
Bachelor Thesis
Documentation

LTB Operator
Semester: FS 2023

Version: 1.0
June 30, 2023

Students: Jan Untersander
Tsigereda Nebai Kidane

Advisors: Urs Baumann
Yannick Zwicker

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

LTB Operator v1.0

1. Abstract
Lab Topology Builder (LTB) is an application developed by the Institute for Networked Security
(INS) for research and teaching purposes. It allows the creation of emulated network topologies,
comprised of interconnected nodes, such as servers, switches, routers, etc. LTB serves as a vital tool
in various courses at the OST, enabling students to gain hands-on experience and understanding of
cloud computing, networking, and security concepts. Currently, LTB relies on a ReactJS frontend and
a Django Python backend, utilizing KVM/Docker for lab deployment. However, due to accumulated
technical debt and the lack of documentation, maintaining the application has become increasingly
challenging.

The primary goal of this project is to create an LTB-inspired Kubernetes operator - short LTB
Operator, which simplifies the deployment and management of LTB labs. Furthermore, the labs
should run completely inside a Kubernetes cluster, which enables effortless scaling, orchestration and
monitoring. This is possible by leveraging the capabilities of Kubernetes including automation, dynamic
resource allocation, and seamless integration with a wide range of tools.

The LTB Operator is implemented using the Go-based Operator-SDK framework, that provides a
set of tools and libraries for building Kubernetes operators. This allows for a streamlined development
process and integration with the Kubernetes API. The deployment of VMs in Kubernetes is provided
by the KubeVirt project, which extends Kubernetes with virtualization capabilities. KubeVirt allows
the deployment and management of KVM based VMs as Kubernetes resources, accessible via the
Kubernetes API.

The LTB Operator has the ability to deploy labs consisting of pods (containers) and KubeVirt
VMs defined using a YAML file. Lab templates, lab instances, and node types are utilized as custom
resources (CRs) to define the lab topology, configuration, and available node options. A simple layer
3 network between the nodes is implemented using Multus-CNI. In addition to that, out-of-band
management access to the lab nodes is provided using a web-based terminal and a freely configurable
port. The lab’s status and remote access details can be obtained via a command-line interface
(kubectl). Even though access control is not implemented in this project, the current implementation
lays the groundwork for future development, such as defining basic Role-based Access Control (RBAC)
policies, by deploying labs within their own namespace.

In conclusion, the LTB Operator offers users a streamlined approach to deploy and effectively manage
network emulation labs within a Kubernetes cluster. This integration bridges the gap between network
emulation and container orchestration, enhancing the flexibility and scalability of lab environments for
research and teaching purposes.

1. Abstract 2

https://sdk.operatorframework.io/
https://kubevirt.io/
https://github.com/k8snetworkplumbingwg/multus-cni
https://kubernetes.io/docs/reference/kubectl/

LTB Operator v1.0

2. Vision
The vision of the LTB Operator project is to revolutionize the deployment and management of emulated
network labs by leveraging the power of Kubernetes. We aim to provide students and researchers with
a robust and user-friendly platform that simplifies the creation, configuration, and orchestration of
complex lab topologies. We strive to empower users to effortlessly scale their labs, automate resource
allocation, monitor and easily deploy them by leveraging Kubernetes’s rich ecosystem of tools and
services.

Through this project, we aspire to bridge the gap between network emulation and container orches-
tration, enhancing the teaching and research experience in cloud computing, networking, and security
domains. Our ultimate goal is to enable efficient, scalable, and extensible lab deployments, fostering
innovation and advancing knowledge in the field.

2. Vision 3

LTB Operator v1.0

3. Management Summary

3.1. Initial Situation
Lab Topology Builder (LTB) is an application developed by the INS and is used for research and
teaching purposes. It can create networking labs, which are emulated network topologies with multiple
interconnected nodes (servers, switches, routers, etc.). It is a key component of multiple courses at
the OST and is used by students to practice and learn about cloud, networking and security concepts.

Currently, the application is based on a ReactJS frontend and a Django Python backend in com-
bination with KVM/Docker for the deployment of the labs. This solution has grown organically over
the years, with multiple contributions from term projects and bachelor theses. Maintaining the ap-
plication has become increasingly challenging, because of technical debt and missing documentation.
Therefore, making it open source would require a substantial refactoring effort.

Figure 3.1.: Example of a Lab Topology [1]

3.2. Objective
With the overall goal of open sourcing the application, the objective of this project is to create an
LTB-inspired Kubernetes operator in order to replace the existing backend and deployment mechanism
of LTB. This Kubernetes operator will be responsible for deploying and managing the aforementioned
labs on a Kubernetes cluster. Using Kubernetes offers simple automation, dynamic resource allocation,
and seamless integration with a wide range of tools. Thus, making it ideal for managing complex
applications while enabling effortless scaling and orchestration.

The LTB Operator should be able to manage labs consisting of pods (containers) and KubeVirt
virtual machines and should accept a lab definition in the form of a YAML file. The different lab
nodes should be able to communicate with each other via a layer 3 connection. The LTB Operator

3. Management Summary 4

https://www.ost.ch/en/

LTB Operator v1.0

should also provide a feature to query the status of a lab. Additionally, the lab nodes should support
out-of-band management through various protocols. Optionally, access to a lab should be restricted
to specific users using access control policies.

Figure 3.2.: LTB Operator Components and Connection to External Systems

3.3. Results
The project resulted in a Kubernetes operator, that takes three different custom resources (CRs) as
input: lab templates, lab instances, node types.

The lab templates define the lab topology i.e. the configuration of the nodes and the connection
between them. The node types define the different types of nodes that can be used in a lab. Finally,
the lab instances are the actual labs that are deployed. Lab instances reference a lab template, that
in turn references node types.

There is support for IP-based networking between the lab nodes limited to a single physical Ku-
bernetes node. Access to the out-of-band management of the lab nodes is provided via a web-based
terminal or a freely configurable port, that will be forwarded to the lab node. Information regarding
the lab’s status and remote access details can be obtained via a command-line interface (kubectl).

Access control has not been implemented yet, but it is anticipated to be easily implemented in the
future since the current implementation has already been designed with this in mind.

In summary, the LTB Operator enables users to deploy and efficiently manage labs within a Kuber-
netes cluster.

3. Management Summary 5

LTB Operator v1.0

Figure 3.3.: LTB Operator Architecture

3. Management Summary 6

LTB Operator v1.0

4. Acknowledgements
We would like to thank our supervisors Urs Baumann and Yannick Zwicker for their invaluable guidance
and support throughout the course of this project. Their expertise, insightful feedback, and dedication
have played an instrumental role in refining our ideas and enhancing the overall quality of this thesis.
We would also like to thank our friends Dominik Ehrle, Tim Trachsel, Samson Kifleyesus Fanuel,
Andreas Yosef and Anwar Hithnawi for proofreading the project documentation and providing us with
valuable feedback. Lastly, we would like to thank Luzia Kündig and Olivier Lischer for the exchange
of ideas and insight into their bachelor thesis.

