardhat-deploy to the payout service.

4.3.4 Membership

Anyone can become a member of the FlatFeeStack DAO, but they should know blockchain
technology or be interested to learn it.

The Membership.sol Contract implements everything regarding membership.

Types

There are two different types of Members, with various rights and obligations.



Chapter 4. Solution 22

The first type are the council members ("Vorstand"). They are the head of the association
and represent the association to the outside world. The bylaws contain a complete list of
their responsibilities (4.6).

The association needs at minimum two council members because two different council
members must approve new members to join the association.

The second type is the regular member.

States

There are four membership states: nonMember, requesting, approvedByOne and isMember.
If an Ethereum account address is not in the membership list, it has the status nonMember.

If a non-member wants to become part of the association, they can request a member-
ship (requestMembership). This adds them to the membership list and assigns the status

requesting.

Now a council member can approve the membership (approveMembership(address
_adr)) and with that, the status approvedByoOne is assigned. After that, a second, differ-
ent council member must approve the membership for the second time. With that, the
member has the status isMember.

Until the member has paid his membership fee, they cannot participate in votes or create
proposals.

Fees

Every member has to pay membership fees (payMembershipFee()). They must be paid
once a year and are 30'000 Gwei. A list inside the contract keeps track of the member’s
next membership fee payment date. If a new member pays their membership fees, they
gain the right to vote and to create proposals. The voting rights are not revoked even if the
member does not pay the following membership fees.

Voting Power

The implementation of contracts according to the OpenZeppelin Governor standard re-
quires the integration of a module to determine an individual account’s voting power and
the total available voting power. In this case, every account has the same voting power. To
become a votes module, the membership contract implements IVotesUpgradeable. With
that also, two new structs are introduced _voteCheckpoints and _totalCheckpoints. The



Chapter 4. Solution 23

_voteCheckpoints keeps track of the votes an account has. The _totalCheckpoints keeps
track of all the voting power in total.

These structs work with a history. This means the data is stored together with the block-
number in which the transaction ran. This gives the possibility to read voting power from
past snapshots.

4.3.5 Ballot Vote

As mentioned in 3.2 a ballot vote is an excellent way to substitute the concept of a general
assembly. It can be held digitally, which fits perfectly with this blockchain project.

A council member announces a Ballot Vote. They have to announce the vote at least one
month before it takes place. After the announcement, all members have time to submit
proposals (see 4.3.6) to this ballot vote. A ballot vote always has a start and an end. The
council member can specify the start. The smart contract calculates the end. So the du-
ration of a ballot vote is always the same.

A council member can cancel a ballot vote if they have a good reason (required by law).
That must happen at least one day before the vote. Already existing proposals in that
ballot vote will be moved to the following ballot vote. If there is no following vote the
council member won't be able to cancel.

4.3.6 Proposals

Proposals are the instrument for the members of the organization to make changes. For
example, a member could propose getting some money from the organization for their
work.

Figure 4.6 shows the states that a proposal goes through. It had to be adjusted a bit, as
in the original OpenZeppelin implementation (3.3.1). This was done because proposals
need to be assigned to a ballot vote.



Chapter 4. Solution 24

Create proposal

in Webapp
Assign N Review | timet, Voting
Assigned to ballot vote i For time t, has passed For time t,
time t,
has passed
Timelock proposal was__| Queue < Yes Quorum and
For time t, queued Waiting to be queued | majority reached?
time t,
has passed No
Execute
Waiting to be executed )
i Rejected
proposal was
executed
Executed

Figure 4.6: Proposal Lifecycle

Note that t,, t;, and t, are adjustable variables in the smart contract and, therefore, can
be changed via a proposal. t, sets the minimum time limit before the vote within which
proposals may be submitted.

Assign
The proposal will be assigned to the next possible ballot vote.

Review
Other members can review the proposal and form an opinion on whether they want to
support it. They have got at minimum t,. amount of time for that.

Voting
All members have t, time to cast a vote for the proposal. If they want, they can give a
reason for a vote.

Queue

After the voting window is over and the proposal is approved, it can be queued into the
timelock. It needs an external invocation. For example, a council member can queue all
the proposals.



Chapter 4. Solution 25

Timelock
The proposal is locked for t; time and can't be executed. This is for security.

Execute
After the timelock is over, the proposal is ready to be executed. It needs an external invo-
cation. For example, the proposer can execute his proposal.

Executed
The proposal is executed. This is the end of a proposal lifecycle.

