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Abstract

The famous electronic peer-to-peer cash system called Bitcoin is an open-source protocol
allowing individuals to store and transact units of the same named currency. Private and
public key cryptography plays a central role in this value transfer system, which implies
the importance of professionally managing the information about such keys.

This work elaborates on the essential prerequisites to understand this relatively new
technology that combines elements from the fields of computer science, cryptography,
mathematics, and game theory. In doing so, crucial general and Bitcoin-specific terms are
defined and contextually explained.

The central part of this work addresses the outline of different Bitcoin interaction means,
commonly known as wallets. The structure of the presented wallet types orients itself
alongside a potential user’s experience. Besides defining explanations and examples of use
cases, this work outlines advantages and disadvantages concerning security and privacy.

The start concerns two wallets that target beginners in the field of Bitcoin. The concept of
online accounts is elaborated and attention is drawn to the inherent need to trust when
using them. Also, the relatively primitive type of paper wallets is surveyed.

For a more intermediate interaction with this peer-to-peer cash system, the concept of
software wallets, in general, is explained and examples are provided. The bridge from
single-address paper wallets will be drawn to the more sophisticated multi-address
wallets enabled through rooted key derivation techniques. Designated computer devices
that solely serve the purpose of managing keying material, known as hardware wallets,
represent another intermediate wallet type discussed in this work.

Last, advanced topics are discussed that further leverage the security and privacy of
someone’s interaction with Bitcoin. One concerns the setup of a self-managed Bitcoin full
node. This undertaking not only harmonies with the concept of verification over trust but
also allows for the complete exclusion of any third party between wallet communication.
Equally advanced is the concept of multi-signature wallets, which is discussed at the end
of this work.

Keywords: Bitcoin, Software Wallets, Hardware Wallets, Private Key Management
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1 Introduction

In October 2008 a user with the pseudonym Satoshi Nakomoto introduced in an email
to The Cryptography Mailing List the idea of a peer-to-peer electronic cash system that no
longer requires trusted parties and simply works based on software and mathematical
rules [1]. The roots of such a digital cash system reach back to the year 1983 [2]. Nakamoto
referenced a PDF in this email that explains this idea in detail alongside proof of its
robustness. This document later became famous and is nowadays also referenced as the
so-called Bitcoin White Paper [3].

At the beginning of 2009, Nakamoto published a post in the P2P foundation forum to invite
the public to explore and download the first software version of Bitcoin [4]. Shortly after
this announcement, the idea was discussed and further developed by the back at this time
a small group of people that followed the mailing list or the activities in this forum. Also,
the meanwhile famous Bitcoin logo was created, as shown in Figure 1.1.

Looking back at this early stage in the course of Bitcoin’s evolution, these posts represent
contemporary history1. More than ten years later, Bitcoin still exists and continues to be
collaboratively improved by thousands of people. In the meantime, it also served as a
source of inspiration for new business models, technological devices, and how people
transact with each other.

Nakamoto’s peer-to-peer electronic coin that can be used to transfer units from one place
to another without relying on a necessarily trusted party in between succeeded. Numerous
individuals and even institutions benefit from it by using it as a store of value, medium
of exchange, or even unit of account. These purposes are commonly known as the three
purposes of money.

An idea, textual explanation, software source code, mathematical laws, and intrinsic
interest of individuals form the basis of this success. One concludes that everything

FIGURE 1.1: Bitcoin Logo
The logo was created collaboratively by a few Bitcoin forum users starting in February 2010. [5].

Usually, the upper case spelling «Bitcoin» denotes the protocol and the related technology as well as
community while the lower case spelling «bitcoin» denominates the currency unit that is also abbreviated

using BTC. For the sake of consistency, only the upper case variation and its abbreviation is used in this work.

1 See the browsable collections of it.

https://satoshi.nakamotoinstitute.org/posts/
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that defines Bitcoin is simply information. Apparently, Nakamoto intended to free this
information to the world and therewith pass the point of no return. Everyone and
everything that can process this information will be able to interact with Bitcoin. No
permission has to be obtained, nobody and nothing needs to be trusted, nor could by any
authority.

It must have been Nakamoto’s desire to enable such a complete self-determined interac-
tion for absolutely everyone without any prevailing party involved. This may be why
the pseudonymized authorship has not been revealed until today and possibly never
will. A potential association of Bitcoin with any form of existing individual or collective
would automatically increase their influential power, regardless of whether indented.
Additionally, this would also represent a target for powerful institutions and governments
that may repudiate the idea of an uncontrollable, transparent, and censorship-free value
transfer system. Ultimately, it is of no meaning who published this idea. What is essen-
tial, however, is that millions of people absorbed it and continue to use it because they
intrinsically want to use it.

This work should lower the admittedly high barrier to entry to Bitcoin, again increasing
its accessibility. This is done by covering different ways to interact with this peer-to-peer
system with different security and privacy levels. While aiming for practicality, a generic
storyline will be narrated where the readership identifies itself. The story told reflects
the questions and challenges a new Bitcoin user will sooner or later be faced with. This
undertaking structures in three stages, namely beginner, intermediate, and advanced.
Eventually, the readership has gained the necessary information to confidentially start
interacting with Bitcoin using the approaches that best fit the user’s needs.

The present work does not address money’s historical, social, and economic aspects and
its relation with Bitcoin. Interested readers in these topics can refer to Von Mises [6] and
Ammous [7] for a start. In this work, the focus merely lies on the proper management of
the private information required to interact with Bitcoin and the prerequisites necessary
to understand the risks and benefits of the presented approaches.

1.1 Motivation

Today’s societies and industries rely heavily on Information and Communication Technologies
(ICT). Data is the new oil, people say. Everything is or is going to be connected, machines
communicate with each other and humans start to spend their spare time in vitalized
worlds. ICT became a backbone in both society and industry. Its omnipresence in everyday
life is indisputable, which is why awareness and education in this field became inevitable.

However, there is another field that is equally omnipresent, namely financial transac-
tions. Nearly no day passes without taping a credit card or handing over cash to pay
the counterpart and therewith complete a transaction of goods or services between peers.



Chapter 1. Introduction 3

The convergence between technological progress in information systems and the indis-
pensable demand for financial transactions affects everybody who wants to take part in
the commercialized environment, which is, in fact, hard to escape. Although people are
indirectly forced to participate in the system of digital payments, they have little power
over how, when, and where their financial data points are processed, stored, and benefited
from. Identities that control or offer financial services, such as governments, banks, or
payment processors, find themselves in the fortunate situation that their user base must
rely on and trust them. This asymmetric relationship compromises financial autonomy,
privacy, and liberty.

Bitcoin offers an alternative to this custodianship. It represents a value transfer system
that no longer enforces an asymmetric relationship between provider and user simply
because there is no provider anymore. It serves as an inflation-protected store of value, a
private medium of exchange, and an opportunity to have an absolute unit of measurement.
Everyone and everything can unconditionally participate in this system in any desirable
form and will be able to successfully interact with it as long as protocol rules, which are
identical for all users, are adhered to.

This freedom, however, comes with the cost of self-responsibility. Not having a provider
or centralized authority also means that no customer helpline can be consulted. Of course,
there exist institutions or individuals that provide support services to different extents.
Starting with personal explanatory sessions and reading material recommendations and
ending with the complete management of one’s Bitcoins. The latter solution to the risk
of self-responsibility, which by then represents a more or less wholly mitigated risk,
compromises the benefits of Bitcoin again and should thus be undesirable.

Managing the risk of self-responsibility requires further knowledge about Bitcoin. It
distills itself into proper and secure management of private information, i.e., information
that should never be disclosed to any other person or party unless the one who should
know about it. This work aims to provide this knowledge in a step-wise manner. Firstly, it
defines what information a Bitcoin user requires to handle. This is followed by different
techniques specifying how to handle this information securely. The techniques presented
in this work differ from each other as they become more and more sophisticated in terms
of security and privacy, but also at the cost of higher complexity. It should be the reader’s
choice at what stage the work serves its purpose.

1.2 Free and Open-Source

Virtual assets such as photographs, songs, or source code possess the common property
of effortless duplication and distribution since they represent information encoded in
zeros and ones. This significant difference to physical assets requires means to control the
technically unrestricted exploitation of virtual goods in the digital age. One protection
technique would be to keep a virtual asset secret or only publish parts of it. Another and
often more helpful strategy involves licenses as software that embodies original work
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generally is protected by copyright2. Licenses empower authors to decide how, when,
where, and by whom their virtual assets may be used. This, for instance, has become an
essential tool in the field of commercialized software products.

Software that does not ought to be commercialized is often gifted to the public domain by
publishing the entire source code to the world for everybody to see and use. The yearly
report by Linux & Open Source Annual [8] provides a comprehensive overview of the
extent and diversity of such software. Such software is then referred to as free and/or
open-source. Although the two terms describe the same effects in the context of software,
they nevertheless associate slightly different values with it. Williams and Stallman [9] and
Haff [10] discuss these values in detail alongside their history and background information.
The Open Source Initiative [11] has defined its term using ten basic concepts that must
be fulfilled to call a piece of software open-source legitimately. The ideology of these
concepts focuses on objective facts related to program code. Many different open-source
licensing models exist that can specify software usage, manipulation, or distribution to
different extents [12].

Free software reaches further into a philosophical dimension. According to Williams
and Stallman software can be entitled as free if and only if its users possess the freedom
to study, run, modify, and share its source code. In that sense, the authors affiliate the
mnemonic «free speech, not free beer» to emphasize that it is all about freedom, not price.
Stallman is seen as an activist for this movement and has contributed to it through valuable
undertakings3. Free software implies it is open-source while open-source software must
not necessarily allow for the required freedom to its users in order to be called free software.
Often the two terms are also combined such as Free and Open-Source Software (FOSS) or
even Free/Libre and Open-Source Software (FLOSS) to increase clarity.

FOSS forms one of the most essential pillars of Bitcoin. The reference implementation of
the Bitcoin protocol known as Bitcoin Core stays at everyone’s disposal and can freely be
downloaded from the internet4.

Allowing for maximum transparency regarding its inner functioning makes Bitcoin trust-
less. No entity can practically prohibit access to the source code, much less any form
of its usage which makes Bitcoin permissionless. Information in the form of source code
spreads effortlessly over the internet, utterly unregarded of any geographic background
which makes Bitcoin borderless. Having access to everything required to operate a personal
instance autonomously in a personally chosen environment makes Bitcoin decentralized.
These characteristics together make Bitcoin censorship-resistant as no authority can practi-
cally restrict or prevent the interaction possibilities with Bitcoin5. Eventually, this allows

2 For example in Switzerland defined by the Copyright Act (CopA) Art. 2, Section 3.
3 Richard Stallman founded the Free Software Foundation (FSF) and the GNU General Public License.
4 For example from its GitHub repository under MIT license, which grants everyone «the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software» as long this license notice
remains associated.

5 Current events in the Lebanese banking sector, for instance, exemplifies the value of these properties.

https://www.fedlex.admin.ch/eli/cc/1993/1798_1798_1798/en#a2
https://www.fsf.org/
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/bitcoin/bitcoin
https://choosealicense.com/licenses/mit/
https://www.economist.com/1843/2022/12/27/my-money-or-your-life-the-bank-robbers-of-beirut
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the emergence of a user base formed by self-determined individuals that independently
from each other are empowered to transact with each other on the Bitcoin network.

The commercial domain has witnessed the benefits arising from the FOSS methodology
in recent years. Gartner’s 2021 Hype Cycle report [13] represents this phenomenon.
Open-source software in the domain of office programs or data storage is expected to
reach the plateau of productivity in five to ten years, and open-source technology in the
field of natural language processing even in under five years. Big technology companies
such as Microsoft or Apple6, for instance, started disclosing their code repositories. They
keep fostering the growth of communities around them which is in turn rewarded by
positive publicity. Ultimately one can state that the trend toward transparency and self-
determination in software code is genuine and likely to augment in the future.

1.3 Other Resources

The work is not the first of its kind nor will it probably be the last. The National Institute of
Standards and Technology (NIST) published a comprehensive tripartite report concerning
the subject of cryptographic key management. Part 1 [14] elaborates on the basics by
providing definitions, best practices in handling keying material, and discussing acknowl-
edgeable pitfalls. Part 2 [15] provides requirements and recommendations regarding
cryptography policies and governance to succeed with institutional key management.
Part 3 [16] addresses the proper management of keying material using available appli-
cations, protocols, and infrastructures. Eskandari et al. [17] discuss the challenges that
evolve from the inevitable involvement of public key cryptography in Bitcoin and assess
the usability and security of different key management techniques for Bitcoin.

1.4 Outline

The rest of this document is structured as follows. Chapter 2 is dedicated to the technical
prerequisites. It explains the basic functionalities of Bitcoin, defines essential terms, and
references more in-depth resources on the various technical components Bitcoin builds
on. Chapter 3 discusses the basic Bitcoin management tools that new users usually are
exposed to when they start informing themselves about this domain. Chapter 4 introduces
more versatile tools that allow for more sophisticated Bitcoin interactions while profiting
from better privacy and security. Chapter 5 discusses more advanced topics to improve
further the privacy of Bitcoin users and a special type of wallet will be elaborated. Last
but not least, Chapter 6 will conclude the presented insights and provide an outlook on
further work.

