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Abstract

We successfully trained a model using reinforcement learning that enables a car to iden-
tify and follow a leader vehicle, therefore creating a vehicle platoon in a simulation. For this
thesis, we are using CARLA, an open-source 3D environment simulator for autonomous
driving research based on the Unreal Engine.

Specifically, we implemented the Double DeepQ-Network algorithm to train the policy. The
state is solely represented as the sensor input taken from the follower car’s front camera.
From that, an Atari-style Convolutional Neural Network predicts the actions’ Q-values. A
custom reward function, that combines the relative longitudinal and lateral positions of
the two vehicles in the platoon, provides the necessary feedback of each action’s perfor-
mance. Actions, discrete by definition of a DQN, comprise left and right steering, acceler-
ation and slowing down, as well as braking.

The resulting model is capable of forming and maintaining a platoon. While navigating in
a multi-lane scenario, it even manages to cross intersections successfully. It enables the
follower car to identify the leader vehicle and imitate its actions in a previously unseen
environment.

Keywords: Multi-Agent Reinforcement Learning, AutonomousDriving, Simulation, CARLA,
Platooning.
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Executive Summary

The idea of autonomously driving vehicles has been around for many decades. While par-
tial autonomy has been achieved, driverless vehicles on public roads emerged only in re-
cent years, although in limited settings. In addition, the number of vehicles on public roads
is steadily increasing, often leading to congested areas. One of the possibilities to improve
the safety and to reduce congestion on public roads is platooning.

In this setting, vehicles drive behind each other and form a moving queue. While platoon-
ing has been tested on highways, it mainly relies on control algorithmic approaches to
mathematically model the world. In a complex traffic scenario often found in cities, not
all real-life conditions can be modelled as a mathematical formula.

A different approach is to usemachine learning, specifically reinforcement learning, where
an agent learns a task by repeating actions and receiving rewards depending on how good
the outcome was.

Training a model using reinforcement learning requires many thousands of iterations to
make any significant progress. A simulated 3D environment is best suited to repeatedly
train and test such a model. This thesis uses a state-of-the-art 3D environment simula-
tor for autonomous driving, suitably called CARLA (“Car Learning to Act”). It is an open-
source simulator especially designed for research that provides realistic maps of towns,
real world physics, various vehicle types, and simulation of real-world traffic scenarios.

In this thesis, we investigate how to train a model that enables a car to drive in a platoon.

We successfully trained a model using reinforcement learning that allows the follower to
identify the leader vehicle and follow it in a previously unseen simulated environment. It
can adapt its behavior depending on the leader vehicle’s actions, such as steering, slow-
ing down and accelerating. It can operate in a multi-lane scenario and even manages to
cross intersections. Building on this initial success, extensions such as obstacle avoid-
ance, speed sign recognition, heavy traffic situations or a transfer to a real car can be
further explored.
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Figure 1: Vehicle platooning situation in the CARLA simulator with the leader and follower
car.

Figure 2: How the follower perceives the leader car through its camera.
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Figure 3: Various metrics are collected during a model evaluation. In this scenario, the
follower adjusted its actions often, but it followed very well since the scalar-projected
distance to the leader ismostly around 40meters. The point-line distance increasedwhen
the leader made a turn, but the follower imitated the action, and the distance was reduced
again. Overall, a positive reward resulted.
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Chapter 1

Introduction

The idea of autonomously driving vehicles has been around for many decades [1]. While
partial autonomy has been achieved, driverless vehicles on public roads emerged only in
recent years, although in limited settings (for example, [2], [3], [4]).

Until level 5 autonomy [5] can be reached,many years of research, testing and public policy
changes in addition to educating the public are required [6]. Furthermore, the number of
vehicles on public roads has been steadily increasing [7], often leading to congested areas
[8].

One of the possibilities to improve the safety and to reduce congestion on public roads
is Cooperative Adaptive Cruise Control (CACC), more generally known as platooning [9].
In this setting, vehicles drive behind each other and form a moving queue. While platoon-
ing has been tested on highways, it mainly relies on control algorithmic approaches to
mathematically model the world [10].

In a complex traffic scenario often found in cities, not all real-life conditions can be mod-
elled as a mathematical formula. A different approach is to use machine learning, specif-
ically reinforcement learning, where an agent learns a task by repeating actions and re-
ceiving rewards depending on how good the outcome was.

In this thesis, we investigate how to train a model that enables a car to drive in a platoon.

1



Chapter 1. Introduction 2

Structure of the Thesis

The thesis is organized as follows:

Chapter 2 – Objective specifies the vision and the high-level goals for this thesis.

Chapter 3 – Problem Analysis looks at the different elements of this thesis that are
analyzed in subsequent chapters.

Chapter 4 – Reinforcement Learning Theory introduces the concept of reinforcement
learning.

Chapter 5 – Research provides an overview of previous work that is relevant for this
thesis.

Chapter 6 – Design defines the important elements of reinforcement learning and how
they are to be implemented.

Chapter 7 – Implementation explains in detail how the various parts are implemented.

Chapter 8 – Experiments and Results describes the various experiments and their out-
comes.

Chapter 9 – Conclusion summarizes the findings and provides an outlook.



Chapter 2

Objective

2.1 Vision

The vision is to have multiple cars, each with the aim to join and maintain a platoon by
locating the leader car and attaching themselves to the existing queue or forming a new
one, thereby becoming a follower car.

The cars are on a multi-lane road where the platoon is driving on one lane that is chosen
by the leader car. The street scenario is composed a grid road with multiple intersections
which may break up the platoon and a new leader car has to be defined.

Such a platoon moves ideally at a constant speed to be most efficient, however, intersec-
tions or obstacles require it to slow down or to accelerate. Situations like turning left or
right at intersections or passing obstacles on the road by either switching lanes or safely
pass on the oncoming lane can be handled by the leader car of a platoon. These maneu-
vers have to be adapted by the follower cars so that the platoon is maintained, however,
they do not violate the rules of the road or drive insecurely.

The OST is in possession of a fleet of four wheeled remote-control toy cars that are
equipped with a camera. A sim-to-real transfer could enable such a fleet to organize them-
selves into a platoon. The leader car either drives along a pre-defined route or is manually
controlled by a user.

2.2 Thesis Goals

While this vision is ultimately a desired state, the time limits of this project constrain the
achievement of certain elements.

3



Chapter 2. Objective 4

Training a model using reinforcement learning requires many thousands of iterations to
make any significant progress. A simulated 3D environment is best suited to repeatedly
train and test such a model. This thesis uses a state-of-the-art 3D environment simula-
tor for autonomous driving, suitably called CARLA (“Car Learning to Act”). It is an open-
source simulator especially designed for research that provides realistic maps of towns,
real world physics, various vehicle types, and simulation of real-world traffic scenarios.

This thesis focuses on the simulation part with the goal of training a car to follow a leading
vehicle, thus forming a platoon. The outcome, in the form of simulated cars that learn to
form such a platoon, could be applied to the street setting with cars or delivery robots, but
also to an industrial or even home setting with multiple autonomous robots.

To achieve this goal, the following components need to be defined:

• the Reinforcement Learning algorithm,

• the simulation environment,

• the simulation platform,

• the monitoring of progress.

For the simulation itself, various scenarios are defined in which the agents are trained.
This comprises:

• straight and curved roads,

• intersections with dynamic lights,

• multiple lanes,

• obstacles.

Specifically, we focus on a one leader, one follower scenario, where the leader is controlled
by a pre-defined algorithm (i.e., it behaves perfectly) and the follower is the one being
trained.

2.3 Approach

In this thesis, these four components (RL algorithm, simulation environment, simulation
platform, and montoring progress) are researched and evaluated in detail. We provide
solutions along with comparisons of various aspects.



Chapter 3

Problem Analysis

The problem that is addressed in this thesis is how a simulated car can learn to participate
in a vehicle platoon. Such a problem requires multiple components in order to produce a
viable result.

3.1 Reinforcement Learning Algorithm

In order for a simulated car to learn, a learning algorithm is required. Since we are using
a simulation, we can produce the data ourselves that is necessary since the agent can
interact directly with the environment.

Such a setting is predestined for Reinforcement Learning (RL). However, there exists a
multitude of RL algorithms that have benefits, such as sample efficiency or speed, but
also disadvantages, such as long training times or instability.

In addition, a RL algorithm requires a reward function, which determines the reward that
an agent receiveswhen it interacts with the environment. Such a reward function is crucial
for the speed of the training, but also for correctly incentivizing the agent.

Then, the algorithm needs to be implemented and a model (or more exactly, the agent’s
policy) has to be learned. One option is to implement everything from scratch. However,
next to being quite time consuming and error prone, there exists a number of learning
frameworks that implement the basic algorithms and are tested quite thoroughly. There-
fore, one of these machine learning frameworks needs to be selected.

5



Chapter 3. Problem Analysis 6

3.2 Simulation Environment

A simulation environment can range from extremely simple, such as a two dimensional
(2D) grid where the only options are up, down, left or right. But it can also be a three di-
mensional (3D) environment which has the quality of a video game.

To simulate cars, there exist a number of environments, both 2D and 3D, which range from
simple grid-like settings to high-resolution 3D simulations. They have different complexi-
ties, features and system requirements.

Another approach would be to build the simulation ourselves, therefore controlling every
aspect of the simulation, but with the cost of spending time to build all the required sim-
ulation assets.

3.3 Simulation Platform

To run a simulation, a platform in the form of a computer with a graphics card is required.

While a powerful laptop could suffice for such a task, simulations are often running over
multiple hours or even days, hence a more standalone solution would be ideal.

3.4 Monitoring Progress

To monitor progress during the training phase metrics are required that are regularly up-
dated. They indicate whether the training is going in the right direction or if there is an
issue with the parameters. Again, a few tools exist that provide such a service.



Chapter 4

Reinforcement Learning Theory

This chapter aims to provide the reader with some fundamental concepts of reinforce-
ment learning (RL). It contains a high-level description of elements that are relevant for
this thesis. An excellent and in-depth treatise of RL can be found in the seminal book
from Sutton and Barto [11]. If the reader is already familiar with RL, then this chapter can
be safely skipped.

4.1 Basic Elements

Reinforcement Learning is one of the three machine learning paradigms, next to super-
vised and unsupervised learning. Where supervised learning requires a labelled dataset
to train a model effectively, and the unsupervised learning is often used for classification
tasks (such as spam email classification), reinforcement learning generally generates the
data itself and uses rewards and exploration for training a model [11, p. 1f].

However, to explain the RL learning process, we need to take a step back. A typical RL
process consists of five elements: agent, environment, state, action and reward. These
elements originate from the theory of Markov Decision Processes.

4.1.1 Markov Decision Process

A finite Markov Decision Process, or finite MDP, is about sequential decision making,
where one step after the other an action is taken and a reward is received. However, this
reward is not just the result of that single action, but all future rewards that would follow
from it [11, p. 47].

The finite MDP is a mathematical description of this problem. It allows to calculate so-
called value functions, which represent the expected reward of taking a specific action in

7



Chapter 4. Reinforcement Learning Theory 8

a given state [11, p. 58]. These expected rewards are what influences the decision making
process of an agent. Ultimately, its goal is it to maximize the cumulative rewards, and the
finite MDP is a fundamental element to calculate them.

The finite MDP is depicted in Figure 4.1, where the concept of RL is applied to a game, but
it could be an arbitrary environment.

Figure 4.1: The reinforcement learning process applied to a game (source: [12]).

4.1.2 Agent

An agent is an entity that can observe the state of a given environment, take actions and
perceive rewards. Depending on the rewards it learns to adjust the optimal action for a
given situation [11, p. 47f].

The agent can be anything, from a robot, to a car, or a player in a game and even a hu-
man (examples: [13], [14], [15], [16]). It is the central entity in RL, since it learns from the
interactions with the environment.

4.1.3 Environment

RL requires an environment to work. A classical example is the Atari game suite, but board
games such as Go, or even multiplayer games like Dota 2 are examples where RL is used
(examples: [17], [18], [19]).
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To effectively use RL, it is necessary to have an environment available where an agent can
interact with the environment by taking actions and receiving rewards that inform it how
good or bad this action was [11, p. 48].

4.1.4 State

The state refers to the environment in which an agent is currently in. If the agent takes an
action, it will transition from the current to the next state to perceive its consequences.

However, there are no past states in the sense that the finite MDP requires the current
state to comprise all information that is relevant for the present and the future. This is a
Markov property, which should not be violated [11, p. 49].

4.1.5 Action

An action is executed by the agent within an environment [11, p. 48]. It can be a discrete
action, such as going left or right in a maze, or it can be continuous, like steering a wheel.
The action has an influence on the next state, even if it executes nothing, but it is the
element that triggers the transition to the next state along with the reward that is fed back
to the actor.

4.1.6 Rewards

The reward is the result from an actor taking an action. The finite MDP uses a reward to
calculate the expected cumulative rewards, based on which the agent adjusts its behavior
since it tries to maximize it.

The reward is in the form of a numerical value which can be arbitrary, but it usually lies
between -1 and +1 to avoid exploding cumulative values. The function that determines the
level of the reward can be very simple, such as when an agent crosses a finishing line for
which event a reward of +1 is given. It can also be used to penalize an action, such as
returning a value of -1 in case there was a collision, for example in a car racing game [11,
p. 53]. This function can also be more complex, where the resulting reward depends on a
measure, such as the distance to a target.

The reward is an important feature of the learning process. While it can speed up the
learning when it is properly defined with the correct incentives, it can also slow down or
even prevent learning when it is mis-specified [20].
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4.2 Reinforcement Learning Process

This far, we have not touched the fact how the agent is learning. What happens in every
state is that the agent needs to decide which action is the one that maximizes the cumu-
lative expected reward. The basis on which the agent supports its decision is called the
policy.

The optimal policy is what the agent needs to learn. That means, at every state the policy
informs the agent which action is best [11, p. 58]. The policy is usually updatedwhen a new
state is observed along with its reward. To achieve the optimal policy, the agent should
observe many different states, which implies that the longer the agent learns, the better
the policy should become in an ideal setting.

4.2.1 Policy

In classical reinforcement learning where, such a policy is often represented as a table.
Simplified, this table consists of a state, potential actions in that state and the next state
from an action along with the current and expected reward. Such a table can become
quite complex when there are thousands or millions of different states. It becomes quite
difficult and inefficient to use such a table to keep track of an optimal path through this
way of representing the policy.

This is where approximation techniques come into play [11, p. 196]. Given the inputs of
an observation along with its corresponding reward, a deep neural network is trained that
learns to approximate the relationships between any given observation and their reward.

