
CuSharp

A GPU Compute Framework for .NET

Project Type: Bachelor Thesis

Project Team: Adrian Locher
Jason Benz

Project Advisor: Philipp Kramer
Expert: Christian Marrocco

Proofreader: Thomas Corbat

Linguistic Proofreader: AnneMarie O’Neill

Date: 15.06.2023

CuSharp

Abstract
The number of computationally intensive applications is growing. For many easily parallelizable prob-
lems, GPUs offer better performance than CPUs. As a result, GPUs are now used not only for
graphical applications, but also for machine learning and cryptography. GPU-accelerated programs
have traditionally been written in C, C++ for high-performance applications such as physics simula-
tions and graphical applications and more recently in Python to optimize machine learning algorithms.
Most GPU-APIs, including Nvidia CUDA, restrict their developers to using C, C++ or Python to
write programs targeting those APIs.

In this thesis a framework called CuSharp has been developed that allows developers to build and
run GPU-executable kernels directly in C#. This is achieved by using existing toolchains comple-
mented by a specifically developed cross-compiler. In a first step, the Roslyn compiler is used to
compile the C# kernel to Microsoft Intermediate Language (MSIL). Subsequently, the CuSharp com-
piler cross-compiles MSIL to NVVM IR, which is a low-level but platform-independent intermediate
representation. Finally, NVVM IR is translated to PTX ISA, an assembly-like language for Nvidia
GPUs, using the NVVM compiler library (libNVVM). By further encapsulating all device-specific
compiler settings, we allow future development efforts to add support for devices other than those
manufactured by Nvidia.

CuSharp supports the compilation of static methods, written in a specific C# subset, either just-in-
time or ahead-of-time. The resulting PTX ISA kernels’ performance was benchmarked and compared
to kernels compiled by the Nvidia CUDA Compiler (NVCC). For a kernel that computes matrix
multiplications, a performance slowdown between 1.4% and 4.8% was measured for CuSharp-compiled
kernels compared to NVCC-compiled kernels. The measurements refer to the execution time of the
kernel on the graphics card, excluding the compilation process and the data transfers.

This thesis shows the challenges of interfacing with the LLVM compiler infrastructure and the Nvidia
CUDA API. In addition, it provides an overview of the complex landscape of APIs that can be used
to interface with GPU devices in general, by comparing their toolchains and languages. Furthermore,
it demonstrates that GPU kernels can be written in a high-level language such as C#, which is widely
used in the industry, while suffering only minor performance degradation.

I

CuSharp

Lay Summary
For data-parallel computations, graphics processing units (GPUs) offer better performance than cen-
tral processing units (CPUs). To perform computations on GPUs, programs must be compiled into a
specific language and computational model.

Many compilers exist for languages such as C, C++ and Python, but there is a general lack of such
tools for C#, a language widely used in the industry.

By combining existing tools and complementing them with our own compiler, we allow developers to
write and run GPU programs, called kernels, directly in C#.

Using CuSharp (the result of this thesis) C# developers can write fast, computationally intensive
applications, without having to learn new programming languages. This makes development faster
and easier by allowing developers to focus on the problem they are solving instead of worrying about
technical details.

CuSharp, as of now, supports devices manufactured by Nvidia, one of the market leading GPU manu-
facturers. Although CuSharp currently only supports devices from one manufacturer, it is extensible
to support devices from other manufacturers.

II

CuSharp

Acknowledgements
We would like to acknowledge the following people for their valuable contributions to this bachelor
thesis.

Firstly, we would like to thank Philipp Kramer for his advice and inputs during our weekly meetings.
We would also like to thank Thomas Corbat and Christian Marrocco for their insightful feedback
during our interim presentation.

Finally, we express our gratitude to AnneMarie O’Neill for her thorough proofreading.

III

CuSharp

Glossary

Name Abbr. Description

Abstract Syntax Tree AST Tree representation of the syntactic
structure of a program.

Ahead of Time Compilation AOT Compilation Process to compile code before it is
executed.

Common Intermediate Language CIL Synonym for MSIL.

Compute Unified Device Architecture CUDA Platform for parallel computing and a
toolkit that allows to run code directly
on Nvidia graphics cards.

