
Bachelorarbeit

Fitness Gamification

Department of Computer Science

OST - University of Applied Sciences

Campus Rapperswil-Jona

Author(s) Joel Suter & Lucas von Niederhäusern

Advisor Frank Koch
Project Partner Michael Güntensperger
External Co-Examiner Hansjörg Huser
Internal Co-Examiner Mitra Purandare

Fitness Gamification

Abstract

Initial Situation In today’s world, gamification is used and implemented in more and more as-
pects of daily life. The purpose of gamification is to motivate users to do certain things. Another
growing market is physical exercise, especially with young people. An increasing amount of peo-
ple are trying to do more physical exercise. Everyone agrees that physical exercise is the key
to a healthy life, but the main problem is that people often need more motivation. So we see
massive potential in solutions that address this problem. A potential solution to motivate people
to do more sports is a platform that gamifies physical exercise and makes it a fun, competitive
game that can be played between friends and other users. The need for physical exercise and
motivation to do it will draw people to platforms and solutions like this.

Objective With this project, we aim to build a platform mobile app of this type. The main goal is
to create an initial version of such a platform. That means we want to create an app that allows
users to challenge their friends and other users to do physical exercises. We will implement
various gamification aspects, such as allowing users to achieve milestones, track their data, and
display that to other users. We plan to use a "turn-based" approach for the challenges, allowing
users to play with users in an "async" fashion. That means participants can be online at different
times.

Conclusion In this project, we created a prototype for a mobile app that gamifies exercise. We
created this mobile App using React Native and Expo in our Frontend and Firebase as our Back-
end. Our App allows users to create an account using their phone number and challenge anyone
in their contact list or a random user. The user can select the challenge type and duration one
has to perform in the challenge. Challenges then get completed in a turn-based fashion. A user
performs a challenge, and it gets sent to his opponent. The opponent can then perform, and it
will get sent back. This goes back and forth until one user cannot beat the other user’s score.
We will track various statistics for the user, which will be displayed in his profile and displayed
to other users to generate a more competitive and gamified environment. We implemented one
challenge type for this initial version, "Pull-ups." In the future, this should be extended to allow the
user to perform various challenges and can generally be expanded upon due to the modularity
we considered while implementing it.

Figure 1: Firebase

Figure 2: React Native

Joel Suter & Lucas von Niederhäusern Page 1 of 152

Fitness Gamification

Management Summary

Promoting fitness and health while making it fun is a rare combination. Our project aimed to
develop a mobile application that achieves this by incorporating gamification elements to moti-
vate users to exercise and enjoy a sense of gratification. The application we created is simple
and user-friendly. It allows you to Challenge your friends, family, or even random individuals to
participate in various physical activities.

In our context, a Challenge involves daring your chosen Opponent to partake in physical activity.
The chosen Opponent will then receive a Notification on his phone that he got challenged. He
then has 12 hours to perform the chosen activity as best as he can. Once he is done, the challenge
will get sent back to the Creator, and he will be able to try to beat the score. This process will
repeat until someone is not able to outperform his Opponent. If a user cannot beat the score,
he will lose the Challenge, and his Opponent will be crowned as the winner. To detect repetitions
(score) of the exercise accurately, our application requires you to place yourmobile device in your
pocket or another suitable location.

As you engage in activities within the app, you can earn Badges (Milestones) and increase your
statistics that will be showcased on your Banner. The Banner is a part of the profile and will
be displayed to all your Opponents before they perform on a Challenge. This way the users can
see their Opponent’s experience before competing. This incentivizes each user to maximize his
statistics and win as many Challenges as possible so that other users see their achievements.
It creates a more competitive environment and encourages users to participate in physical ex-
ercise. Additionally, you can personalize your Banner with your profile picture, making it unique
to you. The app also provides a comprehensive overview of your key statistics and performance
metrics and identifies your favorite Opponent.

Furthermore, the app incorporates a global ranking feature that showcases the top 100 players
based on their performance. You will be included in this prestigious ranking if your performance
is exceptional.

Currently, our application supports a "pull-ups Challenge", but we have designed it with modu-
larity in mind, allowing for efficient integration of additional Challenges in the future. Looking
ahead, the plan is to explore the utilization of machine learning or AI to enhance the detection
of repetitions in various physical activities, ensuring more efficient and reliable tracking while
implementing safeguards against cheating.

Joel Suter & Lucas von Niederhäusern Page 2 of 152

Fitness Gamification

Figure 3: User Profile Figure 4: Home Screen

Figure 5: Challenge Details Screen with Oppo-
nents Banner

Figure 6: Challenge Perform Screen

Joel Suter & Lucas von Niederhäusern Page 3 of 152

Fitness Gamification

Glossary

Agile Agile is a project management and product development approach that prioritizes flexi-
bility, collaboration, and customer satisfaction. The methodology is adaptive rather than
predictive, with changes and iterations being a normal part of the development process..
17

Apple Push Notification Service Apple Push Notification service (APNs) is a service provided by
Apple that enables developers to send push notifications to iOS,macOS, watchOS, and tvOS
devices. It allows developers to send lightweight, timely, and relevant notifications to users
even when the app is not running in the foreground. APNs acts as a mediator between the
server and the device, ensuring secure and efficient delivery of notifications. To implement
push notifications in an iOS app, developers need to integrate the APNs API and configure
the necessary certificates and permissions in the Apple Developer Portal.. 34, 75

backend The part of a computer system or application that is not directly accessed by the user,
typically responsible for storing and manipulating data. 20, 22, 25, 27, 30, 32–34, 37–39,
44, 49, 50, 52, 56

Badges In the context of this paper the term "Badges" is used to mean a "Badge" a user earns
after completing a specific milestone. For example a user earns a badge for winning his
first challenge. A badge could be compared to a medal someone earns after achieving
some kind of goal.. 2, 4, 18, 29, 36, 41, 72, 80–83, 91, 94, 95, 98

Banner In the context of this project "Banner" is the upper half of the users profile. It displays the
avatar, Badges and Tracked Data. The Banner can be viewed by other users in the challenge
details. It’s used to show off the achievements and experience of a user to his opponents..
2, 18, 19, 41, 42, 69–72, 80, 84, 94, 95, 98, 102

Blob A term commonly used in computer science and data storage to refer to a binary large ob-
ject. It represents a collection of binary data, typically stored as a single entity in a database
or file system. Blobs can include various types of data, such as images, audio files, or seri-
alized objects.. 71

Challenge In the context of this paper, a challenge is a sports game played between two of our
users. A user can challenge another user to a certain sport activity. The challenged user
then has the opportunity to perform the sport activity to his best abilities. It then gets sent
back to the creator which then has to perform on it. It goes back and fourth until someone
can’t beat the other users score.. 2, 18–20, 29, 34, 40, 42, 58–62, 65, 66, 69, 72, 76–78, 80,
81, 90, 91, 94–96

Collection In the context of Firestore, a "Collection" is a grouping of documents that share a
common path. It is a fundamental concept in Firestore’s data model. Collections can con-
tain zero or more documents, and each document within a collection is uniquely identified
by its document ID. Collections provide a way to organize and query related data in Fire-
store. They are often used to represent entities or categories within an application, such
as users, products, or posts. Firestore allows for hierarchical structuring of collections to
create subcollections within a collection.. 29, 32, 35, 49, 50, 54, 57, 59, 76, 79, 80, 83

Component In the context of React Native, a "Component" is a reusable building block used to
create user interfaces. It represents a self-contained piece of UI functionality that can be
composed and reused across different parts of an application. Components in ReactNative

Joel Suter & Lucas von Niederhäusern Page 4 of 152

Fitness Gamification

are typically written in JavaScript or TypeScript and encapsulate a combination of visual el-
ements, logic, and state management. They help promote code reusability, maintainability,
and a modular approach to UI development.. 38, 39, 51, 72, 87

Creator In the context of this project the creator is always refered to as the person that created
a challenge.. 2, 18, 29, 59

Document In the context of Firestore, a "Document" is a unit of data storage and retrieval. It rep-
resents a set of key-value pairs, where each key is a field name and each value is the corre-
sponding field value. Documents are storedwithin collections and are uniquely identified by
their document ID. Firestore uses a flexible, schema-less data model, allowing documents
within a collection to have different structures. Documents can contain nested fields, ar-
rays, and other complex data types. They serve as the main building blocks for organizing
and retrieving data in Firestore.. 28, 29, 32, 49–51, 57, 66, 71, 76–80, 82, 83, 87

Document Reference In the context of Firestore, a "Document Reference" is an object that points
to a specific document within a Firestore database. It represents a handle to a document
and provides access to read, write, and listen to changes in the referenced document. A
Document Reference consists of the collection path and the unique identifier (document
ID) of the document it references. It allows developers to perform operations on a specific
document, such as retrieving its data, updating fields, or deleting the document. Document
References are commonly used for navigating and interactingwith documents in Firestore..
28, 59

Expo Expo is a free andopen-source platform for building nativemobile applications using JavaScript
and React Native. It provides a set of tools, libraries, and services that simplify the devel-
opment process, allowing developers to create high-quality cross-platform apps with ease.
Expo offers features like easy app setup, hot reloading, and access to device APIs, making
it a popular choice for rapid mobile app development.. 25, 34, 38, 44, 45, 48, 56, 65, 71, 75,
76, 92, 95, 107

Firebase Google Firebase is a comprehensive mobile and web application development plat-
form that provides a wide range of backend services, including authentication, real-time
database, cloudmessaging, andmore. It offers developers an easyway to build high-quality
applications with built-in scalability, security, and offline support.. 25–27, 30, 32, 34, 36–39,
44–46, 48, 49, 53, 55–57, 85–91, 95, 96, 98, 107

Firebase Admin SDK The Firebase Admin SDK is a set of server-side libraries provided by Google
Firebase that enables developers to build server applications that interact with Firebase
services. It allows for programmatic access to Firebase functionality, including managing
user authentication, reading and writing data in the Realtime Database, and interacting with
Cloud Firestore and Cloud Storage. The Firebase Admin SDK supports multiple program-
ming languages, such as Node.js, Java, Python, and Go, and provides powerful tools for
server-side integration with Firebase services.. 33, 46, 85

Firebase CLI Tools The Firebase CLI Tools, also known as the Firebase Command-Line Interface
(CLI), is a set of command-line tools provided by Google Firebase. It offers a convenient
way to interact with Firebase services from the command line or terminal. With the Firebase
CLI, developers can perform various tasks such as deploying web applications, managing
Firebase projects, configuring security rules, and accessing Firebase features and services.

Joel Suter & Lucas von Niederhäusern Page 5 of 152

Fitness Gamification

It simplifies common development tasks and enables automation and scripting capabili-
ties for Firebase projects. The Firebase CLI is an essential tool for Firebase developers to
streamline their workflow and manage Firebase resources efficiently.. 33, 44

Firebase Cloud Functions Firebase Cloud Functions is a serverless compute platform provided
by Google Firebase. It allows developers to write and deploy server-side code in JavaScript
or TypeScript that runs in response to events in Firebase services, such as changes to the
database, user authentication, or file uploads. Firebase Cloud Functions enables develop-
ers to extend their Firebase applications with custom server-side logic without the need to
manage infrastructure.. 26, 27, 33, 37, 44, 46, 52, 54, 57, 67, 76, 78, 80, 85, 95, 96

Firebase Cloud Messaging Firebase CloudMessaging (FCM) is a cross-platformmessaging so-
lution that allows developers to reliably deliver messages and notifications to Android, iOS,
and web applications. It provides a simple and reliable way to send messages to devices
and handle downstream messages from them. FCM handles all aspects of message deliv-
ery, including message routing, security, and scaling, allowing developers to focus on the
application logic. FCM supports various types of messages, including notification mes-
sages, data messages, and topic-based messaging.. 34, 75

Firebase JavaScript SDK The Firebase JavaScript SDK is a library provided by Google Firebase
that allows developers to easily integrate Firebase services into web applications. It pro-
vides a set of client-side APIs and tools that enable real-time data synchronization, user
authentication, cloud storage, and other Firebase features. The Firebase JavaScript SDK
supports JavaScript and TypeScript and simplifies the process of interacting with Firebase
services in web development projects.. 26–28, 32, 36, 48, 49, 53

Firebase Storage Firebase Storage is a cloud-based storage service provided by Google Fire-
base. It offers developers a secure and scalable solution for storing and serving user-
generated content, such as images, videos, and other files, in their applications. Firebase
Storage integrates seamlessly with other Firebase services, allowing developers to easily
manage and access files from their web and mobile applications. It provides features like
file uploads, downloads, and security rules to control access to stored content.. 28, 36, 71,
80, 83

Firestore Firestore is a flexible and scalable NoSQL document database provided by Google Fire-
base. It is designed to store, sync, and query data for client- and server-side applications.
Firestore offers real-time data synchronization, offline capabilities, and powerful querying
with automatic scaling, making it suitable for building modern, cloud-based applications..
27–29, 32, 34–36, 38, 46, 48–53, 57, 59, 70–72, 80, 83, 86, 87, 95, 96, 99

Floating Action Button A Floating Action Button (FAB) is a circular button commonly used in
user interfaces to promote a primary action. It is a prominent and elevated button that
"floats" above the content, usually positioned at the bottom right corner of the screen. The
FAB provides a quick and easily accessible way for users to perform the most important
action within an application. It is often used to trigger actions such as creating a new item,
composing a message, or initiating a call to action. The appearance and behavior of the
FAB can vary depending on the platform and design guidelines.. 58, 62

Jest Jest is a popular JavaScript testing framework developed by Facebook. It is widely used
for testing JavaScript applications, including frontend applications built with frameworks
like React, Vue, and Angular, as well as backend Node.js applications. Jest provides a com-
prehensive set of features for writing and running tests, including test runners, assertion
libraries, mocking capabilities, and code coverage analysis. It offers a simple and intuitive

Joel Suter & Lucas von Niederhäusern Page 6 of 152

Fitness Gamification

syntax for writing test cases and supports powerful features such as snapshot testing and
parallel test execution. Jest is known for its fast and efficient test execution, making it a
preferred choice for many JavaScript developers.. 89

Jira Cloud Jira Cloud is a cloud-based project management and issue tracking solution provided
by Atlassian. It offers a comprehensive set of features for teams to plan, track, andmanage
their projects, tasks, and workflows. Jira Cloud provides a web-based interface accessible
from any browser, eliminating the need for self-hosted infrastructure. It offers features
such as customizable issue tracking, agile project management, real-time collaboration,
reporting and analytics, and integration capabilities with other popular tools. Jira Cloud is
a scalable and flexible solution that caters to teams of all sizes and industries, enabling
effective project management and streamlined workflows.. 17

Method Swizzling A technique used in object-oriented programming to dynamically change the
behavior of methods in a class at runtime. It involves swapping the implementation of one
method with another, usually within a class hierarchy. This technique is commonly used
in languages like Objective-C and Swift, where dynamic runtime features are supported.
Method swizzling can be employed for various purposes, such as adding new function-
ality, modifying existing behavior, or intercepting method calls for debugging or profiling.
However, method swizzling should be used judiciously, as it can introduce complexity and
make code harder to understand and maintain. Improper use of method swizzling can lead
to unexpected behavior and difficult-to-debug issues.. 75

Multiplatform In the context of mobile development, "Multiplatform" refers to the ability to de-
velop and deploy applications that can run on multiple platforms, such as iOS and Android,
using a single codebase. It typically involves utilizing frameworks or technologies that allow
developers to write shared code in a common programming language, while still maintain-
ing a native look and feel on each platform. Multiplatform development can help reduce
development time, effort, and costs by enabling code reuse across different platforms.. 15,
24, 71

NoSQL NoSQL, short for "Not only SQL," is a term that refers to a type of database manage-
ment system that diverges from the traditional relational database model. Unlike relational
databases, NoSQL databases are designed to handle large volumes of unstructured or
semi-structured data, providing high scalability, performance, andflexibility. NoSQLdatabases
use various data models, such as key-value, document, columnar, and graph, to store and
retrieve data. They are often used in modern applications requiring agility, horizontal scal-
ability, and the ability to handle rapidly changing data schemas.. 25, 29, 35

Opponent In the context of this paper, a opponent is refered to as the other player in a challenge,
from the perspective of the currently logged in user. It is also refered to as the person that
received the challenge, but did not create it.. 2, 18, 29, 41, 50, 58–60, 62, 66, 69, 72, 77, 94

Profile In the context of this project "Profile" is the dashboard of the user where the user can see
various statistics and his avatar. 29, 36, 57, 68–72, 91

React Native React Native is an open-source mobile application framework developed by Face-
book, Inc. It is used to develop applications for Android, iOS, Web and UWP by enabling
developers to use React along with native platform capabilities.. 24, 25

Joel Suter & Lucas von Niederhäusern Page 7 of 152

Fitness Gamification

Real-time Updates Real-timeUpdates refer to the capability of Firebase to provide instantaneous
and synchronized data updates across connected devices or clients. Firebase offers real-
time updates by utilizing a real-time database, where changes made to the data are imme-
diately propagated to all connected clients. This enables real-time collaboration, instant
messaging, live data synchronization, and other real-time features in Firebase-powered ap-
plications. Real-time Updates in Firebase are achieved through web sockets or other effi-
cient data synchronization mechanisms, ensuring that all connected clients have the latest
data in real-time.. 35, 36, 49, 50, 69–71, 78, 88–90

Realtime Database Firebase Realtime Database is a NoSQL cloud-hosted database provided by
Google Firebase. It allows developers to store and synchronize data in real time between
clients and servers. The database uses a JSON-based structure and provides real-time
data synchronization, offline support, and powerful querying capabilities. Firebase Real-
time Database simplifies the development of collaborative and real-time applications by
handling data synchronization and conflict resolution automatically.. 34, 35

Single Page Application In the context of React Native, a "Single Page Application" (SPA) is a
web application that dynamically updates its content without requiring a full page reload.
In a React Native SPA, the user interface is built using a single HTML page, and naviga-
tion between different views or screens is managed through JavaScript, typically using a
library like React Navigation. SPAs provide a seamless and responsive user experience by
loading data and updating the UI asynchronously, resulting in faster and more interactive
applications.. 39

System Context The environment in which a system operates. This encompasses the bound-
aries of the system, interactions with users and other systems, and external conditions
impacting system operations. Understanding the system context is vital in system design
and analysis, as it helps to clarify the operational conditions and requirements for the sys-
tem.. 15

Tracked Data In the context of this paper the term "Tracked Data" is used to mean all the data
we track of a user, while he plays challenges on our Application. "Tracked Data" contains
information like, challenges played, challenges won and the favorite opponent of a user.
This data is then displayed or used for further calculations. 4, 69, 72, 76, 77, 81, 89, 91

Acronyms

API Application Programming Interface. 15, 16, 25

DoD Definition of Done. 23, 113, 114

DoR Definition of Ready. 113

NFR Non-Functional Requirements. 19, 21, 23

Joel Suter & Lucas von Niederhäusern Page 8 of 152

Fitness Gamification

Contents

1 Starting Position 12

2 Conceptual Formulation 13

3 Framework Conditions 14

4 System Context 15

5 Requirements 17
5.1 Functional Requirements . 17

5.1.1 Use Case Description . 17
5.1.2 Evolution of Functional Requirements . 19

5.2 Non-Functional Requirements . 21
5.2.1 Disregarded and Untested NFRs . 23
5.2.2 Verification . 23

5.3 Optional Requirements . 23

6 Design and Architecture 24
6.1 Container Diagram . 24

6.1.1 Client . 24
6.1.2 Backend . 25
6.1.3 External Dependencies . 25

6.2 Component Diagram . 26
6.2.1 Backend Access . 27

6.3 Domain Model . 28
6.3.1 Types of References . 28
6.3.2 Description . 29

6.4 Backend - Firebase . 30
6.4.1 Authentication . 31
6.4.2 Functions . 32
6.4.3 Firebase Cloud Messaging And Notifications 34
6.4.4 Database - Firestore . 34
6.4.5 Firebase Storage . 36
6.4.6 Scaling . 36
6.4.7 Pricing . 37

6.5 App Architecture . 38
6.5.1 Multiplatform - Expo . 38
6.5.2 Structure . 38
6.5.3 UI Design . 39
6.5.4 Coding Style Guide . 43

6.6 Deployment . 44
6.6.1 Firebase Functions . 44
6.6.2 Mobile App . 44

Joel Suter & Lucas von Niederhäusern Page 9 of 152

Fitness Gamification

6.7 Security . 45
6.7.1 Firestore Access . 46
6.7.2 Storage Access . 46
6.7.3 Input Validation . 47

7 Implementation 48
7.1 Firebase Initialization . 48

7.1.1 Setting Up Services . 48
7.1.2 Frontend Configuration . 48
7.1.3 Firebase SDK . 49

7.2 Frontend Firestore Access . 49
7.2.1 Read Operations and Real-time Updates . 49

7.3 Firebase Functions . 52
7.3.1 Implemented Functions . 54
7.3.2 Firebase Admin SDK . 54

7.4 Authentication . 54
7.4.1 Setup . 54
7.4.2 Implementation . 55
7.4.3 Firebase Phone Auth Limitations . 57

7.5 Challenge Creation . 58
7.5.1 Opponent Selection . 59
7.5.2 Challenging random user . 61

7.6 Home Screen . 61
7.7 Challenge Details . 63

7.7.1 Challenge History . 63
7.8 Perform a challenge . 64

7.8.1 Implement new Challenge . 67
7.8.2 User did not Perform on Challenge . 68
7.8.3 Shortcomings . 68

7.9 Profile . 68
7.9.1 10 Week History . 69
7.9.2 Profile Picture . 70
7.9.3 Banner . 72
7.9.4 Component Structure . 72

7.10 Chat . 72
7.11 Rankings . 73

7.11.1 Extending the Rankings . 74
7.12 Push Notifications . 75
7.13 Tracked Data . 76

7.13.1 Challenge completed . 76
7.13.2 User Performed on Challenge . 78
7.13.3 Track new Data . 78

7.14 Badges - Milestones . 80
7.14.1 Sequence . 81
7.14.2 Add new Badge . 83
7.14.3 Badge Copyrights . 84

7.15 Localization . 84
7.16 Technical Test Dokumentation . 85

7.16.1 Firebase Cloud Functions Testing . 85
7.16.2 Frontend Testing . 87

Joel Suter & Lucas von Niederhäusern Page 10 of 152

Fitness Gamification

7.16.3 Testing concessions . 90
7.16.4 Manual Test Protocol . 90

7.17 Deployment . 92
7.17.1 App Store . 92
7.17.2 Google Play Store . 92

8 Result 94

9 Conclusion 98
9.1 Needs to be Adressed . 98
9.2 Future Vision . 99

10 Project and Time Management 101
10.1 Project Plan . 101

10.1.1 Deviations . 102
10.2 Project organization . 103

10.2.1 Issue management . 103
10.2.2 Time tracking . 103
10.2.3 Division of Tasks . 104

10.3 Risk Management . 104
10.3.1 Realized risks . 106

10.4 Test Concept . 108
10.4.1 Additional . 109
10.4.2 System . 109
10.4.3 Integration . 109
10.4.4 Component . 109
10.4.5 Unit . 110
10.4.6 Deviations . 110
10.4.7 End User Usability Tests . 110

10.5 Definition of Ready / Definition of Done . 113

11 Meeting Minutes 119

12 Personal Reports 135

13 Screenshots 136

14 Usability Test Protocols 141

15 Task 149

Joel Suter & Lucas von Niederhäusern Page 11 of 152

Fitness Gamification

1 Starting Position

As gymnasium, sports, video game, and IT enthusiasts, we are interested in projects combin-
ing our passions. We have worked on a previous project with the same partner and advisor and
achieved great results, and we are more than thankful to be able to work with them again for our
bachelor thesis.

Amobile application that combines sportswith challenges and games in a digital aspect is some-
thing we think is missing in the industry and a great opportunity to encourage all kinds of people
to compete against each other in friendly competitions.

This project aims to build a mobile application with which a player can challenge other players to
play in friendly competitions. The competitions consist of exercise, time duration, and players.
The goal is to beat the score of your opponent. Each challenge has to be performed in a given
time frame and will be sent back to the original challenger, who has to beat the score again. As
long as no user can beat the other user’s score, the challenge will be sent back and forth until one
user cannot beat the other user’s score. He will lose if a player cannot beat the score or exceeds
the given time.

Joel Suter & Lucas von Niederhäusern Page 12 of 152

Fitness Gamification

2 Conceptual Formulation

To motivate people to exercise more sports, we want to implement a mobile application where
friends and groups of people can challenge each other. A player creates a challenge, including the
exercise, duration, and opponent, to determine who can domore repetitions of a given exercise in
a specific duration. The opponent can do the challenge and return the challenge with his score to
his original challenger. This cycle is repeated until someone cannot defeat his opponent’s score
or the timer runs out to perform the challenge. On the dashboard, the player can see his statistics
regarding how often he wins or loses, his history for a given challenge type, and an overview with
whom he has played challenges the most.

Joel Suter & Lucas von Niederhäusern Page 13 of 152

Fitness Gamification

3 Framework Conditions

This project is part of the bachelor thesis which is required for the eligibility of the bachelor. The
planned time budget for this project is 360 hours per person and equals to 12 ECTS.

Joel Suter & Lucas von Niederhäusern Page 14 of 152

Fitness Gamification

4 System Context

Figure 4.1: System Context

The above graphic 4.1 shows the System Context of our application. The person "Fitness Gam-
ification User" represents our software system user. We only have one type of user since there
is currently no plan to implement users with different functionality or elevated privileges. Our
Software System, "Fitness Gamification App," contains all the code and infrastructure we control,
manage, and develop. The System will run as an app on both Android and IOS, allowing for a
Multiplatform approach. We have two external Systems, specifically, two external Application
Programming Interfaces (APIs) that we use. These are platform-specific, and which API is used

Joel Suter & Lucas von Niederhäusern Page 15 of 152

Fitness Gamification

depends on the app’s platform. These APIs are primarily used to create a cross-platform app that
runs on both these platforms, and the core API we will use from them is the sensor API, but there
are other APIs we use such as contacts.

