
Reverse Engineering Labs - Folgearbeit

Bachelor Thesis

Department for Computer Science
OST - Ostschweizer Fachhochschule

Campus Rapperswil-Jona

Semester: Spring 2023

Authors: Gianluca Nenz

Ronny Müller

Thomas Kleb

Project Advisor: Ivan Bütler

Expert: Benjamin Fehrensen

Reviewer: Markus Stolze

Release: E-Prints

Version: Friday 16th June, 2023

Department for Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

Background This bachelor thesis is based on a previously created ”Reverse Engineering
Lab” term project by the team, which consists of beginner level hands-on
exercises (challenges) for students at OST to get into software reverse engi-
neering. However, some important aspects were not covered in the previous
lab. This bachelor thesis is geared towards advanced reverse engineering in
order to go deeper and into in-depth reverse engineering techniques.

Purpose This bachelor thesis extends the existing ”Reverse Engineering Lab”,
adding 10 more complex practice labs and exercises by introducing new
reversing methods, tools, and frameworks. The new and advanced exer-
cises can then be used by the teachers at the OST to lecture on the subject
of reverse engineering. This gives the students a better insight into the
subject and a more enriched, practical, and hands-on experience.

Methods First, we created a collection of topics not yet covered in the previously
created ”Reverse Engineering Lab”. These topics were then evaluated by
the team and the advisor based on personal interest, usefulness, and im-
portance in the field of reverse engineering. This evaluation was used to
discuss which topics we should create challenges for. During the semester
we used Scrum to iteratively create the challenges. Whenever a challenge
was finished, it was tested by us, fellow students, and other volunteers.
This process ensured the high quality of the challenges.

Results The goal of this bachelor thesis, the creation of 10 new reverse engineering
challenges covering new methods, tools, and frameworks, was successfully
achieved. All the challenges are hosted on Hacking-Lab, an online plat-
form for cybersecurity training and ethical hacking. Hacking-Lab provides
students with everything they need to improve their reverse engineering
skills.

Conclusions The aim was to teach students techniques that would reveal potential at-
tack vectors. The final product is a collection of many advanced reverse
engineering topics, providing deeper insight and teaching problem-solving
skills.

Legal disclaimer This course aims to understand hacking methods in order to effectively
counter them. It is unethical and potentially illegal to use the knowledge
gained for malicious purposes. This course promotes responsible use with
an emphasis on digital security and protection.

i

Lay Summary

Overview

What is Reverse Engineering

As described in our term project, reverse engineering is the process of analysing a product or
system to understand how it works, how it was made, or how it can be improved. It involves
taking the product or system apart, examining its components, and understanding how they fit
together and interact. In the context of software, reverse engineering is the process of analysing
a computer program to understand how it works and how it was implemented. This may involve
disassembling the program, studying its code and documentation, in order to recreate or modify
it. Reverse engineering can be done for a variety of reasons: to learn about new technologies,
to fix flaws / security vulnerabilities, or to create competing products. In most cases, reverse
engineering is a challenging and time-consuming process, requiring a deep understanding of the
underlying technologies and systems. It is often used by experts in fields such as computer
science, engineering, and security.

Current Situation

For a computer scientist, it is always useful to have some knowledge of cybersecurity sub-
jects. In order to introduce students to the world of cybersecurity, the Ostschweizer Fach-
hochschule (OST) has implemented several modules such as ”Cyber Security Foundations”, ”Se-
cure Software”, ”Cyber Defence” and ”HackLab”. In these modules, students use the Hacking-
Lab platform to solve hands-on exercises (challenges). In the preliminary work, an introduction
with challenges on the basics of reverse engineering was created. The plan is to extend the
current state with reverse engineering challenges about new tools, frameworks and techniques.
The goal of them is to bring students closer to the subject and explain more advanced aspects
of reverse engineering.

Approach

To achieve this, new challenges will be added to Hacking-Lab OST environment, which is, as
mentioned above, a platform which students are already accustomed to. These challenges will
be created for the students to go through and will be built with the idea of future additions in
mind.

Procedure

The scope defined at the beginning of the project was the basis from which the challenges were
created. This scope includes the topic, the know-how to be taught, and the tools to be used
by the students to complete the tasks. In addition to these points, the platform on which the
students should work is defined. In order to solve the given tasks, the students need instructions
to follow.

ii

CHAPTER 0. LAY SUMMARY G.Nenz, R. Müller, T.Kleb

Technologies

The challenges are created for either the Windows or Linux operating system, depending on
the software required. This allows students to have the option to complete each challenge on
either system, using a virtual machine if necessary. All the challenges are hosted on a Hacking-
Lab tenant provided by the advisor, firstly on the demo tenant to test all the features and
set up, then on the OST tenant for official use. Hacking-Lab is a website that offers a range
of cybersecurity services, including training, simulations, and challenges. It is designed for
cybersecurity professionals, as well as students and enthusiasts who are interested in learning
about and improving their skills in the field. Because of this, the OST uses it to host various
exercises to teach the fundamentals of cybersecurity to its interested students.

Results

The goals were defined during the inception phase of the project. It was planned to have 8 - 10
challenges by the end of the semester. This requirement was fulfilled thanks to a strict plan and
coordination between the students. During the project, 10 challenges were created and uploaded
to Hacking-Lab.

Future

The challenges created in this project, combined with the challenges of the preliminary work,
bring the students to a high level of understanding in the topic of reverse engineering. These
challenges combined with the feedback promise to be a suitable series to introduce the students
to advanced reverse engineering.

iii

Acknowledgement

First of all, we would like to express our sincere gratitude to Ivan Bütler for allowing us to
continue our term project. We thank him for his guidance and advice throughout the project.
Second, we are sincerely thankful to our fellow students and other volunteers who graciously ded-
icated their time to test our product. Their feedback and unique perspectives greatly improved
the quality and robustness of the challenges.
We would like to thank Compass Security for providing Hacking-Lab as the hosting platform
for the challenges.
Finally, we are grateful to the OST for the opportunity to undertake this project. The school’s
resources have been fundamental to our intellectual growth and the successful completion of this
project.
In conclusion, this bachelor thesis would not have been possible without the help and support
of these individuals and institutions, and we are deeply grateful for their contributions.

iv

Contents

Abstract i

Lay Summary ii

Acknowledgement iv

Glossary viii

Acronyms ix

I Technical Report 1

1 Project Idea 2
1.1 Introduction . 2
1.2 Problem statement . 2

1.2.1 Delimitation . 3
1.3 Objectives . 3
1.4 Methodology . 3

1.4.1 Conditions . 3
1.5 Expected Outcomes . 3
1.6 Conclusion . 4

2 Tools and Frameworks 5
2.1 Ghidra . 5
2.2 OpenAI API . 5

2.2.1 Models . 5
2.2.2 Tokens . 6

2.3 x64dbg . 6
2.4 GDB . 6

3 Hacking-Lab 7
3.1 Overview . 7
3.2 Tenants . 7

3.2.1 OST Tenant . 7
3.2.2 Demo Tenant . 7

3.3 Subdomains . 8
3.4 Structure . 8

3.4.1 Macro Overview . 8
3.4.2 Lab and Challenge Structure . 8

3.5 Hacking-Lab as a user . 9
3.5.1 Labs and Challenges . 9

3.6 Hacking-Lab as an editor . 10
3.6.1 Challenge Creation . 11

3.7 Docker variations . 13

v

CONTENTS G.Nenz, R. Müller, T.Kleb

3.7.1 idocker . 13
3.7.2 rdocker . 13

II Product Documentation 14

4 Requirements 15
4.1 Overview . 15
4.2 Challenge Requirements . 15

5 Lab Documentation 17
5.1 Subject Identification Process . 17

5.1.1 Decision Process . 18
5.2 Morph Box Generator . 20
5.3 Challenge Descriptions . 21

5.3.1 Ghidra Introduction . 21
5.3.2 Ghidra Scripting Introduction . 23
5.3.3 Ghidra ChatGPT . 25
5.3.4 Advanced Obfuscation . 27
5.3.5 Control Flow Flattening . 29
5.3.6 Hooking . 32
5.3.7 Anti-Debugging Techniques . 35
5.3.8 Memory Dumping . 38
5.3.9 ROP Chaining . 41
5.3.10 BMI Incident . 44

6 Results 47
6.1 Conclusion . 47
6.2 Future . 47

III Project Documentation 48

7 Project Plan 49
7.1 Project Management . 49

7.1.1 Time Management . 49
7.1.2 Planning . 49
7.1.3 Meetings . 50
7.1.4 Issue Tracking . 50

7.2 Roles and Responsibilities . 50
7.2.1 Roles . 51
7.2.2 Division of Labour . 51

7.3 Timeline and Milestones . 52
7.3.1 Phases and Iterations . 52
7.3.2 Milestones . 55

vi

CONTENTS G.Nenz, R. Müller, T.Kleb

8 Project Monitoring 56
8.1 Overview . 56
8.2 Milestone Review . 56
8.3 Time Tracking . 57

8.3.1 Time Tracked per Student . 57
8.3.2 Overall Time Tracked . 58

9 Risk Management 59
9.1 Risks . 59

9.1.1 Risk Analysis . 59
9.2 Encountered Risks . 61

9.2.1 R9 during CFF challenge development . 61
9.2.2 R9 and R2 during ROP challenge development 61

9.3 Risks Update History . 61

10 Quality Measures 62
10.1 Testing . 62

10.1.1 Process . 62
10.1.2 Feedback forms . 62

10.2 Testing Feedback Evaluation . 63
10.2.1 Evaluation . 64

IV Directories 68

Bibliography 69

List of Figures 71

List of Tables 73

List of Code Listings 74

V Appendix 76

A Advisor Meeting Protocols 77

B Personal Reports 78
B.1 Thomas Kleb . 78
B.2 Ronny Müller . 78
B.3 Gianluca Nenz . 79

C Sprint Monitoring 80

D Screenshots 88

E Gantt Diagram 96

F Challenge Identification 99

vii

Glossary

Term Description

Angr An open-source binary analysis platform for Python.

Basic Block A code sequence with no branches [1].

Binary A pre-compiled, pre-linked program that is ready to run under
a given operating system; a binary for one operating system will
not run on a different operating system.

Buffer Overflow Vulnerability where excess data overflows into adjacent memory.

Challenge Name for a single hands-on exercise on the Hacking-Lab plat-
form.

Docker A platform for developing, shipping, and running applications
using containerization.

Flag In cybersecurity, a piece of data that proves a challenge was
successfully completed.

Frida Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers.

GDB The GNU Debugger, a Linux tool for dynamically debugging
software programs.

IDA An interactive disassembler and debugger, used for software re-
verse engineering.

Indirect jumps Assembly jump to address in a register instead of directly to an
address.

Opaque predicates Expression which evaluates true or false and is hard to under-
stand at first glance.

Path explosion Exponential growth of program execution paths with increased
program size.

Scrum An agile framework for managing complex projects.

Scylla Tool to dump (parts of) a process’ memory.

Term Project The project done one semester before the bachelor thesis.

Tenant A unique subdomain in a shared web environment.

Unflattening The process of deobfuscating Control Flow Flattening.

Unified method signatures Unify function signatures to a single signature.

Ghidra A software tool for reverse engineering and static malware anal-
ysis.

x64dbg An open-source x64/x32 debugger for Windows.

viii

Acronyms

API Application Programming Interface
BB Basic Block
DLL Dynamic Link Library
CFF Control Flow Flattening
CFG Control Flow Graph
GDB GNU Debugger
GUI Graphical User Interface
OST Ostschweizer Fachhochschule
UUID Universal Unique Identifier
ROP Return Oriented Programming
RVA Relative Virtual Address

ix

Part I

Technical Report

1

Chapter 1

Project Idea

1.1 Introduction

The project team consists of three students. Two students major in cybersecurity and one ma-
jors in software engineering. In addition, an advisor, an expert, and a reviewer are a part of the
process. The basic idea of this project is to create a series of hands-on exercises (challenges) to
teach students at the OST about various topics of software reverse engineering. This documen-
tation with the challenges is the main product of this bachelor thesis. Hands-on training helps
to put theory into practice. This allows students to apply their knowledge and perform tasks
which could be relevant for their future working lives.

1.2 Problem statement

The term project covered the basics to learn reverse engineering. The aim of the term project
was to provide a suitable introduction to the vast field of reverse engineering. Therefore, many
of the foundations for this work were already laid. Within the term project, a problem domain
overview (Figure 1.1) was created, which represented the planned content.

Figure 1.1: RE Domain from preliminary work

A large part of this graph was covered by the term project and challenges were created for it.
Topics covered include the programming path and the entire analysis path. Buffer overflows were

2

CHAPTER 1. PROJECT IDEA G.Nenz, R. Müller, T.Kleb

also covered. A few topics were left open, although they could also be of relative importance to
a reverse engineer, such as ROP chaining, anti-techniques, and unpacking.
Because the field is so broad and there are still many important and exciting topics, an extension
of the term paper as a bachelor thesis was considered. This creates a need for this bachelor thesis
to explore these techniques and teach them to students.

1.2.1 Delimitation

Of course, the product of this work is not the only course to learn reverse engineering. But these
courses usually cost money and therefore cannot be used by our supervisor for teaching at the
OST. Thus, this product differs not only in content, but also in use and purpose.
Examples of such courses would be Infinite Skills’ Udemy course [2] or Josh Stroschein’s Skills
course [3].

1.3 Objectives

The task of this bachelor thesis was very openly defined. Basically, the aim was to expand on
the topics covered in the preliminary work.
The concise objectives were defined by the team and the advisor in the first advisor meeting. The
defined objective was to create between eight and 10 challenges on advanced reverse engineering
topics. Further details on what should be taught in these challenges would be defined after some
ideas have been brainstormed and ranked. This is explained in section 1.5.

1.4 Methodology

Based on the experience gained in the term project, this bachelor thesis should follow the same
workflow to fulfil the objective. Scrum will be used with weekly sprint meetings and occasional
advisor meetings for questions and to update the advisor. Testing the challenges is used to
confirm that they will able to teach a concept. In addition, the challenges will have to follow
the requirements mentioned in chapter 4.

1.4.1 Conditions

The bachelor thesis is worth 12 ECTS. As a rule of thumb, 30 hours of work are required per
credit. This means that each team member has to invest about 360 hours in this project. These
hours combined point out that more than 1000 working hours will be spent on the project, see
chapter 8 for more information.

1.5 Expected Outcomes

As mentioned in section 1.3 the team created a list with well known topics in reverse engineering.
Each member of the team and the advisor then individually rated the topics from one to five.
This resulted in a score of up to 20. The full list can be seen in the appendix in Figure F.1.
Table 1.1 shows a condensed version.

3

CHAPTER 1. PROJECT IDEA G.Nenz, R. Müller, T.Kleb

Type Score Platform Description

Ghidra Introduction 20 Windows Installation and orientation inside
Ghidra

Anti-Techniques 20 Windows and Linux Introduction to different anti-
techniques, such as Debugging,
Tampering, or Hooking

Obfuscation 19 Windows and Linux Show and reverse multiple ad-
vanced obfuscation techniques

ROP Chaining 18 Linux Use of ROP chaining to perform
function calls within a binary

Combination Challenge 18 Windows Final challenge as wargame as kind
of exam to test if the student
learned something

Ghidra Plugin 17 Linux Create a custom plugin in Ghidra
to use for further challenges

Injection Techniques 17 Linux Teach a type of code injection and
how to do it

Ghidra AI Plugin 14 Linux Use of AI to help with the static
analysis of a binary in Ghidra

Table 1.1: Challenge Concepts

This list is not yet arranged to support a common thread. These topics should then be converted
into a challenge. The chosen sequence will be visible in chapter 5. To measure the effectiveness
of the challenges, surveys of testing participants will be conducted. We hope that the challenges
will teach them the defined concepts and help them to recognise them in practice.

1.6 Conclusion

The defined topics are also unknown to the team, so the team has to plan enough time to
research these topics and come up with a good way to teach them. However, there should be
no possibility of not being able to cover a topic adequately, as the team can always fall back on
the advisors experience. The main goal is to create 8 to 10 challenges on the topics mentioned
in Table 1.1.
The lessons learned from the preliminary work are applied to this bachelor thesis. The testing
process, especially when filling out the form, was too inconsistent, which prevented a detailed
evaluation in the documentation. It is therefore a key objective to strictly adhere to this process.
The documentation was also the weakest part of the term project, and therefore it is a goal not
to repeat the same mistakes and to try to improve the quality of the documentation. At the
beginning of the term project, time tracking was not clearly regulated. This led to inconsistencies
in the evaluation, which had to be corrected at the end. In addition, the distribution of weekly
working hours among the team members was not uniform. Often there were weeks in which one
of the team members could not reach the weekly working hours due to too little work, but then
had to try to make up for this in the following weeks by doing more work. The goal is also to
distribute these times more evenly using the same time tracking tool.