Control Flow Graph CFG Program or function representation as
a directed graph which displays the
basic blocks and the flow of control
between them.

Graphics Processing Unit GPU Specialized processor to render graph-
ics and process data simultaneously.

Heterogeneous-Compute Interface for
Portability

HIP C++ runtime API and programming
model used to write GPU-accelerated
code that can be executed on AMD
and Nvidia GPUs.

High Level Shading Language HLSL C-like programming language used to
write shaders using Microsoft’s Di-
rectX API.

Intermediate Representation IR Low-level and platform-independent
representation of code used by com-
pilers to optimize and transform code.

Just in Time Compilation JIT Compilation Process to compile code during run-
time.

Kernel - A parallel method or function that
performs computation on a large
amount of data on GPUs, often in a
SIMD style.

Low-Level Virtual Machine Compiler
Infrastructure

LLVM Collection of platform-independent
compiler and tool-chain technologies.

- LLVM IR Low-level and platform-independent
representation used as an intermedi-
ate step during compilation in the
LLVM compiler infrastructure.

Microsoft Intermediate Language MSIL A platform-independent instruction
set which is the output of compilers
in .NET based languages.

Nvidia - Large company from the USA that de-
velops GPU technologies and which
is specialized in artificial intelligence
computing.

Nvidia CUDA Compiler NVCC Compiler used to compile CUDA code
(written in a CUDA supported lan-
guage such as C, C++ etc.) to PTX.

IV

CuSharp

Nvidia Virtual Machine IR NVVM IR Low-level and platform-independent
IR used as input for NVCC to gen-
erate PTX. It is based on a subset of
LLVM IR.

OpenGL Shading Language GLSL C-like programming language used
to write shaders using the OpenCL,
OpenGL or Vulkan API.

Parallel Thread Execution Instruction
Set Architecture

PTX ISA Assembly-like language used to write
high-performance code for Nvidia
GPUs.

Phi-Instruction - Instruction which chooses the right
value in an SSA form depending on
the CFG.

Single Instruction Multiple Data SIMD Parallel computing technique which
allows to execute the same instruction
sets on multiple data simultaneously.

Standard Portable IR SPIR-V Binary IR used as input language for
APIs such as the OpenCL, OpenGL
or Vulkan API.

Static Single Assignment Form SSA Form Specification of an IR that each vari-
able must be assigned exactly once. If
the value of the variable changes, a
new variable is created and the new
value is assigned to it.

Table 1.: Glossary.

V

Contents CuSharp

Contents
Abstract I

Lay Summary II

Acknowledgements III

Glossary IV

I. Report 1

1. Introduction 2

2. Background Information 3
2.1. Overview . 3
2.2. .NET Framework / C# . 3
2.3. Toolchains . 4

2.3.1. Nvidia CUDA . 5
2.3.2. AMD HIP . 6
2.3.3. Vulkan . 6
2.3.4. OpenCL . 6

3. Requirements 7
3.1. Functional Requirements . 7
3.2. Non-Functional Requirements . 7
3.3. Constraints . 8

3.3.1. Source Language . 8
3.3.2. Target Devices . 8

3.4. Scope . 8
3.4.1. Minimum Viable Product (MVP) . 8
3.4.2. Limitations . 8

4. Solution Strategy 9
4.1. Alternatives . 9

4.1.1. Vulkan Compute-API . 9
4.1.2. NVIDIA CUDA . 9

4.2. Performance Evaluation . 9
4.2.1. Test Setup . 9
4.2.2. Results . 9

4.3. Additional Evaluation . 10
4.4. Decision . 10

5. Architecture 11
5.1. Context . 11
5.2. Containers . 11
5.3. Components . 12

5.3.1. Framework Frontend . 12
5.3.2. Cross-Compiler . 12
5.3.3. Hardware Dispatching . 13

5.4. Architectural Decisions . 13
5.4.1. Framework Frontend . 13
5.4.2. Compiler Frontend . 13
5.4.3. Compiler Backend . 13