6 See Microsoft’s FOSS ecosystem or collection of Apple’s open-source projects.

https://opensource.microsoft.com/ecosystem/
https://opensource.apple.com/projects/
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2 Prerequisites

This chapter defines and explains the essential elements directly or indirectly connected to
Bitcoin, thus required to comprehend the rest of this work. Understandably, not all used
expressions that belong to the taxonomy of ICT will be discussed in this chapter. Although
a basic acquaintance with the computer science field will help understand the discussed
subjects in this work, it also addresses the readership with different backgrounds.

The provided explanations aim for shortness and conciseness as this work primarily
focuses on the actual interaction with Bitcoin. Resources to more detailed resources will
be provided.

2.1 General Terms

This section defines the most critical general terms found in the field of computer science
and cryptography. All of them existed far before the introduction of Bitcoin and are
considered crucial tools in many other fields of applications. Easttom [18], Aumasson and
Green [19], and Aumasson [20] serve as a basis for the following definition and represent
recommended resources for further information.

2.1.1 Protocol

Generally speaking, a protocol can be seen as a set of rules or expected behavior applicable
in some situations. In computing, these situations concern the communication of connected
computers. When the only form of communication is bound to zeros and ones, it becomes
evident that a detailed rule set is required to succeed. Internet users constantly and
probably unconsciously profit from several protocols. The Hypertext Transfer Protocol/Secure
(HTTP/S) is probably the most prominent one among them.

2.1.2 Network

A network generically describes the situation of several independent entities that share
some connection to each other. A single person’s relationships, for instance, form their
social network. Likewise, computers can be interconnected to form a digital network.
Whether humans or computers, networks purpose to share information through commu-
nication. This, on the other hand, requires that all participants in a given network adhere
to a common protocol, as described previously.
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2.1.3 Hash Function

Equally essential as protocols are hash functions. Every computer user indirectly relies on
them without probably knowing it. Although there exists many different types1 of hash
functions, this prerequisite focuses on so-called cryptographic hash functions. For instance,
the Secure Hash Algorithm (SHA) family represents a prominent set of such hash functions
and is based on the Secure Hash Standard (SHS) defined by the NIST [21].

One can generally define a hash function as a mapping h : {0, 1}⋆ 7→ {0, 1}n whereas n
represents a constant defined in the respective implementation. In other words, hash func-
tions take binary information of arbitrary length ⋆ as input and return binary information
of fixed length n as an output. This output is known as hash value or digest.

Such a mapping from an infinitely large space to a finite space inevitably leads to so-called
collisions, i.e. two different inputs result in the same output2. When the frequency of
collisions resides at an acceptable level, one considers the hash function secure. In other
words, the probability that two different inputs result in the same hash value is acceptable
small. Consequently, secure hash functions represent a powerful tool to protect data
integrity as modifications in a specific input can immediately be detected by comparing
the resulting hash values. Aumasson and Green [19, Chapter 6] discuss the properties of
secure hash functions in further detail.

It is furthermore notable that cryptographic hash functions exhibit four unique properties.
Firstly, they must be deterministic, meaning that the same input repetitively leads to the
same output. Secondly, they should be unpredictable so that no assumptions about a
potential output can be inferred by analyzing a given input. Furthermore, they should
also be irreversible, i.e. one-way functions, creating the impossibility of calculating the
input from a given output. Lastly, they should be chaotic, meaning that little change in the
input results in a significant change in the output.

Cryptographic hash functions are nowadays used, for example, in password authentica-
tion schemata where servers only receive the hash values of the user’s secret passwords.
Another use case involves the generation of so-called fingerprints for large amounts of data.
It is common practice to rely on prominent hash function implementations3 rather then
inventing its own. In addition to passwords and numerous other fields of ICT application,
cryptographic hash functions also play a central role in Bitcoin, as will be shown later.

1 See list of categorized hash functions.
2 Also known as pigeonhole principle.
3 For example MD5 or the SHA-2 family.

https://en.wikipedia.org/wiki/List_of_hash_functions
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-2
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2.1.4 Public-Key Cryptography

Other than symmetric cryptography where the same piece of private information, de-
noted as key, is used for encryption and decryption, public-key cryptography provides
two different keys for these fundamental operations. One therefore also refers to it as
asymmetric cryptography. One key is referenced as the so-called public key and can openly
be communicated. The other key is called a private key and must always be kept secret.
Although they visually appear to be completely different, both keys relate mathematically
to each other.

The following example demonstrates the roles of these keys. Bob uses an asymmetric
cryptography algorithm to create a new key pair consisting of a private key K and a public
key P. Bob publishes P on his webpage so that everyone interested can read it. When
Alice wants to send a secret message to Bob over an insecure channel, she utilizes Bob’s
public key P to encrypt her message M which results in the cipher text C. Alice can send
C over a public and possibly insecure channel to Bob who subsequently decrypts C using
his private key K and read the plain text M.

Popular implementations for algorithms that utilize such public-key cryptography are
for example Rivest-Shamir-Adleman (RSA), Diffie-Hellman Key-Exchange (DHKE), or Elliptic
Curve Digital Signature Algorithm (ECDSA). Das and Madhavan [22, Chapter 5] surveys
these in further details.

2.1.5 Digital Signatures

Public-key cryptography can also be used to prove the authenticity of digital information
through signatures. The distribution of source code represents a famous use case for
digital signatures as it helps to answer the question of whether the downloaded code is
identical to the author’s indented version. Therefore, authors like Alice could encrypt
the code base B or its digest using her private key K resulting in a digital signature Sd.
Usually, Sd is then published alongside B. After B and Sd were downloaded, users decrypt
Sd using Alice’s publicly known public key P and verify the authentic result with the
received version of B resp. its digest. In other words, digital signatures provide a powerful
tool to verify data authenticity.

Besides this, two additional functionalities are (theoretically) accounted for when applying
digital signatures during data transfers. One is the origin authentication, meaning the
assurance from whom the information package was sent. The other denotes the fact that
the signer cannot reasonably deny a signature, or more specifically, the knowledge of the
private key, which is also known as non-repudiation. However, the latter two properties
only remain meaningful when the signer’s secret private keys are never disclosed. If this
happens anyway, every third party could have created the signature in an equally valid
form.



Chapter 2. Prerequisites 9

Encoding Value

ASCII Satoshi

Binary 01010011 01100001 01110100 01101111
01110011 01101000 01101001

Base16 5361746F736869

Base64 U2F0b3NoaQ==

TABLE 2.1: Different Encodings of the Word «Satoshi»
This table examplifies the different ways to encode information. The ASCII characters forming the word

«Satoshi» can translated into utterly different forms.

2.1.6 Encodings

Digital information in its most basic form of zeros and ones is, however, deficient in
convenience for human comprehension. Thus one created standardized translations of
binary code using different character sets, which is in this context known as binary-to-text-
encoding. There exists a wide range of encodings4 with ASCII5, Base16 (also known as
hexadecimal), or Base64 among the most prominent ones. Table 2.1 illustrates this with
the example of the word «Satoshi». Although the values differ significantly in length and
character set, they still embody the same information.

2.1.7 Entropy

Entropy belongs to the fundamental concepts in the field of information theory and was
formally defined by Shannon [23] in 1948. Simplified, one can state that entropy represents
a unit of measurement used to declare the amount of information content present in a
given system, for example, a digital message. The message’s entropy can be derived by
counting the required bits to transport the information, neglecting redundancy.

Alternatively, entropy also defines a measurement of uncertainty. Although uncertainty
and information seem to be contradictive concepts, Shannon reasons them as equivalent. A
message that includes something already known by the receiver can, technically speaking,
not be considered information. Consequently, only unknown or uncertain things bear
information content. This leads to the conclusion that uncertainty is information.

Equation 2.1 generally formulates how to calculate entropy. It expresses the entropy of
a system x as the negative sum of all probabilities pi that exist among the probability
distribution of x multiplied with their binary logarithm6. Since log2 n with n ∈ [0, 1] yields
negative intermediate results, the negative summation will ensure a positive entropy
value.

4 See most used binary-to-text encoding standards.
5 Abbreviation for American Standard Code for Information Interchange (ASCII).
6 Also known as «logarithm base two» (log2).

https://en.wikipedia.org/wiki/Binary-to-text_encoding#Encoding_standards
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E(x) = −
n

∑
i=1

pi ∗ log2 (pi) (2.1)

In other words, when every bit in a sequence of bits exhibits high uncertainty regarding
its binary value, it features high entropy. The entropy would decline if certain binary
states were more likely than others as it consequently contains less uncertainty. Password
generators aim for high entropy as it qualifies the strength of a chosen password. Easttom
[18, Chapter 3] further discusses entropy as part of the core concepts in cryptography.

2.2 Bitcoin Terms

After specifying some required general concepts encountered in the world of computers,
this section addressed the most crucial terminology specifically used in Bitcoin. Certain
terms are most probably already encountered by the readership thanks to the medial
presence of Bitcoin in recent years. However, a clear understanding of these terms often
needs to be fulfilled due to their novelty and technological complexity. This chapter, there-
fore, addresses this deficit by providing definitions and further explanations of the most
crucial components in Bitcoin based on the works by Antonopoulos [24], Antonopoulos,
Osuntokun, and Pickhardt [25], and Van Oorschot [26].

2.2.1 Node

Many computers connected and capable of consent on a common form of communication
define a network, as previously stated. This is no different in Bitcoin. Every computer
device with an active internet connection can download, install and run the source code
of any Bitcoin client, i.e. software that implements the Bitcoin communication protocol
alongside its standards. They thereby automatically become part of the network as a
so-called node.

Usually, one distinguished between full and light or lightweight node with the difference
being that a full node permanently stores a copy of the current state of all important
information available in the network while light nodes depend on other full nodes and/or
prune the stored information. Consequently, light nodes rely on the blockchain replicate
of some other party which requires trust. Full nodes on the other hand create, verify, and
manage their own copy, making them completely independent from any other information
sources.

Another differentiating characteristic is associated with the node’s ownership. So-called
self-hosted or domestic nodes represent fully controlled nodes by the hosting entity. Conse-
quently, existing nodes that any third party controls are denoted as foreign nodes in this
work.
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It is essential to understand that nodes are not constrained by any geographical much
less political boundaries. Technically one could also develop its own version of a Bitcoin
node and successfully use it to interact with the network as long as the consented protocol
remains respected. Receives as protocol-adhering node Na any protocol-divergent com-
munication from another node Nd, so will Na automatically eliminate its connection to
Nd as a consequence. This will eventually result in the complete detachment of Nd to the
network as other adhering nodes behave identically.

2.2.2 Private & Public Key

The concept of private and public keys in terms of asymmetric cryptography schemata
was discussed in the previous section. The reason why this subject is revisited in this
section lies in the fact that these keys represent one of the most central elements in the
course of understanding Bitcoin.

A private key K is merely a randomly chosen 256-bit number in the interval [1, n − 1]
with n = 1.158 ∗ 1077 resulting in slightly fewer numbers to choose from than 2256. The
reasoning behind this lies in the prevalent mechanism to generate keys in Bitcoin, namely
the ECDSA. The chosen elliptic curve in Bitcoin reasons for this specific upper bound of
n − 1. Antonopoulos [24, Chapter 4] elucidates the inner working of the ECDSA in further
detail. It can be challenging for humans to comprehend the vast number of eligible private
keys resulting from this given range. In fact, there are about as many possible private keys
as there are atoms in the observable universe [27].

Next, a constant G is used to multiply K in order to receive the associated public key
P = G ∗ K. This operation is referred to as Elliptic Curve Multiplication and represents
a cryptographic one-way function. In other words, deriving P from K using G is easy
while the attempt to restore K from a given P is practically impossible as it embodies the
so-called Discrete Logarithm Problem (DLP)7. In simplified terms, this problem describes a
trivial mathematical procedure to compute in one direction but is extremely difficult to
inverse.

Meanwhile, other mechanisms were included in the Bitcoin standard to generate these
key pairs. The most recent one, for example, is known as Taproot and utilizes the digital
signature scheme by Schnorr [28] for the key pair generation instead of the described
ECDSA.

Table 2.2 summarizes the existing address standards to this date. In the beginning, there
existed only Pay to Public Key Hash (P2PKH) address i.e. the most basic lock script. Later
Pay to Script Hash (P2SH) and Pay to Witness Public Key Hash (P2WPKH) were introduced,
which allow for more complex scripts as well as more storage-efficient structures. The
most recent address type Pay to Taproot (P2TR) further expands the scripting possibilities
while offering increased privacy.

7 Finding x for a given b in ax ≡ b mod p is disproportionately harder than finding b for a given x.
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Type Prefix Description

Pay to
Public Key Hash
(P2PKH)

1. . . First address type, represents the hash value of a pub-
lic key using Base58Check encoding, allows only for
private key proof as spending condition, nowadays
considered as legacy.

Pay to
Script Hash
(P2SH)

3. . . Successor of P2PKH through BIP16, represents the
hash value of a script that can embody more complex
spending conditions, yield for optimized transaction
compression using Segregated Witness (SegWit).

Pay to Witness
Public Key Hash
(P2WPKH)

bc1q. . . Successor of P2SH through BIP141 and BIP142, also
known as Native SegWit, further reduces transaction
size, uses Bech32 encoding, considered the most pop-
ular address type at the moment.

Pay to Taproot
(P2TR)

bc1p. . . Latest address standard (BIP341), further reduces
transaction sizes compared to P2SH for complex
scripts, further widens the scripting possibilities
through its new Merkle tree structure, improves pri-
vacy through Schnorr signatures (BIP340).