Rejected
The community rejected the proposal. There is no change to adjust the proposal for further
use. If something similar wants to be proposed, a new proposal has to be made.

4.3.7 Voting

Every member can cast one vote per proposal, and everyone has the same voting power.
There are three types of votes:

+ Against: If the member is against the proposal.
* For: If the member is in favor of the proposal.
+ Abstain: If the member wishes to abstain from voting.

The votes are counted at the end, and a simple majority is sufficient for the proposal to
be a success.

Founding Ballot Vote

Every association must have a founding meeting where the bylaws and the council mem-
ber must be approved. To achieve that, a ballot vote will be created on the deployment of
the smart contracts. This vote only consists of one proposal that updates the hash of the
bylaws on the DAO (4.6.2). The vote takes place one week after the deployment to allow
other members to join the association. A successful funding ballot vote establishes the
association as an independent legal entity.

4.3.8 Time

The DAO relies on time for most of its functionalities. One can only vote during a particular
time window. Members can create new proposals for a ballot vote until a specific time.

Ethereum generally knows two kinds of time: block numbers and timestamps. The block
number is the number of the block relative to the first block. The timestamp to the block



Chapter 4. Solution 26

gets added by the miner based on their system time and can be manipulated to a cer-
tain extent [16]. The DAO uses a mix of these two different time variations, below are the
important ones:

+ The next membership fee payment for members is saved as a timestamp.

+ Everything in the DAO is saved and calculated using block numbers. This was given
by the OpenZeppelin Governor.

+ The time how long a proposal must be queued before execution is saved as a times-
tamp. This was given by the OpenZeppelin time lock conteract.

Roughly every twelve seconds, a new block gets created on the Ethereum network. When
dealing with future block numbers, the frontend takes the difference between the current
block number and the given future block. It multiplies it by twelve seconds to approximate
the date when the miners will create this specific block. However, it's an approximation.
Especially since the Ethereum merge, the time between blocks has gone down massively
[17]. Therefore, it could be that this constant has to be adapted at some point depending
on the average block time.

4.4 Frontend

This section focuses on the design and implementation of the frontend for the FlatFeeStack
association.

4.41 User interface draft

One of the functional requirements is to build a frontend that allows users to interact with
the association on the blockchain. The DAA part of the frontend will be integrated into
the existing frontend of FlatFeeStack, so all information about FlatFeeStack is accessi-
ble from one location. Below are wireframes for the different views within the frontend
application.

Figure 4.7 shows the base layout for the application. On the left side is the navigation to
manage different aspects of the association. The existing frontend for FlatFeeStack also
incorporates the navigation on the left side, using icons and text to describe the items. The
center displays the upcoming and past ballot votes (named voting windows). Depending
on the state of the voting window, members can vote for proposals (see figure 4.9) or
submit new proposals (see figure 4.8).

Proposals will be grouped into voting windows. A voting window maps to the definition of
a ballot vote required by law (3.2).



Chapter 4. Solution 27

FlatFeeStack DAA

Qo X Q (hitps://Matieestackio D)

= e Next voting windows -}
B Treasury [
) 0x1234567890abcdef
Membership requests 2022-09-30 Proposal #1: Celebration party for FlatFeeStack launch Member since
- i 2022-09-30
Proposal submission closed.
A§e  Delegate functions Votes open until ~18:00:00
Oxfedcba0987654321
2022-10-31 Proposal #1: Sponsor an elevator to the moon Whitelister
- Proposal #2: Funding switch to Java Spring for FlatFeeStack backend 0x2903487561239467
Proposal submission 0x178934613404897b

Proposal #3: Make Elon Musk a delegate

2022_11_30 Proposal #1: Send big bucks to Microsoft

Proposal submission
open until 2022-10-31.

Past votes

2022-08-31 Proposal #1: Found FlatFeeStack association (Passed 4/0/2)

4

Figure 4.7: Start screen

Create a proposal - FlatFeeStack DAA

Qo X Q (Rttps://Matfeestackio D)

Create a proposal

Proposal type Request funds from wallet | -

Exchange delegate
Expell member
Free text

[ sEen [

Description (in markdown)

We could later allow to inspect
the generated parameters
(targets, values, calldatas) and
even allow to modify those. and
offer a "free text proposal"

Create proposal

4

Figure 4.8: Create a proposal

The call to the blockchain to create a proposal in the association is quite complex. A
simple proposal form abstracts the complexity for standard proposals, like requesting
funds or an exchange of the representative. Therefore, the form changes the available
fields based on the chosen proposal type, as shown in figure 4.8. The form will allow
advanced users to influence the parameters sent to the blockchain directly.