Joel Suter & Lucas von Niederhäusern Page 16 of 152

Fitness Gamification

5 Requirements

We use Agile Methodologies to keep track of our functional requirements. These are tracked as
User-Stories or issues in Jira Cloud. We prioritize the User-Stories and issues in our Jira Cloud-
Backlog.

5.1 Functional Requirements

This section will show all our project’s Functional Requirements as Use Cases. It shows the
latest version of the functional requirements. Any changes made to functional requirements in
the duration of the project will be covered in 5.1.2

Figure 5.1: Use Case Diagram Final

Our Application only contains a single type of user. This user is anyone that downloads our
Application or receives a link to download the Application. All use cases extend the "1: Sign
Up" use case since, to use the functionality of our App, a user needs to have an account.

5.1.1 Use Case Description

Nr Use Case Description

Joel Suter & Lucas von Niederhäusern Page 17 of 152

Fitness Gamification

1 Sign Up The user expresses thewish to be registered on the platform. Reg-
istration will contain their Name and their phone number.

2 Sign In The user wants to be able to sign into our application after he cre-
ates an account.

3 Create Challenge The user wishes to create a "Challenge" and send it to another
user. While creating the Challenge, the user can select the type of
challenge/exercise, the time to complete the exercise and choose
a single user. After creating the Challenge, the Opponent will be
prompted to perform the exercise in the given period. After com-
pleting it, it will be returned to the Challenge’s Creator.

4 Send Challenge The user wants to be able to send a Challenge to a user. Sending a
Challenge can be either one he just created and completed or one
he received and responded/participated in. When receiving the
Challenge, the user will be able to perform his best for the given
exercise and send it back to the user he received the Challenge
from.

5 Perform Challenge The user wants to be able to perform a Challenge. That means he
wants to be able to participate in the given exercise type and that
our app will record his result and, when completed, sent it to the
other user

6 Create Challenge
against random user

The user wants to be able to create and perform a Challenge
against a random user that also uses the App.

7 Receive Push Notifi-
cation for Challenge

A user wants to be notified when he is challenged to a new Chal-
lenge or if it is his turn to attempt it. The user also wants to be
notified if he won the Challenge if no one could beat his score.

8 Receive Challenge Users can receive a Challenge from a user. There are two distinct
cases when receiving the Challenge in this use case. The user re-
ceives a Challenge that was either newly created or the previous
attempt of the user was topped, and he will be prompted to at-
tempt to beat the current high score of the Challenge. In the other
case, the user receives the Challenge where the other participants
were unable to best his attempt/score, and he will be declared a
winner and unable to respond/attempt to best the score again.

9 View Challenge
Overview Screen

The user wants to be able to view a screen (home page) where all
his running challenges are listed and where he can open specific
challenges and view their details. The user will see if it is his turn
to perform the Challenge or if he has to wait for the other user to
complete his turn

10 Earn Mile-
stones/Badges

The userwishes to earnBadges for completing certainmilestones
and achievements, which he can then view in his Banner on his
Dashboard and show to other users.

11 View Banner of Op-
ponent

The user wishes to see the Banner of his Opponent, where he can
see the earned Badges and some tracker of statistics of his Op-
ponent so that he can guess his Opponent’s skills.

12 View their ownDash-
board/Banner

The user wants to be able to view a Dashboard of his most impor-
tant information, including the Banner that will be displayed to his
opponents.

Joel Suter & Lucas von Niederhäusern Page 18 of 152

Fitness Gamification

13 View Dash-
board/Banner of
their friends

The user wants to be able to view the Dashboard of his friends.

14 Send Download Link
to unregistered User

A user wants to be able to challenge users that are currently not
registered with the application. In that case, the challenged user
will receive a download link to the store page of our application.

Table 5.1: Use Case Description

5.1.2 Evolution of Functional Requirements

The functional requirements represent the requirements provided in the initial task formulation.
Some requirements were removed, changed, or added during the project’s first few weeks. The
changes done to them and the reason for that will be listed here. The Use Cases from the original
task formulation looked like this:

Figure 5.2: Use Cases Version 1

In the first three weeks, we worked on finalizing the requirements, Non-Functional Requirements
(NFR)s, and setting up infrastructure. Whenwe discussed the functional requirement in ourmeet-
ings with our professor and customer, we realized that some of the functional requirements were
more complex than we thought in the beginning and that many edge cases would arise. The
functional requirements that caused us to overthink if we should implement them had to do with
groups. In short, a user could create a group, manage that group, send a Challenge to all group

Joel Suter & Lucas von Niederhäusern Page 19 of 152

Fitness Gamification

members, and view the ranking inside a group. When trying to specify these requirements more,
we noticed that there would be some edge cases and questions regarding the flow and manage-
ment of the group. A lot of our time would have to go into finding solutions for these edge cases
and also the group’s management with invitations, removing members, etc. That means a lot of
the work would go into the backend away from the UI, and the UI would suffer for that reason. We
were not as interested in the group management personally but more in the Challenges, achieve-
ments, and being able to focus more on the look and feel of our application.
The specific issues that arose are:

• How do we handle participants in a group that do not participate in the Challenge (aka
Bums)?

• How is the flow of the Challenge inside of a group? When is a winner selected? Is there a
fixed amount of turns?

• How will placement in a group Challenge be counted in the global ranking?

After discussing these issues wemade two proposals to our customers. One proposal where we
implement other functionalities instead of groups. The other proposal was how to address the
"problems" that arose with the groups. with our recommendation being implementing other use
cases and disregarding the group functionality. We will show the mind map 5.3 with alternative
functionalities that we used to specify our new functional requirements. This suggesting was
accepted and resulted in the functionality and use cases listed in the section 5.1

Figure 5.3: Mind Map Alternatives

Joel Suter & Lucas von Niederhäusern Page 20 of 152

Fitness Gamification

5.2 Non-Functional Requirements

Weexpress ourNon-functional requirements as defined in FURPS+. While this project progresses,
this table will be updated with new NFR’s according to the knowledge of the domain and its tech-
nologies. We will give each NFR a priority of must, should, can. Where must is any NFR that has
to be implemented and taken into account and tested. Should is a NFR that as the name sug-
gests should be considered and implmented but in some cases can be disregarded and won’t be
tested as heavily as the should requirements. And can are all the truly optional NFR’s. All NFR’s
listed here are a must unless explicitly stated otherwise. Below is the List of NFR’s in our project:

Joel Suter & Lucas von Niederhäusern Page 21 of 152

Fitness Gamification

Type Description Acceptance Criteria Priority
Functionality The App must run on both An-

droid and IOS
Manual Testing and de-
velopment on both plat-
forms

Must

Functionality The Backend is deployed and
frontend must be published in
the App Store and Play Store

Manual Testing and de-
velopment on both plat-
forms

Must

Functionality All exceptions are handled and
logged.

All Exceptions occur-
ring in the tests are
handled and logged.
Furthermore, all possi-
ble exceptions should
be tested.

Must

Reliability Errors do not cause Systemfail-
ures, but generate an error mes-
sage and re- set the system to a
previous state

Automated Testing /
Manual Deployment
Testing

Must

Performance backend is able to handle 50 re-
quests per second

Tested with Perfor-
mance Testing Frame-
work

Can

Performance App content should not take
longer then 150ms to load

Performance Testing
Framework

Should

Performance The Database should be able to
support 10000 challenges and
2000 user

Testing at scale (manu-
ally)

Can

Supportability The Business logic must be built
in amodular way so that it can be
easily extended

Business Reviews Must

Supportability Backend-API must be tested
with an API-Testing tool

Api Testing tool Must

Usability At least three test users out of 4
should rate the Application with
a grade of 8 from 10 (layout, re-
sponsiveness, colour, content)

Usability Tests Should

Usability Push notifications should be
sent ongoing

Unit and Manual Test-
ing

Must

Others (Security) Data entered in input fields must
be validated before it is passed
to the backend

SQL Injection tests Must

Others (Security) User passwords are not save in
plain text

Review Database
records

Must

Others (Security) Data should only be visible to
users that should have access to
it

Manually tested Must

Others Implemented functionality
(backend, Database, Frontend)
must be deployed

CI/CD Must

Table 5.3: Non-Functional Requirements

Joel Suter & Lucas von Niederhäusern Page 22 of 152

Fitness Gamification

5.2.1 Disregarded and Untested NFRs

In the course of the project we decided to disregard some of the NFR, for various reasons which
are mainly driven by 10.3.1. The NFRs that were not implemented can be viewed in 8.

5.2.2 Verification

If possible the NFRs will be checked automatically via automated tests. If that is not a possibility
we will check each NFR after each sprint, and if not all are met the Sprint does not meet the DoD
and has to be fixed as soon as possible.

5.3 Optional Requirements

This section describes the optional and additional requirements that were either known at the
beginning of the project or were ideas and inputs that came up during the project’s duration.
They are not part of the functional requirements and have low priority.

Type Description
Functional Implement additional challenge types
Functional User is able to delete his account and data associated with

his account
Functional Authentication possible with Google / Facebook / Apple-

Account
Functional User is able to capture challenge typesmanually that are not

implemented by our application
Functional User is able to view a timeline of all his challenges
Functional User is able to send a video message with the challenge
Non-Functional Implementation of anti cheating measures

Table 5.5: Optional Requirements

Joel Suter & Lucas von Niederhäusern Page 23 of 152

Fitness Gamification

6 Design and Architecture

6.1 Container Diagram

The container diagram 6.1 shows what technologies we chose to implement our application and
how the code is split up, and how the different components interact with eachother. It should be
viewed in the context of our system context 4.1

Figure 6.1: Container Diagram

6.1.1 Client

Our mobile client is implemented using React Native a Multiplatform language that allows us
to share one codebase for several platforms; in our case, these would only be Android and IOS.
React Native could be separated into different containers since its architecture is very complex,
but that is not our goal to show the internal architecture of React Native. We are not writing

Joel Suter & Lucas von Niederhäusern Page 24 of 152

Fitness Gamification

separate code for Android or IOS, so there is no need to split it into two containers for each
platform. We only have very few lines of platform-specific code, and this is because we use the
Expo toolset on top of React Native that abstracts the platform-specific API calls and allows us
to access android and ios API in the same way. More on Expo in chapter 6.5.1

6.1.2 Backend

As the backend we chose Firebase, a so-called backend as a service provided by Google. For a
detailed explanation of what Firebase is and why we chose it, refer to 6.4. The container diagram
shows the various Firebase services we use in our application. The services we use are:

• Firebase Authentication: Firebase service that implements authentication logic, and which
we use to authenticate our users. 6.4.1.

• Firebase Firestore: Firebase NoSQL Database service. The client will subscribe, read and
write data directly from the client. 6.4.4

• Firebase Cloud Messaging: Service that is used to send push notifications to our client.
6.4.3

• Google Cloud Functions for Firebase: Code that cannot be run in the client and code that
gets triggered by listening to certain events. These are on-demand functions, which means
a "instance" gets spun up every time a function is triggered, and after that, it gets torn
down. Contains mostly computation heavy code and calculations and general operations
that don’t belong in the client code. 6.4.2

• Firebase Storage: Service that allows us to store files on the google cloud. 6.4.5

6.1.3 External Dependencies

We use two "external resources". These are various apis from the android and IOS platforms. The
APIs we use vary from contacts to sensors, notifications, etc. We always use a Expo abstraction
library of the API which allows us to not write separate code for the two platforms.

Joel Suter & Lucas von Niederhäusern Page 25 of 152

https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/functions#:~:text=Cloud%20Functions%20for%20Firebase%20is,runs%20in%20a%20managed%20environment.
https://firebase.google.com/docs/storage

Fitness Gamification

6.2 Component Diagram

Figure 6.2: Component Diagram

Figure 6.2 represents the structure of our frontend code, our Firebase Cloud Functions code,
and represents how we use the various Firebase services. It is a generalization and there might
be deviation in the actual implementation and code. We tried to only represent the key files,
components and services in our application, to give a feel how our interal interactions of our
application work. Generally communication of our frontend with Firebase is done with the Fire-
base JavaScript SDK. For more specific details refer to the specific design and implementation
chapters you want more information on.

Joel Suter & Lucas von Niederhäusern Page 26 of 152

Fitness Gamification

6.2.1 Backend Access

Since the design decision of how we access our Firebase backend services from the frontend
influences the whole design, from backend to frontend, it fits in this section most appropriately.

In short, we access most of the backend services from the frontend directly using an SDK, unlike
a lot of other projects that expose and abstract them through an API. The main reason is that
Firebase is designed to be used in that way. The Firebase JavaScript SDK, which is used in the
frontend allows you to access them directly. It could be argued that it still is an API, but an API
that is exposed through an SDK instead of a REST API. The SDK uses HTTPS to communicate
with the backend, and does this in a secure way that is encrypted.

It also allows us to do small workloads that use small resources directly on the user’s system,
which will not hinder the user’s performance, but could accumulate and shoot up costs if there
is a large user base and all these have to be run on our servers.

This decision might also raise some valid security concerns, which will be addressed in more
detail in section 6.7. In short, security is not the primary concern of this project, and we do not
have actual requirements regarding that. That does not mean we will not consider security, but
it is not our focus. For that reason and the reason that we do not collect sensitive data from the
user, it is of low concern. Still, Firebase is considered very secure, and unwanted manipulation
of data, or injections, are generally checked by the SDK we use. In short, the benefit of accessing
the backend through the SDK directly from the frontend, especially for the database, outweighs
the valid drawbacks in security that might arise from that decision. For our in-depth security
decisions and more on that, refer to 6.7.

Authentication

We use the Firebase JavaScript SDK to authenticate the user and use the Firebase authentication
service from the frontend. The Firebase JavaScript SDK then manages the token and authenti-
cation for us, which we can access and use in our logic.

Database

In most backend-frontend projects, the backend directly accesses the database and exposes it
through an API, such as a REST API, and the frontend requests this API. We do this completely
differently, and the main reason for that is that we use Firebase as our backend. Firebase and
it’s database Firestore allows us to leverage the advantages of real-time updates. Data can be
directly accessed from the frontend using the Firebase JavaScript SDK. It allows us to then sub-
scribe to the data we requested. If implemented correctly, Firestore will now push updates to
subscribed data if this data changes, and the UI can then be updated to display the new data.

For us to directly access the data from the frontend looks pretty unorthodox. However, from
our research, this is very common, and the suggested way to access the database is to use all
features from Firebase to their full extent. Of course, we have exceptions and do not do all the
database access directly in the frontend. We also have Firebase Cloud Functions as a Node.js
backend, and work that is heavy on performance or security sensitive will be done in the Fire-
base Cloud Functions. The frontend generally only does basic read and writes, and some small
workloads that could accumulate on our backend systems but do not affect the client. For im-
plementation details on how we access the database, refer to 7.2

Joel Suter & Lucas von Niederhäusern Page 27 of 152

https://firebase.google.com/docs/firestore/query-data/listen

Fitness Gamification

Storage

Wealso use the Firebase JavaScript SDK to access Firebase Storage and allow the user to upload
directly to them. This mainly concerns the glsprofile pictures of the user. Of course, we control
what a user can upload and what he can read from the storage. Restrictions are listed in 6.4.5.

6.3 Domain Model

Figure 6.3: Domain Model

The graphic 6.3 serves both as a representation of our domain but also as a database model.

6.3.1 Types of References

Weuse two types to reference another Document from aDocument. Wewill explain these quickly
here since to understand the diagram, one has to understand the types of references:

• Firestore reference type: Firestore provides a type called Document Reference which can
be used to reference another Document. Strictly seen, this type is a string that points to
another Document. For example, the "creator" field in "challenges" could have a value like
"users/12dafn2123avnneran384". The neat part about that is even though this is a string
when loading a Document from Firestore with the Firebase JavaScript SDK, this field will
directly be resolved as a DocumentReference. With this type we can directly resolve to the
document it points to and read the data from it.

• Id of Document matches the id of the Document it points to: We use this type of reference
for 1 to 1, or 1 to 0..1 relationship. For example, a user will only ever have at maximum one

Joel Suter & Lucas von Niederhäusern Page 28 of 152

https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentReference

Fitness Gamification

trackedData Document. A very efficient way to model this relationship is to use the users’
id as the id of the trackedData Document. Because the user will have a maximum of one
Document in trackedData, there is no problem with duplicated ids in the same Collection.
Also, NoSQL has no problem with duplicated ids as long as they are not in the same Collec-
tion, since the "unique key" of a Document is as follows: "/documentName/documentId".
Themain benefit for us tomodel such relationships in that way, is performance and cleaner
code. Suppose, for example, we want to retrieve the trackedData of a user. In that case, we
can directly reference the Document, since we know the Collection name "trackedData" and
the id "the users id", and therefore the absolute path of the Document. The need to query
a whole Collection to find the Document that belongs to a user is not needed anymore.
Therefore, we get more performance, no need for complex queries, and less code.

6.3.2 Description

At the center of it all is the user. Since we want to save other data for the user and reference
the user in other Documents, we have to mirror the user in our Firestore database. The user
object in Firebase authentication cannot be extended. Furthermore, it cannot be referenced from
inside Firestore. That is the reason we need to mirror it in our database (forum post that lead us
to this decision). The Document id will match the uid of the user in the Firebase Authentication
Service . The user contains only their phone number, display name, a expoToken used for sending
notifications and a random number used for challenges against random users. There is no need
for a password since the authentication is done via a one-time password sent by sms to the user’s
phone.

Themost central part of the domain next to the user is the challenges. In this Collection, all active
and completed Challenges are stored. The Challenge holds all the most essential information,
such as the duration each user has to complete the Challenge, which Challenge type it is, the
Creator, and the challenged Opponent of the Challenge. As seen in themodel 6.3, the association
with the user is not the typical association one sees in a domain model. A Challenge must have
precisely two users, not more or less. A Challenge also contains a subcollection named history,
where everytime a user performs on a Challenge, a Document is saved. This subcollection is
a history of all performances in a Challenge. The path to this can be seen in the diagram. The
benefit of having this saved in a subcollection instead of an array is that not all history is loaded
when we load the Challenge. It helps with the performance.

trackedData and earnedBadges is the persisted data that will be shown in the Profile of a user
and their Banner. We have on one side trackedData. This is data like the win/loss ratio, a user’s
total wins, Etc. The Documents in this Collection can be extended to trackmore data in the future.
The data in this Collection is used to determine if a user earned a badge or to evaluate a user’s
rankings. badges are all the Badges we will make available for the user to earn. It contains the
url to the image/icon as a string. In earnedBadges, we will track the Badges the users obtained.

weeklySummary is a subcollection of trackedData and tracks the performances per week of a
user. The id is always the Monday of that week as a date, which is also a field in the document.
There the total performances for each challengeType for that week are tracked.

playedAgainst is a subcollection of trackedData and tracks all the users a user has played against.
The id of the Documents in this collection are the id’s of the users a user has played against.
These Documents track the number of times a user has played against a specific Opponent.

Joel Suter & Lucas von Niederhäusern Page 29 of 152

https://stackoverflow.com/questions/58964099/reference-firebase-user-objects-in-firestore
https://docs.expo.dev/versions/latest/sdk/notifications/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjw-IWkBhBTEiwA2exyO1poJXYtPM-2iPBQsXBi2PwSym0bFLFd82RNd2I5NrCQp9YPbTcXLhoCJvAQAvD_BwE

Fitness Gamification

6.4 Backend - Firebase

In the Task formulation 15, it is stated that we use Node.js as our Backend technology. This
requirement changed during the project elaboration phase. Our Industry Partner suggested Fire-
base as a possible backend technology. Since we thought it looked exciting and would match
our project well, we used Firebase instead of Node.js.

For the backend we chose Firebase. Firebase allows for a certain abstraction of the backend.
It is a Development-Plattform for mobile and web applications, and can be called a "Backend
as a Service". It allows developers to manage and create a backend for their application more
easily. Their tools cover many services developers normally build themselves, such as analytics,
authentication, databases, configuration, file storage, push messaging, etc. These services get
abstracted by Firebase and allow the developers to focus on functionality and UI instead of using
time and resources to build yet another authentication service. With Firebase developers can
"click" these services into existence and then use them without the overhead of writing them
themselves.

We chose this for the exact reasons mentioned above. It allows us to focus on functionality and
UI and use existing, tested and performative solutions.

This section will cover our Firebase setup, including the database and all the code that runs on
Firebase and how it is triggered. It will not cover how we specifically use Firebase in our client
applications. This will come in the following section 6.5 and 6.2.1. Below is a screenshot of the
Firebase console for our project:

Figure 6.4: Firebase Console

Joel Suter & Lucas von Niederhäusern Page 30 of 152

https://firebase.google.com/

Fitness Gamification

6.4.1 Authentication

We used the Firebase Authentication Service for the authentication. We activated the phone
number authentication method, so users can log in with their phone number and deactivated
the default authentication method of email/password. This authentication method was agreed
upon as the only authenticationmethod the users can use. Initially, we also wanted to use Google
authentication. However, after some discussion with our Industry Partner, we chose not to im-
plement it since it would make the whole management of the users, choosing an opponent, Etc,
that much harder.

We activated specific phone numbers for testing, so no sms must be sent when running the
application locally.

Below 6.5 is a screenshot of all possible authentication methods:

Figure 6.5: Possible Authentication Methods

Monitoring

Firebase Authentication allows for easy monitoring of active users and the usage of the phone
verification instances. Depending on which authentication methods are enabled, this monitoring
screen will look different and track more metrics.

Joel Suter & Lucas von Niederhäusern Page 31 of 152

https://firebase.google.com/docs/auth

Fitness Gamification

Figure 6.6: Authentication Monitoring

6.4.2 Functions

Most of the functionality is implemented in the client app, but some code must be run in the
backend. To create custom backend code for Firebase, we use Google Cloud Functions for Fire-
base. It is a Nodejs backend, but different from typical Nodejs backends; it is not "running" as
long as no code is running. Each function created exists on its own and is spun up in its instance
when it is triggered and then torn down again when it finishes. That means we have a completely
stateless backend. That way, the costs are very low, and no resources are consumed as long as
no one uses them. It also automatically scales since each call creates an instance of a function.
We use three types of triggers that trigger the functions:

• HTTPS callable Function: A function triggered through an HTTP request. It differs from a
standard Rest Endpoint that the function can only be triggered through an application that
uses our Firebase configuration, which is internal. That means it is not publicly available
and cannot easily be triggered from an unknown source. We call these functions through
the Firebase JavaScript SDK "firebase/functions" library. It uses the HTTP protocol to send
the request.

• Firestore Triggers: Firebase listens to changes in specific Collections and Documents we
specify and run the function if the event matches the trigger. This is mainly used to send

Joel Suter & Lucas von Niederhäusern Page 32 of 152

https://firebase.google.com/docs/functions#:~:text=Cloud%20Functions%20for%20Firebase%20is,runs%20in%20a%20managed%20environment.
https://firebase.google.com/docs/functions#:~:text=Cloud%20Functions%20for%20Firebase%20is,runs%20in%20a%20managed%20environment.

Fitness Gamification

notifications to the client if something specific is called.

• Scheduled Triggers: Gets triggered/run in a predefined interval.

The functions are written with Nodejs and either javascript or typescript. We chose javascript
since our frontend is implemented with javascript. We changed the default configuration of Fire-
base Cloud Functions so that we can use the same javascript syntax that we use in our frontend.
We also use almost the same Linting to have the same coding style. This allows for easier de-
velopment between frontend and backend.

Structure

Figure 6.7: Firebase Functions Structure

The above 6.7 structure is an excerpt from the component diagram6.2. It represents the structure
of our Firebase Cloud Functions code. There is a mandatory index.js, where you must export all
your Firebase Cloud Functions. This file calls the services it needs, which do some business logic
and call the repositories to read and write data. The file "firebaseinstances.js" correctly initializes
the Firebase Admin SDK.

For development details for the Firebase Cloud Functions refer to 7.3.

Deployment

We chose to deploy the functions currently locally from the CLI using the Firebase CLI Tools.
To deploy the functions to the backend, go into the functions directory and run the following
command:

Joel Suter & Lucas von Niederhäusern Page 33 of 152

Fitness Gamification

firebase deploy --only functions

6.4.3 Firebase Cloud Messaging And Notifications

Firebase Cloud Messaging is another component of the Firebase economy which allow us to
send notifications to devices. It is versatile because it allows you to send notifications to single
devices, groups of devices, or devices that are subscribed to a specific topic.

Figure 6.8: FCM Architectural Overview

To send notifications, we will implement triggers using the expo-server-sdk. The backend, de-
pending on the destination device, will use either Firebase CloudMessaging for Android or Apple
Push Notification Service for IOS to deliver the notification. We do not differentiate between the
platform in our code since we chose to use the Expo abstraction, the expo-server-sdk package.
This package does this for us; for details on that, refer to expo-push-notifications.

We chose to send Notifications for the following events:

• User receives Notification if he got challenged.

• User receives Notification when it’s his turn to perform in a Challenge.

6.4.4 Database - Firestore

The decision for which kind of data persistence we use to persist our data was between two
kinds of databases, Firebase provides.

• Firestore

• Realtime Database

Google provides a documentationwhich helps to choosewhich database to use. RealtimeDatabase
was created before the Firestore; therefore, Firestore is newer and not as much "battle-tested."