4. Acknowledgements 7

LTB Operator v1.0

Contents
1. Abstract 2

2. Vision 3

3. Management Summary 4
3.1. Initial Situation . 4
3.2. Objective . 4
3.3. Results . 5

4. Acknowledgements 7

I. Technical Documentation 10

1. Overview 11

II. Project Documentation 12

1. Requirements 13
1.1. Goals of the project . 13
1.2. Functional Requirements . 13

1.2.1. Personas . 13
1.2.2. User stories . 14

1.3. Non-Functional Requirements . 16

2. Preliminary Work 17
2.1. KVM/Docker based Lab Topology Builder . 17
2.2. K8s Lab Topology Builder . 17

3. Quality Measures 18
3.1. Conventions . 18

3.1.1. Git Workflow . 18
3.2. Quality Tracking . 18

3.2.1. Organizational . 18
3.2.2. Functional Requirements . 18
3.2.3. Non-Functional Requirements . 18

4. Results 19
4.1. In Scope Requirements . 19

4.1.1. Functional Requirements (User Stories) . 19
4.1.2. Non-Functional Requirements . 19

4.2. Implementation Out of Scope . 20
4.3. Out of Scope . 20

5. Conclusion 21

Contents 8

LTB Operator v1.0

6. Project Planning 22
6.1. Project Plan . 22

6.1.1. Purpose . 22
6.1.2. Organization . 22
6.1.3. Timeline . 22
6.1.4. Processes . 23
6.1.5. Meetings and Sprints . 23
6.1.6. Roles . 24
6.1.7. Work Items and Releases . 24

6.1.7.1. Work Items . 24
6.1.7.2. Releases . 24

6.2. Planning Tools . 24
6.2.1. Documentation . 25
6.2.2. Communication . 25

6.3. Risk Management . 25
6.3.1. Risk Identification and Definition . 25
6.3.2. Risk Analysis Matrix - Initial Version . 26
6.3.3. Risk Assessment and Mitigation . 27
6.3.4. Risk Analysis Matrix - Final Version . 28

7. Time Tracking 30

III. Appendix 31

List of Figures 32

List of Tables 33

Glosary 34

Abbreviations 35

Bibliography 36

Personal Report 37

Meeting Minutes 46

Time Tracking 50

LTB Operator Goals 55

Contents 9

Part I.

Technical Documentation

LTB Operator v1.0

1. Overview
As mentioned in the management summary, the project will become open source in the near future,
thus the documentation is written in a way that it facilitates the open sourcing process of the project.
We separated the documentation into a technical and project documentation, since a bachelor thesis
typically requires the inclusion of specific project management aspects that may not align with an
open source documentation format, and it is also stated in our thesis assignment. We have decided
to publish the technical documentation in GitHub pages.

Technical Documentation

1. Overview 11

https://lab-topology-builder.github.io/LTB-K8s-Backend/

Part II.

Project Documentation

LTB Operator v1.0

1. Requirements
Definition of Done (DoD)

• Code Review: Work is reviewed and approved by at least one other team member.
• Functional Validation: The functionality of the work is verified and validated against the

defined requirements.
• Unit Testing: Code is accompanied by comprehensive unit tests with high coverage.
• Deployment Readiness: The work is ready for deployment, with necessary build artifacts,

configurations, and dependencies properly managed.
• Continuous Integration: The work is integrated into the continuous integration system and

passes all automated checks and tests.
• Documentation: Sufficient and up-to-date documentation is provided, including code com-

ments, and user guides.

1.1. Goals of the project
The project goals, defined by the product owner, outline the desired outcomes and objectives we aim
to achieve. By clearly understanding and aligning ourselves with these goals, we can focus our efforts
on delivering a successful project that meets the expectations of the product owner. The following list
shows the goals that we were given by the product owner, more details could be found in the appendix
LTB-Operator-Goals.

G-1 Analysis Architecture separation Orchestrator/UI vs Operator/K8s

G-2 Document how lab scheduling/resource reservation could be implemented (implementation out
of scope)

G-3 Create K8s Operator

G-4 Deployment/Destruction of lab instances

G-5 Remote access to VMs/Containers

G-6 Status of lab instances query

G-7 Access control (Optional)

1.2. Functional Requirements
1.2.1. Personas
The following personas are defined for the project:

Admin A person who wants to provide a multitude of different lab environments of interconnected
routers, switches, servers, etc. to the users. An admin can also be a user. An admin typically has
advanced technical knowledge and permissions to configure the lab environment.

User A person who wants to use a lab environment, which requires a topology of interconnected
routers, switches, servers, etc.

1. Requirements 13

LTB Operator v1.0

1.2.2. User stories
In this section, we define the user stories for the project. These user stories are written from the
perspective of the previously defined personas. Three scopes are used to categorize the user stories:
(1) in scope, user stories that will be implemented in this project; (2) implementation out of scope,
user stories that won’t be implemented in this project, but the way they could be implemented will
be documented; (3) out of scope, which means neither implementation nor documentation of the
user stories will be done in this project, but their implementation should not be prohibited by in this
project.

U-1 As an Admin, I want to have an operator which manages the
resources for me, so that I don’t have to do the management
manually.

In Scope

U-2 As an Admin, I want to be able to create a lab template of a
network topology of interconnected nodes, so that the config-
uration can be reused for multiple lab instances.

In Scope

U-3 As an Admin, I want to be able to delete no longer needed lab
templates, so that I can keep a tidy workspace.

In Scope

U-4 As a User, I want to be able to deploy a lab instance from a
lab template, so that I can use the lab environment to improve
my networking and security knowledge.

In Scope

U-5 As a User, I want to to be able to delete my lab instances and
all the resources related to them, so that I can clean up no
longer needed lab instances.

In Scope

U-6 As an Admin, I want to be able to delete any lab instance
and all the resources related to it, so that I can free resources,
remove no longer needed, broken or orphaned lab instances.

In Scope

U-7 As an Admin, I want to be able to modify (update) any lab
instance, so that I can make sure resources are used properly
or fix broken lab instances.

Out of Scope

U-8 As a User, I want to be able to stop a lab instance, so that I can
save resources while a lab is not needed and continue working
from the current state at a later time.

Out of Scope

U-9 As an Admin, I want to be able to create node types in different
versions (ex. Ubuntu 20.04 and Ubuntu 22.04), so that I can
choose which version I want to use in a lab template.

In Scope

U-10 As an Admin, I want to be able to create node types which are
based on containers or virtual machines, so that I can provide
a wider range of node types (ex. Cisco CSR 1000v).

In Scope

1. Requirements 14

LTB Operator v1.0

U-11 As an Admin, I want to be able to modify a node type’s con-
figuration (example, upgrade to the latest software version for
that image), so that I can provide up-to-date images.

In Scope

U-12 As an Admin, I want to be able to delete a node type, so that
I can free storage space and remove no longer needed node
types.

In Scope

U-13 As a User, I want to have a L3 connection between lab nodes,
so that I can improve my knowledge of interconnected systems.

In Scope

U-14 As a User, I want to have a L2 connection between lab nodes,
so that I can improve my knowledge of interconnected systems
on a lower level.

Out of Scope

U-15 As a User, I want to be able to create a reservation, so that
I can plan a lab’s deployment ahead of time and reserve the
resources needed for my lab.

Implementation
out of Scope

U-16 As an Admin, I want to be able to create a reservation, so that
I can plan a lab’s deployment ahead of time and reserve the
resources needed for a lab.

Implementation
out of Scope

U-17 As a User, I want to be able to update my reservations, so that
I don’t have to delete and recreate them.

Implementation
out of Scope

U-18 As an Admin, I want to be able to update any reservations, so
that I don’t have to delete and recreate them.

Implementation
out of Scope

U-19 As an Admin, I want to be able to delete my reservations, so
that I can make the resources available for others to use.

Implementation
out of Scope

U-20 As an Admin, I want to be able to delete any reservations, so
that I can make the resources available for others to use.

Implementation
out of Scope

U-21 As a User, I want to be able to see the status of my lab instance,
so that I can see if my lab instance is running or not.

In Scope

U-22 As a User, I want to have remote access to the lab nodes
(container and VMs) via freely configurable ports (example,
SSH, HTTP), so that I can use them for educational and test-
ing purposes (academic exercises, testing of networking fea-
tures/designs).