4

Chapter 2

Tools and Frameworks

2.1 Ghidra

Ghidra is an open source suite of tools for reverse engineers. It was developed and released in
March 2019 by the National Security Agency to support its cybersecurity mission. The program
is written in Java, but the integrated decompiler is implemented in C++. It can be used on all
major platforms (Windows, MacOS and Linux). Ghidra can disassemble, assemble, decompile
and much more. Ghidra also supports many processor instruction sets and executable formats.
It also allows users to develop their own plugins or scripts to help them in their workflow. [4]
[5]

2.2 OpenAI API

The OpenAI Application Programming Interface (API) is used for the ”Ghidra GPT” challenge,
which uses it to help a student to reverse engineer a binary. This API was chosen for the project
because of its current relevance in many areas of computer science. All the information needed
to integrate it into a challenge can be found either in the API reference [6] which explains how
to use the API, or in the general documentation itself. [7]

2.2.1 Models

Models for the OpenAI API are advanced artificial intelligence language models that have been
trained on large amounts of text data. Developers can use the API to access these models, which
can perform a variety of tasks such as content generation, summarisation, translation, question
answering, and more. A list of all available models can be found in the documentation. [8]
The model used for text generation in this project is ”gpt-3.5-turbo”. It uses a message-based
system rather than a single input prompt, unlike other models such as ”text-davinci-003”. Each
message consists of two parts: the content and a role (either ”system”, ”user” or ”assistant”).
A ”system” message controls the behaviour of the model, while a ”user” message acts as an
instruction or query. The model playing the ”assistant” role generates responses based on the
context of the conversation. GPT-3.5-turbo maintains context, adapts to user instructions, and
produces more coherent and relevant output by taking into account the entire message history.

5

CHAPTER 2. TOOLS AND FRAMEWORKS G.Nenz, R. Müller, T.Kleb

2.2.2 Tokens

OpenAI API tokens are units of text that are processed and generated by the language models.
For the OpenAI models, tokens are: ”common sequences of characters found in text. The models
understand the statistical relationships between these tokens, and excel at producing the next
token in a sequence of tokens” [9]. They can be as short as a single character or as long as a word,
and include letters, numbers, symbols, and spaces. When using the OpenAI API, both input
and output tokens count towards the usage. Token limits play a crucial role in determining the
model’s ability to process a query, as each model has a maximum token capacity. In addition,
tokens are the basis for billing, as the cost of an API call is determined by the total number of
tokens involved.
To illustrate how tokens are processed using the API, visit OpenAI’s tokenizer [9]. This shows
that the sentence ”Hello World!” consists of three tokens: ”Hello”, ” World” and ”!”.

2.3 x64dbg

x64dbg is an open-source binary debugger for Windows, aimed at both beginners and experts.
It was developed by Duncan Ogilvie (mrexodia on github) with the primary aim of providing
an efficient and flexible debugging environment. This debugger is coded in C++ and offers an
interactive, dynamic and user-friendly Graphical User Interface (GUI). It supports both 32-bit
and 64-bit systems, making it widely applicable across a range of platforms. x64dbg offers a
wide range of features such as disassembling, debugging and graphing executable code, as well
as the ability to create custom scripts or plug-ins. It’s user-driven development model allows for
enhancements that are regularly implemented based on community feedback. All these features
make it an important tool for a reverse engineer, which is why it was chosen for this project.
[10] [11]

2.4 GDB

GNU Debugger (GDB), like x64dbg, is a very versatile open-source debugger that helps devel-
opers analyse errors during program execution. GDB was first released by Richard Stallman
in 1986 as part of the GNU system. Written in C and C++, it is compatible with many pro-
gramming languages, including C, C++, Rust, Go and others. It is designed for the Linux
operating system and can be used via text commands in a shell or terminal environment. As
well as performing typical debugging tasks such as setting breakpoints, stepping through code
and examining variables, GDB also supports reverse debugging, a rare feature among debuggers.
As GDB is an established tool in the reverse engineering world, reverse engineers have to know
how it is used. [12] [13]

6

Chapter 3

Hacking-Lab

3.1 Overview

Hacking-Lab is an online platform that provides a virtual environment for users to learn and
practice various cybersecurity skills. One of the key benefits of this platform is its flexibility, as
users can choose from a variety of systems and technologies that focus on different aspects of
cybersecurity. This allows teachers to tailor their lessons to specific topics or skills. Hacking-Lab
also offers a comprehensive set of tools and resources for teachers, including pre-built challenges
and assessments, as well as the ability to create custom challenges and track student progress.
All of these benefits make Hacking-Lab an ideal playground for students who are interested in
the vast play field of cybersecurity. This is why the OST, in collaboration with our advisor,
decided to create a tenant for the various cybersecurity lectures.

3.2 Tenants

When working with Hacking-Lab, a tenant is a separate environment for hosting labs and chal-
lenges. For this project, two of such tenants are of note: The OST tenant1, which is the platform
used by the OST to host its labs and challenges for the different modules, and the demo tenant2,
which is used to test and deploy initial iterations. The challenges created in this project were
hosted on the demo tenant, which is explained in subsection 3.2.2.

3.2.1 OST Tenant

Teachers of cybersecurity subjects in the OST use this tenant to upload challenges and create
graded exercises. It is currently used in the following modules: ”Cyber Security Foundations”,
”Secure Software”, ”Cyber Defence” and ”HackLab”. More information on these subjects can
be found on the OST overview for main areas of study. [14]
Access to this tenant requires an OST account or a global Hacking-Lab single sign-on (SSO). [15]

3.2.2 Demo Tenant

The Hacking-Lab team uses the demo tenant to develop and evaluate various labs and challenges
before making them available on a public tenant. In addition to testing the challenges, this
tenant is also used to experiment with new features and user interface designs for the underlying
platform. As a result of these frequent updates, the platform can experience unavailability and
connectivity issues, making a testing environment like this essential.
For this project, the challenges were created and hosted on the demo tenant. This approach
ensures that any issues or bugs can be identified and resolved before the challenges are moved to
the OST tenant. This not only helps to maintain the quality of the challenges but also ensures
the overall stability and reliability of the platform.

1OST tenant: https://ost.hacking-lab.com/
2Demo tenant: https://demo.hacking-lab.com/

7

CHAPTER 3. HACKING-LAB G.Nenz, R. Müller, T.Kleb

3.3 Subdomains

The tenants in the lab structure have subdomains that serve different purposes. These sub-
domains can be accessed by adding a prefix to the URL. In this project, both the ”editor”
subdomain (with the prefix ”editor”) and the ”resource” subdomain (with the prefix ”res”)
were used for editing labs and challenges. These are explained in more detail in the following
sections.

3.4 Structure

This section explains the key structural elements of the Hacking-Lab platform. Understanding
these aspects will enable users to effectively create and manage labs and challenges within the
platform.

3.4.1 Macro Overview

To understand how a Hacking-Lab editor can create and maintain different labs on the platform,
one has to understand how Hacking-Lab is structured and how the tools explained in section 3.3
are used.
The most important part of understanding the Hacking-Lab structure is to know how it is built:
Each of the different tenants is represented as a GitHub repository. This means that a lab
for a tenant can either be created directly in the repository or by using the ”editor” and the
”res” prefix as an interface. This structure has to be in mind when creating a lab, as the editor
interface does not yet allow for deletion of a lab (this must be done directly on the repository).

3.4.2 Lab and Challenge Structure

These different parts of the platform are accessed through different roles. When an account is
created, it is given the default role of ”Student”. To get more UI access to the platform, an
admin has to change this role. For this project, these different roles were used to create and test
the labs and challenges. While Hacking-Lab has several roles available, four of them (Table 3.1)
are important for the basic use of this platform.

Role Description

Student A standard user of Hacking-Lab, which participates in events.

Teacher Responsible for grading the solutions submitted by users.

Manager Sets up the events, teams and classes, and manages resources.

Editor Creates and edits challenges, quizzes and theories. Responsible for adding, updat-
ing or deleting resources.

Table 3.1: Relevant Hacking-Lab roles for this project

Each lab is based on a different Markdown (see section 3.6 for more information on this) based
text, formatted to suit the requirements of the platform. The ”resources” subdomain can be
used to link various files and Docker images to the challenge, making them available for students
to download or work with. Figure 3.1 shows how the lab is structured to make it as easy to use
as possible.

8

CHAPTER 3. HACKING-LAB G.Nenz, R. Müller, T.Kleb

Figure 3.1: Hacking-Lab structure overview

3.5 Hacking-Lab as a user

This section provides the reader with basic information on how to navigate Hacking-Lab as a
user or student and how to complete the labs and challenges provided by this project. For a
more in-depth overview and information about the Hacking-Lab platform, please visit its info
page. [16]

3.5.1 Labs and Challenges

A student of the OST can log in to Hacking-Lab either with the SWITCH edu-ID [17] or by
creating an SSO for Hacking-Lab [15]. Once logged in, the student will either have events set
up or will have to enter an access code to view them (see Figure 3.2).

Figure 3.2: Hacking-Lab Event overview

Each event consists of at least one lab that focuses on a specific topic. The lab is then broken
down into a series of challenges designed to hone specific aspects of the broader topic. In
addition, the challenges are tailored to the skill level of the participants, allowing them to learn
at their own pace and grasp the concept effectively.

9

CHAPTER 3. HACKING-LAB G.Nenz, R. Müller, T.Kleb

To solve a Hacking-Lab challenge, students can provide either a flag, a writeup or both. If a
student submits a flag, it can be automatically checked to determine whether it is correct or
not. However, if a student submits a writeup, it must be graded by another user who has the
”Teacher” role (Figure 3.3). This ensures that the grading is accurate and consistent. The
writeup must meet certain criteria and guidelines to receive a passing grade, while the flag
only needs to match the predefined correct answer. These two options provide flexibility in the
grading process and cater to different learning styles and skill levels.

Figure 3.3: Hacking-Lab grading process

Once the solution has been submitted, the student must wait for it to be graded. There are
several possible outcomes for it: Rejected (rework of the solution is needed), Partial Points
(partially correct, some points are missing) and Full Points (the solution meets all requirements
and is complete). This progress is also visible in the progress bar in the top panel of the lab.
This bar has a cell for each challenge which is either grey (challenge not started), yellow (some
units of the challenge started but not all) or green (all units finished).

3.6 Hacking-Lab as an editor

Challenges have an owner and editors. The owner is the person who created the challenge and
has additional options to those of an editor:

• The type of hand-in in any combination (writeup, flag)

• The type of the challenge (Table 3.2)

Each challenge consists of the following parts, which can be edited through the interface or
directly on the repository: category & tags, grading & flag, sections and resources. For a
challenge to work, each of these must be set (except resources). For this project, only the editor
was used.

10

CHAPTER 3. HACKING-LAB G.Nenz, R. Müller, T.Kleb

Type Description

Training Used for walkthroughs on a certain topic.

Optional Steps Challenges with explanations that can be viewed for a deduction of points

Competition These challenges have no walkthrough, only an objective that the student
must solve on its own

Table 3.2: Challenge Types

3.6.1 Challenge Creation

This section shows a short walkthrough of how to create a challenge using the editor interface.
All the images can also be found in the section D ”Screenshots”.

When creating a challenge, the editor is first
prompted with the general options where the
challenge name, description, image, type, and
level are set. To continue editing the challenge,
a title and description must be set. The other
options are optional, but can all be changed
later.

Figure 3.4: Challenge Editor - General

The next step is for the editor to choose which
category the challenge belongs to. This can be
done either by selecting one of the available op-
tions or by adding a custom one in the field on
top. Each of the challenge categories has an
icon, which will be displayed on the final page
and indicate the domain to the student.

Figure 3.5: Challenge Editor - Categories

The next setting to change is the flag type from
the top dropdown. A flag can either be static,
which means it is the same flag for every stu-
dent, or dynamic, which allows Hacking-Lab to
generate it. If the static option is selected, the
editor must set it here. In addition to the flag
settings, the editor can define grading instruc-
tions which will only be visible to the teacher.

Figure 3.6: Challenge Editor - Grading

11

CHAPTER 3. HACKING-LAB G.Nenz, R. Müller, T.Kleb

This part of the challenge creation process is
used to generate the text and images that will
be displayed on the website. A challenge is
made up of sections and steps. Sections are the
different parts of the challenge, while steps are
the drop down menus. All text uses Markdown
as its interpreter, and images can be included
by uploading them using the upload interface
on the left.

Figure 3.7: Challenge Editor - Sections

This step involves adding resources from the
”res” subdomain. This is done by uploading the
resource, which can be anything from a simple
file or zip to an entire Docker instance. To up-
load such a resource, the generated Universal
Unique Identifier (UUID) must be copied and
pasted into the field.

Figure 3.8: Challenge Editor - Resources

The last tab is for checking that everything is
as it should be. It shows the challenge as a stu-
dent would see it when it is deployed. At this
point, the editor has two options: either simply
save the challenge to edit it later, or save and
then deploy the changes. This will bring up a
status window and display any errors that have
occurred. If there are no errors, the challenge
is deployed and can be viewed on the tenant.

Figure 3.9: Challenge Editor - Review

12

CHAPTER 3. HACKING-LAB G.Nenz, R. Müller, T.Kleb

3.7 Docker variations

The Hacking-Lab platform offers two different deployment types for the services needed within
a challenge (Figure 3.10). These are designed as ”ready-to-run” Docker containers for the solver
of a challenge. It is also worth noting that, due to IP whitelisting, the Docker services are only
available to people who are currently logged into the Hacking-Lab platform.

Figure 3.10: Docker overview

3.7.1 idocker

The idocker is useful if the challenge provides either an HTTP or HTTPS endpoint. This type
of Docker container is provisioned through the Traefik load balancer and is assigned an internal
IP from the private hosting network. [18]

3.7.2 rdocker

The rdocker is used when the challenge provides anything besides HTTP/S (with very few
exceptions, such as exploiting a bad certificate). Rdockers are assigned a public IP address
that is accessible from anywhere. This type of Docker could be a binary exposed over TCP, for
example, and is the variant we have most often used when a Docker was needed. [19]

13

Part II

Product Documentation

14

Chapter 4

Requirements

4.1 Overview

This chapter details the requirements for reverse engineering challenges on the Hacking-Lab
platform to ensure a smooth process and high quality results. It covers several aspects such as
accessibility, pedagogical effectiveness, manageability, and ethical responsibility.

4.2 Challenge Requirements

The requirements listed here are in addition to those defined by the Hacking-Lab platform itself
[20]. They ensure a smooth progression through the semester and a high quality product.

Target Audience

The target audience of the challenges is OST students in the fifth semester. In addition to OST
students, the target audience includes any user with similar knowledge.

Language

All challenges and their descriptions are written in English. This ensures that all students and
other interested parties can follow the instructions and solve the challenges.

Platform

Hacking-Lab provides Kookarai1, a Kali Linux based distribution. A challenge that requires the
use of Linux must be solvable on Kookarai. Each challenge must indicate which platform the
student needs to solve it, both with a morphological box and with tags.

Exercise Grading

Challenges are graded using either a flag or a writeup. Flags are automatically checked by
Hacking-Lab itself, but writeups must be graded by the teacher. To make the grading process
as easy as possible, sample solutions and a walkthrough video are provided for the teacher.

Time Expenditure

The challenges are designed to be completed by students either individually or in groups. The
time for completion should generally not exceed 45 minutes (one class period). This time includes
the solving of the challenge and writing of the report.

1Kookarai documentation: https://kookarai.idocker.hacking-lab.com/

15

CHAPTER 4. REQUIREMENTS G.Nenz, R. Müller, T.Kleb

Programming Languages

C is used to build the binaries used as examples and introductions. Python is the language of
choice for writing the scripts used to solve the various challenges.

Visualization

All challenges must be coherent and divided into sections and steps. To ensure this, a template
will be created at the beginning of the project and must be followed.

