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Abstract
Many software developers learn imperative and/or object-
oriented programming first in their career. Meanwhile, most
of the research done on programming languages is based on
the Lambda-Calculus and functional programming languages.
These are often not intuitive to grasp for someone who has
worked exclusively with object-oriented languages. Somemight
even be intimidated by the mathematical terminology. This
paper aims to show that most of these methods are in common
use in Java, but sometimes better known under different names.
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1 Introduction
When browsing forums or skimming research papers on type
systems, one quickly comes across intimidating-sounding
expressions, such as “Intensional Polymorphism”, “Existen-
tial Types”, or “Bounded Quantification”. Especially, when
getting started with languages more closely designed around
the mathematical theories, such as Haskell. However, most
of these concepts are used on a daily basis by every object-
oriented programmer, they just don’t know it.
In this paper I will go through various concepts of ad-

vanced type systems. Every concept will be accompanied
by one or more practical examples of how this idea is com-
monly used in Java. Some typing methods are currently not
possible in Java1. In these cases, an example in a comparable
OO language is given. If not stated otherwise, code listings
are original creations for this paper.

In this paper I will purposefully omit most proofs of why
a typing works (references to proofs are always given). The
goal is not to convince the reader of the integrity of these
type systems. Instead, this paper relies on the intuition built
through practical experience in programming.

After reading this paper, any object-oriented programmer
should feel confident enough around these concepts and
their names to dive deeper into the theory in other reading
material.

1.1 Assumed Knowledge
This paper assumes the reader is familiar with at least one
(statically-typed) object-oriented language, preferably Java.
Furthermore, a basic understanding of simple type systems,
1Current LTS at time of writing is JDK 11.

such as the simply-typed lambda-calculus, is expected. A
good introduction to the simply-typed lambda-calculus can
be found in [Pie02, p. 89–112].

2 Subtyping and Subclassing
The most fundamental concepts of object-oriented program-
ming languages are subtyping and subclassing. Although
these are often used synonymously in informal contexts, they
do have a distinct formal definition and function [Bru96, p.
14-15]. The following examples make use of classes and inter-
faces of JDK 11. A visualization of the inheritance hierarchies
can be found in Appendix A.

2.1 Subclassing
When talking about subtyping and subclassing informally,
usually programmers mean subclassing. In object-oriented
languages, subclassing provides one of the most basic ways
to re-use code and avoid unnecessary duplications.

1 class Dog {

2 void bark() {

3 System.out.println("Woof!");

4 }

5 }

6
7 class GermanShepherd extends Dog {

8 // no need to re-implement bark()

9 }

Listing 1. Subclassing for code re-use

Bruce provides the following definition [Bru96, p. 13]:

Subclasses support the ability to create in-
cremental differences in behavior by allow-
ing the programmer to define a new class
by inheriting the code of an existing class,
while possibly replacing or adding instance
variables and methods.

From this definition it is clear that the construct of sub-
classing is intended to be used for small, incremental changes
to an already existing class. These changes are not only lim-
ited to adding new functionality, but may also modify the
superclass’s implementation.

Although subclassing is an easy way to re-use code, care
should be taken when to apply this concept. In particu-
lar, overuse of subclassing may quickly lead to fragile soft-
ware [Blo14, p. 81].
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2.2 Subtyping
Bruce also provides his definition of subtypes [Bru96, p. 6]:

A type 𝑆 is a subtype of a type 𝑇 (written
𝑆 <: 𝑇 ) if an expression of type 𝑆 can be
used in any context that expects an element
of type 𝑇 .

Since an expression of subtype 𝑆 may be used anywhere
where the supertype𝑇 is expected, the subtype 𝑆 should not
change the (perceivable) behavior of 𝑇 .
While interfaces in Java do not implement any behavior

per se, they do specify an expected behavior. Since there
can be many implementations of the same interface, this can
be considered subtyping according to the above definition:
Anywhere where the interface is expected, any of its imple-
mentations can be used without any change in the behavior
that is specified by the interface (assuming the implemen-
tations adhere to the interface’s specifications). With the
addition of default-implementations on interfaces in Java 8,
the language blurs the line between interfaces and abstract
classes. Formally speaking, if the behavior of the default-
implementation is not modified, it is subtyping, otherwise it
is subclassing.
An example of subtyping in Java is the JDK’s collection

API:
1 List list;

2
3 // either is fine

4 list = new ArrayList ();

5 list = new LinkedList ();

6
7 list.add("hello");

8 list.get(0); // retrieves "hello"

Listing 2. Subtyping in Java’s Collection API

In listing 2, the List interface specifies a type that allows
adding items and later retrieving them by index. Both the
ArrayList and LinkedList implementations provide this function-
ality. Although they differ in terms of memory- and time-
complexity, the specification of the List interface is fulfilled,
since it does not make any guarantees in that regard.