Chapter 4. Solution 28

Vote - FlatFeeStack DAO

QO X Q (Rttps:/Matieestackio BN D)

Vote for proposals - 2022-09-30

Proposal #1: Celebration party for FlatFeeStack launch

AU S S ASE S S SN AU AL S SIS A SIS
e e T R R e X Y
AN S G4 SN G5 G4 SN SIS SIS SN AU I SIS AN $05
L A L AL AR G AR S NI SN SN AR
G A B SIS S AL A SIS AR A B G AL AN

Your vote N4 '? ®

Reason (optional)

I think it would be great to have a party!

Vote

4

Figure 4.9: Vote for propoals

Figure 4.9 shows the screen where users can submit votes. It will list all votes; for each,
the user can decide if they support the proposal, vote against it, or have no opinion about
it. For each vote, a user can add a reason.

4.4.2 Implementation
General

As outlined in section 4.2, the frontend for the DAO is integrated into the existing frontend
for FlatFeeStack. This frontend is built with the Svelte framework.

The frontend needs to know the addresses of the contracts on the blockchain and their
application binary interface to interact with them. Additionally, as mentioned in section
4.2, MetaMask is needed to connect to the blockchain and sign transactions for actions a
user executes. These interactions are enabled with the ether.js library, which was already
part of the frontend application, as it has existing functionality that fetches and sends
data to the Ethereum blockchain.

ether.js builds so-called JavaScript meta classes based on the ABIs and addresses for
a smart contract [14]. When any method on those meta classes is called, ether.js builds
the corresponding transaction and sends it to a provider. For FlatFeeStack, this is Meta-
Mask. MetaMask inspects the transaction: If it is a write operation, it requests the user to
confirm the operation and signs the transaction with the user’s private key. Afterward, the
transaction is sent to the JSON RPC interface of Ethereum, which queues the transaction



Chapter 4. Solution 29

and allows it to be included in the next block. The transaction goes directly to an Ethereum
node for evaluation [18].

The Svelte framework organizes frontend code into a tree of smaller code snippets called
components. Data needed to render components is generally stored in each component
separately. Once a component is removed from the DOM, its stored data is also lost.

To preserve data across components, Svelte provides a store functionality that is based
on the observer pattern. Multiple components can subscribe to changes in the store.
When navigating in the frontend, the state in stores is preserved. A store can have an
initialize function when the first component subscribes to the store. For FlatFeeStack
DAO, this helps initialize the mentioned ethers.js meta classes.

A significant part of the state needed to render the frontend of the DAO is preserved in
those Svelte stores:

 The current signer fetched from MetaMask.
« The meta classes for the smart contracts.

+ Any datathatis needed across multiple components, like the list of council members
or a list of proposals.

This documentation will mention when Svelte components read or write data to Svelte
stores.

One significant difference between traditional applications that interact with a regular
backend application and the FlatFeeStack DAO frontend is the shape of information. For
traditional applications, the entire state of an object is served in one reply, and the main
job of the frontend is to arrange the given information on the computer screen. However,
depending on the requested view, the FlatFeeStack DAO frontend needs to combine infor-
mation from multiple requests to get a complete state of the objects. For example, a first
call checks if the signer is known to the membership contract to retrieve the status of the
current logged-in signer (getMembershipStatus). A second call in parallel retrieves the list
of council members. If the signer is a member of the DAO, the frontend will check if they are
also a council member to display the correct membership status in the frontend. Fetching
this kind of information is usually just one call to the backend in a traditional application.
Therefore, some frontend components execute many parallel calls to the blockchain and
do the heavy lifting with object transformation to get a renderable state.



Chapter 4. Solution 30

Lz2] FlatFeeStack Login m

o Last updated (block): #216779
P Last updated (time): Current-Time: Mon, 1/16/2023, 7:03:05 PM
Connect wallet
i= Votes Voting slot #4
Proposal creation open until #554430 (approx. Sat, 3/4/2023,
&8 Treasury 4:33:17 PM)
Voting scheduled for #604830 (approx. Sat, 3/11/2023, 4:33:17
PM
W Membership requests )

No proposals submitted.

A% Council functions

Voting slot #3

Proposal creation open until #352830 (approx. Sat, 2/4/2023,
4:33:17 PM)

Voting scheduled for #403230 (approx. Sat, 2/11/2023, 4:33:17
PM)

No proposals submitted.

wr_a* _ _ _l_3x AN

Figure 4.10: Navigation with MetaMask wallet not connected

Navigation

The navigation component is rendered in all views of the DAO frontend. Views request to
be rendered inside the Navigation component, which places their content on the right-hand
side. The navigation also displays the currently connected user and navigation options.