In Scope

U-23 As an Admin, I want be able to restrict users to only have access
to their own lab instances, so that users can’t access other
users’ lab instances and resources (containers, VMs, etc.).

In Scope
(optional)

U-24 As a User, I want to be able to capture traffic between any two
nodes in my lab instance using Wireshark, so that I can analyze
the traffic sent between the nodes.

Out of Scope

1. Requirements 15

LTB Operator v1.0

1.3. Non-Functional Requirements
This section defines the non-functional requirements. The same scopes as in the functional require-
ments (1.2.2) are used. As the functional requirements were the main focus of the advisors and
product owner, the non-functional requirements are kept to a minimum.

NFR-1 Security: The application follows the Least Privilege princi-
ple and Kubernetes operator security best practices.

In Scope

NFR-2 Performance: The lab instances of a size of up to 10 nodes,
should be deployed and running within 10 minutes.

In Scope

1. Requirements 16

LTB Operator v1.0

2. Preliminary Work
There already exist a KVM/Docker based Lab Topology Builder, built by the INS and multiple con-
tributions of students via term projects and bachelor theses. It has a rich feature set, but has become
difficult to maintain and extend. This is due to technical debt and a lack of documentation.

2.1. KVM/Docker based Lab Topology Builder
The architecture and components of the predecessor and their functionalities are described in the
technical documentation of this project.

2.2. K8s Lab Topology Builder
The main goal of the K8s Lab Topology Builder is to fully replace the backend and deployment
mechanisms of the KVM/Docker based LTB and update its frontend. In this thesis we aim to
implement the deployment mechanism. Kubernetes is used as a new technology with the goal of
providing a more scalable and more extensible version of the LTB. The architecture and components
of K8s LTB and their functionalities are described in the Kubernetes LTB architecture of the technical
documentation.

To sum up, there won’t be any new features added to the KVM/Docker based LTB. The K8s LTB
will be a replacement for the currently used KVM/Docker based LTB and this thesis will lay the
foundation for it.

2. Preliminary Work 17

https://lab-topology-builder.github.io/LTB-K8s-Backend/architecture/kvm-docker-ltb-architecture/
https://lab-topology-builder.github.io/LTB-K8s-Backend/architecture/k8s-ltb-architecture/

LTB Operator v1.0

3. Quality Measures
Some of the quality measures are documented in the technical documentation of the project, whereas
the rest are defined in this document. The reason for separating the quality measures into two
documents is to make the quality measures that are important for open sourcing the project available
to the public, whereas the rest of them are only important for the bachelor thesis.

3.1. Conventions
3.1.1. Git Workflow
The project utilizes the following approach for the git workflow across two repositories: GitLab repos-
itory for the project documentation; and GitHub repository for the source code and technical docu-
mentation.

• Branch main should be used for merging finished features.
• A new branch should be created for each feature and deleted after the feature is merged to the

main branch. It should be named after the work item in Jira.
• A merge request should be created after the feature is done and the work is reviewed by the

other team member. If the merge request is approved, it can be merged into the main branch
and the team member who approved the merge request should set the work item in Jira to
"done".

• If a merge request is set to draft, it means that the work is not done and it should not be merged
into the main branch yet.

3.2. Quality Tracking
3.2.1. Organizational
Topics discussed in the weekly meetings are recorded in the meeting minutes (Meeting-Minutes).
Weekly meetings are held with the advisors to discuss the progress of the project and to get feedback
on the work done.

3.2.2. Functional Requirements
The quality of the functional requirements will be tracked on our Jira board. The following guidelines
describe the process of implementing the requirements:

• A task or work item is created in Jira out of the user stories.
• The task is assigned to one of the team members.
• A pull request is created after implementing the feature (task), the other team member reviews

the work and approves the pull request. Then the task will be set to "done".

3.2.3. Non-Functional Requirements
The quality of the non-functional requirements will also be tracked regularly.

• NFR-1, Security: Kubernetes security best practices are followed to ensure that this require-
ment is met.

• NFR-2, Performance: Is tested periodically using lab instances of different sizes.

3. Quality Measures 18

https://lab-topology-builder.github.io/LTB-K8s-Backend/
https://lab-topology-builder.atlassian.net/jira/software/projects/BLKO/boards/1/timeline

LTB Operator v1.0

4. Results
In this chapter we will present an overview of the achieved results in relation to the defined requirements
(see Requirements). The following sections outline what has been accomplished and what could be
improved or added in the future.

More detailed information on how the LTB Operator is used can be found in the user guide of the
technical documentation.

4.1. In Scope Requirements
All the user stories of category "in scope" are implemented. The following list provides a brief overview
of how the user stories were implemented.

4.1.1. Functional Requirements (User Stories)
• U-1: The LTB Operator is created and capable of managing lab resources.
• U-2: The admin can create a YAML file describing the lab template and apply it using the

kubectl command. Then, the created lab template can be used by multiple lab instances.
• U-3: The admin can delete the lab template by using the kubectl command.
• U-4: The user can provide a YAML file describing the lab instance and reference a lab template

in it. After applying the file using the kubectl command, the lab instance is deployed by the
LTB Operator.

• U-5: The user can delete the lab instance by using the kubectl command. Then, the LTB
Operator will delete all the resources related to the lab instance.

• U-6: The admin can delete any lab instances by using the kubectl command. Then, the LTB
Operator will delete all the resources related to those lab instances.

• U-9: The admin can create a YAML file describing the node type and specify which version
should be used. After applying the file using the kubectl command, the node type is created by
the LTB Operator.

• U-10: The admin can provide a YAML file describing the node type and apply it using the
kubectl command. Then, the node type is created by the LTB Operator.

• U-11: The admin can edit the node type or add a new node type, but the edited node type is
only applicable to newly deployed lab templates.

• U-12: The admin can delete the node type by using the kubectl command, and all the resources
related to it will be deleted by the LTB Operator.

• U-13: A L3 connection will be created between the lab nodes of each lab instance.
• U-21: By running a kubectl "get <lab-instance-name>" command, the user can see the status

of the lab instance, including the number of nodes (pods/VMs) running in the lab instance.
• U-22: Using the provided web-based terminal, the user can access the console of a lab node.

Other freely configurable ports for OOB management access can be provided in the lab template.
Information regarding the remote access can be retrieved via kubectl.

• U-23: The lab instance will be created in its own namespace, which simplifies the creation of
network policies to restrict traffic. In the future, the LTB Operator could also create the required
network policies.

4.1.2. Non-Functional Requirements
• NFR-1: The LTB Operator is currently running in cluster scope, with RBAC rules to limit its

access to the required resources. The CRs in the other hand are running in namespace scope,

4. Results 19

https://lab-topology-builder.github.io/LTB-K8s-Backend/user-guide

LTB Operator v1.0

which provides even more security.
• NFR-2: The lab instances are deployed and running within a few seconds and we have not

encountered any issues with the performance.

4.2. Implementation Out of Scope
How the user stories of category "implementation out of scope" could be implemented is documented
in the Kubernetes LTB architecture of the technical documentation.

4.3. Out of Scope
The current project should enable the later implementation of all out of scope user stories, and we
anticipate only minor refactoring to be required.

4. Results 20

https://lab-topology-builder.github.io/LTB-K8s-Backend/architecture/k8s-ltb-architecture/

LTB Operator v1.0

5. Conclusion
The LTB Operator project aimed to address the challenges associated with maintaining the existing
KVM/Docker-based LTB application and provide an enhanced solution for deploying and managing
network emulation labs. Through the development of the LTB Operator, significant progress has been
made in achieving these goals. The LTB Operator is capable of effectively deploying and managing
emulated network labs within a Kubernetes cluster. We have successfully accomplished all required
goals, as outlined in this (Goals of the project) section.