2.2.1 Function Subtyping. Function subtyping extends
the concept of subtyping from values to functions. Applying
the previous definition of subtyping, we can expect a function
subFunction to be considered a subtype of function superFunction,
if we can use subFunction anywhere where superFunction is used.

1 static List superFunction () {

2 return new ArrayList ();

3 }

4
5 static LinkedList subFunction () {

6 return new LinkedList ();

7 }

8
9 static Collection badFunction () {

10 return new HashSet ();

11 }

12

13
14 List list;

15
16 // either is fine

17 list = superFunction ();

18 list = subFunction ();

19
20 // does not typecheck

21 list = badFunction ();

Listing 3. Function subtyping without parameters

Listing 3 shows the trivial case of a function without any
input parameters. We can easily see that subFunction is a sub-
type of superFunction, if the return-type of subFunction is a sub-
type of the return-type of superFunction, as visualized in Fig-
ure 1.

Function

superFunction

subFunction

Return Type

List

LinkedList

Figure 1. Covariant subtyping relation on return types

On the other hand, looking at functions with an input
parameter and without a return-type, we see that the sub-
typing relation on the parameters is reversed in relation to
the functions themselves:

1 static void superFunction(List list) {

2 System.out.println("superFunction");

3 }

4
5 static void subFunction(Collection collection) {

6 System.out.println("subFunction");

7 }

8
9 static void badFunction(LinkedList linkedList) {

10 System.out.println("badFunction");

11 }

12
13 List arg = new ArrayList ();

14
15 // either is fine

16 superFunction(arg);

17 subFunction(arg);

18
19 // does not typecheck

20 badFunction(arg);

Listing 4. Function subtyping without return-type

We have now observed subtyping relations in two different
directions. For the return-types the subtyping runs in the
same direction, which is called covariant. Whereas for the
parameters this relation is inversed (contravariant) [Pie02, p.
185].

This can easily be understood by looking at the counter-
example badFunction, where the parameter is a subtype of List.
It is immediately obvious that this will result in an error
when attempting to pass the variable arg to badFunction, as the
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Function

superFunction

subFunction

Parameter

List

Collection

Figure 2. Contravariant subtyping relation on input param-
eters

type List cannot be used in a place where the type LinkedList

is expected.
Combining both the covariant and contravariant relation,

we can subtype more complex functions as follows:
1 static List superFunction(List list) {

2 var result = new ArrayList ();

3 result.addAll(list);

4 return result;

5 }

6
7 static LinkedList subFunction(Collection coll) {

8 var result = new LinkedList ();

9 result.addAll(coll);

10 return result;

11 }

12
13 List list;

14 List arg = new ArrayList ();

15
16 // either is fine

17 list = superFunction(arg);

18 list = subFunction(arg);

Listing 5. Function subtyping with parameters

The difference between the covariant and contravariant
subtyping relations is visualized in Figure 3.

Function

superFunction

subFunction

Return Type

List

LinkedList

Parameter

List

Collection

Figure 3. Function subtyping with return-values and input
parameters

With the addition of functional interfaces and lambda
expressions in Java 8, the concept of assigning types to func-
tions (so-called “arrow-types”) got more intuitive. For ex-
ample the superFunction of listing 5 would have type Function

<List,List> and subFunction would be of type Function<Collection,

LinkedList>. Unfortunately, subtyping of functional interfaces
in Java is not as straight-forward, as demonstrated in list-
ing 6.

