
Bachelor Thesis

Test Result Viewer
Semester: Spring 2023

Version: 1.0
June 14, 2023

Students: Olivier Lischer
Luzia Kündig

Advisor: Thomas Corbat

School of Computer Science
OST - Eastern Switzerland University of Applied Sciences

Test Result Viewer v 1.0

Abstract

Sonova AG is a company based in Stäfa, Switzerland, and is known for the development of high
quality hearing aids and other audio-related products. Their development division currently uses
several custom made tools for the visualization of automated test results. They suffer from various
deficiencies and should be replaced by one single platform. In existing off-the-shelf solutions it is
often the assumption that detailed information about test results is only relevant if there were
any errors during execution. In case of a successful run, no details are presented to a developer
except the final result "all passed". Therefore, it has been decided that a new and custom platform
should be built to replace the existing tools.

This platform receives test result files in different XML-based formats along with separate JSON
metadata, which will be provided by the current infrastructure at Sonova. The Data Consumer
component parses and transformes these files into a unified schema. To create such a schema
required the definition of what information is relevant for the visualizations. The results are then
saved to a central data store and displayed by a frontend application. Elaborate requirements
of what visualizations the platform should support have been provided by Sonova in advance.
We have evaluated different tools for the components and according to our own research, some
recommendations and experience present at Sonova, we chose Python to implement the Data
Consumer, Elasticsearch to store the data and Angular to implement the frontend.

The resulting product of this project serves as a prototype kind of implementation to be ex-
tended by Sonova in the future. The platform we have created contains two main visualizations
as well as additional pages that display important metadata. It focuses on extensibility so that
it supports implementing new requirements in existing as well as additional views.

2

Test Result Viewer v 1.0

Management Summary

Problem description
Software tests are an important tool to improve software quality and robustness when changes
have to be made. In most software projects, automated tests can be run locally on the developer’s
machine or centrally using continuous integration, for example when pushing changes to a central
repository.

However, these benefits can only be leveraged if the results of these tests are presented in a
way that actively supports the development process.

In existing solutions where test results are represented graphically, it is often the assumption
that test results are only relevant if something went wrong. In case of a successful execution, no
details whatsoever are presented to a developer except the final result "all passed".

In the particular case at Sonova AG, running and evaluating tests is more complex than this.
There are tests that depend on specific hardware to run, tests that run up to 100 times in one
test execution, tests that only run during the night or on weekends because of their duration.

All these different combinations require the use of a more sophisticated tool to quickly grasp
and evaluate the current status of a given codebase. Currentyly, several tools try to address this
problem (see Figure 1 for an example), however the information is distributed between them,
they are hard to maintain and do not handle new requirements well. The goal of this thesis is to
create a single tool that combines all test results and displays them in a way that is relevant for
the intended users.

Figure 1.: Screenshot of one existing tool

3

Test Result Viewer v 1.0

Preconditions and approach
When developing this application for an existing ecosystem at Sonova, we were presented with
some recommendations about technologies to use. Since the final result should integrate into
their environment as seamlessly as possible, we often prioritized the products they use over othes.
Still we conducted a short analysis of possible alternatives for each component and made our own
recommendations if we found another solution to be more suitable.

Developer Test Environment
Manager

Data Consumer

Parses and transforms test
result data

Test Result Viewer

Collects and visualizes test
result data

Kafka

Provides test results as
messages

Data Producer

Transforms data to be
distributed

CI Machine

Runs test and generates
results

Artifactory

Stores artifacts of test runs

GitHub

Contains code repositories
with metadata for test runs

provides dataprovides data stores artifacts

provides data via
event

provides data

links to

links to

links to

uses uses

Legend
▯ person
▯ system
▯ external_system

Figure 2.: Architecture Goal

Test results in different formats along with relevant metadata in a seperate file will be produced
by the current infrastructure at Sonova. These are the systems colored in grey in Figure 2. The
results and metadata should be received, parsed and transformed into a unified schema using the
Data Consumer component. Then the data is saved and displayed by the Test Result Viewer.
According to our research, some recommendations and experience present at Sonova we chose
Python for the Data Consumer and Elasticsearch in combination with Angular to implement the
Test Result Viewer.

Implementation
The main focus for the realization of this project is parsing the input files to create a database
schema as well as the creation of some basic frontend visualizations. The final implementation
of the product and its integration with several other systems at Sonova is presented in Figure 2.
Figure 3 again shows the flow of data and the extent of this thesis.

4

Test Result Viewer v 1.0

Provided by Sonova AG

CI Machine

Data Producer (Python)

Kafka

This thesis

Data Consumer (Python)

Elasticsearch

Frontend (Angular)

Figure 3.: General flow of data

Database Schema
The first set of sample data we received from Sonova follows the NUnit test result format [41],
therefore we implemented a parser for this format first. As the tool should support different kinds
of result formats, we focused on creating a modular structure. This was helpful when adding the
functionality of generating random test results to add some load to the Test Result Viewer. Later
in the project we added support for parsing JUnit test results as well.

In the database schema of a test result we used the fields necessary to display all relevant
information of a result, together with an additional field to distinguish its format.

Frontend Visualizations
To create the visualizations that Sonova requires, we analyzed the data structure and created
complex transformations. The addition of comments and assignees had to be supported by the
data structure in Elasticsearch as well.

We implemented different views for the two different user personas; the developer and the test
environment manager. These views combine multiple use cases and offer filtering based on the
common query language KQL, also used by Kibana.

Conclusion
The database schema we created largely depends on the data that is available in the different
result formats and the data that is needed by the users of this tool. By using a separate file
to provide metadata it is be easy to add more information in the future. The visualizations we
created require good knowledge of the Elasticsearch querying tools and response formats. The
abstraction of these specifics inside the frontend was another focus we set for ourselves. Figure 4
shows the view created for the developer user persona.

The current state of the implementation allows developers at Sonova to use it productively,
but since it acts as a prototype many improvements can be made in the future, as demonstrated
by the extensive list of requirements.

5

Test Result Viewer v 1.0

Figure 4.: Screenshot Test Result Viewer

6

Test Result Viewer v 1.0

Acknowledgements

We have given a lot of effort to this project over its entire duration. However, without the help
of others it would have not been possible to achieve as much as we have done. This is why we
want to express our sincere gratitude to

• Thomas Corbat, our Thesis Advisor at OST and at the same time a future user of our
product in his role as Embedded Software Developer at Sonova

• Dariusz Danilko, Product Owner and a future user of our product at Sonova

for their constant and detailed feedback on the progress of our work, support in any questions
that we had along the way and their patient explanations about the situation and problems that
we have attempted to solve.

To Sonova as a company we are grateful for the opportunity to work on a project in the industry
that has very good chances of being adopted after the conclusion of this thesis.

No less important, we have been lucky to count on the support of

• Thomas Kälin, Marco Agostini, Dominik Ehrle, Jan Untersander, Tsigereda
Nebai Kidane and Stefan Morf, our lecturer, peer students and friends for their valu-
able time and knowledge in giving feedback regarding our documentation and product and
challenging our ideas to become even better. Thank you.

And of course the patience and understanding of our friends and families when we were unavailable
for yet another day. :-)

7

Test Result Viewer v 1.0

Contents

I. Product Documentation 12

1. Vision 13

2. Introduction 14
2.1. Current Situation . 14
2.2. Problem . 15
2.3. Expected Results . 15
2.4. Conditions . 15

3. Requirements 17
3.1. User Personas . 17

3.1.1. Developer . 17
3.1.2. Test Environment Manager . 17

3.2. Functional Requirements: Use Cases . 18
3.2.1. Minimum Viable Product . 18
3.2.2. Mockups . 18
3.2.3. Database schema must support at least NUnit and Junit 19
3.2.4. Tabular view of commits and test cases . 19
3.2.5. Test result of a single test case at a specific time 20
3.2.6. History of test results of a single test case 20
3.2.7. History of test results on a specific test environment 21
3.2.8. Assigning a label to a test result . 21
3.2.9. Hierarchical test order . 22
3.2.10. Detection of regression of a particular test case 23
3.2.11. Detection of flickering tests . 24
3.2.12. Detection of test environment problems . 25
3.2.13. Detection of similar/related test failures . 26
3.2.14. Attach a comment to a test case . 26
3.2.15. Assign a Developer to a test case . 27

3.3. Non-Functional Requirements . 27

4. Analysis 29
4.1. Data Structure . 29

4.1.1. Known Limitations . 30
4.1.2. Domain Model . 30

4.2. Data Consumer . 32
4.2.1. Decision . 32

4.3. Data Store . 32
4.3.1. RavenDB . 33
4.3.2. CouchDB . 33
4.3.3. Elasticsearch . 33
4.3.4. MongoDB . 34
4.3.5. Decision . 34

Contents 8

Test Result Viewer v 1.0

4.4. Frontend Approach . 34
4.4.1. Kibana . 34
4.4.2. Grafana . 35
4.4.3. Custom Frontend . 35
4.4.4. Decision . 35

4.5. Custom Frontend Frameworks . 35
4.5.1. Decision . 36

4.6. Backend . 37
4.6.1. Forwarding Frontend Requests to Elasticsearch 37
4.6.2. Storing Additional Configuration . 37
4.6.3. Authentication and Authorization . 37
4.6.4. Possible Backend Technologies . 37
4.6.5. Decision . 38

4.7. Reverse Proxy . 38
4.7.1. Possible Products . 38
4.7.2. Decision . 38

5. Architecture 39
5.1. General architecture overview . 39
5.2. Data Consumer . 41

5.2.1. NUnit and JUnit Parser . 42
5.2.2. Generator . 42

5.3. Data Store . 42
5.3.1. JSON metadata . 43
5.3.2. Test result minimal subset . 43

5.4. Frontend . 44
5.4.1. Kibana . 44
5.4.2. Angular Web Application . 44

5.5. Reverse Proxy . 45
5.6. Design Decisions . 45

6. Implementation 48
6.1. Development Server . 48
6.2. Data Consumer . 48

6.2.1. JSON Metadata Schema . 49
6.3. Data Store and Kibana Frontend . 50

6.3.1. Memory settings for Elastic in Docker . 50
6.3.2. Running the cluster with Docker Compose 50
6.3.3. Kibana Dev Tools . 51
6.3.4. Elasticsearch Indexes . 51
6.3.5. Index Mappings . 53
6.3.6. Search Templates . 53
6.3.7. Ingest Pipelines . 53
6.3.8. Elastic Query Types . 54

6.4. Angular Frontend . 55
6.4.1. Code Documentation . 55
6.4.2. Code Coverage Report . 55
6.4.3. Reactive Programming using RxJS . 55

6.5. Nginx Reverse Proxy . 55

Contents 9

Test Result Viewer v 1.0

7. Quality Measures 57
7.1. Conventions . 57
7.2. Testing . 57
7.3. CI/CD Pipeline . 57
7.4. Quality Tracking . 59

7.4.1. Nonfunctional Requirements . 59
7.4.2. Considerations for color vision deficiencies 59

8. Results 60

9. Conclusion 61

II. Project Documentation 62

1. Project Proposal 63
1.1. Introduction . 63
1.2. Goals of the project . 63

2. Project Planning 65
2.1. Team . 65
2.2. Sprints and Meetings . 65
2.3. Git Workflow . 65
2.4. Tools . 66
2.5. Project Plan . 66
2.6. Milestones . 67
2.7. Risk Assessment . 68

3. Time Tracking Report 69
3.1. Time per Category . 69
3.2. Time per Week . 69

III. Appendix 71

A. Requirements as provided by Sonova 72

B. Main use cases to cover provided by Sonova 79

C. Data characteristics provided by Sonova 80

D. Source Code Snippets 81

E. Meeting Minutes 90

F. Personal Reports 107

G. Declarations 109

Glossary 112

Acronyms 114

Contents 10

Test Result Viewer v 1.0

Bibliography 115

List of Figures 115

List of Tables 116

Contents 11

Part I.

Product Documentation

Test Result Viewer v 1.0

1. Vision

Before a daily stand-up meeting at Sonova can start, each developer has to gather all test results
from various sources and check the reason for any potential failures. In a central platform to gather
and display test result data, the primary focus of the development team would be the current
status and the history of all test cases, as well as the potential introduction of regressions.

The infrastructure team on the other hand has to monitor and maintain multiple test environ-
ments, comprised of numerous different hardware test devices and servers. Some devices have
a limited lifetime, as for example the number of read and write operations on the memory is
limited. so it has to be replaced after a certain amount of time. For this infrastructure team any
graphical overview should focus on the executions per hardware, regardless of which test case was
executed.

Many Continuous Integration (CI) systems provide some kind of test result visualizations out
of the box. However most of them, if not all, are not capable of visualizing thousands of tests
results and attaching some metadata to each test run.

It is the goal of this bachelor thesis to create a platform consisting of the following components:

• Data Consumer: Parses and inserts test data into a data store

• Data Store: Stores processed test data

• Frontend: Displays and visualizes test results

This platform should support the developers and infrastructure maintainers in getting an
overview over the current situation of their respective field of interest. It should also allow
them to attach additional metadata like references to items on other related systems, including
bug reports or build jobs.

1. Vision 13

Test Result Viewer v 1.0

2. Introduction

In this chapter we briefly introduce Sonova AG, our partner company for the project. Section 2.1
describes the current situation and section 2.2 the problems they are facing.

2.1. Current Situation
On their website, Sonova provides the following introduction:

Sonova is a global leader in innovative hearing care solutions: from personal audio
devices and wireless communication systems to audiological care services, hearing aids
and cochlear implants. The Group was founded in 1947 and is headquartered in Stäfa,
Switzerland [44].

Test Execution
To run and support Sonova’s high quality hardware products, teams of developers create the
necessary firmware. To ensure software quality, there are many automated tests that are executed
on a regular basis.

Ideally, code commits and the related test executions would be close together in time, with
every test run being finished before a new commit is made. For Sonova, this is not possible since
there are three different schedules for tests. They can be run per commit, which would be the
ideal case, nightly and on weekends. The reason for this is the complexity of the hardware devices
and also their related systems. A regular hearing aid consists of several internal components like
CPU, Digital Signal Processors (DSPs), power management chip and wireless communication
chip. Additionally, for each product the tests have to be executed with different configurations,
like the execution on development versions of the real hardware or on Field Programmable Gate
Arrays (FPGAs).

Daily Scrum Meetings
In an agile software development style when using the well known Scrum framework, there is a
short meeting every morning where every developer communicates their current status of work
to the group. This is called the daily scrum. To prepare for this meeting, a detailed overview
of the previous test runs is necessary to see their current status and see if some previous work
might have had a negative impact [49].

Existing Tools
Many CI systems display the results of a test job with minimal information only, e.g. success or
failure. This seems to be the standard and generally enough for a quick overview. Sonova tried
to address their special requirements regarding test results in the past and created several tools
to display more detailed information.

2. Introduction 14

Test Result Viewer v 1.0

Figure 2.1.: Screenshot of an existing tool with minimal information

2.2. Problem
With the situation described previously, a developers daily routine would include checking many
different dashboards and job executions to get a complete overview of the current status of all
test runs.

As stated by our advisors at Sonova, their existing tools suffer from various deficiencies and
need replacement. The main problems of the current solutions are the following.

Loading time is often too long. In some tools the test results are stored in XML files, which
might create this problem. What other factors could affect loading times has not been
analyzed in detail.

The code base is badly maintained. Database and viewer component of these tools were
custom implementations instead of established third party tools. These components were
created by developers that are mainly required to write embedded code. The time available
for maintaining and extending such internal projects is limited.

The tools are hard to change and extend. As the technologies used have aged, fewer devel-
opers know and are able to support them.

2.3. Expected Results
The problems described in the previous section lead to the task we have been set for this thesis:

Our goal is to create a new platform based on existing frameworks that allows a complete view
of the recent test results.

It should address all issues mentioned of the old solution while leveraging the functionality of
modern tools for storing and visualizing the data.

2.4. Conditions
This project is realized as a bachelors’ thesis at the OST - Eastern Switzerland University of
Applied Sciences over the course of one semester. The duration of the project is from the 20 of

2. Introduction 15

Test Result Viewer v 1.0

February to the 16 of June. It includes a budget of 360h per student which will result in 12 ECTS
points each.

2. Introduction 16

Test Result Viewer v 1.0

3. Requirements

This chapter describes user personas, functional and non-functional requirements that have been
defined together with our advisors at Sonova. Additionally, it contains the description of a
Minimum Viable Product (MVP) as well as our prioritization of further use cases in the scope of
this thesis and the reasoning behind it.

3.1. User Personas
The following user personas were provided by Sonova as part of the initial project description.
The platform we built targets two main groups of users, th developer and the test environment
manager.

3.1.1. Developer
The user interested in test results. Configures, schedules and/or starts test runs, analyzes and
reports test results, acts on failures by updating the source code in question.

3.1.2. Test Environment Manager
The user managing the hardware present for tests to be run on. He is responsible that the test
environment is ready and able to run the tests. He addresses any problems such as low disk space
or general performance issues by updating or replacing the hardware as needed.

3. Requirements 17

Test Result Viewer v 1.0

3.2. Functional Requirements: Use Cases
At the start of this project, Sonova has provided an extensive list of functional requirements (see
Appendix A). It is a collection of ideas as to what the tool could be used for in the future. All
the requirements together far exceed the scope of what is possible to implement in this project.
For this reason, a shorter list of main use cases has been provided as well (Appendix B).

These main use cases describe what is expected for the product to be capable of in order to
be adopted by the customer and possibly extended in the future. Based on this, we created our
own list with a prioritization and definition of the MVP (Table 3.1) and confirmed them in our
weekly meetings with Sonova.

The Prototype priority does not directly apply to requirements by Sonova but serves as
examples to verify different functionality of the tools used and for the developers to get used to
applying them.

The components mentioned that implement certain use cases always refer to the specific im-
plementation inside the Angular application.

Use Case Priority Completed
Database schema must support at least NUnit and Junit (3.2.3) very high W03
Overview page of last test run results (Figure 3.1) Prototype W04
Overview of all test case names Prototype W04
Overview of test environments grouped by result (3.7) Prototype W04
Tabular view of commits and test cases Prototype W05
Test result of a single test case at a specific time (3.2.5) very high W07
History of test results from a single test case (3.2.6) very high W07
History of test results on a specific test environment (3.2.7) very high W07
Assigning a label to a test result (3.2.8) very high W08
Hierarchical test order (3.2.9) high W09
Detection of regression of a particular test case (3.2.10) middle W07 (partially)
Detection of flickering tests (3.2.11) low W07
Detection of test environment problems (3.2.12) low -
Detection of similar/related test failures (3.2.13) very low -
Attach a comment to a test case (3.2.14) middle W12
Assign a Developer to a test case (3.2.8) middle W13

Table 3.1.: Use Cases with Priority

3.2.1. Minimum Viable Product
All use cases with a priority of very high make up the MVP.

3.2.2. Mockups
We have created different visualization mockups for some requirements at the beginning of the
project. The facts they represent are not guaranteed to be accurate for the final state of the
product. Figure 3.1 presents a Mockup there was no requirement for, but creating the page
served as a starting point to get familiar with the technologies.

3. Requirements 18

Test Result Viewer v 1.0

Figure 3.1.: Mockup: Dashboard page

3.2.3. Database schema must support at least NUnit and Junit
• As a developer

• I want to import the test results from various testing frameworks

• so that I can use the same platform to display different formats of test results.

This use case is implemented in the consumer and the structure of the database schema.