The project began with the analysis of the KVM/Docker-based LTB to determine which components
should be retained and which should be replaced. This analysis resulted in the decision to fully replace
the backend of the KVM/Docker-based LTB. Subsequently, the LTB Operator was developed to
facilitate the deployment and management of lab instances. Various features were implemented,
including remote access capabilities to the nodes (VMs/containers) and the ability to query the status
of lab instances. To support these functionalities, three custom resources definitions (CRDs) were
created: LabTemplate, LabInstance, and NodeType. Further information on the CRDs can be found
in the technical documentation, accessible at concept.

We have laid some groundwork for the optional goal of implementing access control (G-7) and
therefore further work will be required to fully implement this feature. Specifically, network policies
will need to be implemented to restrict access to the lab instances, which should be relatively straight-
forward as all the lab instances are deployed into their own namespace. Additionally, an API which
supports authentication and authorization of users is needed.

The features implemented in this bachelor thesis demonstrate a significant progress, although there
are still more features needed to replace the KVM/Docker-based LTB. In the technical documentation,
we have outlined additional features that could be incorporated in a future work.

In conclusion, this bachelor thesis has laid a solid foundation for a more scalable and extensible
version of the LTB application. The implementation of features categorized as "implementation out
of scope" (1.2.2) should be relatively straightforward and require minimal refactoring of the LTB
Operator.

5. Conclusion 21

https://lab-topology-builder.github.io/LTB-K8s-Backend/concepts/
https://lab-topology-builder.github.io/LTB-K8s-Backend/architecture/k8s-ltb-architecture/

LTB Operator v1.0

6. Project Planning

6.1. Project Plan
6.1.1. Purpose
The purpose of this document is to provide a detailed description of the plan for the project, LTB
Operator. The project plan describes how the project is executed, monitored, controlled and finalized.

6.1.2. Organization
People taking part in the project

The table below 6.1 shows the people taking part in the project and their roles.

Table 6.1: People taking part in the project

Project LTB Operator

Contributors Jan Untersander & Tsigereda Nebai Kidane

Product Owner Institute for Networked Security (INS)

Advisors Urs Baumann & Yannick Zwicker

Proofreader Mitra Purandare

Co-Examiner Philip Schmid

6.1.3. Timeline
Important Dates and Figures

In the table below 6.2 the important dates and figures of the project are shown, such as when the
project starts and ends, the resources available and the working days.

Table 6.2: Important Dates and Figures

Project Start 22.02.2023

Interim Presentation 28.04.2023

Project Submission 30.06.2023

Final Presentation 25.08.2023

Resources 720h (2 Members * 360h)

Working days Primarily Wednesday, Thursday and Friday and in the semester break, on
every working day

The figure 6.1 shows the timeline of the project in Jira. It will be regularly updated according to the
actual status of the project.

6. Project Planning 22

https://lab-topology-builder.atlassian.net/jira/software/projects/BLKO/boards/1/timeline

LTB Operator v1.0

Figure 6.1.: Project Timeline

6.1.4. Processes
The project is managed and structured using the agile development methodology, Scrum. Scrum has
been chosen for its flexibility and effectiveness in adapting to changing conditions. By implementing
Scrum, we can embrace iterative and incremental development, enabling us to respond to evolving
requirements and deliver value in a dynamic environment. In addition to this, Scrum enables us to
collaborate efficiently, receive feedback regularly, and continuously improve our work.

6.1.5. Meetings and Sprints
We primarily work on the project on Wednesdays, Thursdays and Fridays together, which enables us
to discuss any issues that might occur during the development of the project.

Weekly Meetings Team members and advisors will meet weekly on Friday 10:45 - 11:45 to discuss
the progress of the project and any issues that might occur.

• Jan Untersander leads the meetings.
• Tsigereda Nebai Kidane takes notes.

Moreover, we discuss the inputs from the advisors after every meeting and update the project plan
accordingly. The notes from the meetings are attached in the appendix (Meeting Minutes).

Sprint Sprints are two weeks long and tracked in Jira. We have a total of 9 sprints.

Daily Daily stand-ups take place only on Wednesdays, Thursdays and Fridays as the team members
are working together on those days. The team members discuss the tasks they have completed, the
tasks they are working on, and any issues that are blocking them.

Sprint Planning The next sprint is planned and workloads are estimated using story points. The
sprint planning is held after the sprint review and retrospective.

Sprint Review The sprint review is held on the end of each sprint. The team members discuss the
tasks they have completed and which tasks they were not able to complete.

Sprint Retrospective The sprint retrospective takes place after the sprint review and the team
members reflect the sprint and discuss the things that need improvement for the next sprint.

6. Project Planning 23

https://lab-topology-builder.atlassian.net/jira/software/projects/BLKO/boards/1/timeline

LTB Operator v1.0

6.1.6. Roles
We are not using any specific roles in the project, as the team size is small and the tasks are distributed
equally among the team members. Each team member is responsible for their assigned tasks.

6.1.7. Work Items and Releases
6.1.7.1. Work Items

Detailed work items and their current status is tracked in Jira.

We organize the work items in the following categories:

Epic High level goals of the project, that can be broken down into smaller user stories and tasks.

User Stories are tasks belonging to user-focused features.

Work Items are small actionable units of work, with no direct value to the user, but are necessary
for a successful project.

Subtasks Subtasks either belong to work items or User Stories that can be completed in a few hours.

Epic User Stories / Work Item Subtasks

6.1.7.2. Releases

Table 6.3 shows the planned four releases of the project, more about the releases can be found in Jira.

Table 6.3: Project Releases

Release Name Release Date Description

Analyse 08-Mar-2023 Current architecture and initial architecture design are
analyzed

MVP 05-Apr-2023 Important features are implemented

Alpha Release 17-May-2023 More features are implemented

Final Release 20-Jun-2023 All the features are implemented

6.2. Planning Tools
The following tools are used to plan, manage and track the project.

• Jira: is used to track the project issues and project management. We use Jira because it is a
popular tool and we wanted to expand our experience with it.

• toggltrack: is free and offers simple but efficient task tracking, tagging and reporting.
• GitLab & GitHub: are used to store the project documentation, and technical documentation

and source code respectively. The reason for using two different platforms is that there is a plan
to make the project an open source and GitHub is the most popular platform for open source
projects. Moreover, it was also suggested by the advisors to use GitHub for the source code and
technical documentation. As the project documentation is not part of the open source project,
it is stored in a private repository on GitLab.

6. Project Planning 24

https://lab-topology-builder.atlassian.net/jira/software/projects/BLKO/boards/1/timeline
https://lab-topology-builder.atlassian.net/jira/software/projects/BLKO/boards/1/timeline
https://lab-topology-builder.atlassian.net/jira/software/projects/BLKO/boards/1/timeline
https://track.toggl.com/timer
https://gitlab.ost.ch/ltbv2/ba-ltb-k8s-operator-documentation
https://github.com/Lab-Topology-Builder/LTB-K8s-Backend

LTB Operator v1.0

6.2.1. Documentation
The project documentation is written in Latex and stored on GitLab. This way, the project docu-
mentation is versioned and protected from loss. As with the technical documentation, it is written
with MkDocs and stored together with the source code on GitHub. Merge requests are used for both
documentation and source code changes, to ensure a high quality standard and correctness.

6.2.2. Communication
Team members work together on the above mentioned days, which means they are communicating
directly in-person, but for the other working days Microsoft Teams is used.

6.3. Risk Management
6.3.1. Risk Identification and Definition
The following risks may occur in the project. They are sorted according to their over all impact on
the project.