When the observation is an information in the form of one or more values, like x/y/z-
coordinates of an agents position, then often a densely connected neural network is used.
When the input form is of more complex structured values, like an image, then a convolu-
tional neural network (CNN) is better suited. Both networks do learn the optimal weights
that map the corresponding action values from any given input.

4.2.2 CNN

The state in a simulation is often an image input. This does not have to be the case, as
other state values, such as position, velocity, distance to objects, etc. could be used. How-
ever, since the goal of this thesis is to train amodel that enables a car to follow the leading
car, and at some point transfer this model to a real car, the camera input seems to make
most sense.

Since a single input image represents a single state, there are many thousands or mil-
lions of different states possible. While it is not feasible to create a state-action pair for
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every input image, especially if only a single pixel value is different, the deep reinforce-
ment learning approach is best suited to approximate such states. They can ingest an
image with red, green and blue color channels (an RGB image), however, they require a
convolutional neural network (CNN) to process such an image efficiently.

CNNs are the standard deep network architecture for extracting features from images.
They use the concept of filters, which are small grid-like patches that are mostly applied
to every area of an image. Various filter combined can identify shapeswithin an image. Fil-
ters in early stages of the network usually extract simple shapes, such as edges, whereas
filters in later stages can extract more complex structures, such as faces or the shape of
a car in our case.

CNNs can therefore identify features from the input image, and with the different actions
at the last layer, can predict the Q-values for each action at that state (i.e., image). These
Q-values can then be used in the RL algorithm that selects the best action given its policy.
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Research

This chapter presents a literature overview of research done in the fields relevant to this
thesis.

5.1 Simulators

There exist a number of different simulators that cater for performing research in the
autonomous driving space as presented in Table 5.1.

For this thesis, we choose the CARLA simulator, since it is well-known, established in
the research community, actively developed and provides important features, such as a
Python API.

5.2 CARLA

Only a handful of paperswere identified that apply reinforcement learning using theCARLA
simulator [22].

CARLA provides a leaderboard [48] which encourages teams to evaluate the driving profi-
ciency of their algorithms. The top three placed teams devised their own algorithms ([49],
[50], [51]), however, they use reinforcement learning only sparsely of for sub-components,
if at all. Theymainly leverage transformers to extract information frommulti-modal sensor
input.

A more recent publication [52] is implementing a Deep Q-Network (DQN), but also a Deep
Deterministic Policy Gradient (DDPG) to train a model that enables a vehicle to follow a
pre-defined path in the CARLA simulator. They were mainly using a segmented black-and-
white image that contains a line of the optimal path. However, they also tried an approach

12
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Table 5.1: Overview of Autonomous Driving Simulators

Name Description Active Link Paper

CARLA Open-source simulator for autonomous driving Yes [21] [22]

Donkey Open-source self driving car platform for remote
control cars

Yes [23] n/a

Duckietown Open-source platform to teach and research au-
tonomous driving.

Yes [24] [25]

FLOW Open-source deep reinforcement learning frame-
work for mixed autonomy traffic based on
SUMO.

No [26] [27]

MACAD Open-source multi-agent connected au-
tonomous driving simulator based on CARLA.

Yes [28] [29]

MetaDrive Open-source with infinite scenarios for general-
izable RL

Yes [30] [31]

Microsoft AirSim Platform for AI research with autonomous vehi-
cles.

Yes1 [32] [33]

Nocturne Open-source 2Ddriving simulator formulti-agent
coordination.

No [34] [35]

NVIDIA DRIVE Sim End-to-end simulation platform for autonomous
driving.

Yes [36] n/a

Plexe Open-source 2D platooning simulation exten-
sion for SUMO and Veins.

Yes [37] [38]

SUMMIT Open-source simulator for generating data for
urban traffic based on CARLA.

Yes [39] [40]

SUMO Open-source traffic simulator Yes [41] [42]

Veins Open-source 2D simulator for vehicular network
simulations.

Yes [43] [44]

VISTA Open-source data driven simulator for au-
tonomous driving perception and control.

No [45] [46]

1 The project re-launched with a simulator only for drones [47]; cars are no longer supported.

with a pre-trained CNN where they extract the waypoint information from an RGB image,
however, they noted they faced some challenges during the training, but without providing
more details.

As a reward, they provide the algorithm a positive incentive for staying close to the lane’s
center line along with the longitudinal velocity, while penalizing the lateral distance and
velocity. The discrete action space for the DQN consists of 27 different actions, each has
different discrete values for throttle and steering. In their evaluation, the DDPG seems to
follow the path quite well, however, they had some challenges with the DQN which did not
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perform well. Their conclusion is that the DDPG requires far fewer training episodes than
a DQN in addition to being capable of a continuous action space.

5.3 Cooperative Adaptive Cruise Control

Much research is done on Cooperative Adaptive Cruise Control (or CACC). As previously
noted in chapter 1, CACC has been tested for a few years now, however, mainly using
control algorithms.

5.3.1 Control System Approach

A review of the CACC landscape has been done by [53] where they review three types of
systems:

• Communications

• Driver characteristics

• Controls

They also identify three different types of following, or information flow topology as they
call it:

• Predecessor following

• Predecessor-leader following

• Bidirectional

The predecessor following is the most widely used topology, where the follower receives
information from the predecessor. [54] also notes, that they assume the same speed,
which results in a homogeneous platoon. They consider a platoon system as a combina-
tion of vehicle longitudinal dynamics, information exchangeflow, decentralized controllers
and inter-vehicle spacing policies. In addition, all dynamics of the participating vehicles
have to be the same to qualify as a homogeneous platoon, as noted by [55], otherwise it
would be heterogeneous.

The problemwith heterogeneous platoons is the inter-vehicle spacing, which may change
over timeandmaydifferwithin the platoon. Ideally, a stable inter-vehicle distance is achieved,
a concept that is known under the term string stability. String stability is important for a
platoon. However, if vehicles do not always drive at the same speed, string stability cannot
be guaranteed.
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[54] also note that the string stability of the vehicle platoon requires that either the vehicle’s
spacing error, states or the control input does not amplify upstream through the platoon.
If the vehicle platoon is not string stable, a small perturbation on one vehicle can propa-
gate through the platoon and cause uncomfortable driving experience or even dangerous
situations.

This up- or downstream propagation of the spacing between vehicles was addressed by
[56]. Heterogeneity in a platoon can result from vehicles with different acceleration dy-
namics due to their size, weight or motorization, but also the road features like curves or
uneven terrain. [56] propose an algorithm that achieves string stability even in heteroge-
neous platoons.

5.3.2 Reinforcement Learning

Reinforcement Learning can be applied to the problem of string stability as proposed in
[57]. They model the system as a Markov Decision Process and incorporate stochastic
game theory. The string stability was proved where the proposed system was capable
of damping small disturbances throughout the platoon. In particular, as the second car
attempts to track the leader, slight oscillations result. This oscillation is passed onto the
cars following, but as they move farther in the platoon, the oscillations decrease, implying
stability.

Another application of RL in platooning considers the safety of such algorithms. Model-
based [58] and model-free [59] algorithms are proposed, that use Lyapunov functions
to guarantee stability in a system. However, finding a suitable Lyapunov function is not
straight-forward, something thatwas addressedby the latter of the twopapers, also propos-
ing a Safe Deep Q-Network. However, as with DQN algorithms, this approach applies only
to discrete action spaces. Originally, Lyapunov functions were first studied by [60].

The simulation of traffic scenarios and autonomously driving vehicles apart from platoon-
ing are a widely-researched area. As presented in the simulator overview in section 5.1,
which only represents a subset of the available autonomous driving simulators, the field
is quite an active area of research. There,many useRL to train an agent to act in the simula-
tor (e.g., [29], [14], or [61]) In addition to simulators, benchmarks to evaluate RL algorithms
in traffic situations have also proposed (e.g., [62]), but also using RL for improving the
traffic flow in areas with bottlenecks (e.g., [63]).

[64] use a dueling deep Q-network in a platooning scenario. They analyze the platooning
behavior in terms of delay of arrival due to congestion and reducing the overall fuel con-
sumption.Mainly, their experiments are set in a 2D simulation and intend to align the traffic
light state and the speed of a platoon using a 5G mobile network. Their goal is to train an
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agent that controls the platooning and the traffic light state behavior using deep RL. Its
incentivize is to reduce the number of times a platoon comes to a full stop but also to
reduce unnecessary accelerations, hence reducing the fuel consumption. However, while
a reduction in delay and fuel consumption are important and some of the main benefits
of platooning, they are their sole focus in this paper.

[65] use a genetic algorithm in combination with RL to study the management of a pla-
toon. By enabling the participating vehicles to use 5G to connect to the leader vehicle in
a platoon, the leader vehicle from each platoon can aggregate information from various
other platoons and their connected vehicles. Hence, the leader of a platoon has all infor-
mation available tomake decisions. For the learning, they use a replay buffer that is sorted
according to a rank so that the most important experiences are sampled more frequently.
They use the 2D Plexe [38] and SUMO simulators [42] to validate their model with a focus
on string stability. However, their focus is on the management and organization of a con-
nected platoon (i.e., a CACC), rather than on the vehicle itself participating in the platoon
and learning the correct actions. Nonetheless, their paper makes very good observations
about the previous research in this field, especially in inter-vehicle connected platoons.

5.3.3 Multi-Agent Reinforcement Learning

The field of platooning using reinforcement learning seems not very well researched.
While a recent survey of deep reinforcement learning in the autonomous driving space
[66] identified some applications, their survey did not mention platooning. However, they
noted that the multi-agent RL (MARL) is a research topic, but under-represented in the
autonomous driving space.

Another recent study combines MARL with delivery vehicles to optimize the path plan-
ning [67]. Especially, coordination among different agents in the same environment is an-
alyzed so that they chose the optimal path to their destination. However, the simulation
part is only focused on the path planning, but not on the vehicle learning to navigate au-
tonomously.

In a similar vein, [68] use reinforcement learning to train the leader vehicles of two sepa-
rate platoons to successfully lead them in a roundabout. They use the FLOW framework
[27] that connects RL libraries to the SUMO simulator [42] for the training and evaluation of
their approach.While they use the Trust RegionPolicyOptimization (TRPO)RL algorithm, it
is again only for the leader vehicle, whereas the follower vehicles are controlled by the sim-
ulator’s traffic manager. Interestingly, they perform a simulation-to-reality transfer, where
they port the trained model, that had some noise added to states and actions, to a toy
car, which seemed to work quite well. However, they note that a roundabout-loop-detector
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and eventually vehicle-to-vehicle communication are required to provide the information
about each state. In addition, they observed a reduction in travel time.



Chapter 6

Design

In this chapter, the design of the reinforcement learning is explained in more detail.

6.1 Algorithm

The selection of an appropriate RL algorithm has many implications, such as the num-
ber of actions an agent can take, the performance of the learning speed or the available
computing power.

6.1.1 Double Deep Q-Network

For the reinforcement learning part, we use a Double Deep Q-Network, as proposed by
[69]. The main reasons for using a Q-learning based network are:

1. sample efficiency due to the replay buffer

2. simpler to implement from scratch than more recent models (e.g., PPO)

3. discrete action space

4. more stabler than a simple DQN

The advantage of adding a second, so called targetmodel, within the Double DQN is the re-
duced fluctuations from one weight update to the next. DQNs are generally prone to over-
estimating Q-values, since they only use the maximum Q-values from each state-action
pair. While some overestimation is not a problem if it is uniformly distributed, concen-
trated higher values at some states pose an issue. This can be overcome by decoupling
the prediction process during training from the one that updates themodel. Eventually, the
target model gets updated every so often with the weights form the other online model.

18
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6.1.2 Other RL Algorithms

We decided against using a Proximal Policy Optimization (PPO), Soft Actor Critic (SAC),
or other more recent algorithms since while the focus of this thesis is to train a model, it
is also about setting up the simulation and training environment. Implementing another
more complex algorithm from scratch can be a daunting task when embarking up on the
reinforcement learning world (e.g., for PPO see [70]). However, by leveraging tried and
tested RL algorithms from a library such as Stable-Baselines3, as described in subsec-
tion 7.3.2, such algorithms can be incorporated with a reasonable effort and are less error
prone.

6.2 Actions

By using the Double DQN, the output of such a model is restricted to discrete values. This
was an intentional choice since it simplifies the steering and acceleration to a certain
degree.

For the first experiments we defined four different options from which the agent can
choose. There, the steering was fixed to a value. However, this resulted in a zigzag course,
since the vehicle is able to steer from left directly to right.

In amore realistic scenario that was introduced in the second part of the experiments, the
fixed steering value was switched for a delta value. This implied that the steering value
increased or decreased by a small value with each action that has an influence on the
steering.

The different options that the agent can choose from are outlined in Table 6.1.

Table 6.1: Actions

Action Description Fixed Steering1 Delta Steering1 Throttle Braking2

0 Straight ahead3 0.0 0.0 0.5 0.0

1 Left turn -0.2 -0.005 0.5 0.0

2 Right turn +0.2 +0.005 0.5 0.0

3 Slow down previous value 0.0 0.0 0.0

4 Braking previous value 0.0 0.0 0.25
1 Only fixed or delta steering is allowed in an algorithm.
2 Braking was introduced for the later part of the experiments.
3 The description is a bit misleading for the delta steering.
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6.3 State

The CNN, as briefly described in subsection 4.2.2, is used to process the state, or image
input, and predict the Q-values of every action.

At first, we used an InceptionV3 CNN, which has about 22 million parameters to train for
an input image of size 128x128 and four actions in the last (dense) layer. This proved to
be excessive since the training is quite slow, and a much smaller CNN was needed.

Eventually, we settled with the CNN that was used in the Atari paper [71], and detailed in
this post [72]. The network architecture is provided for a 64 by 64 pixel image in Figure 6.1,
but described in more detail in Table 6.2.
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1024
Flatten
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Figure 6.1: Atari CNN visual network architecture (build source: [73])

Table 6.2: Atari CNN

Layer Type Input Shape Filters Kernel Size1 Strides Activation

0 Conv2d 64x64x121 32 8x8 4x4 ReLU

1 Conv2d 32 64 4x4 2x2 ReLU

2 Conv2d 64 64 3x3 1x1 ReLU

3 Flatten

4 Dense 1,024 512 ReLU

5 Dense 512 52 ReLU
1 The image input size’s channel is 12 due to 3 color channels stacked 4 times.
2 The number of actions, i.e. 5.
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6.4 Reward Function

The design of the reward function requires significant attention as it provides crucial feed-
back to the learning algorithm how good or bad each action was.