1 Function <List ,List > superFunction =

2 (list) -> {

3 var result = new ArrayList ();

4 result.addAll(list);

5 return result;

6 }

7
8 Function <Collection ,LinkedList > subFunction =

9 (collection) -> {

10 var result = new LinkedList ();

11 result.addAll(collection);

12 return result;

13 }

14
15 List list;

16 List arg = new ArrayList ();

17
18 // this still works as expected

19 list = superFunction.apply(arg);

20 list = subFunction.apply(arg);

21
22 // assignment is not straight -forward in Java;

23 // leads to a compile error

24 superFunction = subFunction

Listing 6. Subtyping of functional interfaces

The reason why the assignments in the example above
will not compile is a mismatch in the generic types. For
assignment to be possible, the type of superFunction needs to
be slightly modified to Function<? super List,? extends List>. This
extension to the generics further highlights the covariance of
the return-type and contravariance of the parameter-types.
The concepts of generics and extends/super will be revisited in
detail in Sections 3.4 and 5.

2.3 Subclassing vs. Subtyping
Although the previous sections have shown the formal defini-
tions of subclassing and subtyping, the exact differencemight
still not be obvious. Often times subtyping and subclassing
are very closely related and therefore, understandably, used
synonymously. The difference is most easily summarized
as follows: If an expression can be replaced by another ex-
pression of a different type, and the typing is still correct,
subtyping has been used. If a class extends another class,
subclassing has been used.
Since subtyping is defined on a syntactical level and sub-

classing on a behavioral level, these concepts are not mutu-
ally exclusive. In fact, in languages such as Java it is almost
always the case that both concepts are used together in a
single statement. For example, a subclass in Java is always a
(syntactical) subtype of its parent class. This subtyping rela-
tion is what allows us to use the subclass anywhere where
the parent class is expected. The subclassing relation enables
us to re-use behavior of the parent and only change the parts
that we choose to.
Most notably, however, subtyping formally does not re-

quire that the subtype extends the supertype in terms of
class inheritance, although this is always required in Java.
An example of subtyping without subclassing is shown in
listing 7 using C++ templates. A similar example could be
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built in Java using reflection, however that would be verified
at runtime and no longer by the compiler.

1 template <typename T>

2 function std:: string getName(T const& obj) {

3 return obj.name;

4 }

5
6 struct Foo {

7 std:: string name = "Foo";

8 };

9
10 struct Bar {

11 std:: string name = "Bar";

12 };

13
14 Foo foo;

15 Bar bar;

16
17 // returns "Foo"

18 getName(foo);

19
20 // returns "Bar"

21 getName(bar);

Listing 7. Subtyping without subclassing

In listing 7 Bar can be considered a subtype of Foo in the
context of getName, since Bar can be used instead of Foo as ar-
gument. In Java, an interface specifying getName would be
necessary, which Foo and Bar would both have to implement
explicitly. Using C++ templates, this interface is implicit, as
the template-function will only compile if all occurrences
provide an argument with an accessible name member. More
precisely, Foo and Bar are both subtypes of the implicit in-
terface that they must possess a name member. The example
shown also makes use of parametric polymorphism, which
is discussed in Section 3.4.

On the other hand, the following listing shows a C++ ex-
ample of subclassing, where the subtyping relation is broken:

1 struct Parent {

2 void print(long l) {

3 std::cout << l << std::endl;

4 }

5 };

6
7 struct Child : Parent {

8 // disallow use of print for ints

9 void print(int i) = delete;

10 };

11
12 // Auto -converts 5 to a long

13 Parent ().print (5);

14
15 // Compile error: use of deleted function

16 Child().print (5);

Listing 8. Subclassing without subtyping

In contrast to Java, where a subclass is always also a sub-
type, we have constructed a subclass in listing 8 where we
can no longer use the subclass anywhere where the parent
is expected. This highlights the importance and necessity of
having both the subtyping and subclassing concepts working
together.

2.4 Behavioral Subtyping
While the compiler is able to enforce subtyping on a for-
mal, notational level, it is in general impossible to guarantee
that all possible subtypes indeed behave as subtypes. The
following example illustrates this:

1 interface Executor {

2 // Should execute the Runnable r

3 void execute(Runnable r);

4 }

5
6 class UndecidableExecutor implements Executor {

7 @Override

8 public void execute(Runnable r) {

9 if (halts(r)) {

10 r.run();

11 } else {

12 throw new UnsupportedOperationException(

"r does not halt");

13 }

14 }

15 }

Listing 9. Undecidable behavioral subtyping

Since it is impossible to decide whether r halts or not, it
is equally impossible to know, whether execute will actually
run r or throw an UnsupportedOperationException, breaking the
Executor’s specification. Although this might be a slightly con-
trived example, it is easy to imagine real-life cases, where
interface contracts are broken by similar exceptions. The
concept of (strong) behavioral subtyping and it being un-
decidable in general was originally described by Barbara
Liskov and is commonly known as the Liskov substitution
principle [LW94].