R-1 Operator-SDK
R-1.1 Learning curve : We don’t have any experience with the Operator-SDK and creating

operators. Therefore, it will take some time to learn the tool and create operators.
R-1.2 Dependencies: The Operator-SDK depends on Kubernetes and other related technolo-

gies. If there are any issues with the dependencies, then it will be difficult to work with
the Operator-SDK.

R-1.3 Compatibility & Versioning: Ensuring compatibility between different versions of the
Operator-SDK, Kubernetes, and related dependencies can be challenging.

R-1.4 Documentation & Community Support: To learn the Operator-SDK, it is important
to have good documentation and community support. If at least one of them is not good,
then it will be difficult and time consuming to learn and use the tool.

R-2 KubeVirt, cloud-init, zero-touch provisioning:
R-2.1 Complexity: To be able to deploy the VMs in Kubernetes clusters, we have to use

KubeVirt, cloud-init, and zero-touch provisioning. We are not sure how complex it will be
to use these technologies.

R-2.2 Dependencies: The operator will depend on KubeVirt for the virtual machine manage-
ment, which means that if KubeVirt is not maintained anymore, then the operator will
not be able to manage virtual machines.

R-2.3 Documentation & Community Support: At least one of them should be good, other-
wise it will be difficult to learn the technologies.

R-3 Connection between nodes: We do not know how the connection between the nodes will be
established and if it will be possible to establish a simple connection between the nodes. This is
a risk because we might spend a lot of time trying to find a solution.

R-4 Remote access to nodes: Supporting multiple protocols for remote access to the nodes could
be challenging because we do not know how we could implement it.

R-5 Deployment: The plan is to deploy the operator in operatorhub.io, but we don’t know how easy
it will be to deploy it there or if the deployment will be even possible.

6. Project Planning 25

https://www.overleaf.com/learn
https://gitlab.ost.ch/ltbv2/ba-ltb-k8s-operator-documentation
https://www.mkdocs.org/getting-started/
https://github.com/Lab-Topology-Builder/LTB-K8s-Backend
https://operatorhub.io/

LTB Operator v1.0

R-6 Understand LTB: The current LTB doesn’t have a documentation, which means we will have
to read the code to analyze the application and decide which features need to be replaced. This
is a risk because it might take a lot of time to understand the application.

R-7 Project Management: We will be using GitHub and GitLab to manage the project, which could
be challenging to manage it on both platforms.

R-8 GitLab and GitHub Outage: Based on past experiences, GitLab or GitHub outages may occur,
so this might somehow affect the progress of the project.

R-9 Team member absence: Team members might be absent due to illness or other reasons, which
means that the project’s progress will be affected.

R-10 Conflict among team members: Misunderstanding could happen among team members, which
could affect the project’s progress.

6.3.2. Risk Analysis Matrix - Initial Version
The following diagrams show the initial risk analysis matrix for the above mentioned risks. The data
used in the diagrams is attached in the appendix Risk analysis.

Figure 6.2.: Risk Analysis Matrix 1-1

6. Project Planning 26

LTB Operator v1.0

Figure 6.3.: Risk Analysis Matrix 1-3

6.3.3. Risk Assessment and Mitigation
In this section, the risks that were identified in the previous section will be assessed and mitigated, if
possible. The risks are sorted the same way as in the previous section.

R-1:
R-1.1: We were able to mitigate this risk in the second sprint by learning the basics of Operator-
SDK and operator development concepts through the provided documentation and tutorials. We
created sample operators to learn the tool and its components.
R-1.2: For the duration of this project, the technologies we are using are stable and maintained,
so we don’t have to worry about this risk.
R-1.3: The versions we are using are compatible with each other.
R-1.4: The documentation of Operator-SDK is not really bad, but there are some parts, that are
not documented at all or not clear. This risk can not be fully mitigated, but we were able to reduce
it through research.

R-2:
R-2.1: This risk was mitigated in sprint 3. We are able to provide KubeVirt VMs with cloud-init
configuration and deploy them in Kubernetes clusters.
R-2.2: KubeVirt is well maintained, so we don’t have to worry about this risk.
R-2.3: KubeVirt is not well documented, but we mitigated this issue by using the Go package
documentation.

R-3: We were informed by the advisors that we don’t need to spend much time on this feature, we
just need to have a simple connection between the nodes because there is another term project that
will be be providing this feature. We mitigated this risk in sprint 4 by using Multus-CNI to create a
simple L3 connection between the nodes.

R-4: We mitigated this risk in sprint 4 by creating a web-based terminal to access the nodes.

6. Project Planning 27

https://pkg.go.dev/kubevirt.io/api@v0.59.0/core/v1
https://pkg.go.dev/kubevirt.io/api@v0.59.0/core/v1
https://github.com/k8snetworkplumbingwg/multus-cni

LTB Operator v1.0

R-5: Deploying the operator in operatorhub.io is complicated as expected because the documentation
is not good and there are some requirements that need to be fulfilled, such as making a pull request
on the operatorhub.io repository. We created the necessary files and setups, so that we can deploy
the operator there, but the pull request will be made in a later stage.

R-6: We were able to mitigated this risk in sprint 1 by asking the advisors to help us understand all
the features of LTB, and where in the code we can find them.

R-7: This risk hasn’t occurred, and we could surely say that it won’t be a problem because each one
of us makes sure to update the project’s progress on both platforms.

R-8: GitLab outages has not occurred, but GitHub partial outage occurred once (April 2023), but it
wasn’t a big problem because it didn’t affect the project’s progress.

R-9: This risk has occurred once.
• An injury sustained by one of the team members impaired their ability to work on the project

at a standard pace, resulting in a delay of the project’s progress. In response to the setback,
the team requested a deadline extension of two weeks, which was granted by the advisors and
the university. This means the project submission deadline is now on the 30th of June 2023
instead of the 16th of June 2023.

R-10: We communicate with each other openly.

6.3.4. Risk Analysis Matrix - Final Version
The following diagrams show the final version of the risk analysis matrix. The data used in the
diagrams is attached in the appendix Risk Analysis - Final Version.

Figure 6.4.: Risk Analysis Matrix 2-1

6. Project Planning 28

https://operatorhub.io/

LTB Operator v1.0

Figure 6.5.: Risk Analysis Matrix 2-3

6. Project Planning 29

LTB Operator v1.0

7. Time Tracking
This chapter shows a summarized overview of the hours spent on the project.

Table 7.1: Time Tracking

Project Jan Untersander Tsigereda Nebai Kidane

BA Coding 211 155

BA Design 20 13

BA Documentation 122 104

BA Meeting 38 37

BA Project Management 18 29

BA Research 0.0 27

Total 409 365

The detailed time tracking report can be found in the appendix Time tracking.

7. Time Tracking 30

Part III.

