
SSoT Based Network Service Deployment

Bachelor Thesis

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Semester: Spring 2023

Version: 1.0
Date: 2023-06-16 14:53:53+02:00

Git Version: Not available

Project Team: Dejan Jovicic
Dominic Walther

Project Advisor: Urs Baumann
External Co-Examiner: Patrick Mosimann, Cisco
Internal Co-Examiner: Mitra Purandare, OST

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Acknowledgements

We would like to express our sincere gratitude to all those who have supported us through-
out this study.

In particular, we would like to express our appreciation to our supervisor, Urs Baumann.
During our weekly meetings, he always took enough time to answer our questions and
through his pexerience and expertise he provided invaluable insights that aided our com-
prehension and problem-solving. We are especially grateful for his accessibility and prompt
assistance through the entire duration of this project, even beyond our scheduled meet-
ings.

D. Jovicic, D. Walther i

Abstract

In the field of network automation, a fully Single Source of Truth (SSoT) based deployment
is considered something of a holy grail, as it promotes reliable, repeatable, and documented
procedures. While many proprietary solutions exist in this space, many of the open-source
alternatives currently lack in capability, ease of use, or code quality.

At its core, NetBox is an open-source project composed of a pre-defined database structure
and a Django-based graphical interface. Its purpose is to document network infrastructure,
covering both the hardware itself and its configuration. However, it lacks a mechanism for
deploying said documented network in an automated manner, where the documentation
dictates the network configuration, rather than the inverse.

The goal of this project is to expand the capabilities of NetBox by adding support for
network services through a plugin and implementing a mechanism for generating and
deploying the corresponding configuration to the relevant network devices.

We began by researching multiple network services before settling on MPLS L3 VPN,
which encompasses the LDP, VRF, and BGP protocols, of which only VRF was already
part of NetBox. After comparing various tools for network device configuration, we decided
to use Napalm for device interactions and configuration management, with Nornir serving
as a parallelization layer. During development, emphasis was placed on keeping the project
extensible for future additions and making the deployment process as simple and intuitive
as possible.

The resulting software is comprised of two parts: the Argos-NetBox plugin, which extends
NetBox and adds support for the aforementioned protocols, and Argos-NAC, which queries
the necessary data from NetBox and handles the generation and deployment of the various
device configurations. Argos-NetBox can be used standalone and is vendor-independent,
making Argos-NAC an optional addition to it. The protocols covered by this project can
be used separately and are designed to be interchangeable, should alternatives to them be
added in the future.

It is worth noting that, in addition to this paper, a separate MkDocs has been created
which outlines aspects of the project relevant to its future development and offers an
introduction to the dependencies upon which the project relies.

D. Jovicic, D. Walther ii

Lay Summary

Initial Situation

The concept of ”Single Source of Truth” (SSoT for short) is crucial for IT companies as it
ensures consistent use of a unified source for employees and automation tools alike. When
it comes to network documentation, smaller companies often rely on tools like Excel sheets
or other Microsoft applications to document networks. Unfortunately, this often results in
multiple sources of truth, as employees create copies of the main document or write their
own separate notes.

This is where NetBox comes into play. NetBox is an open-source web application specif-
ically designed for documenting computer networks. It serves as the ”Single Source of
Truth” tool, encompassing all aspects of network documentation, from physical compo-
nents like switches and routers to more abstract IP addresses and routing information.
With NetBox, companies can ensure centralized and accurate network documentation,
fostering better collaboration and consistency among employees.

Typically, network engineers using NetBox still follow the traditional approach of config-
uring devices first and then documenting the changes made. In an ideal Single Source of
Truth environment, network engineers would reverse this process, documenting services
and configurations first, which would then be automatically deployed to the devices. Since
NetBox does not offer this functionality out of the box, external tools are required.

Currently, no such tools exist for network services, which is why we have been assigned the
task of creating one. The objective is to expand NetBox by adding support for network
services through a plugin and develop a solution that allows users to deploy documented
configurations from NetBox directly onto network devices, streamlining the process and
aligning it with the SSoT approach.

D. Jovicic, D. Walther iii

SSoT Based Network Service Deployment

Approach

Put simply, a network service is a collection of protocols which, in conjunction, serve a
common goal.

After some consideration, we settled on covering the MPLS L3 VPN service. The goal of
this network service is to connect disjointed customer networks using a shared hardware
infrastructure (consisting of both routers and cables) with minimal overhead and without
the different customers’ traffic interfering with each other. From the point of view of each
customer, their traffic magically flows from one location to another, without needing to
concern themselves with the routing specifics and at significantly reduced cost compared
to dedicated infrastructure.

Most of the required protocols are not part of NetBox out-of-the-box. For this reason,
Argos-NetBox was developed - a NetBox plugin which adds support for the LDP and
BGP protocols, as well as tying all the relevant protocols together as part of an MPLS
network.

With the help of Nornir and Napalm, a user’s NetBox documentation is turned into
actionable device configurations and sent to the respective devices as part of the Argos-
NAC command-line utility.

During development of both Argos-NetBox and Argos-NAC, we focused on making our
solution as extensible as possible to future additions, as well as simplifying the onboarding
process for future developers and and the workflow for the end-users.

Results

Through the creation of Argos-NetBox and Argos-NAC, we have laid the initial foundation
for a potentially expansive community-driven project. These two components enable users
to effectively document a network service in NetBox and streamline its deployment to
network devices, whether through an interactive or fully autonomous procedure.

In addition to this paper, we have prepared a comprehensive documentation using MkDocs
which clarifies key aspects of the project essential for its future development. It also serves
as an introduction to the project’s dependencies, highlighting their significance and role
in the overall framework.

Further Work

The primary objective of this project is to provide network engineers with an extendable
foundation for documenting a broad range of network services, while also enabling the au-
tomation of their deployment. Our future plans involve expanding the scope of supported
network services, as well as adding support for additional vendors.

D. Jovicic, D. Walther iv

Table of Contents

Acknowledgements i

Abstract ii

Lay Summary iii

Listings viii

List of Figures ix

List of Tables x

I Technical Report 1

1 Vision 2
1.1 Problem Statement . 2
1.2 Our Solution . 2

2 Technical Framework 3
2.1 Network Automation Tools . 3
2.2 MPLS L3 VPN . 7

2.2.1 Introduction to MPLS . 7
2.2.2 Tasks and Protocols . 8
2.2.3 Summary . 10

2.3 MPLS L3 VPN on Cisco Routers . 11
2.4 Pynetbox . 14

2.4.1 Implementation Issues . 14
2.4.2 Use Within Argos-NAC . 15

II Product Documentation 16

3 Requirements 17
3.1 Storyboard . 17
3.2 Functional Requirements . 19

3.2.1 Actors . 19
3.2.2 Validation . 19
3.2.3 Actions . 20

D. Jovicic, D. Walther v

SSoT Based Network Service Deployment TABLE OF CONTENTS

3.3 MVP . 22
3.4 Non-Functional Requirements . 22

4 Architecture 26
4.1 SSoT Priciples vs. Real World . 26

4.1.1 VRF Deprovisioning . 26
4.1.2 Management Interface . 28
4.1.3 Interface Configuration Comparison 29

4.2 Plugin vs. Pull Request . 29
4.3 Data Structure . 31

4.3.1 Device - ASN Relationship . 32
4.4 Model Class Diagram . 33
4.5 Component Overview . 34

5 Results 35

6 Limitations 36
6.1 DHCP Incompatibility . 36
6.2 Single Source of Truth . 36

7 Further Work 37
7.1 Work to be Done Within Argos . 37
7.2 Proposed Work in the Ecosystem . 37

7.2.1 Addition of OneToMany to Django 37
7.2.2 NetBox Permissions Rework . 38

III Project Documentation 40

8 Project Plan 41
8.1 Organization . 41
8.2 Project Time Plan . 41

8.2.1 Phases . 41
8.2.2 Milestones . 42

8.3 Roles . 43
8.4 Meetings . 44
8.5 Tools . 44

9 Risk Management 45
9.1 Risks . 45
9.2 Realized Risks . 47

10 Quality Measures 49
10.1 Code Guidelines . 49
10.2 Testing . 50

10.2.1 Code Coverage . 50
10.2.2 Usability Tests . 50
10.2.3 Usability Test Result . 50
10.2.4 CI/CD Pipeline . 51
10.2.5 System Tests . 52

D. Jovicic, D. Walther vi

SSoT Based Network Service Deployment TABLE OF CONTENTS

IV Appendix 55

A Assignment 56

B Screenshots 60
B.1 NFR Validation Screenshots . 60
B.2 Usability Test Protocol Result . 62

C Bibliography 66

D. Jovicic, D. Walther vii

Listings

2.1 Ansible Inventory Example . 4
2.2 Ansible Playbook Example . 4
2.3 Nornir Inventory Example . 5
2.4 VRF Config Example Cust A . 11
2.5 OSPF Config Example . 12
2.6 iBGP Config Example 1 . 12
2.7 iBGP Config Example 2 . 13
2.8 eBGP Config Example . 13

D. Jovicic, D. Walther viii

List of Figures

2.1 Overview MPLS L3 VPN Lab - provided by Urs Baumann 8

3.1 Expected Workflow of the End-User . 18
3.2 Use Cases . 19

4.1 Data Structure Overview . 31
4.2 Representation of Data Structure in Python 33
4.3 Component Overview . 34

7.1 OneToMany Example . 38

9.1 Risk Matrix . 48

10.1 Argos-NetBox Overview . 52
10.2 Argos-NetBox BGP PE Add . 52
10.3 Argos-NAC Deploy . 53
10.4 Argos-NAC VRFs . 54

A.1 Bachelor Thesis Assignment Page 1 . 56
A.2 Bachelor Thesis Assignment Page 2 . 57
A.3 Bachelor Thesis Assignment Page 3 . 58
A.4 Bachelor Thesis Assignment Page 4 . 59

B.1 NFR Portability Argos-NetBox Pip Command 60
B.2 NFR Portability Argos-NetBox Plugin Configuration 60
B.3 NFR Performance Add Device Time . 60
B.4 NFR Performance Add MPLS Instance Time 61
B.5 NFR Testability Code Coverage . 61
B.6 Usability Test Urs Baumann Page 1 . 62
B.7 Usability Test Urs Baumann Page 2 . 63
B.8 Usability Test Urs Baumann Page 3 . 64
B.9 Usability Test Urs Baumann Page 4 . 65

D. Jovicic, D. Walther ix

List of Tables

3.1 Functional Requirement - CRUDService . 20
3.2 Functional Requirement - Deployment . 20
3.3 Functional Requirement - AutomateDeployment 20
3.4 Functional Requirement - DeprovisionService 21

9.1 Risk Analysis . 46
9.2 Realized Risks Analysis . 47

D. Jovicic, D. Walther x

Part I

Technical Report

Chapter 1

Vision

1.1 Problem Statement

NetBox is a powerful documentation tool that combines IP address management (IPAM)
and datacenter infrastructure management (DCIM) functionalities into a single applica-
tion. It also provides an extensive collection of community plugins, and integrated APIs
which allow network automation using NetBox data. However, despite its widespread
adoption and active community, NetBox currently lacks the capability to document net-
work services such as MPLS L3 VPN, VPLS, pseudowire and many other services. Ad-
ditionally, there is no built-in mechanism to automate the deployment of the documented
services within NetBox.

These limitations force network engineers to manually document network settings in Net-
Box and separately configure these settings on the corresponding network devices. Conse-
quently, NetBox falls short of its potential as a fully reliable Single Source of Truth (SSoT)
tool. Presently, it primarily serves as a documentation software for IPAM and DCIM pur-
poses rather than fulfilling its envisioned role as the central hub for comprehensive network
service management.