The navigation component is vital to the frontend as it pre-fills several essential stores.
Once a user clicks on the Connect wallet button shown in figure 4.10, the frontend saves a
signer object from ether.js into a Svelte store. This signer object allows identification of the
user’'s Ethereum address, which is used in several other filtering mechanisms or to check
access in different views (e.g., council member functions). Before the connection to the
Ethereum wallet is established, an empty signer is used to read data from the blockchain.

Additionally, when the signer object changes, the mentioned ether.js smart contract ether.js
contract meta classes are re-initialized so transactions from ether.js can be sent to Meta-
Mask.

With a connected wallet as shown in figure 4.11, the navigation displays the Ethereum
address of the connected user, allows to inspect the current membership status (4.4.2)
or to leave the DAO.



Chapter 4. Solution 31

Overview of voting slots and proposals

I=zlFlatFeeStack Login m

O Last updated (block): #216779
o~ Last updated (time): Current-Time: Mon, 1/16/2023, 7:03:05 PM

Hello 0xf39F...2266!
Your status: Council Member

Voting slot #4
Approval process Proposal creation open until #554430 (approx. Sat, 3/4/2023,
Leave FlatFeeStack 4:3317 PM)
Voting scheduled for #604830 (approx. Sat, 3/11/2023, 4:33:17
i= Votes PM)
No proposals submitted.
& Treasury Create Proposal

W Membership requests

Voting slot #3

Proposal creation open until #352830 (approx. Sat, 2/4/2023,
4:33:17 PM)

Voting scheduled for #403230 (approx. Sat, 2/11/2023, 4:33:17
PM)

No proposals submitted.

#& Council functions

Create Proposal

Figure 4.11: Overview of the voting slots with the MetaMask wallet connected
As shown in figure 4.11, the start page of the FlatFeeStack DAO frontend is the overview
of voting slots and proposals. The data is fetched in multiple calls:

1. Asthe blockchain cannot return array properties, the frontend first asks for the num-
ber of voting slots.

2. For the received number of voting slots, it receives their effective voting start date.

3. Based on this start date, the frontend fetches a list of proposal identifiers for each
voting slot.

4. Finally, for the list of proposal identifiers, the blockchainis searched for ProposalCreated
events that match the retrieved identifiers. The ProposalCreated event contains
complete information about the proposal, like the proposer or the description.

The retrieved voting slots and proposals are saved in respective stores.
Depending on the current time, the user can execute various functions on this page.

+ Create a new proposal for a voting slot if the slot still allows adding proposals. The
corresponding button takes the user to the create proposals form (4.4.2).



Chapter 4. Solution 32

« The user can navigate to the voting form if the voting is open for a specific slot
(4.4.2).

+ The user can navigate to Execute proposals if voting is concluded (4.4.2).

Create proposal form

L=zl FlatFeeStack Login m

ot

Hello 0xf39F...2266!
Your status: Council Member

Create a proposal

Proposal type ‘ Remove council member v

Approval process Member to be removed ‘ 0x7099...79C8 .

Leave FlatFeeStack
Note that the DAO requires at least 2 council members. There
= \otes won't be a validation if your proposal will result in less council
members than the minimum amount, as there could be another
proposal pending that will add an additional council member.

& Treasury But be aware of it as the execution of the proposal might fail.

W Membership requests Description

£ Council functions Write  Preview L

I would propose to remove this council member, as they aren't active
anymore in the association.

Words: 17 Lines: 1 Scroll to top

Create proposal
We used the following dependencies

Figure 4.12: Create proposal form, filled out to propose removing a council member

As shown in figure 4.12, the create proposal form allows users to create a new proposal
in a simplified form. Usually, they need to provide target addresses that should be called
and encoded versions of the functions and parameters that should be called on those
addresses (see details in section 3.3.1).



Chapter 4. Solution 33

The proposal form abstracts this for typical proposals, like requesting funds from the
DAO or removing a member. When choosing a different proposal type in the form, the
Svelte component renders a child component that implements the required fields for this
proposal. For example, in the case of requesting funds, the child component provides two
fields: the target wallet address and the amount. Each child component validates the fields
on its own.