However, it is noteworthy that Liskov’s definition of sub-
typing is stricter than usually desired for a practical program.
In most cases we only want some properties of a type to re-
main unchanged when substituted with a subtype, while
others might change. Using Java interfaces, we can easily
specify which properties must be satisfied by every subtype,
while leaving any unspecified properties to the implementa-
tion (e.g. what memory representation to use).
Lastly, a type might include informal specifications that

a subtype should fulfill, which are only expressed in docu-
mentation; perhaps because the type system is not powerful
enough to describe such properties. For obvious reasons, it
is impossible for a compiler to check whether such informal
properties are satisfied.

3 Polymorphism
Subtyping allows us to replace expressions with subtype ex-
pressions, while still satisfying all compile restraints. How-
ever, simply being able to replace an expression in the pro-
gram’s code has very limited benefits. In order to reap the full
benefits of subtyping (and subclassing), an additional con-
cept that allows dynamic type substitution both at compile-
and at runtime is required.
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Precisely this is provided by the concept of polymorphism.
In general, polymorphism describes a feature of the type sys-
tem, where the behavior of the code’s execution can change
dynamically based on the concrete type provided. In this
section I will go over the different forms of polymorphism,
as classified by [Str00] and [CW85], summarized by [Pie02,
p. 340–341].

3.1 Ad-hoc Polymorphism
Before combining subtyping with polymorphism, we will
take a look at ad-hoc polymorphism. It is the simplest form
of polymorphism, since it does not rely on any other ad-
vanced concepts. Ad-hoc polymorphism allows changing
which code to execute solely based on the typing context of
an expression. The most common example is method over-
loading. In method overloading, the typing context is defined
by the type(s) of the method argument(s) and the type of the
object owning the method, if any.

1 static String prettyToString(boolean b) {

2 return b ? "Yes" : "No";

3 }

4
5 static String prettyToString(int i) {

6 // Some int -specific formatting

7 }

8
9 prettyToString(true);
10 prettyToString (5);

Listing 10. Ad-hoc Polymorphism in Java

In Java, method overloading is also possible with a varying
number of parameters. In this case, the method to invoke is
selected only based on the number of arguments provided,
regardless of their types (unless several methods with the
same name have the same number of parameters). There-
fore, this is no longer a case of polymorphism in the sense
of the type-system, but rather a way to provide optional
parameters.
Notably, method overloading in Java is always resolved

at compile-time. Even if a more specific overload exists, the
method will be selected that matches the statically declared
type the best.

3.1.1 Method Overriding. Overriding a method in a sub-
class is a common case of polymorphism, which falls under
the classification of ad-hoc polymorphism. At runtime, the
JVM checks the concrete type of the object, on which the
method is invoked, and the most specific override is selected
(child-first).

1 Animal dog = new Dog(); // Dog extends Animal

2 Animal bird = new Bird(); // Bird extends Animal

3
4 dog.makeSound (); // Woof

5 bird.makeSound (); // Chirp

Listing 11.Method overriding in Java

3.2 Subtype Polymorphism
Subtype polymorphism ties together the previous section on
subtyping with polymorphism. In its original definition as
provided by Pierce, subtype polymorphism is what enables
us to make use of subtyping at runtime, e.g. based on user
input or configuration files.

In this type of polymorphism, the concrete type of a vari-
able can be exchanged with any of its subtypes without
changing the program’s behavior.