1.2 Our Solution

Our project seeks to extend NetBox by creating a plugin that enables the modeling of
network services such as MPLS L3 VPN, VPLS, pseudowire and others. Furthermore,
we are developing an external component that utilises the documented information in
NetBox to deploy these services onto network devices. This component will incorporate
vendor-specific details to ensure the configuration aligns with their requirements, while
NetBox serves as the single source of truth for network services. With the intention of
transforming the project into a community-driven endeavor, we aim to design the plugin
and external component to be easily extensible for external developers.

In summary, the focus of this bachelor thesis is to create a NetBox plugin which network
engineers can use to document network services before they are deployed and then using
an external tool to deploy these documented services onto the network devices, making
our NetBox plugin the single source of truth.

D. Jovicic, D. Walther 2

Chapter 2

Technical Framework

2.1 Network Automation Tools

In this section we will examine various automation tools we investigated as possible options
for our project.

Command-Line Interface

The Command-Line Interface (CLI) is often the primary method junior network engineers
learn to use for configuring network devices, due to its simplicity. In terms of automata-
bility, however, it is often not the preferred choice.

One reason for this is that by using the CLI directly, the only way to determine whether an
operation was successful is to anticipate how the device will respond to any command both
in case of success and failure and compare this prediction against the actual reply received
from the device. This approach is highly susceptible to changes in reply messages, as any
changes to the formatting or phrasing of a reply may break its detection. Furthermore,
some commands may not have an associated reply in cases of success, adding further
difficulties in detection.

Additionally, when writing a script which uses the CLI directly, it is difficult to keep an
overview of the state of the device being configured. Certain commands can only be run
given a pre-condition. Others may need to be run in a particular context, for example
on an interface, requiring the script to determine beforehand whether it has successfully
entered the right context, whether further actions are required or if the context change
itself has failed. This often requires complex state tracking and management in order to
work reliably.

For these reasons, developing automated procedures using the CLI alone for anything but
the most trivial procedures is inadvisable if other options are available.

Ansible

Ansible is an open-source automation tool that enables users to configure endpoint sys-
tems, deploy software and orchestrate workflows with playbooks. It is written in Python,
which is an advantage as it is easy to learn and customize for individual use cases. The

D. Jovicic, D. Walther 3

SSoT Based Network Service Deployment 2.1. NETWORK AUTOMATION TOOLS

community is extensive, with plenty of documentation, modules and examples available
for Ansible.

One of the key benefits of Ansible is that it does not require any software to be installed
on the endpoints. It uses standard SSH and Python to execute tasks remotely, making it
a lightweight and easy-to-deploy solution.

Ansible operates with an inventory of systems intended for connection and automation.
The inventory file can be written in yaml, which contributes to the ease of use of Ansible,
as it is straightforward to write and read. With the inventory file in place, Ansible can
be employed to automate tasks through the use of playbooks. Listing 2.1 contains a
sample inventory, consisting of groups of devices, each containing a hostname mapped to
IP addresses. As shown, groups can even be nested, allowing for arbitrary granularity
when targeting groups in playbooks.[1]

1 all:

2 controllers:

3 hosts:

4 ubuntu:

5 ansible_host: 10.0.0.1

6 routers:

7 children:

8 edge:

9 hosts:

10 R1:

11 ansible_host: 10.0.0.2

12 test:

13 hosts:

14 R2:

15 ansible_host: 10.0.0.3

Listing 2.1: Ansible Inventory Example

Playbooks are a collection of one or more tasks that define the desired state of a system
in a declarative way. They are written in yaml, just like the inventory, and allow users
to define and execute several tasks. Listing 2.2 shows an example of such a playbook. In
it, first the targets on which the play should be executed are specified via the ”hosts”
keyword. What follows is a list of tasks to perform on all selected devices, which in this
case consists of a single instruction to ensure ”apache2” is installed. Importantly, the task
of deciding whether the application yet needs to be installed on any particular host is left
to Ansible, avoiding unnecessary actions.

1 ---

2 - name: Install Apache

3 hosts: web_servers

4 become: true

5 tasks:

6 - name: Install Apache

7 apt:

8 name: apache2

9 state: present

Listing 2.2: Ansible Playbook Example

The biggest disadvantage of Ansible is that, as the playbooks grows in complexity, they
can become hard to understand and maintain. Additionally, while a lot of the func-

D. Jovicic, D. Walther 4

SSoT Based Network Service Deployment 2.1. NETWORK AUTOMATION TOOLS

tionality Ansible can provide is compartmentalized neatly into plugins, often even trivial
operations require the employment of multiple plugins, further complicating the resulting
playbook.

Nornir

Nornir is a user-friendly, Python-based automation framework that doesn’t require pro-
ficiency in a domain-specific language, simplifying troubleshooting and debugging. The
framework’s ability to provide additional context whenever a task fails, further compounds
this advantage. Nornir has extensive documentation and a very active community which
has developed numerous plugins, making the framework even more versatile.

For network automation, Nornir supports plugins like Napalm, Netmiko, NetBox and
netconf, which makes it very suitable for our project as a tool. Napalm, for instance,
provides support for sending CLI commands to network devices, making it a valuable tool
in various projects and scenarios. Just like Ansible, Nornir does not have to be installed
on the remote node and makes use of inventory files written in yaml. An example of
which can be seen in Listing 2.3. [4]

1 ubuntu:

2 groups:

3 - controllers

4 hostname: 10.0.0.1

5 R1:

6 groups:

7 - routers

8 - edge

9 hostname: 10.0.0.2

10 R2:

11 groups:

12 - routers

13 - test

14 hostname: 10.0.0.3

Listing 2.3: Nornir Inventory Example

D. Jovicic, D. Walther 5

SSoT Based Network Service Deployment 2.1. NETWORK AUTOMATION TOOLS

StackStorm and SaltStack

StackStorm and SaltStack are both powerful automation tools, but they have different
strengths and use cases.

StackStorm is primarily used to connect different services and automate workflows. For
example by provisioning Docker containers on demand. However, it is not designed for
endpoint configuration. Additionally, the complexity of StackStorm can be challenging to
get into due to large number of options it provides. While it is possible to use it in con-
junction with Ansible playbooks, for the purposes of our project, most of the functionality
we would need it for could be replaced with simple cron jobs. [8]

On the other hand, SaltStack is a tool that is mainly used to maintain remote nodes,
install software or ensure that services are running. It consists of a ”master” node which
communicates with its ”minions” - agents that run a reduced version of SaltStack for local
execution and communication back to the ”master”. This need for additional software
to be installed on the endpoints (consisting of routers in our project) makes SaltStack a
non-starter for our project.[7]

D. Jovicic, D. Walther 6

SSoT Based Network Service Deployment 2.2. MPLS L3 VPN

2.2 MPLS L3 VPN

In this section, we will take a closer look at the protocols and services necessary that
form an MPLS L3 VPN service at a conceptual level. We start with an introduction
to MPLS and the prerequisite terminology, then move from the backbone of the network
towards the client’s router, covering the various protocols we encounter and explaining
their purpose in the network. An overview of the complete network (Figure 2.1), as well
as a pre-configured lab were provided by our advisor Urs Baumann during the early stages
of the project.

2.2.1 Introduction to MPLS

Multiprotocol Label Switching, or MPLS for short, is conceptually similar to VLAN, in
that it allows for multiple, separated networks to co-exist on a shared physical network
through label based packet routing. Where it differs from VLAN (beyond its implementa-
tion) is in its scalability and its support for Quality of Service (QoS) for more fine-grained
resource management. It is considered to be a layer 2.5 technology, meaning that it in-
serts itself between the data-link layer, typically covered by switches, and the networking
layer which is often dominated by routers and IP addresses. In this position, it inherits
some properties of both layers - labels and tags, for example, are typically associated with
switches and offer low-overhead packet forwarding, however MPLS uses exclusively router
based protocols and often involves a mesh of routers as the backbone of the network.

The routers involved in MPLS can be divided into three different roles: Customer Edge
(CE), Provider Edge (PE), and Provider (P).

A CE router is a router typically owned by the customer, and often has no direct knowl-
edge of MPLS being employed in the network. It marks the boundary of the customer’s
infrastructure and is typically directly connected to a PE router.

A PE router is a router that shares a link with at least one CE router. Its main function
is to provide services at the edge of the MPLS VPN, including MPLS-internal BGP and
Virtual Routing and Forwarding (VRF) tables.

A P router is a router that does not have a direct link to a CE router, as it is part of the
backbone of the network. As a Label Switching Router (LSR), it can therefore focus on
forwarding only labeled packets, without needing to consider IP addresses or VPNs.

MPLS is a network service built on top of a variety different protocols and services, often
with several options available to choose from for a given task. We will cover these tasks
and protocols later in this section.

D. Jovicic, D. Walther 7

SSoT Based Network Service Deployment 2.2. MPLS L3 VPN

Figure 2.1: Overview MPLS L3 VPN Lab - provided by Urs Baumann

2.2.2 Tasks and Protocols

Let us take a closer look at MPLS by subdividing it into the various tasks that need to
be covered for it to function, starting with the backbone, then moving outwardly until we
reach the customer’s own network.

P Routers

The backbone of an MPLS network consists entirely of a network of P routers, often
assembled in a mesh-like topology. Its purpose is to route traffic between the various CE
routers in a fast and efficient way. As such, each P router needs two tasks to be fulfilled
in order to take on this role:

� It needs to know the topology of the backbonenetwork it finds itself in

� It needs to understand labels and how to relay them towards their destination

Regarding the first task, this is typically accomplished by an Interior Gateway Pro-
tocol (or IGP), allowing each router to learn the topology of the network by exchanging
information with its direct neighbours through a protocol such as OSPF, IS-IS or RIP. This
”Neighbourhood” forms what is called an Autonomous System (AS), whose members
share a common routing policy.

Once a router knows where it can find the other members of the network, it needs to
understand labels. Labels are a way to indicate the so-called ”next-hop” a packet needs
to be forwarded to in order to eventually reach its final destination. The job of a P router
is to read the incoming label, look up which neighbour the packet is intended for next,
replace the label with one known to said neighbour (in a process called label swapping),
then forward the packet. This allows the router to play its part in delivering the packet

D. Jovicic, D. Walther 8

SSoT Based Network Service Deployment 2.2. MPLS L3 VPN

to its destination while only needing partial knowledge of the labels used throughout the
network. It can even participate passively in QoS without knowing of it, as different labels
can correspond to different paths to the same destination for the purposes of congestion
avoidance, but from the point of view of any individual P router these labels may have
nothing in common. The task of label distribution is covered by the aptly named Label
Distribution Protocol, which establishes various paths through the network, called
Labels Switched Paths, or LSPs for short.

Once both of these protocols have been configured and the router is told to play the part
of a P router in an MPLS network, it is ready to get to work and begin forwarding packets
between various PE routers.

PE Routers

PE routers make use of the P-router-based backbone of the MPLS network and add a layer
of abstraction to it. Their task is to direct traffic between fragmented customer networks
via the backbone, while keeping unrelated networks separate from each other.

A PE router needs the following tasks covered by various protocols in order to fulfill its
role:

� It needs to understand labels and know which labels lead to which PE routers

� It needs to know which customer networks it is responsible for and how to individ-
ually address networks

� It needs to know the other PE routers in the network and which customer networks
they are responsible for

� It needs to exchange routing information with the CE router

� It needs to provide whatever service is built on top of the MPLS network (Eg. VPN,
Pseudowire, QoS, MVPN)

When it comes to labels, the same concepts apply with PE routers as with P routers,
in fact they may even share parts of the configuration. Where they differ is that all
PE routers each have a range of labels assigned to them. The PE router can use these
labels to denote different Forwarding Equivalence Classes (FEC), each of which are
associated with a target PE router, as well as other information relevant for QoS. Multiple
FEC may therefore lead to the same PE router, but through different paths in order to
avoid congestion or improve latency. Additionally, PE routers are in charge of attaching
an appropriate label to packets coming from the client’s network (ingress) and removing
the tag if they receive a packet from another PE router, before forwarding it on to the
appropriate customer networks (egress). This determines the path the packet will take
ahead of time with minimal overhead, as the entire path can be described with a single
label which is swapped out by each hop between P and PE routers.