Joel Suter & Lucas von Niederhäusern Page 34 of 152

https://firebase.google.com/docs/cloud-messaging
https://www.npmjs.com/package/expo-server-sdk
https://www.npmjs.com/package/expo-server-sdk
https://docs.expo.dev/push-notifications/sending-notifications/
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database/rtdb-vs-firestore

Fitness Gamification

Firestore builds on top of the Realtime Database, generally providing everything the Realtime
Database can provide and more. In a lot of articles and blog posts, also mentioned in this one,
it is recommended for newer applications to use the new Firestore database, since there is no
functionality that the real-time database provides that the Firestore cannot. However, there are
still a few reasons to choose the real-time database over the Firestore. According to the previous
mentioned blog post by Todd Kerpelman [Ker17] the following applies:

• Detecting presence: Native support to detect if a user has gone online or offline. Also
possible with Firestore but less elegant.

• Better latency: Slightly better latency than Firestore, but not by much.

• Pricingmodel: Due to their different pricingmodel, applications that perform large numbers
of reads and writes per second can be significantly cheaper using the Realtime Database.

Any of these reasons above did not apply enough to our application to justify using the older
Realtime Database. Detecting presence is also possible with Firestore; slightly higher latency is
not a problem since we do not deal with bulk data or require the fastest possible data access,
and we do not perform enough reads and writes that would impact the price significantly. The
most significant factor that spoke for Firestore was its data model, the NoSQLmodel. Compared
to the Realtime Database where data is written into a single json tree, the NoSQL model with its
Collections is much more readable, and we have much more experience with it. This structure
allows for better expansion of the application in the future and better maintainability.

Key features of the Firestore are:

• NoSQL Datamodel: Easy to read and maintain data structure that is familiar to most devel-
opers.

• Expressive Querying: Vast filter and sorting possibilities.

• Real-time Updates: The client can subscribe to persisted data and gets updated if the data
changes in the Firestore database. (Key Feature for our Application)

• Offline Support: Caches data that the app actively uses. The app can still be used, and
when the device comes back online, the data is synchronized with the Firestore data.

• Designed to Scale: Automatically scales are replicated across different regions (depending
on the chosen option). It is designed to handle workloads from the world’s biggest apps.

These reasons are why we chose and are satisfied with our decision to use Firestore.

Reference 7.2 on how we implemented database access in our application, and 6.3 to see how
we modeled our data structure.

Redundancy and Transaction

We chose to host our Firestore as a multi-regional database. This means it is replicated across
multiple regions. We chose the Europe multi-region, which uses a Belgium, Netherlands, and
Finland data center. The various regions are listed here. This allows for better availability and
durability.

Each operation in Firestore is atomar. That means if it fails, nothing happens. Firestore provides
transactions that one can use. We did not use them since no write to the database depends on
another write to succeed. Therefore we do not use any transactions in our operations since those
operations are transactional and do not depend on others.

Joel Suter & Lucas von Niederhäusern Page 35 of 152

https://firebase.blog/posts/2017/10/cloud-firestore-for-rtdb-developers/#the-tldr-just-tell-me-what-to-use
https://firebase.google.com/docs/firestore/locations

Fitness Gamification

Monitoring

The usage of the database can be easily monitored through the Firebase console.

Figure 6.9: Firestore Monitoring

In a specified period, it is possible to examine the number of read, write, and delete operations
that have been performed. The lower graph also shows how many subscriptions to data in the
Firestore from a client are active. Those subscriptions are there so that the user gets Real-time
Updates if the data he subscribed changed.

6.4.5 Firebase Storage

We also use the Firebase Storage service to mainly store pictures, such as the Profile pictures
the users upload. Firebase Storage can be directly accessed by the Firebase JavaScript SDK,
which allows downloading and uploading files to and from the storage. Like in the other services,
Firebase Storage configures security rules to strictly control who can read andwrite from it. There
is also already a setup monitoring dashboard to view the reads and writes to storage.

What is stored:

• badges/{badgeName}: Images of the Badges a user can earn.

• profile/{userUid}: glsprofile picture of the users (if they uploaded one).

6.4.6 Scaling

Firebase automatically scales and bills you as you go. On the developers ’ end, there is little to
do to scale up the application, Firebase does that automatically depending on data, traffic, and
user volume.

Joel Suter & Lucas von Niederhäusern Page 36 of 152

Fitness Gamification

6.4.7 Pricing

We began using the "Spark Plan" when we created the Firebase project. This plan is entirely free,
but some features are unavailable, and most features are limited to monthly usage volume.

Since we also need to use the Firebase Cloud Functions to implement certain features such as
push notifications, and this feature is not possible to use under the "Spark Plan," we changed it to
the "Blaze plan." This plan is generally also free until the usage volume that the "Spark Plan" pro-
vides, but instead of blocking further usage, it will continue to work and start billing our account.
The specifics of the plan we use and costs that could arise are detailed here.

Detailed billing and cost of the current and past billing period can be viewed in the Firebase
console. It details the usage of the different Firebase services, the cost that arose, and how
much percentage of the free resources were used up. In the screenshot 6.10 below, in the time
around 25.04.23, you can see that we are far from where costs would arise.

Figure 6.10: Usage and Billing for Firebase

Generally for "small apps" (compared to apps like twitter, reddit etc) Firebase is very cost com-
petitive, especially if you consider that the initial setup cost of the backend is much smaller. The
maintainability and monitoring of your backend are much easier and come with less setup. For a
massive application with an enormous user base, the costs compared to self-hosted or other ser-
vices are considerably higher, especially since the setup cost is more negligible than the hosting
cost. In a small app, the setup and development cost is much higher than the hosting costs.

Joel Suter & Lucas von Niederhäusern Page 37 of 152

https://firebase.google.com/pricing

Fitness Gamification

6.5 App Architecture

We use React Native to develop our App. React Native is an open-source software Framework.
It is used to develop applications on various platforms such as Android, IOS, Windows, Web,
and more. It allows developers to develop apps using the React Framework and native plat-
form capabilities—developers program in JavaScript, which will be converted to native code. The
cross-platform and seamless integration on different operating systems and the ability to use the
operating-specific APIs and capabilities made React Native a perfect choice. It has a ton of doc-
umentation and allows us to easily integrate our Firebase backend to our App. We will focus on
two platforms specifically:

• Android

• IOS

That means we will implement a mobile app.

6.5.1 Multiplatform - Expo

The need for platform-specific code in our app can be summed up to a couple of lines of code,
where differentiating between platforms was absolutely mandatory. That can be explained by
our choice to use Expo. Expo is a set of tools and services that can be used to allow developers
to develop one codebase that can be used on multiple platforms. We do not directly access
platform-specific APIs but use an abstracted API from Expo to access APIs like the file system
across multiple platforms using the same codebase.

6.5.2 Structure

This section will describe our app’s general folder structure and the contents of these different
folders.

• assets: Contains icons and pictures.

• components: Contains our own written Components that are used by the screens.

• constants: Contains constants such as translations, navigational strings, configs etc.

• models: Models the data we want to use from Firestore, and defines converters, that con-
vert from and to Firestore.

• repositories: Access to the backend data. Different from other frontends, we directly ac-
cess certain backend data 7.2. These files subscribe to specific datasets, which allows the
backend to push realtime updates 7.2.1 if these datasets change.

• routes: Contains everything needed for navigation across different screens.

• screens: Contains files which each represent a different screen in our app.

• services: Contains service files that do data manipulation, communication with firbase
functions, and other general work and business logic.

For a diagram view on how this structure communicates, refer to 6.2.

Generally all files are considered equal, but there are a few key files worth mentioning:

Joel Suter & Lucas von Niederhäusern Page 38 of 152

https://reactnative.dev/
https://docs.expo.dev/

Fitness Gamification

• app/index.js: This is the root Component of our application. Once the Javascript is loaded,
this Component will be activated and the remaining Component tree will be initialized.

• app/App.js: This is the only child of our root Components. It has as its child Component
the routes/main/MainNavigator.js. React Native is a Single Page Application, that means
App.js will always be displayed to our user, just with different child Components.

• app/routes/main/MainNavigator.js: This Component is the main navigational Component.

• app/firebase.js: This file contains the configuration and initialization of Firebase that allows
our app to communicate and connect with our Firebase backend.

6.5.3 UI Design

This section will show the initial draft at the beginning of the project. Designing a UI is an evolu-
tionary process; therefore, the final product may differ from our mockups. We will still include the
initial state of the draft at the beginning of the project to give a feeling of our design’s evolution
over this project. The Design of the UI might change with reviews from our customers and with
the beginning of the actual implementation and with the consideration that it’s a prototype. It
serves as an initial guide for our App.

Inspirations

We were inspired and guided by several different applications while designing the product and
refining the use cases with our customers. The three applications are:

Whats App Mobile

Joel Suter & Lucas von Niederhäusern Page 39 of 152

Fitness Gamification

Figure 6.11: Whats App Inspiration

The widely used messaging app WhatsApp served as a general inspiration and guide on how to
structure our app. It influenced the placement of the navigation elements, hover buttons, and the
look and feel of the app. We choose this as a guide since everyone with a smartphone uses it,
and structuring our app this way allows users to easily use and understand the structure of our
app since they are already familiar with it.

Polytopia

When designing the Challenge screen, where users see their Challenges, we immediately thought
of Polytopia. Polytopia is a turn-based strategy game that can have turn times of up to one week.
Since our Challenges are also turn-based, in the sense that one performs a Challenge and then
waits, sometimes several hours, for the other users to perform theChallenge, we thought a similar
approach to the one Polytopia has would make perfect sense.

Joel Suter & Lucas von Niederhäusern Page 40 of 152

https://www.whatsapp.com/
https://polytopia.io/

Fitness Gamification

Figure 6.12: Polytopia Inspiration

As one can see in the screenshot 6.12, several games are listed. The screen is divided into two
sections. The "Your Turn" section shows the games where the Player is on their turn. The "Their
Turn" section shows all the games where the User waits for the Opponent to complete their turn.

Apex Legends

In the elaboration phase of the project, where we discussed the specifics of the functionality of
our App, we thought implementing someway for the user to "showoff" his statistics and a system
where a user can earn rewards would make much sense. After all, we are trying to gamify fitness
exercises. For this reason we chose to display a Banner of a user that his opponents can see. A
game that we know does that excellently is Apex Legends. It is a highly competitive shooter with
a high skill ceiling and encourages users to improve. One way it does that is by allowing users to
show their achievements with Badges or trackers of specific statistics for other users to see.

Joel Suter & Lucas von Niederhäusern Page 41 of 152

https://www.ea.com/de-de/games/apex-legends

Fitness Gamification

Figure 6.13: Apex Legends Banner

As seen in the screenshot 6.13, players can show off their achievements in their player Banner
for other people to see. In the game, the Banner is customizable, but we decided against that
feature to focus on the application’s core, which is the performing of Challenges.

UI Mockup

In this section, wewill list the initial draft of our UImockup and, where needed, give some descrip-
tions and elaborations about our reasoning for this initial draft. These mockups where created
in the first 2 weeks of the project. As seen, the design was heavily influenced by our inspirations.

Figure 6.14: Register Screen Mockup Figure 6.15: Login Screen Mockup

Joel Suter & Lucas von Niederhäusern Page 42 of 152

Fitness Gamification

Figure 6.16: Challenge Screen Mockup Figure 6.17: Challenge Details Screen Mockup

Figure 6.18: Profile/Dashboard Screen with Ban-
ner Mockup Figure 6.19: Rankings Screen Mockup

6.5.4 Coding Style Guide

To guarantee that our code has a coherent coding style that makes our code more readable and
maintainable, we use an eslint for automatic coding rule enforcement and styling. Since there is
already much research on how to style your code and a set of best practices exists and is agreed

Joel Suter & Lucas von Niederhäusern Page 43 of 152

Fitness Gamification

upon by most developers, it did not make sense to define all our styling guidelines on our own,
so we chose two styling packages we use in our linter to help us format the code:

• Plugin react Recommended

• Airbnb code style guidelines

We chose these two since the first is recommended for all react applications, and the second one,
Airbnb, is probably the most commonly used pre-prepared set of linter rules. In the link above for
Airbnb, any developer developing this application can read up on the styles and rules we use for
our coding. We use the default rules enforced by our linter and adhere to the suggestions by
Airbnb that are not enforceable by rules. Any deviations in the linting rules can be read in the
rules section of our ".eslintrc.json" file in the root of our client application

6.6 Deployment

6.6.1 Firebase Functions

Deploying our backend code, which is our Firebase Cloud Functions, we can just run "firebase
deploy –only functions" or "npm run deployfunctions" in the "firebase" directory of our code. Re-
member that the Firebase CLI Tools has to be installed, logged in, and connected to the correct
Firebase project. A guide on how to do that can be seen here.

The rest of our Firebase services do not need any deployment, and can be directly modified in
the Firebase console.

6.6.2 Mobile App

One of our requirements was to deploy our application to both the Google Play Store for our
Android distribution and also to the IOS App Store. We create two different builds for Android
and ios, which are then published in the respective store. The file responsible for building the
application is the "app/eas.json" file. We specify two different builds: A preview build, which is
only used for internal testing, and a production build, which builds the application that should be
published.

Building the App

To build the application, we use the EAS cli. Noteworthy is that the one running the command is
logged in to his Expo account and that his account has access to the Expo project.

One can then run the following command in the project root:

eas build --platform <all/android/ios> --profile <preview/production>

The application is then built in the Expo project. The progress can be tracked there.

Joel Suter & Lucas von Niederhäusern Page 44 of 152

https://www.npmjs.com/package/eslint-plugin-react
https://github.com/airbnb/javascript/tree/master/react
https://firebase.google.com/docs/functions/get-started?gen=1st
https://play.google.com/store/games?hl=de
https://www.apple.com/chde/app-store/
https://expo.dev/eas?utm_source=google&utm_medium=cpc&utm_content=search&gclid=Cj0KCQjwj_ajBhCqARIsAA37s0zWg5PWUKvT6xSgCjuElKabzMRLQgEcoxAr36JYwxuIk4iVQnI35mQaAovKEALw_wcB

Fitness Gamification

Figure 6.20: Expo Build

Once the build is done, we can open the build, download the generated file, and install it on our
devices for testing.

Publishing

Both the ios and Google credentials used for publishing to these app stores were provided to us
by our Industry Partner. We saved these in our Expo project, which then allows us to deploy the
latest production build from our CLI with the following command:

eas submit --platform android
eas submit --platform ios

Note that to deploy to ios, the field "appleId" in the "app/eas.json" file has to be set to the correct
Apple ID. We purposely do not track them anywhere for security reasons.

6.7 Security

Security was not the biggest factor in our project, and there were a few reasons for that:

• It’s a prototype and not intended to be launched in full production in the duration of the
project. The goal as explained by our Industry Partner was to create a prototype which can
then be expanded upon.

• The nature of the application does require the biggest security considerations (no financial
information, health information). It’s no banking or health softwarewhere breaches or down
time would cause huge damages.

• Firebase is generally very secure in itself.

• As explained in 10.3.1, Joel was unavailable for a considerable amount of time. We dis-
cussed this with our Industry Partner, and the decision was to focus on features and not on
security.

Joel Suter & Lucas von Niederhäusern Page 45 of 152

Fitness Gamification

For those reasons, we chose to not implement the full security measures, that Firebase provides.
Still, we made sure that our Firebase Cloud Functions can only be accessed by a authenticated
user, and that our database can generally only be accessed by an authenticated user.

For further development, security should of course be addressed more. This page explains very
well which kind of security measures should and can be implemented in a Firebase project.

6.7.1 Firestore Access

Firestore allows for very detailed rules, on who can access which records, under specific condi-
tions. In this documentation is everything a developer needs to understand on how to write and
read Firestore rules.

For development purposes, every record is available to everyone (every registered client). We
changed these rules in the progress of our development, to expose only as much data to cer-
tain clients to make the app functional, and keep everything else hidden from the clients and
inaccessible, to prevent unwanted manipulation.

The rules we chose to implement are (refer to domain model 6.3 to see all collections). :

• Global rule: Every access has to be authenticated.

• challenges: Only allow read or write if user is part of challenge.

• challenges/history: Only allow read or write if user is part of the parent challenge.

• trackedData: Only all reads, but nowrites (data is only updated by FirebaseCloud Functions,
7.13)

• trackedData/playedAgainst: Allow all reads, but no writes ("")

• trackedData/weeklySummary: Allow all reads, but no writes ("")

• users: Allow all reads, but only writes from the user it belongs to.

• badges: Allow all reads, no writes (is only changed manually in the console 7.14.2)

• earnedBadges: Allow all reads, nowrites (data is only updated by Firebase Cloud Functions,
7.14)

• messages: Allow reads and writes only for user that message belongs to.

The reasoning for those rules will become evident in this paper, when one sees what and when a
user should be able to see, or what we write from the client.

Keep inmind that these rules do not apply to our FirebaseCloud Functions backend. The Firebase
Admin SDK "ignores" these rules.

6.7.2 Storage Access

Similar to the Firestore security rules 6.7.1, we can define rules for storage access to. The rules
we defined are:

• Global rule: Allow authenticated read access, but no writes.

• badges/: Allow authenticated reads, but no writes.

• profile/: Allow authenticated reads, but only writes to files that match the users id.

Joel Suter & Lucas von Niederhäusern Page 46 of 152

https://developers.google.com/learn/pathways/firebase-security-layers
https://firebase.google.com/docs/firestore/security/get-started

Fitness Gamification

6.7.3 Input Validation

As mentioned earlier, we had a big step back when Joel injured himself. Moreover, to still imple-
ment all functionalities, we had tomake some compromises 10.3.1. One of themwas the decision
not to implement frontend data validation. The reason for that was that we were running out of
time. Of course, this should be addressed and listed in 9.1. However, even without Frontend data
validation, Firebase does not allow any "code" input or any input that could create any security
risk. So in our opinion this is not a big security risk, and can therefore be ignored in the context
of a prototype.

Joel Suter & Lucas von Niederhäusern Page 47 of 152

Fitness Gamification

7 Implementation

This chapter will describe the most important implementation details and implementation as-
pects of our project.

7.1 Firebase Initialization

The Firebase project was created by our Industry Partner, and then access was provided to us.

7.1.1 Setting Up Services

We needed to use several Firebase services for our Application. These can be easily initialized
by selecting the services from the Firebase console. This is all we needed to do for Firestore and
storage. We recommend setting up the database first since we had to choose our final region,
which will be used for all the other services. We will go into a little more detail for the initialization
of firebase functions in section 7.3, and authentication in section 7.4.1.

7.1.2 Frontend Configuration

The next step was registering an application in our Firebase project. Since we use React Native
with Expo 6.5.1 and do not have separate code bases, we have to create a web app in Firebase as
required by Expo. When creating a web app, the Firebase dashboard will display a quick how-to
to get our app running, which we will expand upon to show how we initialized it in our case.

1. Install the Firebase JavaScript SDK. We chose the latest version, 9.21.0, which is a preview
version. We choose a preview version because it containsmore functionality, such asmore
complex queries.

2. Copy the Firebase configuration from the web app we created in Firebase and paste it into
a variable in the frontend. This configuration should be recopied if new services are used
from Firebase. We configured the whole Firebase connection in the app/firebase.js file:

export const firebaseConfig = {
apiKey: "someKey",
authDomain: "domain",
projectId: "projectId",
storageBucket: "url",
messagingSenderId: "id",
appId: "id",

};

3. Use this configuration to initialze the app:

const firebaseApp = initializeApp(firebaseConfig);

Joel Suter & Lucas von Niederhäusern Page 48 of 152

Fitness Gamification

4. Initialize the Firebase services we use:

initializeAuth(firebaseApp, {
// Keeps users logged in on app close
persistence: getReactNativePersistence(AsyncStorage),

});
export const functions = getFunctions(firebaseApp, "europe-west1");
export const db = getFirestore(firebaseApp);
export const storage = getStorage(firebaseApp);

We have to specify the region for the firebase functions, since they cannot run multi region
like the other services do.

After these configurations, we are able to use Firebase and all the services we specified from it.

7.1.3 Firebase SDK

We use the Firebase JS SDK to connect and use our Firebase backend functionality from the
frontend. The Firebase JavaScript SDK can be found on npm. We currently use the "9.21.0" ver-
sion of the Firebase SDK. At the beginning of the project, this was a preview version and was not
considered stable. We chose to use the preview version since, before this version; you could not
use "or" in query conditions, which made it hard for us to query the data we needed. It is since
then the new stable version.

7.2 Frontend Firestore Access

As explained in our design decision 6.2.1 we access most of the data directly from the frontend
using the Firebase JavaScript SDK API, specifically "firebase/firestore". In this section, we will
show how we access the data in our frontend and how we can receive Real-time Updates from
Firestore.

7.2.1 Read Operations and Real-time Updates

We have two ways to retrieve data from a Document or multiple Documents.

Referencing the Document directly

For some read operations, we know the absolute path of the Document we want to retrieve. This
is often the case when there is a 1 to 1 or 1 to 0..1 relationship between the "user" Collection and
another Collection as explained in 6.3.1. Since we know the Collection name, and the id of the
Document (same as the userUid) we want to retrieve, we therefore know the absolute path of the
Document. We can then directly reference the Document as seen in the example below, and also
add a converter which becomes relevant later 7.2.1 (app/repositories/UserRepository.js):

import { doc } from "firebase/firestore";
...
export function getDocReferenceForUid(uid) {

return doc(db, userCollectionName, uid).withConverter(userConverter);
}

Joel Suter & Lucas von Niederhäusern Page 49 of 152

https://firebase.google.com/docs/reference/js
https://www.npmjs.com/package/firebase

Fitness Gamification

...

The function above returns a DocumentReference using the doc() function. We pass the Firestore
instance we initialized 7.1.1, the Collection path (mostly collection name), and the path to the
Document (document id). We do not know if the Document exists yet, and have not retrieved
the data yet. No request was sent to the backend. To retrieve the data, we can do this (example
code):

import { getDoc } from "firebase/firestore";
...
export async function retrieveUserData(uid) {

const userDocRef = getDocReferenceForUid(uid);
const userDocSnap = await getDoc(userDocRef);
if (docSnap.exists()) {

return docSnap.data();
}
return undefined

}
...

We first generate the reference to the Document we want to retrieve. After that, we use getDoc()
to retrieve aDocumentSnapshot from the reference. We nowhave access to the actual Document
that is stored. To check if the Document exists, we use the exists() call. We can just call .data()
on the snapshot to read the data. Amore in-depth overview to retrieve a Document can be viewed
here.

Querying a Collection

As in all databases, we can also run complex queries to retrieve specific Documents that meet a
particular condition. Here is an example of a query that retrieves all the challenges a user is a part
of, either as the glscreator or Opponent (app/repositories/ChallengeRepository.js (outdated)):

export function getQueryResultForAllChalengesBelongingToUser(uid) {
const userDocReference = getDocReferenceForUid(uid);
const q = query(collection(db, challengeCollectionName)

.withConverter(challengeConverter), or(
where(creatorField, "==", userDocReference),
where(opponentField, "==", userDocReference),

));
return q;
//use getDocs(q) to retrieve a querySnapshot that contains all documents.

}

Firestore allows using all the standard query operators and conditions. A list of them and a more
in-depth overview of queries can be viewed here (make sure to view for Web Version 9).

Real-Time Updates

We are able to receive Real-time Updates, on queries or Document references, if we do the fol-
lowing (app/repositories/TrackedDataRepository.js):

//For document reference

Joel Suter & Lucas von Niederhäusern Page 50 of 152

https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentReference
https://firebase.google.com/docs/reference/js/firestore_.md#doc_3
https://firebase.google.com/docs/reference/js/firestore_.md#getdoc
https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentSnapshot
https://firebase.google.com/docs/firestore/query-data/get-data
https://firebase.google.com/docs/firestore/query-data/queries#web-version-9_1

Fitness Gamification

export function getTrackedDataForUser(userUid, trackedDataCallback) {
const docRef = doc(db, trackedDataCollectionName, userUid)

.withConverter(trackedDataConverter);
const unsubscribe = onSnapshot(docRef, (docSnap) => {

if (docSnap.exists()) {
const newData = docSnap.data();
trackedDataCallback(newData);

}
});
return () => {

Log.info("Unsubscribed from tracked data updates");
unsubscribe();

};
}

As seen above, "onSnapshot" returns a function. This function can then be used to unsubscribe
from the updates.

To see how we can subscribe to a whole query, go to "app/services/challenge/ChallengeSer-
vice.js" function "getChallengesForUserToDisplay".

After we run a query or get the reference for a Document, we can then pass this reference or
query to the onSnapshot function, and also pass a callback function. This callback function will
run every time the provided Document or query gets updated in Firestore. We usually want our
Components to rerender if new data gets pushed. We must run a state update in the callback
function (app/components/trackedDataList/TrackedDataList.js) to do that.

const [trackedData, setTrackedData] = useState(new TrackedData());

useEffect(() => {
const unsubscribe = getTrackedDataForUser(userUID, setTrackedData);
return unsubscribe;

}, []);

As seen, we provide our update function with a callback that updates the state of our Compo-
nents. This way, the Components will update with the new data. It is also essential that it is
run in a useEffect with no dependencies (seen by the []). Such a useEffect function is called an
"onMount" function, which will only get run once when the component is mounted. If we sub-
scribed outside of a useEffect we would subscribe to the data again each time the component
rerenders (for example, if a state changes). It is also essential to return the unsubscribe function
inside of the useEffect. Everything returned in this useEffect is used to clean up if the component
unMounts. So when the component unMounts we want to unsubscribe from any new updates.

