
Different Approaches to control GPIO Pins of the
Raspberry Pi using Haskell

Eliane I. Schmidli
OST – Eastern Switzerland University of Applied Sciences

MSE Project 2
Supervisor: Prof. Dr. Farhad Mehta

Spring 2023

Abstract
The functional programming language Haskell allows the
writing of elegant code and reduces the likelihood of run-
time errors. This advantage can also be used when pro-
gramming the General Purpose Input/Output (GPIO)
pins on the Raspberry Pi. This paper presents three
approaches in Haskell for controlling GPIO pins. The
first method uses the GPIO sysfs interface, the second
sends commands via sockets to the Python library gpi-
ozero, and the third uses the Foreign Function Interface
(FFI) to call functions from the C library bcm2835. The
approaches described have different strengths and weak-
nesses, and it depends on the use case which approach
is most suitable.

1 Introduction
The implementation of functional programming lan-
guages in developing embedded systems has numerous
benefits. The usage of Haskell, for example, can lead
to a reduction of runtime errors due to its strong type
system. Additionally, Haskell allows for the creation of
elegant, readable, and maintainable code. This paper
demonstrates the application of Haskell’s advantages in
embedded system programming using the GPIO pins of
the Raspberry Pi.

The GPIO pins are a powerful feature allowing the
Raspberry Pi to interface with external electronic compo-
nents such as LEDs, sensors, or buttons. Using software
programming, the pins can be set as input or output
and the state of the pin can be manipulated. In this way,
electrical signals can be controlled and read to interact
with the external components. For example, an LED can
be turned on and off by setting the voltage level on the
connected pin high (3.3V) or low (0V).

The following sections introduce three libraries and
methods to enable the interaction between Haskell and
GPIO pins. Figure 1 provides an overview of the three
approaches. The method described in Section 2 uses the
GPIO sysfs interface [Wal15b] and accesses the corre-
sponding GPIO files and directories directly. In Section 3
commands are sent via sockets to the Python library gpi-
ozero [NJ21], which provides an easy-to-use, high-level
GPIO interface. Section 4 uses the FFI [Mar10] to call

functions from the low-level C library bcm2835 [McC21].
To demonstrate the functionality of the libraries, an ex-
ample is provided for each. An LED connected to GPIO
17 (pin 11) is made to blink five times.

Figure 1. Overview of the three presented approaches to
interact with the GPIO pins.

These three approaches on a single-board computer
cover only a part of the possibilities for controlling hard-
ware with Haskell. For instance, the utilization of Em-
bedded Domain Specific Languages (EDSL) enables the
compilation of Haskell into other languages that offer
hardware interfaces on a microcontroller. A more detailed
description of how this works can be found here [Sch23].

2 GPIO Sysfs Interface
The first library considered offers a straightforward ap-
proach to control the GPIO pins with Haskell, but it is
no longer recommended due to more effective alterna-
tives available. It accesses the GPIO pins using the GPIO
sysfs interface. This is a pseudo filesystem under the path
“/sys/class/gpio” in which the GPIOs are represented as
files. So, it is possible to control the GPIOs using a shell.
The library gpio [Ols17b] uses the IO monad to edit
these files in Haskell. The following example illustrates
the functions provided by the library in more detail.

The blink example uses GPIO 17. The library gpio
represents pins with the following type:

1 data Pin = P2 | P3 | P4 | P17 | P27 | P22 | P10 |
2 P9 | P11 | P5 | P6 | P13 | P19 | P26 | P14 |
3 P15 | P18 | P23 | P24 | P25 | P8 | P7 | P12 |
4 P16 | P20 | P21

2023-10-13 10:19. Page 1 of 1–5.

Eliane I. Schmidli

The structure for the blink example is as follows.
First led is initialized and the function void discards
the resulting value. Then the blink program lets the LED
blink five times. At the end, the pin is closed.

1 led :: Pin
2 led = P17
3
4 main = do
5 void (initWriterPin led)
6 blink 5
7 reattachToWriterPin led >>= closePin

To access the GPIO 17 directory, it must first be
created. For this purpose, “17” is written into the file
“/sys/class/gpio/export”. Then the pin can be set as
input or output by writing “in” or “out” into the newly
created file “/sys/class/gpio/gpio17/direction”.

In gpio, these tasks are accomplished in the function
initReaderPin respectively initWriterPin.