6.4.1 Vector Geometrical Approach

In our setting, the follower car should be in line with the leader car. This means that the
follower car should ideally be driving right behind the leader car. If we only calculate the
Euclidean distance between the two cars, it could be anywhere within that distance, for
example driving next to it while still receiving a positive reward.

Since we receive the 3D forward unit vector from the leader car from the CARLA simula-
tor along with its current location as a 3D point, we can calculate the distance from the
follower’s 3D point to the leader car’s center line.

Equation 6.1 provides the formula for calculating the distance dpl between a point and a
line in a three dimensional space.

dpl “

∥∥∥LF ˆ s
∥∥∥ (6.1)

Where L is the 3D vector of the Leader, F the 3D vector of the follower, and s the forward
vector of the Leader [74].

Another important factor is the location of the follower relative to the leader vehicle. The
follower should ideally be placed behind the leader and not in front of it. One approach is
to use scalar projection [75], as defined in Equation 6.2.

dsp “ LF ¨ F (6.2)

In this case, the vector between the leader and follower is projected onto the follower
forward vector using the dot product.

The resulting scalar dsp indicates the distance between the follower and the leader on the
forward vector:

• Negative scalar value: the follower is behind the leader

• Positive scalar value: the follower is in front of the leader

• Zero scalar value: the follower and leader are at the same location regarding forward
directions



Chapter 6. Design 22

With these formulas, we can determine where the follower is located relative to the leader
vehicle.

To summarize, the point-line distance is the orthogonal distance between the follower car
and the leader’s forward vector, independent of their left or right distance. The dot product
is the cosine angle between the two vehicles’ forward vectors which tells us if they are
facing the same direction (i.e. cosp0q “ 1). Finally, the scalar-projection distance informs
us if the follower is behind the leader vehicle (negative value) or in front of it (positive
value). In fact, the Euclidean distance is no longer needed because the scalar projection
has all that information in addition to the relative position (negative and positive).

An experiment to test the correctness of the described distancemeasureswas conducted
and the results are presented in Figure 6.2. In this setting, the follower car did a few full
circles while the leader car just drove straight ahead. Therefore, the angle (dot product)
between the two cars oscillates between ˘1, whereas the scalar-projection distance in-
creases (so does the Euclidean distance). The point-line distance oscillates, too, since the
follower car drove away from the leader’s center line while circling.

Figure 6.2: Comparison of various distance metrics for the reward function.

6.4.2 Reward Function Design

The reward functions should be generically applicable. An earlier version of it that was
briefly explored for this thesis used linear functions where at some fixed point the re-
ward started to change linearly. But, outside this sometimes narrow range there was no
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indication in which direction an improve in rewards can be expected. Ideally, a Gaussian
or a similar distribution function should provide some small reward increments even at
the outside (i.e., a slightly positive marginal reward), while providing bigger increases the
closer the metric is toward its pre-defined optimal value.

6.4.2.1 Apodization

There exist a group of functions called apodization functions, that are often used in signal
processing to de-noising an input. They usually normalize the input around µ “ 0 with a
response value of 1, and cut off the response value at slightly above 0 at around ˘1. The
Gaussian apodization function is in the form of a bell-shaped curve (see an overview of
such functions in: [76]).

This Gaussian apodization function seems to be an ideal form to normalize an input to
the range of 0 to 1. With that, even infinite real values (such as distance) are reduced to a
known range. The Gaussian apodization function also works with the usual parameters,
µ and standard deviation, to influence its shape and position.

Point-Line Distance For the the point-line distance, which is used for generating a mea-
sure of the longitudinal distance of the follower car to the leader car’s center line, an ideal
value is 0. Hence, it does not even need to be scaled if a standard deviation of 1.0 meter
is used, as can be seen in Figure 6.3.

Figure 6.3: Point-line reward for various distances
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Scalar Projection Distance The scalar projection distance, which is used to generate the
metric of the lateral distance of the follower car along the leader’s center line independent
of the follower’s longitudinal position, has an ideal distance around 20 meters. Since the
position behind the leader car is in the negative space, the ideal metric is calculated as -
20.0meters. Using theGaussian apodization function, themean is corrected by that value.
The standard deviation is chosen as 10.0 meters, hence the function returns a value of 1.0
when the follower is exactly 20.0 meters behind the leader. A value of 0.0 is returned if
the cars are further than 50 meters apart, mainly due to the limitations of floating point
precision, as can be seen in Figure 6.4.

Figure 6.4: Scalar-projection reward for various distances

6.4.2.2 Min-Max-Range Normalization

To scale the returned values form the Gaussian apodization function to the range of -
1.0 and +1.0, the min-max-range normalization function is used [77], as defined in Equa-
tion 6.3.

x1 “
x ´ minpxq

maxpxq ´ minpxq
(6.3)

It scales the given input linearly to a desired range. Since an apodization function is always
within the range of 0.0 to 1.0, the min-max-range function can be easily used for this case.
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6.4.2.3 Polynomial Normalization

For the angle between the two cars, i.e., between each car’s forward vector, the situation is
different. The CARLA simulator returns a cosine value when using its embedded function
to calculate the angle. Since the cosine saturates around +1 and -1, it defeats the purpose
of indicating clearly (i.e., with a steeper slope) how the reward should develop around
the metric’s ideal value. When feeding the cosine into the Gaussian apodization function,
the smoothness around its peak value (i.e., a cosine close to 1.0 indicates close to perfect
alignment) is even further increased. Also, when decreasing the standard deviation drasti-
cally, there remains little of the function’s response value for most of the remaining cosine
values. Hence, a different function should be used to provide a steeper slope towards the
ideal value.

Ideally, the function has a steep inclination, while also spreading out a bit. A simple poly-
nomial function is actually sufficient for such a case. By tuning the degree of the polyno-
mial function, the slope can be adjusted. After comparing different values, a degree of 20
shows promising features, while also keeping the intermediate values within a reasonable
range. The two functions are shown in Figure 6.5.

Figure 6.5: Comparison of the polynomial and the Gaussian apodization functions for the
angle

With a polynomial functionwewant theminimum input value (in our case the cosine) to be
at 0. Since the cosine has a range of -1 to +1, shifting it by +1 should do the trick. Therefore,
themaximumvalue onwhich the polynomial is calculated is 2, resulting in 220 “ 1, 048, 576
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as a maximum intermediate value. This maximum value is then used to normalize it to a
range of 0 to 1 using the min-max normalization function from Equation 6.3.

With these three continuous reward functions in place, the agent should receive sufficient
feedback on its actions to learn efficiently.

6.4.3 Termination

In addition to the reward functions, a negative incentive when colliding with an object
should be provided. Also, such a collision should terminate the learning process, since it
is an undesired outcome.

Hence, a fixed negative reward of -1 is provided in case of a collision. This reward is de-
signed in a way that reduces previous rewards in that step to -1 in case they were positive
before, or adds -1 to an already negative reward. One can think of this behavior like a put
option in finance, where the strike is -1 and a linear decrease starts at 0. For example, if
the previously collected reward in this step is +1, the resulting reward in case of a collision
is -1. However, if the previous reward is -0.5, then -1 is added, resulting in -1.5.

This design should penalize a high risk taking strategy that results in a positive reward,
but with a high probability of colliding with an object.

6.5 Architecture

The individual components from the design part are an important foundation for this ar-
chitecture section. Our architectural representation is in the form of a data and logic flow
diagram.

We split the diagram into twoparts,mainly to improve the readability. Figure 6.6 represents
the prediction part, which ultimately uses the trained CNN to predict the Q-values and,
using the learned policy via the Double DQN, choses the best action. Figure 6.7 visualizes
the training part, which is only activated once the replay buffer is sufficiently filled.

An episode starts with a reset of the simulator to its initial state. There, the two vehicles
are placed at locations so that the leader is in front of the follower car. Also, the whole
environment is set up, for example, the follower’s camera and lane invasion sensors are
deployed.

Once the initialization is complete, the prediction part starts. It begins by capturing the
image of the current state, then takes an action according to the epsilon-greedy policy
and stores it along with the reward in the replay buffer.
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If the replay buffer is sufficiently filled (according to a pre-defined hyperparameter), the
training starts. Another hyperparameter, the minibatch size, defines the number of sam-
ples that are randomly drawn from the replay buffer. By iterating through each sample, a
training run is performed. Hence, in a single episode, the model can be trained as often as
the minibatch is in size. This makes the DQN algorithm sample efficient, since it re-uses
previous experiences multiple times.

Once the training loop processed all samples from the replay buffer, it starts with the next
episode (or step), and takes again an action. If a termination event occurred, for example
the follwer collided with an object, then the simulator is reset to its initial state and the
process starts over again. The elements that already exist in the replay buffer are kept
and new observations are added with each episode. Only when the replay buffer reached
its limit are older observations removed (a first-in, first-out principle).
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Figure 6.6: The data and logic flow architecture of the simulator and learning (part 1 of 2).
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Figure 6.7: The data and logic flow architecture of the simulator and learning (part 2 of 2).



Chapter 7

Implementation

7.1 Setup

In this section, the setup for running the simulation and the reinforcement learning is de-
scribed.

7.1.1 CARLA

The simulator is the main part of this thesis. While there are a number of simulators that
target the autonomous driving space available, as described in section 5.1, we decided to
work with the CARLA simulator [22], [21].

It is open-source, and specifically targeted to performing research on autonomously driv-
ing vehicles. Based on the Unreal Engine [78] and written in C++, it features realistic-
looking 3D scenarios such as cars, pedestrians, towns and rural areas. In addition, they
adopt the OpenDRIVE standard [79] that enables the import of custom maps, but also
exposes a standard terminology when describing features of a road. Crucially for this
project, they expose the simulator’s functions through awell-documented Python API, that
enables the controlling of much of the simulator’s behavior and assets.

CARLA is designed as in a client-server architecture. The simulator is running as a server
and opens a port on the local network, whereas the client (e.g., our Python-based rein-
forcement learning algorithm) accesses the simulator via this port. That design enables
multiple clients to access the simulator, but also allows running it on a dedicated server
with the clients running on local machines.

Finally, CARLA features a traffic manager, that runs as a separate client, also connecting
to the simulator via its port. The traffic manager takes care of managing the vehicles and

30



Chapter 7. Implementation 31

traffic lights in the simulator along with the path planning, especially when the autopilot
is activated.

CARLA is best run on Ubuntu 18.04 or 20.04 or on Windows 10. A package with all neces-
sary files is provided on their website, and it can be installed and launched locally.

7.1.1.1 CARLA Build from Source

If customizations are planned, such as adding custom maps or changing the buildings
in a town, another option is to build CARLA from source. Such an attempt was made,
although unsuccessful and ultimately not required. We briefly describe the learnings from
that experience.

It took about six hours in total to set everything up and complete all stages including the
Unreal build. The build has very specific requirements, such as the Visual Studio version,
cmake and make versions, too. The tutorial is quite good, but it lacks specific but impor-
tant details, like the cmake ormake installation path problems thatwe encountered. There,
it is important to not have any spaces in the paths that reference cmake or make, other-
wise it will fail. However, another error appeared (a missing separator), which we could
not resolve. It could even be that a specific update in one of the libraries made this local
build fail.

Itmayworkmuch better onUbuntu, howeverwe think there is no longer a hard requirement
to have a customizable version for our purpose. The provided maps should be sufficient
for our research, and adding custom layouts would be quite labor intensive.

7.1.1.2 RLlib

When selecting CARLA, one feature that stood out was a library to use pre-implemented
and tested reinforcement learning algorithms fromRLlib [80]. Similar to usingGymnasium,
as described in section 7.3, RLlib provides access to distributed training of more than 25
RL algorithms.

Unfortunately, CARLA’s RLlib connector library is no longer supported, and even our at-
tempt to get it working again has failed. We therefore implemented our own algorithm as
described in chapter 6.

7.1.2 Hardware

From the beginning of this thesis until about tenweeks in, the hardware to train themodels
and running the CARLA simulator on were two desktop PCs with a dedicated graphics
card.
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7.1.2.1 Desktop PCs

We have access to two desktop PCs running Ubuntu 20.04 with an NVIDIA GeForce GTX
1060 that has 6GB of memory, along with 32GB RAM. The setup with two desktop PCs
works quite well, even though in the beginning the simulations crashed unexpectedly. Re-
setting the display and running the simulation in a headless mode without any rendering
proved to be a good approach, since then the experiments ran more stable, although still
with frequent crashes.

Also, training the models on the PC’s CPU worked well, even though some attempts were
made to use the GPU, as described in subsection 7.1.4.

7.1.2.2 DGX-2

For the last few weeks in this thesis we received access to a high-performance computer
that is specifically designed for running machine learning experiments. It is an NVIDIA
DGX-2 [81] which is equipped with 16 Tesla V100 graphic cards, each comes with 32GB
shared GPU memory and 1.5TB system memory. The 16 GPUs with a total of 512GB of
GPU memory combined exceed 2 petaFLOPS (i.e., floating point operations).

The server runs on Red Hat Linux Enterprise and the Apptainer containerization software
(see subsection 7.1.3) allows to run model training, but also the CARLA simulator in our
case.

7.1.3 Apptainer

Apptainer [82] is the Linux Foundation version of SingularityCE, which is the community
version from Sylabs. It is a container system for high-performance computing (HPC) and
is deployed on the DGX-2 (see subsubsection 7.1.2.2). It has an improved security and
user permission handling in the sense that a container can be created without requiring
any root privileges. This allows building containers on systems where a user does not
have any elevated privileges, such as OST’s DGX-2.

An Apptainer container is best built using a definition file, which is similar to a Docker
file. Importantly, containers can be built from existing Docker images that are for example
stored on Docker Hub. In the definition file, the contents of a container can be defined.

There are two containers that are required for running experiments in the CARLA simula-
tor:

1. one containing the CARLA distribution,

2. another with the code for the training along with the necessary Python libraries.
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The CARLA container is easy to build from a CARLA Docker file The second container
for the code for training and accessing the CARLA simulator over its Python API required
careful installation of the necessary packages.

7.1.4 GPU Improvements

Getting the simulation and the code running on the DGX-2 is one thing, but optimizing it
to utilize the available resources optimally is another important step. The previous ver-
sions of the code were running on PCs with a dedicated GPU. However, their resources
were taken upmostly by the CARLA simulator. Therefore, the training and predictions hap-
pened mainly on the PCs’ CPUs. While this code ran quite optimally on these two PCs, the
different architecture and more powerful resources of the DGX-2 requires adjustments.

While the prediction method ran about twice as fast than before on the laptop’s GPU, the
training was about the same. There are a few issues that could prevent efficient training
on such a machine.