Converters

We can add a converter to a Document reference, which could look like this:

export const trackedDataConverter = {
toFirestore: (trackedData) => ({

totalWins: trackedData.totalWins,
totalChallengesPlayed: trackedData.totalChallengesPlayed,
winLossRatio: trackedData.winLossRatio,
totalRepetitions: data.totalRepetitions,

Joel Suter & Lucas von Niederhäusern Page 51 of 152

https://firebase.google.com/docs/firestore/query-data/listen
https://legacy.reactjs.org/docs/hooks-effect.html

Fitness Gamification

}),
fromFirestore: (snapshot, options) => {

// Todo: Try to use return of promise.then() (see functions index.js)
const data = snapshot.data(options);
return new TrackedData(

data.totalWins ?? 0,
data.totalChallengesPlayed ?? 0,
data.winLossRatio ?? 0,
data.totalRepetitions ?? 0,

);
},

};

This allows us to use a format we can control in our code and add logic to the conversion, like
reformatting timestamps, default values if a document does not have all values set, and more.

7.3 Firebase Functions

Setup

There is a good guide on how to setup the firebase functions, which we followed. When running
"firebase init function" to initialize the functions, the cli will prompt you to choose some options.
An important optionwe selectedwas JavaScript as our functions language. We chose JavaScript
over TypeScript since using the same language in the backend as we use in the frontend makes
sense. After the initialization of the functions, we have a Node.js project, which can be used as
a normal Node.js project. It will run differently internally. We listed these differences in 6.4.2.
We changed two significant things after the initialization that differed from the default functions
setup because we wanted the syntax of the functions project to be as similar to the frontend as
possible. That way, there is no need to code in two different "dialects" of javascript. Those are:

• We added the line "type: "module"" in the package.json file. The reason for that is being able
to use export/import instead of module.exports/require("x").

• We added the airbnb eslint package to guide our coding style, since we use that in the
frontend too.

• Copied other eslint rules from the frontend to the functions project.

Implementation

For a overview of the structure we implemented for the Firebase Cloud Functions refer to 6.7.

This section will cover high-level implementation details for our Firebase functions. We have
several different functions that are being used. Each function has to be defined in the same
way in the index.js file at the root of our functions project. Here are two examples of functions
(firebase/functions/index.js); the first is an httpOnCall function (HTTP Callable Function 6.4.2) ,
the second is a Firestore trigger 6.4.2:

import functions from "firebase-functions";
...
export const completeChallenge = functions

.region("europe-west1")//

Joel Suter & Lucas von Niederhäusern Page 52 of 152

https://firebase.google.com/docs/functions/get-started?gen=1st

Fitness Gamification

.https

.onCall((data, context) => {
...

}
...
export const newPerformanceAddedToHistory = functions

.region("europe-west1")

.firestore

.document("challenges/{challengeId}/history/{historyId}")

.onCreate(async (snap, context) => {
...

});

We have to use the functions library, seen imported above, to initialize a function. We can can
define a region where this function should run. The default is "us-central1". Unfortunately, multi-
region support, as we have in Firestore is yet to be a functionality. So, for now, we have the
requirement that our functions run on "europe-west1". After defining the region, we can specify
the type of trigger and the event the function is triggered. Functions defined with a Firestore
trigger are background functions and are not actively called, but passively through an event in our
Firestore database. TheHTTP onCall functions, on the other hand, are called fromour application
in the following way, where we have to pass the instance of our firebase functions which we
initialized in the firebase file as seen in 7.1.2, and pass the exact name of the function as a string.
(app/services/cloudfunctions/cloudFunctionsService.js):

import { httpsCallable } from "firebase/functions";
...
export default function runJobAfterChallengeCompletion(challengeUid) {

const challengeCompletionCall = httpsCallable(functions, "completeChallenge");
challengeCompletionCall({ challengeUid }).then(() => {

...
}).catch((err) => {

...
});

}

This is different from a regular http REST API that we do not provide a path but the exact name
of the function we want to call. The requested path is generated by the Firebase JavaScript SDK
through the function name and the configuration we initialized the SDK with 7.1.1. To call this
function, the application must be able to initialize Firebase with our internal configuration. So
this function is not publically available and at less risk for DDos attacks than a standard REST
API might be.

Very important to keep in mind is that all promises must be completed as soon as the Firebase
function returns. In regular Node.js backends that stay up and running, this is not a problem,
and work can be done even if the request to the api has already returned. This is not the case
with Firebase functions. If a firebase functions returns/completes, the instance is torn down.
Each promise or async function that is still running will be abruptly terminated. This can lead to
incomplete tasks and confusing errors.

Joel Suter & Lucas von Niederhäusern Page 53 of 152

Fitness Gamification

7.3.1 Implemented Functions

The following list 7.1 represents all the implemented functions in Firebase, their triggers andwhat
their implementations does.

Function Trigger Description
completeChallenge Manually by the frontend when a

challenge is completed
Updates relevant statistics for
both parties and checks for any
badges that got earned

newPerformance
AddedToHistory

Automatically when a new history
document is created

Updates the total repetitions of
the user that performed and also
his total repetitions of the current
week. Sends a push notification
to the opponent to informhim that
it is their turn now.

checkForAccount
WithAssociated
Number

Gets called manually by the au-
thentication process

Will check for account associated
with the phone number in our user
database

sendChallenge
Notification

Automatically when a challenge
document is created

Sends the opponent a push noti-
fication to inform them about the
challenge

scheduled
ExpirationChecker

Automatically every 10 minutes Checks for any expired chal-
lenges in the database and
updates them accordingly

Table 7.1: Implemented Cloud Functions

7.3.2 Firebase Admin SDK

We do not use the same Firebase SDK as we use for the frontend development. In the Firebase
Cloud Functions, we use the Firebase Admin SDK. Since the functions are entirely under our
control and run on "our" servers, it is best to use this SDK. With this SDK, we can read and write to
anyCollection storage path and "ignore" the security rules set on the users. It is the recommended
SDK by Google to be used in the Firebase Cloud Functions.

7.4 Authentication

This section will explore how we setup and implemented authentication and user management
using Firebase Authentication.

7.4.1 Setup

Beforewe can use authentication in our application, we have to set up the FirebaseAuthentication
service 6.4.1. After setting up the service, we enabled authentication by phone number using a
one-time password verification sent by sms. To enable easier testing, we also configured some
testing numbers with predefined one-time passwords that we can enter without needing an sms.
We then initialized the authentication in our frontend as explained in 7.1.2. In the code segment
there, a line is visible where we use getReactNativePersistence. Adding this line allows us to
keep the user logged in even if he closes the app.

Joel Suter & Lucas von Niederhäusern Page 54 of 152

https://firebase.google.com/docs/reference/admin
https://firebase.google.com/docs/reference/js/auth.md#getreactnativepersistence

Fitness Gamification

These testing numbers should be removed when the application goes into production.

7.4.2 Implementation

To explain the authentication implementation, we will go through an example and register a new
user. Logging in as an existing user will use the same one-time password functionality from
Firebase; therefore, we will only focus on registering.

A userwho is not logged inwill see the Login Screen (app/screens/authentication/LoginScreen.js).
The user can then navigate to the Register Screen 7.1 (app/screens/authentication/Register-
Screen.js) using the link.

Figure 7.1: Register Phone Authentication

The user then has to enter his first name and a valid phone number. When he presses the button
below "Send verification code", the following code is run:

...
(app/screens/authentication/RegisterScreen.js)
//expo-firebase-recaptcha
<FirebaseRecaptchaVerifierModal

ref={recaptchaVerifier}
firebaseConfig={firebaseConfig}

/>
...

(app/services/auth/phoneAuthService.js)
...
export function sendPhoneAuthVerificationCode(

Joel Suter & Lucas von Niederhäusern Page 55 of 152

Fitness Gamification

phoneNumber,
recaptchaVerifier,
verificationIDCallback,

) {
const phoneProvider = new PhoneAuthProvider(getAuth());

return phoneProvider.verifyPhoneNumber(
phoneNumber,
recaptchaVerifier.current,

).then((verificationI) => {
verificationIDCallback(verificationI);

}).catch((err) => {
Log.error("Was not able to verify phone number", err);

});
}
...

The entered phone number is passed, and a reference to a reCAPTCHA (using Expos reCAPTCHA).
reCAPTCHA has to be used to avoid spam attacks to our backend. This reference is then used
and further passed in the function call "verifyPhoneNumber (api reference not up to date)" of the
PhoneAuthProvider. It will then open the reCAPTCHAwhich will most of the time prompt the user
to check a checkbox and then solve a puzzle. After the user completes the reCAPTCHA, "verify-
PhoneNumber" will return a verificationId, and the Firebase backend will then send a sms to the
provided phone number. The user can then enter the sms in the following textfield and confirm
his input.

Figure 7.2: Register OTP Challenge

When the user inputs his one time password, the following code section will get run:

Joel Suter & Lucas von Niederhäusern Page 56 of 152

https://docs.expo.dev/versions/v47.0.0/sdk/firebase-recaptcha/
https://firebase.google.com/docs/reference/kotlin/com/google/firebase/auth/PhoneAuthProvider.html#verifyPhoneNumber(com.google.firebase.auth.PhoneAuthOptions)

Fitness Gamification

export async function phoneAuthVerifyVerificationCodeForRegister(
verificationId,
verificationCode,
name,

) {
const credential = PhoneAuthProvider.credential(

verificationId,
verificationCode,

);
await signInWithCredential(getAuth(), credential).then((user) => {

initializeUser(user.user, name);
}).catch((err) => {

Log.error("Was not able to log in user", err);
});

}

We pass the "verificationId" from before. This id has to be passed with the "verificationCode"
when generating the credentials for this login. That way, even if someone knows the phone num-
ber and can read the one-time password, he cannot use it on any device other than the one where
the OTP challenge was initialized. Finally, we sign in the user with the generated credentials, and
if the user is successfully logged in, we will initialize the user’s default Profile configuration. We
set the displayName of the user as the name he provided and set a default Profile picture for the
user.

Furthermore, as seen in the domain model 6.3, we mirror the user in our Firestore database. So
when the user registers, we will create a default Document for the user in our Firestore "users"
Collection.

7.4.3 Firebase Phone Auth Limitations

Something that we overlooked while doing our research about phone authentication using Fire-
base was that there is no separate process/code flow for registering and Login. The same func-
tions and logic have to be used in both cases. Since we do not want to allow a user to use Login
for registering or vice versa (because they have to choose a display name), we had to develop a
workaround.

We wrote a Firebase Cloud Functions 7.3.1 that gets called if a user tries to log in or register. The
function returns a true or false, depending on if the account the user tries to log in or register with
exists. If, for example, the account already exists, we do not allow the user to use our registration
form, and vice versa.

Here is an example for registering:

...
checkForAccountWithAssociatedPhoneNumber(phoneNumber).then((result) => {

if (!result.data.exists) {
sendPhoneAuthVerificationCode(

phoneNumber,
recaptchaVerifier,
setVerificationID,

);
} else {

Joel Suter & Lucas von Niederhäusern Page 57 of 152

Fitness Gamification

setDoesAccountExist(true);
}

});
...

Development Hurdles

This issue took us longer to resolve than expected since firebase authentication for React Native
and Expowas not documentedwell, andwe had problems finding an existing example. Therefore,
we overshot our estimation quite a bit, as stated in 10.3.1.

7.5 Challenge Creation

A user can create a Challenge from the home screen by pressing the Floating Action Button with
the "+" symbol. A button of this kind is used in various applications to create a new post in a
forum, a new chat in a chatting app, and more. Also, WhatsApp uses a similar Floating Action
Button, and since we use it as inspiration, we chose to implement a similar button. The Floating
Action Button can be seen in 7.7. Once the user presses the button, a new screen opens with a
form the user has to input:

Figure 7.3: Create Challenge Form

The user can then input three different values. He can also switch the slider to create a challenge
against a random user, which will be covered in 7.5.2. The user can choose the challenge type
from a dropdown (currently only one value), select the time each competitor has to perform in the
Challenge (1min-10min), and select an Opponent, whichwill be discussed in the following chapter
7.5.1. The user is required to select a Challenge type and choose an Opponent; the default value

Joel Suter & Lucas von Niederhäusern Page 58 of 152

Fitness Gamification

of the Challenge duration is already selected (5 min). If the user has not entered the needed
values, a red text will be displayed below the input field he needs to enter a value.

Once the user creates a Challenge, the Challenge will be saved into the "challenges" Firestore
Collection. It gets saved with the following values:

Field Name Saved Value
challengeDuration The duration selected from the slider

(number)
challengeType The type of the Challenge selected

from the Dropdown (string)
completed Marks if Challenge is completed, ini-

tialized with false (boolean)
Creator The user that filled out the form and

created the challenge (Document Ref-
erence)

Opponent The Opponent the user selected, or
a random opponent 7.5.2 (Document
Reference)

score The current high score of the Chal-
lenge, initialized with 0 (number)

turn Which user has to perform next on the
Challenge. Initialized with the oppo-
nent field value (Document Reference)

lastPerformed The date when the last performance
on challenge happened. Is initialized
with the server timestamp of Firestore

turn Which user has to perform next on the
Challenge. Initialized with the oppo-
nent field value (Document Reference)

Table 7.2: Challenge Document after Creation

7.5.1 Opponent Selection

Since we use phone authentication 6.4.1, we do not have to manage a friends list but can directly
access the user’s contacts and use that as a friends list. When creating a Challenge the user
has to select an Opponent, which opens a screen where all his contacts from his phone are
displayed. The user can then search the list for the contact name he wants to choose. There
are three different cases we had to consider.

• Contact has only one phone number saved: Is displayed directly.

• Contact has no phone number: We display a text that says Contact has no number.

• Contact hasmultiple numbers saved: We display that the Contact hasmultiple phone num-
bers.

Joel Suter & Lucas von Niederhäusern Page 59 of 152

Fitness Gamification

Figure 7.4: Opponent Selection Screen

If the user selects a contact with only one number, this number is used to search the Opponent
in our system. If the selected contact has multiple numbers, the following dialog 7.5 opens up,
where the user has to decide which phone number he wants to Challenge:

Figure 7.5: Choose Number Dialog

A user cannot choose a contact with no number saved. If he tries to select one, we display a hint,
as a snackbar 7.6 at the bottom of the screen, that he has to choose a contact with a number:

Joel Suter & Lucas von Niederhäusern Page 60 of 152

Fitness Gamification

Figure 7.6: Contact not allowed Snackbar

7.5.2 Challenging random user

We considered multiple approaches to implement the functional requirement to challenge a ran-
dom user from our database. The first approach was to retrieve the whole user collection and
calculate its size. We used this size to generate a random number between 1 and said size and
pick the user that way. We quickly realized that this approach would significantly impact per-
formance once our user collection grows, so we deviated to the approach of saving a randomly
generated number for each user between 1 and 100’000’000. On our backend, we will also gen-
erate a random number between 1 and 100’000’000 and retrieve the user document closest to
that generated number. We also covered the edge case of challenging oneself in this approach,
which could happen very frequently if the user collection is small.

7.6 Home Screen

The Home Screen 7.7 is the screen displayed to the user once he logged in. The home screen
displays all the Challenges of the user.

Joel Suter & Lucas von Niederhäusern Page 61 of 152

Fitness Gamification

Figure 7.7: Home Screen

It is divided into three different sections, which was inspired by the game "Polytopia" 6.12:

• Your turn (Du bist dran): Under this section it displays all the Challenges which are the
current users turn. He is able to perform 7.8 on these Challenges.

• Their turn (Spielt): These are all the Challenges which the current user waits for his Oppo-
nent to perform his turn.

• Completed (Beendet): All the Challenges that are already completed. Marked green if the
user won, red if the user lost.

The user can press on each of these Challenges to view the Challenge details 7.7 and also the
history 7.7.1.

On the bottom right it also displays a Floating Action Button, which is the "main action" of our
application, and allows a user to create a new Challenge 7.5.

The challenges are displayed in so called Card components from our react-native-paper library.
We modified the component so it displays relevant information about the challenge and also
made it pressable. To display the challenges, we first fetch all the challenges related to the cur-
rent user and sort them by their completion status and turn status. Afterwards we map those
challenges each into their own card component.

Joel Suter & Lucas von Niederhäusern Page 62 of 152

Fitness Gamification

7.7 Challenge Details

When a user clicks a challenge card from the home screen 7.7, they will be directed to our chal-
lenge details screen 7.8 where we present important information about the challenge.

Figure 7.8: Challenge Details Development

The screen is divided into two sections.

The upper half of the screen showcases the opponent’s banner (refer to section 7.9.3).

The lower half of the screen contains a collection of details about the challenge, including the
challenge type, duration, current score, whether the challenge has been completed or not, and
the winner of the challenge.

From this screen, the user has several options. They can navigate to the chat screen 7.10, the
challenge history screen 7.7.1, or directly initiate the challenge 7.8.

7.7.1 Challenge History

When the user chooses to access the history screen from the challenge details screen 7.8, they
will be presented with a simplified view of cards.

Joel Suter & Lucas von Niederhäusern Page 63 of 152

Fitness Gamification

Figure 7.9: Challenge History Screen

Each card represents a user’s performance on a challenge (details on that 7.8). The color scheme
of the cards will vary depending on the performer.

It is important to note that the history screen is limited to the current challenge, meaning only the
performances related to the ongoing challenge will be displayed here.

7.8 Perform a challenge

The challenge will commence immediately when the user initiates a challenge by pressing the
corresponding button on the challenge details screen (refer to section 7.7).

Joel Suter & Lucas von Niederhäusern Page 64 of 152

Fitness Gamification

Figure 7.10: Challenge Perform Screen

A large circular countdown timer will appear in the center of the screen, indicating the remaining
time for the challenge. Concurrently, the currently detected repetitions will be displayed at the
center of the countdown timer.

Our requirement was 5.1 to implement one challenge type. We chose to implement a "pull-ups"
Challenge. We use the acceleration of the y-axis to detect repetitions and, for that, the user’s
score. Aswith all platform-specificAPI access, we usedExpo 6.5.1, specifically expo-sensors. We
access the "Accelorometer" sensor to detect the pull-ups. As with everything else, we considered
modularity and extendability highly in this requirement. The code that implements the screen
7.10, is the file "app/screens/challenge/challengePerform/ChallengePerform.js". If the screen
opens it initializes the challenge, as follows:

...
useEffect(() => {

const unsubscribe = initialize(challenge.challengeType, setScore);
return () => unsubscribe();

}, []);
...

It calls the function "initialize" from the file "app/services/challenge/PerformChallengeService.js"
with the requested challenge type and a callback to set the score (state update). Even though
we prevent the user from going back (he has to wait until the timer runs down), we make sure
to "unsubscribe" from challenge detection if the screen unmounts for some reason (more on
umounting in 7.2.1).

...
export function initialize(challengeType, setScoreCallback) {

if (challengeType === "pullups") {
return initializePullUpPerform(setScoreCallback);

Joel Suter & Lucas von Niederhäusern Page 65 of 152

https://docs.expo.dev/versions/latest/sdk/sensors/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjw4ZWkBhA4EiwAVJXwqbW18YmQuayWzNoNr32XnVTcj9VB_ZNEdeNUNdNFBlCXUcI_pAQ1PxoCHeYQAvD_BwE

Fitness Gamification

}
return null;

}
...

First, we check which challenge type is requested, and depending on Challenge, we initialize the
detection differently. For pull-ups, we do the following initialization:

...
function initializePullUpPerform(setScoreCallback) {

const accelerationThreshold = 1.5;
const handleAccelerometerDataForPullUp = ({ x, y, z }) => {

const accelerationMagnitudeY = Math.abs(y);

if (accelerationMagnitudeY >= accelerationThreshold) {
setScoreCallback((prevCount) => prevCount + 1);
Vibration.vibrate();
Log.debug("Pull-up detected with acceleration in y: ",

accelerationMagnitudeY);
Log.debug("Current accelerations in x, y, z: ", x, y, z);

}
};

Accelerometer.addListener(handleAccelerometerDataForPullUp);
Accelerometer.setUpdateInterval(100);
return () => {

Accelerometer.removeAllListeners();
};

}
...

In this function, we provide a listener to listen to the Acceloremeter and set a updateInterval,
on how many times we check if a pull-up was performed. We also return a correct tear-down
function that removes all the listeners from the sensor.

Once the countdown completes, the following is run:

...
const handleCountdownComplete = () => {

tearDownChallenge(challenge.challengeType);
updateChallengeWithPerformance(challenge.key, score);
setChallengePerformanceCompleted(true);

};
...

It tears down the repetitions detection and updates the Challenge with the performed score, and
adds the performance to the history 7.7.1) (which will trigger newPerformanceAddedToHistory
7.3.1). A push notification will be sent to his Opponent, who tells him that he has performed on
the challenge and it is now his turn to perform 7.12. While updating the challenge ("app/reposi-
tories/ChallengeRepository" -> "updateChallengeWithPerformance") two cases can apply:

• Challenge is lost: The challenge is considered lost if the user cannot beat his opponent’s
score. The challenge Document is updated accordingly andmarked aswon and completed.

Joel Suter & Lucas von Niederhäusern Page 66 of 152

Fitness Gamification

Furthermore, we also run the "completeChallenge" Firebase Cloud Functions task (what it
does list in 7.3.1)

• User was able to beat the score: If this occurs, the challenge will be sent back to the
other user in the challenge, which now has to perform on the challenge and try to beat the
achieved score.

7.8.1 Implement new Challenge

We mentioned earlier that modularity was also highly considered while implementing the "per-
form on a challenge" requirement. This section will explain in great detail how new challenges
could be implemented.

First, add a new challenge type to the Dropdown in challenge creation 7.3. Note down the value
you used as the new challenge type.

Generally, mirror all the translations as we did for the pull-ups. Do that in the "translations.js" file
7.15.

Now navigate to the "app/screens/challenge/challengePerform/ChallengePerform.js" file. Make
sure you add a new set of strings as we did for the pullups in the variable "challengeStrings".

Now it is time to add performing logic. Navigate to "app/services/challenge/PerformChallenge-
Service.js." Implement a function called "initialiaze<NewChallengeType>." Ensure it has the same
parameter signature as "initializePullUpPerform" and returns a teardown function. In this func-
tion, implement your challenge to perform logic (for example, repetition detection).

Write a teardown function "tearDown<NewChallengeType>Challenge" in the same file. Make sure
you tear down the perform logic correctly.

Modify the "initialize" function as follows:

export function initialize(challengeType, setScoreCallback) {
if (challengeType === "pullups") {

return initializePullUpPerform(setScoreCallback);
}
//Your new challenge perform logic
if (challengeType === <NewChallengeType>) {

return initialize<NewChallengeType>(setScoreCallback);
}
return null;

}

Also modify the "tearDownChallenge" as follows:

export function tearDownChallenge(challengeType) {
if (challengeType === "pullups") {

tearDownPullUpChallenge();
}
//Your new challenge tear down logic
if(challengeType === <NewChallengeType>) {

tearDown<NewChallengeType>Challenge();
}

}

Joel Suter & Lucas von Niederhäusern Page 67 of 152

Fitness Gamification

Everything should be functional, and users can perform your new challenge type.

Optionally: If you want the 10-week history 7.9.1 to display your new challenge type, you would
have to refactor it as explained in 7.9.1.

7.8.2 User did not Perform on Challenge

Each challenge remains active for 12 hours until it expires. If the user currently required to perform
the challenge does not do so within these 12 hours, the challenge will automatically be marked
as complete, and the opponent will be declared the winner.

We have implemented a scheduled cloud function in our Firebase backend to address any expired
challenges. This function is triggered every 10 minutes (can be lowered for production), check
for any challenges that have reached their expiration time, and completes those. For a high-level
overview what this function generally does, refer to 7.3.1.

7.8.3 Shortcomings

While we can detect repetitions, "hardcoding" detection like this is not the optimal way to detect
repetitions. A repetition may not be detected, or for one repetition, two are detected. Unfortu-
nately, there is no way around it with how we currently implement it. The best way to improve
it would be machine learning. However, since this is a prototype and adding machine learning
would completely explode our scope, we decided not to do it. However, we recommend consid-
ering it for further development 9.1.

7.9 Profile

Each user has their ownProfile, which can be accessed through themain navigation at the bottom
of the screen. The final Profile looks like this:

Joel Suter & Lucas von Niederhäusern Page 68 of 152

Fitness Gamification

Figure 7.11: Profile Screen

The user sees his most important information in this Profile. It is divided into two sections. The
section above the divider is called the Banner, which we will expand upon in 7.9.3. The section
below the divider is only visible to the user it belongs to. It displays two things, the Opponent the
user played the most against and the pull-ups per week for the last ten weeks. How the data is
tracked can be viewed in chapter Tracked Data 7.13. If more Challenge types are implemented
in the future, the graph could easily be extended with a dropdown to change the Challenge type
it displays. This section of the Profile is vertically scrollable since only some content can be
displayed simultaneously.

The Profile contains two interactive actions, both of which are located in the top right. The user
can log out, which will clear his session, cancel all Real-time Updates and return him to the login
screen. The second is changing the profile picture which we will expand more on in 7.9.2.

7.9.1 10 Week History

How we track this data can be viewed in 7.13. The complete graph looks as follows:

Joel Suter & Lucas von Niederhäusern Page 69 of 152

Fitness Gamification

Figure 7.12: 10 Week history graph

The graph fetches data for the last ten weeks from Firestore for the user. This data can have
gaps or miss entirely. So before we display the graph, we interpolate data for each week we want
to display where no data is available. We interpolate data with 0 pull-ups. We also subscribe
to Real-time Updates of the last ten weeks for the user. If a new weekly summary is pushed, for
example, a newweek begins, and the graphwill update accordingly. The code regarding this logic
can be viewed in "app/repositories/TrackedDataRepository.js -> getTotalRepetitionsByWeek".

Extend with new Challenge Type

This is probably the only component we did not write fully extendible. At the moment, it is
only able to show the pull-ups. One only would have to refactor the "app/repositories/Tracked-
DataRepository.js -> getTotalRepetitionsByWeek" function.

The reason for that is that time was running out, and we had to focus on more critical aspects of
the project.