TABLE 2.2: Bitcoin Address Standards
Shows the various standardized address types that exists in Bitcoin. The standards were defined in such a

way that the address types can be differentiated by looking at the addresse’s prefix.

Alongside the ongoing development of the Bitcoin protocol, these address standards were
introduced to further optimize transaction attributes such as storage size, functionality, or
privacy. Each type has a standardized encoding resulting in address formats that allow
identification using the address prefix.

It is worth mentioning that the cryptographic hash function applied in the address gen-
eration procedure maps the domain of feasible public keys to a slightly smaller range of
possible hash values. Consequently, multiple public keys could technically lead to identi-
cal addresses. Since the amount of possible public keys resides in such an enormously
ample number space, however, this is not considered to be an issue in practice.

Another interesting fact about Bitcoin address encodings is that they are optimized for
human interaction. For example, they do not include look-alike characters (e.g. zero and
«O» or «L» and «i») to improve readability. Additionally, checksum mechanisms allow
for detecting typing errors to a certain extent. Although such counter measurement for
human error exists, it is recommended to rely on computer-aided means for address
communication such as copy-pasting digital characters or with the help of Quick Response
(QR) codes.

https://en.bitcoin.it/wiki/Base58Check_encoding
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://en.wikipedia.org/wiki/SegWit
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0142.mediawiki
https://en.bitcoin.it/wiki/Bech32
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Schnorr_signature
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
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2.2.3 Unspent Transaction Outputs

When people refer to any action concerning Bitcoin they colloquially use verbs such as
«owing», «storing», or «sending» any amount of this virtual currency. Technically, this is a
misleading enunciation. However, what is an actual chunk of a Bitcoin unit is a so-called
Unspent Transaction Output (UTXO). Every full node maintains and constantly updates its
copy of the current UTXO set, i.e. all available UTXOs in the Bitcoin network.

Another way to look at this set is by imagining it represents all spendable coins. Simplified
explained, does an UTXO represent a credit that is cryptographically bound to a specific
public key, respectively its hash value known as Bitcoin address. Since binding UTXOs
to public key address through P2PKH operations was originally the only use case in that
sense, this binding was referred to as scriptPubKey. In the meantime, more complex types
of imposing a spending condition evolved, which established the more generic names lock
script, witness script, or simply cryptographic puzzle.

In order to successfully spend or consume an UTXO, the underlying puzzle or lock script
must be solved resp. unlocked. The only way to accomplish this is by successfully fulfilling
the underlying locking condition. Initially, these fulfillments were mostly accomplished
using digital signatures, which can only be generated by the entity that possesses the
compatible private key. One therefore originally referred to it as scriptSig. As other
forms than signatures exist to fulfill a locking condition, the more general names witness
or simply unlocking script evolved.

To summarize, units of Bitcoins only exist in the form of lock scripts embodied in UTXOs
and transferring them requires the presentation of a proper unlocking script which primar-
ily includes the signatures created from the appropriate secret private keys. Consequently,
Bitcoins are not directly «owned». What can be owned, however, are private keys which in
turn can unlock the lock script in UTXOs and by doing so moving Bitcoins from one virtual
place to another, i.e. locking them using new conditions after the have been unlocked. It
follows that the private keys actually represent the possessable chunks of Bitcoins, which
has established the saying «not your keys, not your coins».

2.2.4 Transactions

As previously learned, transferring Bitcoins and by doing so essentially creating financial
transactions is nothing less than reallocating spendable UTXOs by unlocking the associ-
ated lock script. The P2PKH transaction essentially enables the act of spending an UTXO
by transferring it to another public key address. More complex transaction types allow
for lock scripts that only can be unlocked after a certain time passed and/or more than
one matching signature is provided. Bistarelli, Mercanti, and Santini [29] survey these
advanced transaction types.

Real coins serve as an excellent analogy to understand the general structure of Bitcoin
transactions. When Alice wants to buy a $3 coffee, she will look into her wallet and collect



Chapter 2. Prerequisites 14

any amount of coins that results in precisely this price or the closest approximation to it.
In the latter case, the payee will return a change to Alice.

Now imagine Alice possesses a private key that controls two UTXOs denoted with 0.4 and
0.3 Bitcoin (BTC). When Alice now wants to send BTC 0.6 to Bob, she must consume these
two UTXOs and use them as so-called transaction inputs. Consuming in this context means
that Alice will create an unlocking script for both of her UTXOs that fulfills the spending
condition embodied in respective locking scripts. It follows that every transaction input
contains both a locking and an unlocking script. Next, a new UTXO with the amount of
0.6 is created that will only be spendable by the owner of the private key to the public
address Bob gave to Alice. In other words, Alice creates a new UTXO by incorporating
Bob’s public key address in the associated lock script. Since the sum of all inputs equals
0.7 but only 0.6 should leave Alice’s wealth to Bob, she is responsible for adding another
transaction output of maximum 0.1 units. However, the script of this second output will
be locked using Alice’s public key address as it represents her change and should remain
spendable.

One can conclude that a payer places sufficient spendable UTXOs as a transaction input
and creates the desired new UTXOs that account for the payee’s claim and, if required,
the payer’s change. Figure 2.1 models this constant mapping of any spendable inputs to
any outputs, given that enough funds are provided on the input side in order to cover the
output side.

In practice, the summation of all values from the input side usually exceeds the output
side. The implicit delta is considered the transaction fee and will be credited to the entity
that settles this transaction. The following two chapters will address the transaction
settlement process in detail. Antonopoulos [24, Chapter 6] elaborates on the architecture
of transactions and the associated central role of secure digital signatures in great detail.

Transaction

Output

Input Output

Transaction

Output

Input Output

Output

Input

Transaction

Input Output

Input

FIGURE 2.1: Transaction Inputs & Outputs
Bitcoins are transacted by mapping spendable inputs (i.e. the creator’s UTXOs) to any number of outputs.
The number of inputs, outputs, or its ratio is unconstrained as long as sufficient funds are provided on the

input side.
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2.2.5 Blockchain

Up to this point, it was shown how individual entities or nodes can independently create a
communication network through open-source software that implements specific protocol
rules. What still needs to be added so far is the component that stores the knowledge about
passed communication i.e. transactions in this network. Banks and payment processors
rely on centralized databases to correctly determine the current balance of someone’s
currency account. Different time zones, operating hours, internet connectivity states, or
payment terminals convert this into a difficult task which is why, for instance, credit card
payments remain pending for several business days.

In Bitcoin, the synchronization of transactional knowledge is accomplished by means of a
data structure conventionally known as blockchain. It describes a concept where transac-
tions are chronologically bundled into small data package alongside with a unforgeable
reference to its preceding package. More concretely, this reference is the hash value of the
entire previous data package.

Figure 2.2 visualized this process. The hash value of block [n − 1] together with the entire
block [n] serve as input for the hash function returning a new block hash value which
subsequently will serve as input for the next block. Thus, Bitcoin’s blockchain represents
a universal timechain to synchronize knowledge worldwide chronologically.

Every full node in the network maintains its own copy of the entire blockchain. This
allows for autonomous verification of every single transaction’s locking and unlocking
scripts, making trusted third parties obsolete.

On the other hand, the complete transparency regarding every single transaction that has
ever been processed bears the costs of reduced anonymity. Anonymity protection happens
exclusively with the unknown linkage between a specific set of addresses and a user’s
real-world identity. Therefore, Bitcoin is only deemed to be so-called pseudo-anonym since
disclosing such a linkage immediately and irrevocably discloses the anonymization of the
entire transactional history.

Hash

Block [n-1]

Transaction Transaction ...

Block [n]

Transaction Transaction ...

Hash

FIGURE 2.2: Bitcoin Blockchain
Packages or blocks of data together with the previous block hash value serve as input for the next block hash

value building a chain. Figure inspired by Nakamoto [3, Chapter 3].
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2.2.6 Mining

The term mining subsumes the process of creating new blocks and propagating them into
the network so that they can be attached at the top of the current chain of blocks. Every
entity in the Bitcoin network is free to participate in this process if desired. However, it
induces specific capabilities to be economically efficient. The Bitcoin protocol, which all
the nodes involved follow independently, enforces certain requirements that a new block
must meet to be accepted by the network. This process is also known as finding consensus.

These requirements include, for instance, a maximum block size of 4 Megabytes and a
minimum amount of leading zeros in its block hash value. As previously discussed, a
cryptographic hash function is an unpredictable, chaotic one-way function that makes it
impossible to use any strategy while hashing for the desired output other than extensive
search8. Therefore the requirement of leading zeros that a feasible block hash requires is
also known as difficulty target.

The target is constantly readjusted according to the mean block time t̄, i.e. the time passed
until a new block was found, of the last 2’016 block epoch. Bitcoin aims for t̄ = T⋆

whereas T⋆ equivalents 10 minutes. An epoch with t̄ < T⋆ will increase the difficulty
target accordingly, resp. decrease when t̄ > T⋆. This mechanism ensures in the long run
that new blocks are found at a constant rate regardless of the invested computation power,
also known as hashing power. Consequently, these epochs of 2’016 blocks approximately
corresponds to 2016∗10

60∗24 ≈ 14 days. It follows that Bitcoin is not only a peer-to-peer money
system but also represents a universal clock with an average precision of 10 minutes.

Miners can freely choose which pending transactions they want to include in the block
they are currently working on. On average, a single block includes approximately 2’000
transactions9. However, there exist blocks that only include a handful or even no transac-
tions at all. Miners also add the missing transaction output that will resolve the earlier
mentioned delta between the input and output sides. Doing so, they collect all transaction
fees at once. Consequently, miners prefer transactions that reward them with higher deltas
or fees, resulting in natural transaction prioritization.

The total transaction fee, however, is not the only incentive to mine. The first transaction of
each valid block is the so-called coinbase transaction which differs from regular transactions.
It exhibits no inputs and only one output spendable by the entity that has mined this
block. Hence, coinbase transactions embody the issuance of brand-new Bitcoins which
increase the total supply and thus are referred to as block reward.

The amount of newly issued Bitcoins in this output-only transaction, however, underlies
strict requirements enforced by the consensus-oriented network and is continuously
halved as time progresses10. Combined with the difficulty target adjustment explained
above, Bitcoin is therewith able to control and enforce its supply autonomously.

8 Also known as brute-forcing.
9 See this Bitcoin Blockchain Explorer for more block statistics.

10 Block reward is halved every 210’000 blocks ≈ 210000∗10
60∗24∗365 ≈ 4 years (e.g. BTC 6.25 as time of writing).

https://bitcoinexplorer.org/block-stats
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Would a miner try to bend these consensus rules to its favor, the invested work in the
form of the extensive search after a suitable block hash value would be squandered since
no protocol-adhering node would accept this block. A block will also be rejected by the
network when it contains invalid transactions. Additionally, the node that issued this
cheating attempt will shortly be isolated as the connected nodes will stop communicating
with it.

2.2.7 Wallet

Wallets are the primary tool for users to interact with the Bitcoin network. They implement
the standards and functions defined in Bitcoin in the form of software applications or
dedicated hardware devices. Generally speaking, wallets qualify as such when they
exhibit the following two functionalities.

First and foremost, wallets have access to private or public key information which makes
them highly critical in terms of security. It allows the wallet to scan a copy of the entire
blockchain and search for UTXOs that potentially can be unlocked resp. spent. The sum-
mation of all spendable outputs found in the timechain of transactions is conventionally
displayed as a balance to the user, alongside a transaction history. There are use cases in
which wallets only have access to public key information and thus operate in read-only
mode, for instance, to observe balances.

Secondly, wallets provide a user-friendly and robust interface to create valid Bitcoin
transactions. Robustness is vital since a tiny typo could lead to the irreversible loss of
funds. The level of technical abstraction in the transaction generation process varies among
the different implementations available nowadays. Thanks to the defined standards in
Bitcoin, wallets abstract all the technical details from the user and solely use simplified
terminology such as receive or pay. As in any other high-tech area like smartphones, cars,
or medicines, simplifications through abstraction are crucial to encourage adoption. More
advanced wallets, however, allow for a user-defined selection of UTXOs in the transaction
assembly process and complete fee control.

To conclude, wallets are the primary tool to analyze the public timechain of transactions
bundled in blocks as well as to create and propagate new transactions that consume
spendable UTXOs as input and declare new UTXOs. Since wallets usually have access to
private key information, conscientious management is crucial, which is why this topic is
the focus of this work.
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2.2.8 Bitcoin Improvement Proposal

Bitcoin’s further development is managed by its community which is open to everyone.
However, certain formalities for proposing changes should be respected as the unification
helps to maintain clarity and consistency for all involved parties.

Therefore the concept of the Bitcoin Improvement Proposal (BIP) has been established11.
It guides authors to a throughout and details description of their proposed change to
improve the Bitcoin protocol.

Basically, all discussed Bitcoin functionalities in the following chapters directly or indi-
rectly relate to the detailed specifications provided in the form of one or several BIP(s).
Where appropriate, the relevant BIPs will be referenced in this work to enable the readers
to investigate these technical topics further. It must be said, however, that BIPs usually re-
quire a profound knowledge of other technological fields and/or preceding improvement
proposals. Consequently, it can be challenging to fully comprehend a BIP as it generally
targets a different readership than this work.

11 See the complete BIP list hosted on in a designated GitHub repository.

https://github.com/bitcoin/bips
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3 Beginner

This chapter discusses two common ways new users typically start interacting with Bitcoin.
The first relates to the different forms of online accounts. The second represents a basic
form of wallet. Both are explained in detail with the main advantages and disadvantages.