Appendix

LTB Operator v1.0

List of Figures
3.1. Example of a Lab Topology [1] . 4
3.2. LTB Operator Components and Connection to External Systems 5
3.3. LTB Operator Architecture . 6

6.1. Project Timeline . 23
6.2. Risk Analysis Matrix 1-1 . 26
6.3. Risk Analysis Matrix 1-3 . 27
6.4. Risk Analysis Matrix 2-1 . 28
6.5. Risk Analysis Matrix 2-3 . 29

1. Risk Analysis - Initial Version . 55
2. Risk Analysis - Final Version . 55

List of Figures 32

LTB Operator v1.0

List of Tables
6.1. People taking part in the project . 22
6.2. Important Dates and Figures . 22
6.3. Project Releases . 24

7.1. Time Tracking . 30

List of Tables 33

LTB Operator v1.0

Glossary
Django Is a Python-based free and open-source web framework that follows the model-template-views

architectural pattern. 2, 4

layer 3 Is IP-based network communication, where packets are routed between different networks
using IP addresses. 2, 4

out-of-band management Is the process of managing and monitoring network devices remotely via
a dedicated management channel. 2

Scrum Is an agile framework for developing, delivering, and sustaining complex products. 23

Glossary 34

LTB Operator v1.0

Abbreviations
API Application Programming Interface. 2

BA Bachelor Arbeit (Bachelor Thesis). 30

CNI Container Network Interface. 2, 27

CR custom resource. 19

CSR Cloud Service Router. 14

HTTP Hypertext Transfer Protocol. 15

INS Institute for Networked Security. 2, 4, 17, 22

K8s Kubernetes. 13, 17

KVM Kernel-based Virtual Machine. 2, 4, 17, 21

L2 Layer 2. 15

L3 Layer 3. 15, 19, 27

LTB Lab Topology Builder. 2, 4, 5, 17, 19–22, 26, 28

OOB out-of-band. 19

OST Ostschweizer Fachhochschule (Eastern Switzerland University of Applied Sciences). 1, 2, 4

RBAC Role-based Access Control. 2, 19

SDK Software Development Kit. 2, 25, 27

SSH Secure Shell. 15

UI User Interface. 13

VM Virtual Machine. 2, 13, 15, 21, 25

YAML YAML Ain’t Markup Language. 2, 4, 19

Abbreviations 35

LTB Operator v1.0

Bibliography
[1] INS. Example of a Lab Topology from the KVM/Docker-based LTB frontend.

Bibliography 36

LTB Operator v1.0

Personal Report

Jan Untersander
This project has been an enriching journey that has greatly increased my knowledge and interest in
this field. It felt like this project was tailor-made for me, as it combined my passion for Kubernetes,
computer networks and software development. Furthermore, I had the chance to broaden my skill set
by learning the Go programming language and some of the inner workings of the Kubernetes API,
which will undoubtedly be useful in my future career. Collaboration with Tsigereda has been a pleasure
and I am very proud of what we have accomplished together. Her dedication and hard work have left
a lasting impression on me and I would be happy to work with her again in the future.

Tsigereda Nebai Kidane
Working on this project has been an incredible learning experience for me. I am immensely grateful for
the opportunity to work with Jan. Throughout the project, I had the privilege of learning numerous
valuable lessons from him. Jan consistently demonstrated his problem-solving expertise, providing
innovative ideas and approaches. His patience and willingness to assist me were truly commendable. I
am delighted with the outcome of our project and incredibly proud of what we have accomplished to-
gether. Moreover, the collaborative work environment was enjoyable, fostering a sense of camaraderie
and making the entire experience even more fulfilling.

Bibliography 37

LTB Operator v1.0

Meeting Minutes

Kickoff Meeting 22.02.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker

• Receive Bachelor Thesis task description
• Discuss project idea
• Inform that we will use k3d and okteto for development
• Inform that we found Kubebuilder and Operator SDK, which will probably help us develop the

operator
• Wireshark feature out of scope
• Make a trakt list for a meeting before one day
• Write vSwitch Openflow flows
• Should labs be distributed across multiple nodes or deployed in one node in a cluster

Questions:
• MkDocs to pdf, can we hand in MkDoc page, instead of pdf? Yes, no Problem from Urs, ask

revisors (Gegenleser) if they are ok with it
• Where can we find the current LTB logo? INS-Data Sharepoint

Advisor Meeting 03.03.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Project plan / risks
• Status of dev environment
• Created user stories and NFRs

Planned next steps:
• Refinement of user stories and NFRs
• Finish setup of dev environment
• Create initial version of architecture
• Start implementation of operator

Discussion:
• Possible role distribution: operator(everything else) <-> backend (user management, authenti-

cation, connection to frontend?)
• Difference between lab topology and lab template
• Lab topology and lab templates store them as two different CRDs or store "templates" separately

somewhere else?
Discussion results:

• Architecture should represent final design, the architectural goal for the bachelor thesis should
be defined separately

• Architecture should be based on greenfield approach
• Add Risks for implementation of operator
• Add potential problems or technical difficulties for user stories
• Sort user stories into three categories: in scope, out of scope implementation, out of scope

analysis
• Container-lab can be used as a reference for the design and naming of CRDs and their fields
• Potential new name for device types could be kinds

Bibliography 38

LTB Operator v1.0

Advisor Meeting 10.03.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Architecture drafts, (rename of project, consolidation of services)
• State of technical documentation
• Start of implementation moved to this sprint, because there are some dependencies that need

to be finished first
Planned next steps:

• CI/Build image creation and initialization of go k8s operator
• Test concepts
• Specification of CRD for lab instances
• Start implementation of the first user stories involving lab instances
• documentation update (design decisions, architecture, user stories, NFRs, risks)

Discussion:
• Open for input

Discussion results:
• LTB K8s Operator and LTB API why separate? - They are the same service
• Rename LTB K8s Operator to LTB K8s Backend - ok for Yannik
• C4 model: mark it as an external service or may be remove it (suggestion from Yannik) - we

need to look into it
• Concepts: change the order of the concepts - lab instance, lab deployment, lab template
• Documentation: Make a developer section - Coding conventions, naming conventions, etc. will

be inside this section
• OpenVswitch - don’t spend too much time on it - it is not a priority
• Remote access - every pod has an interface, so that could be used for remote access
• May be take another issue from the backlog, and work on connections later.
• Research - spec, deploymentTemplate, check how others do it
• ApplicationSet - ArgoCD
• Pair programming maybe an idea in the beginning

Advisor Meeting 17.03.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Operator status (CRD, Controller)
• Demo operator-sdk setup
• Updated architecture
• Updated risks
• Test concepts

Planned next steps:
• Deploy sample labInstance
• General update of documentation (user stories, ADR, etc.)

Discussion:
• Postpone BA hand-in (30.06.2023), presentation (last exam week)
• CRD implementation details
• Other inputs

Discussion results:
• BA hand-in (30.06.2023), presentation (last exam week) - ok for Yannik and Urs
• Meeting next week (24.03.2023) change to Thursday (23.03.2023) 13:30 - 14:30

Bibliography 39

LTB Operator v1.0

• Reservation - may be in the generators part
• May be configMap for the templates
• Editable lab instance templates
• Consider other better ways to implement the lab instance templates

Discussion after meeting (Jan and Tsigereda) - 17.03.2023
• Create labTemplates and labInstances separately
• Reference the labTemplate in the labInstance
• LabInstance without the details of template spec.
• Create new apis for labTemplates and labInstances

Advisor Meeting 23.03.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Operator status(CRD)
• Updated user stories
• Updated risks
• Test concepts

Planned next steps:
• Deploy sample labInstance
• Update ADRs (Design decisions)
• Send the user stories to Yannick and Urs for review

Discussion:
• Admin / user: should the user be able to create a labInstances?
• Inputs CRDs
• Mirko Stocker granted a two-week extension for the hand-in deadline, but the poster must still

be submitted within the original time frame.
Discussion results:

• Admin / user: should the user be able to create a labInstances? - yes
• Inputs CRDs - Moving connections to be independent of hosts would be a good idea for future

extensibility and reduction of repeated definitions
• Crossplane implements a way to reference templates, which could be a good reference for us
• The deadline extension granted, because of the injury of Jan should be documented
• We could create a JSON schema for the labInstance CRD to be used in a code editor like vs

code for input validation and hints
• Urs will organize the pre-presentation meeting

Advisor Meeting 31.03.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Operator status(CRD) - Deployment, Status of labs, etc.
• Change in some namings - Host -> Node, etc.