1 initReaderPin :: (MonadCatch m , MonadIO m) => Pin
-> m (ActivePin 'In)

2 initWriterPin :: (MonadCatch m , MonadIO m) => Pin
-> m (ActivePin 'Out)

The type ActivePin is defined as follows:
1 data ActivePin (a :: Direction) where
2 ReaderPin :: Pin -> ActivePin 'In
3 WriterPin :: Pin -> ActivePin 'Out

To control the pin, the function
reattachToWriterPin is used. It checks if the pin is
initialized as output and throws an error if not. The
function reattachToReaderPin works analogously with
input pins.

1 reattachToWriterPin :: (MonadCatch m , MonadIO m)
=> Pin -> m (ActivePin 'Out)

2 reattachToReaderPin :: (MonadCatch m , MonadIO m)
=> Pin -> m (ActivePin 'In)

At the end of the program, the pin should be deac-
tivated. By writing “17” into the file “/sys/class/gpi-
o/unexport”, the directories of GPIO 17 are removed.
In gpio, this can be done with the function closePin.

1 closePin :: (MonadCatch m , MonadIO m) =>
ActivePin a -> m ()

The following code section shows the blink program. It
switches the LED on, waits for one second, and switches
it off again. One second later the program calls itself
recursively. The parameter n specifies how often the
program should be called.

1 blink :: Int -> IO ()
2 blink 0 = return ()
3 blink n = do
4 reattachToWriterPin led >>= writePin HI
5 threadDelay 1000000
6 reattachToWriterPin led >>= writePin LO
7 threadDelay 1000000
8 blink (n-1)

To switch the LED on and off the voltage level of
the pin must be set to high or low. For this, the values

“1” (high) or “0” (low) are written into the file “/sys/-
class/gpio/gpio17/value”. The function writePin does
the same in the gpio library. For the value zero LO is
used and for one HI.

1 writePin :: (MonadCatch m , MonadIO m) => Value ->
ActivePin 'Out -> m ()

To wait a certain time between switching on and
off the function threadDelay from the concurrency ex-
tension for Haskell [oG23a] can be used. The time is
specified in microseconds.

The gpio library provides a simple way to control
the GPIO pins. But the sysfs interface is no longer be-
ing developed and has been replaced with the GPIO
character device interface [Wal15a]. Furthermore, it is
recommended to use the existing standard kernel dri-
vers [Wal21] for common GPIO tasks instead of accessing
the interfaces directly. For example, there is an LEDs
driver for GPIOs.

3 Socket Connection to Python
A better way to control the GPIO pins is the Python
library gpiozero [NJ21]. It allows controlling the GPIO
pins with simple commands and without low-level pro-
gramming. For example, it offers pre-built objects for
commonly used components. These objects include LEDs,
buttons, buzzers, and various other hardware compo-
nents that can be connected to GPIO pins. So, develop-
ers can easily control and interact with these hardware
components without having to handle low-level GPIO
configurations themselves.

An easy way to connect Haskell to Python code is
to establish a socket connection. This way a program
sequence can be defined in Haskell sending specific com-
mands to Python. The Python code can then control the
corresponding GPIOs and return results if requested.

3.1 Haskell Client
The Haskell client should execute the blink program and
send the commands to turn the LED on or off to the
Python server. The client socket can be created using
the Network library [YB23a, YB23b].

The runTCPClient function creates a client socket
with the corresponding host and port. The last argument
is the function that will use the socket. In this code, the
blink' function will send commands over the socket.

2023-10-13 10:19. Page 2 of 1–5.

Different Approaches to control GPIO Pins of the Raspberry Pi using Haskell

1 main :: IO ()
2 main = runTCPClient " 127.0.0.1 " " 10000 " $ \s ->

do
3 blink' 5 s
4
5 runTCPClient :: HostName -> ServiceName -> (

Socket -> IO a) -> IO a
6 runTCPClient host port client = withSocketsDo $

do
7 addr <- resolve
8 bracket (open addr) close client
9 where

10 resolve = do
11 let hints = defaultHints { addrSocketType

= Stream }
12 head <$> getAddrInfo (Just hints) (Just

host) (Just port)
13 open addr = bracketOnError (openSocket addr)

close $ \sock -> do
14 connect sock $ addrAddress addr
15 return sock

The use of the withSocketsDo function is recom-
mended for compatibility with older versions of the net-
work library on Windows. This function initializes the
networking subsystem.

The resolve function resolves the host address and
port number. The resulting value of type IO AddrInfo
can then be used to open the corresponding socket. To
use a stream socket, the property addrSocketType of
the defaultHint is overwritten.

The open function opens the socket with the corre-
sponding address information and tries to connect to the
server socket. This is done using the bracketOnError
function from the Exception module [oG23b], which has
the following type.