3.1 Online Accounts

Individuals who start cultivating an interest in Bitcoin will probably begin with internet
research. Although every aspect of Bitcoin is freely available on the internet, it can be
challenging to identify authentic resources. Search results of cryptocurrency exchange
platforms are likely to appear in the top listing as they are promoted by revenue-oriented
companies1 paying for advertising. They provide access to numerous different cryp-
tocurrencies or other trading products such as derivatives2. Ultimately, every transaction
performed on their platform will marginally contribute to their revenue and is usually
more expensive. Though these platforms offer various digital assets, this work focuses
exclusively on Bitcoin. Likewise, the wide range of companies providing such services is
simply referred to as platforms.

These platforms have in common that they all require a user account in order to start
interacting with Bitcoin. Nowadays, such account creation processes most often involve
any form of proof of identification as they underlay the so-called Know Your Customer (KYC)
guidelines. Depending on the physical location of the platform provider and the applicable
jurisdiction, the KYC measures may vary in their seriousness. These guidelines aim to
diminish the risk of money laundering or other criminal financial activities. Proof of
a customer’s identity can be provided, for example, by presenting a copy of an official
identification document, e.g. a passport or driver’s license. The linking of a bank account
to the user account of the platform can implicitly serve as KYC-compliant identification
since, in such cases, the platform relies on the prior identity verification of these banks.

3.1.1 Tradeoff

Besides a dominant presence on search results pages and social media, customers of such
platforms generally profit from the competitive user experience on both web and mobile
applications. Trading and accumulating Bitcoin appeals foolproof. However, abstracting
the complexity of Bitcoin from the user entails inevitable tradeoffs that may seem obscure
to beginners in the field.

1 For instance Coinbase, Crypto.com, Kraken, Bitfinex, or Binance.
2 Category of trading products whose values are derived from other products’ price development.

https://www.coinbase.com/
https://crypto.com/
https://www.kraken.com/
https://www.bitfinex.com/
https://www.binance.com/en
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Custodianship

The highest cost is that platforms generally possess the custody of a user’s Bitcoins.
Therefore, these platforms are also referred to as custodians. It implies that they act as a
protective guard between the individual user or customer and its associated UTXOs. This
proxy situation is a critical difference to understand compared to non-custodial wallets.
Balances shown to logged-in users must not necessarily exist as a set of UTXOs in the
underlying Bitcoin blockchain. Sometimes users do not even receive access to private or
public key information that would allow them to verify their transactions independently
and directly. These online accounts are therefore also called hot wallets, which should
indicate the high risk of loss of funds.

History has repeatedly shown that the necessary trust placed in platforms is prone to
abuse [30, 31]. Forms of such abuse include, for example, poor security measurements that
allow for successful hacking attacks or so-called exit scams. Latter describes the phenomena
where a platform’s web application suddenly disappears, in most cases together with its
founders.

FIGURE 3.1: Homepage of Coinbase
Shows the homepage of Coinbase, a popular custodial service provider for digital asset management. As the
headline suggests, such online account wallets require trust due to their custodial characteristic. Image taken

on 30. October 2022.

https://www.coinbase.com/
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Privacy

Another cost concerns diminished privacy. Equally to all Bitcoins underlying the plat-
form’s custody, so do all interactions with Bitcoin by the user. Often there is no other
option than interacting with the platform’s web or mobile application. The receipt of
traffic in the application by identified and logged-in users paves the way for collecting
significant amounts of user data. This is not only technically easy to implement but also
economically rewarding in times when data is considered the new gold.

Besides user statistics, platforms also have complete control over a user’s Bitcoin transac-
tions. It is not self-evident that exchanges consistently act neutral and fair to everyone.
Blocking users, freezing funds, and censoring transactions are examples of how platforms
can infiltrate someone’s freedom of expression, as happened in connection with the 2020
Twitter account hijacking attack3 [32, 33].

Attractive Target

Another cost associated with these platforms is the increased risk of cyber attacks. The
larger the amount of capital managed by a platform for its users, the more attractive it
becomes for cyber criminals seeking to exploit potential vulnerabilities for financial gain.

In the worst case, attackers receive access to private key information, which consequently
allows them the unlocking UTXOs. A valid transaction would then immediately transfer
existing UTXOs to the attacker’s public key address. Once such a perfectly legitimate-
looking transaction is attached to the blockchain, the affected UTXOs will be irrevocably
lost for the platform, respectively its users. Attackers might also profit indirectly through
stolen user data. The enforced KYC process has the side effect that user accounts usually
include highly sensitive and thus valuable information.

3.1.2 Reasons for Justified Usage

Despite the significant disadvantages and risks that emerge from hot wallets, certain use
cases still justify their existence. The following paragraphs list the most noticeable ones.

Customer Support

The first reason that justifies custodial services lies in the nature of Bitcoin itself, namely its
complexity. Managing funds independently and securely using non-custodian solutions
requires a certain level of understanding in this domain. It would be illusory to think that
anyone interested in Bitcoin is willing to invest the time and effort required to acquire a
sufficient understanding. Hot wallets still allow them to participate in this decentralized
payment system. Additionally, custodial services usually provide some sort of customer
support services. This can boost the confidence of novice users in securing their funds.

3 See 2020 Twitter account hijacking attack for details.

https://en.wikipedia.org/wiki/2020_Twitter_account_hijacking
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Better User Experience

Other reasons to choose a custodial over a sovereign wallet may lie in the available appli-
cations. Profit-oriented companies usually employ designated workforces that optimize
how users interact with their platforms through a Graphical User Interface (GUI). Therefore,
such applications are generally ahead of open-source solutions regarding usability and
design. This automatically makes them more appealing to inexperienced users.

Additional Services

Lastly, additional services or products that enhance the Bitcoin interaction can also per-
suade users to decide against a sovereign wallet solution. Such services may include
management of other assets, financial consulting, expense analysis, or taxation reports.
Another everyday use case involves deposits or withdrawals from resp. into the more
conventional currencies. However, there exist technologies that aim to fulfill this use case
also in a peer-to-peer setting4.

3.1.3 Take-Aways

The benefits of abstracted complexity through a platform application provided by a for-
profit company invoke the cost of custody, loss of privacy, and need to trust that the
platforms protect their application against cyber attacks. These costs are often seen as
too high for intermediate or advanced Bitcoin users as they possess the know-how to
autonomously interact with Bitcoin in its intended manner, which is entirely trustless.

Nonetheless, legitimate use cases exist that still justify using custodial services such as
other trading products or services. It is also worth mentioning that platforms can support
their user base and, last but not least, represent legal entities that can legally be prosecuted
if circumstances require.

3.2 Paper Wallets

The previous section elaborated on the pros and cons of relying on custodians through
hot wallets. Doing so, one neglects the most valuable feature of Bitcoin which is the
possibility to not rely on anyone. In order to profit from this feature, this section discusses
the procedure to create and subsequently interact with a simple but sovereign wallet.

As learned in the Prerequisites, the only thing required to interact with Bitcoin is simply
a huge, randomly chosen number that acts as a private key. Using the private key, one
derives a public key and, eventually, the associated Bitcoin address. Latter is used for
searching the entire time chain of chronically bundled transactions to determine one’s
UTXO set, i.e. Bitcoins to be spent or unlocked. The term of creating a wallet subsumes
this process. After successful completion, it is advisable to backup the wallet, i.e. saving

4 For example Bisq, Hodl Hodl, or Peach.

https://bisq.network/
https://hodlhodl.com/
https://peachbitcoin.com/
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the private key at a secure, preferably offline location. A backup allows for restoring the
wallet, i.e. reading the private key information from the backup for any future Bitcoin
interaction, for instance, on a new computer device.

3.2.1 Generation Methods

Since everything is simply information, it was common practice during the early days of
Bitcoin to print the single private key alongside its public key on paper which coined the
term of paper wallets.

An example of how such a wallet can look is shown in Figure 3.2. Usually, the design is op-
timized to print the image on physical paper, which resembles a conventional banknote. It
is also common practice to QR encode both key parts for more convenient interoperability.

The term paper wallet describes the situation in which only a single key pair is known to
the user, also known as single-address wallets. This work relies on this definition and uses
the two terms interchangeably. However, other definitions consider any keying material
printed on physical paper as a paper wallet, regardless of its quantity. The following
paragraphs will explain three methods to generate such wallets.

Analogue

The above elucidated wallet generation procedure could theoretically be performed man-
ually using paper, pen, and dices [34]. Likewise, one could manually scan the entire
blockchain for spendable UTXOs in order to become acquainted with one’s balance.

FIGURE 3.2: Printable Paper Wallet
Example of a printable paper wallet whose design is inspired by physical banknotes. The QR code on the
left-hand side encodes the public key address, which is used to receive or load funds and verify the total

balance. The QR code on the right-hand side encodes the private key required to create the unlocking script
that allows spending the funds.
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A significant advantage of such an analogue key generation process, if conducted in
an appropriate environment, lies in the vanishing small probability that eavesdropping
attackers compromise the keying material since no computer-aided devices are included
that potentially could be infected by spyware5. However, the disadvantage of an analogue
procedure is that it is significantly time-consuming and circuitous. It will likely cost an
average person several hours tossing dice and performing written computations to obtain
sufficient entropy.

Software-Aided

Another key generation method introduces the help of computers and is thus denoted
as software-aided in this work. Most users prefer computer tools to generate the key pairs
automatically, as it introduces two major advantages over the analogue technique.

The first advantage concerns the speed, as keying material can be created within mil-
liseconds instead of hours. The second advantage reveals in the ease of implementing
a key generator or utilizing one of the many open-source solutions available. A critical
aspect of such tools hides in the quality of the utilized Random Number Generator (RNG).
Keying material that emerges from poor randomness facilitates brute-force attacks through
increased predictability and should, by all means, be avoided.

Online Services

The last category of key generation methods concerns online services. Although declining
in popularity, there still exist webpages that offer their users to generate highly secure
private keys. Sometimes the users are demanded to contribute to the entropy, for example,
by random typing or cursor movements. The danger lies in the fact that one must trust
that the website provider does not store a copy of the issued private key to steal the
accumulated UTXOs at some point in the future.

Other threats that apply when relying on online paper wallet services include malware-
infected browser extensions, manipulated random number generators, or eavesdropping
entities during server-client communication. Though the usability of such services seems
appealing to Bitcoin beginners, one should desist them by any means.

Take-Aways

Paper wallets describe the simplest form of Bitcoin wallets consisting of a single pri-
vate/public key pair. Although it is possible to generate such a key pair completely
analogue, relying on transparent computer tools is recommended. Transparency is vital in
order to verify the quality of underlying RNG that are essentially responsible for maxi-
mizing entropy. Keying material should never be generated using online services as the
risk of receiving a compromised private key is high.

5 Software that secretly gathers information on infected devices.
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3.2.2 Reasons for Discouragement

Though the former popularity of paper wallets, it is nowadays no longer promoted since
the disadvantages outweigh the sole advantage of its simplicity. The reasons for this are
rooted in the fact that paper wallets are solely associated with one single-address, which
promotes the reuse of this address for multiple transactions. Address reuse, however, is a
source of critical drawbacks discussed in the following paragraphs.

Privacy

The first issue of paper wallets concerns the owner’s privacy. As previously stated, the
public availability of the entire transaction history embodied in the blockchain downgrades
the quality of anonymity to pseudo-anonymity. Transacting with other entities forces a
paper wallet user to disclose the only available public key address to these entities. This
immediately links the entire transaction history connected with this address to the user’s
real-world identity.

For example, when Alice refunds the price of previously paid coffee to Bob, she will
ask Bob to share his Bitcoin address P with her so that she can issue the appropriate
transaction. Consequently, Alice knows that Bob holds the private key from which P was
initially derived. This insight allows her to associate every past transaction and the current
balance assigned to P with Bob.

Presenting a Bitcoin address to receive funds inevitably acts as strong evidence6 that the
presenting entity possesses the respective private keys to it as the entity has an interest
in spending the received UTXOs at some point in future. The de-anonymization of
Bob’s activities from the example above continues with every new entity he wants to
transact. Any entity that has ever transacted with Bob is henceforth able to track all of his
past and future transactions closely. For privacy advocates, this represents a significant
disadvantage of single-address wallets.

Censorship Resistance

Linking a real-world identity with a Bitcoin address destroys its pseudo-anonym charac-
teristic. The resulting privacy infringement, however, is not the only danger connected to
this. It also opens the doors for actions to censor transactions that involve such identified
addresses. Authorities such as governments maintain public lists7 for which they have
declared any form of interaction illegal.

Censorship on Bitcoin transactions cannot be enforced as directly as in conventional
payment systems, where authorities can immediately freeze accounts or no longer process
certain transactions. Creating a transaction and autonomously propagating it to the
decentralized network of independent Bitcoin nodes is comparable with the practice of

6 As will be explained later, a public key presenting entity must not necessarily be the (sole) owner of the
respective private key.

7 See an example of such a list from the US Department of the Treasury. «XBT» prefixes Bitcoin addresses.

https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists


Chapter 3. Beginner 26

free speech. WikiLeaks’ donation story exemplified this [35]. However, censorship efforts
regarding banned addresses may be indirectly enforced through regulations to which
institutions professionally associated with bitcoin must adhere.