VI

Contents CuSharp

5.4.4. Hardware Dispatching . 14

6. Quality Assessment 15
6.1. Testing . 15

6.1.1. Test Coverage . 15
6.2. Requirements Analysis . 16

6.2.1. Functional Requirements . 16
6.2.2. Non-Functional Requirements . 16

6.3. Technical Debt . 16
6.3.1. Platform Independence . 16

6.4. Performance Analysis . 17
6.4.1. Test Setups . 17
6.4.2. Matrix Multiplication Performance . 17
6.4.3. Tiled Matrix Multiplication Performance . 18
6.4.4. 2D-Array Matrix Multiplication Performance . 19

7. Implementation Challenges 20
7.1. Language Execution Model Deviation . 20
7.2. Static Single Assignment (SSA) . 20
7.3. Variable Deviation after Branching . 20
7.4. Stack Deviation after Branching . 22
7.5. Array-Length Property . 23
7.6. Two-Dimensional Arrays . 23

7.6.1. Initialization of Two-Dimensional Arrays . 24

8. Final Product 26
8.1. API . 26

8.1.1. Static Class: Cu . 26
8.1.2. Class: CuDevice . 26
8.1.3. Interface: ICuEvent . 27
8.1.4. Attribute: Kernel . 27
8.1.5. Examples . 28

8.2. Ahead-of-Time Compiler . 29
8.3. Supported Language . 29
8.4. Publication of the Application and Sourcecode . 29

8.4.1. Licensing . 29
8.4.2. Git Workflow . 29

II. Conclusion and Outlook 30

9. Conclusion and Outlook 31
9.1. Production Readiness . 31
9.2. Outlook . 31

III. Appendix 32

A. Project Plan 33
A.1. Important Dates . 33
A.2. Working Process . 33
A.3. Phases and Milestones . 33
A.4. Big Picture . 34

VII

Contents CuSharp

B. Personal Reports 36
B.1. Adrian Locher . 36
B.2. Jason Benz . 36

C. Compiler Specification 37
C.1. Introduction . 37
C.2. Tested Version . 37
C.3. Configuration . 37

C.3.1. NVVM IR Intrinsic Functions . 38
C.4. Launching Kernels . 39
C.5. Kernel Attribute . 40
C.6. Optimizer . 40

C.6.1. Built-In Optimizations . 40

D. Language Specification 41
D.1. Supported C# Features . 41

D.1.1. Supported Types . 41
D.1.2. Generic Types . 41
D.1.3. Control Flow Statements . 42
D.1.4. Arithmetic Operators . 42
D.1.5. Logical Operators . 42
D.1.6. Bitwise Operators . 43
D.1.7. Comparison Operators . 43
D.1.8. Calls . 43
D.1.9. Implicit Casts . 44

D.2. Unsupported Features . 44

E. Evaluation and Example Code 45
E.1. Double-Matrix Multiplication Kernel . 45
E.2. Tiled Double-Matrix Multiplication Kernel . 45
E.3. 2D-Array Matrix Multiplication Kernel . 46
E.4. Mandelbrot Kernel . 46

F. Performance Results 48
F.1. Double Matrix Multiplication in Global Memory . 48
F.2. Double Matrix Multiplication Tiled using Shared Memory 48

G. Bibliography 49

H. List of Figures 50

I. List of Tables 51

J. List of Listings 52

VIII

CuSharp

Part I.

Report

1

CHAPTER 1. INTRODUCTION CuSharp

1. Introduction
Nowadays, a lot of non-graphical tasks such as crypto mining and machine learning are executed on
graphics processors. One of the most popular standards for general purpose GPU programming is
called CUDA [1]. It is a platform for parallel computing and an application programming interface to
run code directly on Nvidia GPUs.

CUDA is designed to be used in combination with the programming languages C/C++. Often one
would like to use the computing power of the graphics card directly in other programming languages
without writing and integrating individual code parts in C/C++. Unfortunately, there is currently
no free and convincing open source library that makes this possible for C#. Besides CUDA there are
some other APIs to run highly-parallel code on GPUs, such as the Vulkan API, OpenCL etc.

The goal of this bachelor thesis is to implement a prototype of a cross-compiler to execute C# code
on GPUs. The minimum viable product (MVP) should contain at least the technical breakthrough.
Simple operations should be able to be executed on the graphics card. Nvidia GPUs must be supported.
Optionally, graphics processing units from other manufacturers may also be supported.