Planned next steps:
• Delete VMs
• Connection between containers/VMs
• General update of documentation (Risks, etc.)

Bibliography 40

LTB Operator v1.0

Discussion:
• CRDs for Devices, aka. Nodes
• Other inputs

Discussion results:
• List all advantages and disadvantages of the different approaches, how the device types could

be handled.
• Check other better solutions, e.g. for XRD
• See all the different types of the devices and check which one of them are special cases and

which fields need to be treated specially.
– XRD: The env/interfaces => how to that should be implemented?
– XR - the first interface is for management, the second and third are empty, the rest could

be looped for the configuration.
– Configs: NetPlan, cloud-init, etc.

• (Options): May be create a CR for every device type (XR, XRD, etc.), or create a go type for
every device type.

Advisor Meeting 06.04.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Operator status(CRD) - Deployment, Status of labs, etc.
Planned next steps:

• Connection between containers/VMs
• Design decision for node types (XR, XRD, etc.)
• Remote Access
• Tests
• General update of documentation

Discussion:
• Inputs to current progress

Discussion results:
• Namespaces - may be add prefix, let users decide the namespace they want to use
• For the moment, it is ok how it is implemented
• Remote access - check the github repo (sshdocker - INSRapperswil/sshdocker), may be use it.

Advisor Meeting 21.04.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Operator status(CRD) - Deployment, Status of labs, etc.
• Connection between containers/VMs
• Tests
• Identified challenges for node types (XR, XRD, etc.)

Planned next steps:
• Prototype implementation in pure Go and as CR for node types (XR, XRD, etc.)
• Remote Access
• Update of project planning and technical documentation

Discussion:
• Inputs to current progress

Discussion results:

Bibliography 41

LTB Operator v1.0

• Presentation
– Try to impress them in this presentation
– Takes 20-30 minutes
– Prepare the documentation in case they want to see it

• Identified challenges for node types (XR, XRD, etc.)
– How you pass the config is different with XR and IOS
– XR: the first interface is for management

• Tests
– Document that the tests would be updated in the future (for open sourcing it)

Advisor Meeting 28.04.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Node types status
• Connection between containers/VMs
• Remote access status

Planned next steps:
• Node types implementation
• Remote Access implementation
• General update of documentation

Discussion:
• Node types (decision)
• Feedback to planned implementation of Remote Access

Discussion results:
• Node types

– Where does merging the config happen?
– The CRD option is a good option - easily extendable
– Container disk images

∗ No backing disk: after stopping the container, the changes are lost
∗ Download image from a registry

· Give a http link to the image - will be always downloaded
· Or caching

∗ The one we have looks good (incase of multiple labs deployment)
∗ Validation check - make a mapping to valid images
∗ Document what happens if we modify the file, and the pod is stopped, what happens

next (Will the old configuration be reused, or the pod be recreated with the newest
configuration). The same with the VMs too.

∗ Final decision: use CRD for node types instead of using go implementation
• Remote Access

– The labtemplate has a field where ports can be chosen to be exposed
• Access control

– As a user, I should be the only one who have access my lab (console, etc.)
– Document that K8s API gateway could be used later (cilium)

Bibliography 42

LTB Operator v1.0

Advisor Meeting 05.05.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Remote access
• Documentation (Design decisions, user guide, etc.)

Planned next steps:
• Implementation CRDs for node types
• Code refactoring
• Improvement remote access

Discussion:
• Remote access
• Inputs to current progress

Discussion results:
• Remote access

– ttyd - Terminal resizing bug
– Using a load balancer and clusterIp - ok for Urs

• Inputs to current progress
– Concept documentation: Write the difference between Lab and LabInstance clearly
– Document the dependencies’ versions of the project

• Reserve IP address for the load balancer.
• For beta version

– Inform the user how the dependencies and LTB kubernetes operator can be installed
• For final release

– Use helm charts to install the dependencies
• Test how local installation works, example with miniKube/k3d/kind

Advisor Meeting 12.05.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Current Status (Refactoring, prototype CRDs for Node types)
• Documentation (Design decisions, user guide, etc.)

Planned next steps:
• Implementation of CRDs for node types

Discussion:
• Inputs to current progress

Discussion results:
• CRD for Node types’ prototype

– Create some sample node types
• Requirements documentation - leave it in the project documentation for now

Meeting with Philip 17.05.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Philip Schmid
Discuss results:

• Out of band management: how we plan to implement it
• Document what could be implemented in the future, or how that could be implemented (eg.

Prometheus)

Bibliography 43

LTB Operator v1.0

• Operator: which namespace is it running on? It would be good to deploy in its own namespace
for RBAC reasons

• For deployment of the operator, helm chart is a good option
• RBAC: asked a question about network policies
• Important points of documentation: structure, order, easy to read
• The kubernetes concepts: may be keep those till the end of the project, and then reference it

to the kubernetes documentation later on.

Advisor Meeting 19.05.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker
Progress report:

• Current Status (Implementation of CRD for Node types)
• Refactoring of the code
• Meeting with Philip (Deployment of the operator will be separate (dependencies should be

installed by the user))
Planned next steps:

• Write unit tests
• API implementation
• Abstract, A0 poster, etc.
• Test how local installation works

Discussion:
• Inputs to current progress

Discussion results:
• Refactoring of the code, looks good
• Node types:

– Planned way of error handling is ok
– We’re not directly using YAML because templating is needed
– Cloud-init:
– Make the input as base64 encoded string
– ConfigMap - reference in nodeTypes, gets the config from there
– Test the things with the other nodes
– VM Network should stay within the controller
– VM Interface configuration can also be made in controller but allow for additional empty

interfaces in nodetype
– We only need to know the number of interfaces in nodetype
– VM Default Interface will be configured in controller, document this

• API
– Focus on conceptual idea and analysis of implementation options
– It should be fully separated from the operator to keep it separated and because Kubernetes

is a well defined interface between API and operator
– Only make a small prototype to test implementation options

• Deployment of the operator will be separate (dependencies should be installed by the user) - ok
for Urs too

Advisor Meeting 02.06.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker Progress report:

• Abstract, A0 Poster

Bibliography 44

LTB Operator v1.0

• Tests
Planned next steps:

• Finalize tests
• API implementation
• Diagrams (State and update LTB diagram)
• Config node types

Discussion:
• Inputs to current progress

Discussion results:
• Deployment needs to be updated
• Config for node types are important and needs to be prioritized
• License: Apache 2.0 when all the dependencies use the same license - Done
• Meeting of next Friday postponed to Monday 12th of June

Advisor Meeting 12.06.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker Progress report:

• Abstract, A0 Poster
• Tests (Test coverage)

Planned next steps:
• Node types config input
• Simplify deployment
• Code cleanup

Discussion:
• Inputs to current progress

Discussion results:
• A0 poster looks good
• Abstract: Update the text in the tool and upload pictures
• Tests: Looks ok.
• Record a video as a backup for the final presentation if the live demo doesn’t work, we can then

link the video in the github repo (Tool:asciinema)
• Meeting of next Friday postponed to Monday 19th of June

Advisor Meeting 19.06.2023
Attending: Jan Untersander, Tsigereda Nebai Kidane, Urs Baumann, Yannick Zwicker Progress report:

• Code Cleanup
• Config Input for VMs and Container
• Operator Deployment using OLM
• Tests (Test coverage)

Planned next steps:
• Documentation

Discussion:
• Inputs to current progress

Discussion results:
• Deployment of the operator via OLM - looks good for both of them
• Code cleanup and config input

– For the moment ok, test with a switch
– Test for xrd -> INS-Infrastructure repo/container registry