1 List list;

2
3 // returns ArrayList or LinkedList

4 // based on app configuration

5 list = getList ();

Listing 12. Subtype polymorphism in Java

3.2.1 Subclass Polymorphism. As previously discussed,
(strict) subtyping does not allow changing any program be-
havior, which severely limits its practical use. Extending
subtype polymorphism to include subclasses results in the
type of polymorphism that object-oriented programmers are
most familiar with. Pierce does not classify subclass poly-
morphism as a separate type of polymorphism. Although
intuitively this is the most common form of polymorphism
in object-oriented languages, it is actually only a combina-
tion of subtype polymorphism and ad-hoc polymorphism.
Whenever a subclass is used, that subclass might:

• inherit behavior from its parent
• modify behavior of its parent
• add new behavior to its parent

Any behavior that is inherited unchanged falls directly
under the category of subtype polymorphism. Any behavior
that is changed is usually done so by method overriding,
which is implemented with ad-hoc polymorphism. Finally,
any new behavior is irrelevant, as new members are not
visible when viewed as the parent type. Therefore, it is not
necessary to add subclass polymorphism as a fundamental
type of polymorphism.

3.3 Intensional Polymorphism
Sometimes it is necessary to check the (concrete) type of a
variable at runtime. Traditionally, this is not possible and
requires workarounds, such as member variables contain-
ing the name of the class. Fortunately, many modern pro-
gramming languages (including Java) implement so-called
intensional polymorphism.
Intensional (not to be confused with intentional) means

requiring additional information outside of its own context.
Intensional polymorphism is therefore a kind of polymor-
phism that requires extra information to resolve that cannot
be deduced exclusively from the type system. This extra in-
formation is usually provided by the compiler and added to
objects and classes. This metadata is essentially the same as
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the workaround mentioned above, but is generated automat-
ically, removing any human errors and providing a global
naming standard. In some cases, intensional polymorphism
even adds additional syntax constructs for ease-of-use.

1 Animal animal = new Dog();

2 if (animal.getClass () == Dog.class) {

3 Dog dog = (Dog) animal;

4 dog.bark();

5 }

Listing 13. Intensional Polymorphism in Java

The getClass function and class static member in listing 13
show an example of intensional polymorphism. These mem-
bers are not defined by the programmer, but generated by
the compiler and made available during runtime. Thanks to
this extra information, we can build a conditional to compare
types at runtime and run some specific code based on a type
distinction.

This example was chosen to highlight the metadata of the
Class object at runtime. In practice, such code should use the
instanceof operator, which works similarly under the hood,
but also checks for subclasses:

1 Animal animal = new GermanShepherd ();

2 if (animal instanceof Dog) {

3 Dog dog = (Dog) animal;

4 dog.bark();

5 }

Listing 14. Intensional Polymorphism in Java, in practice

3.4 Parametric Polymorphism
Parametric polymorphism is another concept that is well
understood in object-oriented programming. It is usually
known as genericity or generics. In parametric polymorphism
we tell the compiler that a certain piece of code works “for all
possible types”. It is a very powerful form of polymorphism
and the basis of the popular System F [Pie02, p. 341–344],
which is the core of Haskell’s type system.

Parametric polymorphism, or genericity, allows variables
over types, instead of only expressions. This increases the
level-of-depth of possible type-checking, for example by
specifying that the return-type of a function is always the
same as the argument-type.

1 static <T> T identity(T anything) {

2 return anything;

3 }

4
5 identity(true); // returns a Boolean

6 identity (5); // returns an Integer

Listing 15. Parametric polymorphism in Java

Without generics, such code would have to be written
using Object in Java, where almost all type information is
lost. Generics can be found in most modern programming
languages with static typing, such as C#, C++, TypeScript,
or Haskell.

The concept of some code being applicable to all types is
highlighted even further when considering the syntax used
in Haskell:

1 length :: forall a. [a] -> Int
2 -- implementation omitted

Listing 16. Parametric polymorphism in Haskell

The length function calculates the length of a list, regard-
less of what type the elements of that list are. Although the
forall a. is optional in Haskell’s syntax, it does state explicitly
that the type-parameter a is a placeholder for all possible
types. This syntax is derived directly from the mathematical
notation ∀𝑥 which is pronounced “for all 𝑥”. In mathemat-
ics, the concept of some function or statement holding for
“everything” is called universal quantification.