1. There may be many sequential operations in the script that are more efficiently run
on a CPU.

2. The data loading could be a bottleneck where a lot of data is transferred between
the GPU and the system memory.

3. The batch size of a single prediction or training (i.e., fit) is too small to fully occupy
the GPU.

4. A volatile GPU usage could hint at an inefficient data loading or pre-processing of
images.

5. Some operations could be executed on the CPU rather than on the GPU.

The batch size was a bottleneck, since a by increasing the batch size the GPU utilization
increased as well. A smaller image input size of 64 by 64 pixels allows to use a four times
larger batch size while keeping thememory consumption the same. The benefit is that the
GPU is busier processing a larger batch size and hence it increases its utilization. There
are still other optimizations that should be considered, such as trying to decrease the calls
to the CARLA simulator within runs, or the transfer of stored images from the replay buffer
to the prediction and training batch.

7.2 Machine Learning Framework

We describe the main libraries that were considered for the training of the reinforcement
learning algorithm in this thesis.
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7.2.1 Tensorflow

Tensorflow is a well-known machine learning platform [83]. It was released in 2017 by the
Google Brain team in version 1. In 2019, version 2 was release, which is still the major
version in use today [84].

We adopted Tensorflow because it abstracts many layers of a machine learning process.
It reduces the time to start training amodel. Also, many tutorials are based on Tensorflow,
especially the one which inspired some of the code for this thesis [85].

7.2.2 PyTorch

PyTorch would have been the alternative to Tensorflow. It is very popular among the re-
search community, especially since many parts of the machine learning process can be
controlled.

We tried to switch over to PyTorch at somepoint during the project,mainly to better control
the usage of GPUs. However, it turned out that a significant effort is required to migrate
existing code from Tensorflow to PyTorch.

Therefore, we decided not to use PyTorch. On the other hand, Stable-Baselines3 (see sub-
section 7.3.2) uses PyTorch, and if that migration were made, the switch would be some-
what easier.

7.3 Gymnasium

Gymnasium has become a standard for structuring code and environments in the rein-
forcement learning space. It provides a standardized API to create and call public and
custom local environments for reinforcement learning tasks. An example of a public en-
vironment is CartPole [86] where the agent is a cart that should learn to balance a pole
only from its position and the pole’s angle.

In our case, the environment is the CARLA simulator. The default settings are two cars
placed behind each other in Town06.

7.3.1 Environment

A Gymnasium environment consists of at least the following two methods:

• reset() - this method sets the environment to its initial state from which a new
training run can be started.
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• step() - once an action for an agent is defined, the step method advances the
environment by a single step where the action is executed.

The environment should return the reward from that step along with new state (for exam-
ple, the next image from the agent’s camera, or the agent’s new location).

Other methods can be defined, but are optional, such as:

• render() - a graphical representation of the environment along with the agent that
is learning.

• close() - when the training is finished, the close method cleans up auxiliary re-
sources, such as closing open ports or freeing up reserved memory.

Once these methods are implemented, the environment needs to be registered with a
suitable name (e.g., CarlaSim-v0) in the local Gymnasium registry. With that name the
environment can be found by the creation method make() and it takes that name as
an argument. For example, env = gymnasium.make(’CarlaSim-v0’) would be the
appropriate way to create a new instance of the CARLA environment.

7.3.2 Stable-Baselines3

Using the Gymnasium API, it is possible to use reinforcement learning libraries that also
adhere to this standard. A well-known open source library is Stable-Baselines3 [87] (or
SB3 for short). They emerged from a need to create standardized and peer-reviewed im-
plementations of reinforcement algorithms. Since there are multiple ways to implement,
and especially tweak, RL algorithms, SB3 set out to become a de-facto industry standard
in defining default implementations. Another benefit is the feedback from the community
that helps to improve and fix the algorithms’ implementations.

Using the previously created Gymnasium-compatible environment, a SB3 provided RL al-
gorithm, such as a DQN or PPO, can be accessed and used for training a policy. We briefly
tested the SB3 connection, and it seemed towork, but ultimately, we did not implement the
training in that way since the time-frame that would have been necessary to test this im-
plementation was too long. However, in a future work, SB3 should definitely be integrated
as it rules out RL algorithm implementation errors.

7.4 Testing

An important part of every software project is to include a suite of tests. Whether they are
unit, integration or end-user tests, it is important to verify that critical assumptions about
the functionality of the code hold.
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7.4.1 CARLA Tests

We were running manual visual tests in CARLA. This mainly meant testing:

• where and if the spawn locations for vehicles exist,

• do the vehicles behave as expected while driving,

• does the camera input capture the images,

• are segmented input images correctly transformed,

• does the lane invasion sensor register road line crossings correctly.

These are some of the tests that were run, either by writing a Python script or iterating
through some tests in a Jupyter notebook. Especially the lane invasion sensor testing
was important, since it appeared that not all the line markings are registered correctly.
Near intersections there seems to be an absence ofmetadata on solid linemarkings. This
allows a vehicle to cross such a line and the lane invasion sensor does not register the
event. Such a behavior was found in amanual test after the visual inspection of the vehicle
behavior when it continued driving off-road whereas the episode should have terminated
after a solid line crossing.

7.4.2 Python Unit Tests

A more automated way to run tests is Python’s unittest library. It allows to define tests
against functions, either as a unit test or even as an integration test where multiple com-
ponents are evaluated simultaneously.

7.4.2.1 Test Driven Development

In addition, a Test Driven Development (TDD) approach was used to create such tests.
Using TDD to design the reward function is an effective way to define the expected behav-
ior of a function in a test and then investigate when the results did not match. It is also
much easier to define and test corner cases when creating tests for outlier values. This
way wewere able to identify mistakes in the reward functions which would have been very
difficult to find otherwise.

As an example: a collision should give a negative reward of -1.0. However, if the overall
reward is already at e.g. -2.0, should the negative reward be only -1.0 or -2.0 or -3.0? But
what about when the overall reward is significantly positive, e.g., +5.0. Should a collision
only add a negative reward of -1.0 resulting in this case in an overall reward of +4.0?
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TDD actually fores one to think about these scenarios in depth and what the expected out-
come should be. Overall, more than 600 test cases were implemented and automatically
tested.



Chapter 8

Experiments and Results

In this chapter, various experiments that were conducted as part of this thesis are pre-
sented. They include model evaluations, but also GPU improvements.

8.1 Fixed Steering with Improvements

After running many models that incorporated the improvements since the successful ex-
periment of the first vehicle platooning as described in subsection 8.3.2, the results were
not quite as impressive again in terms of following the leader vehicle (see for example,
section 8.2). While the follower seemed to be capable of identifying the leader vehicle
from its camera input and follow it to a certain degree, the steering always felt to be re-
duced to the very minimum. Also, when facing impossible situations, like being close to
an obstacle from which only a sharp left or right turn would have allowed to escape, it
simply could not do it due to the constraints of the small steering delta.

Hence, this last experiment of this thesis is leveraging all the improvements, such as frame
stacking and frame skipping, Gaussian reward functions, an Atari-style CNN, and the brak-
ing action. However, the steering is reverted to the fixed values, as per Table 6.1, that were
also used in the first vehicle platooning experiment.

The assumption is that the steering with delta values was too complex to learn and, there-
fore, steering was avoided whenever possible.

Hypothesis 1. A fixed steering value allows the follower to better and faster learn to control
the vehicle compared to the delta steering value.

38
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8.1.1 Experiment Setup

The parameters are similar to the ones in the experiment described in section 8.2 and can
be found in Figure A.2. The most notable change is the steering value that is again fixed
with a ˘0.2 value. Another, probably less relevant hyperparameter that was reverted is the
discount value from 0.9 to 0.99, mainly to align it again with the first vehicle platooning
experiment.

The image size is 64 by 64 pixels. Although, we did setup a second model training with
128 by 128 pixels, the simulation on that PC crashed too often for unknown reasons and
did not produce any usable results. An overview of the most important parameters can
be found in Table 8.1.

Table 8.1: Experiment setup for fixed steering with improvements

Steering Throttle Braking Resolution Reward
weights1

Discount Location

˘0.2 0.5 0.25 64x64 P/L: 0.7, S/P:
0.3, angle: 0.0

0.99 60 randomly se-
lected

1 P/L = point-line distance, S/P = scalar-projection distance.

8.1.2 Analysis

The best result from the long-list evaluation are models 880 and 910, hence they are used
for this evaluation (see Figure A.6 for all evaluated runs). (A more detailed description
of how an evaluation is performed can be found in the previous experiment in subsec-
tion 8.2.1 and subsection 8.2.2).

They are actually close to the performance of the first platooning experiment and can
identify and follow the leading vehicle in a relatively stable manner. While the steering is
wigglier since both models switch between left and right quite often, they both can con-
trol the vehicle much better. In comparison to previous experiments, where the steering
was much smoother, although it was rarely done, these two models do steer much more
often. The detailed metrics from each model can be found in Figures A.17 to A.19 and
Figures A.20 to A.22, respectively.

The assumption defined in Hypothesis 1 seems to hold true in that the steering delta was
too complex to be learned, at least in the time frame that was provided, and hence, a
simplification proved to be a good decision.

It is noteworthy, that the other improvements, frame stacking and skipping, Gaussian re-
ward function, smaller image input and the Atari-style CNN seem to work as expected.
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8.2 Throttle-Braking Comparison

The questionwhich should be investigated in this experiment originates from the observa-
tion that the way a car accelerates and brakes influences its behavior. If the acceleration is
high and the car therefore gains speed quickly, it is more difficult to control. On the other
hand, a slower acceleration could increase the control over the vehicle and reduce the
stop-and-go behavior. But, following may be more challenging with a lower acceleration
since catching up with the leader vehicle is delayed.

Hypothesis 2. A higher value for acceleration (i.e., throttle) and slowing down (i.e., braking)
leads to better following behavior at various speeds due to better control of the speed.

8.2.1 Experiment Setup

For this experiment, the latest available improvements, like the Atari-style CNN (see: sec-
tion 6.3) along with the frame stacking and skipping (see: subsubsection 8.3.2.3) is used.
It is trained with the most recent version of the reward function (see: subsection 6.4.1)
and the weights are set as per the experiment in subsection 8.3.7. It uses the Gymnasium
wrapper (see: section 7.3) but without calling the Gymnasium library directly. Instead, the
class is directly called in the script that combines the environment, the agent (i.e., the
model), and the statistics collection.

Since themain focus of this experiment is on the behavior of accelerating and braking, we
decided to use the same location for the training instead of selecting randomly many dif-
ferent spawn points. This has the advantage that time until first useful results appear is re-
duced, but also the issuewithmissing solid linemarkings in themaps is not aswidespread
as in other locations in thismap (see subsection 7.4.1with observations around lanemark-
ings from running tests in CARLA). To compensate for the reduced experience bias, the
traffic manager was set in a way so that the leader demonstrates random behavior in
terms of lane changes and making turns.

The most important parameters for this models are listed in Table 8.2. The other param-
eters were set as usual and can be found in Table A.2.

In a first step after themodel was trained for close to 5,000 episodes, a long-list with the a
few dozen of the most recent model snapshots was created. An example of the long-list
along with commentary is shown in Table A.3. From that long-list, the criteria to pick a
model for further evaluation are:

• if the follower car moves at all,

• if the follower does not crash early,
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Table 8.2: Experiment setup for throttle-braking comparison

Config Throttle Braking Resolution Reward weights1 Discount Location2

A 0.5 0.25 64x64 P/L: 0.7, S/P: 0.3, angle:
0.0

0.9 L: 7, F: 2

B 0.3 0.10 64x64 P/L: 0.7, S/P: 0.3, angle:
0.0

0.9 L: 7, F: 2

1 P/L = point-line distance, S/P = scalar-projection distance.
2 L = Leader, F = Follower.

• if it shows some signs of following,

• if the overall reward is in the top half.

In this case, experiments with different leader speeds, along with a comparison of the
models and an attempt to look for generalization features are performed. Model 1040
was picked from configuration A (see Table 8.2 for the configurations) and model 870
from configuration B.

For the evaluation multiple runs are conducted. Each run continues as long as one of the
following conditions is not met:

• Follower-leader distance greater than 100 meters,

• Follower collides with an object.

Neither of these conditions return a high negative reward since it would distort the charts
and make the interpretation of smaller, but almost indistinguishable values difficult.

8.2.2 Different Leader Speeds

The leader speeds were varied for both configurations with values between 10 to 30 km/h.
Table 8.3 presents an overview of the observations. It is interesting to note that the model
870 with configuration B (i.e., trained with throttle of 0.3 and braking of 0.1) was perform-
ing best in terms of rewards when run with the configuration for A (i.e., run with throttle
of 0.5 and braking of 0.25). The model 870 when using its intended configuration B per-
formed only well at low speeds, where it was also trained on. The model 1040 was doing
best at higher speeds, since its throttle value is higher, meaning that it is used to fewer,
but higher acceleration.
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Table 8.3: Different leader speeds

ID Config Speed LC1 Visual Observation Reward

870 A2 10 km/h No Stops after a few meters driving straight. 0.5735

870 A2 20 km/h No Starts to follow for a fewmeters, then slows down
and loses leader.

0.4331

870 A2 30 km/h No Follows quite closely, then suddenly turns slightly
left, slows down, crosses solid line and crashes
into an object.

0.3252

870 B 10 km/h No Stops after a few meters driving straight. 0.5550

870 B 20 km/h No Starts to follow for a fewmeters, then slows down
and stops as it lost sight of the leader.

0.3257

870 B 30 km/h No Starts to follow, then slows down and comes to a
halt as it lost the leader.

0.2991

1040 A 10 km/h No Follows leader closely, but too fast and crashes
into it.

0.1878

1040 A 20 km/h No Follows leader closely, turns slightly right, stops
before a solid line.

-0.2418

1040 A 30 km/h No Follows leader closely, turns slightly right, loses
sight of leader and stops.

0.2479

1 LC = Lane Change; it indicates the direction of the leader doing a lane change.
2 Configuration was inadvertently set to A for evaluation of B.

8.2.2.1 Analysis

The model with ID 870 but with the wrong configuration A applied when evaluated has
the most interesting observations. We can verify the visually observed behavior in the
statistics overview. For this evaluation, the leader car is set to drive only straight in order
to have the same comparison but for different leader speeds.

In the first chart of Figure 8.1 we notice that when the leader drives faster the follower
does more steps where it accelerates. This can be seen in the straight values, which is
the action where the acceleration is applied along with the previous steering value. Also,
compared to lower speeds, the number of actions where the follower brakes is lower.