Maintainability

All challenges must be easy to manage and debug. In the future, the artifacts and binaries must
not require multiple updates and must work without complication.

Content Restrictions

All challenges must be neutral and must not offend other people, cultures, sexual orientation,
politics or religion. They must not contain content that involves drugs, nudity, human exploita-
tion, violence or death. Challenges must not encourage illegal activity.

16

Chapter 5

Lab Documentation

5.1 Subject Identification Process

In the early stages of the project, a significant portion of the effort was focused on planning and
preparing for the coming weeks, as outlined in section 7.3. A crucial aspect of this planning
process was the identification and selection of the topics and challenges that would be taught
to the students. Based on previous experience with the term project, it was found that it was
important to have a variety of potential topics to choose from. This led to discussion and
coordination of ideas with the advisor before the construction phase began. The result of these
discussions was a table that set the initial boundaries for this project. Table 1.1 from the first
chapter shows the final result of our discussions, displaying the topics that were selected to be
taught. The full list used in this process can be found in Appendix F. This list was the basis
for the construction phase. During the process of creating the challenges, it was decided to
split the obfuscation challenge into two and add a hooking challenge, which is why the final list
(Table 5.1) differs from the initial one.

Subject Selection

Priority Subject Description

1 Ghidra Introduction Introduction to Ghidra

2 Ghidra Script Development Develop a plugin in Ghidra which helps
with understanding the code

3 Ghidra GPT Plugin Showcase Explain how to install and use the Chat
GPT plugin for Ghidra

4 Advanced Obfuscation Advanced obfuscation techniques

5 Control Flow Flattening Specific and more complicated obfusca-
tion technique

6 Hooking with Frida Use the tool ”Frida” to hook into a run-
ning process

7 Anti-Debugging Techniques Introduction to anti-debugging and
how to circumvent it

8 Memory Dumping Understand how to dump memory

9 ROP Chaining Use of ROP chaining to perform func-
tion calls within a binary

10 Combination challenge Combination of different challenges

Table 5.1: Table displaying the selected subjects

17

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.1.1 Decision Process

Ghidra Introduction

As a powerful and widely used reverse engineering tool, it is essential for a reverse engineer
to have a solid understanding of Ghidra’s capabilities and features. By learning how to use
Ghidra effectively, a reverse engineer can analyse and understand complex software systems
more efficiently.

Ghidra Script Development

Creating custom scripts for Ghidra can greatly improve a reverse engineer’s workflow and effi-
ciency. By understanding how to develop scripts for Ghidra, a reverse engineer can customise
the tool to better suit their specific needs and automate repetitive tasks.

Ghidra AI Extension Showcase

By demonstrating the use of Artificial Intelligence (AI) extensions within Ghidra, a reverse
engineer can learn how to use AI technologies to speed up the reverse engineering process. This
can help to identify potential vulnerabilities and threats within software systems more quickly
and accurately.

Advanced Obfuscation

Sophisticated software obfuscation techniques can make it difficult for a reverse engineer to
understand and analyse a program. By learning advanced obfuscation techniques, a reverse
engineer can better understand how to deobfuscate code and identify potential vulnerabilities.

Control Flow Flattening

Control Flow Flattening (CFF) works by restructuring the code execution path into a single
loop along with control flow primitives, making traditional static code analysis less effective. It’s
understanding is invaluable to a reverse engineer, as it allows for the deobfuscation of complex
code structures that could hide malicious code.

Hooking with Frida

Frida is used as a toolkit to intercept and modify function calls in real time, allowing, for
example, the arguments passed to a function to be modified, thereby altering the result when
executed. A reverse engineer can use this tool to monitor and manipulate the software, allowing
for a more in-depth analysis and vulnerability discovery.

Anti-Debugging-Techniques

Anti-debugging techniques are used to complicate engineering efforts by interfering with or
preventing the operation of debugging tools. Knowledge of these techniques is beneficial to
reverse engineers, as it allows them to bypass these barriers and continue to examine the software.

18

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Memory Dumping

Memory dumping is the process of extracting the contents of a program’s memory space, often
used for debugging and software analysis. It’s a valuable technique for reverse engineers because
it reveals runtime configurations, potential vulnerabilities, and variable values, providing deeper
insight into software operations and potential points of failure.

ROP Chaining

Return Oriented Programming (ROP) is a technique used by attackers to bypass existing security
measures in software. By understanding how ROP chaining works, a reverse engineer can better
understand how to detect and defend against ROP attacks.

Combination Challenge

At the end of a lab, students can put their acquired knowledge to the test. This serves not
only as a self-check to see if the student has understood the previous topics, but also as a good
exercise to manifest what has been learned.

19

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.2 Morph Box Generator

The challenges also needed to include an image that conveyed the essential elements at a glance.
After some brainstorming, it was decided to use a so-called morphological box. This is usually
used for the brainstorming itself, but can also be used to give an easy-to-understand overview.
The aim of this generator is to be highly customisable, as it will potentially be used in other
Hacking-Lab challenges as well as in this project.
Since there was no customisable generator available, it was decided to create a small piece of
software to generate these graphics. Python was chosen for this task because of its simplicity
and high configurability.
The software now generates such morphological boxes from a JSON template, ready to be used
in the challenges for overview purposes. The following listing shows an example of the JSON
templates:� �
1 {

2 "Ghidra Introduction": {

3 "Type": {"Wargame": false , "Training": true , "Optional Steps": false},

4 "OS": {"Windows": true , "Linux": true},

5 "Arch": {"x64": false , "x32": true},

6 "Req. Skills": {"Dynamic Analysis": false , "Static Analysis": true ,

"Scripting": false}

7 },

8 "Second Challenge": {

9 "Type": {"Wargame": false , "Training": true , "Optional Steps": false},

10 "OS": {"Windows": true , "Linux": true},

11 "Arch": {"x64": true , "x32": true},

12 "Req. Skills": {"Dynamic Analysis": false , "Static Analysis": true ,

"Scripting": false}

13 }

14 }� �
Listing 5.1: JSON for morphological box generation

This JSON snippet would then generate two images, Figure 5.1 showing what one might look
like.

Figure 5.1: Generated morphological box used for the ”Ghidra Introduction” challenge

To implement this morphological box generation, the Python library ”DrawSVG”1 was used.
The Pillow library was also tested as an alternative, but was quickly discarded as the quality was
slightly inferior. As the generated images will be used to give a brief overview of the challenge,
colours that are easy to recognise have been selected.

1DrawSVG documentation: https://pypi.org/project/drawsvg/

20

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3 Challenge Descriptions

This chapter describes all created Hacking-Lab challenges in detail. Images of what each chal-
lenge looks like with all its steps collapsed can also be found in the section D ”Challenge
Sections”.

5.3.1 Ghidra Introduction

Figure 5.2: Challenge: Ghidra Introduction

Figure 5.2 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Windows, Reverse Engineering

Level: novice

Grading: Flag, Writeup

Mode: Training

Since IDA was introduced in the term project to get the students used to the assembly code,
Ghidra, a different disassembler, was chosen for this project. Ghidra offers some advantages
over IDA, one of the most important being that it is an open-source software, which means it is
freely available to users. It also provides pseudocode, which means that the user no longer has
to follow the assembly, but can see the high level code.

Development

Two different C binaries have been written for this challenge, which are used to familiarise the
student with Ghidra.

21

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

example.exe:

The first binary is very simple; it simply outputs a random number between 0 and 9 when
started. This binary is used in this step-by-step explanation of Ghidra.

challenge.exe:

The second binary is a bit more complex and turns an input into an encrypted output. A library
was used to encode the message in Base64. The library was authored by Ahmed Elzoughby and
released on May 10, 2018 on his public Github repository. [21]
The main function including the encryption calls can be seen in 5.2.� �
1 const int LINE_LENGTH = 1024;

2

3 int main() {

4 char line[LINE_LENGTH];

5 GetSecretMessage(line);

6

7 const char* ENCRYPTED_MESSAGE = XOR(base64_encode(line), 9);

8 DisplaySecretMessage(ENCRYPTED_MESSAGE);

9 free(ENCRYPTED_MESSAGE);

10

11 printf("Press any key to continue ...\n");

12 getchar ();

13

14 return 0;

15 }� �
Listing 5.2: Source code for the first challenge

Summary

As this is an introductory challenge, the main focus is on understanding the necessary features
required for the following challenges. After familiarising themselves with Ghidra using the
example.exe, the student is given a second, more complex challenge.exe. Along with this binary,
they are also given the flag that was encrypted by the challenge.exe. By reverse engineering the
challenge.exe, the encrypted flag can be decrypted and the challenge solved.

22

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.2 Ghidra Scripting Introduction

Figure 5.3: Challenge: Ghidra Scripting Introduction

Figure 5.3 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Linux, Reverse Engineering, Programming

Level: medium

Grading: Flag, Writeup

Mode: Training

With Ghidra being the disassembler of choice, understanding its scripting capabilities will come
in handy for the more complex tasks in the future. Ghidra scripts can be written in either Java
or Python. In the end, Python was chosen as the programming language because it is a widely
used scripting language in the cybersecurity industry, has low overhead and is easy to set up.

23

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Development

This challenge consists of two parts:

Hello World:

The first part teaches the student the basics of Ghidra script development and showcases a
simple ”Hello World” script as seen in 5.3.

� �
1 CURRENT_PROGRAM = getCurrentProgram ()

2 PROGRAM_NAME = currentProgram.getName ()

3 print("Hello World from: " + PROGRAM_NAME)� �
Listing 5.3: Ghidra scripting: Hello World

syscalls:

After coding their first script, the student has to analyse a provided binary written in C that
invokes several standard library functions and system calls a predefined number of times. The
functions called and the number of times they were called can be seen in 5.4.� �
1 strcmp(Str1 , Str2); // Called 9 times

2 strncat(Dest , Src , Count) // Called 3 times

3 getgid (); // Called once

4 gettimeofday (&timeval , NULL); // Called 14 times

5 strchr(Str1 , Chr); // Called 19 times

6 strlen(Str) // Called 3 times

7 getuid (); // Called 18 times

8 system(Command) // Called 9 times

9 strstr(Str , SubStr) // Called 16 times

10 getpid (); // Called 20 times� �
Listing 5.4: C function calls

Summary

The student is first guided through the development of their first plugin, and then is given
increasingly more complex sources to learn from. To test the knowledge gained, the student
has to develop a Ghidra script that counts the standard library- and system calls. In order to
extract the flag, the number of calls to each function must be mapped to the corresponding
letter in the alphabet from top to bottom. To solve the challenge, the developed script that led
to the solution and the flag have to be handed in.

24

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.3 Ghidra ChatGPT

Figure 5.4: Challenge: Ghidra ChatGPT

Figure 5.4 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Reverse Engineering, Linux

Level: medium

Grading: Writeup

Mode: Training

Similar to other facets of computer science, AI can help the engineer analyse and process all
kinds of data, partially automating and speeding up processes such as reverse engineering. This
challenge uses the OpenAI API (section 2.2) together with the newly acquired Ghidra scripting
skills (subsection 5.3.2) to assist in all kinds of tasks. The natural language processing models
provided by the OpenAI API allow the generation of human-like descriptions of a binary’s code,
data structures, and algorithms. This combination of tools provides a deeper understanding of
the inner workings of the binary and helps identify potential vulnerabilities and security issues,
as well as various obfuscation techniques.

Development

During the planning of this challenge, it was decided to develop a Node.js server that acts as a
proxy for the student’s script to connect to. In this way, is it not necessary for every student to
purchase API tokens to solve this challenge, nor for the operator to make his API key public.
The Node.js server runs on an idocker and hides direct access to the API key from the student. In
addition, the communication between client- and server takes place via a Ghidra script running
on the student’s machine.

25

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Node.js server:

The following code snippet, 5.5, uses an asynchronous function that generates the text using
the OpenAI API with a provided prompt. The openai.createCompletion method is used to
generate said text with several parameters specified in the object passed as an argument. The
model parameter specifies the language model to use. In this case, the gpt-3.5-turbo model
is used, which generates high quality human-like text. The messages parameter contains the
initial text on which the generated text will be based. The max tokens parameter specifies the
maximum number of tokens to generate. Finally, the generated text is accessed and returned
using the data.choices[0].text property.� �

1 async function runCompletion(promptText) {

2 const completion = await openai.createChatCompletion ({

3 model: "gpt -3.5- turbo",

4 messages: [{"role": "user", "content": promptText }],

5 max_tokens: 300,

6 });

7 return(completion.data.choices [0]. message.content);

8 }� �
Listing 5.5: Completion function for sending text to openAI

Ghidra script:

The Python code shown in Listing 5.6 defines a function that retrieves the decompiled code of
the currently selected function in Ghidra. It first gets the currently active program in Ghidra
and creates a DecompInterface object to provide access to the decompiler functionality. The
current program is opened in the decompiler and the function retrieves the decompiled code
markup for the current function. The code markup is then returned as a string and stored in
the current function variable. This decompiled code is then sent to OpenAI for analysis.� �

1 def get_current_function ():

2 currentProgram = getCurrentProgram ()

3 decompiler = DecompInterface ()

4 decompiler.openProgram(currentProgram)

5

6 current_function = currentLocation.getDecompile ().getCCodeMarkup ()

7 return current_function� �
Listing 5.6: Python script to get the current function to send to openAI

Summary

This challenge takes the skills learned in the previous challenge and builds on them. As the
OpenAI API is a paid service, the student needs to start a Docker and send POST requests to
the exposed IP and PORT. The student downloads the script skeleton and adds the functions
needed to interact with the OpenAI API. The process of creating the script is guided. Upon
completion of the script, the student must modify the question posed so that ChatGPT responds
correctly. To complete the challenge, the student must answer the given security questions.

26

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.4 Advanced Obfuscation

Figure 5.5: Challenge: Advanced Obfuscation

Figure 5.5 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Defense, Reverse Engineering, Windows

Level: medium

Grading: Writeup

Mode: Training

Obfuscation is an important tool for protecting software from malicious reverse engineers. This
challenge teaches five different obfuscation techniques and uses them in an example binary.

Development

This challenge uses a two-step process. In the first step, the student is shown the theory behind
the obfuscation techniques used. Once they have understood the theory, they are given a binary
that has been obfuscated using these techniques.

27

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Theory:

Techniques being taught to the student are:

• Dead Code insertion

• Opaque Predicates

• Indirect jumps

• Function merging

• Method Signature Unification

For an in-depth explanation of these techniques, visit the challenge in hacking-lab2.

advancedObfuscation.exe

The binary has the functions as shown in Listing 5.7.� �
1 void print_welcome ();

2 void dead_code(float number);

3 float addition(void* p[5]);

4 float function_merged(void* p[5]);

5 int main();� �
Listing 5.7: Calculator Methods

In this example, addition and function merged use unified method signatures. Function merged

contains the other three mathematical functions and a function to print the whole equation with
the result. The binary uses opaque predicates inside the main function and an indirect jump to
call the addition function. The dead code function is only used to add dead code.
Most of the information on the techniques has been taken from Guardsquare. [22]

Summary

In the first steps, the student learns about the obfuscation techniques used with examples. They
will then be given the obfuscated calculator and find out how and where these techniques have
been used. A writeup on the findings must be submitted to complete this challenge.

2Link to challenge: https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/378

28

https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/378

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.5 Control Flow Flattening

Figure 5.6: Challenge: Control Flow Flattening

Figure 5.6 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Programming, Reverse Engineering, Linux

Level: hard

Grading: Writeup

Mode: Training

In addition to the obfuscation techniques described in the previous chapter (subsection 5.3.4), it
was decided to tackle a more complex obfuscation technique and construct a challenge around it.
Control Flow Flattening (CFF) was chosen because although it is used in commercial software
or malware nowadays, no walkthroughs could be found on how to deobfuscate it using Ghidra.
This led to the creation of this challenge, which explains CFF and how to unflatten it using
Ghidra and Python scripting. To understand the concept behind CFF and the approach used
to solve it, the following two sections provide a brief summary.

Control Flow Flattening overview

Control Flow Flattening (CFF) is an obfuscation technique used to hide the flow of a binary by
placing its Basic Blocks (BBs) inside a single switch statement. The switch statement itself is
inside a while loop and manages the order of execution. This results in a ”flattened” appearance
of the BBs inside the Control Flow Graph (CFG). Figure 5.7 shows an example of what CFF
does when looking at the CFG:

29

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Figure 5.7: Impact of CFF

For further explanation and a sample code, have a look at the challenge in hacking-lab3.