3.4.1 Higher-Rank Types. A function with type param-
eters is considered a rank-1 type [Pie02, p. 359]. If a type-
parameter was allowed to represent a rank-1 type, a function
with such a parameter would be a rank-2 type. For exam-
ple, a rank-2 type method would be required, if we want to
pass the generic identity function as an argument to another
function:

1 // does not compile

2 static <T> void foo(Function <T,T> func) {

3 Boolean b = func.apply(true);
4 Integer i = func.apply (5);

5 }

Listing 17. Invalid rank-2 method in Java

Higher rank types (i.e. rank-2 and above), however, are
not possible in Java, and are indeed restricted in most pro-
gramming languages, since they introduce a loss of type in-
ference [Pie02, p. 354–359]. In short, it is no longer possible
to automatically infer what type an expression has based on
the context alone. This means that explicit type annotations
must be given. Although Java requires explicit type anno-
tations almost everywhere anyway, the use-case of higher
rank types is fairly rare, so most languages have decided to
forgo this feature in lieu of simplicity and robustness.

1 interface Func {

2 <T> T apply(T arg);

3 }

4
5 class Identity implements Func {

6 @Override

7 public <T> T apply(T arg) {

8 return arg;

9 }

10 }

11
12 class Null implements Func {

13 @Override

14 public <T> T apply(T arg) {

15 return null;
16 }

17 }

18
19 // compiles fine

20 static void rank2(Func func) {

21 Boolean b = func.apply(true);
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22 Integer i = func.apply (5);

23 }

24
25 rank2(new Identity ());

26 rank2(new Null());

Listing 18. Rank-2 workaround in Java

Listing 18 shows a possible workaround in Java, where
the rank2 function is kept at rank-1 by encapsulating the
polymorphic function in a non-parameterized object. The
type-information that the function should return the same
type as its argument is encoded in the new Func interface,
instead of the type-parameters of rank2.

3.4.2 Higher-Kinded Types. Parametric polymorphism
introduced the concept that a value can have any type, which
is captured by a type-variable. That type-variable can then
be re-used to ensure other values have that same type.
Higher-kinded types extend this concept from values to

types. This means a type can have any “type”, called kind.
Just as with higher-rank types, Java does not support higher-
kinded types. However, higher-kinded types are very com-
mon in functional programming languages, such as Haskell.
If Java supported higher-kinded types, an example could
look as follows:

1 class NameStore <T> {

2 T<String > names;

3
4 T<String > getNames () {

5 return names;

6 }

7 }

8
9 // should return List <String >

10 new NameStore <List >().getNames ();

11
12 // should return Set <String >

13 new NameStore <Set >().getNames ();

Listing 19. Invalid higher-kinded type in Java

To work around this limitation, explicit classes can be
created:

1 class NameList {

2 List <String > names;

3 }

4
5 class NameSet {

6 Set <String > names;

7 }

Listing 20. Workaround for higher-kinded types in Java
using explicit classes

However, we lose the subtyping relation between NameList

and NameSet, unless we use some very verbose generics:
1 interface NameStore <T> {

2 T getNames ();

3 }

4
5 class NameList implements NameStore <List <String >> {

6 // ...

7 }

8

9 class NameSet implements NameStore <Set <String >> {

10 // ...

11 }

12
13 NameStore nameList = new NameList ();

14 NameStore nameSet = new NameSet ();

Listing 21. Workaround for higher-kinded types in Java
with generics

Although we can now use either NameList or NameSet wher-
ever a NameStore is expected, we no longer have the require-
ment of names being Strings. Using bounded quantification of
Section 5 we can restrict our NameStore further, at the cost
of limiting our representations to subtypes of e.g. Collection,
which might not be desirable:

1 interface NameStore <T extends Collection <String >> {

2 T getNames ();

3 }

Listing 22. Workaround for higher-kinded types in Java
with bounded quantification

These workarounds are similar to how the JDK’s collection
API provides subclasses for different implementations of e.g.
List, instead of using parameters for what implementation
to use.

Just as with higher-rank functions, the use-case for higher-
kinded types is fairly rare and there are plenty ofworkarounds
available, which might sometimes even be better understand-
able. Likely for those reasons most languages have opted to
not support higher-kinded types.

4 Existential Types
With parametric polymorphism implementing the universal
quantifier ∀ (“for all”), it is only natural to think about imple-
menting the existential quantifier ∃ (“exists”), as they are the
two most common mathematical quantifiers [Vau21]. While
∀𝑥 specifies that a certain condition or statement must be
true for any possible value of 𝑥 , ∃𝑥 demands that there need
only be at least one value of 𝑥 that satisfies the condition or
statement.

Applied to polymorphism, this means that instead of hav-
ing a generic parameter that can take on any type, we get a
type construct for which it is satisfactory to have only some
types (but at least one) lead to a successful type-check.