3.2.4. Tabular view of commits and test cases
This use case has been taken from a sample UI sketch provided by Sonova (Figure 3.2) and should
give direction for a view that supports several other use cases.

• As a developer

• I want to get an overview of the last commit results, separated by product configuration
and test case

• so that I can see the status of the latest code updates at one glance.

This use case is implemented in the component Testcase History.

3. Requirements 19

Test Result Viewer v 1.0

Figure 3.2.: Mockup: Tabular view by Sonova

3.2.5. Test result of a single test case at a specific time
• As a developer

• I want to get an overview of a test result from a single test case at a specific time

• so that I can follow up what happened at a specific time.

Original requirement: Req-1.2.1: History of a test case and Req-2.3: Filters.
UI sketch: Figure 3.3.

This use case is implemented in the component Testcase History, using the query feature to filter
by test case name and time.

3.2.6. History of test results of a single test case
• As a developer

• I want to investigate the history of a single test case

3. Requirements 20

Test Result Viewer v 1.0

• so that I can detect regression and / or flickering tests.

Original requirement: Req-1.2.1: History of a test case.
UI sketch: Figure 3.3.

This use case is implemented in the component Testcase History, using the query feature to filter
for a single test case name.

Figure 3.3.: Mockup: Test result of a single test case on a timeline

3.2.7. History of test results on a specific test environment
• As a test environment manager

• I want to see the history of test results grouped by test environment

• so that I can follow up on any issues that are apparent.

Original requirement: Req-1.2.2: History of a test environment
UI sketch: Figure 3.7

This requirement is implemented in the component Test Environment, using the query feature to
filter for a single test environment.

3.2.8. Assigning a label to a test result
• As a developer

• I want to attach various labels to a test result

• so that I can add more metadata after the test run.

Examples what can be achieved using labels:

3. Requirements 21

Test Result Viewer v 1.0

• mark a test result as irrelevant (e.g. because the test environment was down)

• mention a related task/bug

• mention someone who should look into a specific failure

Original requirement: Req-2.1: Labels
This requirement is implemented in the component Testresult Detail, accessible from any tabular
view via the colored result box.

3.2.9. Hierarchical test order
• As a developer

• I want to have collapsible test suits

• so that I can choose to display only relevant data.

Original requirement: Req-1.6: Hierarchical test order
UI sketch: Figure 3.4

This requirement is implemented in the component Testcase History. Rows for test suite names
can be expanded and collapsed.

3. Requirements 22

Test Result Viewer v 1.0

Figure 3.4.: Mockup: Test results of all test cases

3.2.10. Detection of regression of a particular test case
• As a developer

• I want to see if the latest commit introduced a regression for a particular test case

• so that I can limit the bug to a few lines of code.

Original requirement: Req-3.1: Detection of regression
UI sketch: Figure 3.5

This requirement is implemented in the component Regression. The current status of this is un-
finished, further work on this use case has been stopped to prioritize the comment and assignment
feature (May 15, Weekly Meeting, see requirements at subsection 3.2.14 and subsection 3.2.8).
Using the filter form in the Testcase History component, it is possible to find regressions manually.

3. Requirements 23

Test Result Viewer v 1.0

Figure 3.5.: Mockup: Regression display

3.2.11. Detection of flickering tests
• As a test environment manager

• I want to see if tests are producing differing results when run several times in sequence

• so that I can investigate possible hardware issues.

Original requirement: Req-3.2: Detection of flickering tests
UI sketch: Figure 3.6

This requirement is implemented in the component Test Environment as a history view for the
different hardware devices. It uses a gradient color to indicate multiple test runs produced
different results.

3. Requirements 24

Test Result Viewer v 1.0

Figure 3.6.: Mockup: History for Test Environments

3.2.12. Detection of test environment problems
• As a test environment manager

• I want to have a quick overview of error results on specific hardware environments

• so that I can investigate possible hardware issues.

Original requirement: Req-3.2: Detection of flickering tests
UI sketch: Figure 3.7

This requirement is implemented in the component Dashboard, using a chart to display results
by test environment.

3. Requirements 25

Test Result Viewer v 1.0

Figure 3.7.: Mockup: Test result of all test environments

3.2.13. Detection of similar/related test failures
• As a developer

• I want to see hints to test failures that might be related to each other in some meaningful
way

• so that I can investigate possible problems that affect several test cases in a way that isn’t
obvious.

Original requirement: Req-3.4: Advanced detection of test failures

This requirement is not implemented due to lack of time and low prioritization.

3.2.14. Attach a comment to a test case
• As a developer

• I want to comment on a test case execution

• so that I can provide additional information.

Original requirement: Req-4.2: Comments on test case execution

This requirement is implemented in the component Testcase History, using a specific column in
the table.

3. Requirements 26

Test Result Viewer v 1.0

3.2.15. Assign a Developer to a test case
• As a developer

• I want to assign a developer to a test case

• so that I know who is in charge of a specific test case.

Original requirement: Req-4.1: Test owner

This requirement is implemented in the component Testcase History, using a specific column in
the table.

3.3. Non-Functional Requirements
The following non-functional requirements have either been suggested by Sonova at the start
of the project or added by the developers to reflect discussions that took place at the weekly
meetings. Borrowed from the well known SMART notation for defining goals, we define the
relevant traits of these requirements as follows:

• Specific: Which part of the system is affected / has to fulfill the requirement?

• Measurable: How can be decided if the requirement is met or not?

• Agreed upon: Do both parties involved (developers and stakeholders) agree on the re-
quirement and the wording used?

• Relevant: What reason is there for this requirement? What user personas benefit from
fulfilling it?

• Time-bound: When should the requirement meet the proposed measure?

This specific use of the terms is based on the materials provided at the Application Architecture
course taught at OST, written by Olaf Zimmermann [54]. Instead of the definition realistic we
chose relevant to provide the main reason for each requirement. The fact that a requirement has
been proposed should in our case confirm that it is in fact realistic.

ID NFR-1 (Performance)
Requirement Response time should be kept low to keep the application usable.

See Req-8.1: Query response time
Specification Frontend, every application page
Measure(s) Page loading time must not be longer than 2.0 seconds when simple

queries to the database are involved.
Loading animations should be used to indicate data being fetched.

Agreement Requirement placed by Sonova
Relevance Waiting time when using the product will decrease adoption
Timeframe Requirement must be met on project completion
Additional Simple queries meaning the requested data is not older than 24 hours or is
information limited to the details of a specific record (test case, revision, commit).

For Data characteristics, see Appendix C

Table 3.2.: NFR-1, Performance

3. Requirements 27

Test Result Viewer v 1.0

ID NFR-2 (Confidentiality)
Requirement The application will only be available in an internal network at Sonova.

Security measures should be implemented according to this usage criteria.
Specification All application components
Measure(s) Communication between Client and Application as well as between application

components must be encrypted using TLS.
Agreement Requirement proposed by the developers
Relevance Basic security should protect sensitive data
Timeframe Requirement must be met on project completion
Additional Even with internal use only, security breaches can happen. Basic security
information measures should be applied.

Table 3.3.: NFR-2, Confidentiality

ID NFR-3 (Browser Support)
Requirement The application should support the use of different web browsers. Although the

goal is for the application to be browser-agnostic, we will use the following
prioritization for different browser products, based on internal use at Sonova.
1. Chromium (Microsoft Edge)
2. Mozilla Firefox

Specification Frontend, every application page
Measure(s) Chrome based browsers must support all application features.

Firefox should support all application features, with workarounds to avoid
losing information.
Any other browsers (e.g. Safari) will not be tested for feature support.

Agreement Requirement proposed by the developers
Relevance Browser support should be aligned with effective browser usage

to avoid overengineering
Timeframe Requirement must be met on project completion

Table 3.4.: NFR-3, Browser Support

3. Requirements 28

Test Result Viewer v 1.0

4. Analysis
This chapter contains considerations for the information we were given as well as the choice of
technology for each component. The reasoning behind the design decisions is summarized in
section 5.6 to provide a brief overview for later reference. First, section 4.1 focuses on the data
structure, the following sections provide information about the Data Consumer (4.2), Data Store
(4.3), Frontend (4.4), Backend (4.6) and Reverse Proxy (4.7) components. Figure 4.1 shows our
planned components in the project context.

Although Sonova has often expressed their own preferences about what technologies they would
use for each component, we performed our own analysis to ensure there were no obvious drawbacks
to using their preferred solution.

Test Result Viewer
[System]

Data Consumer

Parses and transforms test
result data

Data Store

Storage and indexing of
test results

Frontend

Implements visualizations

Backend

Provides additional
functionality

Reverse Proxy

Forwards requests based on
URL

Developer

Sonova
Infrastructure

Provides test result data

interacts with

provides data

inserts data

forwards queries backend forwards

queries

Legend
▯ person
▯ component
▯ external_system
▯ system boundary (dashed)

Figure 4.1.: Overview of planned Components

4.1. Data Structure
The data structure is the foundation of this platform. To support many different requirements
the data structure must be as complete but also as flexible as possible. Therefore, it was the first
task to find a suitable solution.

The final structure combines two sources of information: a report from a testing framework
and a JSON file with additional metadata. We have been provided with two sample files of a test
result following the NUnit Standard XML Format Version 2.0 [42] and one following the JUnit
Format [28]. The JSON file contains additional data from several systems of Sonovas existing
infrastructure and is constructed and delivered by them. As discussed in our weekly meetings, it

4. Analysis 29

Test Result Viewer v 1.0

is their responsibility to provide all information relevant for any use case they require and ours
to consume and process the data.

4.1.1. Known Limitations
The following limitations are relevant at the time of this project and should be evaluated again
in case of an upgrade of the test framework version used by Sonova.

Missing end time in NUnit: At the time of writing Sonova uses NUnit Version 2. The XML
schema used by this version contains neither the time when the test run as a whole ended
nor when a single test case ended. It only provides the information when the test run was
started and how long the execution of each test suite and test case took [42]. NUnit Version
3 provides information about start and end time of each test run, test suite and test case
[41].

Missing start / end time in JUnit: Similar to NUnit Version 2, JUnit does not provide exact
information about when each test case execution has started. It only provides information
about the time the test suite has started and how long the execution of each test case has
lasted [28].

4.1.2. Domain Model
Figure 4.2 defines the relationship between the different data sources and the information they
provide. The figure is based on NUnit. However, for this project JUnit acts as a subset of NUnit
so it is not displayed separately.

4. Analysis 30

Test Result Viewer v 1.0

N
U
n
it
-R

e
s
u
lt
fi
le

A
d
d
it
io
n
a
lI
n
fo
rm

a
ti
o
n

N
U
n
it
-M

e
ta

d
a
ta

E
n

v
ir

o
n

m
e

n
t

st
ri

n
g

 n
u

n
it

-v
e
rs

io
n

st
ri

n
g

 c
lr

-v
e

rs
io

n
st

ri
n

g
 o

s-
v
e
rs

io
n

st
ri

n
g

 p
la

tf
o

rm
st

ri
n

g
 c

w
d

st
ri

n
g

 m
a
ch

in
e
-n

a
m

e
st

ri
n

g
 u

se
r

st
ri

n
g

 u
se

r-
d

o
m

a
in

C
u

lt
u

re
In

fo

st
ri

n
g

 c
u

rr
e
n

t-
cu

lt
u

re
st

ri
n

g
 c

u
rr

e
n

t-
u

ic
u

lt
u

re

Te
st

su
it

e
R

e
su

lt

b
o
o
le

a
n

 e
xe

cu
te

d
b

o
o
le

a
n

 s
u

cc
e
ss

st
ri

n
g

 r
e
su

lt
d

e
ci

m
a
l
ti

m
e

in
t

a
ss

e
rt

s Te
st

c
a

se
R

e
su

lt

b
o
o
le

a
n

 e
xe

cu
te

d
st

ri
n

g
 r

e
su

lt
b

o
o
le

a
n

 s
u

cc
e
ss

st
ri

n
g

 t
im

e
in

t
a
ss

e
rt

s

R
e
a
so

n

st
ri

n
g

 m
e
ss

a
g

e

C
a
te

g
o
ry

st
ri

n
g

 n
a
m

e

P
ro

p
e

rt
y

st
ri

n
g

 n
a
m

e
st

ri
n
g
 v

a
lu

e

Te
st

ru
n

in
t

to
ta

l
in

t
e

rr
o

rs
in

t
fa

ilu
re

s
in

t
n

o
t-

ru
n

in
t

in
co

n
cl

u
si

v
e

in
t

ig
n

o
re

d

Fa
ilu

re

st
ri

n
g

 m
e
ss

a
g

e
st

ri
n

g
 s

ta
ck

Tr
a

ce

Te
st

ru
n

D
e

ta
il
s

D
a

te
 s

ta
rt

D
a

te
T
im

e
 s

ta
rt

T
im

e
D

a
te

 e
n

d
D

a
te

T
im

e
 e

n
d

T
im

e

E
m

p
ty

 X
M

L
O

b
je

ct
 'R

e
su

lt
s'

a
lw

a
y
s

e
n
ca

p
su

la
te

s
Te

st
su

it
e

o
r

Te
st

ca
se

 R
e
su

lt
 O

b
je

ct

S
h
o
u
ld

 m
o
d
e
l e

xt
e
rn

a
l

sy
st

e
m

 li
ke

 J
e
ki

n
s,

 G
it

H
u
b
 e

tc
.

In
fo

rm
a
ti

o
n
 a

d
d
e
d
 m

a
n
u
a
lly

v
ia

 T
e
st

 R
e
su

lt
 V

ie
w

e
r

C
o

m
m

e
n

t

st
ri

n
g

 c
o

m
m

e
n

t
st

ri
n

g
 t

e
st

ca
se

st
ri

n
g

 t
e

st
su

it
e

La
b

e
l

st
ri

n
g

 k
e

y
st

ri
n
g
 v

a
lu

e

E
x
te

rn
a
lL

in
k
s

st
ri

n
g

 s
y
st

e
m

st
ri

n
g

 l
o
ca

ti
o
n

Te
st

ru
n

M
e

ta
d

a
ta

V
C

S
In

fo
rm

a
ti

o
n

st
ri

n
g

 b
ra

n
ch

n
u

m
b

e
r

co
m

m
it

H
a
sh

T
im

e
 c

o
m

m
it

T
im

e
st

ri
n

g
 r

e
p

o
si

to
ry

V
C

S
Ty

p
e

 v
c
sT

y
p

e

Te
st

e
n

v
ir

o
n

m
e

n
t

st
ri

n
g

 n
a
m

e
st

ri
n

g
[]

 c
a
p

a
b

ili
ti

e
s

B
u
ild

st
ri

n
g

 b
ra

n
d

st
ri

n
g

 i
d

e
n

ti
fi

e
r

st
ri

n
g

 n
u

m
b

e
r

st
ri

n
g

 p
ro

je
ct

st
ri

n
g

 t
ri

g
g

e
r

st
ri

n
g

 u
rl

Te
s
tj

o
b

st
ri

n
g

 N
a
m

e

Te
st

su
it

e

st
ri

n
g

 n
a
m

e
st

ri
n

g
 t

y
p

e

Te
st

c
a

se

st
ri

n
g

 n
a
m

e
st

ri
n

g
 a

ss
ig

n
e
e

st
ri

n
g

 c
o

m
m

e
n

t

Figure 4.2.: Domain Model: NUnit XML with added metadata

4. Analysis 31

Test Result Viewer v 1.0

4.2. Data Consumer
The data consumer component will be responsible for parsing and transforming input data for
test results to a format that corresponds to the data structure. Data will be retrieved from a
Kafka Topic that will be set up by Sonova in the future. Currently it is necessary to parse two
separate files for the XML result and the JSON metadata. Also, the automated and randomized
generation of sample test results based on the files given has been advised to create a realistic
amount of data for testing.

4.2.1. Decision
At Sonova, many utilities used in the CI/CD area are written using Python, so it is proposed
that we do the same. A template package can be provided as well. Because an easy integration
into the existing environment is valued higher than potential advantages of other tools (mainly:
better performance of compiled over interpreted languages), we decided to use Python without
any further analysis.

4.3. Data Store
The data store component stores test result information including metadata. Additionally, it must
be possible to query and aggregate the data inside the store. The data store will be populated
by the data consumer.

Sonova proposed Elasticsearch as a primary solution. They did not investigate any alternatives
for lack of time. To ensure we do not miss any better solutions we decided to evaluate possible
alternatives. The technology should be able to fulfill the following requirements:

1. easy to scale horizontally

2. easy to add new fields to schema

3. short time for search and query operations

Common Relational Database Management Systems (RDBMS) normally have a strict database
schema which makes it difficult to change the data structure later [7, 30]. Also, these systems are
not optimized for horizontal scaling. Because of these reasons we focused on NoSQL databases
only.

While SQL is valued for ensuring data validity, NoSQL is good when it’s more impor-
tant that the availability of big data is fast. It’s also a good choice when a company
will need to scale because of changing requirements. NoSQL is easy-to-use, flexible
and offers high performance [7].

After some research we chose the following technologies for a more detailed comparison:

• RavenDB (see 4.3.1)

• CouchDB (see 4.3.2)

• Elasticsearch (see 4.3.3)

• MongoDB (see 4.3.4)

4. Analysis 32

Test Result Viewer v 1.0

4.3.1. RavenDB
RavenDB is a document-oriented NoSQL database, and in contrast to other NoSQL databases it
is fully ACID compatible [3]. In the current scope of this project, writing to the database is not
as important as fast querying. Therefore, ACID as a property is useful but not crucial.

For a full-text search, RavenDB uses Lucene as its search backend [24]. A critical function
is aggregating data over a large set of data in a short time. To perform such operations fast,
RavenDB provides Map-Reduce indexes [25]. These are special views which are calculated during
indexing and updated during insert, update or delete operations. Therefore querying such an
index is fast, with the drawback that it has to be defined at development and can not easily be
extended at runtime [25].

4.3.2. CouchDB
CouchDB is a NoSQL database which focuses on the Availability and Partition tolerance aspects
of the CAP theorem. Its strengths are horizontal scaling using master-slave or master-master
replication [11].

According to existing comparisons, MongoDB has a better read performance [13, 52]. The
documentation also states that performance issues might occur in a huge data set:

With up to tens of thousands of documents you will generally find CouchDB to perform
well no matter how you write your code. Once you start getting into the millions of
documents you need to be a lot more careful [1].

4.3.3. Elasticsearch
Elasticsearch is not a traditional database but a search engine based on Lucene. It is thus focused
on low query time at the cost of higher inserting time using inverted indexes [48]. However,
Elasticsearch can store documents and is therefore an option for this project.

Elasticsearch is the distributed search and analytics engine at the heart of the Elastic
Stack. It provides near real-time search and analytics for all types of data. Whether
you have structured or unstructured text, numerical data, or geospatial data, Elastic-
search can efficiently store and index it in a way that supports fast searches. Elas-
ticsearch provides a REST API that enables you to store data in Elasticsearch and
retrieve it. The REST API also provides access to Elasticsearch search and analytics
capabilities.
Data in: Elasticsearch is a distributed document store. Instead of storing informa-
tion as rows of columnar data, Elasticsearch stores complex data structures that have
been serialized as JSON documents. When you have multiple Elasticsearch nodes in
a cluster, stored documents are distributed across the cluster and can be accessed im-
mediately from any node.
Information out: While you can use Elasticsearch as a document store and retrieve
documents and their metadata, the real power comes from being able to easily access
the full suite of search capabilities built on the Apache Lucene search engine library
[17].