For a single PE router to be able to handle multiple distinct customer networks and
keeping them separate, a single routing table does not suffice, as the different networks
may want to use overlapping IP ranges. One approach to solve this issue is to use the
Virtual Routing and Forwarding (VRF) protocol, which allows for multiple routing
tables to be maintained by associating a network-wide unique identifier called a Route
Distinguisher (RD) to each network or network fragment, and thereby to each routing

D. Jovicic, D. Walther 9

SSoT Based Network Service Deployment 2.2. MPLS L3 VPN

table. This additional information, in conjunction with the IP address allows for the
devices in each customer network or fragment thereof to be addressed separately, regardless
of the used IP range. The ability to determine which network a packet originates from
and to which network it is addressed allows the creation of Virtual Private Networks
(VPN), as policies describing which networks may or may not communicate between each
other allow for distinct virtual networks utilizing the same physical infrastructure. For this
purpose, each PE router must know the unique Autonomous System Number (ASN)
of each customer network it is directly connected to; this information is later shared with
other PE routers to facilitate connections between these networks.

Once each PE router knows which customer networks they are in charge of, this informa-
tion needs to be propagated throughout the network of PE routers (via the backbone) in
order to allow fragmented customer networks to communicate between each other. This
is the task of an External Gateway Protocol which, unlike its counter-part, the ”Inte-
rior Gateway Protocol”, is in charge of exchanging routing information between separate
Autonomous Systems (AS). An example of such a protocol is the Border Gateway Pro-
tocol (BGP), which works by having each participating PE router advertising the AS’
they known and the devices therein. Each PE router then takes note of this information
in their routing tables, effectively associating an IP of a customer with a particular AS
and the PE router managing it. This describes the internal process necessary for cross-AS
communication and is typically called iBGP in an MPLS network.

This covers the internal process for discovering the provider’s network topology. Now the
PE routers must exchange the relevant knowledge they have gathered with the CE routers
they are connected to and vice-versa, in a process called Route Injection. This also
occurs via an External Gateway Protocol and, in case BGP is being used, is often referred
to as eBGP. The end-goal is that the CE router knows whether a given IP range is
reachable through the PE router, and the PE router in turn knows the customer network
well enough to advertise the customer’s IP addresses to the other PE routers in order to
render this network reachable across the MPLS network.

2.2.3 Summary

Once all of these steps mentioned above have occurred, the network is able to offer its
services to the customers. The concrete service being offered (Eg. Pseudowire, L2/L3
VPN, etc.) depends on the specific protocols which have been employed and the way they
are configured. In summary, the core aspects which make MPLS are as follows:

� The provider’s device communicate between each other via labels to reduce overhead

� The provider’s topology, as well as which customer networks are present in the
network is exchanged dynamically between the relevant devices

� The customer’s devices have little to no knowledge of MPLS being employed, from
their point of view the provider’s network may as well consist of a single device

� The interchangeability and configuration options of the various protocols offer great
customizability

D. Jovicic, D. Walther 10

SSoT Based Network Service Deployment 2.3. MPLS L3 VPN ON CISCO ROUTERS

2.3 MPLS L3 VPN on Cisco Routers

In this section we will cover the concrete steps for configuring MPLS L3 VPN on Cisco
Routers, according to Figure 2.1 ”Overview MPLS L3 VPN Lab - provided by Urs
Baumann”.

Label Distribution Protocol

In an MPLS network, each packet is assigned a label that is used to direct it through the
network. To assign a label range to a particular PE router, one can run the command
mpls label range xxxx - xxxx.

To enable MPLS on a router’s interface, the command mpls ip must be added to the
interface configuration. This enables MPLS to create a label-switched path for IP packets,
allowing the router to forward traffic based on labels rather than traditional IP routing
tables. The router then starts advertisting labels for IP prefixes to other routers in the
network through the label distribution protocol (LDP). Once an IP packet arrives on an
interface with MPLS enabled, the router uses the label to determine the next hop for the
packet.

Virtual Routing and Forwarding

When creating a VRF, a unique Route Distinguisher (RD) must be specified to distin-
guish between different networks which may use overlapping IP ranges. The RD typically
consists of two parts. The first part should be either an IPv4 address or an Autonomous
System Number (ASN) and the second part can be arbitrarily chosen.

The RD should follow one of these two formats:

� 4-byte-int:2-byte-int - ASN with identifier

� 4-byte-dotted-decimal:2-byte-int - IPv4 address with identifier

MPLS also uses Route Targets (RTs) to determine into which VRFs a PE places iBGP-
learned routes. RTs are advertised in BGP updates as BGP Extended Community path
attributes. RT values follow the same basic format values of an Route Distinguisher. Most
configurations use a single RT value, which is imported and exported by each VRF for a
customer.

When creating a VRF, the line address-family ipv4 is used to specify that the VRF will
support IPv4 routing. Similarly, to add IPv6 support, address-family ipv6 can be used.
An example of a VRF config can be found in Listing 2.4.

1 vrf definition Cust_A

2 rd 172.16.255.4:65000

3 route -target export 1:1

4 route -target import 1:1

5

6 address -family ipv4

7 exit -address -family

Listing 2.4: VRF Config Example Cust A

D. Jovicic, D. Walther 11

SSoT Based Network Service Deployment 2.3. MPLS L3 VPN ON CISCO ROUTERS

Open Shortest Path First

Open Shortest Path First (OSPF) or any other IGP is required to establish IP connectivity
between the routers. To configure it on a network interface, OSPF needs to be enabled
globally on the router and given an OSPF ID. OSPF can then be enabled on the relevant
network interfaces by specifying the OSPF ID and OSPF area ID for each. A sample
configuration for interface-based OSPF is provided in Listing 2.5.

1 router ospf 1

2

3 interface GigabitEthernet1

4 ip address 172.16.0.2 255.255.255.252

5 ip ospf 1 area 0

Listing 2.5: OSPF Config Example

Border Gateway Protocol

Border Gateway Protocols (BGP) can be used both for exchanging routing information
between the various PE routers (iBGP), and between PE and CE routers (eBGP), both
of these require BGP to be enabled via the router bgp <ASN> command. With no bgp

default ipv4-unicast, the automatic advertisement of IPv4 unicast routes to BGP neigh-
bors can be disabled, which is enabled by default. The address-family ipv4 command is
used as a way of importing the ”ipv4” address-family into the BGP configuration. This
forms the basis of the BGP configuration (Listing 2.6).

1 router bgp 64512

2 bgp log -neighbor -changes

3 no bgp default ipv4 -unicast

4

5 address -family ipv4

6 exit -address -family

Listing 2.6: iBGP Config Example 1

IBGP is configured by first specifying the router’s neighbours, along with the interface it
should use for the routing information exchange process, with the neighbor <neighbor-ip>

remote-as <ASN> and neighbor <neighbor’s IP> update-source <interface> commands.
As is typical with iBGP networks, a loopback interface is used as the ”updated-source”
interface. Additional properties of the relationship between iBGP neighbours can be
specified in the vpnv4 and vpnv6 address families, as seen in Listing 2.7.

D. Jovicic, D. Walther 12

SSoT Based Network Service Deployment 2.3. MPLS L3 VPN ON CISCO ROUTERS

1 router bgp 64512

2 ...

3 neighbor 172.16.255.4 remote -as 64512

4 neighbor 172.16.255.4 update -source Loopback0

5 neighbor 172.16.255.6 remote -as 64512

6 neighbor 172.16.255.6 update -source Loopback0

7

8 address -family vpnv4

9 neighbor 172.16.255.4 activate

10 neighbor 172.16.255.4 send -community extended

11 neighbor 172.16.255.6 activate

12 neighbor 172.16.255.6 send -community extended

13 exit -address -family

14

15 address -family vpnv6

16 neighbor 172.16.255.4 activate

17 neighbor 172.16.255.4 send -community extended

18 neighbor 172.16.255.6 activate

19 neighbor 172.16.255.6 send -community extended

20 exit -address -family

Listing 2.7: iBGP Config Example 2

As we are also using BGP for the routing exchange between PE and CE routers, eBGP
also needs to be configured here.

The lines address-family [ipv4 | ipv6] vrf <vrf name>, neighbor <CE’s IP> remote-as

<remote ASN> and neighbor <CE-IP> activate are used once for each combination of cus-
tomer VRF and supported address family (Listing 2.8). This way, every PE router is
informed about the VRFs and AS’es it is responsible for, which is later shared through
iBGP with its BGP neighbours.

1 router bgp 64512

2 ...

3 address -family ipv4 vrf Cust_A

4 neighbor 172.16.2.2 remote -as 65002

5 neighbor 172.16.2.2 activate

6 exit -address -family

7

8 address -family ipv6 vrf Cust_A

9 neighbor 2001: DB8:CE2A ::2 remote -as 65002

10 neighbor 2001: DB8:CE2A ::2 activate

11 exit -address -family

12

13 address -family ipv4 vrf Cust_B

14 neighbor 172.16.2.6 remote -as 65003

15 neighbor 172.16.2.6 activate

16 exit -address -family

Listing 2.8: eBGP Config Example

D. Jovicic, D. Walther 13

SSoT Based Network Service Deployment 2.4. PYNETBOX

2.4 Pynetbox

Pynetbox is a PythonAPI client library for NetBox under the netbox-community umbrella.
Its primary purpose in the scope of this project is to act as an interface to NetBox in order
to retrieve data from the underlying database.

2.4.1 Implementation Issues

Pynetbox is composed of a series of data structures and helper functions designed to
simplify the interaction with the underlying REST API. Unfortunately, the way it is
implemented comes with a long list of downsides.

Firstly, due to Pynetbox needing to mirror NetBox’s underlying data structure, any ad-
ditions made by plugins are not covered natively. While this may not be an issue for a lot
of applications, this severely limits its usefulness in our case. Fully relying on Pynetbox
for our data querying needs would require either the extension of the project or crafting
custom requests, thereby foregoing much of the library’s functionality.

A further issue is the mixed availability of type information when using it. While the
Integrated Development Environment (IDE) is able to list all available children of a class,
there often are no descriptions. Additionally, there is no type information for the indirect
children of the primary classes such as Api and App. The reason for these shortcomings is
the combination of several factors:

� complete lack of type-hints

� complete lack of docstrings for class fields

� lack of forward declarations for fields in cases where their initialization happens at
a later point in time

� heavy and combined use of class composition and general-purpose classes

The lack of type hints could easily be fixed, as type hints were introduced in Python 3.7
and the maintainer of Pynetbox implicitly dropped support for Python versions older than
3.7[3] and the project’s CI/CD pipeline only tests Python versions 3.8 and later.

Docstrings for class fields have been around since Python 2.1, but they seem to still be a
rather obscure feature in the Python ecosystem. The lack of their appearance in Pynetbox
is therefore of little surprise.

The lack of forward declarations appears to be an oversight on part of the developers.
The current lack of type hints would actually simplify their addition, as assigning None

to a field which will be initialized after instantiation of the class does not raise warnings
during type deduction if there are no type hints to conflict with.

While class composition is likely the best approach for an API wrapper, its implementa-
tion through instances of general-purpose classes instead of through specialized subclasses
thereof is not. It actively hinders the addition of type hints as there are no specialized
classes to annotate the fields with. Classes such as App already behave like wrappers for
multiple specializations and creating a wrapper class for each specialized App constructor
would be a simple way to allow the IDE to distinguish them.