1 bracketOnError
2 -- run first (" acquire resource ")
3 :: IO a
4 -- run last (" release resource ") , only if an

exception was raised
5 -> (a -> IO b)
6 -- run in-between
7 -> (a -> IO c)
8 -> IO c

If the connection to the server socket cannot be estab-
lished, bracketOnError calls close to close the socket
and throws an error. If the connection is successful, the
socket is returned.

In the function runTCPClient the function open is
called by bracket, which is also provided by the Ex-
ception module [oG23b]. After setting up the network,
the resulting socket is passed to the client function
(Socket -> IO a). In this example, it executes the blink
program and sends the commands to the server socket.
When the program is finished, bracket calls close to
close the socket. Unlike bracketOnError, bracket al-
ways calls the last operation to release the resource.

1 bracket
2 -- run first (" acquire resource ")
3 :: IO a
4 -- run last (" release resource ")
5 -> (a -> IO b)
6 -- run in-between
7 -> (a -> IO c)
8 -> IO c

The blink program works similarly to the previous
section 2. Instead of executing the commands directly,
they are sent to the Python service with sendAll of
type Socket -> ByteString -> IO(). The string “\n”
is chosen as a separator so that the messages can be
divided.

1 blink' :: Int -> Socket -> IO ()
2 blink' 0 _ = return ()
3 blink' n s = do
4 sendAll s " led_on \n"
5 threadDelay 1000000
6 sendAll s " led_off \n"
7 threadDelay 1000000
8 blink' (n-1) s

3.2 Python Server
In this example, the Python service should act as a server
and receive commands from the Haskell service. The
server socket in the following program is created using
the Python library socket [Fou23, McM23]. First, the
server socket is initialized with the specified port number
and host address. Once the connection is established,
requests from the client can be processed. Here the
function handle receives and executes the commands
from the client socket.

1 PORT = 10000
2 HOST = '127.0.0.1 '
3 serversocket = initialize_server (HOST , PORT)
4 clientsocket = accept_client (serversocket)
5 handle (clientsocket)

The method initialize_server initializes a server
socket in Python. The parameters of socket specify that
it should be an INET streaming socket. Then the socket
is bound to a host and port. The parameter in listen
is used to specify how many pending connections can be
queued up before refusing outside connections.

1 def initialize_server (host , port):
2 serversocket = socket . socket (socket . AF_INET ,

socket . SOCK_STREAM)
3 serversocket .bind ((host , port))
4 serversocket . listen (1)
5 return serversocket

To accept a connection from outside, the function
accept is called.

1 def accept_client (server):
2 (clientsocket , address) = server . accept ()
3 return clientsocket

The function handle receives and processes the client’s
messages in an infinite loop. In this simple example, the

2023-10-13 10:19. Page 3 of 1–5.

Eliane I. Schmidli

functions with the same names are called for the mes-
sages “led_on” and “led_off”.

1 def handle (clientsocket):
2 while 1:
3 messages = receive_data (clientsocket)
4 if (not messages): return
5 for m in messages :
6 if m == " led_on ": led_on ()
7 if m == " led_off ": led_off ()

To receive the messages from the client, the recv func-
tion is called. The constant value MAX_LENGTH defines
the maximum amount of data to be received at once.
The resulting bytes object is decoded to get the data as
a string. The client and server can agree on a separator
that will divide the messages.

1 MAX_LENGTH = 4096
2
3 def receive_data (clientsocket):
4 buf = clientsocket .recv(MAX_LENGTH)
5 if buf == '': return []
6 data = buf. decode ('utf -8 ')
7 seperator = "\n"
8 return data . split (seperator)

The library gpiozero provides a simple interface to
address the LEDs. With the command LED the desired
pin can be initialized as LED. Then the LED can be
toggled with on and off.

1 LED17 = LED (17)
2
3 def led_on ():
4 LED17 .on ()
5
6 def led_off ():
7 LED17 .off ()

The advantage of the variant with the socket con-
nection is that the two services are decoupled. So, it is
easy to replace the Python service with something else
without adapting the Haskell code. For example, the
same Haskell code could be linked to another hardware
interface. However, building a network is an additional
overhead and error-prone. The network protocols and
the serialization and deserialization of the data can also
introduce latency and impact performance.

4 FFI to C
The library HPi [Hil20a] uses a more efficient solution
than building a network. It directly calls the functions
of the C library bcm2835 [McC21]. This library provides
access to the GPIO pins on the Broadcom BCM 2835
chip used in earlier Raspberry Pis and its successors on
the newer versions. To call the functions directly, the HPi
uses FFI. FFI enables interaction with external libraries
written in other languages like C or C++.