In comparison to other NoSQL databases it has a much higher insertion time but outperforms
others in terms of searching and aggregating data [23].

For this project, modifying operations are not critical and can take longer. In case of perfor-
mance issues with modifying operations, it is an option to use another database as data store
and use Elasticsearch on top of that using connectors [16]. All operations are performed using
an HTTP API.

4. Analysis 33

Test Result Viewer v 1.0

4.3.4. MongoDB
MongoDB is one of the most common NoSQL databases [34]. It stores the documents in BSON
format.

Similar to Elasticsearch, MongoDB is fast in searching data and performing aggregations.
However, as soon as the search queries are more complex, Elasticsearch performs better than
MongoDB [15]. Other comparisons produced a similar result: Elasticsearch is faster in searching.
However in inserting, updating, deleting and storing, MongoDB performs better [35].

The solution using MongoDB as a database and Elasticsearch for searching and analyzing the
data is described in the paper “Massive Semi-structured Data Platform based on Elasticsearch
and MongoDB” [15]. As it is mentioned there, MongoDB on its own is not capable of quickly
calculating search results using complex queries for huge amounts of data.

4.3.5. Decision
Req-1.1: Customizable View requires the creation of expensive aggregations at runtime. Although
we do not implement this requirement as part of the thesis, we want to to build the application
in a way that Sonova can add the feature in the future, therefore we neglected RavenDB as our
data store.

We neglected CouchDB and MongoDB as an option because of their lower reading speeds and
search performance, which are the most important criteria.

We chose to build the application using Elasticsearch, satisfying the requirement for fast query-
ing times. Elasticsearch will be used for both searching as well as storing data to keep the
complexity of the setup low.

When the application evolves and requirements for tasks like inserting and updating are more
important, another technology like MongoDB can be added. Because Elasticsearch can also be
used to search data stored using another database technolgy, very few changes to the application
logic would be necessary.

4.4. Frontend Approach
To analyze and display our data a flexible frontend is necessary. There are several options for
such an implementation. We have selected the following three options for further analysis:

• Kibana (see 4.4.1)

• Grafana (see 4.4.2)

• Creating a Custom Frontend (see 4.4.3)

4.4.1. Kibana
Kibana is a ready to use frontend for Elasticsearch and is part of the Elasticstack, as shown
in Figure 4.3 [17]. This is a big advantage of Kibana over other query frontends, as it is opti-
mized to work with an Elasticsearch cluster and offers some convenient functionality for cluster
management (see 5.4.1 for details). Kibana is designed to analyze and search for data stored in
an Elasticsearch instance. Its focus lies on easy creation and editing of visual dashboards with
different kinds of graphs and visualizations pre-built.

For a prototype with some basic visualizations these solutions would be adequate. However,
inserting additional data into the data store is not a common use case of Kibana. To do so would
require calls to the Elasticsearch API, e.g. using the Kibana Dev Tools [38]. This is cumbersome
and not feasible for everyday use. Since requirements like subsection 3.2.8 and subsection 3.2.15

4. Analysis 34

Test Result Viewer v 1.0

rely on this functionality, Kibana is not suitable as our only frontend. However it may be deployed
in addition to another frontend for the purpose of managing the cluster.

Figure 4.3.: Elasticstack Components [17]

4.4.2. Grafana
Grafana is an open source visualization tool that can be used with a number of data sources,
including but not limited to Elasticsearch. It was started originally as a fork of Kibana [22].
Grafana is primarily used to create dashboards for data from various sources. Similar to Kibana,
Grafana is not suitable to manipulate an existing data source [26, 27]. Therefore we decided
against Grafana as our primary frontend.

4.4.3. Custom Frontend
A custom frontend using a well known web framework like React, Vue.js or Angular can be used
to directly access Elasticsearch data over its API. This comes with the advantage of maximal
control over the UI and all possible features, but it requires the development and maintenance
of a whole new code base. In contrast to Kibana and Grafana, this solution allows us to easily
insert and update data from the frontend.

4.4.4. Decision
Kibana and Grafana are great tools to configure dashboards and visualize data from Elastic-
search. However, both are lacking an easy way to insert and update data, which is an important
requirement. In addition, a custom frontend can be extended and adapted to Sonova’s needs.
Because of these reasons, we decided to implement a custom frontend.

4.5. Custom Frontend Frameworks
The most used web frameworks and libraries in 2022 were React.js, Angular and Vue.js according
to the “State of JS” survey [43], which is conducted yearly by a team of open source developers,
contributors and consultants.

4. Analysis 35

Test Result Viewer v 1.0

Table 4.1 compares the three technologies in type and the language that is generally used with
it.

Name Type Language
Angular Framework TypeScript
React.js Library JavaScript
Vue.js Library JavaScript

Table 4.1.: Technical comparison Web Frameworks

Our comparison in Table 4.2 is limited to these three frameworks and represents the information
taken from the survey. The values were calculated as follows:

Retention: would use again / (would use again + would not use again)

Interest: want to learn / (want to learn + not interested)

Usage: (would use again + would not use again) / total

Awareness: (total - never heard) / total

Framework / Library Usage Retention Interest Awareness
Angular 49% 43% 20% 100%
React.js 82% 77% 47% 100%
Vue.js 46% 77% 51% 100%

Table 4.2.: Survey Results Web Frameworks

According to the results, more than half of the participating developers do not plan to work
with Angular again. On the other hand, 77% of the participants would choose React.js and Vue.js
for another project.

4.5.1. Decision
To be able to update as well as retrieve data from Elasticsearch we chose to build a custom
frontend (4.4.4). According to the list of use cases it must support

• various visualizations of data (see 3.2 Functional Requirements: Use Cases)

• attaching and editing additional data (see 3.2.8 Assigning a label to a test result).

The only web frontend technology previously used at Sonova is Angular. The maintenance of
internal applications like this one is usually not the main focus of their developers and therefore
they do not have time to learn new technologies for this specifically. If the Test Result Viewer were
to be implemented using any other technology like React.js or Vue.js, Sonova would eventually
rewrite the whole application in Angular. For this reason and since none of us have worked
with any of the mentioned web frameworks before, we decided to use Angular in agreement with
Sonova (see meeting notes from March 13 in section E).

In addition, an out-of-the-box Kibana instance will be part of the application as well to provide
some powerful features for data management as well as access to the elastic API via the Kibana
Dev Tools [29].

Following this, the analysis in subsection 4.4.3 was not continued because it would not change
the design decision. Had this restriction of Sonova not existed, we would have made further
comparisons to choose between React.js and Vue.js.

4. Analysis 36

Test Result Viewer v 1.0

4.6. Backend
Implementing a backend service for the Test Result Viewer provides possibilities for some addi-
tional features:

• Forwarding frontend requests to elasticserach (see 4.6.1)

• Storing additional configuration (see 4.6.2)

• Authentication and Authorization (see 4.6.3)

4.6.1. Forwarding Frontend Requests to Elasticsearch
Without a backend it is required to deliver the database (API) credentials to the browser on the
client. This could lead to critical security issues.

Another problem is that a potential attacker could send arbitrary queries to the database which
could lead to a Denial-of-Service scenario. With the additional logic of a backend, it is possible
to control what queries are sent to the database.

Because of the reasons mentioned Elasticsearch does not officially support the JavaScript client
library elasticsearch.js to be used in the browser [18]. Instead it is recommended to write a
lightweight backend to forward requests to the elastic API.

4.6.2. Storing Additional Configuration
As the application evolves, at some point it may be possible to create custom dashboards in the
frontend. This dashboard configuration will have to be stored somewhere. Although it is possible
to achieve this feature without a backend, we strongly recommend not to implement this logic in
the browser.

4.6.3. Authentication and Authorization
Depending on the authentication and authorization mechanism used, this could be done without
a backend. However, as soon as the chosen mechanism is not usable over HTTP a backend is
required to communicate with the authentication provider.

4.6.4. Possible Backend Technologies
Limiting the number of programming languages used in this project reduces the overall complexity.
Since the data consumer will be written in Python and the frontend in TypeScript, we will limit
the possible technologies to frameworks using Python, JavaScript or Typescript. Some examples
are listed in Table 4.3.

Name Language
Django Python
Flask Python
Hug Python
express.js JS / TS
nest.js JS / TS

Table 4.3.: Possible backend frameworks

4. Analysis 37

Test Result Viewer v 1.0

4.6.5. Decision
In agreement with Sonova we decided to not implement a backend. They have acknowledged the
possible security risk because the application will only be accessible from the internal network.
Additional features may be implemented later by Sonova. See Meeting Notes (March 20) in
section E.

4.7. Reverse Proxy
A reverse proxy can be used to prevent Cross Origin Resource Sharing (CORS) issues and serve
different components on the same domain. This ensures that all web requests that are made
from the frontend will have the same destination domain and thus be allowed without the need
of adding any additional CORS configuration [12].

4.7.1. Possible Products
For this purpose various proxy tools exist. Some of the most well known solutions are:

• Traefik

• Caddy

• Nginx

Our choice should be fast and simple to configure. These tools are well established and should
all support our use case without any problems.

4.7.2. Decision
Sonova currently uses Nginx as the primary reverse proxy product. In order to reduce the
integration risks we decided to use Nginx for this project as well. However, we have tested Caddy
for our local development and have found it provides a simpler configuration interface.

4. Analysis 38

Test Result Viewer v 1.0

5. Architecture

This chapter contains information about the decisions made and technologies used in the final
product.

Section 5.1 gives an overview about the architecture to be implemented. This is followed by
more information on every component in a dedicated chapter, then section 5.6 lists all relevant
design decisions using Y-Statements.

The grey boxes in figures 5.2 - 5.4 are systems run by Sonova, thus they are external to the
Test Result Viewer. Implementing these integrations is not in the scope of this thesis. In the
current scenario a developer manually runs the data consumer in absence of Kafka to trigger an
event for new data. However, all following diagrams except Figure 5.4 show only the final state
with all integrations present.

5.1. General architecture overview
Figure 5.1 describes the flow of data from creation by the CI Machine to presentation in the
frontend.

Provided by Sonova AG

CI Machine

Data Producer (Python)

Kafka

This thesis

Data Consumer (Python)

Elasticsearch

Frontend (Angular)

Figure 5.1.: General Data Flow

Figure 5.2 describes the system context which our product will integrate with. The main input
is provided by a Kafka Topic which provides test results as raw data. Different links will be made
from the Test Result Viewer to other systems in order to provide additional relevant information.

5. Architecture 39

Test Result Viewer v 1.0

Developer Test Environment
Manager

Data Consumer

Parses and transforms test
result data

Test Result Viewer

Collects and visualizes test
result data

Kafka

Provides test results as
messages

Data Producer

Transforms data to be
distributed

CI Machine

Runs test and generates
results

Artifactory

Stores artifacts of test runs

GitHub

Contains code repositories
with metadata for test runs

provides dataprovides data stores artifacts

provides data via
event

provides data

links to

links to

links to

uses uses

Legend
▯ person
▯ system
▯ external_system

Figure 5.2.: C4 Context Diagram

Figure 5.3 provides an overview of the internal structure for the Test Result Viewer. Two
different Docker Compose projects have been set up to provide the containers needed.

The Elasticsearch project provides 3 containers for Elasticsearch and one for Kibana. The
sizing of this has been taken from a sample implementation by Elastic and is a good starting
point to provide some redundancy.

The Viewer project contains a docker compose setup for a single instance of nginx as well as
the frontend application built using Angular.

5. Architecture 40

Test Result Viewer v 1.0

Test Result Viewer
[System]

Data Store
[Elasticsearch, 3x Docker

Container]

Stores test data

Frontend
[Angular]

Visualizes test data

Frontend
[Kibana, 1x Docker Container]

Visualizes test data

Reverse Proxy
[nginx, 1x Docker Container]

Redirects requests to
different endpoints

Kafka GitHub

Artifactory

CI Machine

Data Producer

Developer Test Environment
Manager

Data Consumer

Parses and transforms test
result data

provides dataprovides data

pushes new data as
event

stores artifacts

links to

links to

links to

provides data

calls api
redirects to

[/] calls api
redirects to

[/kibana]
redirects to

[/api]

Legend
▯ person
▯ system
▯ container
▯ external_system
▯ system boundary (dashed)

Figure 5.3.: C4 Container Diagram

5.2. Data Consumer
The data consumer is responsible for fetching test results from a source, transforming them into
the format needed and then inserting them into Elasticsearch. The component is written in
Python.

Figure 5.4 displays the interaction with a developer triggering the generator. In the current
version, both parsers are also triggered manually from command line, supplying the relevant files
as arguments. Ultimately, this will all be done automatically by Kafka.

5. Architecture 41

Test Result Viewer v 1.0

Data Consumer
[System]

NUnit Parser

Parses NUnit type
testresults

JUnit Parser

Parses JUnit type
testresults

Generator

Creates sample data for
system stress tests

Developer of Test
Result Viewer

Kafka

Data Store

Reverse Proxy

triggers datadata

Legend
▯ person
▯ system
▯ component
▯ external_system
▯ system boundary (dashed)

Figure 5.4.: C4 Component: Data Consumer

5.2.1. NUnit and JUnit Parser
To support different types of test result data, we need a parser that transforms the given structure
to the format that is stored in Elasticsearch. Additional result types can easily be supported by
supplying a new parser implementation file.

5.2.2. Generator
We have received two anonymized test sets from Sonova that reflect the structure of the data
the tool will be processing. However, the amount of results included is not realistic. To create
more data for testing visualizations and performance we have implemented a generator. It creates
semi-randomized test data sets based on the examples provided.

The generator is only required during this thesis and can be abandoned afterwards since the
developers at Sonova can use sets of real data for development and testing.

5.3. Data Store
The data store represents the central piece of our application where all test results are stored in
a normalized way. According to the requirements, the main focus is on fast data querying.

5. Architecture 42

Test Result Viewer v 1.0

Data Store
[System]

Testresults
[Elastic Index]

Comments
[Elastic Index]

Assignees
[Elastic Index]

Elastic API
[REST API]

Data Consumer Frontend

Reverse Proxy

queries queries/updates queries/updates

https https

https

Legend
▯ system
▯ component
▯ system boundary (dashed)

Figure 5.5.: C4 Component Diagram: Data Store

5.3.1. JSON metadata
The JSON metadata file contains information that should be stored along with the test resulst
provided by the test framework. The file contains information that does not directly affect the
test framework but might be important for our use cases, like details about repositories and
commits, CI/CD jobs and such.

The exact information provided is decided in discussion with Sonova.

5.3.2. Test result minimal subset
The currently used version of NUnit at Sonova is 2.0. This versions XML schema is available
on the website of The NUnit Project [42]. Another test framework that Sonova uses is JUnit,
however the JUnit result file does not contain as much information as the NUnit file does [28]. It
acts as a subset of the former. Some examples of missing information in JUnit is details about
the run environment or culture information.

To account for these differences we defined a minimal subset of fields that every framework
must provide to be supported by the application:

• framework name
• framework version
• test case name
• test suite name
• name / path of assembly under test
• start time of the test run

5. Architecture 43

Test Result Viewer v 1.0

• if the test case was executed
• the result for the test case
• if result was an error: message and stack trace

If a test framework provides more information (e.g. a category, the start time of each test
case), additional fields can be added as optional values. The final database schema can be found
in Listing 6.4, which also integrates the JSON metadata.

5.4. Frontend
After creating a database schema and inserting the sample data into Elasticsearch, the second
part of this project is creating visualizations. We used Kibana to create some basic visualizations
as a prototype, but then abandoned these to focus on a custom frontend created with Angular.

5.4.1. Kibana
The decision to include Kibana in our Elasticsearch setup was based on the functionality it offers
without any additional effort. It is included in the sample dockerized setup Elastic offers and
requires minimal configuration.

During development of the frontend we have relied on the Kibana Dev Tools, an interface to send
requests to the Elasticsearch API. It offers code completion features specifically for Elasticsearch
which distinguishes it from other tools.

Kibana also offers ad-hoc data exploration and advanced cluster monitoring features with some
additional setup [29].

5.4.2. Angular Web Application
The custom Angular web application contains all the logic needed to aggregate and display test
results in a way that is easy for Sonova developers to work with. Here we implement all the
planned use cases.

The frontend is strucutred using the SCAM pattern to ensure maintainability [33]. In the
SCAM pattern each component is placed in its own module. Each page has the following structure:

page-name
data-access

page-name.service.ts
feature

page-name.component.scss|html|ts
page-name.routing.ts
page-name.module.ts

ui
ui-component

ui-component.component.scss|html|ts
ui-component.routing.ts
ui-component.module.ts

Figure 5.6.: Structure of a single Angular page

Figure 5.7 describes the application in more detail. It focuses on two different pages of the
application with three parts each: Feature Component, UI Component and Service. This pattern
applies ti any other page of the application that is accessible via the router.

5. Architecture 44

Test Result Viewer v 1.0

Angular Frontend
[System]

Router

Contains routes, forwards
requests to the UI

components

Testcase History
Component

Feature component for

page

Testcase History UI
Components

View component(s) for

page

Testcase History
Service

Fetches and transforms

data

Test Environment
Component

Feature component for

page

Test Environment UI
Components

View component(s) for

page

Test Environment
Service

Fetches and transforms

data

Shared Components

Code used by other
components: logging, error

handling

Elasticsearch Service

Provides access to data
store via API calls

Developers, Test
Environment

Managers

Reverse Proxy

Data Store

https

https [/]

https

https [/api]

Legend
▯ person
▯ container
▯ component
▯ system boundary (dashed)

Figure 5.7.: C4 Component Diagram: Frontend

5.5. Reverse Proxy
To forward requests to the different parts of the frontend and the data store we use nginx as a
reverse proxy. This allows addressing different destinations behind the same URL and thus elim-
inates the need for any CORS rules. The destinatins have already been described in Figure 5.3.

5.6. Design Decisions
The following design decisions have been documented in the form of Y-Statments [53]. Additional
Information is supplied if necessary.

D-1.1: Scalability

In the context of scaling the database
facing the need to respond fast to incoming request
we decided to use a NoSQL data store
and neglected a relational database
to achieve an easy solution to scale horizontally

5. Architecture 45

Test Result Viewer v 1.0

accepting the downside of not being ACID

For more detailed information, see section 4.3.

D-1.2: Schema

In the context of having to adapt to new requirements
facing the need to quickly adjust the database schema
we decided to use a NoSQL data store
and neglected a relational database
to achieve the possibility to change the database schema
accepting the downside of a not having a strict database schema

For more detailed information, see section 4.3.

D-1.3: Data Store

In the context of storing test data including metadata
facing the need to provide extensive and flexible querying options
we decided to use Elasticsearch
and neglected RavenDB, CouchDB and MongoDB
to achieve fast and powerful search capabilities
accepting the downside of slow insert operations.

For more detailed information, see section 4.3.

D-1.4: Search Engine

In the context of querying and filtering test data including metadata
facing the need to query thousands of entries
we decided to use Elasticsearch
and neglected MongoDB
to achieve fast querying
accepting the downside of learning a new query language.

For more detailed information, see section 4.3.

D-2.1: Data Consumer Programming Language

In the context of implementing the data consumer
facing the need to seamlessly integrate into the existing CI/CD pipeline
we decided to use Python
and neglected other languages like C#, Java, ...
to achieve minimal maintenance cost
accepting the downside of learning a new programming language and the lower performance

of an interpreted language.

For more detailed information, see section 4.2.