If the fields are valid, the child component encodes the information as required by the
smart contract. It communicates the updated state via Svelte’s two-way binding to the
parent component. The parent component blocks the form submission if the child com-
ponent does not communicate valid encoded function calls. This abstraction allows us
to implement new proposal types quickly, as the required data by each proposal type are
de-coupled from each other.

Vote view

As shown in figure 4.13, the vote view aims to mimic a ballot vote: Each proposal for the
selected voting slot is listed with its proposer and description. A user can click on their
voting choice (either disapprove, approve or abstain) and, optionally, give a reason for their
vote. At the end of the page, all the votes can be submitted at once.

The view accesses the proposal and voting slot stores, loaded already when the user
opens up the start page. However, the view needs to check if the user is eligible to vote,
if the voting period for the selected slot is open, and if they have already voted, as votes
cannot be revised even if the voting slot is still open. This information is stored locally in
the component.

The cast votes are fetched from the corresponding events. However, it is only possible to
find votes cast on the Ethereum blockchain by the signer’s address, not by proposal iden-
tifier. Therefore, in the vote view component, the frontend filters the retrieved events using
the proposal identifiers from the selected voting slot. If the connected user has already
voted on one proposal, the view is pre-filled with their choice and reason. Submission for
proposals where the signer has already cast their vote is blocked to prevent errors.

Execute proposals view

As explained earlier in section 4.3, accepted proposals are not available for immediate
execution but need to be submitted to an execution queue. After a specific time, they can
be executed.



Chapter 4. Solution

34

IzzlFlatFeeStack Login m

2 Cast votes
Hello 0x7099...79C8!
Your status: Council Member
Proposal 1

Approval process
Proposer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266

Leave FlatFeeStack
| propose to remove 0xFABB as a member of the association as

they are no longer active.
= Votes y 9

Your vote: X v ?
& Treasury

@ Membership requests c2o°" (optional):

£ Council functions

Proposal 2

Proposer: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8

| built a feature for Flatfeestack that allows users to sign in
using their GitHub account. Compensation of 0.1 ETH would be
nice.

Your vote: X v ?

Reason (optional):

We used the following dependencies

Figure 4.13: View to cast votes.



Chapter 4. Solution

35

I==lFlatFeeStack

ot

Hello 0x7099...79C8!
Your status: Council Member

Approval process

Leave FlatFeeStack
i= Votes
& Treasury
W Membership requests

£ Council functions

We used the following dependencies

Execute proposals

Proposal 1

Proposer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266

| propose to remove 0xFABB as a member of the association as
they are no longer active.

The proposal cannot be executed as the vote didn't pass.

Proposal 2

Proposer: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8

| built a feature for Flatfeestack that allows users to sign in
using their GitHub account. Compensation of 0.1 ETH would be
nice.

Queue proposal for execution

Figure 4.14: View to execute proposals. Vote for the first proposal did not pass, so no
further action is available, but the second proposal can be queued.

The Execute proposal view shown in figure 4.14 illustrates this workflow. This view is avail-
able after voting for a slot is concluded. It reads data from the voting slot and proposal
store but fetches the individual state for each proposal and a property called proposal eta.
This property returns the seconds until the proposal can be executed.

The view covers the following states of a proposal:

+ Defeated: The view mentions that the vote for the proposal did not pass, and no
actions are available on this page.

+ The vote for the proposal passed. The view displays a button to send the proposal
to the execution queue.

+ Queued: If the proposal eta is 0, the view displays a button to execute the proposal.
Otherwise, it displays the remaining time.

+ Executed: The view mentions that the proposals have been executed already.



Chapter 4. Solution 36

I==l FlatFeeStack Login
a Treasury
Hello OI39F. 22661
Your status: Councl Member « Total balance: 1.0 ETH
% : « Total funds to be claimed: 1.0 ETH
iahdialiinaned « Available funds: 0.0 ETH
Leave FlatFeeStack .
Withdraw funds
i= Votes
You have no funds available.
L e Activities in the last 90 days
& Membership requests  payq Block number Type Source Amount
. Mon, 1/16/2023, 6:25:05PM 216589 Funds withdrawn 0xf39F..2266 1.0 ETH
& Council functions
Mon, 1/16/2023, 6:20:53 PM 216568 Allowance increased 0xf39F..2266 1.0 ETH
Sat, 12/17/2022, 451:53 PM 123 Payment received 0xf39F..2266 1.0 ETH

We used the following dependencies

Figure 4.15: Treasury view

The treasury view shown in figure 4.15 displays information from the Wallet contract. It is
divided into three sections.