Security

Single-address wallets, moreover, introduce a significant disadvantage that directly affects
the security of the private keys and can therefore be considered the most delicate. As stated
in the Prerequisites, consuming UTXOs, i.e. using them as input for a new transaction
output, typically requires a suitable digital signature that satisfies the underlying locking
script condition(s). Doing so, however, reveals further details of the underlying signature
scheme that has so far remained unknown to the public. It is essential to understand
that the disclosure of this new insight occurs only at the moment of spending transaction
outputs. This does not affect the reuse of an address to receive funds repeatedly.

In theory, a form of attack is based on this new information and technically facilitates
recovering the private key using a brute-force approach. To the date of this work, such an
undertaking costs far more time than it costs for the transaction to be settled. However,
having access to multiple different scripts that unlock transaction outputs of the same
public key address facilitates these brute-force attacks even more. Hence, one should, by
all means, avoid address reuse.

Further threats exist that are associated with the signing process, however, they are only
partially exploitable by reusing addresses. Instead, it concerns the applied signing function
itself, more precisely, its implementation. The signature’s quality relies, among others, on
the RNG used for the creation process. As previously stated, weak RNG produces less
entropy which eventually facilitates guessing attacks.

Take-Aways

Address reuse destroys a Bitcoin user’s privacy and allows authorities to censor interac-
tions with that address. Although such censorship cannot be enforced directly in Bitcoin, it
can affect users indirectly through regulations that other institutions must adhere to. The
most extreme risk, however, is that the reuse of addresses and the information published
with them facilitate specific attacks that potentially result in the loss of one’s private key to
others. Therefore, using paper or single-address wallets should generally be discouraged.
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4 Intermediate

By now, two common forms of Bitcoin interaction possibilities through wallets have been
elaborated. These two, namely custodial services and paper wallets, may satisfy the needs
of new users in this field on a beginner level. However, the presented disadvantages
can distract users with a higher standard. The content of this chapter accounts for such
intermediate users.

The price of the simplicity gained through online services or single-address wallets is
usually paid with diminished privacy, autonomy, and, eventually, security. Luckily,
alternative ways of Bitcoin interaction serve the purpose of restoring these features while
keeping the user experience on a comparable high level. The following two sections will
discuss such alternatives more concretely.

4.1 Software Wallets

The only advantage of a single-address wallet, namely its simplicity, is outweighed by
the various disadvantages that evolve from using it. A natural solution to circumvent
address reuse would be gradually creating new pairs of keys whenever a preceding pair
was involved in a transaction. More specifically, this could happen before a spending
transaction is published so that the resulting change can be transferred to a new Bitcoin
address that has never been involved in transactions before. Likewise, UTXOs from many
different addresses could be periodically merged to a new one using a consolidation
transaction, i.e. a transaction with many inputs and only a single or few outputs. The
rightmost transaction in Figure 2.1 visualizes such a merging transaction, for example.

Successive key pair creation thus represents a feasible solution to the problems induced
by address reuse. However, applying such a strategy no longer preserves the simplicity
known from the single-address approach, as one must properly manage several key pairs
from now on.

Managing multiple key pairs does not only imply a more comprehensive backup proce-
dure but also increases the complexity to create transactions since UTXOs from different
independent sources must be considered. Since Bitcoin is a purely digital concept, one
can write computer programs that support these processes using control mechanisms and
automatization. This section will be dedicated to these kinds of software.

Before the initially proposed strategy of successive key pair creation is explained in detail,
the essential characteristics of such computer programs are defined.
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4.1.1 Definition

Generally, one can define everything that serves the purpose of storing a private key as a
wallet. The previously discussed paper wallets originally accomplished this by printing
the sensitive information on physical paper. Another and more popular form of wallets
store the keying material within computer applications and are thus referred to a software
wallets. More precisely, this means that private keys reside on a computing device such as
a laptop or smartphone in such a form that a given software can access and work with it
using a GUI. Figure 4.1 exemplifies such a GUI to create and broadcast a transaction.

So far, the association of software with wallets has already been stated in the previous
chapter. However, in this previous context, it was only meant to be used in the wallet
generation procedure, which must be differentiated. Software wallets on the other hand
qualify as more sophisticated since they usually provide a range of functionalities that
facilitates the overall interaction with Bitcoin to great extent.

Many different implementations of software wallets evolved over the past years1. Al-
though the technical details may differ, they all implement certain basic functionalities.
The most important ones are outlined below.

FIGURE 4.1: Sparrow Wallet Application View
Shows the transaction creation view of the software wallet implementation called Sparrow. The basic

information required is the beneficiary address «Pay to» and the «Amount» to be sent. The «Label» allows
for a personal note for better recall purposes. Additionally, a detailed fee control and input-output

visualization is offered.

1 Software wallet comparisons by bitcoin.org, Veriphi, or WalletMatrix serve as comprehensive resources
for recommendations as well as selection assistants.

https://www.sparrowwallet.com/
https://bitcoin.org/en/choose-your-wallet?step=5&platform=linux
https://docs.google.com/spreadsheets/d/1aZ1zbaUEzCo9NCctN8-eL2VLIiSdY009tTJvRXDUWEw/edit#gid=0
https://walletmatrix.app/matrix
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Key Storage

First and foremost, software wallets store keying material, which serves as a basis for all
subsequent functionalities. The measurements to protect entered private keys may vary.
Some implementations, for example, store an encrypted version of the key on a storage
disc, while others simply write it as plain text into a file.

Another important aspect of this key storage functionality is how the keys can be im-
ported or exported. Popular implementations provide specific workflows for such key
transportation, which may even allow for additional protection through intermediate
encryption.

As already mentioned, software wallets can generally be used in read-only modus as
well by solely providing the public key information. Although this eliminates the risk of
private key loss, the user’s privacy might still be compromised since wallet usage data
can be linked to the underlying public key(s).

UTXO Management

A software wallet’s next central task is managing a current set of relevant UTXOs. In
other words, it represents the wallet user’s current Bitcoin balance. The involvement of
the keying material known by the software wallet makes a transaction relevant in this
sense. More specifically, it will initially scan the entire blockchain and every new block for
transactions involving the hash value of the public key. The chronicle of the receiving and
spending units serves the application as a basis for the balance derivation.

Additionally, the wallet application also observes the set of unconfirmed transactions, i.e.
transactions which are inherently valid but not yet included in a block to be attached to
the blockchain. This pool of valid but unconfirmed transactions is also known as mempool.

Transaction Creation

Last but not least, software wallets implement standardized techniques to assemble
valid Bitcoin transactions and populate them to the network of nodes. This is also the
functionality that can vary the most among the many different implementations available
nowadays, usually recognizable in the extent of the setting options and features. An
example of how this could look is shown in Figure 4.1.

For example, the minimal user input required to create a valid transaction would be the
recipient’s public key address and the amount of Bitcoins to be transferred. However,
simplifying the transaction creation process abstracts the richness of transaction features
by hiding them from the user.

One such feature is, for example, the choice of transaction fee. Complete control over the
fee payable to the mining entity that chooses to include this transaction in a feasible next
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block allows for custom prioritization2. At a certain interval, higher fees can be said to
increase the probability of a transaction being included in the subsequent n blocks where
n is minimized. Low fees decrease this probability, respectively increase n.

Another important aspect of the transaction creation process is the change addresses. As
in the real-world, paying in cash most often results in receiving change. It lies in the
responsibility of the wallet implementation that the change in the form of another UTXO
remains spendable using the known keying material. Imagine the worst case scenario
where an improperly implemented software wallet consumes an UTXO of BTC 5.0 to pay
for a meal worth BTC 0.001 and, neglecting fee, creates a mistakenly change UTXO of
BTC 4.999. This change could no longer be spendable using the known keying material
and would be lost forever. Luckily, standardized procedures for change address derivation
exist, which will be discussed in further detail at a later stage.

Take-Aways

Software wallets represent the main interaction medium to Bitcoin nowadays. Thanks
to detailed documented standards, everyone can implement the basic features required
for this interaction. The various wallet implementations available to date share a lot of
standard features. Such basic features include import and export mechanisms of private
and/or public key information and the observation of historic and new transactions
involving the given keying material.

However, software wallets differentiate more significantly in the level of abstracting more
advanced features in the transaction creation process. Fee control and change treatment
are examples. Thus it is imperative to investigate and test the functionalities of software
wallets before using them in production.

4.1.2 Wallet Derivation

With the definition and role of software wallet known, the successive key pair creation
strategy can be addressed. As previously mentioned is the most trivial approach to escape
the various disadvantages spawned by address reuse to successively create new key pairs
to be used. The following paragraphs describe three different techniques for implementing
such a consecutive key generation approach.

Non-Deterministic

In the early days of Bitcoin, there existed software wallets that implemented this strategy
by simply repeating the random key pair generation process and keeping a record of it.
This procedure is considered to be non-deterministic as the same input (e.g. the first private
key) does not result in the same output (e.g. set of consecutively generated key pairs).

2 Johoes’s Bitcoin Mempool Statistics is a recommended source for current fee market insights.

https://jochen-hoenicke.de/queu/#BTC,2d,fee
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Generating sequences of private keys using randomness can technically not be declared as
a wallet derivation technique, as there exists no constant from which the same sequence
can be derived repetitively. An arbitrary collection of private keys Ki is essentially the
result, as modeled by Figure 4.2 in the wallet image A. This promotes the importance of
knowing the individual keys as such. Without a backup of all private keys ever created by
the application, a full wallet recovery would be impossible on a new computer device. In
other words, non-deterministic wallets lack replicability and should thus be avoided.

Deterministic

A second and much better approach represents a deterministic key creation procedure
where a given input repetitively results in the same chronic of consecutive outputs. The
input in this context is commonly referred to as seed.

Using a seed S and a deterministic key generation function f , one can derive the first
private key K1 = f (S). The next private key could then be derived on behalf of K1

such that K2 = f (K1). The image B in Figure 4.2 visualizes this. Another option would
be a function that not only takes S as an input but also an advancing counter i so that
K1 = f (S, i = 1) and K2 = f (S, i = 2). Both key derivation methods will repetitively
result in the same chain of keys as they are rooted in the given seed.

The advantage of such a deterministic approach compared to the non-deterministic one
is that only the seed S and the deviation function f must be known in order to recover
any funds related to any Kn. However, this advantage introduces critical disadvantages
concerning the ease of creating a backup.

While knowing S is relatively straightforward, receiving full transparency on the inner
working of f can be challenging, depending on which software wallet implementation is
used. In the worst case, a user relies on a closed-source wallet application and thus not
even has the chance to understand f . The success of recovery attempts using different
wallets is not guaranteed as the implementation of f may differ. It is a reminder of the
importance of accessible software source code for Bitcoin applications to promote complete
transparency.

Hierarchical Deterministic

Deterministically deriving any amount of key pairs from a piece of single secret informa-
tion in the form of a seed has become common practice for Bitcoin users nowadays. Bitcoin
provides a standard deviation technique known as Hierarchical-Deterministic (HD) wallets3.
Here the deviation paths are no longer linear but resemble the branching paths of a tree,
i.e. hierarchical.

Wallet image C in Figure 4.2 visualizes this. The master key pair KM represents the first
node that is derived from the initial seed. A node in this context can be seen as a bifurcation

3 See BIP32 for details.

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
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point in the hierarchical derivation structure. From here n different so-called wallet accounts
are derived, denoted as KM

n . Every account splits into an external and internal so-called
wallet chain. Public keys of the external part KM

n/0 are meant to be communicated to other
parties, while the internal wallet chain KM

n/1 is exclusively used for change addresses. Both
chains serve as a basis to derive i various Bitcoin addresses KM

n/{0∥1}/i. The latter can also
be seen as the leaves of this HD wallet tree. Meanwhile, more conventional deviation
paths exist4 that, for example, have additional levels for indicating a purpose.

While sharing keying material of ordinary deterministic wallets is an all-or-nothing deci-
sion due to its linear characteristic, HD wallets allow for partial sharing as multiple chains
of derivation paths exist. Using the metaphor of a tree, following the trunk will lead to all
leaves on all branches, while a single branch only leads to leaves on that specific branch.
The Bitcoin standard promotes standard derivation paths, which are usually implemented
as default in software wallet applications.

Derivation paths are particularly useful as only public key information can be shared at
a custom level in the tree hierarchy. These so-called Extended Public Key (xPub) make it
possible to continue the address hierarchy towards lower levels 5. For example, a company
owner could only release the public key information of a specific wallet account to the
department responsible for the online shop. This capacitates the department to continue
deriving unique addresses for every purchase committed in Bitcoin without ever having
access to private key information as well as receiving insights over the complete HD wallet
structure.

Seed

Seed

FIGURE 4.2: Wallet Derivation Types
The repetitive random generation of key pairs shown in wallet A is technically not deemed a derivation

technique and thus discouraged from being used. Wallet B allows for a seeded linear key derivation path.
The derivation technique modeled in wallet C also uses a seed but develops a hierarchical path structure

deemed a wallet tree. Figure inspired by Antonopoulos [24, Chapter 5].

4 See BIP44, BIP49, BIP84, and BIP141 for details.
5 Extended public keys based on other standardized derivation formats include yPub and zPub. However,

for simplicity, the terminology used in this work is limited to xPub.

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0049.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0084.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
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It is important to note that the proposed deviation paths and their meaning act as a
convention. Prominent software wallets that support HD wallets adhere to this standard
by default. This implies that a seed backup alone is enough to recover funds in the entire
tree structure, regardless of the used implementation.