5. Architecture 46

Test Result Viewer v 1.0

D-3.1: Frontend Technology

In the context of implementing a Frontend
facing the need to visualize and manipulate test data
we decided to create a custom frontend
and neglected a Kibana or Graphana only approach
to achieve the possibility to manipulate test data
accepting the downside of an increased development effort.

For more detailed information, see section 4.4.

D-3.2: Web Framework

In the context of implementing a Frontend
facing the need to visualize and manipulate test results
we decided to use Angular
and neglected React.js, Vue.js, ...
to achieve implementing a technology already known and used at Sonova
accepting the downside of learning a more complex technology.

For more detailed information, see section 4.5.

D-4.1: Backend

In the context of implementing the Test Result Viewer
facing the need to provide authentication and prevent security risk
we decided to not implement the backend
and neglected the possibility for features like authentication and data caching
to achieve simplicity in the project setup and focus on implementing visualizations
accepting the downside of of some features not being available and increased security risks.

This decision was made together with Sonova on our weekly meeting (see section E). For more
detailed information, see subsection 4.6.4.

D-5.1: Reverse Proxy Technology

In the context of implementing a Reverse Proxy
facing the need to secure access to the frontend, Kibana and Elasticsearch
we decided to implement Nginx
and neglected other proxy solutions like Caddy and Traefik
to achieve consistency with the existing infrastructure at Sonova
accepting the downside of a more complex configuration compared to other solutions.

For more detailed information, see subsection 4.7.1.

5. Architecture 47

Test Result Viewer v 1.0

6. Implementation

In this chapter we describe how we have built the application. We start with the development
server setup in section 6.1.

Section 6.2 describes how we built the data consumer, section 6.3 explains the database schema
and how Elasticsearch is set up. The used technologies and libraries for the frontend are docu-
mented in section 6.4, and finally section 6.5 describes the setup for the reverse proxy and the
different routes.

All code for this project is centrally stored on the OST GitLab server inside a Test Result
Viewer group, available at https://gitlab.ost.ch/test-result-viewer.

6.1. Development Server
To set up different prototypes and our final development server, we requested a virtual machine
running on OST infrastructure. It is running the Ubuntu 22.04.2 LTS release. Using a local
Ansible setup on a developer’s machine, setup of docker can be automated easily using instructions
available online [5]. The playbook we used can be found inside the documentation repository1 as
01-pb-docker.yml

The commands used for a simple docker deployment of Elasticsearch and Kibana as single
containers are documented in the following shell script in the same repository folder:

elastic-prototype/02-elastic-kibana-single-container.sh
This should be enough for quick tests using a fresh deployment. Elasticsearch user credentials

as well as the enrollment token to configure Kibana must be read from the container output.
To reset the elastic user password, the following command can be used to start the

elasticsearch-reset-password utility inside a running container:
docker exec -it es01 /usr/share/elasticsearch/bin/elasticsearch-reset-password

6.2. Data Consumer
For the implementation of the Data Consumer2 using Python we were able to use a package
template provided by Sonova. It includes scripts to build and test the code.

Instructions to use the package can be found in the README.md file inside the repository.
Command-line flags differentiate between the types of input files. Listing 6.1 shows their us-
age.

As Figure 6.1 shows, the insertion part of the Consumer relies on the defined entities on one
hand, and on the relevant code needed for the case it is executed for: either generating new data
or parsing one of the supported formats.

1https://gitlab.ost.ch/test-result-viewer/documentation/-/tree/main/_additional-documents/server-setup
2https://gitlab.ost.ch/test-result-viewer/consumer

6. Implementation 48

https://gitlab.ost.ch/test-result-viewer
https://gitlab.ost.ch/test-result-viewer/documentation/-/tree/main/_additional-documents/server-setup
https://gitlab.ost.ch/test-result-viewer/consumer

Test Result Viewer v 1.0

Consumer

Generator Parsing

entities

Testresult

insertion

generate(url, amount)
fromFile(url, xmlFile, jsonFile, framework)
fromKafka(url)

generator

generate(number)

randoms

randoms

nUnit

parseNunit(xmlFile, jsonFile)

jUnit

parseJunit(xmlFile, jsonFile)

metadata

getBuild()
getTestenvironment()
getVcsInfo()

Figure 6.1.: Consumer Structure

A usage statement for the python package is displayed when the package is called without any
arguments.

Listing 6.1: Python Package Usage
Usage: ./main.py https://user:password@elastic-url:port

--generate <number> amount of results to generate
--junit <resultfile> <metadata> parse resultfile and medatadata as jUnit
--nunit <resultfile> <metadata> parse resultfile and metadata as nUnit

6.2.1. JSON Metadata Schema
The metadata file provided by Sonova has a schema as described in Listing 6.2.

Listing 6.2: Meta data schema
1 {
2 "build": {
3 "brand": string,
4 "identifier": string,
5 "number": number,
6 "project": string,
7 "trigger": string,
8 "url": string
9 },

10 "version-control-system-info": {
11 "branch": string,
12 "commit-hash": string,
13 "commit-time": string, # ISO format e.g 2023-04-12T23:59:59.000000Z
14 "commit-message": string,
15 "commit-author": string,
16 "repository": string,
17 "type": string,
18 }[],
19 "test-environment": {
20 "name": string

6. Implementation 49

Test Result Viewer v 1.0

21 "capabilities": string[]
22 }
23 }

6.3. Data Store and Kibana Frontend
Our development setup of Elasticsearch and Kibana runs in multiple containers, using docker
compose to orchestrate. The next chapters describe the configuration required to run Elastic-
search as well as the detailed docker compose setup. The configuration can be found in the
elasticsearch git repository3.

6.3.1. Memory settings for Elastic in Docker
Running Elasticsearch has some memory requirements. The official documentation states:

Elasticsearch uses a mmapfs directory by default to store its indices. The default
operating system limits on mmap counts is likely to be too low, which may result in
out of memory exceptions [45].

These settings have been adjusted as part of the Ansible playbook mentioned in section 6.1:

Listing 6.3: Ansible task to update vm.max_map_count
- name: update vm.max_map_count setting

ansible.posix.sysctl:
name: vm.max_map_count
value: '262144'
state: present

They can be modified from the command line using sysctl -w vm.max_map_count=262144.
To make the change permanent, update the max_map_count value in /etc/sysctl.conf.

6.3.2. Running the cluster with Docker Compose
Our final development deployment uses three containers for Elasticsearch and one for Kibana. It
is available at https://testresults.kuendig.dev [40].

Additionally, when setting up the cluster for the first time, two containers are created for
different initialization tasks. The container elastic-setup is used to create the certificates
needed for intra-cluster communication. This configuration was provided with the Elasticsearch
example implementation [40] and is visible inside the docker compose file for the cluster (D.5).

elastic-init runs a bash script (D.6) once the Elasticsearch containers are ready. We created
this script to generate search templates (see 6.3.6), index mappings (6.3.5) and ingest pipelines
(6.3.7). The container is built directly from the file system using a custom dockerfile to include
the tools needed (D.7).

To encrypt client connections to our server instance, we have generated a free ZeroSSL certifi-
cate and made the configuration in Kibana for the cluster to use it. Certificate files are mapped
into the docker container using a docker bind mount [19].

To access a shell inside a container, we can use the following command:
docker exec -it <container-name> /bin/bash

3https://gitlab.ost.ch/test-result-viewer/elasticsearch

6. Implementation 50

https://testresults.kuendig.dev
https://gitlab.ost.ch/test-result-viewer/elasticsearch

Test Result Viewer v 1.0

Figure 6.2 shows the default response the Elasticsearch API returns when accessed via URL.

Figure 6.2.: Elasticsearch API Response

6.3.3. Kibana Dev Tools
After the Elasticsearch Cluster has been successfully set up with Kibana as a frontend, there is
an easy way to send requests to the Elasticsearch API.

In the Kibana Menu find the Management / Dev Tools section for an interactive page to run
any HTTP commands against the connected Elasticsearch instance.

Figure 6.3.: Kibana Dev Tools

6.3.4. Elasticsearch Indexes
An index in Elasticsearch stores one type of documents. The Test Result Viewer currently uses
three different indexes:

The testresults index presented in Listing 6.4 stores the main data created when importing
result files. It should be agnostic of the framework used and present all data in a unified way.

6. Implementation 51

Test Result Viewer v 1.0

Taking the limitations from subsection 4.1.1 into account we created the current database schema.
The other indexes assignment and comment (Listings 6.5 and 6.6) serve to assign more infor-

mation at the test case level.

Listing 6.4: Testresults Index
1 {
2 "testcase": string,
3 "testsuite": string,
4 "testassembly": string,
5 "description": string,
6 "start-time": string # ISO format e.g 2023-04-12T23:59:59.000000Z,
7 "build": {
8 "brand": string,
9 "identifier": string,

10 "number": number,
11 "project": string,
12 "trigger": string,
13 "url": string
14 },
15 "vcs-info": [
16 {
17 "branch": string,
18 "commit-hash": string,
19 "commit-time": string, # ISO format e.g 2023-04-12T23:59:59.000000Z
20 "repo": string,
21 "type": string
22 }
23],
24 "test-environment": {
25 "name": string,
26 "capabilities": string[]
27 },
28 "environment": {
29 "framework": string,
30 "framework-version": string,
31 "clr-version": string,
32 "os-version": string,
33 "platform": string,
34 "cwd": string,
35 "machine-name": string,
36 "user": string,
37 "user-domain": string
38 },
39 "culture-info": {
40 "current-culture": string,
41 "current-uiculture": string
42 },
43 "executed": boolean,
44 "result": string,
45 "time": decimal,
46 "asserts": number,
47 "categories": string[],
48 "properties": [
49 {
50 "name": string,
51 "value": string
52 }

6. Implementation 52

Test Result Viewer v 1.0

53],
54 "reason": string,
55 "failure": {
56 "message": string,
57 "stacktrace": string
58 }
59 }

Listing 6.5: Assignment Index
1 {
2 "assignment": string,
3 "testsuite": string,
4 "testcase": string
5 }

Listing 6.6: Comment Index
1 {
2 "comment": string,
3 "testsuite": string,
4 "testcase": string
5 }

6.3.5. Index Mappings
During development, we used dynamic mapping for the testresults index. This means that Elastic-
search dynamically determines the type of fields based on the contents and optimizes accordingly
[31]. This is suitable for creating a prototype. However, as a developer you know more about
your data than Elasticsearch. Using explicit mapping, you can tell Elasticsearch what kind of
data each field contains and how it should process it [20]. This gives you the benefits of optimized
queries and search results.

The mapping is created during execution of the Elasticsearch setup using the init.sh script.
The exact mapping for each index is available in the Elasticsearch repository4. For more infor-
mation regarding Elasticsearch initialization, see subsection 6.3.2.

6.3.6. Search Templates
All Elasticsearch queries in the application are performed using so-called Search Templates. They
are comparable to Prepared Statements in a RDBMS, in the sense that they can be used to
separate queries from the application logic and keep them inside the data store component [39].
This solution has the benefit that you can change a query without changing the frontend code.

6.3.7. Ingest Pipelines
The functionality of Elasticsearch Ingest Pipelines (see Figure 4.3) allows to operate on data
whenever it enters the cluster. In our case it was easy to define some rules to classify and if
necessary convert incoming data wherever it was not correctly recognized by the index mapping.
For this we mainly used the convert processor [10].

4https://gitlab.ost.ch/test-result-viewer/elasticsearch/-/tree/main/init/definitions/index/mapping

6. Implementation 53

https://gitlab.ost.ch/test-result-viewer/elasticsearch/-/tree/main/init/definitions/index/mapping

Test Result Viewer v 1.0

6.3.8. Elastic Query Types
The following listings serve as examples for different types of requests in Elasticsearch [37]. The
difference between filters and queries is the logic of returning results. While a filter effectively
removes all data that does not match the criteria exactly, a query returns data with a score on
how well it matches the given criteria.

In Listing 6.7 a search query is performed using a single criterion.

Listing 6.7: Match: single criterion filtering
1 GET /testresult/_search
2 {
3 "query": {
4 "match": { "testcase": "test case 18" }
5 }
6 }

Instead of a single hard criterion, you can also submit a query with multiple criterions and
different match semantics. An example for such a query is Listing 6.8.

Listing 6.8: Boolean: combine multiple filtering criteria
1 GET /testresult/_search
2 {
3 "query": {
4 "bool": {
5 "must": [
6 { "match": { "testcase": "test case 18" } }
7],
8 "should": [
9 { "match": { "testsuite": "suite2"} }

10]
11 }
12 }
13 }

Sometimes it is required to get all distinct values for a specific field while the other fields are
not important. This problem can be solved using a collapse query. An example for this type of
query can be seen in Listing 6.9.

Listing 6.9: Collapse: Get all distinct values for different fields
1 GET /testresult/_search
2 {
3 "size": 10,
4 "collapse": {
5 "field": "testcase.keyword"
6 },
7 "sort": {
8 "testcase.keyword": {
9 "order": "desc"

10 }
11 },
12 "_source": []
13 }

Often you are not interested in a simple collection of documents, but their aggregation over a
specific field. The example in Listing 6.10 shows a query, which groups all documents by their
start time.

6. Implementation 54

Test Result Viewer v 1.0

Listing 6.10: Aggregation: Get documents grouped by start time
1 GET /testresult/_search
2 {
3 "size": 0,
4 "aggs": {
5 "byStartTime": {
6 "terms": {
7 "field": "start-time",
8 "size": "100",
9 "order": {

10 "_key": "desc"
11 }
12 }
13 }
14 }
15 }

6.4. Angular Frontend
The custom frontend for this application is written using Angular and stored in a separate git
repository5. The following sections describe a few key aspects of the implementation.

6.4.1. Code Documentation
The documentation for the Angular frontend is generated and deployed during the CI/CD pipeline
using compodoc [9]. The generated documentation can be accessed at http://test-result-viewer.
pages.gitlab.ost.ch/ba2023/doc/.

6.4.2. Code Coverage Report
The frontend is automatically tested for every commit that is pushed to the repository. After
the test were run, the coverage report is published at http://test-result-viewer.pages.gitlab.ost.
ch/ba2023/coverage/angular-frontend/

6.4.3. Reactive Programming using RxJS
In our frontend we need a way to deal with data being asynchronously fetched from Elasticsearch
and other sources. Angular handles this problem using RxJS, a reactive programming library.
With the usage of such a library it is important to follow some best practices in order to avoid
performance problems and memory leaks [21]. Detailed descriptions of the RxJS components can
be found in their official documentation6.

6.5. Nginx Reverse Proxy
The Nginx reverse proxy setup contains three different paths to forward requests, as described in
section 5.5

The compose.yaml (D.1) and nginx/nginx.conf files in the frontend repository contain all
information relevant to the setup. Table 6.1 lists the three destinations.

5https://gitlab.ost.ch/test-result-viewer/ba2023/-/tree/main/frontend
6https://rxjs.dev/api

6. Implementation 55

http://test-result-viewer.pages.gitlab.ost.ch/ba2023/doc/
http://test-result-viewer.pages.gitlab.ost.ch/ba2023/doc/
http://test-result-viewer.pages.gitlab.ost.ch/ba2023/coverage/angular-frontend/
http://test-result-viewer.pages.gitlab.ost.ch/ba2023/coverage/angular-frontend/
https://gitlab.ost.ch/test-result-viewer/ba2023/-/tree/main/frontend
https://rxjs.dev/api

Test Result Viewer v 1.0

Route Component Destination
/ Angular Frontend host.docker.internal:4200
/api Elasticsearch host.docker.internal:9200
/kibana Kibana host.docker.internal:5601

Table 6.1.: Nginx proxy destinations

6. Implementation 56

Test Result Viewer v 1.0

7. Quality Measures

This chapter focuses on the project as a whole and the measures we have applied to ensure a
positive outcome in any aspect. In section 7.1 we describe the conventions we used to keep the
code consistent. To detect any problems as soon as possible, we used various testing and linting
tools described in section 7.2. To ensure the tests are actually executed on a clean environment,
we had setup an CI/CD piplie which is describe in section 7.3. In the section 7.4 we track, the
progress of the NFRs.

7.1. Conventions
For the frontend we follow the Angular Coding Style Guide [4]. The application is structured
according to the SCAM approach [33].

7.2. Testing
To ensure that we do not introduce bugs unintentionally we wrote tests for the consumer as well
as for the frontend. The used tools are documented in Table 7.1.

Component Purpose Framework Justification
Consumer Testing pytest Framework used by Sonova and

already configured in the
template provided by Sonova

Consumer Linting isort, black, flake8, mypy,
add-trailing-comma, autoflake

Tools used by Sonova and
already configured in the
template provided by Sonova

Frontend Testing Jasmine Default testing framework
shipped with Angular 15

Frontend Linting eslint with Angular
configuration

Default linting tool and
configuration shipped with
Angular 15

Table 7.1.: Used testing frameworks

7.3. CI/CD Pipeline
In our repositories we use an automatic CI/CD Pipeline to ensure the quality of all changes that
are pushed to the server.

A visualization of the pipeline configuration for each repository can be seen in the figures 7.1
to 7.3.

The pipeline for the frontend

• lints the frontend
• tests the frontend

7. Quality Measures 57

Test Result Viewer v 1.0

• publishes a code coverage report
• publishes the Angular documentation.

stages
build_doc
install_dependencies
lint_frontend
test_frontend
pages

build
dependencies
test
deploy

stage build
image registry.gitlab.com/islandoftex/images/texlive:latest
script
artifacts <omitted>

cd Documentation
make doc

image node:19-alpine
stage dependencies
script
cache <omitted>

cd Code/viewer/frontend
npm install

image node:19-alpine
stage test
script
cache <omitted>

cd Code/viewer/frontend/
npm link @angular/cli
ng lint

image node:19-alpine
stage test
before_script
script
cache <omitted>
artifacts <omitted>

apk add chromium
export CHROME_BIN=/usr/bin/chromium-browser

cd Code/viewer/frontend/
npm link @angular/cli
ng test --browsers=ChromeHeadlessCI --no-watch --no-progress

stage deploy
dependencies
script
artifacts <omitted>

test_frontend

mv Code/viewer/frontend/coverage/angular-frontend public/

Figure 7.1.: Frontend pipeline YAML visualized

The pipeline for the consumer

• builds the package
• tests the package.

stages
build_package
test_package

doc
build
test

image python:3-buster
stage build
script

python �m pip install �r requirements/common.txt
python setup.py bdist_wheel
python setup.py sdist

image python:3-buster
stage test
script

python �m pip install �r requirements/common.txt
python �m pip install �r requirements/test.txt
python �m pytest tests

Figure 7.2.: Consumer pipeline YAML visualized

The pipeline for the documentation

• builds the documentation.

stages
build_doc

build

stage build
image registry.gitlab.com/islandoftex/images/texlive:latest
script
artifacts <omitted>

make doc

Figure 7.3.: Documentation pipeline YAML visualized

7. Quality Measures 58

Test Result Viewer v 1.0

7.4. Quality Tracking
7.4.1. Nonfunctional Requirements
Nonfunctional requirements of this project as defined in section 3.3 are tracked as described in
Table 7.2.

NFR-1 Query time can be observed while developing. Default query filter for
Performance views should limit the time range to at most 7 days.
NFR-2 TLS Setup of the elastic cluster as well as the nginx proxy has been
Confidentiality completed with the initial setup. When the project is finished, directions

on how to set up new certificates at Sonova must be provided.
NFR-3 Developers must use the browser with the highest priority while developing
Browser Support the frontend. Other browsers should be tested when time and scope allows.