In addition, the situation at 30 km/h where the follower turns slightly left can be observed
in the second chart between steps 150 and 200 where a few left turn actions appear. This
can be confirmed in the third chart where the steering value is plotted. A negative value
means that the wheels are turned to the left (and vice versa a positive value implies a right
turn).

In Figure 8.2 the metrics that influence the rewards are shown. The grey area indicates
where positive rewards are given with the dotted black line representing the highest re-
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ward. The total reward is a weighted sum of the different features, for example, the scalar-
projected distance contributes 30% to the total reward.

Various behaviors of the two cars can be derived from these charts. Using the 30 km/h
run, we can see that the angle between the cars is increasing when the follower starts to
turn at about step 150. Since the leader is driving straight in this experiment we can infer
that the angle between the two cars is increasing due to the follower turning. However,
this is not reflected in the total reward because the angle does not contribute to it.

Finally, in Figure 8.3 additional metrics are plotted. In the first chart we can observe the
leader’s speed set to the different fixed values at 10, 20 and 30 km/h, respectively. Also,
the left turning action of the follower at step 150 and speed 30 km/h leads to a few broken
(or dotted) line markings were crossed. Eventually, just before crashing into an object on
the side of the road, two solid lines were crossed by the follower.

As a comparison, the results of the other two models, 870 with configuration B and 1040
with configuration A, can be found in Figures A.8 to A.10 and Figures A.11 to A.13.

8.2.3 Different Leader Directions

A second evaluation was conducted where the leader switched to the left or right lane
shortly after the start, or stayed in the center lane (similar to the previous experiment). This
evaluation should demonstrate whether the follower can adapt to the leader’s behavior
and follow correctly.

8.2.3.1 Analysis

From the visual observation overview in Table 8.4, both models have the relative highest
reward when the leader drives straight. This could be due to the fact that they are perfectly
aligned in the beginning, and as soon as the leader turns left or right, the point-line distance
increases. Since it has a contribution of 70% to the overall reward, it reduces it significantly,
but it should also provide the follower enough incentive to reduce the distance again.

When looking at the third chart in Figure 8.4 we notice the leader’s steering when turning
left or right. This is also reflected in the angle plot in Figure 8.5 where the initial spike is
due to the leader turning left or right.

As observed with model 1040 when the leader turns left, the follower avoids a collision
when it catches up with the leader. In the Euclidean distance chart this situation is re-
flected by the green line around steps 80 to 100 where the cars are too close. Also in the
Km/h chart in Figure 8.6 the green line, representing the left-lane change scenario, indi-
cates the follower increasing the speed to catch up.
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Figure 8.1: Model ID 870 config A - different leader speeds experiment (part 1 of 3).

For completion, the results formodel 870with configuration B can be found in Figures A.14
to A.16.

8.2.3.2 Direct Model Comparison

We now want to directly compare the twomodels, 870 with configuration B and 1040 with
configuration A, respectively. The setup is at the same location as where the training took
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Figure 8.2: Model ID 870 config A - different leader speeds experiment (part 2 of 3).

place with the leader driving straight ahead at 20 km/h. Bothmodels collected the highest
reward at that setting.

Even though the model with ID 1040 and the higher acceleration can keep up with the
leader for a longer period of time, it receives a lower total reward than the model that ter-
minates early due to the leader-follower distance going above 100 meters. Up until about
100 steps, the model with ID 1040 performed better than the other with ID 870, but then
the rewards per step became negative.
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Figure 8.3: Model ID 870 config A - different leader speeds experiment (part 3 of 3).

One reason is that the model with ID 1040 steered to the right, which is indicated in the
second and third charts of Figure 8.7. An additional cause for the drop in performance is
can be observed in the second chart in Figure 8.8 where the point-line distance between
these two cars is in the negative reward area. The follower turned slightly to the right and
continued to drive close to the leader, but only at the end turned it back, but then it was
too late to compensate for it.

The follower’s speed around this phase was also above the leader’s, which almost led to
a collision. Again, this is evidenced in the first chart in Figure 8.9 where the speed tops
leader’s 20 km/h.
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Table 8.4: Different leader locations

ID Config Speed LC1 Visual Observation Reward

870 B 20 km/h No Stops after a few meters driving straight. 0.3145

870 B 20 km/h Right Stops after a few meters driving straight. -0.3872

870 B 20 km/h Left Starts to follow, but loses the leader after a
while.

-0.0273

1040 A 20 km/h No Follows leader initially, turns slightly right, then
corrects to the left, but stops above a solid line.

-0.2585

1040 A 20 km/h Right Follows leader closely, even catches up, but
does not change to the right when the leader
does, but to the left and stops.

-0.6138

1040 A 20 km/h Left Follows leader to the left, but then continues
straight, avoids a crash and stops above a solid
line

-0.5596

1 LC = Lane Change; it indicates the direction of the leader doing a lane change.

8.2.4 Unseen Location - Generalization

The last step is to compare bothmodels using the same settings from the direct compari-
son, but at a location that was never visited by any of the twomodels during their training.
This should give some indication how well the trained models generalize.

There exist many locations in Town06 that were never visited by the two vehicles. One
of these locations is at position 410 for the leader and 111 for the follower in Town06. A
special feature of this location is the left curve which the leader is on and follows. For the
follower there are some unseen markings on the road where the lane diverts. In addition,
the starting position has the leader set slightly left to the follower, hence they are not
perfectly aligned as in the training setting. An impression of the setting can be seen in
Figure 8.10.

We set the throttle to 0.5, the brake to 0.25 (i.e., configuration A) and the leader speed to
20 km/h. Mainly because the model with ID 1040 was trained on this and also because
there were surprisingly good results with model ID 870 that was trained on 0.3 and 0.1,
respectively.

The resulting observations are noted in Table 8.5.

8.2.4.1 Analysis

It seems that again, themodel with ID 870 but configuration A is performing better than the
other model with ID 1040. Even though both models have previously indicated a behavior
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Figure 8.4: Model ID 1040 config A - different leader locations experiment (part 1 of 3).

that could follow the leader when it is slightly to the left, both models did not succeed in
following the leading vehicle properly.

When we look at the first chart in Figure 8.11 it is obvious that no enough left actions were
taken. The model with ID 870 took a few more left actions, which can be also be noticed
in the second chart, especially early on which would be crucial to be able to follow the
leader. However, both models eventually resorted to the braking action.
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Figure 8.5: Model ID 1040 config A - different leader locations experiment (part 2 of 3).

The steps 100 to 150 in the first plot of Figure 8.12 may be surprising since the distance is
zero and even positive. This would indicate that the follower overtook the leader. However,
in this case the leader followed the left lane which makes a U-turn and at some point was
driving in the opposite direction from the follower. The third chart that tracks the angle
between the cars confirms this behavior.

Even though the follower crossed a solid line, it was not registered as there is no increase
visible in the last chart in Figure 8.13. Some solid lines in the maps in CARLA, especially
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Figure 8.6: Model ID 1040 config A - different leader locations experiment (part 3 of 3).

Table 8.5: Unseen location at 20 km/h

ID Config Speed LC1 Visual Observation Reward

870 A 20 km/h No Starts to follow, even turns slightly left in the direc-
tion of the leader, but it does not turn enough and
stops

-0.6583

1040 A 20 km/h No Starts driving straight ahead even though the
leader is on the left side, then it loses leader and
stops.

-0.7937

1 LC = Lane Change; it indicates the direction of the leader doing a lane change.

around intersections and exits are not properly registered as such. We do not know if this
is intentional or a flaw, however, this may affect the learning somewhat since at some
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Figure 8.7: Model IDs 870 (blue - config B) and 1040 (orange - config A) at 20 km/h leader
speed (part 1 of 3).

locations there is no negative reward when crossing a solid line. It seems that at this U-
turn this may be the case.
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Figure 8.8: Model IDs 870 (blue - config B) and 1040 (orange - config A) at 20 km/h leader
speed (part 2 of 3).

8.2.5 Assessment

The assessment of the evaluation for the throttle-braking comparison can be split into
two parts.

Throttle-Braking The values for throttle and braking seem to performoptimally when set
to the higher values of 0.5 and 0.25, respectively. However, a surprisingly good result from



Chapter 8. Experiments and Results 53

Figure 8.9: Model IDs 870 (blue - config B) and 1040 (orange - config A) at 20 km/h leader
speed (part 3 of 3).

themodel that was trained on the lower values of 0.3 and 0.1 but whichwas evaluatedwith
the higher values indicated that it can adapt to different settings. The correct behavior of
following and keeping the distance seems to be embedded in the model’s parameters,
independently of the throttle and braking values it is applied to. Nonetheless, the result
should not be overestimated, since only a small subset of possible values was evaluated.

Model Performance Even though the models showed some signs of following behavior,
all of the evaluations did not exceed the expectations of sustained vehicle platooning.
While repeated evaluations with the same settings indicated that the models do behave
very similarly, and hence act not just in a random fashion, there needs to be further tuning
in the area of rewards and steering, potentially even adjusting the camera input resolution.
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Figure 8.10: The starting position at the previously unseen location 410:111.

8.2.5.1 Analysis

Therefore, as defined in Hypothesis 2, the higher values for steering and braking do lead
to better following behavior, but so does a model that was trained with lower values but
then run with the higher values.

8.2.5.2 Enhancements

Steering It seems that the steering is quite difficult since the follower often choses to
drive straight, brake or slow down. Steering left and right seems to divert the vehicle too
quickly from the ideal line, or it may be difficult to get back to the center line.

In previous models, where the steering was just a fixed value rather than a delta, setting
the wheels straight was just a matter of taking that action. Performing an abrupt steering
maneuver, such as when changing lanes, is not possible with a fixed small steering delta.
While it increases the driving stability, the maneuverability is limited.
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Figure 8.11: Unseen location at 20 km/h leader speed (part 1 of 3).

Ideally, a continuous steering value based on a distribution that takes the current steering
angle into account would be implemented. However, this results in added complexity and
needs to be tested extensively.

Rewards The reward function may need to be fine-tuned to provide better indications of
where the rewards increase. Especially the point-line distance drops off quite early and
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Figure 8.12: Unseen location at 20 km/h leader speed (part 2 of 3).

the positive reward area may need to be extended so that the signal of changing rewards
could picked up even from further away.

Camera The camera’s input resolution of 64 by 64 pixels does seem to work up to a
certain distance. However, if the leader is further away then the follower’s camera is not
able to identify the leader’s position. An increase in the resolution to 128x128 or higher
allows for better tracking, however, the training time increases due to the tradeoff between
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Figure 8.13: Unseen location at 20 km/h leader speed (part 3 of 3).

memory and batch size. A higher resolution requires more memory for a single batch,
hence the GPU’s memory limit is exhausted much faster. For example, a doubling of the
resolution quadruples the size of the image. Using a better GPU with more memory and a
taking a longer training time into account would offset such an enhancement.

8.3 Previous Experiments

The fixed steering and throttle-braking experiment were done using the most recent im-
provements in the reward function along with frame stacking to train their models. How-
ever, in previous iterations, earlier models were analyzed to assess the impact of hyperpa-
rameter or other changes. In this section, these experiments are described in ascending
order so that later descriptions build on previous experiments.
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Most notably is the first vehicle platooning experiment, described in subsection 8.3.2,
which generated a model that is capable of identifying (or extracting the pixels of) the
leader vehicle, imitate its actions and follow it for an extended period of time. It even gen-
eralizes in the sense that the platoon ventured into areas on that map which were not
visited during training. Also, it crosses intersections successfully and made two left turns
in left-bent curves.

8.3.1 CARLA Simulator Experiments

The milestone 2 goal is to train a single agent (or car) to follow a straight lane using re-
inforcement learning. The challenge is to implement an RL algorithm in a way that it can
communicatewith the CARLA server, collect samples from the environment and use these
for the training.

8.3.1.1 Online Tutorials

There are a few publicly available implementations that use RL with CARLA, however, al-
most all of themwere quite outdated. The problem with older implementations is less the
logic, which remains roughly the same, but the outdated libraries that were used. Most
of them use Tensorflow 1, which is now in its major version 2 that had many breaking
changes. While an old version of Tensorflow can usually be installed, the problem is with
the dependencies of other packages, which are sometimes no longer compatible or just
throw strange errors. However, one tutorial that we found had very hands-on instructions
that allowed to implement a simple DQN algorithm from scratch and connect it to the
CARLA simulator [85].

The completion of this tutorial took a few hours and it resulted in a working implementa-
tion of a Double DQN algorithm that was trained using the CARLA simulator. The convo-
lutional neural network (CNN) for the image processing is a Keras Xception model [88],
however, it has almost a hundred millions of parameters and is probably too complex for
this task. This CNN was later changed to the InceptionV3 model, which should be a bit
smaller, however it still had around 22 million parameters to train. This is too much for
this use case and the available computing power and therefore, the next milestone has
the task of reducing the convolution part. Also, the next iteration should include frame
stacking so that the model has a sense of motion and time.

8.3.1.2 Experiments

We ran about 20 experiments during the twoweek phase ofmilestone 2. Themajority was
to test the simulator environment and the learning algorithm.
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At first, the experiment setup was quite trivial by providing the agent with a reward for
moving above a certain low speed (in this case 5 km/h), and penalizing it for crossing the
broken lines while terminating episodes after crossing solid lines or crashing.

The crossing of lines is registered using a lane invasion sensor in the CARLA simulator.
This sensor registers all lane changes and the associated line crossing. CARLA uses line
names as defined by the OpenDrive standard. For this thesis, the labels in Table 8.6 are
relevant.

Table 8.6: OpenDrive Line Marking Labels.

Label Description

Broken Dotted, or broken, line marking.

Solid A single solid line, usually at the side of the road before a pedestrian walk or grass
begins.

SolidSolid A double solid line, often separates two lanes in opposite direction.

NONE Often, a single solid line, but could reference not categorized lane markings, too.

By using this information, a reward can be defined that informs the agent of a line crossing.

8.3.1.3 Challenges

What became noticeable was while watching the training for a few episodes it seemed
that the observed behavior did not permeate through to the trained model. At first, a gen-
eral unsuitability of the Double DQN model for such a complex task was assumed. After
some debugging it was noticed that the training part was not called after sampling and
predicting.

An indication for this behavior could have been that the level of reward decreased with the
epsilon decay. This fact was noted, but the conclusion was not yet drawn at that point.
The reason for the missing training call was mainly due to the fact that the DQN is self-
implemented and heavily modified from the initial adaptation as described in subsubsec-
tion 8.3.1.1.

After fixing the training part, the model learned successfully and settled on the optimal
policy of just running straight ahead to collect the most reward. But running straight was
the only action it learned from the training setup. When letting it run for longer than 30
seconds (to which the training time was restricted), it just kept going straight, even if there
was a curve ahead.