Symbolic execution

Symbolic execution is a binary analysis technique that evaluates all possible paths of execution.
It does this by treating inputs as symbolic variables rather than concrete values. This makes it
valuable not only for testing software, but also for understanding the control flow of a binary.
Symbolic execution was chosen as the approach for this challenge because it is necessary to
examine all possible paths in order to be able to unflatten a binary. Also, since the binaries
provided are small, there is no fear of path explosion.
For further explanation, have a look at the challenge in hacking-lab3.

Development

This challenge begins by explaining what CFF is and how it affects the target binary. Due to
the complicated nature of this topic, the student is provided with the necessary theory on how
the unflattening process works before they are given the binary exercise to unflatten.

example flattened:

The theory of unflattening is explained using the example flattened binary. The unflattening
process is divided into four steps:

• Identifying the relevant BBs

• Determining the order of execution of the relevant BBs using symbolic execution

• Undefining the by CFF introduced Basic Block (BB)s

• Patching the binary to make it follow the discovered order

3Link to challenge: https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/379

30

https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/379
https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/379

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

For all but the second step, it was decided to provide an additional video showing exactly how to
apply the written instructions. This approach was chosen because these steps involve sequences
of multiple clicks and interactions in Ghidra that can confuse the reader. In addition, video
instructions do not bloat the explanation like the equivalent of screenshots.
For the videos, have a look at the challenge in hacking-lab4.
The only step without a video walkthrough is the actual programming. In step two, the student
is given Python code that uses Angr to perform symbolic execution on the example binary. Angr
was chosen because it is easy to use, has built-in support for path exploration and constraint
solving, which suited our needs perfectly. All the information used to create this challenge has
been gathered from a number of sources, including the following: [23], [24], [25], [26], [27], [28],
[29].

exercise flattened:

This is the binary that needs to be unflattened by the student. It adds a layer of complexity
by having two exit conditions. Each of the two exit conditions results in a different path being
taken by Angr and must be manually merged by the student.

Summary

The student learns a more advanced obfuscation technique in theory and then applies it in prac-
tice. An example binary is provided, and the student is guided through the entire unflattening
process. Next, the student must demonstrate their newfound knowledge of CFF by unflattening
another, more complex binary. Finally, the student submits the unflattened CFG of the exercise
binary to the Hacking-Lab platform.

4Link to challenge: https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/379

31

https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/379

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.6 Hooking

Figure 5.8: Challenge: Hooking

Figure 5.8 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Reverse Engineering, Programming, Linux

Level: easy

Grading: Writeup

Mode: Training

Hooking is an essential part for of reverse engineering. It is used to analyse, intercept and modify
the behaviour of an application to understand how it works. A reverse engineer uses hooking to
analyse how the functions work and to quickly find vulnerabilities. Frida was recommended by
the expert and therefore chosen as the tool to learn about hooking.

Hooking overview

Hooking is essentially a different type of dynamic analysis. The process of intercepting and
modifying the behaviour of a program is called hooking. It is possible to place hooks at different
levels of the program flow, for example at function calls or API calls. Basically, it allows the
user to run custom code that is placed between the original code.
To get a better understanding of this technique, solve the challenge in hacking-lab5.

5Link to challenge: https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/380

32

https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/380

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Frida

Frida is an open-source dynamic binary instrumentation tool that allows reverse engineers to
inject code using hooks. It provides a framework for instrumenting and analysing software at
runtime, without the need to modify or recompile the source.
Frida supports all relevant platforms (Windows, Linux) and even more (macOS, iOS and An-
droid). It provides APIs and bindings for JavaScript, Python and C/C++. The supported
platforms combined with the various APIs make Frida approachable for almost everyone.
Frida works by running a server instance inside the target process and creating a client on the
host machine. These components then connect to each other and allow data and commands to
be exchanged.

Development

The challenge starts with an explanation of Frida, instrumentation and hooking. After installing
Frida, the student is ready to follow the guided part of the challenge. For the second part, a
custom application was created that has a simple mechanism to get user input and then display
that information. After changing the behaviour, it will always display the information injected
with Frida.

demo.bin:

This binary is used in the guided part of the challenge, a simple binary asking for name and
age. This part explains how to use Ghidra to find the address of the internal function shown in
Listing 5.8.� �

1 void printInfo (char* n, int age) {

2 printf("\n-----------------\nYour name is: %s\n", n);

3 printf("and your age is: %d\n", age);

4 }� �
Listing 5.8: Demo print function

It then shows how to use Frida to place a hook and access the values of the parameters. Finally,
it shows how to change these values to change the behaviour of the program.

33

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

challenge.bin:

This binary is used in the second part of the challenge. The function to be hooked by the student
is shown in Listing 5.9.� �

1 int isGuessCorrect(const int GUESS , const int SECRET) {

2 if (GUESS > SECRET) {

3 printf("Guess was higher than the Secret !\n");

4 return 0;

5 }

6 if (GUESS < SECRET) {

7 printf("Guess was lower than the Secret !\n");

8 return 0;

9 }

10 return 1;

11 }� �
Listing 5.9: Demo print function

All the information used to create this challenge was gathered from Frida’s official website. [30]

Summary

The student learns about hooking in theory and then uses Frida in a guided exercise to get a
feel for it. They are given a sample binary and information on how to set up Frida to hook
an internal function and interact with its parameters. After learning the basics, the student is
given the challenge binary, where they have to find a way to always guess the correct random
number.
Finally, the student submits their personal solution to the challenge, explaining how it works
and what needs to be considered to run their script.

34

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.7 Anti-Debugging Techniques

Figure 5.9: Challenge: Anti-Debugging Techniques

Figure 5.9 shows the overview of the challenge on the Hacking-Lab platform. The chosen prop-
erties for this challenge are:

Categories: Reverse Engineering, Windows, Linux

Level: medium

Grading: Flag, Writeup

Mode: Training

Anti-debugging is a set of techniques used in software development to complicate or entirely
prevent the debugging process, thereby shielding the code from attackers. Understanding anti-
debugging is essential for a reverse engineer, as it can be a significant hurdle to overcome when
analysing a binary. Familiarity with these techniques can also help identify and overcome these
barriers, allowing for more effective debugging and vulnerability assessment. Ultimately, this
knowledge can improve a reverse engineer’s skills, which is why this challenge was chosen.

Development

The challenge revolves around the student using dynamic debugging tools to solve problems
and bypass implemented anti-debug techniques. Showing all the possible ways in which these
barriers can be set up would make the challenge too long. Therefore, five techniques have been
chosen that can be used in both Linux and Windows executables. [31] [32] [33]

35

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Selected Techniques

Detecting Software Breakpoints

Ptrace (Linux)

TracerPid (Linux)

Detect Parent Processes

Timing Checks

Table 5.2: Selected Anti-Debug Techniques

Following the techniques shown in Table 5.2, the student will learn how to detect and circumvent
them. This includes: How a C binary can detect set software breakpoints, how to use ptrace

to detect debugging, how to use pseudo file systems such as /proc in two different ways (for
TracerPid and parent processes), and how to set timers that stop the program when a threshold
is reached. Information on them has been collected from their man pages6. These examples are
given as C code for the student to compile. In this way, the challenge provides an open source
environment for the student to test different workarounds and bypass the checks. More details
about the checks can be found in the challenge7 itself. For more hands-on experience, two
binaries have been created, one for Linux and one for Windows. The Linux binary hasn’t been
stripped of its symbols to make the process easier, as it is only used for training purposes. On the
other hand, the Windows executable, where the challenge flag is placed, also uses the techniques
taught, but has its symbols stripped. The goal is to apply the circumvention methods learned
and, if used correctly, to read the flag from its memory location.

linux challenge:

This binary uses the following anti-debugging mechanisms:

• Ptrace

• Timing

• Sofware breakpoint detection

win challenge:

This is the exercise part of this challenge. It contains the following anti-debug mechanisms:

• IsDebuggerPresent()

• Timing

• Checking parent process name

For an in-depth explanation of the above techniques, visit the challenge in hacking-lab.

6https://man7.org/linux/man-pages/index.html
7https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/381

36

https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/379
https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/381

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Summary

The student is introduced to different types of anti-debugging techniques and then uses the tricks
learned in a challenge to obtain the flag. They are first given examples of five techniques that
explain basic anti-debugging in a Linux binary. After experimenting with them in the GDB,
the student is presented with a Windows executable that employs the same methods but in a
different environment. To complete the challenge, the student must both provide the flag hidden
in the executable and submit a writeup answering the security questions.

37

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.8 Memory Dumping

Figure 5.10: Challenge: Memory Dumping

Figure 5.10 shows the overview of the challenge on the Hacking-Lab platform. The chosen
properties for this challenge are:

Categories: Reverse Engineering, Windows

Level: medium

Grading: Flag

Mode: Training

A lot of software, especially malware, uses Dynamic Link Library (DLL) injection to load code
into another process at runtime. This makes memory dumping at runtime a crucial part of a
reverse engineer’s skill set. In addition, memory dumping can help expose information decrypted
at runtime. Dumping the decrypted code can be much faster than trying to figure out the
encryption algorithm and reverse it statically.

Development

For this challenge, it was decided to focus on Windows systems only, as most of the malware
threats target them [34]. Several binaries were developed for this challenge, which are explained
in the following sections:

Target.exe:

This binary acts as a dummy executable into which the DLLs are injected. All it does is wait
for user input and then close itself. The decision to create this executable was made because
this challenge must not violate any EULA by modifying or injecting code into another process.

38

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Injector.exe:

As the name suggests, the purpose of this binary is to inject one of the provided DLLs into
the running target.exe. This is achieved by performing a basic LoadLibrary injection using
CreateRemoteThread. There are an unimaginable number of injection techniques of varying de-
grees of difficulty available on the internet, but LoadLibrary combined with CreateRemoteThread
is one of the easiest for the student to implement and understand, which is why it was chosen
for this challenge [35]. Figure 5.11 shows an example of what a LoadLibrary injection might
look like:

Figure 5.11: Visualisation of LoadLibrary injection

For further explanation, have a look at the challenge in hacking-lab8.
The decision to use a self-made injector for this challenge was made for two main reasons:

1. Windows does not provide a built-in way to inject binaries into running processes.

2. The target for the injection is hard coded as ”target.exe”, which should prevent the student
from abusing it for other purposes.

Demo.dll:

This DLL was designed to demonstrate memory dumping. It consists of a simple demo flag
inside a function that displays a MessageBox, signalling which the injection has worked. This
function is decrypted at runtime using a simple XOR algorithm as seen in 5.10.

8Link to challenge: https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/382

39

https://demo.hacking-lab.com/events/98/curriculumevents/126/challenges/382

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

� �
1 #define XOR_KEY 0xA

2 #define HIDDEN_FUNC_LENGTH 0x3E

3

4 void DecryptHiddenFunction () {

5 DWORD old;

6 VirtualProtect(FunctionToHide , HIDDEN_FUNC_LENGTH , PAGE_EXECUTE_READWRITE ,

&old);

7 for (int i = 0; i < HIDDEN_FUNC_LENGTH; i++) {

8 ((char*) FunctionToHide)[i] ^= XOR_KEY;

9 }

10 VirtualProtect(FunctionToHide , HIDDEN_FUNC_LENGTH , old , &old);

11 }� �
Listing 5.10: Function decryption algorithm

The length of the FunctionToHide had to be figured out by static analysis, as there was no
reliable and easy way to calculate the function size at compile time.

Exercise.dll:

Similar to the Demo.dll, this is a simple DLL, that decrypts parts of its functionality at runtime.
But here the function containing the flag is decrypted first and then encrypted again at the end
of execution. This should encourage the student to analyse the code more thoughtfully and
figure out a suitable moment to dump the DLL before the flag is reencrypted.

Encryptor.py:

Since certain sections of the DLLs need to be encrypted, it was decided to write a small Python
script to fulfill that task. This was less tedious than relying on some ancient compile-time
encryption headers from the internet. It should be noted that the offsets to these functions had
to be figured out using static analysis and hard coded into the script. The script then transforms
the previously gathered Relative Virtual Address (RVA) into file offsets.

� �
1 def VirtualAddressToFileOffset(pe , va):

2 for section in pe.sections:

3 if section.VirtualAddress <= va < section.VirtualAddress +

section.Misc_VirtualSize:

4 return section.PointerToRawData + va - section.VirtualAddress

5 return None� �
Listing 5.11: Function to transform virtual address to file offset

Using the file offsets, the script encrypts the ”to-hide” functions using a simple XOR operation.

Summary

The student is introduced to the concept of LoadLibrary injection and memory dumping. They
will then be shown how to use x64dbg and its integrated Scylla plugin to extract the loaded
binary [36]. After the simple introduction, the student is given an exercise file to dump on their
own. Inside the exercise file is a hidden flag that must be submitted to Hacking-Lab to solve
this challenge.

40

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.9 ROP Chaining

Figure 5.12: Challenge: ROP Chaining

Figure 5.12 shows the overview of the challenge on the Hacking-Lab platform. The chosen
properties for this challenge are:

Categories: Reverse Engineering, Windows, Linux

Level: hard

Grading: Flag, Writeup

Mode: Training

Return Oriented Programming (ROP) is used by many pieces of malicious software [37] to bypass
certain security measures, such as non-executable memory segments or runtime protections.
Understanding how ROP works is important for a reverse engineer, as it allows the detection of
possible attack vectors and helps in the development of countermeasures.
ROP exploits existing instructions (gadgets) within the process’s address space. These gadgets
can then be chained together, allowing the attacker to do malicious things without ever injecting
new code. In short, ROP chains are a means of constructing complex, dynamic behaviour from
pre-existing actions. [38]

ROP Gadgets

As mentioned above, the basic idea of ROP is to use small pieces of code called ”gadgets” that
already exist in the process’s address space.
A ROP gadget is essentially a sequence of useful instructions followed by a return instruction,
hence the name of the technique. The return / ret instruction can be used to chain several
gadgets together, hence the term ”ROP chain”. It works because a return instruction essentially

41

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

pops an address off the stack and jumps to it, allowing control over the programs’ execution if
the stack can be controlled.
In x86 assembly, registers such as EAX, EBX, ECX are used to store data temporarily at
runtime. For example, let’s say an attacker finds two ROP gadgets in a program using a tool
like ROPgadget [39]:

� �
1 // Gadget 1

2 0xDEADBEEF MOV EAX , 5 ; Move the number 5 into the EAX register

3 RET ; Return

4

5 // Gadget 2

6 0xCAFECAFE ADD EBX , EAX ; Add the value in the EAX register to the EBX register

7 RET ; Return� �
Listing 5.12: Example for gadgets in a program

In this example, as seen in Listing 5.12, the attacker can use the gadgets to add 5 to the value
in the EBX register. This could allow them to bypass some implemented security restrictions.
Gadget 1 is invoked first, putting the number 5 into the EAX register. Following this, Gadget
2 is triggered, adding the newly loaded value in the EAX register (now 5) to the existing value
in the EBX register. By chaining these two gadgets (Gadget 1 then Gadget 2), the attacker has
achieved the desired operation of adding 5 to the EBX register without injecting any new code
into the process memory. This is the fundamental concept of ROP and ROP chaining.

Development

The binaries handed out in this challenge are all built for a Linux environment. Kali Linux was
chosen to build the challenge binaries because of its widespread use in cybersecurity and its rich
environment for learning and implementing hacking techniques. Two binaries were provided to
guide the student through the challenge and a final binary containing the flag.

introduction:

The first binary is called ”introduction” because it reintroduces the subject of buffer overflows
and how to find the correct buffer size using GDB. It also requires the student to correctly
chain together two functions that wouldn’t be called in a normal program execution, to print
out ”Hello, World!”. Each function typically ends with a return instruction that pops the next
address off the stack and jumps to it. A correctly chained sequence would take the program
execution from func1 to func2, demonstrating the principle of buffer overflow exploitation.

challenge:

To complete the challenge, the student must apply the techniques learned to the second binary.
To solve it, the student must use a disassembly tool to find out the correct arguments for the
functions and the order in which to call them. The functions use XOR on a flag and, if all are
called correctly, print it out in a readable format at the end.