Bibliography 45

https://asciinema.org/

LTB Operator v1.0

• Test coverage - ok for both of them

Bibliography 46

LTB Operator v1.0

Time Tracking

Bibliography 47

Summary Report
02/20/2023 – 06/30/2023

TOTAL HOURS: 772:40:00

91:40:00

73:20:00

55:00:00

36:40:00

18:20:00

0:00:00

4
7

:0
9

:3
9

4
6

:5
2

:5
9

3
3

:0
4

:2
5

3
8

:3
5

:4
8

2
6

:2
3

:4
4

4
0

:0
7

:3
6

3
3

:0
2

:3
2

2
3

:3
9

:5
2

3
4

:5
9

:4
4

3
4

:5
5

:4
5

3
2

:3
3

:3
6

4
0

:2
9

:1
8

3
2

:5
4

:2
6

2
1

:5
1

:3
9

2
8

:3
7

:2
8

2
0

:0
7

:3
8

7
6

:4
8

:3
5

9
0

:3
4

:4
5

6
9

:5
0

:3
1

2/20 -

2/26

3/6 -

3/12

3/20 -

3/26

4/3 -

4/9

4/17 -

4/23

5/1 -

5/7

5/15 -

5/21

5/29 -

6/4

6/12 -

6/18

6/26 -

7/2

47%
53%

USER DURATION

JA Jan 408:36:58

TN Tsigereda Nebai 364:03:02

4%
4%

6%

10%

29%

47%

PROJECT DURATION

BA Coding 365:42:11

BA Documentation 226:29:49

BA Meeting 74:56:53

BA Project Management 46:14:47

BA Design 32:12:48

BA Research 27:03:32

Page 1/2BA Time

JA Jan 408:36:58 52.88%

BA Coding 211:06:22 27.32%

BA Design 19:35:18 2.54%

BA Documentation 122:20:59 15.83%

BA Meeting 37:55:09 4.91%

BA Project Management 17:39:10 2.28%

TN Tsigereda Nebai 364:03:02 47.12%

BA Coding 154:35:49 20.01%

BA Design 12:37:30 1.63%

BA Documentation 104:08:50 13.48%

BA Meeting 37:01:44 4.79%

BA Project Management 28:35:37 3.7%

BA Research 27:03:32 3.5%

Created with toggl.com Page 2/2

USER - PROJECT DURATION PERCENTAGE

BA Time

LTB Operator v1.0

LTB Operator Assignment

Bibliography 50

Bachelor Thesis Assignment

K8s Lab Topology Builder Operator

Version 1.0
March 2, 2023
Institute for Network and Security

v1.0
K8s Lab Topology Builder Operator

1 Assignment

1.1 Supervisor and Expert
This student project will be developed for the Institute for Network and Security at OST in-
ternally. It will be supervised by Yannick Zwicker (yannick.zwicker@ost.ch) and Urs Baumann
(urs.baumann@ost.ch), OST.

1.2 Students
This project is conducted in the context of the module “Bachelorarbeit” in the department “In-
formatik” by:

• Tsigereda Nebai Kidane

• Jan Untersander

1.3 Introduction
You have been tasked with designing and developing an open-source tool for deploying and
managing network labs in Kubernetes (K8s) using YAML files. The Institute for Network and
Security has developed a solution based on React and Django that will serve as inspiration for
your work.

The tool should support the deployment and destruction of lab components, remote access to
Out-of-Band (OOB) management of lab devices using multiple protocols, and status queries for
deployed labs. The tool should also support access control (optional) so that each user can only
access their own labs.

The technical documentation for the tool should be written in MkDocs, and all documents
should be in English. If time permits, the project should be open-sourced to allow for contributions
from the community.

Your solution should adhere to best practices for security, reliability, and scalability.

1.4 Goals of the Project
• Analysis Architecture separation Orchestrator/UI vs Operator/K8s

– Provide an analysis of the architecture separation between Orchestrator/UI and Op-
erator/K8s for the lab deployment and management tool.

• Lab scheduling/resource reservation (implementation out of scope)
– Describe how the tool will handle lab scheduling and resource reservation. Explain the

considerations and challenges involved in implementing this feature.

• K8s Operator

1 Assignment 1 of 3

v1.0
K8s Lab Topology Builder Operator

– Write an operator that can deploy and destroy the lab components specified in a YAML
file. The operator should be able to create pods with containers, Kubevirt VMs, and
establish connections between lab components at Layer 3.

• Goal01: Deployment / Destroy
– The tool takes a YAML schema as input and deploys the lab components defined in

the schema as Kubernetes resources, including pods with containers, kubevirt virtual
machines, and connections between components at Layer 3. When the user decides
to destroy the lab, the tool removes all associated Kubernetes resources. The output
includes the created Kubernetes resources and established connections.

• Goal02 Remote access
– Develop a remote access feature that allows users to access the OOB management

of devices using multiple protocols. The feature should also provide a programmable
interface that can be used by the UI or CLI to retrieve information about each lab.

• Goal03 Status query
– Develop a status query feature that allows users to check the deployment status of

labs. The status should be one of Finished|Pending|Running|Failed.

• Goal04 Access Control (optional)
– If time permits, implement an access control feature that restricts user access to their

own labs only.

1.5 Documentation
This project must be documented according to the guidelines of the “Informatik” department.
This includes all analysis, design, implementation, project management, etc. sections. All docu-
mentation is expected to be written in English. The project plan also contains the documentation
tasks. All results must be complete in the final upload to the archive server. There is no need to
print out the documentation

1.6 Important Dates

 Official documents

Check the official documents and relegments

Date Event
20.02.2023 Start of the student project
12.06.2023 Hand-in of the abstract using the online tool abstract.rj.ost.ch
16.06.2023 17:00 Final hand-in of the report using the online tool avt.i.ost.ch
TBD (until 31.08.2023) Presentation

1 Assignment 2 of 3

K8s Lab Topology Builder Operator v 1.0

1.7 Evaluation

 Official documents

Check the official documents and relegments

Criterion Weight
Organization and implementation 10%
Formal quality of the report 10 %
Analysis, design and evaluation 20 %
Technical implementation 40 %
Presentation 20 %

1 Assignment 3

LTB Operator v1.0

Risk Analysis

Initial Version

Figure 1.: Risk Analysis - Initial Version

Final Version

Figure 2.: Risk Analysis - Final Version

Bibliography 55

	Abstract
	Vision
	Management Summary
	Initial Situation
	Objective
	Results

	Acknowledgements
	Technical Documentation
	Overview

	Project Documentation
	Requirements
	Goals of the project
	Functional Requirements
	Personas
	User stories

	Non-Functional Requirements

	Preliminary Work
	KVM/Docker based Lab Topology Builder
	K8s Lab Topology Builder

	Quality Measures
	Conventions
	Git Workflow

	Quality Tracking
	Organizational
	Functional Requirements
	Non-Functional Requirements

	Results
	In Scope Requirements
	Functional Requirements (User Stories)
	Non-Functional Requirements

	Implementation Out of Scope
	Out of Scope

	Conclusion
	Project Planning
	Project Plan
	Purpose
	Organization
	Timeline
	Processes
	Meetings and Sprints
	Roles
	Work Items and Releases
	Work Items
	Releases

	Planning Tools
	Documentation
	Communication

	Risk Management
	Risk Identification and Definition
	Risk Analysis Matrix - Initial Version
	Risk Assessment and Mitigation
	Risk Analysis Matrix - Final Version

	Time Tracking

	Appendix
	List of Figures
	List of Tables
	Glosary
	Abbreviations
	Bibliography
	Personal Report
	Meeting Minutes
	Time Tracking
	LTB Operator Goals
	Risk Analysis