Another topic that will probably follow through to the end of this thesis is the reward en-
gineering. Giving rewards has to be thought through properly, since the rewards are the
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values that the model optimizes for. According to [20] the reward function needs to be
properly designed and validated.

After all, the efforts spent in this milestone were worth it since the accumulated learnings,
the setup of the infrastructure and the increasing familiarity with the CARLA simulator and
the reinforcement learning concepts led to the successful training of a line-following car.

8.3.2 First Vehicle Platooning Scenario

In milestone 3, the goal is to train a model that can follow the leader in a simple scenario.
Hence, a second car, the leader car, is added that simply drives straight ahead along a
road. In Hypothesis 3 we define the parts that are of interest in this experiment.

Hypothesis 3. Apositive incentive to drive rather than to stand still, with negative incentives
to cross broken and solid lines leads to a stable following behavior in a simple obstacle-free
scenario.

The model is trained with a simple reward function:

• small positive incentive to drive above zero kilometers per hour,

• positive incentive to stay within 20 to 50 meters Euclidean distance to the leader,

• small negative incentive of when crossing a broken (i.e, dotted) line,

• negative reward of -1 alongwith the termination of the episodewhen crossing a solid
line or colliding with an object.

CNN We reduced the CNN from a massive InceptionV3 with about 22 million trainable
parameters down to a much simpler CNN with around 82’000 trainable parameters when
the input image’s resolution is at 128 by 128 pixels. This increased the training speed and
reduced the model size significantly: from 245 MB for the InceptionV3 down to 360 KB
for this simple CNN. The new CNN has three convolutional layers, each consisting of 64
filters with a stride of 3x3. The final layer is a Dense layer with output neurons equal to the
number of actions (e.g. 3 for forward, left and right)

Segmentation Camera The segmentation camera is used instead of an RGB camera
with the reason that a pre-processed segmentation should help the CNN to identify rele-
vant features. CARLA provides a segmentation camera as part of its suite of sensors.

Training episodes At first, it seemed that the model learns quite quickly and not a lot of
simulation time is required to arrive at an acceptable model performance. However, now
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that some models were trained over more than 20’000 episodes, it turns out that they
become way more stable and flexible, especially dealing with new situations.

Synchronous mode Due to other higher priorities for the current milestone (e.g. input
segmentation, evaluation automation, location accuracy using vectors), the synchronous
mode has not been implemented yet. As an approximation, the frames per second (FPS)
were observed to be around 4. Which means that the training sequence can process
around four input images per second and train the model with it.

Therefore, the time to take images using the camera was set to 4 per second. This is not
as accurate as synchronous mode, but it seems to be good enough for now to train better
models than previously. However, as soon as models of different complexity are trained,
this estimate may not be sufficiently accurate and hence, the synchronous mode should
be used.

Other configurations The rest of the configurations can be found in Table A.1. Most no-
tably is the fixed steering value of ˘0.2, that was chosen for this experiment as per Ta-
ble 6.1.

8.3.2.1 Evaluation

At different stages during the training, especially when an obvious increase in rewards
is observed in the training monitoring charts in Tensorboard, a few of the more recently
saved down versions of the model were evaluated. An example of the monitoring chart
for this experiment can be found in Figure A.7.

The most interesting evaluations were two models, where the first with ID 3930 was used
as the basis to continue the training that resulted in the second model with ID 9640. The
IDs refer to the number of episodes that they were trained on. The second model is there-
fore trained on a total of 3, 930 ` 9, 640 “ 13, 570 episodes which lasted over two days of
training time.

For the evaluation as described in Table 8.7, the leader speed was set to 25 km/h, the
autopilot for the leader vehicle was activated and instructed to only drive straight ahead,
however respecting the lanes including curves and intersections. The traffic lights were
all set to green so that the leader does not have to perform a full stop since it was not part
of the training as the follower has not yet the ability to brake (only to slow down).

All long-list evaluations can be found in Figure A.3.
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Table 8.7: Selected model evaluation in first platooning experiment.

ID Speed LC1 Visual Observation

9340 25 km/h No
• Follows quite well, even in new situations

• In the beginning it stays in the lane

• Overall, good, but not too stable

9640 25 km/h No
• Very slow start, but catches up quickly

• It follows the leader extremely well, even slowing down when
the leader slows down at an intersection, but also navigating
the left curve (twice!)

• The interesting part is that in Town06 there is another vehicle
placed besides the road. When it gets into the followers view
the follower gets confused because it identifies two vehicles.
After the leader vehicle is out of sight, it turns to the stationary
vehicle (as expected) and tries to follow up, hence crashing next
into it.

• This is a proof that the model learned to identify the leader car
and that it should follow it. Once it is out of sight, it does no
longer know what to do.

1 LC = Lane Change; it indicates the direction of the leader doing a lane change.

8.3.2.2 Analysis

As defined in Hypothesis 3 the positive incentive to drive had definitely an impact in that
the follower car started to drive. Also, the negative incentives to cross solid and broken
lines had some impact, although not in the desired stability. The follower crossed broken
lines even though there was no need to. Also, but this was not specified in the hypothesis,
the follower’s steering seemed to be somewhat unstable in the sense that it seemed to
zigzag at some points. This may be due to the fixed steering value.

8.3.2.3 Enhancements

Even thought the model with ID 9640 performs very well and it was good to see the
progress, there are a few things that can be improved.

Camera The input image is currently 128 by 128 pixels. We could increase the input to
higher resolutions which would allow to track some objects better and observe them from
further away. Currently, with a distance of about 150meters the leader car disappears from
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the input image since it is smaller than 1 pixel in size. The follower car loses sight of it and
gets disoriented.

Frame Stacking With only one frame from the camera image as the input, the model
has no sense of direction or history. If more frames are stacked on top of each other
and processed in the CNN, then the direction of the movement of the leader car can be
extracted from the input. This is also done in [71] where four frames are stacked.

Frame Skipping Another feature from [71] is the frame skipping where the model is
trained only every fourth frame. In the meantime, the previous action is simply repeated.
This is to collect more experiences since the ones at the beginning appear quite often in
the replay buffer, but later states are scarcer. Using frame stacking with the same value of
four in combinationwith frame skipping ensures that actually all frames during an episode
are in the replay buffer.

Steering The model with ID 9640 wiggles quite a lot due to the fixed steering value. To
smoothen the movements, a steering delta, rather than only a fixed value can be applied.

Bias In this experiment, the leader and follower started from the same initial location
with the leader always driving straight. To add more bias to the replay buffer, different
locations should be used in addition to varying leader behavior.

8.3.3 Implementing Upgrades

In milestone 4 the focus was on implementing the changes from the previous experiment,
such as frame stacking or adding more different experiences. This resulted in only a min-
imal amount of time left to perform experiments. What is noticeable from some early
screenings, is, that the follower is more stable. The left/right jerks of the follower are
greatly reduced and much smoother due to the delta value for steering rather a fixed left-
/right number. However, while the follower can identify and follow the leader, it still crosses
the dotted lines or bumps into the leader if it stops.

8.3.3.1 Observations

Model Fluctuations Models are saved to disk every ten episodes in order to reload those
that look interesting or promising from the training monitoring charts. When evaluating
the differentmodels, it becomes apparent, that the behavior of the follower can drastically
differ between ten episodes. It may be that the follower identifies and follows the leader in
onemodel, but it fails tomove at all in the nextmodel that is only ten episodes apart. These
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stark fluctuations make it challenging to assess which model is promising. It requires to
run and watch many models.

Mapping Errors The lane invasion sensor is used to register when the follower crosses a
broken or solid line. At some spawn locations we noticed that the sensor does not register
a line crossing at all. Primarily around intersections, wheremany different lines are visible,
they are not registered as such in the metadata which the lane invasion sensor could
detect.

This is especially problematicwhen solid line crossings are not registered, since an episode
is terminated in that event along with a high negative reward. It may appear to the follower
that in certain occasions the crossing of a solid line has no impact. In that case, themodel
may learn the wrong behavior.

8.3.4 Spawn Points, Atari and Reward Function

Spawn Points One feedback from the interim presentation was to add more different
experiences. This implies that the locations from which each episode starts should be
randomly chosen. The challenge with finding such locations, is, that two such points are
required that are aligned in a way that the follower has sight of the leader.

In Town06 there exist 435 different so-called spawn points. These are points defined by
themap creators. They are callable from the script and they are guaranteed to lie on a road
and in a location fromwhich any car could start (e.g., not in the middle of an intersection).
The challenge was to go through many or all of these points and identify those which
satisfy the criteria of being aligned, i.e., ideally in-line on the same lane.

By using a script, this arduous task was greatly simplified, but it took a few hours to locate
enough valid spawn points that could be used for the training. In total, 60 different spawn
point locations were used for the training. Listing A.1 contains all spawn point locations
that were used for the training. Figure A.1 provides an example of the mapping exercise
that was conducted to identify suitable spawn points.

Frame Stacking In the last milestone we implemented the frame stacking feature. It al-
lows to stack an arbitrary number of frames on top of each other. The additional dimen-
sions are simply added to the color channel. For example, by stacking four images with
three color channels, an image with 12 color channels results.
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Replay Buffer Size Another hyperparameter that can be tuned is the size of the replay
buffer. It needs to be as large as possible, so that the memory (either system or GPU) is
utilized as much as possible.

With a frame stacking of four in place, the size of the input image is increased by four, but
two times: for the current and the next observation. Since the available system memory
was not fully utilized in prior experiments, this is an opportunity to optimize its usage.

The calculation is as following:

1 image height * image width * color channels * stacked frames * bytes per ê

pixel * 2 observations.

Since we use an unsigned integer of size 32 bits to represent values from 0 to 256, a pixel
is 4 byte in size (thiswas later changed to a uint8 size, reducing the size by a another factor
of four). Hence a 128 by 128 pixel RGB image results in a size of 1.5MB as per Equation 8.1
(the division by 1,024 is necessary to convert from bytes to megabytes).

128 ˆ 128 ˆ 3 ˆ 4 ˆ 4 ˆ 2
1024 ˆ 1024 “ 1.5MB (8.1)

With 32GB of system memory available, minus a few gigabytes that CARLA and the oper-
ating system itself requires, we can safely use a replay buffer of 15,000 images as Equa-
tion 8.2 demonstrates.

15000 ˆ 1.5
1024 “ 21.97GB (8.2)

Atari CNN In addition, the CNN is switched from the custom CNN with three hidden lay-
ers each with 64 filters to the Atari CNN as proposed by [71], with implementation details
by [72]. It increased the trainable parameters from around 82,000 to over 4.8 million, how-
ever runs twice as fast as the previous custom CNN, probably due to not using an average
pooling at each layer. With this change, the CNN is a factor less to consider that could
influence the results. Nonetheless, further experiments with different CNNs could be con-
ducted, of course.

Reward Function Finally, the reward function is improved from a simple Euclidean dis-
tance metric to multiple functions that calculate the point-line and the scalar-projection
distance along with the angle as described in subsection 6.4.1.

The changes are listed in Table 8.8.
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Table 8.8: Experiment setup for the replay buffer increase.

Parameter Change Rationale

Spawn points From 1 to 60 locations Add more spawn points to increase the vari-
ance in the replay buffer.

Replay buffer From 10,000 to 15,000 Increase by 5,000 due to available system
memory.

Frame stacking From 1 to 4 As per the Atari paper [71], 4 frames are
stacked.

Atari CNN From custom to Atari CNN CNN as per the Atari paper [71].

Reward function From simple to complex The simple reward function which was based
on the Euclidean distance is improved with
scalar-projection and point-line distances, and
angle.

8.3.4.1 Observations

The resulting models were evaluated at three different locations, which were part of the
training

After a total training time of over 72h for 10,000 episodes, the results as listed in Table 8.9
are mixed. It may be that due to the higher number of spawn locations, a longer training
time is required to achieve the same number of experiences as in a single location setting.
Nonetheless, the follower shows some signs of activity, just not yet the desired following
behavior.

8.3.5 Reduced Input Size

In another experiment, after receiving access to the NVIDIA DGX-2 HPC (see subsubsec-
tion 7.1.2.2 for details), the image input size is reduced to allow for a higher batch size and
larger replay buffer. It is in contrast to the previous observation that a large input image
could help identifying objects from further away. While the GPU and system memory lim-
its impose an upper limit on how many images can be stored, a faster GPU can process
a larger batch size, hence train the model on more samples in one step.

Also, a smaller CNN should speed up the training and prediction phases. By reducing the
image input size, the number of trainable parameters is reduced by almost a factor of 9
from 4,816,037 to 621,733. The caveat is the smaller number of distinct states that can be
identified by the CNN.

Two models were trained, one with 128 by 128 and the other with 64 by 64 input size. The
batch size for the 64 by 64 pixel model was increase from 256 to 1,024.
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Table 8.9: Results of the spawn points, Atari CNN and new reward function experiment.

ID Location 7:2, 30 km/h Location 111:131, 30 km/h Location 317:404, 30 km/h

9860 No action, braking only Follows quite good Slight forward, then stops

9870 No movement No movement No movement

9880 Slight forward Follows, then starts turning
rather than going straight

Slight forward, then stops

9900 Crashes early Crashes early Turns only right, then
crashes

9960 No movement Minimal action, braking
mainly

Minimal action, braking
mainly

9890 No movement Follows a bit, then crashes Just slight forward, then
stops

9910 Crashes early Follows straight, then col-
lides with leader

Drives, but crashes

9920 Only braking Follows until left exit, then
stops

Only braking

9999 Follows a bit, but crashes
early

Follows straight, then col-
lides with leader

Drives, then crashes

9940 Crashes early Waits, then crashes Drives in a left circle

9930 Crashes early Waits, then crashes Drives in a left circle

9980 Crashes early Waits, then crashes Slight forward, then brakes

9950 No action No action Drives left, then crashes

9970 No action Waits, then small advance,
stops

Slight forward, then stops

9990 Crashes early Follows straight, then turns
right

Follows a bit, then veers to
the left and crashes

Also, All changes are listed in Table 8.10.

Table 8.10: Experiment setup for the reduced input size experiment.

Parameter Change Rationale

Image size From 128x128 to 64x64 Reducing the image size by 4x from 1.5MB to
0.375MB.

Batch size From 64 to 1,024 Increasing the batch size to better utilize the
GPU.

Normalization Rewards are not normalized Investigate the effect of higher cumulative re-
turns.
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8.3.5.1 Observations

After 5,000 episodes, the loss of the smaller model of 64 by 64 pixels seemed to have
exploded. Most likely this was due to the rewards not being normalized. Also, it overfit on
a specific action, which was confirmed in the evaluation. Every model that was evaluated
only turned left, without any other action.