42

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Summary

The student is introduced to the basics of ROP and ROP chaining. They learn how to find
and use gadgets to pass arguments to functions that aren’t called by default. They first revisit
buffer overflows and how to exploit them. Additionally, they learn how to use tools to improve
GDB’s capabilities, making it easier to solve the challenge. After the introduction, they learn
how to find gadgets and chain them together using pwntools. Finally, they are presented with a
challenge where they must use the techniques they have learned along with a disassembly tool
to find the correct input. To complete the challenge, a writeup, answering two comprehension
questions must be handed-in in addition to the flag found in the challenge binary.

43

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

5.3.10 BMI Incident

Figure 5.13: Challenge: BMI Incident

Figure 5.13 shows the overview of the challenge on the Hacking-Lab platform. The chosen
properties for this challenge are:

Categories: Reverse Engineering, Malware, Windows

Level: leet

Grading: Flag

Mode: Training

This challenge should be the ultimate test for the students. It is a combination of many of the
previous challenges and should act as a learning check for them. The experience gained from
the following challenges can help.

• IDA Introduction9

• x64dbg Introduction9

• Ghidra Introduction

• Asm Refresher9

• Static Debug9

• Dynamic Debug9

• Patching9

9Challenge featured in the term project

44

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

The covered techniques are:

• Advanced Obfuscation

• Control Flow Flattening

• Anti Debug techniques

• Memory Dumping

In addition to these topics, a hidden file download from a socket has been added as a new
component.

Development

Many smaller binaries had to be created to develop this challenge. These binaries are explained
in more detail here.

BMICalc.exe:

This is the main entry point to the challenge for students. It contains an obfuscated BMI calcu-
lator that asks for the user’s height and weight in order to calculate their BMI. The obfuscation
techniques used are indirect jumps and control flow flattening. It also includes anti-debugging
techniques to detect a debugger and stop the execution when any is detected. Unbeknownst to
the user, it connects to a socket on the Docker and downloads the payload.c as DLL file.

payload.dll:

The DLL contains a function that looks for ”flag.txt” and performs bit-shifts on its content,
encrypting it. The content is also encrypted and decrypted at runtime. So again the student
has to dump the function at the right time. After analysing this function they will be able to
reverse the encryption algorithm used to encrypt ”flag.txt” and get the flag.

solution.py:

Example script to reverse the encryption of the flag provided.

encryptor.py:

Runs on the Docker to do the exact encryption that the received.dll would do. After encrypting
the flag the encrypted file is made available for download.

Docker:

This challenge had some new requirements for the Docker that to fulfill. As the challenge is
targeted at Windows, the Docker must be able to cross-compile the BMICalc.exe for Windows
while running on Alpine Linux. The compilation has to be done on the Docker because the
BMICalc.exe needs to know the IP of the Docker in order to connect to it via socket. This
direct socket connection needed for this challenge is the reason why a rdocker was chosen.

45

CHAPTER 5. LAB DOCUMENTATION G.Nenz, R. Müller, T.Kleb

Summary

The student starts the Docker container and from there they will be able to download their
encrypted file (containing the flag) and the BMICalc.exe. They will then have to use many
techniques they have learned to see that this calculator does not only calculate the BMI, but
also some unexpected things. Following the leads, they will find a function that encrypts a
flag.txt file. Armed with this information, they will be able to reverse the encryption on their
personal encrypted file. After reversing the algorithm and decrypting the encrypted file, the
student submits the UUID to complete the final challenge.

46

Chapter 6

Results

6.1 Conclusion

During the construction phase, 10 advanced reverse engineering challenges were created. All
challenges meet both the requirements set by Hacking-Lab [20] and the additional requirements
found in chapter 4. Once created, each challenge was tested by the authors and at least two
additional volunteers. This procedure ensured that the level of difficulty was appropriate for the
target audience of OST students in their fifth semester. The results of these tests can be found
in section 10.2

Upon completion of this lab, students will have a deeper understanding of some of the advanced
techniques that can be encountered in reverse engineering. The challenges follow a common
theme and increase in difficulty, culminating in a final test.
Additionally, the mentioned lessons learned from section 1.6 were implemented successfully. The
time tracking was consistently reported since day one. The testing was improved with additional
participants and consequent feedback reporting. A better distribution of the workload across
the weeks resulted in more even time spent per team member. The received feedback from the
documentation was also heavily considered during the creation of this documentation.

6.2 Future

The challenges created in this project, together with those created in the term project, serve
as a solid foundation for students interested in reverse engineering. As they stand, they can be
used in any suitable lecture to teach both the basic and more advanced tools and techniques of
reverse engineering. In the future, teachers and editors will be able to use this documentation,
along with the exercises, to add more topics to the challenges.

47

Part III

Project Documentation

48

Chapter 7

Project Plan

Hand-In

The completed report must follow the guidelines set by the Department of Computer Science
and the supervisor. The submission process is as follows:

• The PDF version of the report will be sent to the advisor, reviewer and expert and will
be archived by OST.

• The printed version will be submitted to the advisor for evaluation and grading.

7.1 Project Management

This following section covers the Time Management and Planning subsections. The former
details the allocation of time per author, while the latter outlines the Agile methodology used
for planning.

7.1.1 Time Management

The project starts in week 08 of the semester and is scheduled to finish in week 24, giving a
total of approximately 16 weeks to complete the hand-In. However, the last week is reserved for
poster preparation and printing, leaving a total of 15 weeks for the project. As the module is
worth a total of 12 ECTS, students are expected to invest approximately 360 hours on it over
the semester. Table 7.1 shows the planned time investment. Consequently, each student should
spend approximately 21.3 hours per week on the project. This is calculated as follows: 360
hours total workload for the semester, 15 weeks in a semester plus one week full time, 40 hours,
after the normal semester time: (360h - 40h) / 15W = 21.3h/W.

Name ECTS Time spent per Week [h] Total Time spent [h]

Gianluca Nenz 12 21.3 360

Ronny Müller 12 21.3 360

Thomas Kleb 12 21.3 360

Total 36 63.9 1080

Table 7.1: Expected time expenditure per student

7.1.2 Planning

Similar to the previous work on creating reverse engineering challenges for Hacking-Lab, the
planning techniques introduced in the Software Engineering Practices (SEP) 1 and 2 modules
were used to organise the project. The focus was again on the two main tools discussed: Rational

49

CHAPTER 7. PROJECT PLAN G.Nenz, R. Müller, T.Kleb

Unified Process (RUP) and Scrum, which are primarily used in software development but can
be adapted for use in other types of projects.
RUP is used to divide the project into four distinct phases - Inception, Elaboration, Construc-
tion, and Transition - each of which serves a unique purpose in the development of the project.
Inception is used to gain a preliminary understanding of the project and its resolution; Elabora-
tion is used for planning, workload distribution, and concept development; Construction is used
to plan, build, and test the project; and Transition acts as a buffer and finalises the product.
To ensure that the project runs smoothly, Scrum’s sprints are used to set milestones and tasks
that help organise the development process.

7.1.3 Meetings

To ensure efficient progress and a smooth workflow, the team schedules weekly sprint meetings
every Monday to discuss and resolve any issues or challenges that may arise. This is also an
opportunity to distribute tasks and responsibilities among the team members. In addition, the
team meets weekly with their advisor, Ivan Bütler, to provide an update on their progress and
to seek advice and guidance as needed.
It is important to note that each meeting is documented and recorded, and the minutes of the
advisor meetings are uploaded to the GIT repository for future reference. This ensures that
everyone is kept informed of the progress and decisions made during the meetings.

7.1.4 Issue Tracking

Issue tracking is managed using a combination of digital tools and traditional organisational
methods. GitLab acts as a central hub for tracking issues, allowing the resolution process to be
monitored, classified and coordinated.
The Milestones feature is used to organise these issues, providing a way to prioritise tasks based
on their respective due dates and the project timeline. As GitLab has no built-in time tracking,
Clockify is chosen to track the time spent on each issue, providing valuable insight into time
allocation. A full overview on this can be found in chapter 8.
In addition, sprint meetings are held every Monday to discuss these issues in depth. This routine
facilitates the review and reorganisation of tasks, encourages team collaboration and ensures the
timely and efficient resolution of tracked issues.

7.2 Roles and Responsibilities

The following section examines how the roles and responsibilities are defined, assigned and
communicated within the project team. The section also examines strategies for managing and
communicating roles and responsibilities to ensure a successful project completion.

50

CHAPTER 7. PROJECT PLAN G.Nenz, R. Müller, T.Kleb

7.2.1 Roles

Authors

Authors conduct research, develop ideas for the different challenges, and write the thesis, adher-
ing to academic standards and guidelines and working collaboratively with other stakeholders.

Advisor

The advisor guides and supports the authors through the research process, ensuring adherence
to academic standards and guidelines, and providing expertise on both Hacking-Lab and reverse
engineering in general.

Expert and Reviewer

A bachelor thesis needs external people to prevent unfair favouritism. These external people are
the expert and the reviewer.
Expert: The expert is proposed by the advisor. The expert must have at least a Master’s
degree in computer science or similar. The expert must not benefit from the results of the work
and must not have a business or family relationship with any of the people involved. The expert
assesses the work independently of the supervisor on the basis of the submitted documents and
the presentation of the Bachelor thesis. He should also include the practical suitability in the
assessment.
Reviewer: The reviewer is appointed by the head of studies. Normally, the reviewer is an
advisor of another Bachelor thesis in the same semester. The reviewer does not have to give his
or her own assessment like the expert, but only has to contribute another opinion on the grade.
[40]

Other Stakeholders

These include the Hacking-Lab staff, who keep the working environment up to date and ensure
the stability of the platform, and the academic institution, the Ostschweizer Fachhochschule.

7.2.2 Division of Labour

This section presents the division of labour between the project members as shown in 7.2. It
outlines the specific tasks assigned to each member and highlights their responsibilities.

Gianluca Nenz

Scrum Master

Ghidra Scripting Introduc-
tion

Control Flow Flattening

Memory Dumping

The BMI Incident

Ronny Müller

Meeting Minutes

Ghidra Introduction

Advanced Obfuscation

Hooking with Frida

The BMI Incident

Thomas Kleb

GitLab Setup

Documentation Setup

Advisor Meeting Presenta-
tion

Ghidra GPT

Anti Debugging Techniques

ROP Chaining

Table 7.2: Division of labour

51

CHAPTER 7. PROJECT PLAN G.Nenz, R. Müller, T.Kleb

7.3 Timeline and Milestones

This chapter provides a comprehensive overview of the project’s progress, detailing the various
sprints and milestones throughout the project and explaining the time tracking.

7.3.1 Phases and Iterations

The project consists of the four phases of RUP. Each of these phases has several iterations
that create the different sprints for the project. Meetings with the advisor are held either on
Wednesday or Friday, while team meetings are held weekly on Monday. Each iteration / sprint
lasts seven days.
As shown in the inception table 7.3, the project starts before the semester in order to establish
a strong foundation on which to build. The other iterations in this phase are used to set up the
repositories and the skeleton for the documentation.

Inception

Iteration Start End Description

0 13.02.2023 19.02.2023 Setting up GitLab for the project.

1 20.02.2023 26.02.2023 Creating CI/CD pipeline and defining docu-
mentation structure, searching for ideas for
subjects.

2 27.02.2023 05.03.2023 Finishing up base structure for documentation
and GitLab, defining base concepts for the sub-
jects.

Table 7.3: RUP: Inception Phase Planning

The elaboration phase 7.4 focuses on planning and assessing potential risks in the project and
defining the scope of the project. This includes developing a project plan, implementing risk
management strategies and defining the scope of the project to ensure that the construction
phase proceed without significant disruption.

Elaboration

Iteration Start End Description

3 06.03.2023 12.03.2023 Creating project plan and risk management

4 13.03.2023 19.03.2023 Defining labs and subjects

Table 7.4: RUP: Elaboration Phase Planning

The construction phase 7.5 is used to create the different challenges. Each challenge is created
in a streamlined manner and went through several stages before being uploaded to Hacking-Lab:
The process starts with the creation and discussion of a concept; once the concept is finalised,
the challenge is built based on it and eventually tested. For the term project, a limit of one
week per challenge is sufficient. In this project, the maximum time allocated per challenge is
defined in the concepts, but can not exceed two weeks. This planned time does not include the
testing of the challenges.

52

CHAPTER 7. PROJECT PLAN G.Nenz, R. Müller, T.Kleb

Construction

Iteration Start End Description

5 20.03.2023 26.03.2023 Creating ”Ghidra Intro” and preparing feed-
back forms

6 27.03.2023 02.04.2023 Testing ”Ghidra Intro” and creating ”Ghidra
Scripting”

7 03.04.2023 09.04.2023 Testing ”Ghidra Scripting” and planning
”Ghidra GPT”

8 10.04.2023 16.04.2023 Finishing ”Ghidra GPT” and planning ”Obfus-
cation” challenges (CFF and Advanced Obfus-
cation)

9 17.04.2023 23.04.2023 Testing ”Ghidra GPT”, finishing ”Advanced
Obfuscation” and planning ”Anti Techniques”

10 24.04.2023 30.04.2023 Testing ”Advanced Obfuscation” challenge,
planning ”Hooking” and ”Anti-Debug”

11 01.05.2023 07.05.2023 Finishing and testing of the ”Control Flow
Flattening”

12 08.05.2023 14.05.2023 Creating ”Memory Dumping”, finishing
”Hooking” and ”Anti-Debugging Techniques”
and planning the last challenges

13 15.05.2023 21.05.2023 Finish ”Memory Dumping”, planning and cre-
ation of ”ROP Chaining”

14 22.05.2023 28.05.2023 Finish ”ROP Chaining” and planning last chal-
lenge

Table 7.5: RUP: Construction Phase Planning

The transition phase 7.6 is mainly used to finish up the documentation, create the poster for
the presentation and finalise all the files needed for the hand-in. A buffer week is added to the
transition phase to ensure that enough time is available.

Transition

Iteration Start End Description

15 29.05.2023 04.06.2023 Finishing last challenge and start finishing the
documentation

16 05.06.2023 11.06.2023 Finishing abstract, finishing documentation
text, starting with poster

17 12.06.2023 16.06.2023 Buffer

Table 7.6: RUP: Transition Phase Planning

53

CHAPTER 7. PROJECT PLAN G.Nenz, R. Müller, T.Kleb

Gantt Diagram

A Gantt chart is an effective tool for visualising and managing the project timeline. For this
reason, a Gantt chart is used to display each phase, sprint and advisor meeting. This allows
for easy adjustments to be made during the semester, while having an overview of the whole
project. To make the chart easier to read, it is divided into the different phases: Iteration and
Elaboration grouped (Figure 7.1), Construction (Figure 7.2) and Transition (Figure 7.3) and
listed below. Appendix E displays these diagrams at a larger scale.

Figure 7.1: Gantt chart: Inception and Elaboration

Figure 7.2: Gantt chart: Construction

Figure 7.3: Gantt chart: Transition

54

CHAPTER 7. PROJECT PLAN G.Nenz, R. Müller, T.Kleb

7.3.2 Milestones

Milestones

Title Deadline Description

M1 - Review of feedback 20.02.2023 Review SA feedback from the advisor and up-
date the structure of the GitLab and documen-
tation accordingly

M2 - Defining problem do-
main and project scope

10.03.2023 Problem domain and project scope are defined
and discussed with the advisor

M3 - First concepts defined,
and project plan base finished

20.03.2023 Base for construction phase is finished and pre-
pared

M4 - Expert and reviewer pre-
sentation

14.04.2023 Presentation to inform the expert and reviewer
about the project is held

M5 - Setup labs 28.05.2023 Labs are set up and tested

M6 - Hand-In 16.06.2023 Document and poster are handed in to the ad-
visor and OST

M7 - Final presentation 08.08.2023 Presentation of Bachelor thesis and its defense

Table 7.7: Milestones set for the project

55

Chapter 8

Project Monitoring

8.1 Overview

This chapter is used to display and monitor the different stages of the project. It includes a
review of each milestone as well as the time spent by each student in total and per category.

8.2 Milestone Review

Table 8.1 provides a structured overview of the key milestones set for the project. It details each
milestone, its completion date and any associated notes displaying any complications had.