An intuitive example of existential types in Java are inter-
faces. An interface declares a set of functions its implemen-
tations must provide, but only some types in the program
fulfill this interface. Additionally, the interface is only useful,
if there is at least one implementation available at runtime.

1 interface Flying {

2 void takeOff ();

3 void land();

4 }

5
6 Flying flying;

7
8 /* For this program to run , we expect one or more

9 * types implementing Flying , or there can never be
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10 * a value assigned to the variable "flying ".

11 */

12
13 flying = new AirPlane ();

14 flying = new Eagle();

15
16 flying.takeOff ();

17 flying.land();

Listing 23. Interface as existential type in Java

In contrast to a universal type (or parametric polymor-
phism), we cannot assign all possible types to flying, only
some. This gives us sort of a half-way construct between full-
on parametric polymorphism, where almost no assumptions
can be made about the concrete type, and using concrete
types, where we know exactly what capabilities the type has.
By expressing with the type system that we only care about
a subset of the concrete types’ functionalities, we gain the
ability to exchange the concrete type in a limited fashion,
namely with any other type that guarantees to share the
same subset of functionality.

4.1 Package Semantics
In his derivation and use of existential types, Pierce mentions
packages or modules as a primary use-case [Pie02, p. 364].
In fact, interfaces are conceptually the same thing as pack-
ages or modules, as far as the type system is concerned. All
three of these constructs have in common that they expose
some functionality in a declarative manner (methods on the
interface, or public types in a package/module), while hiding
the rest.
In the same way that the concrete type of an interface

can be exchanged freely, the contents of a package can be
exchanged, as well, by changing the import statement. An
example of this is the Guava2 library for functional interfaces,
which has been partially incorporated into the JDK with
version 8. In many instances (unfortunately not in all), it
is sufficient to simply exchange the previous Guava-import
with the new JDK-import. Therefore, an import statement
is equivalent to the assignment operator in the sense of
choosing which concrete implementation of the interface
or package we want to use, hidden behind the abstraction
provided by the existential type.

4.2 Object Semantics
Originally, the term “object” was coined as an aggregation
of multiple values into a single atomic symbol [MBE+60, p.
88]. This idea was later extended to include modifiers for
exposing and hiding certain members (known as information
hiding). The previous section on package semantics already
touched on the concept of using public modifiers to declar-
atively change the visibility of certain functionality. In the
case of classes and objects, these modifiers are not only used
on the type-level, but more importantly on class members.

2https://github.com/google/guava (November, 2020)

We can think of objects as implicitly providing an interface
with only their public (or in Java possibly protected and default)
members being declared, depending on the scope where the
object is used. As shown above, interfaces are equivalent
to creating an existential type. Therefore, the addition of
information hiding incorporated the concept of existential
types into objects [Par71][Par72].
As with subtype and ad-hoc polymorphism, we can ex-

change the concrete type of an object with any of its sub-
classes and the implicit interface (i.e. the existential type) is
still satisfied. Notably, it is not possible (in Java) to hide a
member in a subclass that was declared to be visible in its
parent class, since that would break the interface.

5 Bounded Quantification
Imagine we wanted to write a function that takes a list of
integers, increments every element by one, and then returns
that list. If we attempt to solve this using polymorphism
alone, we get a function that only works in some cases, also
known as a “partial function”:

1 <T> T incList(T arg) {

2 // Use intensional polymorphism

3 if (arg instanceof List) {

4 // We know it is a list ,

5 // but not the element type

6 List list = (List) arg;

7 for (int i = 0; i < list.size(); i++) {

8 Object el = list.get(i);

9 if (el instanceof Integer) {

10 list.add(i, (int) el + 1);

11 } else {

12 throw new IllegalArgumentException("

Not an integer element");

13 }

14 }

15 } else {

16 throw new IllegalArgumentException("Not a

list");

17 }

18 return intList;

19 }

Listing 24. Increment integer list with polymorphism

On the other hand, if we attempt a solution using subtyp-
ing, we run into a different problem:

1 List <Integer > incList(List <Integer > intList) {

2 for (int i = 0; i < intList.size(); i++) {

3 list.add(i, intList.get(i) + 1);

4 }

5 return intList;

6 }

7
8 var myList = new ArrayList <Integer >();