For example, HPi imports the function
bcm2835_gpio_write to set the voltage level. It uses the
function ccall for this. But this function has become
deprecated and should be replaced by capi [Tea20].

1 foreign import ccall unsafe
2 " bcm2835 .h"
3 " bcm2835_gpio_write "
4 c_writePin :: CUChar -> CUChar -> IO ()

The call specifies where the function is located (here
“bcm2835.h”), which function should be imported
(bcm2835_gpio_write), and how the new type signature
should look like (c_writePin :: CUChar -> CUChar
-> IO ()). The CUChar type is a wrapper around the

C unsigned char type. The function c_writePin can
now be used in Haskell code to call the C function.

The use of the HPi library is also explained with the
blink example. The function withGPIO of type IO a ->
IO initializes the use of the GPIO pins with the bcm2835

library.
1 main = withGPIO $ do
2 setPinFunction Pin11 Output
3 blink'' 5

To set the pin 11 (GPIO 17) as input or output, the
function setPinFunction of type Pin -> PinMode ->
IO () is called with the pin and the corresponding
pin mode. The function calls the bcm2835 function
bcm2835_gpio_fsel. The modes Input and Output cor-
respond to the numbers zero and one.

The blink example works in the same way as the
previous examples. It uses writePin which calls the
c_writePin function described earlier. The function
writePin is of type Pin -> LogicLevel -> IO (). The
LogicLevel type is a Boolean where the value True rep-
resents a high voltage level or one, while False represents
a low voltage level or zero.

1 blink'' :: Int -> IO ()
2 blink'' 0 = return ()
3 blink'' n = do
4 threadDelay 1000000
5 writePin Pin11 True
6 threadDelay 1000000
7 writePin Pin11 False
8 blink'' (n-1)

Utilizing FFI eliminates the network overhead, result-
ing in improved performance. Also, the bcm2835 library,
operating at a lower level, offers better performance com-
pared to the higher-level gpiozero library. Nevertheless,
employing the bcm2835 requires a more low-level under-
standing and entails a higher degree of complexity in its
usage.

5 Conclusions
The libraries described before have their advantages and
disadvantages. Using the sysfs interface is very simple
but outdated and no longer recommended. The GitHub
projects for the gpio and HPi libraries both have few
contributors and have not been updated in over three
years [Hil20b, Ols17a]. When using these libraries, small
updates could be necessary to bring them up to date

2023-10-13 10:19. Page 4 of 1–5.

Different Approaches to control GPIO Pins of the Raspberry Pi using Haskell

with the latest standards and requirements. The gpiozero
and network libraries are much better supported and are
updated more regularly.

In all libraries, it is possible to describe the behavior
of the GPIO pins in elegant Haskell code. The gpiozero
library offers a high-level interface and is better suited
for beginners. The communication over sockets makes
the application more modular. For example, the Python
server can be replaced with another hardware control
service.

To achieve good performance and fine-granular access
to the GPIO pins, the bcm2835 library stands out as
the most suitable choice. It is therefore recommended to
use the FFI approach even if the HPi library needs to
be updated.

References
[Fou23] Python Software Foundation. Lib: socket.py. https:

//docs.python.org/3/library/socket.html, 2023. Accessed:
2023-06-14.

[Hil20a] Wander Hillen. Hackage package: HPi. https://hackage.
haskell.org/package/HPi, 2020. Accessed: 2023-06-14.

[Hil20b] Wander Hillen. Hpi. https://github.com/WJWH/HPi,
2020. Accessed: 2023-06-14.

[Mar10] Simon Marlow. Foreign function interface.
https://www.haskell.org/onlinereport/haskell2010/
haskellch8.html#x15-1490008, 2010. Accessed: 2023-06-
14.

[McC21] Mike McCauley. bcm2835. https://www.airspayce.com/
mikem/bcm2835/, 2021. Accessed: 2023-06-14.

[McM23] Gordon McMillan. Socket programming howto. https:
//docs.python.org/3/howto/sockets.html, 2023. Accessed:
2023-06-14.

[NJ21] Ben Nuttall and Dave Jones. gpiozero. https://gpiozero.
readthedocs.io/en/stable/, 2021. Accessed: 2023-06-14.

[oG23a] The University of Glasgow. Hackage package: Con-
trol.concurrent. https://hackage.haskell.org/package/
base-4.18.0.0/docs/Control-Concurrent.html, 2023. Ac-
cessed: 2023-06-14.

[oG23b] The University of Glasgow. Hackage package: Con-
trol.exception. https://hackage.haskell.org/package/base-
4.18.0.0/docs/Control-Exception.html, 2023. Accessed:
2023-06-14.