Milestone Completion Date Notes

M1 - Review of feedback 20.02.2023 Milestone finished without complica-
tions

M2 - Defining problem do-
main and project scope

10.03.2023 Milestone finished without complica-
tions

M3 - First concepts defined,
and project plan base finished

20.03.2023 Milestone finished without complica-
tions

M4 - Expert and reviewer pre-
sentation

14.04.2023 Milestone finished without complica-
tions

M5 - Setup labs 02.06.2023 Milestone wasn’t achieved in time but
because of the planned buffer no com-
plications arrived

M6 - Hand-In 16.06.2023 Milestone finished without complica-
tions

M7 - Final presentation 08.08.2023 Presentation held after hand-in of doc-
umentation

Table 8.1: Monitoring Notes for the Milestones

Looking at the notes for each milestone, it can be said that the project was largely carried
out according to the original plan. The experience gained during the term project allowed a
clean start to this project, as evidenced by the fact that there were no complications during the
initial phases. The presentation to the expert and reviewer was considered successful, indicating
effective communication and presentation of the project objectives and progress. There was
a slight hiccup during the ’set up labs’ phase. However, the delay did not cause significant
problems as a buffer had been built in during the planning stages. Overall, the milestones were
achieved without any significant problems.

56

CHAPTER 8. PROJECT MONITORING G.Nenz, R. Müller, T.Kleb

8.3 Time Tracking

To ensure accurate and reliable time tracking, Clockify1 was used throughout the project. Clock-
ify was chosen for its user-friendly interface, robust reporting features and ability to accurately
track hours spent on different tasks.

8.3.1 Time Tracked per Student

As calculated in subsection 7.1.1, each student should have spent an average of 21.33 hours per
week or a total of 360 hours. In order to complete the documentation in time, it was decided to
exclude the last week from the monitoring.

Name Average Time spent per Week [h] Total Time spent [h]

Gianluca Nenz 22.96 367.33

Ronny Müller 22.07 353.08

Thomas Kleb 24.81 397.07

Table 8.2: Recorded Time Investments (excluding the last sprint)

Table 8.2 shows how much time each of the students put into this project. As mentioned before,
the bachelor thesis is worth 12 ETCS, which means about 360 hours spent in the semester.
Taking into account that the time spent in the last week was not monitored, each of the students
has reached this target.
The pie charts in Figure 8.1 show how each of the students distributed their hours across each
of the categories set up in Clockify. Each category was chosen for its importance in the project.
Whenever a student spent time on the project, they used one of these categories to track it. At
the end of the semester, the data was collected and presented in the charts below. With three
students working on the project, responsibilities could be shared according to each student’s
strengths. This resulted in a structured working environment and a clean workflow.

Figure 8.1: Time distribution of each student

1Clockify Website: https://clockify.me/

57

CHAPTER 8. PROJECT MONITORING G.Nenz, R. Müller, T.Kleb

8.3.2 Overall Time Tracked

The bar graph in Figure 8.2 shows the time spent on each sprint of the project. Above each bar
is the corresponding numerical value. It can be seen that the early stages of the project took
less time on average than the rest of the project because of the previous knowledge gained from
the term project. This graph also shows that some time was invested before the start of the
semester (Sprint 0) to prepare the platforms to be used.
During the construction phase (Sprint 5 - Sprint 14) an average of about 70 hours per week was
spent. This amount is slightly higher than the calculated average (64 hours per week), but as
this was the most important phase of the whole project, it was expected to take more time.

Figure 8.2: Time investment per sprint

As with the personal time distribution in Figure 8.1, a pie chart has been created for the overall
time monitoring. Figure 8.3 shows the overall time distribution. As expected, most of the time
was spent creating challenges, followed by writing documentation. The next largest category is
”Meetings”, where the time spent on preparing for and holding meetings and presentations was
tracked. The remaining the categories were used to ensure the high quality of the challenges.

Figure 8.3: Total time investment per category

58

Chapter 9

Risk Management

9.1 Risks

The following chapter provides a comprehensive analysis of the project risks and the measures
taken to manage them. It includes a risk matrix 9.1, risk analysis table 9.2 (see table 9.1 for
an overview), a breakdown of risks by project milestone in section 9.2, and a section listing all
updates made to the risk analysis table throughout the semester (section 9.3). The risk analysis
table identifies and assesses potential risks and mitigating actions. The update history section
records the changes made to the risk analysis table to keep it relevant and effective.

9.1.1 Risk Analysis

Figure 9.1: Risk matrix

ID Identifier used for the risk

Description Explanation of the risk

Probability The probability of the risk occurring at least once during the project in a
qualitative way.

Time Loss Estimated time loss if risk occurs

Mitigation How the risk is planned to be mitigated

Severity The extent of damage the risk can have on the project (measured qualita-
tively)

Table 9.1: Explanation of the different titles used in the following page

59

C
H
A
P
T
E
R

9.
R
IS
K

M
A
N
A
G
E
M
E
N
T

G
.N

en
z,

R
.
M
ü
ller,

T
.K

leb

ID Description Probability Time Loss Mitigation Severity

R1 Not enough testing done likely 1-2h
Already got participation confirmation
from testers

severe

R2
Not being able to create reversible pro-
grams with additional difficulties

possible 2-4h
Assured the advisor is available for con-
sultation

major

R3 Irreparable corruption of git server rare 4h Weekly off-site git server backups severe

R4
Work lost due to work not pushed to
source control

likely 0.5-1h Frequent reminders to push changes minor

R5
Demo Tenant / Editor down due to main-
tenance

unlikely 1-24h No mitigation possible minor

R6 License problems with used software unlikely 0.5-1h Avoid the use of paid software severe

R7
Missing documentation / support on a
tool

possible 1-2h No mitigation possible minor

R8
Not enough time for the actual challenges
because of too much programming etc.

possible 24h
Creating challenges in chronological order
and in an iterating fashion

severe

R9 Work time estimate is too low likely 5-24h
Precisely define estimations and talk
about them with advisor. Add a buffer
to the estimate.

major

R10 New and changing requirements unlikely 5-10h
Define scope in the planning phase to-
gether with advisor

major

R11
Not enough communication inside be-
tween team-members

unlikely 0.5-1h
Weekly meetings: Sprint and Retrospec-
tive

significant

Table 9.2: Risk analysis for whole project

60

CHAPTER 9. RISK MANAGEMENT G.Nenz, R. Müller, T.Kleb

9.2 Encountered Risks

9.2.1 R9 during CFF challenge development

Researching and creating the CFF challenge took more time than expected. This was because
no resources were found for learning how to unflatten a binary using Ghidra. As a result, the
creator of the challenge had to come up with his own working solution, which took more time.

9.2.2 R9 and R2 during ROP challenge development

While testing the ROP challenge internally, the team discovered that there was a misunder-
standing of ROP within the challenge binary. This led to further research on the topic until
every aspect was understood. Combined with a recoding of the challenge binary, the creation
of this challenge took more time than originally planned.

9.3 Risks Update History

After encountering R9 for the first time, it was decided to change its possibility from ”possible”
to ”likely”.

61

Chapter 10

Quality Measures

10.1 Testing

In this bachelor thesis, quality assurance through testing is an important component. Testing
has one of the biggest influences on the structure and quality of the thesis, as the challenges are
created to teach reverse engineering to the students. In order to get comparable feedback from
the testers, a survey form is used that has to be filled in for each challenge. These forms all
have a similar structure, regardless of the specific challenge for which they are completed. More
information about the form can be found in subsection 10.1.2.

10.1.1 Process

Challenges are also tracked in GitLab, and are therefore subject to the same requirements as
documentation. This means that new challenges are created as a new branch, and when they
are ready, a merge request needs to be created. Once this request exists, it is the responsibility
of unaffiliated team members to review any changes made and provide feedback using the form
before the branch is merged. It has also been decided that at least three people must test a
challenge. Therefore, the challenge must be tested by at least one other person after it has been
merged.

10.1.2 Feedback forms

In order to get comparable feedback at the end, we rely mainly on closed questions and ratings
on a linear scale. This subsection briefly explains the questions we used and why we chose them.
The questions are in bold and the reasons are given in the following paragraph.

Did you have previous knowledge on the topic of the challenge?

This question was chosen to be able to compare answers from different levels of knowledge. It
helps to see if the tester could have completed the task more quickly due to prior knowledge of
the topic.

Did the challenge meet your expectations?

This question checks that the name of the challenge is consistent with its content. It also helps
us to understand whether we have covered all the relevant parts of a particular topic.

How would you rate the difficulty of the challenge?

Knowing the level of difficulty is important to compare the time taken and to know if more hints
are needed to solve the challenge.

62

CHAPTER 10. QUALITY MEASURES G.Nenz, R. Müller, T.Kleb

How much time did you spend to solve the challenge?

Estimating the time is very difficult. It is therefore important to get feedback so that the
individual challenges do not take too much time. As the aim is to use them in class, they should
not take more than an hour.

How would you rate the structure of the challenge?

The term project is used as the basis for the challenges. This question is asked to ensure that it
still meets the standards and to see if there is any improvement in the general structure of the
challenges.

How would you rate the learning experience?

This question measures the educational impact of the challenge. A high rating indicates effective
transfer of knowledge and skills to the examiner. Low ratings may indicate a need for more
intuitive problem statements or additional resources.

How much did you enjoy the challenge as a whole?

The level of enjoyment influences motivation and engagement, which in turn influences how much
a student learns from the challenge. A high rating indicates that the challenge was engaging
and rewarding. Low ratings could indicate a need for more gamification or interactivity.

10.2 Testing Feedback Evaluation

The purpose of this chapter is to analyse the feedback from the volunteer testers. In general,
up to 6 people tested the challenges and gave feedback and suggestions for improvement. The
following subsection 10.2.1 shows the results for each of the questions asked. For a better
overview, the data is presented as a graph, where the x-axis represents the number (ID) of the
challenges and the y-axis represents the percentage of responses relative to the total number of
responses received for that challenge.

63

CHAPTER 10. QUALITY MEASURES G.Nenz, R. Müller, T.Kleb

10.2.1 Evaluation

NR Name of Challenge Tester

1 Ghidra Introduction 6

2 Ghidra Scripting Intro-
duction

5

3 Ghidra GPT 5

4 Advanced Obfuscation 5

5 Control Flow Flattening 4

NR Name of Challenge Tester

6 Hooking with Frida 5

7 Anti-Debugging Tech-
niques

4

8 Memory Dumping 4

9 ROP Chaining 4

10 The BMI Incident 4

Table 10.1: Legend for the feedback tables

Each of the following graphs shows the feedback form data collected for each of the challenges.
Table 10.1 is used as the legend for these graphs. The numbers represent the challenge number
as listed on the live tenant1. This table also shows how many people have tried each challenge.
As not all challenges have the same number of testers, a percentage has been chosen. This allows
a better comparison between challenges.

Figure 10.1: Feedback evaluation: Previous Knowledge

Figure 10.1 is the graphical representation of how much prior knowledge the testers had. It
shows that most of the challenge topics were new to at least one of the testers. As expected,
they all knew about Ghidra, but didn’t have much experience writing scripts for it. The rest
of the data also represents the expected value of some people knowing about the topic. One
anomaly in this data is the number of people with experience in the memory dumping topic.
With more data, the graphs will look different, perhaps bringing the result closer to the expected
value. Overall, the analysis of this data shows that, as planned, most of the topics were new to
the participants. Therefore, the goal of teaching the students new topics was achieved.

1Link to tenant: https://demo.hacking-lab.com/events/98/curriculumevents/126

64

https://demo.hacking-lab.com/events/98/curriculumevents/126

CHAPTER 10. QUALITY MEASURES G.Nenz, R. Müller, T.Kleb

Figure 10.2: Feedback evaluation: Expectations

Figure 10.2 shows whether the challenges met the testers’ expectations. Each time a student
reads the introduction and title of a challenge, they set certain expectations for it. Looking at
the graph, each of the challenges scored, received the highest score for that category. Therefore,
the challenges that meet all the expectations of all the testers are optimal for this project. This
means that, this project can be used as a reference for future labs and challenges.

Figure 10.3: Feedback evaluation: Difficulty of Challenges

Figure 10.3 shows how tester would rate the difficulty of each challenge. This graph can be
compared to Figure 10.1 as the challenges tend to be harder the less prior knowledge a student
has. An anomaly to this rule is Challenge 8, ”Memory Dumping”. Even though half of the
testers had no knowledge of memory dumping, the difficulty was perceived as easy to medium.
This is also reflected in the written feedback, as the general response from the testers was that
this process was easier than expected. The feedback on difficulty also led to some adjustments,
as some challenges were thought to be easier than they were. This evaluation can help future
creators of Hacking Lab exercises and challenges to have a reference on which what level of
difficulty to choose.

65

CHAPTER 10. QUALITY MEASURES G.Nenz, R. Müller, T.Kleb

Figure 10.4: Feedback evaluation: Time Spent per Challenge

The target for each challenge was that it should take a student approximately 30-45 minutes to
complete. Figure 10.4 shows how much time the testers spent on each challenge. Comparing
the results with the target shows that Challenge 6, ”Hooking with Frida”, doesn’t meet the
requirements. As this challenge is an introduction to the tool Frida, it would be expected to
take less time than the other challenges, but it shows that there would have been space to add
more detailed information about the tool. The same goes for the introduction to Ghidra. It is
also shorter than the target, but this was expected as it is a basic guide to Ghidra. Another
reason why it took the testers less time to complete is Figure 10.1. Most of the testers already
had previous knowledge of this tool.

Figure 10.5: Feedback evaluation: Rating of Structure

Figure 10.5 shows how the structure of each challenge was rated by the testers. The better the
structure (common thread), the easier it is for a student to understand the steps required to
complete a challenge. Each tester was asked to rate the structure between 1 and 5. None of the
challenges were rated below a 4, which means that the overall structure is up to standard. This
feedback, together with the written notes, was used to correct minor problems.

66

CHAPTER 10. QUALITY MEASURES G.Nenz, R. Müller, T.Kleb

Figure 10.6: Feedback evaluation: Rating of Learning Experience

Figure 10.6 shows how a student would rate the way the topic of each challenge is taught. As
in the previous question, the tester can give a rating between 1 and 5. Most of the challenges
were rated between 4 and 5, which was the target. Challenges 2 and 3, ”Ghidra Scripting
Introduction” and ”Ghidra GPT” were both rated below the target. Thanks to the written
feedback from the testers, these two challenges were adjusted and improved. The graph shows
that the challenges created are up to standard and can be used as a reference for creating a
learning environment for students.

Figure 10.7: Feedback evaluation: General Enjoyment

Figure 10.7 shows how much the testers enjoyed each challenge on a scale of 1 to 5. A comparison
with Figure 10.6 shows similarities: the better the learning experience, the better the overall
enjoyment. Again, the challenges were improved after receiving the constructive feedback, which
means that Challenge 2, ”Introduction to Ghidra Scripting”, now has a higher enjoyment factor.
To ensure high quality, fellow students were asked to re-evaluate the challenge. Another anomaly
is Challenge 3, ”Ghidra GPT”. This particular feedback showed a general dislike of the ”AI
hype”, but no dislike of the challenge itself.

67

Part IV

Directories

68

Bibliography

[1] palaksinghal9903. “Basic blocks in compiler design.” (2022), [Online]. Available: https://
www.geeksforgeeks.org/basic-blocks-in-compiler-design/. (accessed: 5.05.2023).

[2] InfiniteSkills. “Reverse engineering and exploit development.” (2017), [Online]. Available:
https://www.udemy.com/share/101Zbi/. (accessed: 14.06.2023).

[3] J. Stroschein. “Reverse engineering malware with ghidra.” (2020), [Online]. Available:
https://www.pluralsight.com/courses/reverse-engineering-malware-ghidra.
(accessed: 14.06.2023).

[4] Ghidra. “Ghidra.” (2023), [Online]. Available: https://ghidra- sre.org. (accessed:
27.03.2023).

[5] NationalSecurityAgency. “Ghidra.” (2023), [Online]. Available: https://github.com/
NationalSecurityAgency/ghidra. (accessed: 27.03.2023).

[6] OpenAI. “Openai api reference.” (2023), [Online]. Available: https://platform.openai.
com/docs/api-reference/. (accessed: 11.04.2023).

[7] OpenAI. “Openai api documentation.” (2023), [Online]. Available: https://platform.
openai.com/docs/introduction. (accessed: 11.04.2023).

[8] OpenAI. “Api models.” (2023), [Online]. Available: https://platform.openai.com/
docs/models/overview. (accessed: 19.04.2023).

[9] OpenAI. “Api tokenizer.” (2023), [Online]. Available: https://platform.openai.com/
tokenizer. (accessed: 19.04.2023).