Some implementations, however, allow specifying user-defined deviation paths. Doing so
makes it crucial to back up the specified paths alongside the seed, as otherwise, a recovery
attempt would not scan the correct tree structure for spendable transaction outputs. It also
decreases the wallet’s compatibility with other software since particular implementations
may not account for such a custom path input. Except for purposes of intentional obscurity,
there is no justifiable reason for utilizing a custom deviation path in practice which is why
it should be avoided.

Seed Phrases

Central part of every deterministic wallet implementation is the seed itself as everything
is rooted in it. It became common practice to encode this seed using 12 or more words
originating from a specific set of feasible words6

Table 4.1 shows two example seeds consisting of 12 resp. 24 words. The order of the
words is crucial and aligns with the reading direction, i.e. from left to right and line after
line. The feasible words from the dictionary exhibit some crucial features. First, they are
unambiguous and easy to spell. Second, every word in this set is uniquely identifiable
through its first four characters. Together these features should facilitate the backup
process while reducing human errors.

The initial rationale behind this idea was to receive an easy-to-memorize sequence of
natural words which coined the term of mnemonic. Although seeds represented as word
sequence are indeed less challenging to memorize7 it is still recommended to adhere to a
physical backup strategy since the reliability of human brains should generally be doubted.
Better names are therefore seed phrase or seed recovery phrase.

The seed phrase can additionally be extended using a user-defined character sequence
of arbitrary lengths originally known as passphrase. This is not to be confused with a
password that software wallets usually ask for in order to encrypt the keying material on
the hosting device8. Thus, more lucid terms have been established such as (seed) extension
word.

Using an extension word for e.g. a 12-word seed phrase will result in a completely different
HD wallet. Together they qualify as a two-factor security scheme where the actual seed
phrase would be something that is possessed and the extension word something that is
known or at least located somewhere else. However, splitting the seed phrase into various

6 See BIP39 for details.
7 Exclusively memorizing a seed is also known as Brainwallet.
8 Also not to be confused with the private key encryption password specified in BIP38 that acts as a

second security factor.

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
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Words Seed

12 advance village electric load round goddess
search topic click toe vapor voice

24 jeans team toe enroll blanket draft current
elbow summer wise faculty powder afraid vital
cash life jump remember apology fever bullet
buffalo sample sword

TABLE 4.1: Seed Phrase Examples
Shows two example seed phrases based on the word set proposed in BIP39. The words in this set are

unambiguous, easy to spell, and uniquely identifiable by their first four characters.

parts is considered a bad practice as brute-forcing becomes over-proportionally easier
once certain words are known to an attacker.

Notably, seed extension words allow wallet implementation to maintain two key hierar-
chies, one without the extension word and one with. Doing so, the user benefits from the
implicit feature of plausible deniability in case of a physical attack9 This is also referred to
as a two-sided seed, where one side contains only a fraction of the funds that are on the
potentially deniable side.

Take-Aways

Deterministic key pair derivation is a superior form of Bitcoin wallets compared to paper
wallets. It eliminates the need for address reuse while keeping the backup complexity
equal since all derived keys are rooted in a single seed. Following the proposed standard,
such seeds consist of 12 or more unambiguous words from a predefined set of words that
can be further extended using user-defined characters.

HD wallets introduce further advantages through wallet accounts that, independently
from each other, result in different chains of Bitcoin addresses. These wallet chains or
tree branches can atomically be shared to access requiring parties without revealing the
entire wallet tree structure. Using the standard deviation path promotes both a simplified
backup strategy, as only the seed itself must be secured, and increased compatibility with
other software wallet implementations.

9 Can protect against a 5$ wrench attack, which exemplifies that the best technical security measurements
may become useless in the event of a physical robbery involving a wrench as a weapon. The name of
this attack may change in the future, as wrench prices are also subject to inflation.

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://en.bitcoin.it/wiki/Storing_bitcoins#The_5_dollar_wrench_attack
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4.2 Hardware Wallets

To this point, the concept of how software is used to facilitate the interaction with Bit-
coin should be comprehended. Private key information, whether encrypted or not, is
nevertheless exposed to the threat of loss as software wallets are usually installed on
computer devices that regularly communicate through the internet and have other soft-
ware installed. Therefore, the wallet technology discussed in this section describes the
approach of utilizing isolated computer devices for handling sensitive keying material and
further minimizing the risk of loss. Such designated computer devices that solely serve
the fundamental purpose of protecting keying material are known as hardware wallets.
This section discusses this type in detail.

4.2.1 Definition

Hardware wallets are defined by the sole purpose of their existence, which is to secure the
private key information stored on them through their tamper-resistant system architecture.
Technically, any computing device that serves this purpose can be referred to as a hardware
wallet. However, they are usually devices that are specifically designed for maximum
security, accessibility, and portability.

Figure 4.3 shows three famous examples of hardware wallets available nowadays. Al-
though they are from three different providers, they show remarkable resemblance regard-
ing their features. For example, all devices are much smaller than a typical smartphone
and possess a display.

First of all, hardware wallets should not be able to communicate with the internet. This
aspect alone significantly increases the security of the information stored on such devices.
Without internet connection the installation of harmful software such as spyware becomes
more difficult, let alone the communication of gained insights back to the attacker.

FIGURE 4.3: Three Examples of Hardware Wallets
Device A represents the Trezor Model One, device B the BitBox02, and device C shows the COLDCARD. What
all three have in common is the in-built display that is crucial to verify the transaction details before signing.

https://trezor.io/trezor-model-one/
https://shiftcrypto.ch/bitbox02/
https://coldcard.com/
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Additionally, hardware wallets are characterized by their hardened system architecture.
Secrets are stored on designated tamper-proof micro-controllers especially designed to
make it impossible to extract these secrets in any usable form. The firmware10 used in
hardware wallets are usually open-sourced. Also, they are reduced to their bare minimum
to minimize potential attack vectors. Hardware wallets utilize special building techniques
and materials that, in case of a physical attack attempt, would either result in the complete
destruction of the wallet or unavoidable indications visible to the user.

It is essential to understand that hardware wallets nevertheless rely on software in two
ways. First of all, the hardware wallet itself must be able to process the most basic
wallet operations. This includes, for instance, key pair generation, address deviation,
and transaction assembly using appropriate digital signature schemata. The second way
how hardware wallets rely on software is based on absent internet connectivity. One
therefore requires an intermediary device that is able to communicate with the detached
hardware device and populate relevant information to the Bitcoin network using an
internet connection. Most of the prominent software wallet implementations allow for
such inter-device communication.

4.2.2 Usage

The Figure 4.4 models the interaction between a secure hardware device DS and any
network-connected computer device DC acting as an intermediary. The open lock inside
the intermediary device models indicates the potentially insecure system environment
owed to the active internet connection. An installed software wallet implementation on
DC scans any copy of the Bitcoin blockchain for UTXOs, whereas the relevant Bitcoin
addresses were initially queried from DS. In other words, it is DS that derives the Bitcoin
addresses from the known private key and provides them to DC.

In order to create a payment, the software wallet on DC will collect suitable UTXOs and
create a so-called Partially Signed Bitcoin Transaction (PSBT) using the provided Bitcoin
address of the beneficiary(s). Next, this partial transaction will be sent to DS over the
channel α for verification purposes. This includes, for example, verifying the imminent
UTXOs to be sent to the recipient address using a dedicated display on DS. After the
verification is confirmed, DS will finalize the PSBT by creating the unlocking script using
the appropriate private key information stored on it. Eventually, the signed transaction is
returned to DC using α, where the software wallet will propagate it to the Bitcoin network
using the channel β.

Usually, an Universal Serial Bus (USB) or a short-range wireless interface such as Bluethoot®

serves as a communication channel between DS and DC. End-to-end encryption proto-
cols11 prevents eavesdropping attacks on α. Some hardware wallets even allow a so-called
air-gapped communication interface by solely exchanging text files using Secure Digital (SD)

10 Basic software that enables the interaction between software and hardware on a fundamental basis.
11 For example the Noise Protocol Framework which uses DHKE and is seen as secure alternative to the

popular Transport Layer Security (TLS) protocol.

https://noiseprotocol.org/
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cards as a channel. Camera-equipped hardware wallets air-gap α by scanning QR-encoded
PSBTs and displaying the signed transaction again as QR code on the device’s display.

Information shared using channel β usually happens through a conventional HTTP/S
connection or by using The Onion Router (TOR) for improved privacy. Technically, there
exists no need for end-to-end encryption as the channel β transfers no secret information.

4.2.3 Benefits & Pitfalls

Storing keying material on an internet-incapable hardware wallet introduces several
benefits over the wallet solutions seen in the previous chapters. A medium that only stores
private key information offline is also referred to as cold storage resp. cold wallet and thus
naturally more secure than hot wallets.

Analogously created paper wallets, for example, fulfill this property just as well and
can, therefore, also be regarded as cold storage. However, handwritten private keys on
physical paper result in poorer usability than hardware wallets.

This negative correlation between usability and security is a typical pattern in information
security as it usually represents a trade-off. Figure 4.5 roughly visualizes this relationship
for the wallet solutions discussed so far. It organizes the various solutions based on
offline exclusivity (cold) or online access (hot) and the associated user-friendliness. For
the reasons already mentioned, certain solutions are more recommended than others.

As the picture suggests, the storage type is not to be understood as a binary decision
but rather as a spectrum with a continuous transition. The reason for this lies in the
fact that the private information was on a risky device for a short time but is now only
stored physically. For example, a paper wallet created with open-source software and then
printed out on a home printer is considered «hotter» than a newly initialized hardware
wallet, even though both are ultimately entirely offline.

Bitcoin NetworkIntermediary DeviceHardware Wallet

FIGURE 4.4: Hardware Wallet Interaction Model
Private key information is exclusively stored on a secure hardware wallet DS using a hardened system

architecture indicated with the closed lock. An installed software wallet on a network-connected and thus
potentially compromised (indicated with the open lock) intermediary device DC communicates with DS over
a secure end-to-end encrypted channel α. Partial transactions are finalized on DS before being returned to DC

to eventually be propagated to the Bitcoin network using an insecure channel β.
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Security

Hardware wallets are the most secure of all the wallet solutions discussed so far. The
entire design, from the firmware to the hardware and the used materials, serves the sole
purpose of protecting private key information.

It is crucial to understand, however, that hardware or cold wallets in general are no
guarantee for greater security. It remains the user’s responsibility to ensure that such
wallets are not misused, as doing so may still result in the immediate loss of the private
key. As an example, a perfectly analogue created private keys written on physical paper
becomes useless if the paper is easy for other people to access or it is not protected in the
case of fire. Consequently, using a hardware wallet does not diminish the importance of
having a tested backup strategy. They are usually implemented so that, for example, a few
wrong pin code repetitions lead to the immediate deletion of all information stored in the
wallet.

Although hardware wallets are considered nowadays to be the most secure mean to store
private key information, they still do not yield for absolute security. In other words, also
hardware wallets can be hacked12. For example, an attacker on DC could tramper a PSBT
just before transferring it to DS. Regardless of whether α represents a wired or air-gap
interface, all channel forms would transmit the tampered data equally. Therefore it is
crucial always to verify the transaction details shown on the hardware device itself.

Accessibility & Portability

Hardware wallets are also an excellent means to reduce the accessibility to the user’s
Bitcoin funds. The fact that no transaction can be filed entirely without the presence of

Paper Wallet 
(analogue)

Online Account 
(Custodial)

Paper Wallet 
(software-aided)

Hardware Wallet Software Wallet

Cold Storage Hot Storage

Brainwallet

User Friendly

User Unfriendly

Paper Wallet 
(online service)

not recommended
recommended

FIGURE 4.5: Wallet’s Usability and Security Relationship
Shows the relationship per wallet type between usability and the security given by cold or hot storage. It is
important to note that cold storage wallets only provide the potential for higher security through their offline

nature. Improper management of cold storage wallets can still lead to losing private keys.

12 See BitBox02 threat model for example.

https://shiftcrypto.ch/bitbox02/threat-model/
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the hardware wallet device introduces higher security on a practical level. The device’s
compact dimensions make them an ideal item to be stored in a safe, for example.

Users that rarely carry hardware devices directly with them reduce the chances of physical
attackers further. If the device still needs to be transported, its diminutive dimensions
make transportation convenient and inconspicuous13. It can also be used on different
and possibly compromised intermediary devices. This makes hardware wallets an ideal
portable safe, for example, when traveling.

Software Dependence

Despite the explicit name, hardware wallets still host and thus depend on software. For the
sake of security, however, the extent of such software applications is usually minimized.
The rationale is that the more trivial the application is, the fewer lines of code are required
to implement it. Consequently, less code results in less chance of bugs and minimizes
the number of potential attack vectors. Nevertheless, hardware wallets exist that aim
to support a wide range of different digital assets and thus are forced to install more
extensive software on the devices.

Take-away

Hardware wallets are designated tamper-proof devices with the sole purpose of securing
the confidentiality of the stored private key information. They are built using hardened
firmware and special material design that allow for the detection of physical tamper
attempts. Hardware wallets operate entirely detached from any network and are thus
considered cold storage. Transactions are partially created using any software wallet on
an intermediary network-connected device and transmitted for finalization using a secure
communication channel which can be either wired or air-gapped.

Despite the significantly increased security, users must have a working backup strategy.
Hardware wallets aim not to be indestructible and have implemented security mechanisms
that immediately delete all information stored in the event of a suspected attack. Also, it is
crucial always to verify PSBTs on the hardware device itself since they may be tampered
by an attackers, regardless of the used channel form.