7.9.2 Profile Picture

We display a Profile picture in the Banner 7.9.3 of the user, which he can change. When the user
first creates his account, the user is initialized with some values 7.4.1, one of them a default
glsprofile picture. For more information about the initialization, refer to 6.4.1—the default Profile
picture points to a picture inside the application itself. The user can change his glsprofile picture,
which is displayed in the Banner 7.9.3. We chose to use the expo-image-picker to allow the user
to choose a new picture.

Joel Suter & Lucas von Niederhäusern Page 70 of 152

https://docs.expo.dev/versions/latest/sdk/imagepicker/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjwsvujBhAXEiwA_UXnAAdHGbFRHyrtYSdLTOKjw4zlB9eKjXVJaI5U1ORCQw5mLhIyy9uS_hoC3sAQAvD_BwE

Fitness Gamification

Figure 7.13: Profile Screen

Since it is a Expo package, it is Multiplatform 6.5.1 and works for both our targeted platforms.
It allows the user to select an image from almost all familiar sources. It also works with other
apps, such as an additional file manager, galleries, onedrive, google drive, and much more apps
the user has installed.

Everything to do with selecting a new Profile picture is coded in the "app/services/profilePicture-
Service.js." We allow the user to crop his picture to the size he wants. He can only choose a single
picture, but we still check if more than one picture is selected and do not proceed with the pro-
cess. The selected image is then converted to a Blob. We upload this Blob to Firebase Storage
6.4.5 with the UID of the user as the file name. After it is uploaded, we retrieve the "download url,"
a URL pointing to the picture in our storage. Those images are publicly readable. We save that
URL in the Firestore 6.4.4 Document of the user that just uploaded the picture. The field in the
Document is called "photoURL". Since we subscribe to the users Document when displaying the
Banner 7.9.3, every user that currently is viewing the Profile picture of that user, including the user
that changed it, Real-time Updates 7.2.1 are pushed, and the image gets updated in realtime. If
the image cannot be fetched for some reason, we fall back to the default Profile picture.

Joel Suter & Lucas von Niederhäusern Page 71 of 152

Fitness Gamification

7.9.3 Banner

The Banner 7.14 is the upper portion of the user’s Profile.

Figure 7.14: Banner

This part of the Profile is not just visible in the Profile of the user but also in the Challenge details
7.7. When a user opens the Challenge details, he sees the banner of his Opponent. So the banner
is to show off to other users and motivate the user to get the best results possible. It makes the
whole App more competitive since other users can see the statistics. The inspiration to imple-
ment a Banner was "Apex Legends," which we discussed in 6.13. The banner displays four kinds
of information:

• Profile Picture: The image the user selected 7.9.2

• Display Name: The display name the user entered while registering 6.4.1

• Badge List: The milestones a user has earned. Details how these are calculated in chapter
7.14. It is horizontally scrollable if the user has many Badges.

• Tracked Data List: Some metrics we track for the user. Details how those are tracked are
calculated in chapter 7.13. Is horizontally scrollable if the Tracked Data can not be fully
displayed or if more would be tracked in the future.

7.9.4 Component Structure

Here we will show the rough structure of the Profile screen, and how it is split into it’s own Com-
ponents. "app/screens/main/profile/ProfileScreen.js" structure:

• Banner (app/components/banner/Banner.js)

– Horizontal Badges List (app/components/badges/HorizontalBadgeList.js)

– Tracked Data List (app/components/trackedDataList/TrackedDataList.js)

• Favorite Opponent (app/components/favoriteOpponent/FavoriteOpponent.js)

• History Line Chart (app/components/historyLineChart/HistoryLineChart.js)

7.10 Chat

When users navigate to the chat screen (through the challenge details screen 7.8), they encounter
a straightforward chat application. The screen comprises an input field for entering messages
and a chat history section. The messages are stored in our Firestore database containing the

Joel Suter & Lucas von Niederhäusern Page 72 of 152

Fitness Gamification

message, receiver, sender and a timestamp. Depending on the user and their opponent, we will
filter out the corresponding message and sort them by their timestamp.

As long as the screen does not get unmounted, the user is subscribed to the messages and will
get real-time updates on the chat screen.

We also included the profile picture, a formatted timestamp and the display name at each mes-
sage to identify who sent the message and at what time as depicted in the figure 7.15.

Figure 7.15: Chat Screen

Unlike the challenge history screen, the chat history will persist acrossmultiple challenges. How-
ever, only the latest 100 messages will be displayed in the chat history for performance reasons.
This can be addressed in the future.

7.11 Rankings

The rankings screen presents the top 100 players who have achieved the highest number of to-
tal wins. The screen features a ranking table with columns for Rank, Player, and total wins. The
function that fetches the rankings is "app/repositories/TrackedDataRepository.js -> getTracked-
DataOrderedByTotalWins".

Joel Suter & Lucas von Niederhäusern Page 73 of 152

Fitness Gamification

Figure 7.16: Rankings Screen

The table is sorted based on the total wins (tracked by 7.13), allowing us to calculate the rank
for each user. Any changes in the ranking table are immediately reflected in real time as we
have subscribed to the database for updates. This ensures that the rankings screen dynamically
updates whenever there are changes to the players’ win counts.

Due to time limitations partly driven by a realized risk 10.3.1 we were not able to implement a
friends ranking list as we do not have a friends list feature.

7.11.1 Extending the Rankings

Should the rankings be extended to display a ranking based on different statistics, one could
add something like a dropdown to allow the user to select what ranking he wants to use. This
value should then be used to retrieve a different set of data in the following code section of the
RankingsScreen (app/screens/main/ranking/RankingsScreen.js):

useEffect(() => {
//Add rankings selection logic here
const unsubscribe = getTrackedDataOrderedByTotalWins(setPlayers);
Log.info("Updated rankings");
return () => {

Joel Suter & Lucas von Niederhäusern Page 74 of 152

Fitness Gamification

Log.info("Unsubscribed from tracked data");
unsubscribe();

};
}, []);

7.12 Push Notifications

This section explains how push notifications are implemented for both iOS and Android plat-
forms. A user can receive notifications for several events, outlined in 6.4.3. Here is an example
of a notification a user received because he got challenged:

Figure 7.17: Android Notification Example

As explained in 6.4.3, for Android devices, push notifications are sent using Firebase Cloud Mes-
saging, which generates a unique key for each user and handles the notification delivery process.

In the case of iOS devices, push notifications are sent through the Apple Push Notification Ser-
vice. Although Firebase Cloud Messaging offers Method Swizzling to send notifications to iOS
devices, for this project, we decided to utilize the push notification service provided by Expo.

Joel Suter & Lucas von Niederhäusern Page 75 of 152

Fitness Gamification

This service can be viewed in detail here. As explained in 6.5.1, Expo allows us to use a single
codebase for both platforms. Using this SDK, Expo uses the correct notification service for the
targeted platform 6.4.3.

When a user logs in or opens the app, we generate an expo-token, which we save in the user’s
Document. This token will be updated every time a user changes his device. We do this by uti-
lizing the package expo-notification. We first request Notification permission, and if permission
is granted, we generate an expo-token ("app/services/notification/Notification.js" -> "registerFor-
PushNotificationsAsync"). We can then use this token to send Notifications to Android and iOS
devices.

We then listen to specific events in the Firebase Cloud Functions 7.3.1 and push notifications to
the correct user.

7.13 Tracked Data

This section will describe what kind of data we track for each user in our application. The data
we track can have multiple purposes and be used by other functional requirements. The data we
decided to track finally, and were discussed with our stakeholders, are the following (listed with
their name in the database, "trackedData" collection 6.3):

• Total Challenges played (totalChallengesPlayed): The number of all Challenges a user
played. Incremented after Challenge is completed.

• Number of Challenges won (totalWins): The number of Challenges a user won. Incre-
mented after Challenge is completed and if a user is the winner of that Challenge

• Win to Loss ratio (winLossRatio): The ratio of wins to losses of Challenges. Calculated
with the totalChallengesPlayed and totalWins. Wins divided by losses.

• Total number of repetitions (totalRepetitions): A total of all the repetitions a user has done
across all his Challenges, active or completed. It gets incremented each time a user per-
forms on a Challenge.

• Weekly Summary (/weeklySummary subcolllection): A summary of the repetitions per-
formed for a user for each week for each challenge type. Used for 7.9.1.

• Played Against (/playedAgainst subcollection): A document is created in this subcollec-
tion for each unique user a user has played against. Counts the total games played against
a user. Used in 7.9 to calculate the favorite opponent.

We collect the Tracked Data of the users in the Collection "trackedData." A user may only have at
maximum one Document. A user may not have any trackedData Document if he never played in
a Challenge.

7.13.1 Challenge completed

One event that triggers an updating of the Tracked Data is if a Challenge is completed. The
metrics updated are:

• totalChallengesPlayed

• totalWins

Joel Suter & Lucas von Niederhäusern Page 76 of 152

https://www.npmjs.com/package/expo-server-sdk
https://docs.expo.dev/versions/latest/sdk/notifications/?utm_source=google&utm_medium=cpc&utm_content=performancemax&gclid=CjwKCAjw4ZWkBhA4EiwAVJXwqbzdfeylodRkbAG2q-KPj0YaqiclfNvXAyoCNiZoutnqaGfH8fWHvhoCX4sQAvD_BwE

Fitness Gamification

• winLossRatio

• playedAgainst/id of user played against -> numberOfGamesPlayed

We use http onCall trigger after a Challenge is completed. If a user cannot beat the score of his
Opponent, he lost the Challenge, and the Challenge is completed. We use an HTTP onCall trigger
since no firebase trigger can listen to a certain field. With a onWrite trigger, the "completeChal-
lenge" task would be invoked every time something is written into the Challenge Document. That
means unnecessary invocations and costs that could be avoided. Keep in mind that this call
does update not only the Tracked Data of a user, but also other tasks that need to be done if
a Challenge is completed (outlined in 7.3.1). To see how these tracked data are displayed view
7.13.

Sequence

Suppose the user could not beat the score, which is checked in the frontend. In that case, the
frontend will complete the Challenge and send a httpsCallable request to our firebase functions
7.3.1, specifically the "completeChallenge" function. After this request is sent, the following se-
quence of code is run:

Figure 7.18: Tracked Data Update After Challenge Completion

Keep in mind that there is more work done in the "completeChallenge" function, which is not
displayed in the above graphic 7.18 and can be viewed in 7.1.

Joel Suter & Lucas von Niederhäusern Page 77 of 152

https://firebase.google.com/docs/functions/callable?gen=1st
https://firebase.google.com/docs/functions/firestore-events?gen=1st

Fitness Gamification

Even though a firebase function should only return a result to the caller when all promises are
resolved as described in 7.3, the frontend calls the function but does not wait for its completion.
The updates this function does will automatically be displayed in the frontend, through subscrip-
tion and Real-time Updates we do on specific datasets. So there is no need to respond to the
function completion

The function "updateStatisticsForChallengeCompletion" is run two times for both users in the
Challenge. They run parallel to each other.

7.13.2 User Performed on Challenge

When a user performs on a challenge, two metrics are updated:

• totalRepetitions: Gets incremented by the amount performed.

• weeklySummary/<date of current monday> -> pullups: The amount of pull-ups the user
performed, will be added to the summary of the current week.

The Firebase Cloud Functions that gets triggered when a user performs is called "newPerfor-
manceAddedToHistory" 7.3.1. It gets triggered whenever a new Document is created in the "his-
tory" subcollection in a Challenge document 6.3.

Since we currently only have one challenge type, only pull-ups are counted towards the weekly
summary. But as with everything, we programmed it to allow it to track different challenge types.
So this code does not have to be altered in any way to track different challenge types since we
use the challenge type as the field name in the weekly summary document 6.3 (how to add a new
challenge is explained in 7.8.1). The weekly summaries are displayed in the 10-week summary
visible in the profile 7.12. As the document’s id, we use the date of the Monday of the week it
references (format: yyyy.mm.dd). This value is also saved in the field "startDateOfWeek," which
is used for ordering.

As in the "challengeCompletion" function 7.13.1, this function is not only designed to trackmetrics
but do general work that needs to be done after performing on the Challenge, such as sending
notification to the other user 7.12. Complete outline what this function does is explained in: 7.3.1.

7.13.3 Track new Data

The data tracking was intentionally designed in a way that can be easily extended in the future.
We only track data after a Challenge is completed or when a user performed on a Challenge.

Track more Data after challenge completion

The function that needs to be extended ifwewant to trackmore data for a user after aChallenge is
completed is the following (firebase/functions/services/datatracking/tracked-data-service.js):

async function updateStatisticsAfterChallengeCompletion(
userUid,
challengeSnapShotData,

) {
let trackedDataToBeUpdated = await getTrackedDataForUser(userUid);

// Devtipp: add new method call that calculates new metrics

Joel Suter & Lucas von Niederhäusern Page 78 of 152

Fitness Gamification

// for the user here (similar structure)
trackedDataToBeUpdated = calculateNewTotalWinsForUser(

userUid,
challengeSnapShotData,
trackedDataToBeUpdated,

);

trackedDataToBeUpdated = calculateTotalChallengesPlayed(trackedDataToBeUpdated);

trackedDataToBeUpdated = calculateNewWinToLossRatio(trackedDataToBeUpdated);

await incrementAmountPlayedAgainstUser(userUid, challengeSnapShotData);

await setNewTrackedDataForUser(userUid, {...trackedDataToBeUpdated});
}

There are a few things that must be kept in mind while extending this function to collect more
data for a user (as long as it updates the trackedData document directly):

• The function must accept a parameter of type "TrackedData".

• The parameter passed to the function must be the "trackedDataToBeUpdated" variable, as
seen above.

• The function must overwrite or add a new field to this Document.

• The function must return the updated Document.

• The function return must override the "trackedDataToBeUpdated" variable as seen in the
code above.

• If the function depends on other metrics, it has to be placed in the correct sequence.

• If the function is async, saving the Document should only happen if the call is completed.

When a new field is added to the "trackedData" Collection of a user, the converter "services/con-
verters/TrackedData.js" has to be extended in the following way:

export const trackedDataConverter = {
toFirestore: (trackedData) => ({

...
}),
fromFirestore: (snapshot, options) => {

// Todo: Try to use return of promise.then() (see functions index.js)
const data = snapshot.data(options);
return new TrackedData(

data.totalWins ?? 0,
data.totalChallengesPlayed ?? 0,
data.winLossRatio ?? 0,
data.totalRepetitions ?? 0,
//Like this:
data.someNewData ??
"some default value, if user doesnt have this field or document"

);
},

Joel Suter & Lucas von Niederhäusern Page 79 of 152

Fitness Gamification

};

If we want to update data that is not a field that directly lies in the "trackedData" document, add
a new line as seen with the "await incrementAmountPlayedAgainstUser(userUid, challengeSnap-
ShotData)" call.

Track or check more badges after User Performed on Challenge

If moremetrics should be updated after a user performs, one can add a line directly in the firebase
functions function "newPerformanceAddedToHistory". Make sure to await for the updating to
complete, and that they are in the correct order. Also, update the converter as described in the
section above 7.13.3.

7.14 Badges - Milestones

Badges are pictures/icons a user can earn for achieving certain milestones. The Badges will be
displayed in the Banner of the user 7.14, which is displayed in the profile 7.13 or visible for other
users if they open a Challenge 7.8 they are a part in.

Currently the user can earn the following Badges:

• First Win: This badge is earned when a user wins his first Challenge.

• One Hundred Games Played: This badge is earned when a user completes one hundred
challenges.

• One Thousand Repetitions Done: This badge is earned when a user did one thousand rep-
etitions of any challenge type.

Figure 7.19: Earnable Badges

To fulfill this requirement, we use Firebase Storage, Firestore, and Firebase Cloud Functions.
We save the image of the badge in Firebase Storage under "badges/" folder. Each badge in our
system has a unique Document in the "badge" Collection with the badge type as it’s id. We also
save the URL that points to Firebase Storage image in the Document, which belongs to this badge.
Each user also has a unique Document in the "earnedBadges" Collection, where we save an array
of references that point to the Badges a user has earned. This Document is created when the
user completes his first Challenge through firebase cloud function 7.3.1. Below 7.20 is an excerpt
of our domain model 6.3 that shows how this is represented in our Firestore:

Joel Suter & Lucas von Niederhäusern Page 80 of 152

Fitness Gamification

Figure 7.20: Domain Model Badge Excerpt

7.14.1 Sequence

Below is a diagram that displays the sequence that is done to check badge conditions every time
a Challenge is completed.

Checking conditions if a user earned a badge is done after a Challenge is completed. The same
firebase function that updates the Tracked Data also updates the Badges 7.3.1. The function is
called "completeChallenge." The Badgesmust be checked after the Tracked Data is updated. The
reason is that the Badges depend on the Tracked Data and should only be checked if those are
up to date.

Figure 7.21: Update Badges Sequence

Joel Suter & Lucas von Niederhäusern Page 81 of 152

Fitness Gamification

The diagram is a rough overview of how the code flows when updating the Badges for a user.
It is an abstraction, and for an in-depth understanding, the code should be referenced, and the
diagram helps to understand that code.

The code was designed in a way that there is no code duplication and to optimize performance.
The checking of the Badges for both users is done async to each other. We also tried to keep
read and write access to the database to a minimum to improve performance. Only Badges that
a user did not earn are checked.

We will go into more depth about one part of the code that needs some explenation since the
design of the codemight not be so clear (firebase/functions/services/badges/badge-service.js).

async function getBadgeReferenceIfConditionsAreMet(
userUid,
badgeType,
listOfBadges,
trackedDataOfUser,
checkBadgeConditionsCallback,

) {
try {

let earnedBadgeReference;
const badgeDocument = await getBadgeDocForType(badgeType);
if (!listOfBadges.some((earnedBadge) => badgeDocument.id === earnedBadge.id)) {

functions.logger.info("User has not earned badge yet.
Check conditions if user has earned badge");

earnedBadgeReference = await checkBadgeConditionsCallback(
userUid,
badgeDocument,
trackedDataOfUser,

);
} else {

functions.logger.info("User already earned this badge.
Skip condition check for badgeType: ", badgeType);

}
return earnedBadgeReference;

} catch (err) {
functions.logger.error(‘Error occurred while checking if badge conditions were
met for badge: ${firstWinBadgeTypeName}.
Skip updating of this badge due to error:‘, err);
return undefined;

}
}

We decided to implement a method like this above to minimize code duplication. Some stuff
needs to be done for every badge that is checked, for example, retrieving the badge Document
and checking if the user already earned the badge. After that, we callback a function that does
the specific check if the user meets the condition to earn this badge. The function then returns
undefined or the badge Document if the user earned it. For a further deep dive into the code, refer
to section 7.14.2.

Joel Suter & Lucas von Niederhäusern Page 82 of 152

Fitness Gamification

7.14.2 Add new Badge

This section will explain the process of adding a new badge and provide a more in-depth under-
standing of how the code works.

The first step that needs to be done is to add a new image that will be used for the Badges to
the Firebase Storage under "badges/". Open the image and copy the URL in the browser. After
that navigate to firebase Firestore and add a new Document to the "badges" Collection, with the
following field:

• imageUrl: url to the image that you copied before

Make sure to give as the id of the badge, it’s type (ex: firstWin).

Now navigate to the "badge-service.js" file. Write a new async function with the same signature
as:

async function getFirstWinBadgeReferenceIfConditionsAreMet(
userUid,
badgeDocument,
trackedDataOfUser,

) {
...
//returns undefined if condition is not met
//or returns badgeDocument if condition was met
...

}

Inside of this function check if the user has met the conditions to earn this badge. Return unde-
fined if not and return the provided "badgeDocument" parameter if condition was met.

Go to the top of the "badge-service.js" file and add a line as described in the comment:

const firstWinBadgeTypeName = "firstWin";
//Add string for new badgeType
//needs to match string used as the id of the badge document.

Now navigate to the "updateBadgesForUser" function

export async function updateBadgesForUser(userUid) {
const listOfBadges = await getArrayOfEarnedBadgesForUser(userUid);
const trackedDataForUser = await getTrackedDataForUser(userUid);
const badgeArrayResult = await Promise.all(

[
getBadgeReferenceIfConditionsAreMet(

userUid,
firstWinBadgeTypeName,
listOfBadges,
trackedDataForUser,
getFirstWinBadgeReferenceIfConditionsAreMet,

),
// Add new "getBadgeReferenceIfConditionsAreMet" call

],
);
badgeArrayResult.forEach((badgeDocument) => {

Joel Suter & Lucas von Niederhäusern Page 83 of 152

Fitness Gamification

if (badgeDocument) {
functions.logger.info("Add new earned badge to bageList for user: ",

userUid, "with badge: ", badgeDocument.id);
listOfBadges.push(badgeDocument);

}
});
await setNewBadgesForUser(userUid, listOfBadges);

}

Add a new getBadgeReferenceIfConditoinsAreMet call in the list where the comment is in the
above code. Change the second parameter to the string you defined at the top of the file, and
change the latest parameter with the function you just have written that checks the condition.

Congratulations now you have a new Badge that a user can earn, which will be displayed in the
Banner 7.14.

7.14.3 Badge Copyrights

The firstwin badgewas used fromFreepik Company, which is free to use, but has to be referenced
here.

The other two badges were created using Badge Generator, which from our understanding is
completely free to use and has no copyright as explained here.

7.15 Localization

We provide language support for both German and English, as outlined by our requirements 5.1.
To support multiple languages in our app we use i18n-js. We can then define language strings as
follows (app/constants/i18n/translation.js):

const translations = {
en: {

// Screen titles
challenges: "Challenges",
rankings: "Rankings",
profile: "Profile",
home: "Home",
....
},

de: {
// Screen titles
challenges: "Herausforderungen",
rankings: "Rangliste",
profile: "Profil",
home: "Start",
...
}

}
...
const i18n = new I18n(translations);

Joel Suter & Lucas von Niederhäusern Page 84 of 152

https://www.flaticon.com/de/kostenloses-icon/zuerst_334043
https://badge.design/
https://badge.design/about-badge-designer
https://www.npmjs.com/package/i18n-js

Fitness Gamification

i18n.locale = Localization.locale;
...
export default i18n;

We can then use it as follows, which will then display the language that was set by "Localiza-
tion.locale":

<Tab.Screen
name={i18n.t("challenges")}
component={HomeScreen}
options={{

tabBarLabel: i18n.t("home"),
tabBarIcon: ({ color, size }) => (

<MaterialCommunityIcons name="home" color={color} size={size} />
),

}}
/>

We use the device language of the device that accesses our app. If the language is not present
in our translations, we use English.

7.16 Technical Test Dokumentation

To get an overview what kind of tests we used, refer to 10.4.

For both frontend and backend we decided to only use unit tests as technical tests as explained
in our test concept 10.4. We also created a manual test protocol 7.16.4.

7.16.1 Firebase Cloud Functions Testing

Unit Tests

There were three main ways how we could unit test our Firebase Cloud Functions.

• Create a clone project, which the unit tests connect to.

• Mock all firebase SDK function calls

• Use the local emulators for testing

Mocking all Firebase Admin SDK function calls was ruled out quickly. It would make testing
our repository files almost unnecessary since we would have to mock pretty much the whole
function, and it would make the tests very static and not test the actual functionality. We also did
not want to create a whole new Firebase project. We must constantly clone our configurations
to the Firebase test project. Moreover, as far as we have researched and seen in forums, there is
no inbuilt feature to mirror a Firebase project. Therefore, we would have to manually export and
import the Firebase configurations.

Themost elegant solution for us was to use the local firebase emulator suite. The same rules ap-
ply to the local emulators since we define our security rules locally and push them to the Firebase
project. In combination with the emulators, we use jest to write our unit tests.

Joel Suter & Lucas von Niederhäusern Page 85 of 152

https://firebase.google.com/docs/emulator-suite
https://jestjs.io/

Fitness Gamification

To allowour unit tests to connect to the local emulators, we had to change a few things on howwe
connect to the Firebase services. The filewherewe connect to our Firebase services and also pro-
vide the Firestore instance for database operations is "firebase/functions/firebaseinstances.js".
Which was updated to look like this:

...
export function initializeFunctionApp() {

if (!initialized) {
if (process.env.TEST !== "true") {

//Production
initializeApp();
firestoreInstance = getFirestore();
initialized = true;
testEnvInitialized = false;

} else {
//Testing
if (!admin.apps.length) {

initializeApp({
credential: admin.credential.applicationDefault(),
projectId: "your-project-id",

});
getFirestore().settings({host: "localhost:8080", ssl: false});
firestoreInstance = getFirestore();
initialized = true;
testEnvInitialized = true;

}
}

}
}

export function getFirestoreInstance() {
if (initialized && firestoreInstance != undefined) {

return firestoreInstance;
}
throw new Error("Trying to use firestore but

app has not been initialized yet");
}

//Used only in testing
export async function deleteFunctionsApp() {

if (initialized) {
await deleteApp(getApp());
initialized = false;

}
}
...

As seen, we only initialize the app if it has not already been initialized; otherwise, it throws an
error. As seen above, the app gets initialized differently, depending on the value set in the pro-
cess.env.TEST env variable. If it is set, the app gets initialized in test mode, using the local Fire-
store emulator instead of trying to connect to the production services running on the server. We

Joel Suter & Lucas von Niederhäusern Page 86 of 152

Fitness Gamification

also created a function that deletes the app "deleteFunctionsApp()". This is only used in testing.
The above file was also unit tested to ensure it behaves as expected.

We have defined a "firebase/functions/test/tests.setup.js" file, which does some work, before
and after each test, which is required for every test case.

• Before every test: Defines the process environment "process.env.TEST = "true"" and calls
"initializeFunctionApp()" from the firebaseinstances.js. I am setting up a clean environment
for each test.