While these shortcomings can be overcome by relying on the NetBox API specification
which it mirrors, it poses an unnecessary hurdle to the process of using the library.

D. Jovicic, D. Walther 14

SSoT Based Network Service Deployment 2.4. PYNETBOX

A complete rewrite of the project is already in progress in the form of the netbox-python
project, also under the netbox-community umbrella. Unfortunately for us, this project is
still in its infancy as of the time of writing and sudden breaking changes are therefore to
be expected. However it does seem to address most of the issues outlined above, making
it a promising option for future projects.

2.4.2 Use Within Argos-NAC

Due to its downsides, Pynetbox is only used in a very limited fashion, namely to determine
the presence and version of the Argos-NetBox in NetBox. By raising and exception if the
plugin is not installed or is of an incompatible version, we aim to simplify the debugging
process of end users. A well formulated error message early on in the execution of the
deployment should prevent the user from being confronted with a much harder to parse
GraphQL query or model initialization error.

D. Jovicic, D. Walther 15

Part II

Product Documentation

Chapter 3

Requirements

3.1 Storyboard

In this section, we will take a look at the planned workflow surrounding Argos. As it is
intended to be used either interactively in a terminal, or without supervision as part of a
script, Argos-NAC can be used in both modes of operation, with the choice being up to
the user. As shown in Figure 3.1, in either case, data is only queried from the NetBox
database once all necessary arguments are provided. This in turn is a prerequisite for
establishing connections to the network devices to configure.

Another important thing to note is that checking the existing configuration on the de-
vice is necessary for the deprovisioning of certain configuration elements, as explained in
subsection 4.1.1.

D. Jovicic, D. Walther 17

SSoT Based Network Service Deployment 3.1. STORYBOARD

Figure 3.1: Expected Workflow of the End-User

D. Jovicic, D. Walther 18

SSoT Based Network Service Deployment 3.2. FUNCTIONAL REQUIREMENTS

3.2 Functional Requirements

Figure 3.2: Use Cases

3.2.1 Actors

The sole actor in our system is the network engineer, who will document services in
NetBox and set triggers for the automatic deployment of these services. In cases where a
deployment fails, he can revert a configuration to the previous state by initiating a rollback
manually.

3.2.2 Validation

The validation of the functional requirements was done in terms of the System Tests.

D. Jovicic, D. Walther 19

SSoT Based Network Service Deployment 3.2. FUNCTIONAL REQUIREMENTS

3.2.3 Actions

CRUDService

Actor Network Engineer

Success Scenario

To document the target state of a service in NetBox, a network
engineer can add, update, view and delete service-specific settings
within the platform. The engineer can do so by leveraging Argos’
interface to manage and maintain documentation of the service.

Validation Result
A MPLS L3 VPN service was documented in Argos-NetBox. It is
possible to add, update, view and delete objects via the user
interface of NetBox.

Table 3.1: Functional Requirement - CRUDService

Deployment

Actor Network Engineer

Success Scenario

A network engineer wants to deploy the target state as documented
in NetBox. He can initiate the deployment process, by issuing a CLI
command without requiring any additional interactions. The
configuration data stored in NetBox will be used for the deployment.

Validation Result

After documenting the target state in NetBox, it was possible to
initiate the deployment procces by issuing a CLI command with
Argos-NAC. Argos-NAC generates the configurations out of the
saved data in Argos-NetBox and deploys it on the target devices.

Table 3.2: Functional Requirement - Deployment

AutomateDeployment

Actor Network Engineer

Success Scenario

A network engineer wants to automate the deployment of the target
state as documented in NetBox. He can do so by scheduling the
deployment based on pre-defined triggers, therefore the deployment
process will be initiated automatically.

Validation Result

Automating the deployment can be done, by starting the deployment
process in the lstinline—–no-interact— mode, Argos-NAC will not
halt at warnings and will proceed without requiring further
interactions.

Table 3.3: Functional Requirement - AutomateDeployment

D. Jovicic, D. Walther 20

SSoT Based Network Service Deployment 3.2. FUNCTIONAL REQUIREMENTS

DeprovisionService

Actor Network Engineer

Success Scenario

A network engineer wants to deprovision a previously configured
service. He can do so by deleting the relevant settings from the
NetBox interface. The service will be deprovisioned by the next
deployment.

Validation Result

To deprovision a previously configured service, a network engineer
can first remove or change an object in Argos-NetBox, then start the
deployment process with Argos-NAC. The generated configuration
will then include commands which will remove or alter service
configurations as necessary.

Table 3.4: Functional Requirement - DeprovisionService

D. Jovicic, D. Walther 21

SSoT Based Network Service Deployment 3.3. MVP

3.3 MVP

The Minimum Viable Product (MVP) is a development strategy where the developers
create a basic version of the product with the minimum set of features included. In our
case the MVP will include the Use Cases CRUDService and Deployment. In the MVP,
the network engineer should be able to add, update, view and delete a specific service in
NetBox with Argos. E.g. he should be able to document BGP on multiple devices and
interfaces. The engineer should then be able to deploy the target state as documented
in NetBox via the network automation controller. The network automation controller
will have a pre-defined configuration template, which will be filled with data taken out of
NetBox with the help of GraphQL queries. The network automation controller can then
be used to deploy these configurations on the network devices.

3.4 Non-Functional Requirements

Interoperability

� Argos-NetBox MUST NOT interfere with the normal functioning of Net-
Box.

� Validation process:

Ensure that the NetBox unit tests still pass with Argos-NetBox installed.

� Validation results:

Since we opted to create our own NetBox plugin instead of submitting a pull
request and our code makes no changes to the NetBox internals, there are no
interactions between NetBox’s unit tests and our code.

Portability

� Argos-NetBox SHOULD be installable via a single command, provided
the appropriate Python version is pre-installed. In addition, entering the
plugin name in the list of installed plugins in the NetBox configuration
file enables the plugin upon restart.

� Validation process:

The validator will try to install Argos-NetBox with the command pip install

argos-netbox.

The validator will try to enable Argos-NetBox by adding argons_netbox to the
PLUGINS list of the netbox configuration.

D. Jovicic, D. Walther 22

SSoT Based Network Service Deployment 3.4. NON-FUNCTIONAL REQUIREMENTS

� Validation results:

The installation of Argos-NetBox with the command pip install argos-netbox

was successful, as seen in Figure B.1 ”NFR Portability Argos-NetBox Pip
Command”.

As seen in Figure B.2 ”NFR Portability Argos-NetBox Plugin Configuration”,
by adding Argos-NetBox to the NetBox configuration file, the plugin is then
activated and visible in the user interface. This was also tested as part of the
usability test.

� Argos-NAC SHOULD be installable via a single command, provided the
appropriate Python version is pre-installed.

� Validation process:

The validator will try to install Argos-NAC with the command pip install

argos-nac.

� Validation results:

The installation of Argos-NAC with the command pip install argos-nac is
possible, as successfully tested in subsection 10.2.3 ”Usability Test Result”.

Usability

� A network engineer with knowledge of NetBox SHOULD be able to doc-
ument a simple service within a reasonable time frame.

� Validation process:

At the end of the project, the Validator will do a usability test with Urs Bau-
mann, who is our advisor and network engineer, his findings will determine if
this NFR is passed or not.

� Validation results:

The results of the Usability Test can be seen in subsection 10.2.3 ”Usability
Test Result”.

Performance

� Within Argos-NetBox, saving a service MUST take the same time ap-
proximately, as saving other services outside of our plugin.

� Validation process:

The validator will compare the time it takes to save services outside of our
plugin with the time measured while saving a service using Argos-NetBox. A
maximum deviation of 1 second is deemed as the criteria for passing this NFR.

� Validation results:

The time required for creating a new device in NetBox is approximately 750
milliseconds, as evidenced by the Figure B.3 ”NFR Performance Add Device
Time”. Similarly, the creation of a new MPLS instance in Argos-NetBox takes

D. Jovicic, D. Walther 23

SSoT Based Network Service Deployment 3.4. NON-FUNCTIONAL REQUIREMENTS

approximately 450 milliseconds, as indicated by the Figure B.4 ”NFR Perfor-
mance Add MPLS Instance Time”. Given that the deviation is less than one
second, this NFR can be considered successfully met.

Testability

� Argos-NAC MUST contain tests covering the generation of device con-
figurations.

� Validation process:

With the exception of the deployment code, the tests should cover most of
Argos-NAC.

� Validation results:

This requirement has been successfully fulfilled, as the code coverage currently
stands at 71 percent during the testing of this NFR, as depicted in the Fig-
ure B.5 ”NFR Testability Code Coverage”.

Reliability

� Argos-NetBox SHOULD display and log an error message if it could not
save the documented service properly.

� Validation process:

The validator will try to input invalid or incomplete data while documenting a
service and attempt to save it.

� Validation results:

Deliberately attempting to enter invalid or incomplete data while documenting
a service caused Argos-NetBox to generate errors in the user interface and
prompt the user to fill out the necessary fields. The input validation, such as
when documenting the LDP range, functioned as expected.

Maintainability

� Argos-NetBox SHOULD be documented. With the documentation, the
NetBox community should be able to understand the plugin and extend/im-
prove the plugin without the initial project stakeholders.

� Validation process:

This requirement is considered passed if all major software components are
covered in the technical documentation written in MkDocs. This includes:

� Argos-NetBox installation instructions

� Argos-NetBox architecture

� Argos-NAC installation instructions

� Argos-NAC broad component overview

� Argos-NAC architecture

D. Jovicic, D. Walther 24

SSoT Based Network Service Deployment 3.4. NON-FUNCTIONAL REQUIREMENTS

� Validation results:

The technical documentation written in MkDocs covers all significant software
components, thus fulfilling this non-functional requirement.

D. Jovicic, D. Walther 25

Chapter 4

Architecture

4.1 SSoT Priciples vs. Real World

In a perfect SSoT world, all relevant devices could be configured from the ground up solely
based on the contents of its documentation, with complete disregard for the previous state
of the devices. One would simply document the ideal state of a device and have that state
manifest itself automatically.

This however presupposes that the database acting as the source of truth is capable of
documenting every aspect of the configuration of any device, with any software version, of
any vendor. The sheer variety of options makes this scenario neigh intractable. Therefore
a compromise will likely have to be made.

Additionally, as we will see, the state of the device can itself affect the configuration
process when it comes to the IP address with which the device is managed.

This section will cover some of the considerations which lead to the final architecture of
Argos-NAC, as well as its limitations.

4.1.1 VRF Deprovisioning

Although deprovisioning was ruled ”out of scope” in ??, its necessity was later redis-
covered. The reason for it can be summarized as ”consistency without collateral dam-
age”.

Suppose a VRF named ”Cust A” with route-distinguisher ”65000:1” is configured on a
router and documented accordingly in NetBox with ID ”1”. What happens when the VRF
is renamed to ”Cust B” without a deprovisioning mechanism built into Argos-NAC? In
NetBox, the name of the VRF entry is simply altered in-place. The ID stays consistent and
so does the route-distinguisher. However, attempting to deploy this configuration change
to the relevant network devices leads to unexpected behaviour as the existing ”Cust A”
VRF and the pending ”Cust B” VRF share the same route-distinguisher, yet neither the
network device, nor the deployment tool has any indication that a name change has oc-
curred. From their point of view, the operation is indistinguishable from a deprovisioning
of ”Cust A”, followed by a provisioning of ”Cust B”. Without a deprovisioning mech-
anism in place, the resulting config would contain two distinct VRFs (both ”Cust A”

D. Jovicic, D. Walther 26

SSoT Based Network Service Deployment 4.1. SSOT PRICIPLES VS. REAL WORLD

and ”Cust B”) with the same ”65000:1” route distinguisher, resulting in undefined be-
haviour.