Table 7.2.: Tracking of NFRs

7.4.2. Considerations for color vision deficiencies
As some employees at Sonova may suffer from different color vision deficiencies, it is advisable
that the application is usable even with such a restriction. To ensure that the symbols are dis-
tinguishable from the background color, we used Firefox’ functionality of Color vision simulation
[8]. The results can be seen in Figure 7.4.

(a) Default (b) Colors with contrast loss (c) Achromatopsia (no color)

(d) Tritanopie (no blue) (e) Deuteranopia (no green) (f) Protanopia (no red)

Figure 7.4.: Results of the color vision deficiencies simulation

The results show that in case of problems regarding the distinction of colors, the icons we have
included in the boxes make the distinction clear. In the case of contrast loss even the icons are
hard to distinguish. However we recommend this should only be addressed in case someone really
suffers from this condition, otherwise it would add unnecessary effort.

7. Quality Measures 59

Test Result Viewer v 1.0

8. Results

The main goal of the project has been the implementation of a central data store that unifies
different formats of test results by using a Data Consumer package for transformation. Several
visualizations should be realized in a protoype manner.

All requirements listed as Minimum Viable Product are fulfilled by the final product, as well
as some extended requirements which partly require the modification of data from the frontend.
Specifically these are Hierarchical test order, Assigning a label to a test result and Attach a
comment to a test case.

8. Results 60

Test Result Viewer v 1.0

9. Conclusion

The scope of our thesis has not by far been enough to cover all requirements that Sonova has
envisioned for this platform, so there are many things that can be improved and extended in the
future. We will not specify any of these unimplemented requirements here, as they are listed in
detail in the appendix.

However the one component we do think should be implemented in order to make the product
more adaptable and also more stable is a dedicated backend. It would enable many improvements
and extensions in terms of security and reliability, while further decoupling the Angular frontend
from the Elasticsearch data store.

Focusing on the current architecture and the technologies used, they have proven themselves
to be a very powerful and flexible combination for the overall implementation of the Test Result
Viewer. There usually were several possibilities in how to achieve some given task and it was our
challenge to find the most suitable one. We hope that our choices will prove themselves useful
and that Sonova will develop our product into a powerful and flexible frontend that enables their
developers to spend more time writing code.

9. Conclusion 61

Part II.

Project Documentation

Test Result Viewer v 1.0

1. Project Proposal

This chapter contains the assignment as we received it at the beginning of this project.

1.1. Introduction
This bachelor thesis is conducted for the external partner Sonova AG.

Sonova is a global leader in innovative hearing care solutions: from personal audio
devices and wireless communication systems to audiological care services, hearing aids
and cochlear implants. The Group was founded in 1947 and is headquartered in Stäfa,
Switzerland [44].

The topic of test result visualization seems to have been oversimplified by most, if not all,
Continuous Integration (CI) systems. If all tests can be run before introducing a change to a
source code repository, it can be guaranteed that all tests remain green on the main branch of
the repository, which yields that no advanced test result visualization is required.

Unfortunately, there are many real-life examples where this approach fails to deliver a conve-
nient working environment to software developers. There are many aspects which might make
this simple case difficult to manage eventually.

Factors that influence the fast, reliable test execution to guarantee retaining the pristine state
of the entire system:

• Multiple projects per repository in various configurations and combinations

• Very long-running tests that prohibit enforcing pre-merge tests

• Non-deterministic tests due to variations of execution timing on the hardware

• Spurious failures of the infrastructure for running tests

• Flaky hardware for hardware-dependent tests

All these factors might lead to a system that would be extremely difficult to manage without
proper tooling. In the absence of a suitable off-the shelf solution for advanced test result visu-
alization, Sonova plans to build its own test management platform to properly aggregate and
present the results of the automated test runs.

1.2. Goals of the project
In this bachelor thesis the students shall develop an MVP for aggregating and visualizing test
results. A set of requirements for this system has been collected beforehand. It is infeasible to
develop a complete platform that could satisfy all of them in the limited time of this project.
Therefore, the focus lies on implementing a solid foundation with a subset of the required features
that can be extended later.

Defining the feature set to be implemented is one of the first tasks and must happen in col-
laboration with Sonovas Development Environment team and the supervisor. Refinement of the

1. Project Proposal 63

Test Result Viewer v 1.0

delivered features is possible, depending on the teams progress. All architectural decisions and
selection of technologies needs to happen in agreement with Sonova, as the system context is
already well defined, consisting of multiple external systems to interact with, for example:

• Jenkins, running the build jobs.

• Artifactory, storing the build artifacts.

• Github, hosting the code repositories.

The progress of the team will be discussed in weekly meetings with the supervisor. The students
are responsible for preparing these meetings and protocolling decisions. Access to confidential or
sensitive internal data of Sonova is not necessary to conduct the project.

1. Project Proposal 64

Test Result Viewer v 1.0

2. Project Planning

This project follows the well known scrum methodology for software engineering wherever possi-
ble, but tries to reduce it to a level of simplicity fitting for a team size of two developers [49].

2.1. Team
The roles assigned in this project:

Developers: Olivier Lischer, Luzia Kündig
Product Owner: Dariusz Danilko
Scrum Master: none

The main responsibilities for the developers are divided into

Code & Functionality: Olivier Lischer
Documentation & Architecture: Luzia Kündig

This does not mean a strict division of tasks, but a more general focus to keep everything up to
date.

2.2. Sprints and Meetings
The definitions of our sprint meetings and schedules:

Sprint Length: 1 Week
Sprint Planning: Together with our advisor and as needed the external partners at

Sonova. Every week on Monday, 1pm
Daily Scrum: Not planned
Sprint Review: Every week on Monday, after Sprint Planning
Sprint Retrospective: Not planned

Because of the small development team size and our different schedules, we decided against
planning a Daily Scrum, Sprint Reviews and Sprint Retrospective meetings. For the same reasons,
the position of Scrum Master is not defined.

However, we are in regular exchange over Microsoft Teams or in person. If there is anything
to discuss besides the weekly spring planning, a meeting can be scheduled.

2.3. Git Workflow
For the scope of our project, we separate our work into 2 different branches on git.

2. Project Planning 65

Test Result Viewer v 1.0

The main branch only contains finished items of work.
The development branch is used for active code development.

Every Sunday before the weekly meeting, all branches should be merged into main to represent
the current finished state.

2.4. Tools
The following tools enable us to collaborate on this project.

Issue tracking: GitLab 1

Time tracking: Toggl Track 2

Communication: Microsoft Teams

2.5. Project Plan
The project was planned using the RUP method. RUP consinst of four phases:

Inception: setup repositories, define responsibilities

Elaboration: build prototypes, perform risk analysis

Construction: building the actual product, biggest risk should be already eliminiated

Transition: finish product and performing transfer to customer

The project plan for this project can be seen in Figure 2.1.

1https://gitlab.ost.ch/test-result-viewer/
2https://track.toggl.com/

2. Project Planning 66

https://gitlab.ost.ch/test-result-viewer/
https://track.toggl.com/

Test Result Viewer v 1.0

Figure 2.1.: Project Plan

2.6. Milestones
The following milestones have been planned without an exact date. This would have been very
difficult since we did not really know any of the tools beforehand. However, in our weekly meetings
with Thomas Corbat and Dariusz Danilko we are able to keep a good track on our progress and
adjust plans immediately if necessary. Sonova is always up to date with our progress and can
give inputs.

2. Project Planning 67

Test Result Viewer v 1.0

Milestone Description Week achieved
M1 Initial database schema Week 01
M2 Prototype using Kibana Week 03
M3 First visualisation in Angular frontend Week 05
M4 Minimum Viable Product Week 07
M5 Provide more functionality than the existing solution Week 12

2.7. Risk Assessment
In this section we describe the risk we encounter and how we mitigated them.

1. New Technologies: Both students have never worked with the proposed tools Elasticsearch,
Kibana and Angular.
Category: Low

• March 01: Plan enough time to build prototypes and get familiar with the tools.

2. Extensive list of requirements: Many use cases have been specified by the Sonova team. It
could prove a challenge to identify and focus on the most important ones.
Category: Low

• March 01: Frequent exchange with the stakeholders to verify the current focus is
appropriate.

2. Project Planning 68

Test Result Viewer v 1.0

3. Time Tracking Report

In this chapter we provide an overview of where and how much time we spent for this project.

3.1. Time per Category
In Figure 3.1 you see how we spent our time grouped by categories.

(a) Time per category by Luzia Kündig (b) Time per category by Olivier Lischer

(c) Time per category by Team

Figure 3.1.: Time per category

3.2. Time per Week
In Figure 3.2 you can see how much time we spent per week.

3. Time Tracking Report 69

Test Result Viewer v 1.0

(a) Time per week by Luzia Kündig

(b) Time per week by Olivier Lischer

(c) Time per week by Team

Figure 3.2.: Time per week

3. Time Tracking Report 70

Part III.

Appendix

Test Result Viewer v 1.0

A. Requirements as provided by Sonova

Views
Req-1.1: Customizable View
The system shall provide the tester the ability to create a customized views.

Req-1.2.1: History of a test case
The system shall provide the tester the ability to create a views that show the history of a test
case result over time.

Req-1.2.2: History of a test environment
The system shall provide the tester the ability to create a views that show the history of a the
count of all, failed, errored and skipped tests for a given test environment.

Req-1.3: Customizable view elements
The system shall provide the tester the ability to customize the view elements. For example the
columns in a table.

Req-1.4: Filter are applied to all views
The system shall apply the selected filters on all views.

Req-1.5: Switch views
The system shall allow the tester to change between different views without losing applied filters.

Req-1.6: Hierarchical test order
The system shall provide the tester the ability to show the tests in a hierarchical order and on
each hierarchy level the count of all, failed, errored and skipped tests.

Req-1.7: Show running tests
The system shall provide the tester a view that shows the currently running jobs which will in
the future provide test results that matches the filter criteria.

Req-1.8: Show queued tests
The system should provide the tester a view that shows the queued jobs which will in the future
provide test results that matches the filter criteria.

A. Requirements as provided by Sonova 72

Test Result Viewer v 1.0

Req-1.9: Show test case details
The system shall be able to show for an executed test the following details:

• if the test is queued
– version control system details
– the URL to the test job
– the job trigger event (time-based, another service or manually). If the job was triggered

manually, then the name of the user should be shown.

• and if the test has started
– test execution start datetime
– estimated remaining time
– the relation to the used test environment
– additional metadata, for example, build and test configuration

• and if the test has finished
– test execution duration
– test execution end datetime
– test failures and errors if available

Req-1.10.1: Show GitHub details
In addition to Req-1.9: Show test case details, the system should be able to show

• the GitHub pull request URL if available

• the GitHub repository URL

Req-1.10.2: Show the logs of the test execution
In addition to Req-1.9: Show test case details, If a test was executed, the system should be able
to show the logs, or a URL to the relevant line in a log file, of the test execution.

Req-1.10.3: Show additional output of the test execution
In addition to Req-1.10.2: Show the logs of the test execution, If a test was executed, the system
should be able to show the content of additional files, or a URL to the relevant line in a file, of
the test execution.

Req-1.10.4: Show the test owner
In addition to Req-1.9: Show test case details, the system should be able to show the test owner,
see Req-4.1: Test owner.

Req-1.10.5: Provide the URL to the test statistics
In addition to Req-1.9: Show test case details, the system should be able to provide the URL to
the test statistics. see Req-5.5: Link test case executions with statistics

A. Requirements as provided by Sonova 73

Test Result Viewer v 1.0

Req-1.11: Show build details
The system shall show the build details if the unit under test was a build.

Data structure and filtering
Req-2.1: Labels
The system shall give the tester the ability to create, assign and un-assign labels to/from test
runs.

Req-2.2: Add labels to multiple tests at once
The system shall give the tester the ability to assign labels to all test cases matching the filter
query or search result.

Req-2.3: Filters
The system shall give the tester the ability to filter tests by

• by test case

• by time range
– test execution start time
– test execution duration

• by owner

• by labels

• by VCS branch

• by job id

Req-2.4: Combination of filters
The system shall give the tester to ability to combine any of the filters with

• logical operations AND, OR, NOT

• subset inclusion (contains element x in sequence y)

• subset exclusion (contains not element x in sequence y)

• substring condition (string x is substring of string y)

to narrow-down the search.

Req-2.5: Autocompletion support for filters
The system shall support the tester with autocompletion suggestions for filters while typing.

A. Requirements as provided by Sonova 74

Test Result Viewer v 1.0

Req-2.6: Search
The system shall give the tester the ability to search with regex pattern

• for test case by name

• VCS commit message

• in test run log files

• in error and failure messages

• in test case meta data

Req-2.7: Filter and search persistence
The system shall give tester the ability to save an applied query or search in the system and
the ability to reapplied saved queries and searches. Further, the system shall allow the tester to
remove saved queries and searches.

Req-2.8: Search history
The system shall save the last 20 searches and present them when the tester opens the search
context.

Req-2.9: Reset all applied filters and searches
The system shall give tester the ability to reset all applied searches and filters.

Req-2.10: Marking some test results as irrelevant / deleting them from the
database
The system shall give tester the ability to mark specific test runs as irrelevant or even allow
deleting such test runs from the database in case it was discovered that the results of specific test
runs are not reliable. This requirement can be covered by Req-2.1: Labels

Data analysis
Req-3.1: Detection of regression
The system shall detect new regression automatically and provide this information to the tester.

Req-3.2: Detection of flickering tests
The system shall detect flickering tests automatically and provide this information to the tester.

Req-3.3: Detection of test environment related failures
The system shall detect when tests fail because of a broken test environment and provide this
information to the tester.

Req-3.4: Advanced detection of test failures
The system should detect when many test fail with a similar reason.

A. Requirements as provided by Sonova 75

Test Result Viewer v 1.0

Test case management
Req-4.1: Test owner
The system shall allow the user to create, change, remove and assign test owners to test cases.

Req-4.2: Comments on test case execution
The system shall allow the user to create, change and remove comments on test case executions.

Interaction with other systems
Req-5.1: Link test cases to Jenkins jobs

The system shall give the tester the ability to link test case executions with a uniquely identifiable
Jenkins job ID.

Req-5.2: Link test cases to TeamCity
The system shall give the tester the ability to link test case executions with a uniquely identifiable
TeamCity job ID.

Req-5.3: Link test cases to Jira issues
The system shall give the tester the ability to link test cases with Jira issues.

Req-5.4: Link test cases to Polarion items
The system shall give the tester the ability to link test cases with Polarion items.

Req-5.5: Link test case executions with statistics
The system shall give the tester the ability to link test case executions with generated statistics.

Req-5.6: Link test case executions with artifacts on Artifactory
The system shall give the tester the ability to link test case executions with relevant artifacts on
Artifactory.

Data Export / Sharing
Req-6.1: Sharing of views and filters

The system shall allow the tester to share a view and the currently applied filters using a URL
with query parameters

Req-6.2: Exporting a view to a file
The system shall support exporting test results to a file (.xlsx, CSV or similar)

A. Requirements as provided by Sonova 76

Test Result Viewer v 1.0

Access
Req-7.1: Access from the internet

The system shall be accessible from the internet without a VPN connection.

Req-7.2: Single Sign On (SSO) support
The system shall support SSO.

Req-7.3: Provide a RESTful API
One could fill another page with just requirements for this API. To keep it short: The REST API
should support the requirements defined here where it makes sense.

Non-Functional
Req-8.1: Query response time

The system shall respond to a filter query within 1s and perform a full filter query in less than
2s.

Test environment management
It is currently not clear if this is in the scope of the test viewer/manager system.

Req-9.1: Manage test environments
The system shall be able to manage a list of all available test environments with a detailed list of
their capabilities and their current state. The state can be online/operational, offline or broken.
The capabilities include the operation system type and version, connected hardware (name and
version) and the installed software (name and version).

Req-9.2: Log for test environments
The system shall provide a log where the test environment manager can enter log messages.

Req-9.3: Take test environments offline
The system shall test environment manager to ability to take a machine offline and optionally
mark it as broken.

Req-9.4: Statistics for usage
The system shall provide the test environment manager the statistics for the usage of certain test
environment and the requested capabilities.

Storage
Req-10.1: Backup

The system shall provide means to backup and restore data from backups

A. Requirements as provided by Sonova 77

Test Result Viewer v 1.0

Req-10.2: Retention policy
The system shall provide the tester the ability to define different retention policies for test case
results. The retention policy shall be configurable as a duration (days, weeks, months) or as
never, meaning the test result is kept forever.

Req-10.3: Archive
The system shall provide the tester the ability to archive test results as ZIP files. Further, the
system shall allow to reload test results from ZIP files.