[10] x64dbg. “X64dbg.” (2023), [Online]. Available: https://x64dbg.com/. (accessed: 15.06.2023).

[11] D. Ogilvie. “X64dbg.” (2023), [Online]. Available: https://github.com/x64dbg/x64dbg.
(accessed: 16.06.2023).

[12] R. Stallman. “Gdb: The gnu project debugger.” (2023), [Online]. Available: https://
sourceware.org/gdb/. (accessed: 16.06.2023).

[13] R. Stallman. “Gdb git.” (2023), [Online]. Available: https://sourceware.org/gdb/
current/. (accessed: 16.06.2023).

[14] OST. “Studienschwerpunkte.” (2023), [Online]. Available: https://www.ost.ch/de/
studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/studienschwerpunkte.
(accessed: 05.03.2023).

[15] Hacking-Lab. “Register and login.” (2023), [Online]. Available: https: // help. ost-
dc.hacking-lab.com/login/. (accessed: 05.03.2023).

[16] Hacking-Lab. “Ost info and help.” (2023), [Online]. Available: https://help.ost-dc.
hacking-lab.com/. (accessed: 23.03.2023).

[17] SWITCH. “Switch edu-id.” (2023), [Online]. Available: https://www.switch.ch/edu-
id/. (accessed: 24.03.2023).

[18] Hacking-Lab. “Idocker challenge developer.” (2023), [Online]. Available: https://www.
hacking-lab.com/blog/idocker-challenge-developer. (accessed: 10.04.2023).

[19] Hacking-Lab. “Rdocker challenge developer.” (2023), [Online]. Available: https://www.
hacking-lab.com/blog/rdocker-challenge-developer. (accessed: 10.04.2023).

69

https://www.geeksforgeeks.org/basic-blocks-in-compiler-design/
https://www.geeksforgeeks.org/basic-blocks-in-compiler-design/
https://www.udemy.com/share/101Zbi/
https://www.pluralsight.com/courses/reverse-engineering-malware-ghidra
https://ghidra-sre.org
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://platform.openai.com/docs/api-reference/
https://platform.openai.com/docs/api-reference/
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview
https://platform.openai.com/tokenizer
https://platform.openai.com/tokenizer
https://x64dbg.com/
https://github.com/x64dbg/x64dbg
https://sourceware.org/gdb/
https://sourceware.org/gdb/
https://sourceware.org/gdb/current/
https://sourceware.org/gdb/current/
https://www.ost.ch/de/studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/studienschwerpunkte
https://www.ost.ch/de/studium/informatik/bachelor-informatik/studieninhalt-und-aufbau/studienschwerpunkte
https://help.ost-dc.hacking-lab.com/login/
https://help.ost-dc.hacking-lab.com/login/
https://help.ost-dc.hacking-lab.com/
https://help.ost-dc.hacking-lab.com/
https://www.switch.ch/edu-id/
https://www.switch.ch/edu-id/
https://www.hacking-lab.com/blog/idocker-challenge-developer
https://www.hacking-lab.com/blog/idocker-challenge-developer
https://www.hacking-lab.com/blog/rdocker-challenge-developer
https://www.hacking-lab.com/blog/rdocker-challenge-developer

BIBLIOGRAPHY G.Nenz, R. Müller, T.Kleb

[20] I. Bütler. “Challenge requirements.” (2023), [Online]. Available: https://hacking-lab.
atlassian. net/wiki/ spaces/HLSD /pages/234881025 /Challenge+ Requirements.
(accessed: 05.06.2023).

[21] elzoughby. “Base64.” (2018), [Online]. Available: https://github.com/elzoughby/
Base64. (accessed: 05.04.2023).

[22] G. Goodes. “Beyond control flow flattening: Advanced software obfuscation techniques.”
(2022), [Online]. Available: https://www.guardsquare.com/blog/beyond-control-
flow-flattening-advanced-software-obfuscation-techniques. (accessed: 21.04.2023).

[23] A. Klopsch. “Attacking emotet’s control flow flattening.” (2022), [Online]. Available: https:
/ / news . sophos . com / en - us / 2022 / 05 / 04 / attacking - emotets - control - flow -

flattening/. (accessed: 5.05.2023).

[24] eshard. “D810: A journey into control flow unflattening.” (2022), [Online]. Available:
https://eshard.com/posts/D810-a-journey-into-control-flow-unflattening.
(accessed: 5.05.2023).

[25] jscrambler. “Jscrambler 101 — control flow flattening.” (2017), [Online]. Available: https:
//blog.jscrambler.com/jscrambler- 101- control- flow- flattening. (accessed:
5.05.2023).

[26] S. Frankoff. “Angr control flow deobfuscation.” (2022), [Online]. Available: https://
research.openanalysis.net/angr/symbolic%20execution/deobfuscation/research/

2022/03/26/angr_notes.html. (accessed: 5.05.2023).

[27] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “Sok: (state of) the art of war: Offensive
techniques in binary analysis,” 2016.

[28] N. Stephens, J. Grosen, C. Salls, et al., “Driller: Augmenting fuzzing through selective
symbolic execution,” 2016.

[29] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice - automatic
detection of authentication bypass vulnerabilities in binary firmware,” 2015.

[30] Frida. “Frida website.” (2023), [Online]. Available: frida.re. (accessed: 12.05.2023).

[31] O. @Apriorit. “Anti debugging protection techniques with examples.” (2019), [Online].
Available: https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-
protection-techniques-to-use-before-releasing-software. (accessed: 12.05.2023).

[32] J. Olekks. “Nine anti-debugging techniques for application security.” (2020), [Online].
Available: https : / / securityboulevard . com / 2020 / 09 / nine - anti - debugging -

techniques-for-application-security/. (accessed: 12.05.2023).

[33] cp¡r¿. “Anti-debug tricks.” (2022), [Online]. Available: https://anti-debug.checkpoint.
com/. (accessed: 12.05.2023).

[34] R. C. “Over 95 percent of all new malware threats discovered in 2022 are aimed at win-
dows.” (2022), [Online]. Available: https://www.guardsquare.com/blog/beyond-
control-flow-flattening-advanced-software-obfuscation-techniques. (accessed:
22.05.2023).

[35] A. Hosseini. “Ten process injection techniques: A technical survey of common and trending
process injection techniques.” (2017), [Online]. Available: https://www.elastic.co/
de/blog/ten- process- injection- techniques- technical- survey- common- and-

trending-process. (accessed: 24.05.2023).

70

https://hacking-lab.atlassian.net/wiki/spaces/HLSD/pages/234881025/Challenge+Requirements
https://hacking-lab.atlassian.net/wiki/spaces/HLSD/pages/234881025/Challenge+Requirements
https://github.com/elzoughby/Base64
https://github.com/elzoughby/Base64
https://www.guardsquare.com/blog/beyond-control-flow-flattening-advanced-software-obfuscation-techniques
https://www.guardsquare.com/blog/beyond-control-flow-flattening-advanced-software-obfuscation-techniques
https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
https://eshard.com/posts/D810-a-journey-into-control-flow-unflattening
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening
https://research.openanalysis.net/angr/symbolic%20execution/deobfuscation/research/2022/03/26/angr_notes.html
https://research.openanalysis.net/angr/symbolic%20execution/deobfuscation/research/2022/03/26/angr_notes.html
https://research.openanalysis.net/angr/symbolic%20execution/deobfuscation/research/2022/03/26/angr_notes.html
frida.re
https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-software
https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-software
https://securityboulevard.com/2020/09/nine-anti-debugging-techniques-for-application-security/
https://securityboulevard.com/2020/09/nine-anti-debugging-techniques-for-application-security/
https://anti-debug.checkpoint.com/
https://anti-debug.checkpoint.com/
https://www.guardsquare.com/blog/beyond-control-flow-flattening-advanced-software-obfuscation-techniques
https://www.guardsquare.com/blog/beyond-control-flow-flattening-advanced-software-obfuscation-techniques
https://www.elastic.co/de/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.elastic.co/de/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.elastic.co/de/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

BIBLIOGRAPHY G.Nenz, R. Müller, T.Kleb

[36] NTQuery, Scylla, version 0.9.8, May 2015. [Online]. Available: https://github.com/
NtQuery/Scylla.

[37] C. Ntantogian, G. Poulios, G. Karopoulos, and C. Xenakis, “Transforming malicious code
to rop gadgets for antivirus evasion,” IET Information Security, vol. 13, no. 6, pp. 570–
578, 2019. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/
pdf/10.1049/iet-ifs.2018.5386.

[38] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without func-
tion calls (on the x86),” S. De Capitani di Vimercati and P. Syverson, Eds., pp. 552–61,
2007.

[39] JonathanSalwan, Ropgadget, version 7.3. [Online]. Available: https : / / github . com /

JonathanSalwan/ROPgadget, (accessed: 08.06.2023).

[40] S. R. M. Stocker. “Leitfaden für bachelor- und studienarbeiten.” (2022), [Online]. Avail-
able: https://ostch.sharepoint.com/:b:/r/teams/TS-StudiengangInformatik/
Freigegebene%20Dokumente/Studieninformationen/Studien-%20und%20Bachelorarbeiten/

Leitfaden%20BA%20SA%20v1.1.pdf?csf=1&web=1&e=hZPfbx. (accessed: 10.04.2023).

71

https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2018.5386
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2018.5386
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://ostch.sharepoint.com/:b:/r/teams/TS-StudiengangInformatik/Freigegebene%20Dokumente/Studieninformationen/Studien-%20und%20Bachelorarbeiten/Leitfaden%20BA%20SA%20v1.1.pdf?csf=1&web=1&e=hZPfbx
https://ostch.sharepoint.com/:b:/r/teams/TS-StudiengangInformatik/Freigegebene%20Dokumente/Studieninformationen/Studien-%20und%20Bachelorarbeiten/Leitfaden%20BA%20SA%20v1.1.pdf?csf=1&web=1&e=hZPfbx
https://ostch.sharepoint.com/:b:/r/teams/TS-StudiengangInformatik/Freigegebene%20Dokumente/Studieninformationen/Studien-%20und%20Bachelorarbeiten/Leitfaden%20BA%20SA%20v1.1.pdf?csf=1&web=1&e=hZPfbx

List of Figures

1.1 RE Domain from preliminary work . 2

3.1 Hacking-Lab structure overview . 9
3.2 Hacking-Lab Event overview . 9
3.3 Hacking-Lab grading process . 10
3.4 Challenge Editor - General . 11
3.5 Challenge Editor - Categories . 11
3.6 Challenge Editor - Grading . 11
3.7 Challenge Editor - Sections . 12
3.8 Challenge Editor - Resources . 12
3.9 Challenge Editor - Review . 12
3.10 Docker overview . 13

5.1 Generated morphological box used for the ”Ghidra Introduction” challenge . . . 20
5.2 Challenge: Ghidra Introduction . 21
5.3 Challenge: Ghidra Scripting Introduction . 23
5.4 Challenge: Ghidra ChatGPT . 25
5.5 Challenge: Advanced Obfuscation . 27
5.6 Challenge: Control Flow Flattening . 29
5.7 Impact of CFF . 30
5.8 Challenge: Hooking . 32
5.9 Challenge: Anti-Debugging Techniques . 35
5.10 Challenge: Memory Dumping . 38
5.11 Visualisation of LoadLibrary injection . 39
5.12 Challenge: ROP Chaining . 41
5.13 Challenge: BMI Incident . 44

7.1 Gantt chart: Inception and Elaboration . 54
7.2 Gantt chart: Construction . 54
7.3 Gantt chart: Transition . 54

8.1 Time distribution of each student . 57
8.2 Time investment per sprint . 58
8.3 Total time investment per category . 58

9.1 Risk matrix . 59

10.1 Feedback evaluation: Previous Knowledge . 64
10.2 Feedback evaluation: Expectations . 65
10.3 Feedback evaluation: Difficulty of Challenges . 65
10.4 Feedback evaluation: Time Spent per Challenge 66
10.5 Feedback evaluation: Rating of Structure . 66
10.6 Feedback evaluation: Rating of Learning Experience 67
10.7 Feedback evaluation: General Enjoyment . 67

72

LIST OF FIGURES G.Nenz, R. Müller, T.Kleb

C.1 Chart of the sprint 1 time distribution . 80
C.2 Chart of the sprint 2 time distribution . 80
C.3 Chart of the sprint 3 time distribution . 81
C.4 Chart of the sprint 4 time distribution . 81
C.5 Chart of the sprint 5 time distribution . 82
C.6 Chart of the sprint 6 time distribution . 82
C.7 Chart of the sprint 7 time distribution . 83
C.8 Chart of the sprint 8 time distribution . 83
C.9 Chart of the sprint 9 time distribution . 84
C.10 Chart of the sprint 10 time distribution . 84
C.11 Chart of the sprint 11 time distribution . 85
C.12 Chart of the sprint 12 time distribution . 85
C.13 Chart of the sprint 13 time distribution . 86
C.14 Chart of the sprint 14 time distribution . 86
C.15 Chart of the sprint 15 time distribution . 87
C.16 Chart of the sprint 16 time distribution . 87

D.1 Challenge Editor - General . 88
D.2 Challenge Editor - Categories . 88
D.3 Challenge Editor - Grading . 89
D.4 Challenge Editor - Sections . 89
D.5 Challenge Editor - Resources . 89
D.6 Challenge Editor - Review . 90
D.7 Challenge: Ghidra Introduction - Sections . 91
D.8 Challenge: Ghidra Scripting Introduction - Sections 91
D.9 Challenge: Ghidra GPT - Sections . 92
D.10 Challenge: Advanced Obfuscation - Sections . 92
D.11 Challenge: Control Flow Flattening - Sections . 93
D.12 Challenge: Hooking with Frida - Sections . 93
D.13 Challenge: Anti-Debugging Techniques - Sections 94
D.14 Challenge: Memory Dumping - Sections . 94
D.15 Challenge: ROP Chaining - Sections . 95
D.16 Challenge: The BMI Incident - Sections . 95

E.1 Whole Gantt diagram - Part 1 . 96
E.2 Whole Gantt diagram - Part 2 . 97
E.3 Whole Gantt diagram - Part 3 . 98

F.1 Brainstormed challenge topics . 99

73

List of Tables

1.1 Challenge Concepts . 4

3.1 Relevant Hacking-Lab roles for this project . 8
3.2 Challenge Types . 11

5.1 Table displaying the selected subjects . 17
5.2 Selected Anti-Debug Techniques . 36

7.1 Expected time expenditure per student . 49
7.2 Division of labour . 51
7.3 RUP: Inception Phase Planning . 52
7.4 RUP: Elaboration Phase Planning . 52
7.5 RUP: Construction Phase Planning . 53
7.6 RUP: Transition Phase Planning . 53
7.7 Milestones set for the project . 55

8.1 Monitoring Notes for the Milestones . 56
8.2 Recorded Time Investments (excluding the last sprint) 57

9.1 Explanation of the different titles used in the following page 59
9.2 Risk analysis for whole project . 60

10.1 Legend for the feedback tables . 64

74

Listings

5.1 JSON for morphological box generation . 20
5.2 Source code for the first challenge . 22
5.3 Ghidra scripting: Hello World . 24
5.4 C function calls . 24
5.5 Completion function for sending text to openAI 26
5.6 Python script to get the current function to send to openAI 26
5.7 Calculator Methods . 28
5.8 Demo print function . 33
5.9 Demo print function . 34
5.10 Function decryption algorithm . 40
5.11 Function to transform virtual address to file offset 40
5.12 Example for gadgets in a program . 42

75

Part V

Appendix

76

Appendix A

Advisor Meeting Protocols

The table below gives an overview of the decisions made at each advisor meeting, along with
the date and duration. The full minutes are available on the GitLab1.