While the goal of this project is not to protect a network engineer from his own mistakes,
in such a scenario they would be hardly at fault. Without knowledge of the inner workings
of Argos-NAC, they would be unaware that this perfectly valid NetBox operation can lead
to issues. A deprovisioning mechanism is therefore necessary.

Challenges

The main difficulties of deprovisioning arise from the following thought: ”How can I delete
what I don’t know, without deleting the things I can’t re-create?”.

In a system with complete SSoT automation coverage, the question is answered by simply
being able to re-create everything. One can simply replace the existing configuration with a
freshly generated one, without regard for the contents of the previous configuration.

In a system without any SSoT automation coverage, the question is answered by delegating
the task to the network engineer. This may however lead to errors in configuration or lack
of up-to-date documentation, as configuring and documenting the network are distinct
steps.

In a system with partial SSoT automation coverage, things get more complicated. For
instance, Cisco routers have no built-in mechanisms for removing all VRF definitions at
once, instead requiring each one to be removed individually. This necessitates consulting
the current router configuration to determine which VRFs are no longer required. These
have to then be removed from the router’s configuration without affecting any of the
settings not yet covered by Argos-NAC.

Options

There are several options for this procedure, however none are vendor independent.

Using CLI commands to alter the configuration is both vendor specific and difficult to
implement safely, since if any error occurs in the chain of commands to execute the state
of both the CLI context (Eg. is the terminal still in ”(config)” mode?) and of the
router as a whole are hard to determine as the possible states vary from command to
command.

yang would be a less vendor dependent technology in principle, however every vendor
appears to have come up with their own flavour of it, partly negating this advantage. Ad-
ditionally, generating verbose XML payloads through tools like Jinja2 is neither pleasant
nor easy to debug.

Another option is editing the device’s configuration directly. While this is still vendor
specific, it allows for all the configuration steps to be joined together into a single, all-
or-nothing transaction. Furthermore, Cisco routers allow for features to be disabled by
prefixing them with ”no” in the configuration. This allows for both the provisioning and
deprovisioning of services to happen simultaneously.

D. Jovicic, D. Walther 27

SSoT Based Network Service Deployment 4.1. SSOT PRICIPLES VS. REAL WORLD

Conclusion

To summarize, deprovisioning of VRFs is an indispensible part of Argos-NAC as
it is necessary to avoid unexpected behaviours and thereby undefined device states. For
this purpose, and for the scope of this thesis, we will resort to editing the configurations of
the devices, as this appears to be the path with the fewest hurdles, at least when deploying
exclusively on Cisco devices.

4.1.2 Management Interface

Some settings are downright impossible to manage well via SSoT. The IP address of a
device’s management interface, for example, cannot be modified via deployment from an
SSoT source due to the following possible scenarios:

� If only the desired new address is documented:

� The device is unreachable as it is still operating with an old, now unknown IP
address.1

� If both the old and new address are documented:

� Issues with temporary double-allocation of IP addresses appear in scenarios
where IP addresses are swapped between devices.

� Should any issues occur in the deployment process, it is neigh impossible to
determine whether the IP address change has been applied successfully.

� Premature discarding of the old IP address leads to the device becoming
unreachable, as per the first scenario.

� Belated discarding of the old IP address may lead to a different device
being mistakenly configured in the next deployment, as it may have been
re-assigned to a different device in the mean time.

� Changing the IP address of the management interface terminates the cur-
rent connection to the device, resulting in the confirmation message not
being received by the deploying software. This is the only indication that
something has changed on the device. However, as this is not the only pos-
sible cause of a connection termination, it gives little insight on the success
of the deployment, resulting in ambiguity between the states mentioned
above.

Due to this, one might come to the reasonable conclusion that the IP address of the
management interface is off-limits and is to be left as-is. Cisco’s implementation of VRFs
however complicates this matter.

As explained in subsection 4.1.1 ”VRF Deprovisioning”, in the event that a user renames
a VRF in NetBox, the previous VRF definition is removed and a new one is added. This
requires the ”vrf forwarding” setting to be updated on all relevant interfaces as well
(including the management interface). Cisco routers, however, automatically add ”no ip

address” to the configuration of an interface if its VRF forwarding setting is modified,
overwriting any previous settings. This means that, despite being unable to modify it
in any meaningful way, setting the IP address of the management interface is a

1This is the case in the current iteration of NetBox.

D. Jovicic, D. Walther 28

SSoT Based Network Service Deployment 4.2. PLUGIN VS. PULL REQUEST

must in order to avoid rendering the device unreachable, however without the ability
to change it.

4.1.3 Interface Configuration Comparison

During development, we considered the option to compare the existing configuration of
interfaces against the desired state in order to disable any prior states which may be
problematic. In the process, however, we hit two major obstacles: interface aliasing and
the lack of terminal symbols in the interface configuration.

Interface aliasing is a feature present in Cisco routers which helps to reduce the amount
of typing needed when manually configuring the device by allowing abbreviated interface
names. With it, the keywords ”g4”, ”Gi4” and ”GigabitEthernet4” all reference the
same interface. While this is great for convenience, it’s problematic for automation, as
the interface name provided by the user in NetBox may or may not be an abbreviated
variant of what the router returns when queried. This leads to the issue that comparing
the existing configuration of a device against the desired state would require figuring out
which documented interface name corresponds to which configured interface name.

As for terminal symbols, Cisco configurations are very inconsistent in their employment.
For example, the address-family scope is terminated via exit-address-family, whereas
the interface scope has no terminal symbol and is instead closed either by reaching the
end of the file or whenever a command is used which would be invalid in the scope of an
interface, which may vary between device models and software versions. The complexity
of this task is reflected in the projects attempting to parse these configuration files, such
as ciscoconfparse, which has thousands of lines of code dedicated to cisco configurations
alone.

Both of these issues could be resolved by individually querying each interface documented
in NetBox, as the reply would use the full interface name and only contain the properties
of that particular interface, which also resolves the terminal symbol issue. However after
some prototyping, we instead decided to forego the comparison of interface configurations
entirely in favour of setting ”safe defaults” for all supported protocols. For example, if a
particular interface has no VRF assigned to it in the documentation, ”no vrf forwarding”
is added to the configuration, overwriting any previous VRF setting, if present.

4.2 Plugin vs. Pull Request

As per the assignment, we had the choice between implementing a standalone plugin or
extending NetBox directly through a pull request. The latter, however, comes with some
caveats.

Firstly, the NetBox project requires all pull requests to have an associated issue which
is accepted and assigned to the author of the pull request. Should these conditions be
unmet, the pull request is automatically closed.[9] This would require us negotiating our
vision with the project’s maintainers ahead of time or risk sinking considerable time into
a proof of concept, without any guarantees of approval.

Second, working on an already established open-source project comes with the additional
requirement that it needs to be interoperable with other plugins in the ecosystem. This
would be especially challenging with plugins such as netbox-bgp, which already covers

D. Jovicic, D. Walther 29

SSoT Based Network Service Deployment 4.2. PLUGIN VS. PULL REQUEST

many of the models our contribution would need to implement, but without some of the
strict checks necessary to reliably generate a valid configuration.

In our opinion, these complications are not easily resolved and may lead to considerable
delays in the project. For this reason, we have opted to develop a plugin instead.

D. Jovicic, D. Walther 30

SSoT Based Network Service Deployment 4.3. DATA STRUCTURE

4.3 Data Structure

Figure 4.1: Data Structure Overview

D. Jovicic, D. Walther 31

SSoT Based Network Service Deployment 4.3. DATA STRUCTURE

Figure 4.1 shows how the various pieces of information required for configuring an MPLS
L3 VPN are stored and how they relate to each other. This structure was arrived at while
considering the following requirements:

� Protocols which can function standalone or in conjunction with protocols other than
the ones covered by Argos should be stored independently, thereby avoiding inter-
dependencies which would only apply in narrow cases.

� Bottom-up instantiation is preferable. For example, this allows participants of a
network to exist on their own, without the network needing to be documented ahead
of time.

� Future expansion should be facilitated, where possible. For instance, we opted to
only implement BGP-mesh configurations, where every member is connected to all
others. This mesh network is kept as a standalone table in order to allow drop-in
replacements if, for example, route reflectors are used instead.

� Relationships should be considered redundant if the same information can be ex-
trapolated through data-structure traversal.

4.3.1 Device - ASN Relationship

During the early stages of development, we discovered that NetBox’s ”Device” model
cannot be directly associated with an ”ASN” instance. Instead, they can only be indirectly
related via the ”Site” model. Unfortunately, a Site instance can hold a list of ASNs, thereby
creating ambiguity as to which device is associated with which ASN. For the purposes of
BGP, this ambiguity was not an option.

This problem has been raised as part of issue #8782[5], but was largely dismissed by
the maintainers of the project, who instead suggest using a plugin or a ”custom object
field” for this relationship - neither of which we find particularly enticing options. The
underlying cause of the maintainers’ reluctance is that NetBox attempts to not make
assumptions about users’ infrastructure, thereby favouring not implementing something
over implementing something which may preclude a particular use case. This, combined
with real-world configurations and topologies which sometimes verge on the esoteric, can
lead to more common use cases needing to be neglected.

To circumvent NetBox’s limitation and avoid possible conflicts with other plugins, the
decision was made to add a relation from the BGPCE and BGPPE models to ASN. This is
in no way an ideal solution, but it allows us to implement BGP without ambiguities.

D. Jovicic, D. Walther 32

SSoT Based Network Service Deployment 4.4. MODEL CLASS DIAGRAM

4.4 Model Class Diagram

Figure 4.2: Representation of Data Structure in Python

While the data structure shown in Figure 4.2 is similar to the one shown in Figure 4.1,
there are some variations in the relationships between the classes. The reason for this is
simplicity.

While a relationship in a database can be queried in either direction, this becomes more
challenging when translated to a Python class structure which natively only supports
parent-to-child traversal. Turning this strict parent-child relationship into a less hierar-
chical one would also require great care to be taken during initialization, as initialization
would also need to be supported bi-directionally, but without causing recursive loops.
While this is certainly achievable and may eventually be required if the scope and com-
plexity of the model increases drastically, this is not currently necessary.

For these reasons, the data structures of the database and its Python counterpart inten-
tionally deviate from each other, with the translation between them being done through
the GraphQL query itself.

D. Jovicic, D. Walther 33

SSoT Based Network Service Deployment 4.5. COMPONENT OVERVIEW

4.5 Component Overview

Figure 4.3: Component Overview

D. Jovicic, D. Walther 34

Chapter 5

Results

In this thesis, we managed to create Argos-NetBox, a standalone NetBox plugin capable of
documenting an MPLS L3 VPN which, while limited in scope, is made to be extendable.
The included protocol models are kept independent wherever possible and attempt .

Argos-NAC, on the other hand, can deploy and deprovision all the documentable properties
Argos-NetBox provides. It aims to treat the NetBox database as a Single Source of Truth
wherever possible and can easily be extended to support additional vendors. All this while
attempting to keep the user experience as simple and straight-forward as possible.

Future developers can use this project as a starting point, adding different topologies, new
protocols and re-combine them into new services. The MkDocs documentation provided
alongside should help promote such endeavors.

D. Jovicic, D. Walther 35

Chapter 6

Limitations

6.1 DHCP Incompatibility

As it stands, this project is fundamentally incompatible with DHCP. This is due to the
following reasons:

� at least philosophically, DHCP breaks the SSoT principle unless the DHCP server
and the network documentation are part of the same process. Since NetBox does
not check this box natively, support for DHCP is not conducive to the goals of this
project.