• After every test: Calls "deleteFunctionsApp()" to tear down the Firebase app, to get a clean
environment. Each test file also deletes all the Firestore data after each test.

We decided not to use a predefined set of test data that gets loaded on startup but to initialize
an empty database. The reason for that is that we want to test as broadly as possible. So each
test sets up its test data. Here is an example from "badges-repository.unit.spec.js":

...
const expectedBadgeRef = db.collection(badgesCollectionName)

.doc("firstBadge");
await db.collection(badgesCollectionName).doc(badgeId).set(firstBadge);

const retrievedBadge = await getBadgeDocForType(badgeId);

expect(retrievedBadge).toEqual(expectedBadgeRef);
...

This test setups a Document, which then should be retrieved by the tested method. For more or
different examples, please refer to the code.

How to run the tests

This is a short guide on how to run the tests:

1. Go to firebase project: Navigate to the "firebase/functions" folder.

2. Install the firebase cli tools: Run "npm install -g firebase-tools" (one time setup)

3. Login to your firebase account: Run "firebase login". (one time setup)

4. Make sure the cli uses the correct project: Run "firebase use <firebase project id>" (one
time setup)

5. Make sure all node packages are installed: Go to the functions folder and run "npm install"

6. Start the local emulators: Run "firebase emulators:start", and wait for them to be fully
started up.

7. Run the tests: Run "npm test" to run all unit tests or run single test cases using the IDE.

7.16.2 Frontend Testing

Test Scope

We decided to only automatically unit test the services and repositories and not test the screens
and Components in our frontend code. This has two reasons, which both play into each other.
First, almost all business logic is being done in the services and repositories. The screens and
Components almost always call these functions and do not implement significant business logic

Joel Suter & Lucas von Niederhäusern Page 87 of 152

https://firebase.google.com/docs/cli#install-cli-windows

Fitness Gamification

themselves. Therefore, focusing on and covering the services and repositories entirely made
sense. Also, since the UI changes a lot in the project process, adjusting the tests every time
would be very time-consuming.

Moreover, this brings us two the second reason for this decision, time. As elaborated in 10.3.1
Joel Suter has become unavailable for some time, and we needed to make some concessions,
which are elaborated in more detail there. Therefore, there may not be the test coverage we first
wanted to achieve.

So what we tested in these tests specifically was the following:

• Database access: Do the write and read operations behave as expected?

• Business logic: Do the services behave as expected?

• Real-time Updates: Do we correctly subscribe to the data?

How it was tested

We also use the jest testing framework to unit test our frontend. We do not use the prodduction
environment but the local Firebase emulators. Similar to howwe test the functions 7.16.1, we have
to ensure that our tests connect to our local emulators and not try to connect to the production
environment. We achieve this by adding the following conditions to the "app/firebase.js" file,
which is responsible for the connection to Firebase:

...
if (process.env.NODE_ENV === "test") {

console.log("Running in test environment");
firebaseApp = initializeApp({

apiKey: "testKEYVWpWwW8ftsPqQLu1D6CppZuP5B_nevbU",
authDomain: "",
databaseURL: "",
projectId: "test-id",
storageBucket: "",
messagingSenderId: "",
appId: "",

});
initializeAuth(firebaseApp, {

// Keeps users logged in on app close
persistence: getReactNativePersistence(AsyncStorage),

});
} else {

console.log("Running in prod environment");
firebaseApp = initializeApp(firebaseConfig);
initializeAuth(firebaseApp, {

// Keeps users logged in on app close
persistence: getReactNativePersistence(AsyncStorage),

});
}

export const functions = getFunctions(firebaseApp, "europe-west1");

export const storage = getStorage(firebaseApp);

Joel Suter & Lucas von Niederhäusern Page 88 of 152

https://jestjs.io/

Fitness Gamification

export const db = getFirestore(firebaseApp);

if (process.env.NODE_ENV === "test") {
console.log("Connecting to emulator database");
connectFirestoreEmulator(db, "127.0.0.1", 8080);
connectFunctionsEmulator(functions, "127.0.0.1", 5001);

}
...

We check the process variable "NODE_ENV" which Jest will always set to "test" when running
any or all tests. With this variable we setup the Firebase services differently. We also have no
predefined set of test data, but prepare test data in each test individually, and after the test delete
all the test data again.

We will quickly highlight how we tested Real-time Updates, since these are more exotic kinds of
unit tests, and might be usefull to know how to test these for further development. The following
function subscribes to the Tracked Data of a user (app/repositories/TrackedDataRepository.js):

export function getTrackedDataForUser(userUid, trackedDataCallback) {
const docRef = doc(db, trackedDataCollectionName, userUid)

.withConverter(trackedDataConverter);
const unsubscribe = onSnapshot(docRef, (docSnap) => {

if (docSnap.exists()) {
const newData = docSnap.data();
trackedDataCallback(newData);

}
});
return () => {

unsubscribe();
};

}

How the Real-time Updates work is explained in 7.2.1. What we want to test here is if the data
changes, that means is our callback "trackedDataCallback" run? We can achieve that by writing
a test like this:

...
const unsubscribe = await getTrackedDataForUser(testUserUid, mockCallback);

// timeout is needed for callback.
await new Promise((resolve) => {

setTimeout(async () => {
// update doc
const updatedTrackedData = new TrackedData(15, 10, 0.5, 100);
const updatedTrackedDataDoc =

doc(db, trackedDataCollectionName, testUserUid);
await setDoc(updatedTrackedDataDoc, { ...updatedTrackedData });

expect(mockCallback)
.toHaveBeenCalledTimes(2);

expect(mockCallback)
.toHaveBeenCalledWith(trackedData);

expect(mockCallback)

Joel Suter & Lucas von Niederhäusern Page 89 of 152

Fitness Gamification

.toHaveBeenCalledWith(updatedTrackedData);
mockCallback.mockReset();
unsubscribe();
resolve();

}, 1000);
});
...

In this test, we expect that our callback is run when we subscribe (get data as it is) and then run
again when the subscribed data is updated (update doc). We expect first to run with the initial
data (trackedData) and then run with the updated data (updatedTrackedData). Since we cannot
control when the initial callback is run, we have to wait a bit with a timeout before doing any
assertions. After we have done the assertions, we unsubscribe from the Real-time Updates to
prevent unnecessary resources from being used.

How to run the tests Here is a quick guide on how to run the tests:

1. Navigate to the Firebase project: Go to the "firebase/functions" folder in the firebase project.

2. Install the firebase cli tools: Run "npm install -g firebase-tools". (one time setup)

3. Make sure the cli uses the correct project: Run "firebase use <firebase project id>" (one
time setup)

4. Make sure all node packages are installed: Go to the functions folder and run "npm install"

5. Start the local emulators: Run "firebase emulators:start", and wait for them to be fully
started up.

6. Setup frontend: Go to the "app" folder and run "npm install"

7. Run the tests: Run "npm test" to run all unit tests or run single test cases using the IDE

7.16.3 Testing concessions

Due to significant changes in the scope and focus as elaborated in 10.3.1, we did not adjust our
tests to accommodate the last changes we did in the code. Focus was on finishing up certain
features and not testing. Thatmeans the current tests do not cover the latest changes. Of course,
this should be addressed if development should continue, as mentioned in 9.1.

7.16.4 Manual Test Protocol

We also decided to set up a manual test protocol that gets run after each sprint or when desired.
At first, it was more informal, but we formalized it here. These tests will be used as integration
tests. This Test protocol represents the final version of the test protocol. It had evolved through-
out the project and was first created when a user could perform on a Challenge. We decided not
to create a mirror Firebase project as explained in 7.16.1. The results of every time this protocol
was run are not listed since it would clutter this document and were often run more informally.

Prerequisites

1. Navigate to the "firebase" folder of the project and run "firebase emulators:start –import=exported-
dev-data"

Joel Suter & Lucas von Niederhäusern Page 90 of 152

https://firebase.google.com/docs/cli

Fitness Gamification

2. Wait for the emulators to start and open the emulator suite UI through the link that is printed
in the console.

3. Navigate to the "app" folder. Run "npx expo start" and scan the qr code.

4. Have atleast one contact in your phone that also is registered in the app.

Protocol

Nr. Action Expected Result
1 Register as a new user A new user was created in Firebase. The user sees

"Home Screen." Chosen display name and default
avatar is displayed in the glsprofile dashboard. No
earned Badges and Tracked Data is 0 everywhere

2 Challenge another user (you
have access to). Logout and
login as the other user

See the Challenge you created under "Your Turn"

3 Perform on Challenge (score
should be beatable)

Challenge should now be displayed in "Their turn".
Also, check glsprofile and check if "total repetitions"
was incremented by the score you achieved

4 Open the Challenge and view
the Challenge details

Able to see the banner of the other user with his data.
See what score he achieved. Able to see the Chal-
lenge details.

5 Logout, Login as first user,
perform on Challenge and
make sure you loose

Challenge should now be displayed as "Completed".
Go to profile and check if the Tracked Data and
Badges was updated as expected

6 View Rankings Check if rankings were updated accordingly
7 Change Profile picture Able to select picture and picture was updated in Pro-

file.
8 Challenge the user again,

press on the Challenge and
write them a text. Log out
and log in as that user.

The user received the message and can view it

9 Challenge a random user Does a random user get challenged?
10 View a history of a challenge Is the history as you expect it to be?
11 Go to the dashboard and

view the milestones
User won the "first win" badge/milestone

12 Challenge a user with a num-
ber that does not have a ac-
count yet and you have ac-
cess to

A smswith the download code should have been sent

Table 7.3: Manual Test Protocol

Edge test cases

Everytime you run the test protocol, also try to do random inputs and see if anything breaks.

Joel Suter & Lucas von Niederhäusern Page 91 of 152

Fitness Gamification

7.17 Deployment

The deployment and publishing for our application required a lot more permissions and effort
than expected. Before publishing any builds on their respective stores we had to create app
builds on the Expo pipelines 6.20.

As we are using the free tier of Expo we were put on a waiting queue and had to wait for prior-
ity users before we could build the application. These waiting times were sometimes up to 50
minutes and additionally the build can take up to 8-10 minutes as well. The whole workflow was
very slow and if a build failed on the Expo pipeline we had to issue a new build with new version
codes which required a lot of time.

After creating the builds for iOS and Android we would have to request a review for both app
stores.

We have divided this section into two subsections explaining the process for both iOS and An-
droid.

7.17.1 App Store

To create iOS builds, several steps were required. First, we need an Apple Developer Account,
which our industry partner gave us access to. Secondly, we have to create a distribution certifi-
cate necessary for publishing the application on the store, and lastly, we need a key and share it
with the "App Store Connect" website. Our industry partner had to give us full admin rights to his
developer accounts to acquire all these components.

After uploading the build on the App Store Connect website, we had to fill in several forms, which
are listed below:

• Copyright

• License Agreement

• Age Rating

• Category

• Pricing and Availability

• Screenshots

• App Privacy and Privacy Policy

After filling out the forms, we could send the build for review. At first, our review was rejected,
but an additional review finally approved our app for publication in the iOS App Store. For further
references see: App Store

7.17.2 Google Play Store

Publishing the application on Android required a service account connected to the publishing
portal. Due to permission issues, only the account owner can create one; that is why we had
our industry partner connect our service account to the portal before we could proceed with the
publication.

To enable the automatic workflow of Expowemustmanually upload a .aab file to the portal. After
filling out the respective forms as listed in 7.17.1, we could send the build for review.

Joel Suter & Lucas von Niederhäusern Page 92 of 152

https://apps.apple.com/ch/app/fitchallenge/id6449786268?l=en

Fitness Gamification

Due to time delays during this process (refer to section 10.3.1 and 8), the review process was not
finished before we had to hand in the project at the time of writing this section (15.06.2023).

Joel Suter & Lucas von Niederhäusern Page 93 of 152

Fitness Gamification

8 Result

In this project, we created a prototype for a mobile application that runs on Android and IOS
that motivates people to do more physical exercises by "gamifying" them. This was achieved
by creating a competitive platform allowing users to play physical exercise Challenges against
other users.

The user’s name and phone number are required to register for our service. He can select a
profile image that will be seen by other users after signing up. The user can Challenge any of
his contacts or a random user, who will receive a push notice that he has been challenged, to
compete in a physical activity which is currently limited to "pull-ups." He is able to participate
in this Challenges and will attempt to outperform his rival. The other player will then aim to
surpass this score once more. This will continue until one user is unable to surpass the score,
at which point his rival is crowned the winner. We added features that encouraged the user to
be competitive, such as recording statistics, earning milestones as Badges, and displaying those
in a Banner that is displayed to his opponent, in order to add more gamification elements. This
gives him encouragement to compete in more exercises and give his opponent a sample of what
he would be up against. A global ranking system that shows the top 100 participants was also
put into place.

Screenshots of the developed app can be viewed in 13.

The following table 8.1 contains the completed functional requirements as stated in the task
formulation 15 with deviations if there are any, or further elaboration of the result that fullfills this
requirement.

Requirement Result
Registration of new accounts using the phone
number

As stated

Login of existing accounts As stated
Creating Challenges As stated
Implement atleast one Challenge utilizing handy
sensors.

Created a pull-up challenge using Ac-
celerometer data from the device.

Access to the contact list of the User. Access contact list to allow the User to
choose an opponent of his contacts.

Challenges can be sent to a person Able to challenge Opponent from the con-
tact list or a random user, which then re-
ceives a Notification

A screen providing an overview of all active Chal-
lenges including additional information like cur-
rent repetitions

Implemented by the Home Screen 13.3

If a user is not registered with our app, the User
can be prompted to download the application
with a shared link

User can choose to share the link through
several different communication services.

Joel Suter & Lucas von Niederhäusern Page 94 of 152

Fitness Gamification

A dashboard containing interesting information
for the User (for example, a view for earned
Badges)

Implemented using the Profile and the Ban-
ner associated with the user 13.4

Sending push notifications to User who gets
challenged

As stated. We even send Notifications for
different events mentioned in 6.4.3

Provision of a chat for participant communica-
tion.

Able to chat with users that are part of the
same challenge.

Sending Challenges back and forth, including
text messages and GIFs, in a mutual manner

Partially achieved. User is able to send chal-
lenges back and forth.

Creation of ranking lists at both the friend level
and global level

Partially achieved. Created a global ranking
system that displays top 100 users with the
most wins.

User can challenge a random user As stated

Table 8.1: Implemented Functional Requirements

The following tablewill list all the non-functional requirements thatwere implemented and achieved
from the task formulation 15 with a description how they were achieved and or checked.

NFR Result
The app works on Android
and IOS

Achieved using Expo 6.5.1, development and testing on both
platforms

Push notifications are con-
tinuously sent

Using Firebase Cloud Functions that are triggered by certain
events and send Notifications to the targeted user.

Errors should not cause sys-
tem failures but instead, dis-
play an error message and
revert the system to its pre-
vious state

Firebase implements such measures, and due to the nature
of Firebase Cloud Functions, a crash in one function does not
cause a full system failure.

Every error should be logged
in the system

Every sensitive data access is checked for error. Firebase
Cloud Functions does also employ a global error logger, that
logs any errors that might not be handled by us.

Access to the contact list of
the User.

Able to access contacts on both platforms using Expo

Data filled in input fields
should be validated before
being processed by the sys-
tem. SQL injection tests on
the input fields should not re-
veal any vulnerabilities

Partially achieved. Firebase has server-side input validation
which is very secure, but we did not implement frontend vali-
dation or injection tests, as stated in 6.7 for reasons stated in
10.3.1

User-passwords are not per-
sisted in plain text

We do not have any passwords we save from the user. Authen-
tication is done with an OTP.

When a user logs into the
app, only their data or the
data they have access to will
be displayed to them

We only give access to data that the user has a right and need
to see. Implemented using Firestore security rules 6.7

Joel Suter & Lucas von Niederhäusern Page 95 of 152

Fitness Gamification

The business logic in the
backend should be modu-
larly structured, allowing for
easy expansion and exten-
sion

Both frontend and backend were designed to allow for easy ex-
tension and expansion as stated in the implementation chap-
ters.

The backend should be able
to handle 50 requests per
second

Achieved due to the nature of Firebase scaling 6.4.6.

The database should be
able to manage 10’000
Challenges and 2’000 users

This is also achieved by the nature of Firestore and the scaling
of Firebase 6.4.6.

Table 8.2: Implemented NFRs

Not Achieved

This section will address the functional and non-functional requirements that were not or only
partially met. The reasons for not implementing them boil down to time constraints caused by
occurred risks 10.3.1. The backlog was initially prioritized with our stakeholders, and as soon as
we noticed the time constraints, the open tasks were again prioritized with our stakeholders. So
everything we could not achieve was accepted by them, and had lower priorities than others.

Functional

Sending Challenges back and forth, including text messages and GIFs, in a mutual manner

This requirement was partially completed. The user can send challenges back and forth and
compete in them. The user cannot send a text message or GIF after performing a challenge or
when he invites another user to a challenge.

We do, however, have a chat screen for participants to communicate.

Creation of ranking lists at both the friend level and global level

This functional requirement was also only implemented to a certain degree. Our application has
a global ranking displaying the top 100 players with the highest wins. We do not, however, have
a friends ranking list.

Non-functional

The backend API should be tested using API testing tools

Asmentioned in the realized risks 10.3.1 and in the testing chapter 7.16, we took focus away from
testing due to the priority being on implementing the functional requirements and our application
being a prototype. We employed no backend API testing tools for our Firebase Cloud Functions.

The implemented functionalities (database, backend) should be deployed, and the app should
be published on Google and Apple App Stores

Database and Backend are both deployed using Firebase. App Store has approved our review,
and the application can be viewed on the App Store. See chapter 7.17.1. The frontend of our

Joel Suter & Lucas von Niederhäusern Page 96 of 152

Fitness Gamification

mobile app must still pass the review to be published in the Play Store. For this reasons, we do
not consider this NFR as achieved. Reasons for not achieving it are stated in 10.3.1.

The loading time of the app’s content should not exceed 150ms

We did not use frontend testing to test if the app’s content loads in the given time.

Joel Suter & Lucas von Niederhäusern Page 97 of 152

Fitness Gamification

9 Conclusion

In this project, we created a basis for an extendible service that motivates users to bemore phys-
ically active by adding gamification elements to physical exercise. This is done by implementing
a service that allows users to challenge their friends or random users to physical exercises. We
added a lot of gamification elements, such as performance statistics, achievements (Badges),
and a Banner where they can show their experience. Furthermore, we implemented a global rank-
ing that users will strive to climb.

We are thrilled with the result and had a great time developing such a unique idea. Both of us are
very interested in sports, especially the gym, and thought that the idea to gamify some aspects
is a genius idea with a lot of potential. We would like to see it further developed and fleshed
out. We employed state-of-the-art technologies, and the experience we gained from them and
starting a project from scratch to a complete prototype, employing gamification techniques, will
be invaluable to us and our careers.

We achieved almost everything we set out to achieve. Unfortunately, a significant accident Joel
Suter had 10.3.1 set us back more than we would like and did not allow us to achieve everything
as formulated in the task 8.

9.1 Needs to be Adressed

Even though we are delighted with what we have achieved, some things should be addressed if
the development of this service continues before implementation of any new features should be
considered. These are our recommendations, and are informed based on our knowledge of the
application. We will list these here, in a rough order of priority:

• Testing: Since we had to make some compromises, we did not test this application to
the extent required from an app that, for example, should go into production. So before
any more work is done, the application testing should be extended (more unit tests and fix
existing, api testing, frontend testing, more usability tests, firebase test project, ...)

• Security: Security concerns, asmentioned in this document, should be addressed and eval-
uated. It might be advisable to get an expert in the field that can provide detailed feedback.
Should security be expanded more? Are there any concerns regarding phone authentica-
tion, frontend data access, input validation, and security rules of Firebase.

• Improve repetition detection of exercises: As mentioned in 7.8.3, detecting repetitions of
pull-ups using a "hardcoded" solution of handy sensors is very hard to perfect. Improving
the detection should be addressed before a rollout to production. In our opinion, the best
solution to improve it is to use machine learning or external trackers such as Fitbit.

• Not achieved NFRs and Functional Requirements: As mentioned in 8, we did not achieve
everything that we had planned. Before developing new ideas, these requirements should
be revisited and reevaluated if they should be implemented next.

Joel Suter & Lucas von Niederhäusern Page 98 of 152

Fitness Gamification

• Evaluate Modularity: We have implemented everything focusing on modularity. Where
refactoring is needed, we mentioned it in the implementation chapters. Those should be
refactored, and the rest of the code should be checked for modularity.

• Reevaluate Datastructures of Firestore: We are satisfied with the data structures we used
for the implementation, but it might be advisable to recheck them and see if anything can
be optimized to improve performance and readability of the code.

• Performance: Performance should be evaluated using more extensive datasets and auto-
mated tests and improved if needed.

9.2 Future Vision

While developing the application, we noticed ourselves thinking about new features and improve-
ments to current features that could be considered for future development. Since we think this
application has a lot of potential we will list those recommendations here. They are not sorted in
any kind of priority. In our opinion the list of additional requirements listed in the task formulation
15 would also be very good additions and should be counted towards this list.

• More Badges/Milestones: Add more earnable badges and milestones.

• Seasons: Add a seasonal approach, similar to many modern games. Seasonal badges,
rankings etc.

• Frame for Profile picture: Allow the user to earn a special frame in which his profile picture
will be placed (flames, thorns, Etc).

• ELO System: Create a new or additional rankings system that is based on ELO (similar to
chess), that ranks players on their "recent" performance and not the total of the games
played.

• Description: Add description or explanations for certain elements (badges). A "tutorial"
could also be considered the first time a user opens the app.

• More challenges: Implement more challenge types for different physical exercises or even
other health related metrics.

• More authentication methods: Implement more authentication methods instead of just
phone numbers.

• Switching to friends list: Switching from the contact list to a managed friends list should
be considered to make integrating different authentication methods easier.

• Teams: Enable creating teams; users can join. This could allow for new features such as
Team vs. Team challenges, rankings, banners, and more.

• Synced challenges: Implement challenges that are not async as currently but done in sync.
Good for when both users are in the same space (party game)

• Group challenges: Allow challenges with more than two users. Enables features such as
internal group rankings and more.

• Customizable Banner: Allow the user to customize what he wants to show in his banner.
Which trackers and or badges he wants to show?

• Banners in Rankings: Allow users to see the banners of users in the rankings table.

Joel Suter & Lucas von Niederhäusern Page 99 of 152

Fitness Gamification

• Better leaderboards: Addmore detailed leaderboards. It could be extended to display lead-
ers of a given challenge.

• Events: Events could be implemented, for example a daily push-up event, where users can
participate and earn rewards for placements.

• Connection to health api’s or external trackers: Implement connection to external track-
ers such as Garmin. This would benefit from better accuracy in detecting certain metrics,
such as steps and altimeter data, and allows for many more challenges without having to
implement the detection algorithm.

Joel Suter & Lucas von Niederhäusern Page 100 of 152

Fitness Gamification

10 Project and Time Management

10.1 Project Plan

Figure 10.1: Project Plan

The figure 10.1 shows our initial project plan at the beginning of the project. In the end, it deviated
due to some factors that were unknown at the beginning of the project and some risks that were
realised 10.3.1.

We will quickly explain what the specific milestones mean. We will begin with the milestones
specific to RUP 10.2, since we used a mix of Scrum and RUP. We used milestones like these, to
guide the whole project plan and all other milestones. They are a very high level overview of the
project plan. We use them as a general check to see if we are still on path, even though we might
deviate from the other milestones and their deadlines.

• Inception: Summarizing and finalizing all Non-functional requirements and the given task.

• Elaboration/Design: Designing the application. Work like mock-ups and technical deci-
sions. It has cross-over with the inception phase since designing an application might
influence the requirements.

• Construction: The central part of the project, Contains all the implementation work. It also
overlaps the design since beginning with the Construction might impact the design.

Joel Suter & Lucas von Niederhäusern Page 101 of 152

Fitness Gamification

• Transition: This is the last phase of the project. It happens when all the major construction
work is finished. It contains work like publishing to the app stores, finishing the documen-
tation, and preparing Transition to Industry Partner.

The following milestones are a more detailed representation of the milestones above, where we
split our tasks and features into different epics. All our work can be applied to those epics.

• Administration: This was work on the documentation, meetings, and general work that
could not directly be associated with an issue.

• Infrastructure: Everything to do with Infrastructure, such as Firebase

• User Interface Setup: The initialization of the User interface, Mockups, technology deci-
sions, and setting up a connection to backend services.

• Authentication: Work regarding the authentication of users into our application.

• ChallengeScreen (HomeScreen): Creating and implementing the landing page/homescreen.

• Challenge Creation: Implementing logic that allows a user to create a challenge.

• Perform Challenge: Allowing users to perform/participate in a challenge.

• Sending of Challenge: Sending of the Challenge between users (including completing a
challenge).

• Dashboard/Banner: Work regarding the profile and also the Banner of a user.

• Chatting: Implementing a chatting function that allows users to communicate with each
other.

• Ranking: Implementing a ranking system.

• Publishing: Publishing the Application to the IOS App Store and Android Play Store

• General/Quality: General work regarding quality assurance, such as testing, small bug fixes,
usability tests, and more.

10.1.1 Deviations

As in all projects, we ended up deviating from the project plan in some aspects. They will be
listed here

• Authentication: Authentication took longer than expected due to insufficient documenta-
tion mentioned in 10.3.1.

• Publishing: Due to some communication errors and insufficient permissions. This mile-
stone was partially achieved, and was stretched to a few days before our deadline.

• Elaboration/Design: Since we significantly reworked the project scope, the design phase
took longer than expected.

• Infrastructure: In the project’s progress, we often returned to the Infrastructure and had to
make minor changes.