A. Requirements as provided by Sonova 78

Test Result Viewer v 1.0

B. Main use cases to cover provided by Sonova

• Detection of regression of a particular test case (Req-3.1: Detection of regression)

• Detection of flickering tests (Req-3.2: Detection of flickering tests)

• Detection of test environment problems (Req-3.3: Detection of test environment related
failures)

• Detection of similar/related test failures (Req-3.4: Advanced detection of test failures)

• History of test results a single test case (Req-1.2.1: History of a test case)

• History of test results on a specific test environment (Req-1.2.2: History of a test environ-
ment)

• Assigning a label to a test result (Req-2.1: Labels) e.g. in order to:
– mark the test result as irrelevant (Req-2.10: Marking some test results as irrelevant /

deleting them from the database)
– mention a related task/bug
– mention someone who should look into a specific failure

B. Main use cases to cover provided by Sonova 79

Test Result Viewer v 1.0

C. Data characteristics provided by Sonova

Sample test results and metadata are to be provided by Sonova, however, the target system will
have to deal with a much larger quantity of data. We can assume that we should target the
following load on the system:

• Each day, the system receives 1000 test result and metadata documents

• Each test result document contains 1000 test case results

• Each metadata document contains 200 key-value pairs

• Each day there would be 100 queries issued by users

• Each user query should take < 2-5 seconds to be processed

C. Data characteristics provided by Sonova 80

Test Result Viewer v 1.0

D. Source Code Snippets

Viewer Repository

Listing D.1: compose.yaml
services:

proxy:
image: nginx:stable-alpine
extra_hosts:

- "host.docker.internal:host-gateway"
ports:

- 9080:80
- 443:443

volumes:
- ./frontend/dist/angular-frontend:/usr/share/nginx/html
- ./nginx/:/etc/nginx/

Listing D.2: compose.dev.yaml, used for development only
services:

proxy:
image: caddy:2-alpine
extra_hosts:

- "host.docker.internal:host-gateway"
ports:

- 9080:80
volumes:

- $PWD/caddy/Caddyfile:/etc/caddy/Caddyfile

Listing D.3: Nginx Reverse Proxy configuration
events {
}

http {
upstream kibana {

server host.docker.internal:5601;
keepalive 15;

}
upstream elastic {

server host.docker.internal:9200;
keepalive 15;

}
upstream frontend-dev {

server host.docker.internal:4200;
keepalive 15;

}
default_type application/octet-stream;
include mime.types;
server {

D. Source Code Snippets 81

Test Result Viewer v 1.0

listen 443 ssl;
server_name testresults.kuendig.dev;
ssl_certificate testresults.kuendig.dev.crt;
ssl_certificate_key testresults.kuendig.dev.key;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;
server_name testresults.kuendig.dev;

location /api/ {
proxy_pass https://elastic;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-NginX-Proxy true;
proxy_set_header Connection "Keep-Alive";
proxy_set_header Proxy-Connection "Keep-Alive";
proxy_redirect off;
proxy_buffering off;
rewrite ^/api/(.*)$ /$1 break;

}

location /kibana/ {
proxy_pass https://kibana;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-NginX-Proxy true;
proxy_set_header Connection "Keep-Alive";
proxy_set_header Proxy-Connection "Keep-Alive";
proxy_redirect off;
proxy_buffering off;

}

location / {
root /usr/share/nginx/html;
index index.html index.htm;
try_files $uri $uri/ /index.html; # redirect all unknown pages to index.html,

see https://angular.io/guide/deployment#fallback-configuration-examples
}

}
}

Listing D.4: Caddy Reverse Proxy configuration
:80 {

encode zstd gzip

route /kibana* {
reverse_proxy https://host.docker.internal:5601 {

transport http {
tls_insecure_skip_verify

}
}

}

route /api* {
uri strip_prefix /api // only for local development
reverse_proxy https://host.docker.internal:9200 {

transport http {

D. Source Code Snippets 82

Test Result Viewer v 1.0

tls_insecure_skip_verify
}

}
}

route {
reverse_proxy host.docker.internal:4200

}
}

Elasticsearch Repository

Listing D.5: compose.yaml
services:

setup:
image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}
volumes:

- certs:/usr/share/elasticsearch/config/certs
user: "0"
command: >

bash -c '
if [x${ELASTIC_PASSWORD} == x]; then

echo "Set the ELASTIC_PASSWORD environment variable in the .env file";
exit 1;

elif [x${KIBANA_PASSWORD} == x]; then
echo "Set the KIBANA_PASSWORD environment variable in the .env file";
exit 1;

fi;
if [! -f config/certs/ca.zip]; then

echo "Creating CA";
bin/elasticsearch-certutil ca --silent --pem -out config/certs/ca.zip;
unzip config/certs/ca.zip -d config/certs;

fi;
if [! -f config/certs/certs.zip]; then

echo "Creating certs";
echo -ne \
"instances:\n"\
" - name: es01\n"\
" dns:\n"\
" - es01\n"\
" - localhost\n"\
" ip:\n"\
" - 127.0.0.1\n"\
" - name: es02\n"\
" dns:\n"\
" - es02\n"\
" - localhost\n"\
" ip:\n"\
" - 127.0.0.1\n"\
" - name: es03\n"\
" dns:\n"\
" - es03\n"\
" - localhost\n"\
" ip:\n"\

D. Source Code Snippets 83

Test Result Viewer v 1.0

" - 127.0.0.1\n"\
> config/certs/instances.yml;
bin/elasticsearch-certutil cert --silent --pem -out config/certs/certs.zip

--in config/certs/instances.yml --ca-cert config/certs/ca/ca.crt --ca-key
config/certs/ca/ca.key;

unzip config/certs/certs.zip -d config/certs;
fi;
echo "Setting file permissions"
chown -R root:root config/certs;
find . -type d -exec chmod 750 \{\} \;;
find . -type f -exec chmod 640 \{\} \;;
echo "Waiting for Elasticsearch availability";
until curl -s --cacert config/certs/ca/ca.crt https://es01:9200 | grep -q

"missing authentication credentials"; do sleep 30; done;
echo "Setting kibana_system password";
until curl -s -X POST --cacert config/certs/ca/ca.crt -u

"elastic:${ELASTIC_PASSWORD}" -H "Content-Type: application/json"
https://es01:9200/_security/user/kibana_system/_password -d
"{\"password\":\"${KIBANA_PASSWORD}\"}" | grep -q "^{}"; do sleep 10; done;

echo "All done!";
'

healthcheck:
test: ["CMD-SHELL", "[-f config/certs/es01/es01.crt]"]
interval: 1s
timeout: 5s
retries: 120

es01:
depends_on:

setup:
condition: service_healthy

image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}
volumes:

- certs:/usr/share/elasticsearch/config/certs
- esdata01:/usr/share/elasticsearch/data

ports:
- ${ES_PORT}:9200

environment:
- node.name=es01
- cluster.name=${CLUSTER_NAME}
- cluster.initial_master_nodes=es01,es02,es03
- discovery.seed_hosts=es02,es03
- ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
- bootstrap.memory_lock=true
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=true
- xpack.security.http.ssl.key=certs/es01/es01.key
- xpack.security.http.ssl.certificate=certs/es01/es01.crt
- xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt
- xpack.security.transport.ssl.enabled=true
- xpack.security.transport.ssl.key=certs/es01/es01.key
- xpack.security.transport.ssl.certificate=certs/es01/es01.crt
- xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt
- xpack.security.transport.ssl.verification_mode=certificate
- xpack.license.self_generated.type=${LICENSE}

mem_limit: ${MEM_LIMIT}
ulimits:

D. Source Code Snippets 84

Test Result Viewer v 1.0

memlock:
soft: -1
hard: -1

healthcheck:
test:

[
"CMD-SHELL",
"curl -s --cacert config/certs/ca/ca.crt https://localhost:9200 | grep -q

'missing authentication credentials'",
]

interval: 10s
timeout: 10s
retries: 120

es02:
depends_on:

- es01
image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}
volumes:

- certs:/usr/share/elasticsearch/config/certs
- esdata02:/usr/share/elasticsearch/data

environment:
- node.name=es02
- cluster.name=${CLUSTER_NAME}
- cluster.initial_master_nodes=es01,es02,es03
- discovery.seed_hosts=es01,es03
- bootstrap.memory_lock=true
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=true
- xpack.security.http.ssl.key=certs/es02/es02.key
- xpack.security.http.ssl.certificate=certs/es02/es02.crt
- xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt
- xpack.security.transport.ssl.enabled=true
- xpack.security.transport.ssl.key=certs/es02/es02.key
- xpack.security.transport.ssl.certificate=certs/es02/es02.crt
- xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt
- xpack.security.transport.ssl.verification_mode=certificate
- xpack.license.self_generated.type=${LICENSE}

mem_limit: ${MEM_LIMIT}
ulimits:

memlock:
soft: -1
hard: -1

healthcheck:
test:

[
"CMD-SHELL",
"curl -s --cacert config/certs/ca/ca.crt https://localhost:9200 | grep -q

'missing authentication credentials'",
]

interval: 10s
timeout: 10s
retries: 120

es03:
depends_on:

- es02

D. Source Code Snippets 85

Test Result Viewer v 1.0

image: docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION}
volumes:

- certs:/usr/share/elasticsearch/config/certs
- esdata03:/usr/share/elasticsearch/data

environment:
- node.name=es03
- cluster.name=${CLUSTER_NAME}
- cluster.initial_master_nodes=es01,es02,es03
- discovery.seed_hosts=es01,es02
- bootstrap.memory_lock=true
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=true
- xpack.security.http.ssl.key=certs/es03/es03.key
- xpack.security.http.ssl.certificate=certs/es03/es03.crt
- xpack.security.http.ssl.certificate_authorities=certs/ca/ca.crt
- xpack.security.transport.ssl.enabled=true
- xpack.security.transport.ssl.key=certs/es03/es03.key
- xpack.security.transport.ssl.certificate=certs/es03/es03.crt
- xpack.security.transport.ssl.certificate_authorities=certs/ca/ca.crt
- xpack.security.transport.ssl.verification_mode=certificate
- xpack.license.self_generated.type=${LICENSE}

mem_limit: ${MEM_LIMIT}
ulimits:

memlock:
soft: -1
hard: -1

healthcheck:
test:

[
"CMD-SHELL",
"curl -s --cacert config/certs/ca/ca.crt https://localhost:9200 | grep -q

'missing authentication credentials'",
]

interval: 10s
timeout: 10s
retries: 120

kibana:
depends_on:

es01:
condition: service_healthy

es02:
condition: service_healthy

es03:
condition: service_healthy

image: docker.elastic.co/kibana/kibana:${STACK_VERSION}
volumes:

- certs:/usr/share/kibana/config/certs
- kibanadata:/usr/share/kibana/data
- type: bind

source: ./kibana/kibana.yml
target: /usr/share/kibana/config/kibana.yml

- type: bind
source: ./cert/kibana.crt
target: /usr/share/kibana/config/certs/kibana.crt

- type: bind
source: ./cert/kibana.key

D. Source Code Snippets 86

Test Result Viewer v 1.0

target: /usr/share/kibana/config/certs/kibana.key
ports:

- ${KIBANA_PORT}:5601
environment:

- SERVERNAME=testresults.kuendig.dev
- ELASTICSEARCH_HOSTS=https://es01:9200
- ELASTICSEARCH_USERNAME=kibana_system
- ELASTICSEARCH_PASSWORD=${KIBANA_PASSWORD}
- ELASTICSEARCH_SSL_CERTIFICATEAUTHORITIES=config/certs/ca/ca.crt
- xpack.security.encryptionKey=${KIBANA_ENCRYPTION_KEY}

mem_limit: ${MEM_LIMIT}
healthcheck:

test:
[

"CMD-SHELL",
"curl -s -I http://localhost:5601 | grep -q 'HTTP/1.1 302 Found'",

]
interval: 10s
timeout: 10s
retries: 120

init:
depends_on:

es01:
condition: service_healthy

build: ./init
volumes:

- ./init/definitions:/definitions
- type: bind

source: ./init/init.sh
target: /usr/local/bin/init.sh

environment:
- ES_HOST=es01:9200
- ES_USER=elastic
- ES_PASS=${ELASTIC_PASSWORD}

entrypoint: ["sh", "/usr/local/bin/init.sh"]
restart: no

volumes:
certs:

driver: local
esdata01:

driver: local
esdata02:

driver: local
esdata03:

driver: local
kibanadata:

driver: local

Listing D.6: init.sh
#!/bin/sh

if ! [[$ES_USER]]; then
echo "ES_USER not set"
exit 1;

D. Source Code Snippets 87

Test Result Viewer v 1.0

fi

if ! [[$ES_PASS]]; then
echo "ES_PASS not set"
exit 1;

fi

if ! [[$ES_HOST]]; then
echo "ES_HOST not set"
exit 1;

fi

setupTemplateSearch () {
for f in $(find /definitions/search-templates/ -type f -name '*.json'); do

name=$(basename $f | rev | cut -d '.' -f 2 | rev)
data="{\"script\": { \"lang\": \"mustache\", \"source\": $(cat $f | tr -d '\n' |
jq -R)}}"
echo -e "${name}"
curl --insecure "https://${ES_USER}:${ES_PASS}@${ES_HOST}/_scripts/${name}" -X PUT
-d "${data}" --header "Content-Type: application/json"
echo -e "\n"

done
}

setupMapping () {
for f in $(find /definitions/index/mapping/ -type f -name '*.json'); do

name=$(basename $f | rev | cut -d '.' -f 2 | rev)
data="{\"mappings\": $(cat $f)}"
echo -e "${name}"
curl --insecure "https://${ES_USER}:${ES_PASS}@${ES_HOST}/${name}" -X PUT -d
"${data}" --header "Content-Type: application/json"
echo -e "\n"

done
}

setupPipeline () {
for f in $(find /definitions/pipelines/ -type f -name '*.json'); do

name=$(basename $f | rev | cut -d '.' -f 2 | rev)
data="{\"processors\": $(cat $f)}"
echo -e "${name}"
echo -e "${data}"
curl --insecure

"https://${ES_USER}:${ES_PASS}@${ES_HOST}/_ingest/pipeline/${name}" -X PUT -d
"${data}" --header "Content-Type: application/json"

echo -e "\n"
done

}

indexSettings () {
for f in $(find /definitions/index/settings -type f -name '*.json'); do

name=$(basename $f | rev | cut -d '.' -f 2 | rev)
data="$(cat $f)"
echo -e "${name}"
echo -e "${data}"
curl --insecure "https://${ES_USER}:${ES_PASS}@${ES_HOST}/testresult/_settings"

-X PUT -d "${data}" --header "Content-Type: application/json"
echo -e "\n"

D. Source Code Snippets 88

Test Result Viewer v 1.0

done
}

echo -e "Create template search"
setupTemplateSearch

echo -e "Create indicies with mapping"
#setupMapping

echo -e "Create Index Pipelines"
#setupPipeline

echo -e "Index Settings"
#indexSettings

Listing D.7: Dockerfile to run the init Container
FROM alpine:latest

RUN apk add --no-cache curl \
&& apk add --no-cache jq

D. Source Code Snippets 89

Test Result Viewer v 1.0

E. Meeting Minutes

February 17, Administrative Meeting
Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat

Summary
High level description of the task to be completed. Provided some guidelines on documentation
content, as well as a detailed description of the task.

Planning of regular internal meetings: Weekly on Mondays, 13 pm. Expected to provide an
agenda for every upcoming meeting by monday morning, containing the following items:

• What work has been done the past week, what had been planned?

• Any questions, decisions to be made with suggestions and reasoning

• Goals for the coming week

An official kickoff meeting with Sonova is planned on February 20 in Microsoft Teams.

February 20, Kickoff Meeting
Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko, Andreas Berthoud

Summary
Detailed introduction to the current situation at Sonova, provided by Dariusz Danilko. Sample
test result files and updated task description with a mockup as an example for the expected
interface.

• Use database queries without joins whenever possible

• Reduce database maintenance effort with noSQL

• There might be different retention periods for test results in the future

E. Meeting Minutes 90

Test Result Viewer v 1.0

February 27, Weekly Meeting
Week 01. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Draft: Project Plan

• Draft: Documentation, Structure

• Draft: Database Schema

• Tests with Elastic Setup, inserting and querying data

• Research of different database solutions

What are our next steps:

• Build first visualizations using sample data

• Prioritize given use cases

• Analyze potential limitations of NoSQL approach

• Elaborate on Elastic Setup: Security and Backup Strategy

Questions / Remarks

• Access to our Gitlab Repository for Thomas, Darek, Andreas?

• Req-1.10.1 Show GitHub details: Details attached to Test Case or Test Run?

• Can the same test be executed inside several test suites?

Discussion
Questions were answered:

• Gitlab access for all

• Github Details attached to test run

• Same test run not in different test suites but projects

Present database schema and project plan to Thomas. Database schema might need an addi-
tional entity (Test job).

E. Meeting Minutes 91

Test Result Viewer v 1.0

March 06, Weekly Meeting
Week 02. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Comparison SQL vs. NoSQL

• Comparison CouchDB vs. MongoDB vs. RavenDB vs. Elasticsearch

• Analysis of XML Structure

• Create more manual sample data and insert into Elasticsearch

• Prototype available at testresults.kuendig.dev

• Script to parse XML / JSON for easy insertion into DB (partially)

• Prioritize given use cases

• Risk Assessment

What we didn’t manage last week:

• Build first visualizations using sample data

What are our next steps:

• Finish script

• Decide for a database schema

• Build first visualizations using sample data

Questions / Remarks

• Confirm our understanding regarding data structure / current indexes in Elasticsearch

• Agree on prioritization of use cases

Discussion
• Use Cases

– Add an “Overview over last / specific commit” as Use Case
– Multiple Views are allowed for all Use Cases (even encouraged)
– Prioritization is fine

• Logic diagram, understanding of data structure
– Job name + build number are not guaranteed unique. Darek will get back to us on

this after consulting with Andreas.
– Unclear: will there be a more specific identifier for the object/binary under test?

• The system only has to work using the XML and JSON input

E. Meeting Minutes 92

https://testresults.kuendig.dev

Test Result Viewer v 1.0

March 13, Weekly Meeting
Week 03. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Phrase User Stories for Use Cases with (very) high prioritization

• Decide for a database schema

• Build first visualizations using sample data (Kibana)

• Model data flow from XML/JSON to DB and view

• Update project plan

• Add bulk insertion to script

• Create random test data automatically

• Start to implement unit tests

• Research frontend framework choices

What we didn’t manage last week:

• All planned tasks completed

What are our next steps:

• Continue working on frontend use cases based on decisions today

• Start to Integrate more Test Result Formats?

Questions / Remarks

• Angular vs. React.js vs. Vue.js - Why was Angular proposed? Answer: Because some
developers at Sonova already have some experience with Angular. The choice of framework
is still open, but chances are high it will be re-written in Angular after this thesis if another
framework is used.

• Start with custom Frontend, or still work with Kibana? Answer: Kibana was the suggested
frontend to start with easy database access to verify functionality and chosen schema. If
the database part is stable and focus is more on the use cases, then the switch to a custom
frontend is a good idea.

Discussion
• Build configuration is stored in the build identifier. There may be some changes/updates

to the examples provided.

• We will use Angular as Frontend Framework. But keep analysis in documentation and
justify decision.

• We will switch now from Kibana to Angular.

E. Meeting Minutes 93

Test Result Viewer v 1.0

• Keep in mind different visualizations will depend on different timestamps. Test job start
time will be relevant for focusing on test environment performance, commit time will be
relevant for visualizations based on code changes.

• Keep in mind, that for some use cases there will be new or deleted tests in a given time
frame.

• It may be a good idea to add support for regression or environment failure to the generator
script.

• A test job always builds the project. This can cause various build errors. Does not affect
our visualizations.

• Terminology clarification:
Failure: Assertion inside a test case returned false
Error: Unexpected exception was thrown when executing the test

E. Meeting Minutes 94

Test Result Viewer v 1.0

March 20, Weekly Meeting
Week 04. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko, Andreas
Berthoud

Agenda
What have we done so far:

• Angular is ready

• Connect Frontend with Elasticsearch using simple backend

• Implement Reverse proxy to prevent CORS issues

• Create basic site structure

• Create UI sketches

• Create a basic visualization (table)

• Create a more complex visualization (chart)

• Update CI/CD to test Frontend

What we didn’t manage last week:

• All planned tasks completed

What are our next steps:

• Implementing Use Cases

Questions / Remarks

• Backend:
– Query Elasticsearch directly from frontend or over a backend?
– Backend sooner or later required, for storing application data
– Backend Technology: Are there preferences (Python, JS/TS, . . .) in case we implement

something?

• Reverse Proxy:
– We would like to implement a reverse proxy to prevent CORS issues.
– Are there preferences (Traefik, Caddy, NGINX, . . .)?

Discussion
• A backend should only be implemented if it is really necessary to implement certain use

cases. Otherwise, to keep the project as simple as possible, some data parsing could be
moved to the python data consumer. This should keep the frontend free of such logic.

• To implement a proxy, nginx is the tool that is known and used at Sonova.

• Input about identifying the build: the URL encodes different relevant information, which
makes it difficult to use for our project. It is planned to parse the URL beforehand and add
more info to the metadata JSON file.

E. Meeting Minutes 95

Test Result Viewer v 1.0

• Feedback UI Sketches / Use Cases:
– Test results per run: lists are usually collapsible for test suite hierarchy. Checking out

some existing testing tools on how they visualize this might be a good idea.
– Useful feature in history: only show test cases with failures at some point

• Next use cases to work on / goal for next week: Table overview of commits and test cases.

March 27, Weekly Meeting
Week 05. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Implement Nginx as Reverse Proxy

• Improve CI/CD pipeline

• Implement Elasticsearch Service in Angular

• Implement first version of tabular commit history

What we didn’t manage last week:

• All planned tasks completed

What are our next steps:

• Add filtering to existing tabular view

• Implement Req-1.9: Show test case details

• If enough time: Implement Req-1.6: Hierarchical test order (Test Suite)

Questions / Remarks

• No questions

Discussion
• Feedback Test Case History: could be multiple products per branch and commit. Some

way of displaying this, no details if all green, expandable if not all is green, also how many
times was it executed?