9 var result = incList(myList);

10 // result is of type List <Integer >,

11 // not ArrayList <Integer >

Listing 25. Increment integer list with subtyping

This solution looks much cleaner and probably preferable
to the first one. However, we lose the type information on
the concrete type of the argument using subtyping, which
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might not be desirable. If nothing else, the solution using
parametric polymorphism at least managed to preserve the
concrete type.
What if we combined subtyping with polymorphism to

achieve a solution that satisfies all criteria? Precisely this
combination is the concept of bounded quantification. In
bounded quantification we use universal quantifiers, but
impose some additional boundaries on them. This results
in an expression that is no longer read as “for all possible
types”, but rather as “for all possible types within these con-
straints”. Usually, bounds are used to restrict types based
on subtyping hierarchies. Java supports those restrictions in
both directions: extends for upper bounds and super for lower
bounds.
Applying bounded quantification to the example above,

we can write the following solution:
1 <T extends List <Integer >> T incList(T intList) {

2 for (int i = 0; i < intList.size(); i++) {

3 intList.add(i, intList.get(i) + 1);

4 }

5 return intList;

6 }

7
8 var myList = new ArrayList <Integer >();

9 var result = incList(myList);

10 // result is now still a concrete ArrayList

Listing 26. Bounded quantification in Java

The solution in listing 26 uses parametric polymorphism
to preserve the argument type, but imposes the additional
constraint that the argument must be a subtype of List<Integer
>. This simple addition gets rid of all problems we had with
either of the standalone solutions. Adding bounded quantifi-
cation to System F, results in the extended type system F<:
(“F-sub”).

Unfortunately, implementing bounded quantification in a
language introduces a whole new class of problems. Namely,
given two types 𝑆 and 𝑇 , it is not always possible to decide
whether 𝑆 is a subtype of 𝑇 , or not. Grigore shows that it
is possible to construct a type table using bounded quantifi-
cation in Java, where deciding whether 𝑆 is a subtype of 𝑇
is equivalent to the halting problem, which is known to be
undecidable [Gri17].

5.1 Bounded Existential Types
By adding constraints to generics, we have applied bounds to
universal types. Similarly, we can add bounds to existential
types. In short, this means that we expect at least one type
to exist that satisfies the contract of our existential type
(interface), but also fits into the given bounds.

1 interface List <T> extends Collection <T> {

2 // List -specific methods

3 }

Listing 27. Bounded existentials in Java with inheritance

By having an interface extend another interface (or simi-
larly, an abstract class extend any other class), we not only

require that the concrete type implements the methods of
List, but also those of Collection. In this case, List is a subtype
of Collection and is also a bounded existential type.
We can also add bounds to an existential type without

inheritance, using Java’s generics:
1 <T extends Flying & Animal > void animalFlight(T

flyingAnimal) {

2 flyingAnimal.land(); // Flying

3 flyingAnimal.eat(); // Animal

4 flyingAnimal.takeOff (); // Flying

5 }

Listing 28. Bounded existentials in Java with generics

The example above requires that the argument must im-
plement both the interfaces Flying and Animal. This can be
interpreted either as adding the bound of Animal to the exis-
tential type Flying (or vice-versa), or simply as creating a new,
anonymous existential type with the combined requirements
of both interfaces. If Animal was not an interface, but a con-
crete type (e.g. Bird), then the situation would be a bit clearer,
where the constraint of having to be a subtype of Bird was
added onto the existential type Flying. Permitted arguments
would be any flying bird, but not e.g. Ostrich (does not satisfy
the existential Flying) or Bat (does not satisfy the bound of
being a subtype of Bird).

6 Conclusion
The concepts of advanced type systems are often known
with different, sometimes less formal names. This creates
the illusion that the theory of (advanced) type systems con-
sists of exotic ideas that can only be understood by studying
functional programming languages. As demonstrated in this
paper, most concepts of advanced type systems are actually
in common use in object-oriented programming languages.
Furthermore, all of these concepts can easily be understood
using practical experience and intuition with every-day pro-
gramming languages, such as Java.
To get a deeper understanding of the theory and be able

to prove why these type systems are sound (and in which
cases they are not!), other material should be consulted, such
as the ones referenced in this paper. Keeping in mind the
examples and analogies of this paper, the theory-focused
work should be way more approachable.
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