• Dashboard and Banner: First, we decided to cut some tasks from this milestone because
of a risk that occurred 10.3.1. However, at the end of the project and after a discussion with
our Industry Partner, we decided to implement these features too.

Joel Suter & Lucas von Niederhäusern Page 102 of 152

Fitness Gamification

• General: As we progressed in the project’s development, some issues for milestones we
considered to be completed arose after the completion of the milestones. These were
often minor tasks that mainly addressed edge cases that only became evident later. Also,
because of an injury Joel suffered 10.3.1, a lot of the milestones took longer.

10.2 Project organization

We have organized ourselves using a combination of RUP and Scrum, which was recommended
to us by our Industry Partner. As we have learned from our SA, working on a project that starts
from scratch takes much work to predict precisely. RUP has the advantage that we can create a
very high-level long-term plan, which helps a lot to guide the project. However, we still use Scrum
to create a more detailed project plan and use our project’s general Scrum iteration process. We
have minor deviations which are listed here:

• Our sprints last two weeks except for the first sprint, which we decided on for one week as
it only consisted of administrative and setup issues.

• Our review meetings will be held every week. Inconsistencies can occur due to advisors
and clients who have different work schedules.

• We scratched the Daily SCRUM Meeting due to overhead and effectiveness for a team of
only two people. The dailies were held more informally.

Roles

Usually, SCRUM-based projects divide their participants into roles. We decided to leave the role
distribution out because we are only a team of two developers. Our team members divide their
work depending on who has time and more experience in a given issue. As both team members
bring similar experiences in the field, there is no need to define specific roles for individuals. The
other team member will review any code or major decisions someone makes.

10.2.1 Issue management

For issue management, we decided to use Jira Cloud Solution. Both of the team members have
experience with this Issue Tracking Tool. We have divided our requirements into epics which will
be further divided into more minor issues. The only release we captured is the final submission,
so it is easier to estimate which epics must be done in a time frame.

10.2.2 Time tracking

The following screen capture 10.2 will show the time spent in the whole duration of the project,
categorized by each epic and month. We will not list the time spent per person since both mem-
bers worked in sync. However, due to an injury 10.3.1, Joel Suter could not work for some time,
which can be seen in the dip in productivity in April.

Joel Suter & Lucas von Niederhäusern Page 103 of 152

Fitness Gamification

Figure 10.2: Time Tracking Report

10.2.3 Division of Tasks

We mainly worked together on most tasks, but still, there were some divisions on how the over-
lying requirements were divided between each other. The rough divisions of tasks will be listed
below. Some tasks both worked on equally, and that will be mentioned too. The following table
10.1 will outline who had the main lead in each task.

Task Lead
Firebase Setup Both
Frontend Setup Lucas v. Niederhäusern
Requirement Elaboration Joel Suter
Authentication Joel Suter
Frontend Design Lucas v. Niederhäusern
Firestore Joel Suter
Cloud Functions Both
Performing on Challenge Lucas v. Niederhäusern
Creation of Challenge Both
Sending of Challenge Both
Profile and Banner Joel Suter
Home Screen Both
Ranking Lucas v. Niederhäusern
User Statistics Joel Suter
Chat Functionality Lucas v. Niederhäusern
Push Notifications Lucas v. Niederhäusern
Quality Assurance Joel Suter
Localization Lucas v. Niederhäusern
Documentation Both

Table 10.1: Division of Tasks

10.3 Risk Management

This section will describe the risks to our project with their respective probability and severity.
If they occur, they are listed in 10.2 The section will be constantly updated for new risks that

Joel Suter & Lucas von Niederhäusern Page 104 of 152

Fitness Gamification

might become evident later in the project. Any countermeasures and their effectiveness will be
documented as well.

Risk ID Risk Countermeasure Severity Probability
1 Team member is unavail-

able
Communicate through
channels to distribute
tasks, and try to keep as
few dependencies as pos-
sible.

Very High Very Likely

2 Scope Creep Any changes to scopes
must be estimated again,
and the plan must be ad-
justed accordingly.

High Very Likely

3 Technical inexperience Assign issues to the per-
son best suited. Eliminate
any inexperience as early
as possible.

High Likely

4 Infrastructure breakdown Create backups and ensure
high availability of the in-
frastructure.

Very High Unlikely

5 Poor project planning Review the project plan af-
ter every sprint.

High Likely

6 Technical impossibility Research and analyze re-
quirements regarding their
technical needs and possi-
bilities.

Very High Improbable

7 No available libraries/re-
sources for project needs
(especially sensor libraries)

Analyse possible research
libraries and their abilities
as early as possible so that
project can evolve around
those findings.

Very High Unlikely

8 Equipment failure Keep care of equipment
and be able to switch to a
new system with no more
than a day expended.

Very High Likely

9 Changing specifications Try to fix app specifications
and project requirements at
the beginning of the project
andminimally change them
during the duration.

Moderate Unlikely

Table 10.2: Project Risks

This graph helps us decide if we implement the suggested countermeasures from the table above
10.2—anything below the red line we accept and do not try to mitigate.

Joel Suter & Lucas von Niederhäusern Page 105 of 152

Fitness Gamification

Figure 10.3: Risk acceptance graph

10.3.1 Realized risks

Team member is unavailable

This risk was realized and realized in a big way. In the middle of the project, Joel Suter had an
accident while doing sports, where he injured his knee, which needed pretty quick surgery. Be-
cause of that injury plus surgery, Joel Suter was unavailable for at least 2-3 weeks of the project:
One and a half weeks right after the injury and surgery, and the other week accumulated because
of doctor and rehabilitation appointments. So the impact, as expected if a team member was
unavailable, was very severe. Because of that, a few features and quality aspects could not be
fulfilled entirely as planned. We estimated the total lost time about 45+ hours. Because of that
lost time, we had to decide with our Industry Partner which features, NFR, or quality aspects to
take away some focus. The focus should be on functionality, modularity, and design. Focus
was taken away from some quality aspects such as testing, testing some non-functional require-
ments, security and additional features. Those decisions guided what we focused on. What we
were not able to achieve can be viewed both in the results 8 and conclusion 9. It is hard to pinpoint
exactly what was not achieved because of this risk.

Actual Severity: Extremely Severe

Countermeasure success: It was successful up to a point. However, there is only so much one
can do when someone is unavailable for almost three weeks. We ensured that Lucas v. Nieder-
häusern had no dependencies on Joel Suter before the surgery and that he could continue work-
ing. Joel Suter also ensured he was available for calls or text messages if any arose.

Joel Suter & Lucas von Niederhäusern Page 106 of 152

Fitness Gamification

No available resources for project needs

An issue that cost time was insufficient or no documentation/examples for some Firebase fea-
tures. The problem was that we only discovered some of these issues when we began imple-
menting them. When we did the research, it seemed very obvious. The critical point here was for
Firebase phone authentication. When we researched, we found many examples of it. However,
when we started implementing the functionality, we realized it was more challenging to imple-
ment with the Expo toolset, and almost no examples were available online. That cost us about
two full days of work. Another example is that some of the Firebase documentation needed to
be updated since a new version of the SDK was just released.

Actual Severity: High

Countermeasure success: Partially successful. We ensured at the beginning that we were not
trying to do anything impossible. However, as always, the problems make them visible while
implementing. And at that point, we weren’t able to change course since the cost of that would
be higher than trying to work around it.

Technical Inexperience

We generally knew all the project technologies except for Firebase. We were familiar with it and
somewhat with its capabilities. However, this is our first time working with the Firebase JS SDK.
We took this risk becausewewere highly interested in the technology. Wewere held back at a few
points while developing since we needed to determine how certain things could be implemented.
However, the time it saved us in aspects like real-time updates, automatic scaling, etc., made up
for it. Moreover, the decision to choose Firebase was accepted by our industry partner.

Actual Severity: Low

Countermeasure success: Successful

Technical Impossibility

This risk occurred while implementing phone authentication for Firebase, highlighted in 7.4.3.
In short, firebase phone authentication does not differentiate between login and register. Even
though we did research before, we did not notice that the process for both is the same. This
caused the issue that we need a different login and registration process. The Problem was that
a user that has not registered yet could log in (and register that way), and a registered user could
use the register and log in that way. We had to implement a workaround 7.4.3, which cost us a
little time.

Actual Severity: Minor

Countermeasure success: Partially successful

Poor project planning / Technical inexperience

During the final phase of this project, we encountered significant time constraints when it came
to publishing. Because we lacked experience in publishing apps on official stores, we sought
guidance from our industry partner and agreed to initiate the publishing process at least one and
a half weeks prior to the deadline.

Joel Suter & Lucas von Niederhäusern Page 107 of 152

Fitness Gamification

Upon obtaining the necessary credentials for developer accounts, we encountered obstacles due
to permission restrictions on our accounts. After exchanging numerous emails, encountering
communication errors, and facing limited availability, we could only submit our applications for
publishing three days before the deadline.

Due to permission issues, our industry partner had to upgrade our account permissions multiple
times. Ultimately, we required full admin access to both the iOS and Android developer portals
before we could submit our applications to the stores. Certain aspects of the submission had to
be handled manually by our industry partner due to their exclusive account ownership rights.

Apple has approved our submission of the application and it can be viewed on the App Store.
See chapter 7.17.1.

As of the writing of this document (15.6.2023), we have not received a response from Google
regarding our submission, and we cannot guarantee the availability of our application on the
Google Play Store.

This risk can be attributed to both inadequate project planning, a lack of technical experience
and communication errors.

Insufficient research and a lack of prior experience caused us to underestimate the level of effort
required for the publishing process on official stores.

Actual Severity: High

Countermeasure success: Not successful

10.4 Test Concept

Generally, we will conform to the testing Pyramid and design our test concept accordingly, as it
is considered a good guideline for software testing. Since we are developing a prototype, testing
was not the most significant focus, and we will not test the application to the extent that might
be expected from an application that runs in production. The test concept should be reworked if
the application should be deployed into production.

Joel Suter & Lucas von Niederhäusern Page 108 of 152

Fitness Gamification

Figure 10.4: Testing Pyramid

10.4.1 Additional

As of now, we do not see the need for additional test techniques since the scope of our project
is overseeable. We instead concentrate on the following testing techniques.

10.4.2 System

We will test the system manually using a test protocol 7.16.4. This protocol will evolve during
the duration of the project. If one of the tests fails in the protocol, the Sprint cannot be finished;
it does not meet the definition of done. The final iteration of the protocol will be listed in the
technical test documentation.

10.4.3 Integration

We cover these with our unit tests andmanual testing. So we decided against Integration testing.

10.4.4 Component

Since we have small modules/components, testing them separately makes little sense. For that
reason, we will not test the modules separately but will cover these tests throughout the unit and
manual testing.

Joel Suter & Lucas von Niederhäusern Page 109 of 152

Fitness Gamification

10.4.5 Unit

Wewill implement most of our testing through unit tests 7.16. With these, we want to ensure that
all the code units run as intended.

10.4.6 Deviations

We could not implement the initially planned test concept fully due to some realized risks 10.3.1
and the shift in focus because of that. Concessions in unit testing were highlighted in 7.16.3.

10.4.7 End User Usability Tests

This section will go into the usability test protocol, the criticism we received, and the end rating
they give the application.

Generally, in a usability test, one would do a pre-interview, where we ask general questions about
what kind of apps similar to ours he uses. Since we do not do market research, we only ask
demographic questions and questions related to our functionality, design, and general look and
feel.

We interview people aged 18-30, who do sports or maybe are interested in sports but are not
motivated, do sports with friends, and like to be competitive with friends.

Pre-interview

• How old are you?

• What gender are you?

• What do you do professionally?

• What is your relationship to sports?

General Knowledge Goal

What do we want to find out with this test generally?

• What is the general impression of our design?

• Where do the test subjects get lost? Which screens/elements cause the user to get lost?

• Does the user understand the intention of the displayed elements (buttons, titles, etc)?

• Does the user understand the flow of the application?

• Does the user have specific feedback regarding the design?

• Does the user have ideas for new functionality?

• Did the user discover any edge cases or ideas we did not consider?

Prerequisites

For Test subject: Create a contact in your phone with the phone number: "redacted (account we
setup for testing)." Do you have access to your phone? Download the app and open it.

Scenarios

Joel Suter & Lucas von Niederhäusern Page 110 of 152

Fitness Gamification

The test scenarios we give the user. We generally give him a goal andmake notes where the user
had problems and if he achieved the goal.

Nr. Name Scenario Knowledge Goal
1 Creating

Account
You want to create an account in
the app

Does the user understand how to
create an account?

2. Creating Chal-
lenge

You want to create a pull-up chal-
lenge against the user with the
phone number "redacted"

Does the user know how to create
a challenge, and does he under-
stand the create challenge form?

3. Send mes-
sage to
opponent

Taunt your opponent. Send them
a message.

Does the user know how to con-
tact his opponent through the
app?

4. Perform on
challenge

For Tester: Challenge the user.
For test subject: Perform a chal-
lenge and beat the score

Does the user understand when it
is his turn? Does the user under-
stand how to perform? Does the
user know if he won?

5. Check chal-
lenge details

Tell us the name of the oppo-
nent you performed against. Tell
us what his previous score was.
What is his profile picture? How
many repetitions has the user
done in his entire career?

Does the user understand the
concept of the banner? Does the
user understand the challenge de-
tails screen?

6. View Rank-
ings

Tell us which user has the most
repetitions in his career

Does the user find the rankings
and understand the information
displayed?

7. Viewing Pro-
file

Find your profile and tell us how
many repetitions you have. Did
you earn any milestones? If yes,
tell us how many

Can the user find his profile? Does
he understand the tracker con-
cept? Does he understand the
concept of the badges?

8. Change pro-
file picture

Change your profile picture to an
image you like

Is the user able to change his pro-
file picture?

9. View Chal-
lenge History

Tell me the last result of an oppo-
nent of a challenge of your choos-
ing

Does the user find the history for
a challenge? Does he understand
the screen?

10. Logout Logout of the app Does the user understand how he
can logout?

11. Login Log back into the app Is he able to log back into the app

Table 10.3: Usability Test Protocol

Post-Interview

What is the opinion of the user? (open questions)

• What are your general Impressions?

• What did you like about our app (generally and design)?

• What bothered you (generally and design)?

• Did you get confused at any point on how to proceed?

• Are there specific elements that you were unsure what their purpose was? Tell us which.

Joel Suter & Lucas von Niederhäusern Page 111 of 152

Fitness Gamification

• Would you use the app? Tell us why yes/not.

• Give the app a rating from 0-10. (layout, responsiveness, colour, content)

• Do you have any general feedback, positive or negative?

• Do you have any suggestions for additional features? What would you be interested in?

Consolidated Test results

Here we will list the specific and general feedback we received consolidated from the section 14.
We will also list the individual scores the user gave our app. Of course for a more accurate user
feedback the testing scope should be extended to more users.

Scenario Success

Problems that arised in muliple users are for the following scenarios:

• 1: Some users got hasty and tried to login before registering. Did not take time to read the
text.

• 3: The keyboard on IOS covers the input while typing (keyboard avoiding view does not
work).

• 9: It was not always clear how to access the history of a challenge.

Consolidated Post-Interview Feedback

• What are your general Impressions? Simple, very cool idea, maybe it is too easy to cheat
in a challenge.

• What did you like about our app (generally and design)? Not toomuch information, simple,
clean.

• What bothered you (generally and design)? Some buttons were not responsive (too small).
The app is not optimized for Dark Mode. Else nothing really.

• Did you get confused at any point on how to proceed? Mostly no (else see scenario suc-
cess)

• Are there specific elements that you were unsure what their purpose was? Tell us which.
Meaning of the various badges. Descriptions and toutorial would be nice.

• Would you use the app? Tell us why yes/not. For additional motivation. But before anyone
would use it it needs anti cheat and better recognition of repetitions.

• Give the app a rating from 0-10. (layout, responsiveness, colour, content)

– Layout: 9, 10, 8, 8

– Responsiveness: 10, 6, 8, 10

– Colour: 4, 5, 10, 8

– Content: 6, 7, 7, 6.5

• Do you have any general feedback, positive or negative? Empty home screen does not
look so nice. Colour needs to be improved, and anti cheat is needed. Generally but very
satisfied.

• Do you have any suggestions for additional features? What would you be interested in?

Joel Suter & Lucas von Niederhäusern Page 112 of 152

Fitness Gamification

– Tracker support

– Better repetition detection

– More challenge types

– Challenges that can be done everywhere, such as push-ups

– Description for elements such as badges

– Tutorial

10.5 Definition of Ready / Definition of Done

This section will discuss and list the different DoDs and DoRs. These lists will serve as checklists
either before we do something (DoR) or when we want to check if something is finished (DoD).
In addition, it will ensure that quality standards are met with a clearly defined process.

Definition of Ready

If any of the criteria in the checklist are violated, the concerned item is not ready to be worked. It
will have to be corrected until it meets them. It is ready only if all criteria are met.

• User Stories

– Acceptance Criteria defined

– Story definition accepted by Team

– Story well-defined

– No ambiguities

– Story estimated

– Story in current Sprint

– Story assigned

• General Ticket

– Acceptance Criteria defined

– Ticket in current sprint

– Ticket estimated

• Sprint

– Tickets with highest priority in sprint

– Sprint backlog prioritized

– No hidden work, everything in tickets

– Sprint planned according to capacity

– All Stories meet definition of Ready

Joel Suter & Lucas von Niederhäusern Page 113 of 152

Fitness Gamification

Definition of Done

If any of the criteria in the checklist are violated, the concerned item is considered unfinished. It
will not be allowed to be moved to done or regarded as finished. It is done only if all are met.

• User Stories

– Assumptions of User Story met (justified if not)

– Project builds without errors

– Tests written according to test concept

– Story tested against acceptance criteria

– Configuration, Architecture or Build changes documented

– Code Review passed

– Code written according to defined guidelines

– NFR stay unviolated

• General Ticket

– Assumptions of Ticket met (justified if not)

– Changes to Documentation reviewed

– Acceptance Criteria met

– No Contradictions in Documentation

– Decisions accepted by Team

• Sprint

– DoD of each Ticket included in Sprint is met

– Sprint scope completed

– All tests pass

– Backlog refined and updated

– Application deployed

– Upcoming Sprint planned

Joel Suter & Lucas von Niederhäusern Page 114 of 152

Fitness Gamification

Bibliography

[Ker17] Todd Kerpelman. “Cloud Firestore vs the Realtime Database: Which one do I use?” In:
Firebase Blog (2017). URL: https://firebase.blog/posts/2017/10/cloud-firestore-for-rtdb-
developers/#the-tldr-just-tell-me-what-to-use.

Joel Suter & Lucas von Niederhäusern Page 115 of 152

https://firebase.blog/posts/2017/10/cloud-firestore-for-rtdb-developers/#the-tldr-just-tell-me-what-to-use
https://firebase.blog/posts/2017/10/cloud-firestore-for-rtdb-developers/#the-tldr-just-tell-me-what-to-use

Fitness Gamification

List of Figures

1 Firebase . 1
2 React Native . 1
3 User Profile . 3
4 Home Screen . 3
5 Challenge Details Screen with Opponents Banner 3
6 Challenge Perform Screen . 3

4.1 System Context . 15

5.1 Use Case Diagram Final . 17
5.2 Use Cases Version 1 . 19
5.3 Mind Map Alternatives . 20

6.1 Container Diagram . 24
6.2 Component Diagram . 26
6.3 Domain Model . 28
6.4 Firebase Console . 30
6.5 Possible Authentication Methods . 31
6.6 Authentication Monitoring . 32
6.7 Firebase Functions Structure . 33
6.8 FCM Architectural Overview . 34
6.9 Firestore Monitoring . 36
6.10 Usage and Billing for Firebase . 37
6.11 Whats App Inspiration . 40
6.12 Polytopia Inspiration . 41
6.13 Apex Legends Banner . 42
6.14 Register Screen Mockup . 42
6.15 Login Screen Mockup . 42
6.16 Challenge Screen Mockup . 43
6.17 Challenge Details Screen Mockup . 43
6.18 Profile/Dashboard Screen with Banner Mockup . 43
6.19 Rankings Screen Mockup . 43
6.20 Expo Build . 45

7.1 Register Phone Authentication . 55
7.2 Register OTP Challenge . 56
7.3 Create Challenge Form . 58
7.4 Opponent Selection Screen . 60
7.5 Choose Number Dialog . 60
7.6 Contact not allowed Snackbar . 61
7.7 Home Screen . 62
7.8 Challenge Details Development . 63
7.9 Challenge History Screen . 64

Joel Suter & Lucas von Niederhäusern Page 116 of 152

Fitness Gamification

7.10 Challenge Perform Screen . 65
7.11 Profile Screen . 69
7.12 10 Week history graph . 70
7.13 Profile Screen . 71
7.14 Banner . 72
7.15 Chat Screen . 73
7.16 Rankings Screen . 74
7.17 Android Notification Example . 75
7.18 Tracked Data Update After Challenge Completion 77
7.19 Earnable Badges . 80
7.20 Domain Model Badge Excerpt . 81
7.21 Update Badges Sequence . 81

10.1 Project Plan . 101
10.2 Time Tracking Report . 104
10.3 Risk acceptance graph . 106
10.4 Testing Pyramid . 109

13.1 Login Screenshot . 136
13.2 Register Screenshot . 136
13.3 Home Screen Screenshot . 137
13.4 User Profile Screenshot . 137
13.5 Challenge Details Screenshot . 137
13.6 Challenge History Screenshot . 137
13.7 Challenge Perform Screenshot . 138
13.8 Rankings Screenshot . 138
13.9 Create Challenge Screenshot . 138
13.10Opponent Selection Screenshot . 138
13.11 Select Phone Number Screenshot . 139
13.12No Number in Contact Screenshot . 139
13.13User Does Not Exist Screenshot . 139
13.14Share App Screenshot . 139
13.15Change Profile Picture Screenshot . 140
13.16Chat Screenshot . 140

List of Tables

5.1 Use Case Description . 19
5.3 Non-Functional Requirements . 22
5.5 Optional Requirements . 23

7.1 Implemented Cloud Functions . 54
7.2 Challenge Document after Creation . 59
7.3 Manual Test Protocol . 91

8.1 Implemented Functional Requirements . 95

Joel Suter & Lucas von Niederhäusern Page 117 of 152

Fitness Gamification

8.2 Implemented NFRs . 96

10.1 Division of Tasks . 104
10.2 Project Risks . 105
10.3 Usability Test Protocol . 111

14.1 Scenario Notes . 141
14.2 Scenario Notes . 143
14.3 Scenario Notes . 145
14.4 Scenario Notes . 147

Joel Suter & Lucas von Niederhäusern Page 118 of 152

Fitness Gamification

11 Meeting Minutes

Protocol 18:00 23.02.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• None

Topics / Questions

• Requirement, if user does not have the application he is prompted to download it from the
respective app store, can only be tested late into the project

• How does the publication of the application work?

• Should we use Kanban or SCRUM for project management

• Shall we use the repository from our client again?

• Can we do a double deployment for test / production or should we do testing directly onto
the production deployment?

• Which NFR’s are required or must / should / can?

• Does step counter count as sensor for a challenge?

• Does a group only exist for one challenge or for multiple?

• Functional requirement "Dashboard should contain interesting information about the user"
is very broad

Decisions

• Access to contacts required to send challenges to friends, users not searchable with our
application

• Don’t use steps for challenges instead use sensors to detect pushups or pullups (difference
in height)

• Be able to send challenges back and forth

• Have a challenge ID in the URL of the invitations

• Challenge starts immediately, opponent does not have to accept

Joel Suter & Lucas von Niederhäusern Page 119 of 152

Fitness Gamification

• There are winners, losers and bums (people who did not participate in the challenge)

• Change distribution of points depending on how many players there are

• Upload demo version to stores for review from Apple and Google

• We will get access for publishing our application from Michael

• Group is persistent over multiple challenges

• Players can be removed from groups

• Statistic stay the same even if players are no longer in the group

• Dashboard with statistics about yourself (no graphs required, simple numbers)

• Use Scrum with less overhead -> **Document this decision**

• Set up new environments to set clear boundaries to our previous project

• Document any usage of previous work

• Challenge result should be enriched with a ranking table

• Zwischenpräsentation 18. April 2023

• Bachelorprüfung -> Let Frank know asap when we get our agenda for the finals

Open Tasks / Topics for next week

• Create priority list of requirements before next meeting

• Have a look at the technologies used for the projects for questions

• Read "Leitfaden Bachelorarbeit v1.1"

Joel Suter & Lucas von Niederhäusern Page 120 of 152

Fitness Gamification

Protocol 17:00 02.03.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Priority list for functional and non-functional requirements

• Present our project plan

Topics / Questions

• Can we use React Native + Firebase for our application

• How does RUP + Scrum exactly work

• Questions to groups:

• When user creates group does one have to accept the invitation or is he accepted automat-
ically

• Is a group invite only?

• Can every group member manage the group

• Is there an admin?

• How does a challenge in a group work?

• Are all group members challenged simultaneously or one after another?

• If someone does not beat the score is he immediately out?

• Can we use NoSQL as it is the standard for Firebase instead of MySQL?

• Can we only use mobile phone number and remove password completely for the authenti-
cation?