13 The COLDCARD wallet shown in Figure 4.3 purposely mimics a pocket calculator.

https://coldcard.com/
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5 Advanced

To this point, the readership is aware of multiple different techniques regarding the safe
management of keying material. It was shown how software wallets consistently derive
new key pairs using seeded derivation paths. Also, the concept of hardware wallets was
discussed alongside the reasoning for utilizing them. Consequently, the gained insights
allow users to interact with Bitcoin on an intermediate level legitimately.

This chapter aims to provide even more advanced insights into the domain of wallets in
order to further maximize security and privacy. However, these advanced subjects should
be applied only when the user fully comprehends the previous two chapters. Advanced
users need to be aware of the increased complexity that these subjects introduce. A
complete understanding is, therefore, crucial to avoid the loss of funds due to mismanaged
handling of private keys.

5.1 Running own Node

The concept of UTXOs and how software wallet implementations scan the entire timechain
of confirmed transactions known as blockchain was discussed in detail in the previous
chapters. It follows that the information embodied in these chains of blocks is of great
importance and should thus be replicated on many different devices as possible.

Bitcoin’s blockchain is not only used to evaluate the total balance of someone’s (HD)
wallet but also serves as a single source of information regarding the settlement status of a
transaction. It is common practice to denote a transaction T as settled and thus confirmed
after it was included in a new block BT and five subsequent blocks were attached on top
of BT. The number of new blocks, including BT, are also denoted as number of confirmations
that T has. The rationale behind this 6-block-rule sources in the negligible probability
that a longer chain can emerge starting at the block position BT − 1 and thereby no longer
include T. While this would be possible in theory, it is considered infeasible in practice as a
single mining entity would need to control more than half of the combined hashing power
available in the network1 in order to establish a longer chain that no longer includes T. In
other words, the chance that a chain branch becomes the new longest chain and thereby
becomes accepted by the Bitcoin network declines over-proportionally with every new
block added to the currently accepted chain.

When a user is interested in the current balance of a specific public key address, the
question arises of whom to ask for this information. Bitcoin’s blockchain is replicated

1 Also known as 51% attack.

https://en.bitcoinwiki.org/wiki/51%25_attack
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on numerous autonomously acting network participants, which essentially is the core
aspect of its decentralized characteristics. It is crucial to understand that every interaction
with Bitcoin will include communication with a node in the network. As a recapitulation,
the definition of such a node is provided in the prerequisite’s subsection 2.2.1. Software
wallets, for example, usually integrate a list of known Bitcoin nodes that are used to
place such balance determination requests of end users. This, however, requires the user
resp. the utilized software wallet to trust these consulted nodes, which is not a desirable
situation.

In order to eliminate the dependency on other nodes and, thereby, the need to trust,
one must set up a node by oneself and then use this node exclusively for any wallet
communication. More concretely, this implies that the user will download and install the
Bitcoin Core application2 on a self-controlled computer device alongside its copy of the
entire blockchain, i.e. a full node. From then on, the user can route every communication
involving any form of Bitcoin interaction through this self-controlled node.

The rest of this section will elaborate on the requirements for such an undertaking as well
as discuss the added benefits that emerge from a self-hosted Bitcoin full node. Doing so,
the term self-hosted node is used interchangeably with domestic node while any other node
in the network is denoted as foreign node.

5.1.1 Requirements

Keeping the setup requirements of a domestic node relatively low is crucial. The reason for
this lies in the fact that the low-threshold requirements increase the feasibility of operating
a domestic node. This, in turn, contributes to the quality of the decentralization of Bitcoin,
which is desirable.

Hardware

The hardware requirements to run a Bitcoin node are trivial and generally affordable for
a low three-digit price tag. Bitcoin Core is optimized for computational efficiency and
full memory control using the programming language C++. Consequently, the hardware
requirements are kept to a minimum.

A common approach is to use Single-Board Computers (SBC), i.e. full functional computer
devices using a single circuit board3 to host the Bitcoin Core application. However, any
computing device that allows custom software installations and is network-capable is
suitable. The popularity of SBCs for this use case reasons by the small dimensions, the
absence of overhead installations, and its low energy consumption. The recommended
minimum amount of Random Access Memory (RAM) storage, for example, is 4 gigabytes
which is denoted as sufficient.

2 Or any other software that is able to communicate to other Bitcoin nodes while respecting its protocol.
3 The devices produced by the Raspberry Pi Foundation are examples of SBCs.

https://www.raspberrypi.org/
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In addition to the circuit board, on also requires an external storage medium to host a copy
of the entire blockchain. As of the time of writing, this replicate requires approximately
400 gigabytes of storage space which will slowly but constantly increase as new blocks
are attached. However, Bitcoin’s restrictive block size constraint aims to minimize this
storage growth rate.

At this point, it is worth mentioning that the use of Bitcoin is legally restricted or prohibited
in certain areas on this planet4. Hosting computer hardware with the sole purpose of
running a full node may expose the host to a higher risk of being prosecuted.

Setup

Once the hardware components are organized and ready to use, the software setup can
start. It is crucial to download and compile the required source code individually instead
of relying on pre-compiled software packages. The reason for this is that otherwise, the
authenticity of the source code cannot be verified using the appropriate digital signatures
of its creators.

After successful setup5 Bitcoin Core will start downloading its copy of the blockchain from
foreign nodes. Once this download is completed, it will verify every single transaction
in every block, starting with the first block in the chain, also known as genesis block.
Depending on the underlying hardware specifications, this verification procedure can last
between a few hours and a few weeks.

Once this initial verification is concluded, the full node is ready to interact. Broadcasted
information, such as newly found blocks or newly issued transactions, will again be
verified.

Environment

In order to maximize the additional advantages of a domestic node, specific requirements
apply to the physical environment in which it is located. The hosting device should be
safe from any unauthorized access as otherwise the integrity of the domestic node could
be compromised. Ideally, the selected location is additionally protected against water and
fire damage while providing enough ventilation.

Furthermore, domestic nodes should have as little downtime, i.e. time in which they do
not operate as intended, as possible. The absence of power or an inactive connection to the
Bitcoin network may cause downtime. Latter represents a more delicate issue since wallet
communication may still be possible but the information received from the full node is
not guaranteed to be the latest.

4 See legality per countries and territories for details.
5 Resources for guided installation are provided by RaspiBolt or via the Umbrel operating system.

https://en.wikipedia.org/wiki/Legality_of_cryptocurrency_by_country_or_territory
https://raspibolt.org/
https://umbrel.com/
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Take-Aways

Self-hosting a Bitcoin node can be accomplished using trivial computer devices and
eliminates the need to trust the information received from foreign nodes. The deployed
software should be verified and compiled on the device itself to ensure its authenticity.
Ideally, one installs the node in a location that is protected against unauthorized access as
well as water and fire damages.

5.1.2 Added Benefits

Users who successfully set up and run a domestic node can benefit from various benefits.
However, it is important to note that a node alone only marginally accounts for these
advantages. The existence of a full node alone can only be regarded as an advantage in
the sense of the improved decentralization of the network. Personal and directly usable
advantages only arise when all the wallet communication is routed over the domestic node.
Popular software wallet implementations usually account for the use case of connecting
to a distinctive node by providing its internet protocol address and port number.

Independence & Trustless

The first and most important benefit that arises from domestic node usage is the increased
independence received by terminating any trust-requiring wallet communication to for-
eign nodes. Consequently, the information exchanged between each wallet application
and the ground truth contained in the blockchain is less likely to be tampered with by
any third parties. This increases the trustworthiness of, for example, balance information
drastically since the user is assured that the calculated total of all UTXOs was produced
by a node whose systems have been verified and set up by the user. Of course, the inde-
pendence gained through a domestic node can only evolve if the domestic node operates
as indented in a secured environment.

Furthermore, domestic nodes allow for perfect control regarding system updates. In
Bitcoin, this is especially important as the decision on what version or fork6 is deployed
also infers what features are supported. In other words, users that are not satisfied with
a specific BIP, for example, can freely choose not to upgrade their domestic node to any
version that implements this BIP.

Increased Privacy

A second benefit that arises through the usage of domestic nodes concerns privacy. When
wallets communicate with foreign nodes, one must be aware that the node operator can
monitor every request. Over time, the operator could draw conclusions about possible
credits, since, for example, the same public key address is repeatedly queried from the
same internet protocol address.

6 A continuing software version that was forked from the original one.
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The observation of transmitted transactions to foreign nodes is even more damaging to
privacy. Payment insights, including metadata, represent highly sensitive information if it
can be linked to an individual. This risk of de-anonymization is reduced by communicating
a transaction from the wallet exclusively to the home node. If the transaction is then
redistributed to foreign nodes, it becomes less distinguishable from other unconfirmed
transactions.

The same applies to repetitive address or transaction lookups, such as checking its confir-
mation status. One should be aware that querying the history of UTXOs of any Bitcoin
address using publicly available blockchain explorer services7 can always leave certain
marks on the providers. This is completely avoided when using the domestic node for
blockchain explorations.

Take-Aways

Running a self-hosted Bitcoin full node introduces valuable benefits concerning the users’
independence and privacy. All sorts of wallet communication should be routed through a
domestic node. The wallet user is less likely to receive tampered information, for example,
on balances or transaction confirmation status. Additionally, the usage of domestic nodes
protects privacy since no foreign node providers can track the communication and try to
link it to individuals anymore.

5.2 Multi-Signature Wallets

Simple transactions such as P2PKH or P2WPKH generate a transaction output that can
be spent by providing a suitable digital signature generated using one private key. This
implies, however, that whoever knows the appropriate private key or seed can unlock
the underlying UTXO set. Given the typical scenario that a private key is controlled by
one entity or person only, the risk of loss is also wholly tied to this single entity. Besides
the single point of failure, it also allocates all the power to spend funds to that single
entity, which may not always be desirable. There are use cases that ask for risk and power
sharing between multiple entities in relation to the transaction creation process.

A simple approach to split the risk of loss and the power of spending among different
entities may seem to split the seed phrase into the desired amount of pieces. However,
this should by all means be avoided for the following reasons. First of all, it is hardly
avoidable that the entity conducting the split is not exposed to the original seed in its
entirety. Second, operating with such a split seed phrase is both inconvenient and insecure
as for every transaction the seed must somehow be reassembled. Lastly, it becomes over-
proportionally easier for brute-force attackers to find the complete seed phrase once a
fragment has been exploited, as stated previously.

7 For example Blockstream, mempool.space, or many more.

https://blockstream.info/
https://mempool.space/
https://www.lopp.net/bitcoin-information/block-explorers.html
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A much better approach to serve the requirement of separation of risk and power in
terms of UTXO control are so-called multi-signature wallets. This section elaborates on this
advanced wallet type.

5.2.1 Definition

The previously elaborated wallet setups, such as paper wallets or HD-deterministic wallets,
share the common aspect of requiring only one private information K, e.g. private key
or seed phrase, in order to spend UTXOs. Multi-signature wallet setups diverge in this
central aspect as they are designed to require more than one K to create valid transactions.

More specifically, multi-signature wallets require M out of N valid signatures, where M
denotes the quorum and N the number of feasible public keys to choose from with M ≤ N.
A standard setup is, for instance, a 2-of-3 multi-signature wallet implicating that at least
two from three possible private keys are required to sign a transaction in order to make it
valid. In the following lines, the M-of-N relationship is also referred to as threshold and
the N involved key holders as participants.

A new transaction becomes valid after at least so many participants have signed it as
stated in the threshold. The medium of exchange, in this case, are PSBTs. The PSBT can
sequentially be sent to the various participants using insecure communication channels. It
allows the co-signers to reside in different geographic locations, as all communications
required to complete the transaction can be conducted digitally.

It is essential to understand that the setup and management of a multi-signature wallet
involve more different parts than the wallet solutions shown so far. Thus they can be
denoted as more complex than single-signature setups. The rationale behind this is that for
receiving and (most often) sending funds, the threshold and the xPubs of all participants
must be known by any device that crafts the transaction. The signing device must correctly
embed the participants’ public key information and the threshold to generate a suitable
receiving address. Otherwise, the received funds may no longer be spendable using the
intended multi-signature scheme. Spending is similarly critical as usually a change UTXO
is involved.

Also worth noting is the differentiation of multi-signature wallet setup to the so-called
Shamir’s Secret Sharing (SSS) schema, which was founded by Shamir in 1979. SSS allows
the uniform split of a secret into N pieces, which can then be distributed to different
parties. In order to restore the secret, T pieces must be provided, whereas it is common
practice to have T < N. Although these two technologies seem to be similar from a
conceptual perspective, i.e. requiring a threshold of participating key or piece holders,
they differ fundamentally. Lopp [37] elaborates these differences alongside with reasons
to avoid SSS in field of Bitcoin.
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5.2.2 Use Cases

The use cases for multi-signature wallet setups are numerous. In practice, however, these
use cases are not prevalent due to the advanced nature of this wallet type.

Shared Spending Authority

The most prominent application nowadays is motivated by eliminating sole spending
power utilizing, for example, 2-of-3 schemas. Reconsidering the example of company
funds. When an employee who used to transact with these funds leaves the company,
the funds can simply be secured by revoking this former employee’s system access and
transaction authority. In terms of Bitcoin funds, revoking access rights is not as straight-
forward since Bitcoin is a purely informative concept which no one can be excluded from.
In other words, the company cannot simply revoke the former employee’s knowledge of a
seed phrase. Therefore, it is wise to hold the company’s funds in multi-signature wallets
that require at least two different individuals to spend from them. Figure 5.1 exemplifies
this using three different executive roles.