The first part shows the current total of funds in the Wallet. Some of these funds can be
locked for members using the Request funds proposal, which is displayed in the second.
The last number shows how many funds are not allocated and could therefore be used to
pay for various things.

The second section allows the user to withdraw funds, if they have any.

The third section overviews all Wallet transactions within the last 90 days. The Wallet
contract emits three relevant events that the frontend will fetch for this view.

Note that this Wallet view can only be accessed when somebody is an association mem-
ber. While the information is publicly available on the blockchain, the treasury’s money
should not be the primary incentive to join the association. Keeping this information se-
cret in the user interface should help with it.

Council member view

A council member has additional privileges in the DAO. Those additional functions can be
managed from the council member’s view shown in figure 4.16 and are accessible from
the navigation.

This view covers two functions:

+ The council member can create a new voting slot. The view will check if the voting
slot has been announced a month in advance.



Chapter 4. Solution 37

IzzlFlatFeeStack Login m

éoa Council Member functions

Hello 0x7099...79C8!
Your status: Council Member

Add voting slot

Approval process
The current block number is 411236, voting slots need to be
Leave FlatFeeStack announced one month in advance, so the minimum value is
612836 (approx. Sun, 3/12/2023, 7:14:29 PM).

i= Votes
Voting should start at block number

& Treasury 0

W Membership requests

Cancel voting slot

% Council functions
Voting slots can be cancelled max. 24 hours before the voting

starts.

Assigned proposals will be moved to the next available voting
slot.

Affected voting slot

50415 v

Reason

We used the following dependencies

Figure 4.16: Council member view

+ The council member can cancel a voting slot and needs to provide a reason for it.
The view obtains the available voting slots from the voting slots store. The view also
verifies that the cancellation happens not later than one day before the slot.



Chapter 4. Solution 38

Izzl FlatFeeStack Login m

ol

Hello 0xf39F...2266!
Your status: Council Member

Current membership requests

Address Status Actions

Approval process Membership
Confirm
0x23618e81E3f5cdF7f54C3d65f7FBc0aBf5B21E8f requested

Leave FlatFeeStack
i= Votes
&8 Treasury
W Membership requests

£ Council functions

We used the following dependencies

Figure 4.17: Membership requests view

Membership requests view

As outlined in section 4.3.4, membership to the DAO needs to be approved by two individ-
ual council members. The membership requests view shown in figure 4.17 lists the current
membership requests.

The logic for obtaining membership requests is extensive. Members that need to be ap-
proved are either in a member state requested or approvedByOne. However, those changes
between states are not tracked directly on the membership contract, only in the
ChangeInMembershipStatus events. Therefore, the view collects the these events and ap-
plies a JavaScript filter to sort out already confirmed members.

For members in the state approvedByOne, the view checks if the current signer is the signer
who did the first approval. If the current signer did the first approval, the approve member-
ship button in the view is disabled.

Membership status view

From the DAO frontend navigation, members can inspect their current status. This view
shown in figure 4.18 is available for everybody but is primarily interesting for people that
applied for membership and are waiting for their confirmation.



Chapter 4. Solution 39

Membership approval process

Membership to the DAA has been requested

Figure 4.18: Membership status modal

The view accesses the membership status store. If the current signer is already a member,
the view fetches the next date to pay the membership fee. The next payment date is stored
locally in the component.

The user has two available actions on this view:

« If they did not request membership to the FlatFeeStack DAO, they have a button
available to request it.

« If they still need to pay their membership fee, they have a button to pay it.

4.5 Non-functional requirements

This section verifies the non-function requirements listed in 2.2 against the final product.

Functionality: Each story is a functional component and does not break the functionality
of others.

Acceptance criteria: Unit Tests run for all subsystems in the main branch.

Result: Partially fulfilled.

The smart contracts were written with unit tests alongside from the first line of code.
There weren't any merges to main branch unless the continuous integration passed suc-
cessfully. In the frontend, no unit tests were written and verification was done manually.



Chapter 4. Solution 40

This sometimes resulted in code getting merged that broke functionality in other parts of
the application.

Portability: The application must be portable and able to run on multiple platforms or
devices without requiring significant modification.

Acceptance criteria: Manual testing on different devices and browsers.

Result: Fulfilled.

This requirement does not apply to the smart contracts. The frontend was frequenty used
in different browsers and on different devices. There wasn't any instance where the fron-
tend was broken because of a certain device type or browser.

Extensibility: The application must be easy to maintain and update over time, with clear
documentation and support processes.

Acceptance criteria: Time to fix bugs or to install updates.

Res