� this project relies on every device to configure having a management interface with a
known IP address. Without this, it would be impossible to target a machine during
the configuration process. Therefore, at least the network used for management
cannot use DHCP.

� the way BGP is implemented in the Cisco configuration, the IP address of neighbour-
ing provider edges have to bee known when generating the configuration. While this
could be determined by querying the device itself for DHCP-sourced IP addresses
on non-management interfaces, this breaks the SSoT ethos by treating the device
state as an additional source of truth.

While these issues may be resolved by loosening the adherence to the SSoT ethos, this runs
counter to the goal of this thesis. As such, we believe it is up to the future maintainers to
weigh the advantages and disadvantages of relaxing the SSoT principle.

6.2 Single Source of Truth

While we tried to follow the SSoT principle to the letter where possible, developing Argos-
NAC to work with Cisco devices demonstrated the difficulty therein. Without the ability to
generate the entire device configuration from scratch and the limited ability to deprovision
the entire configuration related to a particular protocol, we believe compromises have to
be made. Our approach was to query the existing device configuration in order to find the
names and IDs of the components which need deprovisioning. This does break the SSoT
ethos, however it was the only approach we could find which worked in all cases and did
not add significant complexity to the project.

D. Jovicic, D. Walther 36

Chapter 7

Further Work

7.1 Work to be Done Within Argos

The bulk of the work to be done within Argos-NetBox concerns expanding on the fea-
tures it provides. This may include new protocols and services and new BGP topologies
(potentially including route reflectors). In addition, we believe adding a way to visualise
the network service and topology through graphs would help in keeping an overview in an
otherwise fractured set of user interfaces.

For Argos-NAC, many of the same points apply, with the addition of more vendors, which
would allow for mixed-vendor networks to be deployed. Additionally, a better mechanism
for determine which aspects of the device configuration require deprovisioning would be
recommended, as the current iteration breaks the SSoT ethos.

7.2 Proposed Work in the Ecosystem

7.2.1 Addition of OneToMany to Django

Django (and by extension NetBox) has several different relationship classes which pro-
vide more fine-grained control over the multiplicity between table entries, for instance
ManyToMany can be used where many individual objects may relate to many other objects
in a non-exclusive manner. To our great surprise however, a OneToMany type does not exist
as an option. This, despite Django clearly having carve-outs intended for it, namely a
one_to_many flag set to False inside each of the different relationship types.

The suggestions typically floated whenever this apparently missing feature is brought up
are twofold: either ”use ManyToMany”, which does not play nicely with GraphQL out of
the box, as we will see shortly, or ”use ForeignKey”, which requires the relation to be
established in a particular direction.

D. Jovicic, D. Walther 37

SSoT Based Network Service Deployment7.2. PROPOSED WORK IN THE ECOSYSTEM

Figure 7.1: OneToMany Example

Suppose there are many cards, each of which can only be part of a single deck, as seen
in Figure 7.1. The reasons why someone would want to establish the relationship from
the ”deck” side side may vary, for example it could be done to facilitate a better overview
of which cards are part of the same deck in the UI. This can be implemented fairly well
with a ManyToMany reference type in addition to filters to ensure the exclusivity of the
relationship.

When Querying such a relationship from the ”Many” side (ergo starting from one of the
individual cards being referenced and looking up which deck it belongs to), the resulting
JSON however defaults to a list of objects, even through in a proper ”one to many” relation
there can only be at most a single object at the other end. This requires messing with
custom GraphQL serializers to avoid these implementation details affecting the structure
of the output data.

Proposals for a OneToMany relation have been made for over a decade[6], so the chances
of it being added anytime soon are slim. Still, we believe it would be a worthwhile
addition.

7.2.2 NetBox Permissions Rework

While testing Argos-NetBox after the construction phase, we noticed that, while the plugin
worked for the super-admin account, it would only partly work when used by a regular
user with all permissions unlocked. The reason for this is the way NetBox parses and
stores permissions, namely strings taking the form <app_label>.<action>_<model>, which
is then parsed using the following code:

1 def resolve_permission(name):

2 try:

3 app_label , codename = name.split(’.’)

4 action , model_name = codename.rsplit(’_’, 1)

5 except ValueError:

6 ...

This however is rather problematic when considering that models (which are effectively
regular python classes) may contain underscores in their names. This would result in
wrongful splitting of the permission string. For example, my_plugin.add_bgp_pe would
be erroneously split into app_label="my_plugin", action="add_bgp" and model_name="pe".

D. Jovicic, D. Walther 38

SSoT Based Network Service Deployment7.2. PROPOSED WORK IN THE ECOSYSTEM

This specific scenario could be fixed by using .split() instead of .rsplit(), making the
split at the first instead of last underscore, however this is not an option as compound
actions such as bulk_edit and bulk_delete. And while these may yet be accounted for
by using regular expressions, NetBox also support custom actions to be added by plugins,
which completely rules out this workaround.

These circumstances currently prevent any model containing underscores in its name from
properly functioning for non super-admins. While this may not be an issue for NetBox it-
self since the project follows strict PEP8 guidelines which recommends against underscores
in class names, it does restrict third-party plugins unnecessarily and, at least currently, in
a problematic way, as the permission checks fail silently.

This issue was reported in issue #12809 on the NetBox repository.[2]

While nothing is more divisive than people’s naming convention preferences, we are of
the opinion that PEP8 is not appropriate for long acronyms due to its ALL-CAPS, no-
demarcations approach to acronyms. In cases like ”MPLS L3 VPN”, removing the un-
derscores does not promote readability and expanding the acronym leads to an unnec-
essarily long model name. We would therefore like to see the permission system to be
reworked.

D. Jovicic, D. Walther 39

Part III

Project Documentation

Chapter 8

Project Plan

8.1 Organization

In typical projects, the costs, timeline and scope of a project have to be considered and
balanced out, this is typically referred to as the ”project management triangle”. For
our purposes however, the final deadline is non-negotiable and the costs are non-existent.
This means our scope is limited to whatever can be achieved within the given time-
frame, making artifacts like Gantt charts and milestone-trend analysis rather pointless for
planning purposes. We instead opted to subdivide our allotted time into phases, akin to
RUP, and use a simple kanban board to keep track of outstanding tasks and assign the
associated responsibilities. This keeps the organizational overhead to a minimum, leaving
more time for productive work.

8.2 Project Time Plan

8.2.1 Phases

Inception

The inception phase starts on 20.02.2023 and will end on 10.03.2023. In this phase, we
make ourselves familiar with NetBox and the technologies/protocols surrounding the Layer
3 and Layer 2 services. Reaching a consensus on the project scope and requirements with
the stakeholder is another goal of this phase.

Elaboration

The elaboration phase starts on 11.03.2023 and lasts till 31.03.2023. In this phase, we
define what our risks, our technical requirements and NFRs are. We take a decision on
whether the project will entail a NetBox plugin or a contribution to the NetBox project
itself, and evaluate the feasibility of a data-driven approach. We also set up our developing
environment in preparation for the construction phase.

Construction

The construction phase starts on 01.04.2023 and ends on 02.06.2023, in this time span the
bulk of the implementation takes place.

D. Jovicic, D. Walther 41

SSoT Based Network Service Deployment 8.2. PROJECT TIME PLAN

Transition

This phase lasts the last week before the final hand-in of the project from 03.06.2023 to
16.06.2023 17:00. In this phase we finalize the documentation and prepare it for the final
hand-in.

8.2.2 Milestones

M1: End of Inception - 10.03.2023

The goal of this milestone is to understand the assignment and get a grasp of NetBox and
the corresponding technologies/protocols for the Layer 3 and Layer 2 services. A project
time plan is created.

Deliverables:

� Research NetBox and Layer 2/3 Services

� Project time plan

M2: End of Elaboration - 31.03.2023

At the end of the elaboration the decision should have been made, if our end product is
gonna be a plugin or a PR and the feasibility of a data-driven plugin. The requirements,
non-functional requirements and a risk analysis are defined by the end of this phase.

Deliverables:

� Risk analysis

� Functional and non-functional requirements

� Use cases

� Feasibility of data-driven approach

M3: Prototype - 14.04.2023

This milestone represents an important stage in the project where the goal is to validate
the concept by prototyping.

Deliverables:

� NetBox plugin/integration prototype

� Network automation tool prototype

M4: MVP - 12.05.2023

The goal of the MVP milestone is to create a basic but functional cycle that meets all
minimum requirements of the project. This MVP will serve as a foundation for further
development.

Deliverables:

� MVP prototype (minimum viable product)

� MVP presentation to stakeholders

D. Jovicic, D. Walther 42

SSoT Based Network Service Deployment 8.3. ROLES

M5: End of Construction - 02.06.2023

The project is functional and complete, only small adjustments and parts of the documen-
tation are left to be finished.

Deliverables:

� Test protocol

� Usability Test

� Working plugin

� Working Network Automation Controller

� Abstract (due 12.06.2023)

M6: End of Transition - 16.06.2023 17:00

Everything should be finished and the project should be handed-in with the complete
documentation. The poster is created according to the guidelines.

Deliverables:

� Finished poster

� Finished project documentation

� Finished product

M7: Presentation - 21.07.2023

The presentation for the bachelor thesis is prepared and the team is ready to present
it.

Deliverables:

� Presentation

8.3 Roles

Advisor and Product Owner

Urs Baumann is partly responsible for the evaluation of the project and is simultaneously
the product owner. He is available for any help of the project if the team is facing any
sort of issues.

Developers

Dejan Jovicic and Dominic Walther will be the developers and responsible for the success
of the project.

Additional Stakeholders

The additional stakeholders for our project are Mitra Purandare as the internal co-
examiner and Patrick Mosimann, who works as a Technical Solutions Architect for Cisco,
as the external co-examiner.

D. Jovicic, D. Walther 43

SSoT Based Network Service Deployment 8.4. MEETINGS

8.4 Meetings

Every friday a meeting will be held with the advisor and stakeholder Urs Baumann and
the two developers. The meeting minutes can be found in ?? ”??”.

8.5 Tools

� clockify.me (Time tracker)

� Gitlab (Issue tracker, file storage & versioning)

� Microsoft Teams (Communication channel & meeting)

� Visual Studio Code (Used to write the documentation in LATEX)

� Docker (Development)

� NetBox (Plugin)

� LTB Lab from the Institute for Networked Solutions (Virtual network used for de-
velopment/testing)

D. Jovicic, D. Walther 44

Chapter 9

Risk Management

9.1 Risks

This chapter deals with the risks that might occur during the project. The properties of
the risks are:

� ID: Identifier of the risk.

� Description: Short text explaining the risk.

� Probability: The probability of the risk measured in percentage. 100% meaning that
it will occur at least once during the project.

� Maximum Time Loss: The maximum time loss we will have because of this risk,
measured in hours

� Mitigation: Description of the precautions we can take to mitigate the risk.

� Behaviour: Describes the behaviour of what is done if the risk happens.

� Severity: The severity shows the extent of the damage the risk will do to the goals
and objectives to the project. It is measured qualitatively with ”low”, ”mid” and
”high” severity.