The 128 by 128 pixel models expressed more diverse actions, but it seemed not to rec-
ognize the leader vehicle. At some points, even when driving straight ahead, it suddenly
turned left or right and crashed.

The results can be found in Table A.4.

In a next experiment, the normalization of the rewards needs to be re-enabled.

8.3.6 Finer Steering

In milestone 6 the experiment is based on the observation that the steering delta might
be too coarse and it is difficult for the follower to stay aligned. Mainly, some experiments
showed that almost no steering was performed, which indicated that it may be too com-
plex and the optimal strategy is to avoid steering as much as possible.

In contrast to the first platooning experiment described in subsection 8.3.2 where the
follower could simply reset the angle of wheels to zero, this is not possible with a steering
delta. There, multiple steps are required to align the wheels as desired. Also, since the
delta uses floating points, minor inaccuracies can emerge from adding and subtracting
the delta.

The changes are listed in Table 8.11.

Table 8.11: Experiment setup for the finer steering experiment.

Parameter Change Rationale

Steering delta From 0.01 to 0.005 Doubling the steps from 200 to 400 for a full left-to-right
steering.

8.3.6.1 Observations

From visual observations it seems that somemodelswork quitewell in terms of following.

Reduced Distance What is common is that the follower stops as soon as it loses sight
of the leader. This happensmuch earlier at a distance around 70meters due to the smaller
64 by 64 pixel resolution of the camera input.
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The distance of 70 meters is about half of the 150 meters with an 128 by 128 resolution.
This distance can be reached quite quickly, and hence the follower is stopping rather early
if the leader is too fast.

Reduced Steering Also, these models rarely turn left or right, which indicates that the
steering is still too complicated. The resulting negative rewards are too high when they
start turning so the best strategy is to turn only when absolutely needed or not at all.

Training Time The speed up from the reduced image size is about 1 to 7 frames per
second on the CPU. In addition, the replay buffer from which the Double DQN algorithm
samples is increased by four. Ultimately, this should lead to a more robust model since
the experiences differ.

8.3.7 Reward Weights

Since the follower is not able to determine from the input image the angle at which it faces
the leader vehicle, this reward was removed by setting its weight to the overall reward to
zero.

The other two reward functions, the point-line and the scalar-projection distance (see sub-
section 6.4.1 for details), an experiment was designed to determine the optimal weights.
To narrow down the possible weights, two different configurations were run. The first had
a weight of 0.3 for the point-line distance, and a 0.7 weight for the scalar-projection dis-
tance. The second configuration switched the weights as can be seen in Table 8.12.

Table 8.12: Experiment setup for the reward weights comparison.

Config P/L1 S/P2

A 0.3 0.7

B 0.7 0.3
1 P/L = point-line distance.
2 S/P = scalar-projection distance.

8.3.7.1 Observations

The evaluation results for configA can be found in Figure A.4 and for config b in Figure A.5.

The config B seems to outperform config A, since it shows some signs of following be-
havior. Also, the collected reward during training is higher. This can be seen in Figure 8.14.
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Figure 8.14: Reward comparison for config A (summer-bush-2) and config B (scarlet-
spaceship-1)

It seems that config B is more likely to collect higher rewards, since previous runs with the
same configuration also show a higher reward as seen in Figure 8.15 compared to other
runs with config A (Figure 8.16).

Going forward, the config B will be used for experiments.

Figure 8.15: Reward comparison for previous runs with config B.

8.4 Performance Comparison

What we noticed when launching the training for the first time without any modifications
to the code apart from the upgrade to Tensorflow 2, was, that the training did not run as
fast as we expected. It did in some cases not even run as fast as on the local computer’s
CPU.
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Figure 8.16: Reward comparison for previous runs with config A.

There are multiple reasons that could slow down such an execution.

Parallelization First, the majority of the code is not parallelizable. Much of it is setting
up the CARLA environment, sending commands to the server, retrieving image and other
sensor data, along with storing this data in variables. This part is not suitable for parallel
processing, since it is a sequence of actions which the two cars finally require to execute.

Tensorflow Second, Tensorflow reserves by default the complete available sharedmem-
ory of the GPU. In the case of DGX-2 which has NVIDIA Tesla V100 GPUs, it reserves 32
GB of memory. There is no space left for any other application data.

CPU Third, while the training and prediction parts are the only ones relevant for a GPU
parallelization, the remaining part could be run on the CPU. Currently, everything is in-
structed to run on the same GPU, however, parts of it could be either run on a separate
GPU or on the CPU itself.

Memory Fourth, it is unclear which data is stored on the GPU’s sharedmemory and if the
system memory is also used. Transferring data between different memory types or even
between memory on different GPUs induces a latency that may accumulate if memory is
accessed frequently. Therefore, it is important to control the data that is often required to
reside close to the GPU (such as the replay buffer) whereas information on the training
progress can reside in system memory.

These reasons need to be investigated further and may help to improve the training per-
formance significantly. An experiment was run which compares the times for predictions
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and trainings (i.e., fits) on the DGX-2 and the local PCs (CPU and GPU). The results are
presented in Figure 8.17 and Figure 8.18.

The number prefixes 01 and 02 refer to the two local PCs, 128 refers to the batch size,
and diff_GPU or same_GPU means that the CARLA simulator was running on a different
or on the same GPU as the training. The last two entries with 2048/16_128 refer to a batch
size of 2,048 that was split into 16minibatches, which equals 128 individual batches when
calling the fit function.

This split seems to reduce the time per fit of a 128 size minibatch significantly. However,
running it on the DGX-2 seems slower overall, independently if CARLA and the script runs
on the same GPU or not. What is definitely a massive speed up is the time for a single
fit on the PC on a CPU versus the GPU. However, the inference seems faster on the CPU
again.

Figure 8.17: Comparison time for a training (fit) instruction to complete (in milliseconds).
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Figure 8.18: Comparison time for a prediction instruction to complete (in microseconds).



Chapter 9

Conclusion

Our main contribution is the successful training of a policy using reinforcement learning
for a follower car in a platooning scenario. Specifically, the trained model allows the fol-
lower car to form and maintain a platoon by identifying and adapting its action to the
leader vehicle.

9.1 Achievements and Contributions

The successful training of two different models that enable a follower car to form and
maintain a platoon in a 3D multi-lane street scenario is a great achievement of this the-
sis. These models were trained with the Double Deep Q-Network reinforcement learning
algorithm and by using the CARLA simulator for the environment.

9.1.1 Main Contribution

The initial research on existingwork revealed thatwhile reinforcement learning approaches
are used in the field of platooning, they are rarely, if at all, used to enable participating ve-
hicles to join and to maintain a platoon. Hence, a model which is trained specifically for
platooning has, to our knowledge, not been released previously.

9.1.2 Other Achievements

Based on the task description for this thesis, multi-lane scenarios, crossing of intersec-
tions, dynamic obstacles in the form of traffic lights and random behavior of the leader
vehicle are all requirements that were achieved as part of this thesis.

74
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9.1.3 Code Base

Even though the code base was only rarely highlighted in this report, a significant amount
of time was spent on its development. It is another important part that contributed to the
achievements of this thesis. Crucially, it enables the seamless interaction of the Python-
based model training with the CARLA simulator. Additionally, the evaluation, performance
metric extraction, chart generation and video recording generation of eachmodel is highly
automated. With only a few parameters to set, a great number of different models can be
processed, hence reducing the time from designing an experiment to the result genera-
tion.

9.2 Learnings

Many more models were trained, some with more others with fewer resulting capabilities
of identifying and following a leader car. However, these intermediate steps were neces-
sary to improve the algorithm based on the learnings from each experiment.

An important learning was how the design of actions greatly influences the agent’s ability
to learn a task, but also how increased complexity prolongs the training time. This was
especially true for the delta steering, where the complexity was probably too high. Due to
this, not all desiredmilestones could be achieved, such as the platoon navigating in dense
traffic or re-forming after a split. Nonetheless, these goals seem to be feasible, especially
with more training time or computing power available.

Also, the lane keeping turned out to be more difficult to achieve than initially thought. It
seems that simply providing rewards for staying aligned with the leading vehicle is not
sufficient, since the follower frequently deviates from the optimal path. Actually, it is not
that surprising when considering that it never learned the concept of a lane. Something
that could be achieved with a dedicated training on lane keeping, potentially combined
with a hierarchical reinforcement learning approach.

Another element is the CNN which seemed to work well in identifying the leader vehicle
from the input image. However, the identification of lanemarkings could have played a role
in the difficulty of lane keeping. While the main focus of the model should be to follow the
leader, the various lane markings could potentially have added complexity to the training
of the CNN. An idea is to remove the lane markings from the input image and only train it
with the leader vehicle.
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9.3 Future Work

While the action space of our Double DQN algorithm is discrete and somewhat limiting
the practical applicability, an extension to a continuous action space is simply a matter
of time. With that, a switch to a suitable RL algorithm is required, which is, again, only
constrained by the available resources. Therefore, based on this research, a number of
further experiments and extensions can be built.

9.3.1 RL Libraries

One obvious enhancement is the use of RL algorithm libraries, such as Stable-Baselines3
or RLlib, that offer tried and tested algorithms. It would offer access to other algorithms,
but it would also reduce the risk of errors in a custom implementation (there are still many
that could be made).

9.3.2 GPU HPC

Another improvement with a significant impact is the usage of a GPU cluster by adapt-
ing the code base to better utilize its resources. Key challenges are the separation of se-
quential instructions when accessing memory or the CARLA simulator, and designing a
parallelizable batch processing.

9.3.3 Hierarchical RL

As briefly mentioned, hierarchical RL could be a suitable approach to tackle the task of
platooning. It may be composed of different conditions, such as when the vehicle is just
driving and needs to respect the traffic regulations, or when it joined a platoon and itsmain
task is to imitate the leading car’s actions. Alternatively, multiple models can be trained,
each with a different capability, like one that learned to imitate a leading car’s actions.
They are eventually triggered based on the condition the vehicle finds itself in.

9.3.4 String Stability

The number of follower cars in the experiments of this thesis was always one. When
adding more follower vehicles, then the problem of string stability arises. There exists
a number of research on connected vehicles in a platoon, some even using reinforce-
ment learning, that could be leveraged to tackle this issue. However, since in our case
the vehicles do not have means to communicate with each other, experiments should be
performed that address string stability.
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9.3.5 Obstacles and Traffic

Increasing the complexity of the environment is a further area of potential research. This
can be achieved by adding obstacles to the road, either in the form of static objects, like
parked cars or roadworks, or dynamic objects, like other road users. Also, traffic could be
added that interferes with the platoon by cutting into an existing platoon or even splitting
it. Such an enhancement implies the extraction of relevant features froman image through
segmented information, or even other sensor types like lidar or depth cameras.

9.3.6 Sim-to-Real Transfer

The ultimate challenge is an attempt to transfer a model to a real car. Even if only con-
sidering a toy car could be a significant achievement, since the control of actuators, the
on-device image processing, and the adaptation from the simulated to the real world are
non-trivial problems. However, the learnings and discoveries from such an endeavor are
likely to be worth the effort and they could even advance the field of autonomous driving
in general.
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Experiments

A.1 Configuration Files

A.1.1 First Vehicle Platooning Scenario

Table A.1: Configurations for the first vehicle platooning experiment.

Parameter Value
AGGREGATE_STATS_EVERY 10
DISCOUNT 0.99
EPISODE_LENGTH FPS * SECONDS_PER_EPISODE
EPISODES 5_000
EPSILON_DECAY 0.999
EPSILON_START 1
FOV 90
FPS 4
IMG_HEIGHT 128
IMG_WIDTH 128
MEMORY_FRACTION 0.8
MIN_EPSILON 0.1
MIN_REPLAY_MEMORY_SIZE 1_000
MIN_REWARD -3
MINIBATCH_SIZE 16
MODEL_NAME " ""20230329_02"""
NUM_ACTIONS 4
PREDICTION_BATCH_SIZE 1
RELOAD_TOWN True
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Parameter Value
REPLAY_MEMORY_SIZE 5_000
SAVE_IMGS False
SECONDS_PER_EPISODE 30
SET_SPECTATOR True
SHOW_PREVIEW False
SPAWN_EGO 2
SPAWN_LEADER 7
STEER_AMT 0.2
THROTTLE_EGO 0.5
THROTTLE_LEADER THROTTLE_EGO * 0.8
TICK 0.1
TIMEOUT 20
TOWN ’Town06’
TRAINING True
TRAINING_BATCH_SIZE MINIBATCH_SIZE // 4
UPDATE_TARGET_EVERY 10

A.1.2 Throttle-Brake Comparison

Table A.2: Configurations for the throttle-brake comparison experiment.

Parameter Value
brake 0.1
throttle_ego 0.3
aggregate_stats_every_ep 10
cam_fov 90
car_model model3
carla_port 2000
carla_timeout 30
cnn Atari
connect_carla_server TRUE
device_type gpu
discount 0.9
env_name carla_for_rl/CarlaSimTown06-v0.6
episodes 15000
epsilon_decay 0.99965
epsilon_min 0.05
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Parameter Value
epsilon_start 0.4
fixed_delta_seconds 0.1
frame_skip 4
frame_stack 4
frames_per_ep_est 300
image_height 64
image_width 64
leader_lane_chg_left_pct 1
leader_lane_chg_right_pct 1
leader_speed_diff 60
learning_rate 0.00025
load_model FALSE
loss Huber
max_episode_duration 30
max_euclidean_dist 100
max_substep_delta_time 0.01
max_substeps 10
min_replay_mem_size 10000
min_reward -1
minibatch_size 64
model_folder models
model_name fix_spawn
model_path /
num_actions 5
optimizer Adam
prediction_batch_size 1
random_spawn FALSE
random_traffic_manager TRUE
reload_town TRUE
replay_memory_size 45000
reward_strike -1
reward_weights.angle 0
reward_weights.point-line 0.7
reward_weights.scalar-proj 0.3
rgb_channels 3
save_images FALSE
save_model TRUE
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Parameter Value
seed 42
sensor_tick 0
set_lights_green FALSE
set_spectator TRUE
spawn_ego_loc 2
spawn_leader_loc 7
steer_delta 0.005
town Town06
traffic_manager_port 8000
training_active TRUE
training_batch_size 16
update_target_every_step 1000
use_rgb_cam FALSE
verbosity 0
wandb_logging TRUE

A.1.3 Spawn Points

1 spawn_pair_loc = {
2 5: 0, 6: 1, 7: 2,
3 71: 75, 72: 84, 73: 85, 74: 86,
4 87: 91, 88: 92, 89: 93, 90: 94,
5 95: 99, 96: 100, 97: 101, 98: 102,
6 111: 131, 110: 130, 109: 129, 108: 128, 107: 127,
7 179: 423, 180: 424,
8 185: 181, 186: 182, 177: 421,
9 223: 218, 222: 217, 221: 216, 220: 215, 219: 214,

10 236: 403,
11 252: 247, 253: 248, 254: 249, 255: 250, 256: 251,
12 258: 311,
13 295: 226, 294: 225, 293: 224,
14 312: 287,
15 317: 404,
16 332: 309, 328: 288,
17 338: 317, 342: 116, 341: 115,
18 350: 87, 351: 88,
19 375: 390,
20 405: 107, 406: 108, 407: 109, 408: 110, 409: 111, 410: 111,
21 266: 363, 415: 266, 296: 343, 387: 296,
22 }

Listing A.1: Spawn-pair locations used for training
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A.1.4 Fixed Steering

A.2 Long-List Evaluations

A.2.1 First Vehicle Platooning Scenario

A.2.2 Throttle-Brake Comparison

Table A.3: Evaluations of the long-list for the throttle brake comparison experiment..