• Maybe include some option for color blindness, not red/green

• Only display data if it is interesting - not if all was good. Add an option to display all
successes as well

• Generate test data for up to 1 year to test performance

• There will be a retention policy for test results at some point in the future (based on tags)

E. Meeting Minutes 96

Test Result Viewer v 1.0

April 03, Weekly Meeting
Week 06. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Add icons for Success, Error, . . .

• Add date based filtering

• Add test suite to history view

• Rewrite part of view because of faulty query

• Partially implementing Req-1.9 (extended result view)

• Research for implementing Req-1.6 (hierarchical view of test cases)

• Update documentation with all requirements, specify the ones selected for implementation

What we didn’t manage last week:

• Req-1.6: Hierarchical test order

What are our next steps:

• Improve view for Req-1.9: Show test case details

• Req-1.6: Hierarchical test order

Questions / Remarks

• For Darek: Do you have an extended JSON file with the missing metadata?

Discussion
• There will be some new items in the Metadata File provided (project, build and URL)

• There is always one "main" repository that a given view should focus on. This should be
implemented for the users to select for themselves as a filter.

• Projects group repositories, repositories can be used in different projects (therefore the same
commit concerns different projects).

• One Test run is usually relevant for multiple commits/repositories (VCSInfo) for different
reasons. Main module / sub module, code repo / job definition repo etc.

• Next Weeks Presentation: Focus on the problem description and our current approach on
solving it. This will also be a possibility to ask Philipp and Guido what they value in the
final submission of our thesis.

E. Meeting Minutes 97

Test Result Viewer v 1.0

April 17, Weekly Meeting
Week 07. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• “Zwischenpräsentation”

• Fix memory leaks caused by Observables

• Possibility to write custom filter queries

• Add / Update / Delete labels for a single test run

What we didn’t manage last week:

• Req-1.6: Hierarchical test order

What are our next steps:

• Implementing “Hierarchical test order”

• Implementing “Detection of regression of a particular test case”

Questions / Remarks

• What views are required / needed by the infrastructure team?

• Should we prepare the data consumer to consume data from Kafka?

E. Meeting Minutes 98

Test Result Viewer v 1.0

April 24, Weekly Meeting
Week 08. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Update test environment view

• Refactor code for testcase-history view to be more reusable

• Option to select one filter criteria from a dropdown (current: branch name)

• Update consumer package to use Sonova template, refactor

• Update documentation: requirements and analysis

What we didn’t manage last week:

• Req-1.6: Hierarchical test order

• Req-3.1: Detection of regression

What are our next steps:

• Continue working on Req-1.6, Req-3.1

• Test proper filtering for "two level JSON properties"

Questions / Remarks

• JUnit sample file?

Discussion
In NUnit version 3, start and end time of a job will be incorporated. Update will be made at
some point, but not planned yet. Inclusion of v3 schema in our solution is not part of the scope,
but could be handled in different ways.

• keep data in separate indexes in elastic

• migrate old data

• add logic to data consumer to parse old and new versions

A sanitized JUnit sample should be provided by next week.
Is there a chance to use some relevant data - either run current product at Sonova or get some

more sanitized examples. We provide instructions on how to run the different components in our
repository README files. Darek will try to set up and run it in the next week.

Views would mostly be structured by project or by build job.
It might be helpful to retain the order of test cases inside a suite. As of now, NUnit v2 does

not provide enough metadata to do this out of the box.

E. Meeting Minutes 99

Test Result Viewer v 1.0

May 02, Weekly Meeting
Week 09. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Setup Code Coverage and Report (http://test-result-viewer.pages.gitlab.ost.ch/ba2023/)

• Update many tests

• Investigate performance issue

• Solve performance issue in test environment view

• Solve performance issue in test case history

• Add loading indicator to tables

• Req-1.6: Test cases collapsible by test suite

What we didn’t manage last week:

• Req-3.1: Detection of regression

What are our next steps:

• Improve Test case History view for tests running multiple times

• Generalize Test Environment view to make it easily adaptable for other data

• Req-3.1: Detection of regression

• Add old test environment overview graph to dashboard page

Questions / Remarks

• Thesis Title for BA exhibition (Test Aggregator, Test Result Viewer, ...)

• What amount of data should be displayed by default? Last 7 days? Last x commits?
Should we provide a selection (buttons) per view, like "last 24h, last 7 days, all"?

Discussion
• Data to be displayed for regression: last 24h, environment info: last 7d

• Environment View: does not need the actual test names, better to display hosts as rows

• Simple green/red box for general "mixed" results should be enough for this project

• Thesis name for exhibition: Test Result Viewer

E. Meeting Minutes 100

http://test-result-viewer.pages.gitlab.ost.ch/ba2023/

Test Result Viewer v 1.0

May 08, Weekly Meeting
Week 10. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Fix performance problem in test environment view

• Update documentation according to feedback

• Start to implement regression view

• Add buttons to display data for last 24h / 7d

• If test has multiple different results it is displayed differently
What we didn’t manage last week:

• Add old test environment overview graph to dashboard page
What are our next steps:

• Clean up test result service and types

• Continue regression view

• Add old test environment overview graph to dashboard page
Questions / Remarks

• Is this definition of a flickering test correct: Same test case and commits combination,
different result

• Proposing changes to the JSON file
– Build →build
– VersionControlSystemInfo →version-control-system-info
– TestEnvironment →test-environment

Discussion
• Regression: there might well be commits with none or several results for certain test cases.

Relevant for looking for regression should be the branch / product name.

• Display of color gradient for differing results is fine. Check regarding color blindness should
be done, either with automated filter tools or by asking some people we know to be affected.

• Definition of flickering tests: same commit, same test case, different results.

• Current color choice for results is fine, should be easy to change.

• Fields will be added to VCSInfos: commit-message, commit-author

• Test ownership is fixed in code for every commit, way of retrieving this information is
not yet clear.

• Test assignment (on failure) is not fixed, should be possible to add and update within
our tool. Way of achieving this is unclear, it might be as a comment. It is relevant for a
combination of test case / branch. Different ideas of implementation should be researched.

• Filter Query should be persistent in URL to create bookmarks for specific views.

E. Meeting Minutes 101

Test Result Viewer v 1.0

May 15, Weekly Meeting
Week 11. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Add chart in “last run view” (dashboard)

• Update regression view

• Filter query stored in URL

• Write JUnit parser in consumer

• Update metadata JSON schema

What we didn’t manage last week:

• Clean up test result service (didn’t work on this because of backend may be required)

What are our next steps:

• Elasticsearch Mapping for index

• Analyze comment feature (Backend required?)

Questions / Remarks

• No questions

Discussion
• Regression view should show more information about an error cause, as expandable tiles

• Most views would benefit from showing the first parts of a stack trace in a failure or error
case

• Density of the data for the test-environment view is positive

• If possible, additional aggregation for a specific property would be a nice to have feature

• Data consumer: JUnit sample file is available and will be tested

• Tests are usually run in alphabetical order, can be randomized by the developer

• Comment feature:
– Prioritize above all other feature improvements (especially regression)
– Updating existing values will only be done a few times per day at most
– Possibility using native elastic functionality should be prioritized
– Dedicated backend as the fallback solution if necessary (more effort needed)
– Possibility: Adding a "manual" lookup for developers that displays assignment of issues

to test runs, these can then be compared to the results in another window.

E. Meeting Minutes 102

Test Result Viewer v 1.0

May 22, Weekly Meeting
Week 12. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Comment feature is implemented

• Assignment feature is implemented

• More work on documentation, analysis chapter

What we didn’t manage last week:

• Filtering for comment & assignment not yet working

What are our next steps:

• Architecture improvements are needed for filtering comment & assignment

• Architecture improvements are needed overall :-)
– Angular structure for more complex application
– Optimize data store efficiency with mappings in elastic

• With / after that: Architecture Documentation

Questions / Remarks

• Could you provide some screenshots from your systems (e.g. Jenkins) that highlight the
point we make in the documentation: "most tools only provide simple visualizations, not
enough for a detailed overview"?

• We list the main problems of the current solution - are there more points we missed?
– a long loading time
– hard to change / extend
– badly maintained

Discussion
• Question 1, Thomas: Will deliver some screenshots with sensitive data removed

• Question 2, Darek: I think that you covered all the pain points in those three bullet points.
However, I would just like to add some more background for why these three problems
occur.
I would say that the biggest problem is the architecture of the existing system, which makes
it difficult to adapt it to fulfill all the requirements while keeping the system performant
at the same time. The main problem stems from the fact that the TestResult.xml files
are currently stored as one document, which makes it difficult/inefficient to run arbitrary
queries on the data (== long loading time + hard to change / extend)
Another problem is that both the database and the viewer are currently developed in-house.
Using third-party, state-of-the-art solutions, especially for the database, seems like a better
use of developers’ time (== do not reinvent the wheel). Given that such systems tend to

E. Meeting Minutes 103

Test Result Viewer v 1.0

grow in size over time. And at the same time the technology used to develop them ages,
it means that there will be less and less people able to / willing to maintain and extend
the functionality of such complex in-house solutions (== inefficient maintenance + hard to
change / extend).

• Assignment field: Three ways of storing the possible values for filtering.
– Use distinct selection from existing
– Store all possible assignees in a separate index as well
– Query from LDAP

Sonova prefers the second option, since LDAP would possibly return a too large amount of
users, distinct selection would carry the risk of duplicated values because of spelling errors.

• Comment length: This field would probably contain some reference to Jira items or any
other place to provide more information. This possibility is not available in the current
solution, so it could be used for many more things.

• Hand-in of the final report: Thomas requires 1 paper copy each in color and in black and
white print.

E. Meeting Minutes 104

Test Result Viewer v 1.0

June 05, Weekly Meeting
Week 15. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Filtering by comment and assignment

• Working on documentation

• Updated Frontend Architecture

What we didn’t manage last week:

• All planned tasks completed

What are our next steps:

• Code clean up

• Documentation

Questions / Remarks

• Sonova logo on title page and A0 poster?

E. Meeting Minutes 105

Test Result Viewer v 1.0

June 12, Weekly Meeting
Week 14. Attending: Olivier Lischer, Luzia Kündig, Thomas Corbat, Dariusz Danilko

Agenda
What have we done so far:

• Code Clean up

• Documentation

What we didn’t manage last week:

• -

What are our next steps:

• Submit documentation for printing by Tuesday evening

• Submit A0 Poster for printing by Wednesday evening

• Finish with more code and frontend design cleanup

Questions / Remarks

• How long should the presentation on June 26 be?

Discussion
• Final presentation: 30 minutes, then 20 minutes for questions

• Language for the presentation: German is fine

• Feedback for most artefacts

E. Meeting Minutes 106

Test Result Viewer v 1.0

F. Personal Reports

We provide personal reflections on topics that were important to us during the project.

Luzia Kündig
Apart from the software engineering project two semesters prior, this was my first big software
development project and I have learned a lot in many different fields. We have both invested a
substantial amount of time in researching the technologies we were planning to use. Still there
were iterations in terms of how much of their functionaliy we could apply. Our first implemen-
tation of Angular or Elasticsearch might have been a very basic one, but after some time spent
with them we soon came to learn and use the more advanced tools and concepts. This realization
during the project has helped me a lot in understanding, for I could explore new concepts in
terms of a problem I have encountered myself.

Working together with Olivier has been a very pleasant and positively challenging experience.
We both have different levels of experience, but where he has more of it in terms of software
development, I could do my part in setting up the infrastructure, extending and refining the
prototypes he built, proposing some architectural decisions and keeping track of our documenta-
tion. In this way we could keep separate responsibilities and work very productively, even when
spending a good amount of time away from school and working separately on the project. How-
ever, in retrospective I would try to spend more time discussing the implementation together. It
might slow down the progress for the moment, but result in more reflected decisions and better
understanding of the work of the other.

Our advisor Thomas and our partner Darek at Sonova have always been happy to answer any
questions we might have had, even when asked for the third time about the how and why of their
current situation. :-) I am grateful for their support and also their great enthusiasm about the
product we have developed.

F. Personal Reports 107

Test Result Viewer v 1.0

Olivier Lischer
During this project I touched many new fields, concepts and applications:

• Angular

• Elasticsearch

• Python

It was the first time that I used a web framework for frontend development. Previously, I did
not write any web frontend but only backend code. Therefore, I had to learn how to work with
Angular from scratch. The first version of our frontend architecture was not ideal. Nearly all
application logic was placed in a single file. Although, with the current amount of features this
would not be a big problem but as the application grows the more unmaintainable it gets and we
decided to restructure the whole project.

I was already familiar with NoSQL as I used MongoDB during the software engineering project.
At the beginning it took many hours to write a single Elasticsearch query just because I was un-
familiar with the query syntax of Elasticsearch and its possibilities. As the project progressed I
got more familiar and therefore faster in writing the more complex queries.

The last technology I touched in this project was Python. My experience using Python was
limited to a few lines of code. My inexperience bit me early: writing the data classes for the
consumer was cumbersome and suffered from a lot of code duplication. Here it would have been
helpful to ask a more experienced Python developer how you should solve this problem. Eventu-
ally I could solve it cleanly.

That Luzia was my project partner was very lucky. While Luzia has more experience in net-
work, I had more in software development. But this was for our best as we could separate the
tasks: Luzia was in charge of the Elasticsearch setup, while I was for the development. Luzia
always challenged my implementations and ideas what lead to a great team work. One downside
had our teamwork: we often neglected the review of the changes the other one made. We were
really quick most of the time, but the other did not always know, how you solved a certain prob-
lem. In a next project, I would definitely work with merge requests to prevent this problem.

The weekly meetings with our Advisor Thomas and the Darek were always very informative
and often funny. I am really thankful for Dareks patience with us, even when we needed a few
attempts to understand a certain problem or situation.

F. Personal Reports 108

Test Result Viewer v 1.0

G. Declarations

G. Declarations 109

Eigenständigkeitserklärung OST | CF

Eigenständigkeitserklärung

Erklärung

Ich erkläre hiermit,
• dass ich die vorliegende Arbeit selbst und ohne fremde Hilfe durchgeführt habe, ausser derjenigen,

welche explizit in der Aufgabenstellung erwähnt ist oder mit der Betreuerin / dem Betreuer
schriftlich vereinbart wurde,

• dass ich sämtliche verwendeten Quellen erwähnt und gemäss gängigen wissenschaftlichen
Zitierregeln korrekt angegeben habe,

• dass ich keine durch Copyright geschützten Materialien (z.B. Bilder) in dieser Arbeit in unerlaubter
Weise genutzt habe.

Ort, Datum:
Rapperwsil, 13.06.2023

Name, Unterschrift:

Luzia Kündig

Olivier Lischer

Dok: Mustervereinbarung über Urheber- und Nutzungsrechte.docx OST | CT
 Seite 1

1. Vereinbarung

1.1.1 1. Gegenstand der Vereinbarung

Mit dieser Vereinbarung werden die Rechte über die Verwendung und die Weiterentwicklung
der Ergebnisse der Bachelorarbeit «Test Result Viewer» von Luzia Kündig und Olivier Lischer
unter der Betreuung von Thomas Corbat geregelt.
1.1.2 2. Urheberrecht

Die Urheberrechte stehen der Studentin / dem Studenten zu.
1.1.3 3. Verwendung

Die Ergebnisse der Arbeit dürfen sowohl von der Studentin / dem Studenten, von der OST wie
von Sonova AG nach Abschluss der Arbeit kostenlos und uneingeschränkt verwendet und
weiterentwickelt werden.

1.1.4 Beilage/n:

- keine

Rapperswil, den.......................

...

 Die Studentin/der Student

Rapperswil, den.......................

...

 Der Betreuer / die Betreuerin der Bachelorarbeit

 06.06.2023

07.06.2023

Test Result Viewer v 1.0

Glossary

ACID In the context of transaction processing, the acronym ACID refers to the four key prop-
erties of a transaction: atomicity, consistency, isolation, and durability.

Atomicity: All changes to data are performed as if they are a single operation. That
is, all the changes are performed, or none of them are. For example, in an application that
transfers funds from one account to another, the atomicity property ensures that, if a debit
is made successfully from one account, the corresponding credit is made to the other account.

Consistency: Data is in a consistent state when a transaction starts and when it ends.
For example, in an application that transfers funds from one account to another, the con-
sistency property ensures that the total value of funds in both the accounts is the same at
the start and end of each transaction.

Isolation: The intermediate state of a transaction is invisible to other transactions. As
a result, transactions that run concurrently appear to be serialized. For example, in an
application that transfers funds from one account to another, the isolation property ensures
that another transaction sees the transferred funds in one account or the other, but not in
both, nor in neither.