D. Jovicic, D. Walther 45

S
S
o
T

B
a
sed

N
etw

o
rk

S
erv

ice
D
ep

loy
m
en
t

9.1.
R
IS
K
S

ID Description Probability
Max. time

loss
Mitigation Behaviour Severity

R1 A team member gets sick low 23h No mitigation possible
Communication between team
members, prioritize tasks which
need to be done

low

R2
Irreparable corruption of the
git server

low 46h
Weekly off-site backups on the
devices of the team members

Restore data with your backup mid

R3
Irreparable corruption of the
clockify data

low 0.5h
Weekly off-site backups on the
devices of the team members

Restore data with your backup low

R4 Unrealistic timeline low 46h Detailed project plan Reduction of the project scope mid

R5
Specifications cannot be
implemented as intended

mid 69h
Weekly meetings with the advi-
sor

Getting help from the advisory
& experts

mid

R6

Familiarization with NetBox,
network services and network
automation tools takes longer
than expected

mid 46h
Watch tutorials to gain knowl-
edge of technology

Reduction of the project scope mid

R7
An external dependency does
not meet our requirements

high 46h

Isolate and compartmentalize
dependencies within the project
to minimize affected surface
area

Conduct assessments to ensure
that the external dependencies
meet the desired functional-
ity and scalability requirements,
before integrating them into the
project

mid

Table 9.1: Risk Analysis

D
.
J
ov

icic,
D
.
W
alth

er
46

S
S
o
T

B
a
sed

N
etw

o
rk

S
erv

ice
D
ep

loy
m
en
t

9.2.
R
E
A
L
IZ
E
D

R
IS
K
S

9.2 Realized Risks

ID Description Behaviour Impact Date RID

RR1 Dejan was ill for several days
Dominic was instructed which pending and important
tasks need to be done till the next sprint

23h 29.03.23 R1

RR2
The NetBox API does not fit our requirements for
requesting data

Use GraphQL instead of the NetBox API 46h 31.03.23 R7

Table 9.2: Realized Risks Analysis

D
.
J
ov

icic,
D
.
W
alth

er
47

SSoT Based Network Service Deployment 9.2. REALIZED RISKS

Figure 9.1: Risk Matrix

D. Jovicic, D. Walther 48

Chapter 10

Quality Measures

10.1 Code Guidelines

The principles described in this section should always be adhered to to ensure a consistent
code-style. Change proposals are always welcome.

Editor: The editor to be used is VSCode. Files associated with said editor can be
committed to the repository provided the contained settings are not user-dependent. The
recommended plugins should be installed.

Linter: The linter specified in the settings file should be installed and enabled at all times
with the provided settings. Exceptions to the linting rules should be avoided. Linting rules
may be changed if an agreement is found.

Classes: Class names are written in CamelCase. Member fields are annotated with their
expected type. Should annotation not be possible the regular way (e.g. due to circular
imports), annotations are done via so-called ”forward references”.

Function Names: Function names are written in snake case.

Variable Names: Variable names are written in snake case. Too explicit is better than
too short. Abbreviations are only allowed if they are immediately obvious in their con-
text.

Comments: Comments should primarily explain why something was done, not how it
works. Comments explaining how something works are to be treated as a code-smell.

Comprehensions: Comprehensions should only be used for trivially understandable op-
erations. Use explicit for-loops otherwise.

Exception handling: Exceptions are to be treated as errors and should only be raised
if the program cannot proceed safely. Exceptions should not be caught unless absolutely
necessary. Exceptions may be caught and re-thrown to add additional context to the
exception.

D. Jovicic, D. Walther 49

SSoT Based Network Service Deployment 10.2. TESTING

10.2 Testing

10.2.1 Code Coverage

Due to the number of involved technologies and components, as well as the difficulty of
testing the automated deployment aspect of the project, reaching a high degree of code
coverage through automated tests is a challenge in and of itself. Attempts will be made to
facilitate testability through strategies like dependency injection where possible, however
automated testing will remain a best-effort goal.

10.2.2 Usability Tests

The usability testing will be conducted by Urs Baumann, who serves as both our advisor
and the product owner. With his expertise in NetBox and configuring network devices, he
is the ideal candidate to test Argos-NetBox. Urs Baumman will receive a zip file containing
the project files, along with a Word document outlining the tasks to be done and fields
for providing feedback.

The usability test is scheduled to take place after the construction phase, allowing us
ample time to address any minor imperfections and enhance the provided documentation,
if necessary. The Usability Test Protocol and the filled out Word document can be found
in the section B.2 ”Usability Test Protocol Result” for review.

Goal

The objective of this usability test is to assess the usability and user-friendliness of Argos-
NetBox, ensuring its alignment with the needs and expectations of our target audience.
Additionally, we seek valuable feedback on Argos-NAC, which will guide us in enhancing
its usability if necessary.

10.2.3 Usability Test Result

As described in subsection 10.2.2 ”Usability Tests”, our usability tester for this project
was Urs Baumann, a senior network engineer working for the INS. The completed Word
document can be accessed at section B.2 ”Usability Test Protocol Result”.

Result

During the usability test, Urs Baumann encountered some difficulties, primarily related
to his computer setup, as stated in his feedback. In step 2 of the NetBox tasks, he
expressed confusion regarding the concept of ”Address Families”, he elaboreated on why
he believed the term could be misunderstood in the Open-Ended Questions. However, he
also mentioned that he could not propose a better alternative name and acknowledged
that renaming might not be necessary. In the Network Automation Controller task 1, he
noted that he had received an incorrect command from us, as no output folder was created.
However, he was able to find the correct option by using the help command.

In his general feedback, Urs suggested that including a brief description of the object in
the ”Add” interface in Argos-NetBox would be helpful, or alternatively, linking the ”Help”
button to our documentation on these objects.

D. Jovicic, D. Walther 50

SSoT Based Network Service Deployment 10.2. TESTING

Conclusion

We agree with our tester’s recommendation to provide additional information about the
objects in Argos-NetBox. As a result, we have updated the ”Add” user interface to include
a direct link to our MkDocs documentation.

Based on the overall feedback from the usability test, we consider the NFR Usability to
be successfully met, as the tester rated the overall user experience as ”very well.”

10.2.4 CI/CD Pipeline

To avoid ”it works on my machine” scenarios, we added a CI/CD Pipeline for the Argos-
NAC source code, as well as the documentation.

The documentation CI pipeline consists of two stages: ”build doc”, which generates a PDF
out of the latest LATEX-files and ”build doc diff”, which builds a PDF in which the changes
that were made since the last meeting are highlighted. This is especially helpful during
meetings, as it makes visualizing progress trivial. The latest versions of these documents
are downloadable from the GitLab repository by clicking on the relevant badges.

The Argos-NAC source code CI/CD contains the ”run pytest” stage, which runs Pytest
and generates a code coverage report. If all tests pass, a second ”deploy” stage can be
triggered which takes said coverage report, merges it into the MkDocs wiki and host
both on ”GitLab Pages”, allowing users to interactively navigate the source code with
added coverage information, in addition to reviewing the project’s documentation. This
comes with the added benefit that the documentation and the source code can easily be
synchronized to each other.

D. Jovicic, D. Walther 51

SSoT Based Network Service Deployment 10.2. TESTING

10.2.5 System Tests

The system testing was done with the LTB Lab, which was set up for us by Urs Baumann
and hosted by the Institute for Networked Solutions. Argos-NetBox is visible in NetBox
as seen in Figure 10.1 and Figure 10.2 where we can document a Multiprotocol Label
Switching Layer 3 Virtual Private Network (MPLS L3 VPN) network.

Figure 10.1: Argos-NetBox Overview

Figure 10.2: Argos-NetBox BGP PE Add

After documenting a MPLS L3 VPN network in Argos-NetBox, we then can deploy this
state to the network devices by using Argos-NAC. This can be done via the CLI using the
command argos-deploy --ignore-ssl --file-output --backup --verbose, the output of
which can be seen in Figure 10.3.

D. Jovicic, D. Walther 52

SSoT Based Network Service Deployment 10.2. TESTING

Figure 10.3: Argos-NAC Deploy

To automate this process, we can start Argos-NAC in the --no-interact mode, allowing it
to proceed without any additional interactions including ignoring warnings, if enabled. The
scheduling aspect can be managed using established tools like cron or similar scheduling
mechanisms.

Likewise, the deprovisioning of services can be accomplished by removing objects within
Argos-NetBox, before running Argos-NAC. Argos-NAC will then compare the current
device configurations with the documented state in NetBox and automatically generate
the necessary deprovisioning commands. The end result can be seen Figure 10.4

D. Jovicic, D. Walther 53

SSoT Based Network Service Deployment 10.2. TESTING

Figure 10.4: Argos-NAC VRFs

D. Jovicic, D. Walther 54

Part IV

Appendix

Appendix A

Assignment

Bachelor Thesis Assignment

SSoT based network service deployment

Version 1.0
June 9, 2023
Institute for Network and Security

Figure A.1: Bachelor Thesis Assignment Page 1

D. Jovicic, D. Walther 56

SSoT Based Network Service Deployment

v1.0
SSoT based network service deployment

1 Assignment

1.1 Supervisor and Expert
This student project will be developed for the Institute for Network and Security at OST inter-
nally. It will be supervised by Urs Baumann (urs.baumann@ost.ch), OST.

1.2 Students
This project is conducted in the context of the module “Bachelorarbeit” in the department “In-
formatik” by:

• Dominic Walther

• Dejan Jovicic

1.3 Introduction
The objective of this bachelor project is to extend Netbox by developing pull requests or a Django
plugins to support modeling of network services such as MPLS L3 VPN, VPLS, or pseudowire.
The focus of the implementation should be on MPLS L3 VPN. Additionally, an external com-
ponent will be developed to take the modeled information in Netbox and configure the services
onto the devices. This component will have vendor-specific information on how the configuration
should look like, and Netbox will be the single source of truth for service deployment.

The technical documentation for the tool should be written in MkDocs, and all documents
should be in English. If time permits, the project should be open-sourced to allow for contributions
from the community.

Your solution should adhere to best practices for security, reliability, and scalability.

1.4 Goals of the Project
The scope of this project includes the following tasks:

• Research on network service modeling and configuration

• Develop pull requests or plugins to extend Netbox for modeling MPLS L3 VPN

• Design and develop an external component to take the modeled information from Netbox
and configure the services on devices

• Test and validate the developed solutions

1 Assignment 1 of 3

Figure A.2: Bachelor Thesis Assignment Page 2

D. Jovicic, D. Walther 57

SSoT Based Network Service Deployment

SSoT based network service deployment v 1.0

1.4.1 Scenarios
1. Scenario for documenting services:

NetBox can be utilized to document network services with ease. For example, when setting
up a new virtual private network (VPN) for a remote office, the IT administrator can
document the details of the VPN service in NetBox, including the IP addresses of the
remote endpoints, and any other relevant details. This can help ensure that all necessary
information is easily accessible to anyone who needs it.

2. Scenario for automation component:
An automation component can leverage NetBox to automate the provisioning and de-
provisioning of network services. For instance, when a new employee is hired and a new
service is needed to be accessible at a site, the automation component can access the in-
formation in NetBox to determine which services need to be deployed. The automation
component can then provision the necessary configurations on the appropriate devices,
streamlining the onboarding process and ensuring that the employee has access to the ser-
vices they need from day one. Similarly, when a service is not needed at a site anymore, the
automation component can use NetBox to identify which services need to be de-provisioned
and take the necessary actions to remove services.

1.5 Documentation
This project must be documented according to the guidelines of the “Informatik” department.
This includes all analysis, design, implementation, project management, etc. sections. All docu-
mentation is expected to be written in English. The project plan also contains the documentation
tasks. All results must be complete in the final upload to the archive server. There is no need to
print out the documentation

1.6 Important Dates

 Official documents

Check the official documents and relegments

Date Event
20.02.2023 Start of the student project
12.06.2023 Hand-in of the abstract using the online tool abstract.rj.ost.ch
16.06.2023 17:00 Final hand-in of the report using the online tool avt.i.ost.ch
21.07.2023 14:00 Presentation

1.7 Evaluation

 Official documents

Check the official documents and relegments

1 Assignment 2

Figure A.3: Bachelor Thesis Assignment Page 3

D. Jovicic, D. Walther 58

SSoT Based Network Service Deployment

SSoT based network service deployment v 1.0

Criterion Weight
Organization and implementation 10%
Formal quality of the report 10 %
Analysis, design and evaluation 20 %
Technical implementation 40 %
Presentation 20 %

1 Assignment 3

Figure A.4: Bachelor Thesis Assignment Page 4

D. Jovicic, D. Walther 59

Appendix B

Screenshots

B.1 NFR Validation Screenshots

Figure B.1: NFR Portability Argos-NetBox Pip Command

Figure B.2: NFR Portability Argos-NetBox Plugin Configuration

Figure B.3: NFR Performance Add Device Time

D. Jovicic, D. Walther 60

SSoT Based Network Service Deployment B.1. NFR VALIDATION SCREENSHOTS

Figure B.4: NFR Performance Add MPLS Instance Time

Figure B.5: NFR Testability Code Coverage

D. Jovicic, D. Walther 61

S
S
o
T

B
a
sed

N
etw

o
rk

S
erv

ice
D
ep

loy
m
en
tB.2.