Nr Phase Date Description Duration [min]

1 Elaboration 21.02.2023 Review Term Project and planning
the first steps of the bachelor thesis

90

2 Elaboration 03.03.2023 Look over defined challenge con-
cepts and explain them

60

3 Elaboration 10.03.2023 Review our priorisation of chal-
lenges and concepts

60

4 Elaboration 17.03.2023 Communicate current state and
present plan for construction
phase

45

5 Construction 22.03.2023 Present the morphological box
generator and questions about
documentation

30

6 Construction 05.04.2023 Defined further meetings, update
on current state and questions for
the mid presentation

80

7 Construction 03.05.2023 Define GPT Docker, update on
current state and room reservation

100

8 Construction 24.05.2023 Update project status and plan
next steps

60

9 Transition 31.05.2023 Discuss grading instructions and
hand-ins

35

Meetings held with advisor

1Gitlab - Meeting Protocols: https://gitlab.ost.ch/ba23-reverseengineering/ba23re-documentation/-
/tree/main/Meetings

77

Appendix B

Personal Reports

B.1 Thomas Kleb

This semester I delved deeper into reverse engineering, an area of cybersecurity that continues
to pique my interest. The start was less stressful than previous projects, as I was now armed
with experience from the term project. Regular contact with our advisor, Ivan, provided clarity
and structure, and I’m still very grateful for his professional guidance. My responsibilities
included designing different challenges and identifying unique problems for each student to solve,
an aspect of the project that I found particularly rewarding. Our team remained organised
and effective, with tasks distributed evenly after numerous meetings. Unexpected periods of
downtime during the creation of the challenges were managed effectively, as I had learned to
plan for such events more accurately. I faced a variety of technical challenges, such as Docker
and LaTeX not working as expected, and difficulties in finding subjects, which ultimately served
as valuable learning experiences. I was able to apply and improve upon the lessons learned
from the previous semester, particularly in the area of pre-planning to streamline our process.
Reflecting on my experience, I remain grateful for the opportunity to work on such a significant
project and for the support of our supervisor. The excitement of working in this team and on
this project has not waned, and I look forward to my future endeavours in cybersecurity.

B.2 Ronny Müller

Being a part of this project brought me immense joy and satisfaction. However, it is essential
to note that tensions began to rise dramatically towards the project’s conclusion due to meeting
deadlines, miscommunication, and misunderstanding. Nevertheless, through effective problem-
solving and hard work, we successfully completed the project.

The most fun part was the brainstorming phase. We had the freedom to come up with our
own challenge ideas and their topics. Every team member was very invested in the discussion
and the potential challenges. It was exhilarating to witness the different ideas come together to
create the finished challenge concepts.

The second best part was creating the challenges. I really like the idea of teaching to inter-
ested students. This way my interest in reverse engineering combined with my joy in teaching.
Overall I felt a sense of pride when overcoming a difficult problem during the project. I had to
push my boundaries of my knowledge and skills to find the best possible challenges.

This project taught me a lot about the importance of teamwork, resilience, and adaptabil-
ity in a group. I also learned a lot about communication and think it will help me in future
projects.

78

APPENDIX B. PERSONAL REPORTS G.Nenz, R. Müller, T.Kleb

B.3 Gianluca Nenz

Being able to write my bachelor thesis on reverse engineering was a huge blessing for me. I was
already very interested in the topic before this thesis, so it was a perfect opportunity to deepen
my knowledge. As a result, I became very invested in this project and wanted to understand
everything down to the last detail.

Thanks to the previous experience from the term project, the whole initial set-up part went
really smoothly. We were able to continue with the established routine of creating challenges
and dividing our work efficiently. Testing also went well because we started looking for testers
from the very beginning and kept on asking for feedback when none came through.

The most enjoyable part for me was definitely researching the challenge topics and coming
up with a suitable challenge idea. This was the part where I learned the most. I also enjoyed
creating the challenges in Hacking-Lab, which meant teaching the topics we had researched to
an interested audience. Although it also showed me once again how hard it is to address all the
issues a student might have when solving the challenges.

All in all, I have really enjoyed working on this project, even with the tension building as
the deadline approached. It taught me the importance of communication and transparency
within the team when faced with difficulties. Ivan was also a great advisor and was always
willing to help us with any questions we had. Thanks to the hard work put in by each member
of the team, we now have a catalogue of 10 challenges that I am proud to look at.

79

Appendix C

Sprint Monitoring

Sprint 1: Start of Planning Phase

This sprint is about preparing the base for the
project and the semester in general. The goal is
to finish the GitLab base, schedule the workdays
and prepare the test template.

Duration: 20.02 - 26.02

RUP Phase: Inception Phase

Open Issues: 0

Figure C.1 shows that most of the time in this
sprint was used to prepare and plan for the
whole semester. At the end there were no open
issues and the sprint was completed without any
problems.

Figure C.1: Chart of the sprint 1 time distribu-
tion

Sprint 2: Planning continues...

The purpose of this sprint is to complete
the inception phase and to prepare for de-
cisions on which topics will be turned into
challenges for the Hacking Lab. Several
templates will be created for different pur-
poses, including Labs, Challenges, Graph-
ics and Coding in general.

Start Date: 27.02 - 05.03

RUP Phase: Inception Phase

Open Issues: 0

As shown in Figure C.2, most of this sprint
was used for further planning and set-
ting up to properly complete the inception
phase. Most of the time was spent in meet-
ings and preparing the documentation.

Figure C.2: Chart of the sprint 2 time distribu-
tion

80

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 3: Lab concept development

This is the first sprint of the elaboration
phase. The aim of this phase is to find out
which labs will be presented on the plat-
form and to finalise the basic structure of
the documentation, together with the first
sketch of the project plan.

Start Date: 06.03 - 12.03

RUP Phase: Elaboration Phase

Open Issues: ”Docker Description”

Figure C.3 shows that the documentation
required the most attention for this sprint.
Further research was done for the labs and
several meetings were held to ensure the
transition to the new phase of the project.

Figure C.3: Chart of the sprint 3 time distribu-
tion

Sprint 4: The planning returns

This sprint is used to prepare the first lab
concepts, which will facilitate the start of
the construction phase. It is also used to
finalise the preconstruction documentation.

Start Date: 13.03 - 19.03

RUP Phase: Elaboration Phase

Open Issues: 0

Figure C.4 shows, that most of it was spent
on finishing the documentation. The rest of
the time was spent on preparing each other
category for the start of the construction
phase.

Figure C.4: Chart of the sprint 4 time distribu-
tion

81

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 5: Start of Construction Phase

This sprint kicks off the build phase. It will
be used to finish the basis for the documen-
tation and to decide how the development
will be documented. This sprint is also used
to finish the first version of the morpholog-
ical box scripts.

Start Date: 20.03 - 26.03

RUP Phase: Construction Phase

Open Issues: 0

Due to the setup required for both docu-
mentation and challenges, most of the time
was spent in these categories. Figure C.5
reflects this.

Figure C.5: Chart of the sprint 5 time distribu-
tion

Sprint 6: Next Step of Construction

This sprint, similar to Sprint 5, is used to
work on both the documentation and the
challenges. The first challenges to be cre-
ated are not as time consuming as the rest.
The first challenge ”Ghidra Introduction”
will be tested, and the next two will be cre-
ated.

Start Date: 27.03 - 02.04

RUP Phase: Construction Phase

Open Issues: 0

As with the previous sprint, most of the
time was spent creating the challenges and
writing the documentation. This ensured a
clean start and optimal setup for the com-
ing weeks. Figure C.6 shows an overview of
the time distribution.

Figure C.6: Chart of the sprint 6 time distribu-
tion

82

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 7: Pre Mid Presentation

This sprint is planned to start planning the
more advanced challenges and to finish the
GPT challenge. It is also the last sprint
before the presentation for the reviewer and
expert.

Start Date: 03.04 - 09.04

RUP Phase: Construction Phase

Open Issues: 0

Figure C.7 shows that again most of the
time was spent on creating and managing
challenges. It also shows that longer meet-
ings were held with both the consultant
and the authors to prepare for the following
week’s presentations.

Figure C.7: Chart of the sprint 7 time distribu-
tion

Sprint 8: Mid Presentation

As well as creating the challenges, this
sprint will focus on the presentation at the
end of the week. This sprint should fin-
ish the Advanced Obfuscation and Ghidra
GPT challenges.

Start Date: 10.04 - 16.04

RUP Phase: Construction Phase

Open Issues: 0

Figure C.8 shows that most of the time in
this sprint was spent on planning the meet-
ings and presentation, along with creating
the challenges.

Figure C.8: Chart of the sprint 8 time distribu-
tion

83

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 9: Constructing Challenges

This sprint is used to test the ”Ghidra
GPT” challenge and to create the ”Ad-
vanced Obfuscation” challenge. A product
of this sprint is the decision to split the
obfuscation subject into two separate chal-
lenges.

Start Date: 17.04 - 23.04

RUP Phase: Construction Phase

Open Issues: 0

This is reflected in Figure C.9. It shows
that creating the challenge takes the most
time, followed by documentation and fur-
ther research.

Figure C.9: Chart of the sprint 9 time distribu-
tion

Sprint 10: Constructing Challenges

Sprint 10 is used to create more challenges.
In this case the ”CFF” and the ”Hooking
with Frida” challenges. In addition, some
time is planned to focus on the following
topics and to fix mistakes in previous chal-
lenges.

Start Date: 24.04 - 30.04

RUP Phase: Construction Phase

Open Issues: 0

Figure C.10 shows that nearly three quar-
ters of the time were used to improve the
previous challenges and to create the new
ones.

Figure C.10: Chart of the sprint 10 time distri-
bution

84

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 11: Update and Fix Challenges

This sprint, like the other sprints in the
construction phase, is used to plan and con-
struct challenges. More time is also spent in
this sprint in meetings, as the advisor meet-
ing discusses the concept of project testing.

Start Date: 01.05 - 07.05

RUP Phase: Construction Phase

Open Issues: 0

Figure C.11 looks as expected for a con-
struction sprint: Most of the time is spent
working on the challenges and in meetings
to discuss the future.

Figure C.11: Chart of the sprint 11 time distri-
bution

Sprint 12: Hooking and Anti Debug

This sprint is used to complete the two chal-
lenges ”Hooking with Frida” and ”Anti-
Debugging Techniques”. In addition, it is
used to plan ahead and decide on the final
challenges to be created.

Start Date: 08.05 - 14.05

RUP Phase: Construction Phase

Open Issues: 0

This sprint is more balanced across the cat-
egories, as shown in Figure C.12. This is
due to the multiple facets that need to be
organised and planned in this sprint.

Figure C.12: Chart of the sprint 12 time distri-
bution

85

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 13: Testing Challenges

This sprint is used to finish testing all the
challenges which aren’t tested yet. In ad-
dition to that, the creation of the ”ROP
Chaining” challenge started and the plan-
ning of the final combination challenge
started.

Start Date: 15.05 - 21.05

RUP Phase: Construction Phase

Open Issues: 0

Compared to other sprints, less time was
spent building challenges and more time
was spent finishing merge requests and
other aspects of documentation and chal-
lenge creation. This is shown in Fig-
ure C.13.

Figure C.13: Chart of the sprint 13 time distri-
bution

Sprint 14: End of Construction Phase

This is the final sprint of the construction
phase. It is used to finish the problems of
the previous challenges and to start the cre-
ation of the final challenge.

Start Date: 22.05 - 28.05

RUP Phase: Construction Phase

Open Issues: 0

In this sprint, a bit more than half of the
time was spent on the challenges. This is
also shown in Figure C.14. The students
which weren’t occupied with challenge cre-
ation worked on preparing the documenta-
tion and GitLab for the Transition phase.

Figure C.14: Chart of the sprint 14 time distri-
bution

86

APPENDIX C. SPRINT MONITORING G.Nenz, R. Müller, T.Kleb

Sprint 15: Start of Transition Phase

This sprint is used to complete the chal-
lenges and internal testing. The finished
challenges are also given to students and
other volunteer testers. To ensure that the
final challenge is up to standard, this sprint
is also used to finish it.

Start Date: 29.05 - 04.06

RUP Phase: Transition Phase

Open Issues: 1

The start of the transition phase was not
intended to have a high amount of chal-
lenge work to be done. To ensure that there
were as few problems as possible, focus was
set on updating according to the testers’
feedback. In addition, work had to be com-
pleted for the final challenge to go live. This
resulted in most time being spent in the
challenge category as shown in Figure C.15.

Figure C.15: Chart of the sprint 15 time distri-
bution

Sprint 16: Finish Documentation

This sprint is the last full week of the
project. As such, it will be used to finalise
much of the documentation, including the
analysis of the test feedback.

Start Date: 05.06 - 11.06

RUP Phase: Transition Phase

Open Issues: 0

The last sprint before the hand-in week
was mainly used to test and update all
the challenges and to finish the documen-
tation. This distribution is also shown in
Figure C.16.

Figure C.16: Chart of the sprint 16 time distri-
bution

87

Appendix D

Screenshots

Hacking-Lab

Figure D.1: Challenge Editor - General

Figure D.2: Challenge Editor - Categories

88

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

Figure D.3: Challenge Editor - Grading

Figure D.4: Challenge Editor - Sections

Figure D.5: Challenge Editor - Resources

89

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

Figure D.6: Challenge Editor - Review

90

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

Challenge Sections

Ghidra Introduction

Figure D.7: Challenge: Ghidra Introduction - Sections

Ghidra Scripting Introduction

Figure D.8: Challenge: Ghidra Scripting Introduction - Sections

91

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

Ghidra GPT

Figure D.9: Challenge: Ghidra GPT - Sections

Advanced Obfuscation

Figure D.10: Challenge: Advanced Obfuscation - Sections

92

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

Control Flow Flattening

Figure D.11: Challenge: Control Flow Flattening - Sections

Hooking with Frida

Figure D.12: Challenge: Hooking with Frida - Sections

93

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

Anti-Debugging Techniques

Figure D.13: Challenge: Anti-Debugging Techniques - Sections

Memory Dumping

Figure D.14: Challenge: Memory Dumping - Sections

94

APPENDIX D. SCREENSHOTS G.Nenz, R. Müller, T.Kleb

ROP Chaining

Figure D.15: Challenge: ROP Chaining - Sections

The BMI Incident

Figure D.16: Challenge: The BMI Incident - Sections

95

Appendix E

Gantt Diagram

Figure E.1: Whole Gantt diagram - Part 1

96

APPENDIX E. GANTT DIAGRAM G.Nenz, R. Müller, T.Kleb

Figure E.2: Whole Gantt diagram - Part 2

97

APPENDIX E. GANTT DIAGRAM G.Nenz, R. Müller, T.Kleb

Figure E.3: Whole Gantt diagram - Part 3

98

Appendix F

Challenge Identification

Figure F.1: Brainstormed challenge topics

99

	Abstract
	Lay Summary
	Acknowledgement
	Glossary
	Acronyms
	I Technical Report
	Project Idea
	Introduction
	Problem statement
	Delimitation

	Objectives
	Methodology
	Conditions

	Expected Outcomes
	Conclusion

	Tools and Frameworks
	Ghidra
	OpenAI API
	Models
	Tokens

	x64dbg
	GDB

	Hacking-Lab
	Overview
	Tenants
	OST Tenant
	Demo Tenant

	Subdomains
	Structure
	Macro Overview
	Lab and Challenge Structure

	Hacking-Lab as a user
	Labs and Challenges

	Hacking-Lab as an editor
	Challenge Creation

	Docker variations
	idocker
	rdocker

	II Product Documentation
	Requirements
	Overview
	Challenge Requirements

	Lab Documentation
	Subject Identification Process
	Decision Process

	Morph Box Generator
	Challenge Descriptions
	Ghidra Introduction
	Ghidra Scripting Introduction
	Ghidra ChatGPT
	Advanced Obfuscation
	Control Flow Flattening
	Hooking
	Anti-Debugging Techniques
	Memory Dumping
	ROP Chaining
	BMI Incident

	Results
	Conclusion
	Future

	III Project Documentation
	Project Plan
	Project Management
	Time Management
	Planning
	Meetings
	Issue Tracking

	Roles and Responsibilities
	Roles
	Division of Labour

	Timeline and Milestones
	Phases and Iterations
	Milestones

	Project Monitoring
	Overview
	Milestone Review
	Time Tracking
	Time Tracked per Student
	Overall Time Tracked

	Risk Management
	Risks
	Risk Analysis

	Encountered Risks
	R9 during CFF challenge development
	R9 and R2 during ROP challenge development

	Risks Update History

	Quality Measures
	Testing
	Process
	Feedback forms

	Testing Feedback Evaluation
	Evaluation

	IV Directories
	Bibliography
	List of Figures
	List of Tables
	List of Code Listings

	V Appendix
	Advisor Meeting Protocols
	Personal Reports
	Thomas Kleb
	Ronny Müller
	Gianluca Nenz

	Sprint Monitoring
	Screenshots
	Gantt Diagram
	Challenge Identification