[Ols17a] Tyler Olson. Github repository: gpio. https://github.
com/TGOlson/gpio/tree/master, 2017. Accessed: 2023-
06-14.

[Ols17b] Tyler Olson. Hackage package: gpio. https://hackage.
haskell.org/package/gpio, 2017. Accessed: 2023-06-14.

[Sch23] Eliane I. Schmidli. Embedded Programming with Em-
bedded Domain-Specific Languages (EDSLs) in Haskell.
Rapperswil, July 2023. OST – Eastern Switzerland Uni-
versity of Applied Sciences.

[Tea20] GHC Team. The capi calling convention.
https://downloads.haskell.org/ghc/9.0.1/docs/html/
users_guide/exts/ffi.html?highlight=capiffi#extension-
CApiFFI, 2020. Accessed: 2023-06-14.

[Wal15a] Linus Walleij. git commit: “gpio: Abi: mark the
sysfs abi as obsolete”. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/
Documentation/ABI/obsolete/sysfs-gpio?h=v5.16&
id=fe95046e960b4b76e73dc1486955d93f47276134, 2015.

Accessed: 2023-06-14.
[Wal15b] Linus Walleij. Gpio sysfs interface for userspace. https://

www.kernel.org/doc/Documentation/gpio/sysfs.txt, 2015.
Accessed: 2023-06-14.

[Wal21] Linus Walleij. Subsystem drivers using gpio.
https://www.kernel.org/doc/Documentation/driver-
api/gpio/drivers-on-gpio.rst, 2021. Accessed: 2023-06-14.

[YB23a] Kazu Yamamoto and Evan Borden. Hackage package:
network. https://hackage.haskell.org/package/network-
3.1.4.0, 2023. Accessed: 2023-06-14.

[YB23b] Kazu Yamamoto and Evan Borden. network documen-
tation: Network.socket. https://hackage.haskell.org/
package/network-3.1.4.0/docs/Network-Socket.html,
2023. Accessed: 2023-06-14.

2023-10-13 10:19. Page 5 of 1–5.

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://hackage.haskell.org/package/HPi
https://hackage.haskell.org/package/HPi
https://github.com/WJWH/HPi
https://www.haskell.org/onlinereport/haskell2010/haskellch8.html#x15-1490008
https://www.haskell.org/onlinereport/haskell2010/haskellch8.html#x15-1490008
https://www.airspayce.com/mikem/bcm2835/
https://www.airspayce.com/mikem/bcm2835/
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/
https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-Concurrent.html
https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-Concurrent.html
https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-Exception.html
https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-Exception.html
https://github.com/TGOlson/gpio/tree/master
https://github.com/TGOlson/gpio/tree/master
https://hackage.haskell.org/package/gpio
https://hackage.haskell.org/package/gpio
https://downloads.haskell.org/ghc/9.0.1/docs/html/users_guide/exts/ffi.html?highlight=capiffi#extension-CApiFFI
https://downloads.haskell.org/ghc/9.0.1/docs/html/users_guide/exts/ffi.html?highlight=capiffi#extension-CApiFFI
https://downloads.haskell.org/ghc/9.0.1/docs/html/users_guide/exts/ffi.html?highlight=capiffi#extension-CApiFFI
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/Documentation/ABI/obsolete/sysfs-gpio?h=v5.16&id=fe95046e960b4b76e73dc1486955d93f47276134
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/Documentation/ABI/obsolete/sysfs-gpio?h=v5.16&id=fe95046e960b4b76e73dc1486955d93f47276134
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/Documentation/ABI/obsolete/sysfs-gpio?h=v5.16&id=fe95046e960b4b76e73dc1486955d93f47276134
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/Documentation/ABI/obsolete/sysfs-gpio?h=v5.16&id=fe95046e960b4b76e73dc1486955d93f47276134
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/driver-api/gpio/drivers-on-gpio.rst
https://www.kernel.org/doc/Documentation/driver-api/gpio/drivers-on-gpio.rst
https://hackage.haskell.org/package/network-3.1.4.0
https://hackage.haskell.org/package/network-3.1.4.0
https://hackage.haskell.org/package/network-3.1.4.0/docs/Network-Socket.html
https://hackage.haskell.org/package/network-3.1.4.0/docs/Network-Socket.html

	Abstract
	1 Introduction
	2 GPIO Sysfs Interface
	3 Socket Connection to Python
	3.1 Haskell Client
	3.2 Python Server

	4 FFI to C
	5 Conclusions
	References