• General questions about challenges and challenge screen

Decisions

• We use React Native + Firebase for our application

• Use SCRUM+ -> Split RUP Phases into Sprints

• Groups

• People are automatically added to groups

• Use Whatsapp as analogy for our project

• Groups are invite only, no search function for groups

• Person who creates group will be admin

• Function to promote other people to admin

Joel Suter & Lucas von Niederhäusern Page 121 of 152

Fitness Gamification

• If admin leaves group and no other admin is present, everyone else will be promoted to
admin

• One can either challenge a person or a whole group

• If someone joins a group with an active challenge, he will not participate in that challenge

• If someone leaves a group, the group will be deleted from his dashboard

• Create a distinctive separation between group challenges and 1v1 challenges

• Challenge titles are either group name or the opponent name

• There can only be one active challenge in a group at a time

• General feedback to mockup

• Document our inspiration from polytopia for our frontend

• Localisation -> App has to be in german, if possible support german and english

• No global statistics for the moment, have specific statistics for groups and challenges

Open Tasks / Topics for next Week

• Create a proposal for group solution

• Meeting on wednesday 08.03.2023 15:00

Joel Suter & Lucas von Niederhäusern Page 122 of 152

Fitness Gamification

Protocol 18:00 23.02.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• New Features without Groups (our priority list)

• Challenge random players (regional?) from the playerbase

• Banner system (Display badges / milestones of your work)

• Detailed Profile / Dashboard

• See profile / dashboard of other players

• Global ranking

• Friendslist ranking

• Total ranking of all players (elo ranking?)

• How about seasons? (optional)

• Chat function

• Implement more challenge types (..., step counter, not-fitness-related, stairs)

• Implement Anti-cheesing methods (optional)

Topics / Questions

• Should we document decision about changing the scope?

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 123 of 152

Fitness Gamification

Protocol 18:00 16.03.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• State of current progress

• Updated mock-ups

Topics / Questions

• None

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 124 of 152

Fitness Gamification

Protocol 17:00 23.03.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Phone Authentification

• Google Authentification

Topics / Questions

• How are we going to implement the friends list?

Decisions

• Use phone number for the first phase to create a friends list, people who signed in using a
different service can be implemented later

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 125 of 152

Fitness Gamification

Protocol 15:00 30.03.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Update to current progress in app

Topics / Questions

• Firestore usage (Cloud Firestore or Realtime Firebase)

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 126 of 152

Fitness Gamification

Protocol 17:00 06.04.2023

Present

Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Persistance of challenges

Topics / Questions

• Joel not present due to injury

Decisions

• None

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 127 of 152

Fitness Gamification

Protocol 17:00 13.04.2023

Present

Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Pull-up Challenge Performance

Topics / Questions

• Joel not present due to injury

Decisions

• No meeting next week due to midterm presentation

• Document Joel’s absence and update our risk management / occurred risks

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 128 of 152

Fitness Gamification

Protocol 15:00 27.04.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Interim presentation

• Update on progress of our application

• Joel’s absence

Topics / Questions

• We might need Apple Developer Account for notifications

Decisions

• None

Open Tasks / Topics for next week

• Apple Developer Account

Joel Suter & Lucas von Niederhäusern Page 129 of 152

Fitness Gamification

Protocol 17:00 04.05.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Reviewing progress of badges and notifications

• Firebase pricing

Topics / Questions

• None

Decisions

• There will be no meeting next week

• Next Meeting will be on 16.05.2023

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 130 of 152

Fitness Gamification

Protocol 18:00 16.05.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Demonstration of notification and chat function

• Reviewing Firebase backend

• Reviewing progress of banners and badges

Topics / Questions

• Time diffculties due to Joel’s medical absence

• Should we persist chat history over multiple sessions?

• Who initiates a challenge?

Decisions

• Frank will be absent next week

• Implement a limit for challenge requests

• Initiator should perform challenge first not the opponent

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 131 of 152

Fitness Gamification

Protocol 17:00 25.05.2023

Present

Joel Suter, Lucas von Niederhäusern, Michael Güntensperger

Review

• Review of the current state of the app

Topics / Questions

• We need access to the developer accounts of Joel and Lucas

Decisions

• Will be sent to us in following week

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 132 of 152

Fitness Gamification

Protocol 17:00 01.06.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Current state of the app

• These features might not be implemented in time:

• Display statistics visually (e.g. graphs)

• We cannot send GIFs in chat

• Additional badges

Topics / Questions

• How should we implement challenge expiration? (Firebase Scheduled Functions)

• How do we test the speed of the app? (e.g. how long does it take to load a challenge)

• Push notifications are not working on Android (iOS is working)

Decisions

• We will do a hard cut on the features we will implement next week and focus on publishing
the app and documentation

• Use scheduled functions to implement challenge expiration (scheduled functions are trig-
gered by a cron job every 10 minutes)

• We decided on which features we will implement in the next week

• Ranking system

• Useability improvements / testing

• Implementing the challenge expiration

• Challenge random opponent

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 133 of 152

Fitness Gamification

Protocol 17:00 08.06.2023

Present

Joel Suter, Lucas von Niederhäusern, Frank Koch, Michael Güntensperger

Review

• Update on the features we were able to implement in the last week

Topics / Questions

• How does the poster have to look like? Do we have templates?

• Review of the documentation structure if possible

Decisions

• Focus is now on the documentation and publishing the app

• There will be no meeting next week (unless there are any questions)

Open Tasks / Topics for next week

• None

Joel Suter & Lucas von Niederhäusern Page 134 of 152

Fitness Gamification

12 Personal Reports

Lucas von Niederhäusern

Working with a customer on this project was a significant milestone for me. It gave me a worth-
while and enjoyable experience while putting everything I had learned at the university into prac-
tice. I had the chance to use state of the art technologies, and to improve my knowledge as well
as consolidate what i have learned.

Using Firebase as our backend was one of the project’s more exciting features. It was the first
time I used a cloud backend that exclusively uses cloud functions to handle logic. We also devel-
oped a user-friendly and cutting-edge interface for the frontend by utilizing the ideas and knowl-
edge I had learned from the web engineering modules we had studied in prior semesters.

Despite experiencing several challenges near the project’s conclusion, we are proud of the out-
come. Our prototype will act as a strong starting point for the future application development
that our client desires. Participating in app programming was a rewarding opportunity, and I can
continue in this field professionally after graduation.

Joel Suter

In this project, I tested my skills, which I learned from my experience as a DevOps engineer, and
all the newly learned skills during my studies. Furthermore, I could not only put these skills into
use but also sharpen them and even learn more, such as using Firebase. I certainly gained much
valuable experience in the process.

The project was a success in my and my partner’s eyes. We were able to achieve what we set
out to achieve and were able to create an excellent prototype for a fantastic idea. I envision that
this prototype and the idea behind it could have much potential for further development, and we
were able to bring much value to it.

Of course, as in most projects, some things did not go as planned. Areas in which I want to
improve in the future are planning. The plan we created was a good guideline, but especially in
the end; we deviated quite a bit from it. Sadly, I had a severe injury while working on my bachelor
project. For that reason, we had to compromise the project’s scope. However, even setbacks
such as that are very valuable in their own right. It taught me how to handle such risks and
communicate with customers if such risks occur. Overall, I am pleased with the result of our
project and proud of what we achieved, and it was an enriching project to participate in.

Joel Suter & Lucas von Niederhäusern Page 135 of 152

Fitness Gamification

13 Screenshots

Figure 13.1: Login Screenshot Figure 13.2: Register Screenshot

Joel Suter & Lucas von Niederhäusern Page 136 of 152

Fitness Gamification

Figure 13.3: Home Screen Screenshot Figure 13.4: User Profile Screenshot

Figure 13.5: Challenge Details Screenshot Figure 13.6: Challenge History Screenshot

Joel Suter & Lucas von Niederhäusern Page 137 of 152

Fitness Gamification

Figure 13.7: Challenge Perform Screenshot Figure 13.8: Rankings Screenshot

Figure 13.9: Create Challenge Screenshot Figure 13.10: Opponent Selection Screenshot

Joel Suter & Lucas von Niederhäusern Page 138 of 152

Fitness Gamification

Figure 13.11: Select Phone Number Screenshot Figure 13.12: No Number in Contact Screenshot

Figure 13.13: User Does Not Exist Screenshot Figure 13.14: Share App Screenshot

Joel Suter & Lucas von Niederhäusern Page 139 of 152

Fitness Gamification

Figure 13.15: Change Profile Picture Screenshot Figure 13.16: Chat Screenshot

Joel Suter & Lucas von Niederhäusern Page 140 of 152

Fitness Gamification

14 Usability Test Protocols

Usability Test 1 - Android, Dark Mode

Pre-Interview

• How old are you? 25

• What gender are you? Male

• What do you do professionally? Taxes

• What is your relationship to sports? Would like to domore sports, has problemsmotivating
himself.

Szenario Notes

Nr. Notes Success
1 Tried to login before registering. Thought the login form was for register.

He did not fully understand the process and the form.
Partially

2 He understands how to create a new challenge. Fully
3 He did not fully understand how to contact his opponent at first. He didn’t

know the chat function was inside the challenge details
Partially

4 Understood when it’s his turn and how to perform. Fully
5 Understood the banner concept but not the division to challenge details fully
6 Easily found Fully
7 No issues Fully
8 No issues Fully
9 Was not able to find the button to open the history of a challenge. Needed

help
None

10 No issues Fully
11 No issues Fully

Table 14.1: Scenario Notes

Post-Interview

• What are your general Impressions? Cool idea. Would like exercises that can be done in
the "alltag".

• What did you like about our app (generally and design)? Easy, not too much information,
simple, modern, no ads

• What bothered you (generally and design)? Dark mode was not optimized. Detection of
pullups is not reliable enough, allows for cheating. Better rankings (more rankings). The
completed challenges were not in order of their completion.

Joel Suter & Lucas von Niederhäusern Page 141 of 152

Fitness Gamification

• Did you get confused at any point on how to proceed? Registering, tried to login instead of
registering. Challenge details deliniation from banner not clear. The 10 week graph, what
the content of it is.

• Are there specific elements that you were unsure what their purpose was? Tell us which.
The 10 week graph.

• Would you use the app? Tell us why yes/not. Would be cool to try out and see if it gives
motivation. But needs better tracking first and cheating is possible.

• Give the app a rating from 0-10. (layout, responsiveness, colour, content)

– Layout: 8

– Responsiveness: 10

– Colour: 4 (dark mode didn’t work everywhere)

– Content: 6 (because of lack of challenges, and detection)

• Do you have any general feedback, positive or negative? Colours need to be improved.
Anti cheating. Toutorial would be nice.

• Do you have any suggestions for additional features? What would you be interested in?
Maybe add tracker support for trackers like fitbit and add more challenges.

Joel Suter & Lucas von Niederhäusern Page 142 of 152

Fitness Gamification

Usability Test 2 - Android, Dark Mode

Pre-Interview

• How old are you? 26

• What gender are you? Male

• What do you do professionally? Unemployed, student

• What is your relationship to sports? Sport enthusiast who does weightlifting regularly

Scenario Notes

Nr. Notes Success
1 Tried to login first but changed to register screen immediately Fully
2 Created challenge very fast, no issues Fully
3 No issues Fully
4 Waited for his turn and performed the challenge Fully
5 Could immediately tell the statistics and their meaning Fully
6 Navigated to ranking screen and extracted the information immediately Fully
7 User found his profile. Did not understand at first where his badges are Fully
8 No issues Fully
9 Navigated back to the challenge and opened it, no issues Fully
10 Tried to close the app in the background first before logging out Fully
11 No issues Fully

Table 14.2: Scenario Notes

Post-Interview

• What are your general Impressions? Very impressed. He thinks the whole thing is a great
idea

• What did you like about our app (generally and design)? Interface and useability are good

• What bothered you (generally and design)? Some parts of the app were not readable in
dark mode

• Did you get confused at any point on how to proceed? No issues

• Are there specific elements that you were unsure what their purpose was? Tell us which.
What are the meaning of the various badges?

• Would you use the app? Tell us why yes/not. He would use the app and challenge his
friends

• Give the app a rating from 0-10. (layout, responsiveness, colour, content)

– Layout: 8

– Responsiveness: 6

– Colour: 5

– Content: 7

Joel Suter & Lucas von Niederhäusern Page 143 of 152

Fitness Gamification

• Do you have any general feedback, positive or negative? He had no feedbacks

• Do you have any suggestions for additional features? What would you be interested in?
He would like a better detection system for repetitions and more challenge types

Joel Suter & Lucas von Niederhäusern Page 144 of 152

Fitness Gamification

Usability Test 3 - iOS, Light Mode

Pre-Interview

• How old are you? 25

• What gender are you? Male

• What do you do professionally? Student

• What is your relationship to sports? He usually maintains a good balance between sports
and life but lacks the motivation lately

Scenario Notes

Nr. Notes Success
1 Found the register screen immediately and created an account Fully
2 Found challenge creation, gave access to his contacts. Had to tap on the

submit button multiple times as it was not responsive.
Fully

3 Found the chat screen. Had issues regarding keyboard covering the input
field. Successfully sent the message.

Fully

4 User waited for his turn in the challenge and performed it accordingly. Fully
5 Found all the informationwe asked. Had trouble recognizing lifetime and

challenge score.
Fully

6 Was able to find the ranking screen and rank leader immediately Fully
7 Instantly changed to his profile screen and found the relevant information

of the scenario.
Fully

8 Found the profile picture picker but after selecting the photo the applica-
tion crashed (2x)

None

9 Found the challenge history screen of the previous game immediately. Fully
10 No issues Fully
11 No issues Fully

Table 14.3: Scenario Notes

Post-Interview

• What are your general Impressions? Solid app with clear overview

• What did you like about our app (generally and design)? No information cluttering, clean
interface

• What bothered you (generally and design)? Button not responsive, crashing of the appli-
cation and keyboard covers his text input field

• Did you get confused at any point on how to proceed? No issues

• Are there specific elements that you were unsure what their purpose was? Tell us which.
Nothing he was unsure about

• Would you use the app? Tell us why yes/not. Yes, he would like to use the app, might help
staying motivated to do sports

• Give the app a rating from 0-10. (layout, responsiveness, colour, content)

Joel Suter & Lucas von Niederhäusern Page 145 of 152

Fitness Gamification

– Layout: 10

– Responsiveness: 8

– Colour: 10

– Content: 7

• Do you have any general feedback, positive or negative? He likes the idea of the application

• Do you have any suggestions for additional features? What would you be interested in?
He would like a push up challenge as it is easier to do from home, tournament modes and
maybe make something like the App "BeReal" where users get prompted to do something
once a day

Joel Suter & Lucas von Niederhäusern Page 146 of 152

Fitness Gamification

Usability Test 4 - IOS, Light Mode

Pre-Interview

• How old are you? 25

• What gender are you? Male

• What do you do professionally? Facility Managment

• What is your relationship to sports? Not actively doing sports.

Szenario Notes

Nr. Notes Success
1 Understood how to create an account eventhough at first he did not add

the prefix
Fully

2 Knows how to create a challenge and instantly understood the form. Fully
3 No issues expect that ios does not display input while inputting. Fully
4 Understood when it’s his turn. Understands how to perform Fully
5 No issues Fully
6 Found the rankings instantly Fully
7 No issues Fully
8 At first did not understand the image picker (which is not under our con-

trol)
Partially

9 Found the history, but clicked around first in the rest of the app. Took a
few seconds

Fully

10 No issues Partially
11 Logged in with no issues. Added prefix instantly. Fully

Table 14.4: Scenario Notes

Post-Interview

• What are your general Impressions? Very good. Simple. Unfortunately too easy to cheat.

• What did you like about our app (generally and design)? Home Screen could be styled a
little nicer, maybe a nice background.

• What bothered you (generally and design)? Nothing "bothered" really.

• Did you get confused at any point on how to proceed? Not really.

• Are there specific elements that you were unsure what their purpose was? Tell us which.
Not really. Everything speaks for itself. Descriptions for badges or a toutorial would be nice
though.

• Would you use the app? Tell us why yes/not. If i would bemore interested in sportsmaybe.
But it could be a nicemotivation being able to play against friends, but it needs better recog-
nition.

• Give the app a rating from 0-10. (layout, responsiveness, colour, content)

– Layout: 9

Joel Suter & Lucas von Niederhäusern Page 147 of 152

Fitness Gamification

– Responsiveness: 10

– Colour: 8

– Content: 6.5

• Do you have any general feedback, positive or negative? Emtpy Home Screen makes a
bad impression, there is no content there. Better styling.

• Do you have any suggestions for additional features? What would you be interested in?
Descriptions for elements like badges, toutorial, make everything clickable (most wins to
see history of wins, etc). Able to click profile or view banner of a opponent in the rankings.

Joel Suter & Lucas von Niederhäusern Page 148 of 152

Fitness Gamification

15 Task

Fitness Gamification

Beteiligte Personen

• Diplomanden: Lucas von Niederhäusern und Joel Suter

• Industriepartner: AdaptIT GmbH, Michael Güntensperger

• Experte: Prof. Hansjörg Huser

• Betreuer: Prof. Frank Koch

Problembeschrieb

Fitness-Tracker-Daten werden im Bereich Personal Training immer wichtiger. I.d.R. haben Trainer
nur die Möglichkeit, anhand separater Plattformen der Fitness-Tracker-Hersteller die Bewegung
der Kunden zu tracken und auszuwerten. Dies ist aufwendig, wenn ein Trainer mehrere Kun-
den mit unterschiedlichen Tra- ckern betreut (z.B. Samsung, Google, Apple, Fitbit, Garmin, . . .).
Aus diesem Grunde haben 2 Studierende der OST im HS22 eine "Fitness Data Platform" zum
Anbinden von Fitness-Trackern und der Harmonisie- rung der multiplen Datenquellen entwick-
elt. Das Tool beinhaltet die Anbindung an Fitbit und Garmin, die Erstellung eines ersten Dash-
boards mit Auswertungen zu der Schrittzahl wie auch die Möglichkeit, Dash- boards anderen Be-
nutzer: innen freizugeben. Angestrebt wird eine App, die Sportler mit einem Gamification-Ansatz
zusätzlich motiviert, sich gegenseitig weiter zu pushen. Ein Spieler erstellt ein Spiel (Auswahl
von Übung, Dauer, Challenger), sobald er dieses startet wird er auf- gefordert, den ausgewählten
Übungstyp so viele Male wie möglich in der ausgewählten Dauer durchzufüh- ren. Die App zeigt
während dieser Zeit die verbleibende Zeit wie auch die Anzahl Ausführungen. Sobald die Zeit
abgelaufen ist, hat der Spieler die Möglichkeit einen Text / GIF zu ergänzen und das Spiel zu
senden. Der Empfänger hat einen Durchgang und eine limitierte Zeit das Ergebnis zu toppen.
Schafft er dies nicht, wird er zum Verlierer. Auf einem Dashboard wird angezeigt, wie oft ein
Spieler gewonnen / verloren hat, wie viele Durchführun- gen einer Übung er im Total erreicht hat
(aktuelle Woche und persönlicher Rekord) und eine Übersicht mit welchen Kollegen er am Meis-
ten Spiele gemacht hat.

Aufgabenstellung

Mit der BA soll die Plattform um verschiedene Gamification-Ansätze erweitert werden. Dazu
müssen sich die Träger der Fitness-Tracker zuGruppen verbinden undmiteinander kommunizieren
bzw ihre Leistungenmiteinander vergleichen können. FolgendeChallenges/Games sind angedacht.

Technische Umgebung

Für die Umsetzung wird mit Web-Technologien gearbeitet.

Joel Suter & Lucas von Niederhäusern Page 149 of 152

Fitness Gamification

• Frontend: Flutter / React Native / ionic

• Backend: Node.js

• Datenbank: Firebase

• Hoster: DigitalOcean (und Hostpoint)

Funktionale Anforderungen

• Registration eines neuen Accounts mithilfe der Handynummer

• Login eines bestehenden Users

• Erstellen von Challenges

• Mindestens eine Challenge-Art mithilfe der Handysensoren tracken können

• Zugriff auf Adressbuch des Users

• Challenges können an eine Person gesendet werden

• Gegenseitiges hin und her senden von Challenges inklusive Textnachricht und GIF

• Screen mit einer Übersicht aller laufenden Challenges inklusive Zusatzinformationen wie
die Anzahl Wiederholungen.

• Hat ein User die App nicht, kann der Challenge-Link trotzdem gesendet werden, der User
wird dann aufgefordert, die App herunterzuladen

• Erstellen eines Dashboards mit den spannendsten Informationen für den Benutzer, z.B.
Anzeige der gewonnenen Badges.

• Versand von Push-Nachrichten bei Aufforderung zur Teilnahme an einer Challenge

• Bereitstellung eines Chat für den Austausch von Teilnehmenden.

• User kann zufälligen Spieler herausfordern.

• Erstellen von Rankinglisten auf Ebene Freunde sowie Global.

Optionale Anforderungen

• Userregistration mit / Google / Facebook / Apple-Account

• Löschen des Accounts und aller zugehörigen Daten

• Weitere Challenge-Arten implementieren

• Timeline aller Challenges eines Users erstellen

• Eine Challenge soll mit einer Videobotschaft versendet werden können

• Erfassung von eigenen Challenges (z.B. Anzahl Treppenstufen)

• Massnahmen gegen Spielbetrug

Joel Suter & Lucas von Niederhäusern Page 150 of 152

Fitness Gamification

Nicht-Funktionale Anforderungen

• Das App soll auf Android und iOS laufen

• Pushnachricht werden laufend versendet

• Errors sollen keine Systemfehler erzeugen, aber eine Error Nachricht Zeigen und das Sys-
tem auf den vorherigen Zustand zurücksetzen.

• Jeder Error soll im System geloggt werden

• Daten welche in Eingabefelder abgefüllt werden, sollen zuerst validiert werden, bevor diese
durch das System verarbeitet werden. SQL Injection test der Eingabefelder sollte keine
Verletzlichkeiten zeigen.

• User-Passwörter werden nicht in plain-text in der Datenbank gespeichert.

• Wenn sich ein User in die App einloggt, werden ihm auch nur seine Daten / auf Daten die er
Zugriff haben soll, angezeigt.

• Businesslogik im Backend soll modular aufgebaut werden, so dass sie erweitert werden
kann.

• Die Backend-API soll durch API-testing Tools getestet werden.

• Implementierte Funktionalität (Datenbank, Backend) sollen deployed unddieAppbei Google
und Apple im App-Store veröffentlicht werden

• Das Laden des Inhaltes der App soll nicht länger als 150ms dauern

• Drei von vier Test-Usern sollen das UI (Kategorien: layout, responsiveness, colour, content)
der Ap- plikation mit iPhone / Android Handy mit einer Note von mindestens 8 von 10 bew-
erten, wobei 10 das Beste ist.

• Das Backend sollte 50 Requests pro Sekunde handeln können

• Die Datenbank soll bis zu 10’000 Challenges und 2000 Benutzer managen können.

Zur Durchführung

Mit dem Betreuer finden Besprechungen gemäss Absprache statt. Die Besprechungen sind von
den Stu- dierendenmit einer Traktandenliste vorzubereiten und die Ergebnisse in einem Protokoll
zu dokumentie- ren, das dem Betreuer per E-Mail zugestellt wird. Für die Durchführung der Ar-
beit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuierlichen und sichtbaren Arbeits-
fortschritt zu achten. An Meilensteinen gemäss Projektplan sind einzelne Arbeitsresultate in
vorläufigen Versionen abzugeben.

Dokumentation und Abgabe

Siehe Leitfaden Abschnitt 5.5 "Umfang und Form der Abgabe".

Termine

Siehe veröffentlichte «Termine BA FS23».

Joel Suter & Lucas von Niederhäusern Page 151 of 152

Fitness Gamification

Bewertung

Siehe «Leitfaden für Bachelor- und Studienarbeiten» Abschnitt 6 "Bewertung", insbesondere Kap
6.5.

Joel Suter & Lucas von Niederhäusern Page 152 of 152

	Starting Position
	Conceptual Formulation
	Framework Conditions
	System Context
	Requirements
	Functional Requirements
	Use Case Description
	Evolution of Functional Requirements

	Non-Functional Requirements
	Disregarded and Untested NFRs
	Verification

	Optional Requirements

	Design and Architecture
	Container Diagram
	Client
	Backend
	External Dependencies

	Component Diagram
	Backend Access

	Domain Model
	Types of References
	Description

	Backend - Firebase
	Authentication
	Functions
	Firebase Cloud Messaging And Notifications
	Database - Firestore
	Firebase Storage
	Scaling
	Pricing

	App Architecture
	Multiplatform - Expo
	Structure
	UI Design
	Coding Style Guide

	Deployment
	Firebase Functions
	Mobile App

	Security
	Firestore Access
	Storage Access
	Input Validation

	Implementation
	Firebase Initialization
	Setting Up Services
	Frontend Configuration
	Firebase SDK

	Frontend Firestore Access
	Read Operations and Real-time Updates

	Firebase Functions
	Implemented Functions
	Firebase Admin SDK

	Authentication
	Setup
	Implementation
	Firebase Phone Auth Limitations

	Challenge Creation
	Opponent Selection
	Challenging random user

	Home Screen
	Challenge Details
	Challenge History

	Perform a challenge
	Implement new Challenge
	User did not Perform on Challenge
	Shortcomings

	Profile
	10 Week History
	Profile Picture
	Banner
	Component Structure

	Chat
	Rankings
	Extending the Rankings

	Push Notifications
	Tracked Data
	Challenge completed
	User Performed on Challenge
	Track new Data

	Badges - Milestones
	Sequence
	Add new Badge
	Badge Copyrights

	Localization
	Technical Test Dokumentation
	Firebase Cloud Functions Testing
	Frontend Testing
	Testing concessions
	Manual Test Protocol

	Deployment
	App Store
	Google Play Store

	Result
	Conclusion
	Needs to be Adressed
	Future Vision

	Project and Time Management
	Project Plan
	Deviations

	Project organization
	Issue management
	Time tracking
	Division of Tasks

	Risk Management
	Realized risks

	Test Concept
	Additional
	System
	Integration
	Component
	Unit
	Deviations
	End User Usability Tests

	Definition of Ready / Definition of Done

	Meeting Minutes
	Personal Reports
	Screenshots
	Usability Test Protocols
	Task