Durability: After a transaction successfully completes, changes to data persist and are not
undone, even in the event of a system failure. For example, in an application that transfers
funds from one account to another, the durability property ensures that the changes made
to each account will not be reversed [2]. 114

BSON BSON is a computer data interchange format. The name “BSON” is based on the term
JSON and stands for “Binary JSON” [Wikipedia]. 114

CAP The CAP theorem applies a similar type of logic to distributed systems—namely, that a
distributed system can deliver only two of three desired characteristics: consistency, avail-
ability, and partition tolerance (the ‘C,’ ‘A’ and ‘P’ in CAP) [50]. 114

Continuous delivery Continuous delivery is a software development practice that works in
conjunction with CI to automate the infrastructure provisioning and application release
process. Once code has been tested and built as part of the CI process, CD takes over
during the final stages to ensure it’s packaged with everything it needs to deploy to any
environment at any time. CD can cover everything from provisioning the infrastructure
to deploying the application to the testing or production environment. With CD, the
software is built so that it can be deployed to production at any time. Then you can
trigger the deployments manually or move to continuous deployment, where deployments
are automated as well. [47] 114

Continuous Integration Continuous integration is the practice of integrating all your code
changes into the main branch of a shared source code repository early and often, automat-
ically testing each change when you commit or merge them, and automatically kicking off

Glossary 112

Test Result Viewer v 1.0

a build. With continuous integration, errors and security issues can be identified and fixed
more easily, and much earlier in the development process. [47] 13, 114

Field Programmable Gate Array Field Programmable Gate Arrays (FPGAs) are integrated
circuits often sold off-the-shelf. They’re referred to as ’field programmable’ because they
provide customers the ability to reconfigure the hardware to meet specific use case require-
ments after the manufacturing process. This allows for feature upgrades and bug fixes to
be performed in situ, which is especially useful for remote deployments. [46] 114

firmware Firmware is a type of software that is embedded directly in a piece of hardware to
make the hardware work as intended. Firmware is programmed by the manufacturer and
is installed on a digital device right in the factory. All computing devices have firmware.
[14] 14

Kafka Apache Kafka is a distributed event store. 32, 39

Lucene Lucene Core is a Java library providing powerful indexing and search features, as well
as spellchecking, hit highlighting and advanced analysis/tokenization capabilities [6]. 33

Minimum Viable Product That version of a new product which allows a team to collect the
maximum amount of validated learning about customers with the least effort. This validated
learning comes in the form of whether your customers will actually purchase your product.
[32] 114

Prepared Statement In database management systems (DBMS), a prepared statement, pa-
rameterized statement, or parameterized query is a feature used to pre-compile SQL code,
separating it from data[36]. 53

Scrum A way to get work done as a team in small pieces at a time, with continuous experi-
mentation and feedback loops along the way to learn and improve as you go. Scrum helps
people and teams deliver value incrementally in a collaborative way. As an agile framework,
Scrum provides just enough structure for people and teams to integrate into how they work,
while adding the right practices to optimize for their specific needs. [49] 14

Single Component Angular Module An Angular structure pattern. Every component lives
in its own module[33]. 114

Topic A log of events in Kafka 32, 39

XML The Extensible Markup Language (XML) is a simple text-based format for representing
structured information: documents, data, configuration, books, transactions, invoices, and
much more. It was derived from an older standard format called SGML (ISO 8879), in
order to be more suitable for Web use. [51] 114

Y-Statement A light template for architectural decision capturing proposed by Prof. Olaf
Zimmermann [53]. 39

Glossary 113

Test Result Viewer v 1.0

Acronyms

ACID Atomicity, Consistency, Isolation, Durability (See ACID) 33, 46

BSON Binary JSON (See BSON) 34

CAP Consistency, Availability, Partition tolerance (See CAP) 33

CD Continuous Delivery (See Continuous delivery) 32

CI Continuous Integration (See Continuous Integration) 13, 14, 32

CORS Cross Origin Resource Sharing 38, 45

CPU Central Processing Unit 14

DSP Digital Signal Processor 14

FPGA Field Programmable Gate Array (See Field Programmable Gate Array) 14

KQL Kibana Query Language 5

MVP Minimum Viable Product (See Minimum Viable Product) 17, 18, 63

RDBMS Relational Database Management System 32, 53

SCAM Single Component Angular Module (see Single Component Angular Module) 44, 57

SMART Specific, Measurable, Agreed upon, Realistic, Time-bound 27

TLS Transport Layer Security 28

XML Extensible Markup Language (See XML) 15

Acronyms 114

Test Result Viewer v 1.0

List of Figures

1. Screenshot of one existing tool . 3
2. Architecture Goal . 4
3. General flow of data . 5
4. Screenshot Test Result Viewer . 6

2.1. Screenshot of an existing tool with minimal information 15

3.1. Mockup: Dashboard page . 19
3.2. Mockup: Tabular view by Sonova . 20
3.3. Mockup: Test result of a single test case on a timeline 21
3.4. Mockup: Test results of all test cases . 23
3.5. Mockup: Regression display . 24
3.6. Mockup: History for Test Environments . 25
3.7. Mockup: Test result of all test environments . 26

4.1. Overview of planned Components . 29
4.2. Domain Model: NUnit XML with added metadata 31
4.3. Elasticstack Components [17] . 35

5.1. General Data Flow . 39
5.2. C4 Context Diagram . 40
5.3. C4 Container Diagram . 41
5.4. C4 Component: Data Consumer . 42
5.5. C4 Component Diagram: Data Store . 43
5.6. Structure of a single Angular page . 44
5.7. C4 Component Diagram: Frontend . 45

6.1. Consumer Structure . 49
6.2. Elasticsearch API Response . 51
6.3. Kibana Dev Tools . 51

7.1. Frontend pipeline YAML visualized . 58
7.2. Consumer pipeline YAML visualized . 58
7.3. Documentation pipeline YAML visualized . 58
7.4. Results of the color vision deficiencies simulation 59

2.1. Project Plan . 67

3.1. Time per category . 69
3.2. Time per week . 70

List of Figures 115

Test Result Viewer v 1.0

List of Tables

3.1. Use Cases with Priority . 18
3.2. NFR-1, Performance . 27
3.3. NFR-2, Confidentiality . 28
3.4. NFR-3, Browser Support . 28

4.1. Technical comparison Web Frameworks . 36
4.2. Survey Results Web Frameworks . 36
4.3. Possible backend frameworks . 37

6.1. Nginx proxy destinations . 56

7.1. Used testing frameworks . 57
7.2. Tracking of NFRs . 59

List of Tables 116

Test Result Viewer v 1.0

Bibliography

[1] 5.2. Performance — Apache CouchDB® 3.3 Documentation. url: https://docs.couchdb.
org/en/stable/maintenance/performance.html (visited on 03/02/2023).

[2] ACID properties of transactions. IBM. url: https://www.ibm.com/docs/en/cics-ts/5.4?
topic=processing-acid-properties-transactions (visited on 05/23/2023).

[3] Acid Transactions. RavenDB NoSQL Database. url: https://ravendb.net/why-ravendb/
acid-transactions (visited on 06/05/2023).

[4] Angular coding style guide. url: https://angular.io/guide/styleguide (visited on 03/14/2023).
[5] Ansible deployment of Docker. url: https://www.digitalocean.com/community/tutorials/

how-to-use-ansible-to-install-and-set-up-docker-on-ubuntu-20-04 (visited on 02/25/2023).
[6] Apache Lucene. Apache. url: https://lucene.apache.org/ (visited on 05/23/2023).
[7] Benjamin Anderson and Brad Nicholson. SQL vs. NoSQL Databases: What’s the Difference?

| IBM. June 12, 2022. url: https://www.ibm.com/cloud/blog/sql-vs-nosql (visited on
02/28/2023).

[8] Color Vision Simulation — Firefox Source Docs Documentation. url: https : / / firefox -
source - docs .mozilla .org/devtools - user/accessibility_ inspector/simulation/ index .html
(visited on 06/08/2023).

[9] Compodoc - The Missing Documentation Tool for Your Angular A pplication. url: https:
//compodoc.app/ (visited on 06/11/2023).

[10] Convert Processor. Elastic. url: https://www.elastic.co/guide/en/elasticsearch/reference/
8.7/convert-processor.html (visited on 06/13/2023).

[11] CouchDB. url: https://couchdb.apache.org/ (visited on 03/02/2023).
[12] Cross Origin Resource Sharing. url: https://developer.mozilla.org/en-US/docs/Web/

HTTP/CORS (visited on 05/23/2023).
[13] Abe Dearmer. CouchDB vs. MongoDB: What You Need to Know. url: https : //www.

integrate.io/blog/couchdb-vs-mongodb/ (visited on 05/26/2023).
[14] Definition of firmware. url: https : / / www . techopedia . com / definition / 2137 / firmware

(visited on 05/23/2023).
[15] Yue Du. “Massive Semi-structured Data Platform Based on Elasticsearch and MongoDB”.

In: Signal and Information Processing, Networking and Computers. Ed. by Yue Wang et
al. Lecture Notes in Electrical Engineering. Singapore: Springer, 2021, pp. 877–884. isbn:
978-981-334-102-9. doi: 10.1007/978-981-33-4102-9_105.

[16] Elastic Connectors | Enterprise Search Documentation [8.8] | Elastic. Learn/Docs/Enter-
prise Search/Guide/8.8. url: https://www.elastic.co/guide/en/enterprise-search/current/
connectors.html (visited on 05/26/2023).

[17] Elastic Docs. url: https://www.elastic.co/guide/index.html (visited on 02/03/2023).
[18] Elasticsearch Node.Js Client. elastic, June 9, 2023. url: https : / / github . com / elastic /

elasticsearch-js (visited on 06/09/2023).

Bibliography 117

https://docs.couchdb.org/en/stable/maintenance/performance.html
https://docs.couchdb.org/en/stable/maintenance/performance.html
https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions
https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions
https://ravendb.net/why-ravendb/acid-transactions
https://ravendb.net/why-ravendb/acid-transactions
https://angular.io/guide/styleguide
https://www.digitalocean.com/community/tutorials/how-to-use-ansible-to-install-and-set-up-docker-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-use-ansible-to-install-and-set-up-docker-on-ubuntu-20-04
https://lucene.apache.org/
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://firefox-source-docs.mozilla.org/devtools-user/accessibility_inspector/simulation/index.html
https://firefox-source-docs.mozilla.org/devtools-user/accessibility_inspector/simulation/index.html
https://compodoc.app/
https://compodoc.app/
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/convert-processor.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/convert-processor.html
https://couchdb.apache.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.integrate.io/blog/couchdb-vs-mongodb/
https://www.integrate.io/blog/couchdb-vs-mongodb/
https://www.techopedia.com/definition/2137/firmware
https://doi.org/10.1007/978-981-33-4102-9_105
https://www.elastic.co/guide/en/enterprise-search/current/connectors.html
https://www.elastic.co/guide/en/enterprise-search/current/connectors.html
https://www.elastic.co/guide/index.html
https://github.com/elastic/elasticsearch-js
https://github.com/elastic/elasticsearch-js

Test Result Viewer v 1.0

[19] Encrypt HTTP client communications for Kibana. url: https://www.elastic.co/guide/en/
elasticsearch/reference/8.6/security-basic-setup-https.html#encrypt-kibana-http (visited
on 03/25/2023).

[20] Explicit Mapping | Elasticsearch Guide [8.8] | Elastic. url: https://www.elastic.co/guide/
en/elasticsearch/reference/current/explicit-mapping.html (visited on 06/10/2023).

[21] Estefanía García Gallardo. RxJS Best Practices. Medium. May 8, 2021. url: https : / /
betterprogramming.pub/rxjs-best-practices-7f559d811514 (visited on 06/11/2023).

[22] Grafana. url: https://grafana.com/ (visited on 05/19/2023).
[23] Sheffi Gupta and Rinkle Rani. “A Comparative Study of Elasticsearch and CouchDB Doc-

ument Oriented Databases”. In: 2016 International Conference on Inventive Computation
Technologies (ICICT). Coimbatore, India: IEEE, Aug. 2016, pp. 1–4. isbn: 978-1-5090-1285-
5. doi: 10.1109/INVENTIVE.2016.7823252. (Visited on 05/26/2023).

[24] Indexes: Analyzers. RavenDB NoSQL Database. url: https://ravendb.net/docs/article-
page/5.4/Csharp/indexes/using-analyzers (visited on 06/05/2023).

[25] Indexes: Map-Reduce Indexes. RavenDB NoSQL Database. url: https : // ravendb .net/
docs/article-page/5.4/csharp/indexes/map-reduce-indexes#indexes-map-reduce-indexes
(visited on 06/06/2023).

[26] Insert Information in Database Using Grafana. Grafana Labs Community Forums. Jan. 6,
2022. url: https ://community.grafana . com/t/ insert - information - in - database - using -
grafana/58611 (visited on 03/09/2023).

[27] Jimmix. Answer to "Update\Insert Data from Grafana to Mysql". Stack Overflow. May 30,
2020. url: https://stackoverflow.com/a/62101610 (visited on 03/09/2023).

[28] JUnit-Schema. Windy Road Technology Pty. Limited, Mar. 1, 2023. url: https://github.
com/windyroad/JUnit-Schema/blob/cfa434d4b8e102a8f55b8727b552a0063ee9044e/JUnit.
xsd (visited on 04/24/2023).

[29] Kibana Docs. url: https://www.elastic.co/guide/en/kibana/current/introduction.html
(visited on 05/19/2023).

[30] Lauren Schaefer. NoSQL Vs SQL Databases. MongoDB. url: https://www.mongodb.com/
nosql-explained/nosql-vs-sql (visited on 02/28/2023).

[31] Mapping | Elasticsearch Guide [8.8] | Elastic. url: https ://www.elastic .co/guide/en/
elasticsearch/reference/current/mapping.html (visited on 06/10/2023).

[32] Minimum Viable Product, Glossary. url: https://www.agilealliance.org/glossary/mvp/
(visited on 05/23/2023).

[33] Module SCAM Pattern. url: https://angular-training-guide.rangle.io/modules/module-
scam-pattern (visited on 06/08/2023).

[34] MongoDB. url: https://www.mongodb.com/ (visited on 03/02/2023).
[35] Judy Nduati. Elasticsearch vs MongoDB - A Detailed Comparison of Document-Oriented

Databases | SigNoz. https://signoz.io/blog/elasticsearch-vs-mongodb/. Jan. 2023. (Visited
on 05/26/2023).

[36] Prepared Statement. In: Wikipedia. Aug. 11, 2022. url: https://en.wikipedia.org/w/index.
php?title=Prepared_statement&oldid=11%2003939861 (visited on 06/10/2023).

[37] Query and filter context. Elastic. url: https://www.elastic.co/guide/en/elasticsearch/
reference/8.7/query-filter-context.html.

[38] Run API Requests | Kibana Guide [8.6] | Elastic. url: https://www.elastic.co/guide/en/
kibana/current/console-kibana.html (visited on 03/09/2023).

Bibliography 118

https://www.elastic.co/guide/en/elasticsearch/reference/8.6/security-basic-setup-https.html#encrypt-kibana-http
https://www.elastic.co/guide/en/elasticsearch/reference/8.6/security-basic-setup-https.html#encrypt-kibana-http
https://www.elastic.co/guide/en/elasticsearch/reference/current/explicit-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/explicit-mapping.html
https://betterprogramming.pub/rxjs-best-practices-7f559d811514
https://betterprogramming.pub/rxjs-best-practices-7f559d811514
https://grafana.com/
https://doi.org/10.1109/INVENTIVE.2016.7823252
https://ravendb.net/docs/article-page/5.4/Csharp/indexes/using-analyzers
https://ravendb.net/docs/article-page/5.4/Csharp/indexes/using-analyzers
https://ravendb.net/docs/article-page/5.4/csharp/indexes/map-reduce-indexes#indexes-map-reduce-indexes
https://ravendb.net/docs/article-page/5.4/csharp/indexes/map-reduce-indexes#indexes-map-reduce-indexes
https://community.grafana.com/t/insert-information-in-database-using-grafana/58611
https://community.grafana.com/t/insert-information-in-database-using-grafana/58611
https://stackoverflow.com/a/62101610
https://github.com/windyroad/JUnit-Schema/blob/cfa434d4b8e102a8f55b8727b552a0063ee9044e/JUnit.xsd
https://github.com/windyroad/JUnit-Schema/blob/cfa434d4b8e102a8f55b8727b552a0063ee9044e/JUnit.xsd
https://github.com/windyroad/JUnit-Schema/blob/cfa434d4b8e102a8f55b8727b552a0063ee9044e/JUnit.xsd
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.agilealliance.org/glossary/mvp/
https://angular-training-guide.rangle.io/modules/module-scam-pattern
https://angular-training-guide.rangle.io/modules/module-scam-pattern
https://www.mongodb.com/
https://en.wikipedia.org/w/index.php?title=Prepared_statement&oldid=11%2003939861
https://en.wikipedia.org/w/index.php?title=Prepared_statement&oldid=11%2003939861
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/query-filter-context.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/query-filter-context.html
https://www.elastic.co/guide/en/kibana/current/console-kibana.html
https://www.elastic.co/guide/en/kibana/current/console-kibana.html

Test Result Viewer v 1.0

[39] Search Templates | Elasticsearch Guide [8.8] | Elastic. url: https://www.elastic.co/guide/
en/elasticsearch/reference/current/search-template.html (visited on 06/10/2023).

[40] Setup ElasticSearch with example Docker Compose File. url: https ://www.elastic . co/
guide/en/elasticsearch/reference/current/docker.html#docker- compose-file (visited on
03/25/2023).

[41] The NUnit Project. Test Result XML Format | NUnit Docs. url: https ://docs .nunit .
org/articles/nunit/technical - notes/usage/Test - Result - XML- Format .html (visited on
04/23/2023).

[42] The NUnit Project. Testresult Schema 2.5. url: https : / / nunit . org / files / testresult _
schema_25.txt (visited on 04/23/2023).

[43] The State of JS 2022: Front-end Frameworks. url: https://2022.stateofjs.com/en-US/
libraries/front-end-frameworks/ (visited on 03/09/2023).

[44] This Is Sonova | Sonova International. url: https://www.sonova.com/en/sonova-0 (visited
on 05/07/2023).

[45] Virtual memory. Elastic. url: https://www.elastic.co/guide/en/elasticsearch/reference/
current/vm-max-map-count.html (visited on 03/12/2023).

[46] What Is an FPGA? url: https://www.arm.com/glossary/fpga (visited on 05/18/2023).
[47] What is CI/CD? - RedHat. url: https : //about . gitlab . com/topics/ ci - cd/ (visited on

05/23/2023).
[48] What Is Elasticsearch? Elastic. url: https://www.elastic.co/what-is/elasticsearch (visited

on 03/02/2023).
[49] What is Scrum? url: https://www.scrum.org/learning-series/what-is-scrum (visited on

05/22/2023).
[50] What Is the CAP Theorem? | IBM. https://www.ibm.com/topics/cap-theorem. url: https:

//www.ibm.com/topics/cap-theorem (visited on 05/26/2023).
[51] XML Essentials. url: https://www.w3.org/standards/xml/core (visited on 05/23/2023).
[52] Mani Yangkatisal. The Battle of the NoSQL Databases - Comparing MongoDB and CouchDB.

July 2020. (Visited on 05/26/2023).
[53] Olaf Zimmermann. Architectural Decisions — The Making Of. url: https : / / ozimmer .

ch/practices/2020/04/27/ArchitectureDecisionMaking.html#y- statements- and- other-
templates.

[54] Olaf Zimmermann. SMART criteria. url: https : / / socadk . github . io / design - practice -
repository/activities/DPR-SMART-NFR-Elicitation (visited on 05/27/2023).

Bibliography 119

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-compose-file
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-compose-file
https://docs.nunit.org/articles/nunit/technical-notes/usage/Test-Result-XML-Format.html
https://docs.nunit.org/articles/nunit/technical-notes/usage/Test-Result-XML-Format.html
https://nunit.org/files/testresult_schema_25.txt
https://nunit.org/files/testresult_schema_25.txt
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.sonova.com/en/sonova-0
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html
https://www.arm.com/glossary/fpga
https://about.gitlab.com/topics/ci-cd/
https://www.elastic.co/what-is/elasticsearch
https://www.scrum.org/learning-series/what-is-scrum
https://www.ibm.com/topics/cap-theorem
https://www.ibm.com/topics/cap-theorem
https://www.w3.org/standards/xml/core
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html#y-statements-and-other-templates
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html#y-statements-and-other-templates
https://ozimmer.ch/practices/2020/04/27/ArchitectureDecisionMaking.html#y-statements-and-other-templates
https://socadk.github.io/design-practice-repository/activities/DPR-SMART-NFR-Elicitation
https://socadk.github.io/design-practice-repository/activities/DPR-SMART-NFR-Elicitation

	Product Documentation
	Vision
	Introduction
	Current Situation
	Problem
	Expected Results
	Conditions

	Requirements
	User Personas
	Functional Requirements: Use Cases
	Non-Functional Requirements

	Analysis
	Data Structure
	Data Consumer
	Data Store
	Frontend Approach
	Custom Frontend Frameworks
	Backend
	Reverse Proxy

	Architecture
	General architecture overview
	Data Consumer
	Data Store
	Frontend
	Reverse Proxy
	Design Decisions

	Implementation
	Development Server
	Data Consumer
	Data Store and Kibana Frontend
	Angular Frontend
	Nginx Reverse Proxy

	Quality Measures
	Conventions
	Testing
	CI/CD Pipeline
	Quality Tracking

	Results
	Conclusion

	Project Documentation
	Project Proposal
	Introduction
	Goals of the project

	Project Planning
	Team
	Sprints and Meetings
	Git Workflow
	Tools
	Project Plan
	Milestones
	Risk Assessment

	Time Tracking Report
	Time per Category
	Time per Week

	Appendix
	Requirements as provided by Sonova
	Main use cases to cover provided by Sonova
	Data characteristics provided by Sonova
	Source Code Snippets
	Meeting Minutes
	Personal Reports
	Declarations
	Glossary
	Acronyms
	Bibliography
	List of Figures
	List of Tables