Model 30 kmh (seed 42) Total reward
780 No movement
790 No movement
800 Starts to drive; then stops
810 Starts to drive; then stops
820 Waits; then drives left; stops before solid line
830 Starts to drive straight; then a bit left; then stops before the solid line
840 Starts to drive slowly; then stops
850 Starts to drive right; then stops before solid line
860 Starts to drive right; then left; but too slow; loses leader
870 Same as 860
880 No movement
890 No movement
900 Starts slowly straight; then loses leader
910 Same as 900
920 Turns right; then waits just before solid line
930 Same as 920
940 Same as 920
950 No movement
960 No movement
970 Starts to follow; but slows down; waits; loses leader; -0.2908
980 Starts to follow; but turns left and waits before solid line -0.116
990 Starts straight; but then waits; loses leader; -0.3162
1000 Only turns left; then crashes; 0.0677
1010 Starts straight; then left; crosses green; -0.2927
1020 Starts straight; then waits; loses leader; -0.2394
1030 Same as 1020; -0.1825
1040 Initial attempt to follow; but does not turn as leader does; waits; -0.1563
1050 No movement
1060 No movement; -0.2196
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Model 30 kmh (seed 42) Total reward
1070 Starts to follow; loses leader; slows down; -0.3834
1080 Same as 1070; -0.2195
1090 Same as 1070 -0.3469
1100 No movement -0.2198
1110 No movement -0.2195
1120 No movement -0.2196
1130 Starts to follow; then turns right; stops before solid line -0.2677
1140 Same as 1130 -0.2646
1150 Same as 1130 -0.2665

A.2.3 Smaller Input Size

Table A.4: Evaluations of the long-list for the smaller input comparison experiment..

Model Input Size Visual Observation
4990 128x128 Drives; but randomly
4991 128x128 Drives; mostly right
4993 128x128 Drives straight; stays in the lane but then turns right and crashes
4992 128x128 Drives; straight; then turns left
4998 128x128 Drives; but randomly
4999 128x128 Only turns left
4994 128x128 Drives; then stops
4995 128x128 Drives; mostly right; then crashes
4996 128x128 Drives; right; then left and crashes
4997 128x128 Drives right; then crashes
4990 64x64 Turns left only
4991 64x64 Turns left only
4992 64x64 Turns left only
4993 64x64 Turns left only
4994 64x64 Turns left only
4995 64x64 Turns left only
4996 64x64 Turns left only
4997 64x64 Turns left only
4998 64x64 Turns left only
4999 64x64 Turns left only
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A.2.3.1 Reward Weights

A.2.3.2 Fixed Steering

A.3 Training Monitoring

A.3.1 First Vehicle Platooning Scenario

A.4 Experiment Statistics

A.4.1 Throttle-Brake Comparison

A.4.1.1 Different Leader Speeds - Model 870

A.4.1.2 Different Leader Speeds - Model 1040

A.4.1.3 Different Leader Locations - Model 870

A.4.2 Fixed Steering

A.4.2.1 Unseen Location - Model 880

A.4.2.2 Unseen Location - Model 910
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Figure A.1: Mapping of a subset of the 435 spawn points in Town06
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Key Value
env_name …
device_name 1
device_type  cpu 
wandb_logging  True
model_name  fixed_steering
load_model  True
save_model  True
model_folder  models
model_path models/…
training_active  False
connect_carla_server  True
num_actions 5
image_height 64
image_width 64
rgb_channels 3
carla_port 2000
traffic_manager_port 8000
carla_timeout 30
reload_town  True
town  Town06
set_lights_green  False
car_model  model3
use_rgb_cam  False
cam_fov 90
sensor_tick 0
save_images  False
seed 42
random_spawn  True
spawn_ego_loc 2
spawn_leader_loc 7
set_spectator  True
random_traffic_manager  False
leader_lane_chg_left_pct 1
leader_lane_chg_right_pct 1
leader_speed_diff 60
throttle_ego 0.5
brake 0.25
steer_delta 0.005
steer_fixed 0.2
reward_weights  {
    angle 0
    point-line 0.7
    scalar-proj 0.3
}
reward_strike -1
max_episode_duration 60
max_euclidean_dist 100
frames_per_ep_est  10*30
replay_memory_size  240_000
min_replay_mem_size  218_400
minibatch_size 128
training_batch_size  128 // 4
prediction_batch_size 1
update_target_every_step  1_000
min_reward -1
episodes  15_000
discount 0.99
epsilon_start 0.09
epsilon_decay 0.99965
epsilon_min 0.05
cnn  Atari
learning_rate 0.00025
optimizer  Adam
loss  Huber
frame_skip 4
frame_stack 4
fixed_delta_seconds  1.0/10.0
max_substep_delta_time 0.01
max_substeps 10
aggregate_stats_every_ep 10
verbosity 0

Figure A.2: Configurations for the fixed steering experiment.
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Model Max Reward Min Reward Avg Reward Avg Distance Rating Comment
3710 -0.78 -0.97 -0.92 24.31 0 Crashes
4520 1.37 -0.93 -0.6171 5 Follows quite ok; crashes after some time
4540 1.41 -0.96 -0.63
4650 1.29 -0.97 -0.68
4700 -0.78 -0.96 -0.91 25.59
4730 1.26 -0.97 -0.7 27.76 Follows well at the beginning; then slows down and crashes

4970 -0.74 -0.97 -0.89 27.65 9

Very good following; very stable; slows even down to keep 
distance; at the end it approaches leader too closely and then gets 
confused; but so far so good. Second run even better; even more 
stable

5000 -0.72 -0.95 -0.86
Ok following in the beginning; then starts to wiggle; crashes 
eventually

9340

Follows quite well even in new situations; Still sometimes a bit 
unstable; but in the beginnings it stays in the lane; However; very 
sensitive to the speed of the leading car; Speed of 40 works quite 
well; However; 45 and above is too fast and it loses sight of the 
leader; eventually getting confused; Too unstable

9640

Very slow start but catches up quite well; Follows lane quite well 
in the beginning; If leader speed is 25.0 then it follows extremely 
well; even slowing down when the leader slows down at an 
intersection; but also making the curve (twice); The interesting 
part is that in Town06 there is another vehicle placed besides the 
road. When it gets into the followers view the follower gets 
confused because it identifies two vehicles. After the leader 
vehicle is out of sight; it turns to the stationary vehicle (as 
expected) and tries to follow up; hence crashing next into it. This is 
a proof that the model learned to identify the leader car and that it 
should follow it. Once it is out of sight; it does no longer know 
what to do.

Figure A.3: Evaluations of the long-list for the first vehicle platooning scenario.
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Model 30 kmh 20 kmh (seed 42) 25 kmh 20 kmh (seed 21) 20 kmh (seed 21)2

9900

Drives straight; right 
next to the leader for a 
while; slows down; but 
then turns right and 
crashes

9910 Turns left and stops

9920
Turns a bit right; then 
stops

9930 Turns left and crashes

9940
A bit straight; then left 
and crashes

9950

Drives straight in the 
lane next to the leader 
for a while; then 
suddenly stops

Follows leader in lane next to 
it; even slows down; but as 
soon as leader is too small to 
detect; it stops Similar to 20kmh

Follows similarly but 
stops when it loses sight

9960

Drives straight in the 
lane next to the leader 
for a while; then 
suddenly stops

Follows leader much better; 
always on the right side not 
straight behind; does not 
follow when leader changes 
lane; but slows down; waits for 
it to merge again; but when it 
loses sight it stops Similar to 20 kmh

Follows similarly; very 
close to the leader but 
does not crash; however 
it turns right to avoid a 
crash but then stops as it 
loses sight

Follows closely; even across 
two intersections; speeds 
up to catch up with the 
leader and even turns a bit 
to better adjust; but at 
some point is probably 
confused and stops

9970

Drives straight in the 
lane next to the leader 
for a while; then 
suddenly stops; probably 
when it loses sight of 
the leader

Follows very closely; waits at 
the intersection; but again; 
when it loses sight it stops; 
also the different lines at the 
intersection seem confusing

It stops right next to the 
leader at the 
intersection; continues 
again when green; but 
crossing the second 
intersection is too 
confusing due to the 
many lines

Crashes into the leader at 
high speed

9980 Turns left and crashes
9990 Turns left and crashes
9999 Turns right then stops

Figure A.4: Evaluations of config A for the reward weights comparison experiment.
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Model 20 kmh (seed 21) 25 kmh (seed 21) 30 kmh (seed 21)

9900

Follows quite closely; then 
after 30s turns slightly right 
and stops

Follows quite closely; then after 
30s turns slightly right and stops 
before the solid line

Loses leader quite early and 
stops

9910

Turns right and stops on 
the road but just before the 
solid line

Turns right and stops on the 
road but just before the solid 
line Same as 25kmh

9920

Turns right and stops on 
the road but just before the 
solid line

Turns right and stops on the 
road but just before the solid 
line Same as 25kmh

9930

Turns right and stops on 
the road but just before the 
solid line

Turns right and stops on the 
road but just before the solid 
line Same as 25kmh

9940

Follows closely; adapts 
speed of the leader; then 
gets very close and turns 
right to avoid collision; 
loses leader and stops

Follows closely; loses leader; 
but keeps driving for some time; 
turns slightly left and stops 
before the solid line

Follows closely; loses leader; 
but keeps driving for some 
time; turns slightly left and 
stops; eventually crashes

9950

Follows closely; adapts 
speed of the leader; then 
gets very close and turns 
right to avoid collision; 
loses leader and stops

Follows closely; loses leader; 
but keeps driving for some time; 
turns slightly left and stops 
before the solid line

Follows closely; loses leader; 
but keeps driving for some 
time; turns slightly left and 
stops; eventually crashes

9960
No movement; only slow 
down

9970
No movement; only slow 
down

9980
No movement; only slow 
down

9990
No movement; only slow 
down

9999
No movement; only slow 
down

Figure A.5: Evaluations of config B for the reward weights comparison experiment.
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Location 7:2 30 km/h - leader straight ahead 40 km/h 50 km/h Total reward

640
Follows well, stops at some point and 
loses leader -1.0686

690 No movement 0.3367

820
Follows well, slows down at some point, 
loses leader -1.096

830 Follows very well until the intersection -2.0685

840

Follows the leader, always a bit to the 
right, stays in the lane mostly, almost 
loses the leader, then catches up, then 
crashes at the intersection -2.3171

850
Follows a few meters, then loses leader 
and stops -0.308

860
Follows a few meters, then loses leader 
and stops 0.2077

870 Follows quite ok 0.3557

880

Follows well for a longer time, overtakes 
leader at when it was waiting for green 
light, loses it, then catches it again, gets 
confused at some point

Also follows, however, 
farther behind, loses 
leader Loses leader early on -0.9385

880

25 kmh: Follows well, 
loses leader at second 
intersection

35 kmh: Leader is too 
fast

890
Starts driving, but stops after a few 
meters -0.5188

900
Drives for a few meters, then loses 
leader and stops -0.481

910

Follows the leader very well, stops at the 
first intersection, crashes into leader at 
second intersection 25kmh: overtakes leader

35 kmh: follows well, 
but crashes into leader 
when it stops at 
intersection 0.2604

920 No movement 0.3367
930 No action 0.3367
940 No action 0.3367
950 No movement 0.3543

960
Follows agressively at first, circles 
around leader, stops 0.1055

Figure A.6: Evaluations of the long-list for the fixed steering experiment.
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Figure A.7: Training monitoring in Tensorboard for the first platooning experiment.



Appendix A. Experiments 92

Figure A.8: Model ID 870 config B - different leader speeds experiment (part 1 of 3).
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Figure A.9: Model ID 870 config B - different leader speeds experiment (part 2 of 3).
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Figure A.10: Model ID 870 config B - different leader speeds experiment (part 3 of 3).



Appendix A. Experiments 95

Figure A.11: Model ID 1040 config A - different leader speeds experiment (part 1 of 3).
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Figure A.12: Model ID 1040 config A - different leader speeds experiment (part 2 of 3).
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Figure A.13: Model ID 1040 config A - different leader speeds experiment (part 3 of 3).



Appendix A. Experiments 98

Figure A.14: Model ID 870 config B - different leader locations experiment (part 1 of 3).
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Figure A.15: Model ID 870 config B - different leader locations experiment (part 2 of 3).
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Figure A.16: Model ID 870 config B - different leader locations experiment (part 3 of 3).
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Figure A.17: Model ID 880 - unseen location (part 1 of 3).
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Figure A.18: Model ID 880 - unseen location (part 2 of 3).
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Figure A.19: Model ID 880 - unseen location (part 3 of 3).
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Figure A.20: Model ID 910 - unseen location (part 1 of 3).
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Figure A.21: Model ID 910 - unseen location (part 2 of 3).
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Figure A.22: Model ID 910 - unseen location (part 3 of 3).



Glossary

Lyapunov Lyapunov stability describes a state where the solutions that start out near an
equilibrium point stay near it forever. [Wikipedia] 15

Markov Decision Process An MDP provides a mathematical framework for modeling
decision making in situations where outcomes are partly random and partly under
the control of a decision maker. [Wikipedia] 7, 15

Reinforcement Learning A machine learning paradigm where an agent acts in an
environment according to a policy and receives a reward. Through this interaction,
the agent learns the optimal policy. 4, 108
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Abbreviations

CACC Cooperative Adaptive Cruise Control 1, 14, 16

RL Reinforcement Learning (see Reinforcement Learning) 4, 5
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