Multi-signature wallets would not only force multiple entities to verify transactions before
broadcasting them but also allow for revoking primarily granted signature rights of former
employees. The Latter is accomplished by transferring all funds to a new multi-signature
wallet setup that no longer includes the public key of the former participant.

UTXO (2-of-3)

Threshold: 2

Participants: 3

CEO CFO

CTOCEO

CFO CTO

CEO CFO CTO

CEO

FIGURE 5.1: 2-of-3 Multi-Signature Scheme
Multi-signature wallets allow the creation of UTXOs that are only spendable if the required threshold of

signatures is provided to unlock the locking script SL. The different signers are typically individuals who
maintain exclusive knowledge about their private keys. In terms of a 2-of-3 scheme, this would result in four
different feasible spending scenarios A, B, C, and D. Although D is a legitimate spending scenario, it would
be slightly less efficient as the minimum of two required signatures is exceeded. Scenario E, on the other side,

will fail to unlock the spending script of the underlying UTXO as the threshold has not been reached.
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Improved Resilience

Also, a field of application for multi-signature schemas lies in Bitcoin’s personal use,
aiming for higher resilience. For example, a user could set up a multi-signature wallet
using multiple devices from different providers to minimize the probability of having
a compromised or faulty hardware wallet. The ownership of all keys lies by the same
user, but the key generation process was initiated on different independent computing
devices. Consequently, these devices can be stored in geographically distant locations.
Specifying a threshold of more than one key keeps the funds secure even if a single device
storage location is compromised or damaged. A threshold smaller than the total number
of participants still allows for complete funds recovery.

Trustless Custodial Services

A more sophisticated use case locates in the area of custodial services. As previously
discussed, custodians are entities that manage Bitcoins of their user base through a
more guided interaction interface which beginners especially appreciate. However, these
services should be used under caution as the sole ownership of the private key is not
granted, and users have to trust that their funds are not subject to mismanagement.
Combining a multi-signature setup with a time lock, i.e. a condition requiring a minimum
time to spend a UTXO specified in a future block height, provides an alternative solution
that allows for customer support without the perpetual risk of mismanaging funds.

More specifically, the customer locks its funds in a 2-of-2 multi-signature setup where
one participant is the customer and the second represents the custodian. A time lock of
e.g. 2 years8 in the locking script will promote the signing power of the custodian to a
1-of-2 signature scheme once the given time is passed. In the meantime, every transaction
the customer would like to conduct is mutually signed. After the loss of private keys on
the customer’s side, the custodian can recover the funds after the given time lock mark
has been passed. Suppose this recovery scenario went unused due to successful private
key management. In that case, the funds are transferred to a new lock script with an
extended time lock just before the anticipated block height is reached. This ensures that
the customer remains in complete control and ownership while leaving the custodian with
no scope of action until the next block target is reached.

Contrary to the chosen section title, such custodians do, of course, not wholly operate
trustless. If a customer has lost his keys and the time lock opens, the custodian receives
sole power of attorney over all funds. Of course, this presupposes that the customer trusts
in the integrity of the service. However, it is way more trustless than custodial services,
which completely deprive their user base of any self-sufficient bitcoin interaction. The
used term «trustless» intends to emphasize the difference between these two types of
custodians in this work.

8 Since on average every 10 minutes a new block is found, a time lock is indicated using an anticipated
block height.
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Take-Aways

Although multi-signature wallets are less often used in practice than single-signature
setups, they serve various advanced use cases which otherwise must be served with
the costs of decreased security. Such use cases include the fragmentation of spending
authority among different entities and the improved resilience by utilizing multiple key
generation devices or through a minimum of two or more co-signers. Custodial services
that only receive full authority over customer funds after a given period represent another
use case that is only enabled through multi-signature setups.

5.2.3 Benefits & Pitfalls

The presented use cases demonstrate how multi-signature wallet setups enable a new
facet of Bitcoin interaction. Two factors constitute why this wallet type is declared as
advanced. One is the modest popularity, the other the various pitfalls associated with its
usage.

Therefore, the following lines highlight the most notable advantages resulting from multi-
signature schemes and point out the associated pitfalls. Raising awareness will allow the
readership to avoid the latter and maximize the potential of this advanced wallet type.

Improved Security

Generally, multi-signature wallets with a threshold of two or more secure the underlying
funds significantly. When an attacker manages to compromise any number of participating
keys below this threshold, this would still not suffice to steal any funds. The success of
such an attack becomes even more unlikely when the individual keys are stored offline
in geographically distanced locations. Locations in that context may also refer to people
constantly moving around. However, these participants’ key storage locations should
undergo verification regularly to ensure it is still intact as desired.

A pitfall occurs when all participant keys are stored at the same location. This would
immediately eliminate the added security of multi-signature schemas while the higher
complexity of such setups remains. Consequently, the underlying funds can then be
considered as less secure as they would be in a single-signature wallet setup.

Another pitfall lies in the xPub information that must necessarily be shared in multi-
signature setups. As all participants must have knowledge of all xPubs, one should
always create an entirely new key pair to participate in such a setup. Using a pre-existing
HD wallet would compromise the privacy of the key holder since the provided xPub
empowers all other participants to examine the complete transaction history9.

9 Assumes that the pre-existing HD wallet follows the default address derivation path.
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More Capabilities

Multi-signature wallets open the door for a whole new facet of Bitcoin interaction, which
is another significant benefit. Shared authority over funds and, therewith, split risk as
well is crucial in business use cases. It was also shown that multi-signature setups enable
the compromise between the complete self-management and custodians, i.e. initially
declared as trustless custodial services. The demand for such hybrid solution in terms
of responsibility will increase with further adoption as not every Bitcoin user will be
attracted by the idea of complete self-responsibility of funds.

More capabilities come with the cost of more complexity which in turn introduces more
pitfalls. Working with such advanced locking scripts requires a clear understanding
of the underlying wallet implementation. Fewer applications handle multi-signature
setups correctly due to their lesser-known nature compared to single-signature setups. An
erroneously created locking script of a new transaction can lead to an irreversible loss of
funds. This may be due to misinterpreted time lock or a falsely generated change address.

Backup Strategy

Creating working backups of multi-signature wallet setups is not accompanied by any
benefits. However, it bears a significant pitfall that should at all means be avoided.
As mentioned before, such a backup involves more elements than present in a single-
signature setup, i.e. in particular the xPubs of all participants and the threshold. Imagine
one participant of a 2-of-3 schema, for instance, loses the seed that was used to generate
the associated xPub. Although the remaining two participants seem to suffice to spend
funds from this wallet setup, they may fail to find spendable UTXOs. The rationale behind
this lies in the fact that in order to find spendable funds, all three xPubs must be known by
the wallet application. Therefore, it is recommended that each participant, independently
of the others, follow a backup strategy that includes not only their own seed but also the
xPubs of all other participants.

Take-Aways

Multi-signature wallet setups introduce potent features compared to the more popular
single-signature setups. Requiring multiple keys to file a transaction allows storing this
keying material in different locations, significantly increasing security. Widened Bitcoin
interaction capabilities allow, for example, trustless custodial services or temporally locked
funds thanks to time locks.

However, this clearly advanced wallet type comes at the cost of increased complexity. It is
essential to understand how wallet implementations handle multi-signature transactions,
as otherwise a complete loss of funds may occur. Equally important is a working backup
strategy which consists of more elements than conventional single-signature wallet setups.
When it is no longer possible to have access to all participating xPubs, it will no longer be
possible to find spendable funds.
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6 Conclusion

Preceding the outline of different Bitcoin wallets, this work elaborated the fundamentals
required to understand this relatively new technology where various subjects from com-
puter science, cryptography, mathematics, and game theory converge. First and foremost,
Bitcoin is the name of a communication protocol that implements numerous standards
for sharing information among independent participants. Anyone can access, use, and
modify it as it resides in the free and open-source domain. The increasingly important
free and open-source philosophy is explained and emphasized how crucial it is in Bitcoin.

At the core of this protocol lies the idea of storing and transferring value using asymmetric
encryption and decentralized ledgers. After the publication of Bitcoin’s first version by
a pseudonymized authorship named Nakamoto in 2008, this idea of a trustless, permis-
sionless, borderless, and censorship-resistant value storage and transfer technology has
reached popularity. It is to this day continued by a flourishing community.

These prerequisites explained the most critical elements that directly or indirectly relate
to the goal of understanding Bitcoin as it allows the readership of different backgrounds
to reach a common basis. It includes the definition of general terms often encountered
in computer science, such as protocol, network, hash function, public-key cryptography,
digital signatures, or various encoding styles.

More Bitcoin-specific term explanations address how any computer device could act as a
node in a network to share and consume information about transactions and new data
packages attacked to the self-managed blockchain copy. Unspent transaction outputs
can be reallocated by providing a suitable unlocking script, most often in the form of a
digital signature using an appropriate private key. Wallets have access to such keying
material and can thus manage balances by scanning the entire transaction history, i.e. the
blockchain, assembling new transactions by unlocking feasible outputs and reassigning
them to new owners using a new locking script. The latter most often involves the public
key of this new owner. Meanwhile, miners bundle unconfirmed transactions in data
packages known as blocks and try to find a suitable block hash value that respects the
minimal required leading zeros known as the difficulty target. A newly pronounced next
block will be broadcasted over the entire Bitcoin network and immediately verified by
every participant.

The central part of this work provides an outline of different wallet types. This includes
not only their definitions but also the discussion on the advantages and disadvantages
introduced by using a given wallet solution. By doing so, the focus lies on the security-
and privacy-preserving interaction with Bitcoin. This work structures the different wallets
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according to the individual level of experience in this field, namely beginner, intermediate,
and advanced, to facilitate the identification of a suitable wallet for the readership.

Beginners typically encounter two typical Bitcoin interaction means. The first one relates to
online accounts. Here, companies provide the complete management of their customer’s
funds as a service. Doing so, they act as custodians. Customers usually only need a
username and password to log in to their service provider’s online platform, where
they can eventually interact with Bitcoin. However, abstracting complexity and the
responsibility of self-accountability from the user comes at the cost of being forced to trust.
History has repetitively shown how such providers misuse this trust.

Paper wallets represent another beginner-friendly way of Bitcoin interaction. It describes
the idea of possessing a single pair of keys, i.e. private & public keys, that resides in the sole
possession of the key owner. Initially, these keys were physically printed on paper. The
various methods to generate the keying material include analogue calculations, software
tools, or online services. One should always avoid the latter, as the desired exclusive
knowledge over the private key can never be guaranteed. In contrast to online accounts,
paper wallets represent the first though primitive solution that allows for complete self-
custody.

Elaborating on different software and hardware wallets addresses intermediate Bitcoin
users. The first one serves as a basis for various wallet derivation techniques. As paper
wallets impair the user’s privacy by typically only allowing for one single-address, most
software wallet implementations utilize (non)deterministic address derivation techniques
to overcome this drawback. Hierarchical deterministic wallet derivation follows a specific
standard that allows repetitively generating a tree of key pairs rooted in one single secret
known as seed phrase. Such a seed phrase consists of twelve or more unambiguous words
and can be extended using an extension word.

Hardware wallets represent another intermediate Bitcoin interaction medium. Here, the
essential characteristic is that the keying material is stored on a dedicated, temper-proof
hardware device that maintains no direct connection to the internet. Such a particular
storage medium improves the security of the user’s funds significantly and increases the
importance of a working backup strategy.

Advanced Bitcoin users will sooner or later be interested in running their self-managed full
node. This contributes to the decentralization of the transaction history and further mini-
mizes the dependency on third parties. Since every transaction is self-verified, the need to
trust is wholly removed. Additionally, the exclusive communication between someone’s
wallet with a self-managed Bitcoin full node improves privacy as no intermediate party
can witness what is communicated.

The last wallet type outlined concerns multi-signature wallets. It describes the act of
locking unspent transaction outputs with a script that requires a minimum of signatures
from a predefined set of public keys. A typical example represents a 2-of-3 multi-signature
wallet. It not only allows for shared spending authority but also serves as a tool to revoke
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someone’s participation in such a wallet setup elegantly. Both properties are especially
useful in a business context where, for instance, several employees share this authority.
Besides this, multi-signature setups are also found in private environments, as multiple
keys stored in geographically distanced locations result in higher resilience. However,
the potential of this advanced medium of Bitcoin interaction is only beneficial if the user
understands its inner workings and knows the importance of a working backup strategy
which is more complex in this case.

The development of the Bitcoin protocol is everything but concluded yet. Meanwhile,
many side-projects such as blockchain explorers, software wallet implementations, or full
node installers have been established and continue to be developed by the community.
One of the most dynamic projects in this area is Lightning, a second-layer protocol that aims
to significantly increase the scalability of Bitcoin transactions. It will also face the expected
threats from quantum computing and will eventually have to move to post-quantum
cryptography.

In summary, Nakamoto’s idea of a peer-to-peer electronic cash system continues to evolve
and gain adaption. This work contributes to this process by increasing its accessibility
to a readership with different levels of experience and facilitating the secure, privacy-
preserving, and self-custody Bitcoin interaction for everyone. Ultimately, the choice of
which wallet type to use ultimately rests with the reader. What should always be kept in
mind, however, is the wise proverb «not your keys, not your coins».
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