U
S
A
B
IL
IT

Y
T
E
S
T

P
R
O
T
O
C
O
L
R
E
S
U
L
T

B.2 Usability Test Protocol Result

SSOT based network service deployment Dejan Jovicic, Dominic Walther

Usability Test
Introduction
The purpose of this usability test is to evaluate the usability and user-friendliness of our Plugin, ensuring that it meets the needs and expectations of our target audience.

We are interested in your honest thoughts and reactions as you engage with the product. There are no right or wrong answers. During the test, we encourage you to

think aloud and share your impressions, thoughts, and any concerns that arise. Your feedback, both positive and negative, will help us identify both the strengths and

areas for improvement in our plugin.

Please follow the steps for this Usability Test, the columns “Test Result” and “Comments” are meant for your findings and comments. For the initial NetBox plugin and

Network Automation Controller setup, follow these instructions:

Prerequisites

• A network lab with routers accessible through SSH

• docker-compose

• Git

• Python 3.10 or greater

• Windows (required for demo scripts only)

NetBox setup
• Unzip the provided project files and open the “demo” directory

• Run “build.bat”. This script clones the netbox-docker repository, makes some changes to the default configuration and runs the project as docker-compose stack

with “argos-netbox” pre-installed. Should you get an error about the NetBox container being unhealthy, just re-run the build script.

• Verify NetBox is running correctly by visiting http://localhost:8080, logging in as “admin” (password: “admin”), and verifying that “Argos” is present under the

“Plugins” tab.

Network Automation Controller setup
• Run “pip install argos-nac”

• Verify its correct installation by running “argos-deploy --help”

Figure B.6: Usability Test Urs Baumann Page 1

D
.
J
ov

icic,
D
.
W
alth

er
62

S
S
o
T

B
a
sed

N
etw

o
rk

S
erv

ice
D
ep

loy
m
en
tB.2.

U
S
A
B
IL
IT

Y
T
E
S
T

P
R
O
T
O
C
O
L
R
E
S
U
L
T

SSOT based network service deployment Dejan Jovicic, Dominic Walther

NetBox Tasks
Step Description Expected Result Test Result Comments

1 • Create a Site and an ASN, as well
as two or more IP Addresses,
Devices, Interfaces, VRFs and
Route Targets in NetBox.

• Make sure the devices you wish
to configure have a dedicated
“Management only” interface
with a valid IP address. Clients do
not need their own Device.

As all these things already exist in
the NetBox UI, the creation should
work without problems.

Not needed Not needed

2 • Create a new LDP entry for every
P and PE router of your network.

• Add one or more BGP CE, Address
Family entries, and BGP PE
entries - make sure you select the
BGP CEs directly connected to
each BGP PE in the “Advertised
CEs” field.

• Add a BGP Mesh containing all
your PE devices.

• Finally, add an MPLS Instance.

All entries can be added without
issues.

Worked well In the beginning I had to think
what a “Address Family” exactly is.

3 • Play around with the various
fields provided by the Argos
plugin. Are there any unexpected
or erroneous behaviours?

There should be no unexpected
behaviours.

Worked well no

Tester’s Name Date

Urs Baumann 08.06.2023

Figure B.7: Usability Test Urs Baumann Page 2

D
.
J
ov

icic,
D
.
W
alth

er
63

S
S
o
T

B
a
sed

N
etw

o
rk

S
erv

ice
D
ep

loy
m
en
tB.2.

U
S
A
B
IL
IT

Y
T
E
S
T

P
R
O
T
O
C
O
L
R
E
S
U
L
T

SSOT based network service deployment Dejan Jovicic, Dominic Walther

Network Automation Controller Tasks
Note: Should you have gotten stuck in the NetBox Tasks, you can purge the database volume in docker, then re-run “build.bat”, followed by “load_sample_data.bat” to

populate it with a full set of data. Make sure to update the management interfaces’ addresses to reflect your lab.

Step Description Expected Result Test Result Comments

1 • Run “argos-deploy --dry-run --
ignore-ssl --output-dir --verbose”
in your terminal.

The Network Automation Controller
should ask for all relevant
information required to generate
and deploy the various device
configurations from NetBox.

Worked well (had some issues with
PowerShell, but that is a client/user
issue)

Option in named --file-output

With the wrong option, no error was
given.

2 Provide the requested information.

• Site: id number of NetBox site to
deploy

• SSH username/password:
username and password of
network devices to configure
NetBox URL: address to NetBox
instance

• NetBox token: NetBox token
found in NetBox “/admin” page

The Network Automation Controller
should show the most relevant
settings, as well as list the devices
which can and can’t be configured.

Worked well I had issues with the PowerShell and
copied the token into the prompt, but
it was a client error in the end

3 • Confirm your choices and
proceed.

The Network Automation Controller
should proceed to the end without
further interruptions or issues,
provided the network devices to
configure are reachable.

Worked well

4 • Open the newly created “output”
and verify the correctness of the
generated configurations.

The generated configuration is
correct and intact. Superfluous VRFs
are removed explicitly and previous
settings are replaced or removed.

Looks good

5 • Optionally, repeat steps 1-4 using
the command “argos-deploy --
ignore-ssl --output-dir --verbose -
-backup” flag.

The Network Automation Controller
should back up the devices’
configurations to the local “backups”
folder before configuring them anew,
showing the same behaviour as in
the previous steps.

Figure B.8: Usability Test Urs Baumann Page 3

D
.
J
ov

icic,
D
.
W
alth

er
64

S
S
o
T

B
a
sed

N
etw

o
rk

S
erv

ice
D
ep

loy
m
en
tB.2.

U
S
A
B
IL
IT

Y
T
E
S
T

P
R
O
T
O
C
O
L
R
E
S
U
L
T

SSOT based network service deployment Dejan Jovicic, Dominic Walther

Open-Ended Questions
What did you find confusing or difficult?

Are there any features or functionalities you wish to see added?

How would you rate the overall user experience? (1-10 or free-form)

Windows and PowerShell but all fine. The entity “Address Family” but I am not sure what would be a better name. Maybe “Address Family Set” or “BGP AF

Capabilities”. I think a rename is not needed.

In the «Add» mask, a short statement describing the Object could be nice.

Very well

Figure B.9: Usability Test Urs Baumann Page 4

D
.
J
ov

icic,
D
.
W
alth

er
65

Bibliography

[1] Ansible, “How ansible works,” last time accessed: 26/03/2023. [Online]. Available:
https://www.ansible.com/overview/how-ansible-works

[2] Dominic-Walther, “Underscores in model names results in broken permissions ·

issue #12809,” June 2023, last time accessed: 14/06/2023. [Online]. Available:
https://github.com/netbox-community/netbox/issues/12809

[3] M. Leiniö, “ci: test against the currently supported python versions - pull request
#446,” Feb 2022, last time accessed: 11/03/2023. [Online]. Available: https:
//github.com/netbox-community/pynetbox/pull/446#issuecomment-1031803433

[4] Nornir, “Welcome to nornir’s documentation!” Mar 2023, last time accessed:
27/03/2023. [Online]. Available: https://nornir.readthedocs.io/en/latest/index.html

[5] PieterL75, “Assign asn to prefix and device,” Mar 2022, last time accessed:
11/06/2023. [Online]. Available: https://github.com/netbox-community/netbox/
issues/8782

[6] A. Rachum, “A case for a onetomany relationship in django,” last
time accessed: 12/05/2023. [Online]. Available: https://amir.rachum.com/
a-case-for-a-onetomany-relationship-in-django/

[7] SALTSTACK, “Salt project,” Mar 2023, last time accessed: 26/03/2023.
[Online]. Available: https://docs.saltproject.io/en/latest/topics/about salt project.
html#about-salt

[8] StackStorm, “Stackstorm overview,” last time accessed: 26/03/2023. [Online].
Available: https://docs.stackstorm.com/overview.html#how-it-works

[9] J. Stretch, “Contributing.md,” Jan 2023, last time accessed: 14/06/2023.
[Online]. Available: https://github.com/netbox-community/netbox/blob/
36e0bf0490e084c835098d6d865d8e7a3f3caa6a/CONTRIBUTING.md?plain=1#L42

D. Jovicic, D. Walther 66

https://www.ansible.com/overview/how-ansible-works
https://github.com/netbox-community/netbox/issues/12809
https://github.com/netbox-community/pynetbox/pull/446#issuecomment-1031803433
https://github.com/netbox-community/pynetbox/pull/446#issuecomment-1031803433
https://nornir.readthedocs.io/en/latest/index.html
https://github.com/netbox-community/netbox/issues/8782
https://github.com/netbox-community/netbox/issues/8782
https://amir.rachum.com/a-case-for-a-onetomany-relationship-in-django/
https://amir.rachum.com/a-case-for-a-onetomany-relationship-in-django/
https://docs.saltproject.io/en/latest/topics/about_salt_project.html#about-salt
https://docs.saltproject.io/en/latest/topics/about_salt_project.html#about-salt
https://docs.stackstorm.com/overview.html#how-it-works
https://github.com/netbox-community/netbox/blob/36e0bf0490e084c835098d6d865d8e7a3f3caa6a/CONTRIBUTING.md?plain=1#L42
https://github.com/netbox-community/netbox/blob/36e0bf0490e084c835098d6d865d8e7a3f3caa6a/CONTRIBUTING.md?plain=1#L42

	Acknowledgements
	Abstract
	Lay Summary
	Listings
	List of Figures
	List of Tables
	I Technical Report
	Vision
	Problem Statement
	Our Solution

	Technical Framework
	Network Automation Tools
	MPLS L3 VPN
	Introduction to MPLS
	Tasks and Protocols
	Summary

	MPLS L3 VPN on Cisco Routers
	Pynetbox
	Implementation Issues
	Use Within Argos-NAC

	II Product Documentation
	Requirements
	Storyboard
	Functional Requirements
	Actors
	Validation
	Actions

	MVP
	Non-Functional Requirements

	Architecture
	SSoT Priciples vs. Real World
	VRF Deprovisioning
	Management Interface
	Interface Configuration Comparison

	Plugin vs. Pull Request
	Data Structure
	Device - ASN Relationship

	Model Class Diagram
	Component Overview

	Results
	Limitations
	DHCP Incompatibility
	Single Source of Truth

	Further Work
	Work to be Done Within Argos
	Proposed Work in the Ecosystem
	Addition of OneToMany to Django
	NetBox Permissions Rework

	III Project Documentation
	Project Plan
	Organization
	Project Time Plan
	Phases
	Milestones

	Roles
	Meetings
	Tools

	Risk Management
	Risks
	Realized Risks

	Quality Measures
	Code Guidelines
	Testing
	Code Coverage
	Usability Tests
	Usability Test Result
	CI/CD Pipeline
	System Tests

	IV Appendix
	Assignment
	Screenshots
	NFR Validation Screenshots
	Usability Test Protocol Result

	C Bibliography