The workload will be distributed into the following parts:

� Initial research and identifying existing technologies.

� Creating a concept of a .NET to (Nvidia) GPU cross-compiler.

� Creating a prototype based on the concept.

2

CHAPTER 2. BACKGROUND INFORMATION CuSharp

2. Background Information
There are a lot of different approaches to compile C# code for GPUs and execute it on them. In
this chapter some of the most popular alternatives to do so are evaluated. The goal is to get a rough
overview of the different tool-chains.

2.1. Overview

The basic structure of the various GPU development tool chains is often very similar with varying
amounts of compilation-steps. Some APIs use assembly-like input while others use C-like languages.
Figure 2.1 shows a possible basic structure of a .NET to GPU cross-compiler.

Figure 2.1.: Compilation to GPU Process Overview.

2.2. .NET Framework / C#

The .NET framework respectively C# code is the given input of the tool-chain to be developed. As
a starting point, there are two possible main approaches:

� Compiling from C#, for instance by employing tools from the Roslyn compiler toolchain [2].

� Compiling the Microsoft Intermediate Language code, a byte code format stored in a DLL-file
serving directly as input to the .NET virtual machine, generated by the Roslyn compiler for C#.
After C# code is compiled to MSIL, the dynamic linked library (DLL) can be disassembled and
the contained MSIL-code can be translated to a language accepted by the GPU-API.

3

2.3. TOOLCHAINS CuSharp

Figure 2.2.: .NET Compilation Process Overview Using the Roslyn C# Compiler [2].

2.3. Toolchains

There are various tool-chains for executing instructions on graphics cards. The best supported and
most widely used input languages in this area are C, C++ and C-like languages. Often, compilers
or wrappers already exist that connect the various tool-chains with each other. Figure 2.3 illustrates
four of the most popular tool-chains and their interrelationships.

4

2.3. TOOLCHAINS CuSharp

Figure 2.3.: GPU Toolchain Overview, Showing Toolchains for CUDA [1], Vulkan [3] and OpenCL [4].

2.3.1. Nvidia CUDA

Nvidia CUDA [1] consists of an API, different kernel programming languages and a toolchain. CUDA-
API is a proprietary API for Nvidia GPUs. Nvidia’s tool-chain supports CUDA-C, C++ and Fortran
as kernel language. With the help of the NVVM compiler frontend the kernel language is translated
to the intermediate language NVVM IR, a subset of LLVM IR. NVVM IR is then compiled to PTX
ISA, which is afterwards executed on the GPU.

According to Nvidia’s developer pages, the LLVM compiler for CUDA can also be used to compile other
languages for Nvidia GPUs [5]. Implementations of this approach such as Alea GPU [6], Altimesh
Hybridizer [7] and CUDAfy [8] do exist, but are either no longer maintained or closed-source.

5

2.3. TOOLCHAINS CuSharp

Figure 2.4.: Structure of LLVM Compiler for CUDA [5].

2.3.2. AMD HIP

AMD HIP [9] is a CUDA compatible language and compiler-toolchain by AMD. The goal of HIP is to
make it possible to write the same C++ code for AMD and NVIDIA GPU-devices. The C++ code is
compiled to PTX ISA for NVIDIA devices and AMD GCN ISA for AMD devices.

2.3.3. Vulkan

Vulkan [3] is an API for graphics and GPU-compute purposes. It is developed and maintained by the
Khronos Group. The Vulkan API is implemented in GPUs of many vendors making it possible to
write cross-platform compute-shaders.

2.3.4. OpenCL

OpenCL (Open Computing Language) [4] is an open standard that allows to write programs that
can be executed on GPUs. GPUs from various manufacturers, such as Nvidia, AMD and Intel, are
supported [10]. As an input language, OpenCL provides a C-like language called OpenCL C which
can be executed directly on the OpenCL runtime.

The tool-chain is still maintained and also has the advantage of being platform-independent. C#
wrappers for OpenCL C already exist, but they were often last modified a few years ago and do not
seem to be maintained anymore. We also observed that the OpenCL C API is more cumbersome than
CUDA API.

6

CHAPTER 3. REQUIREMENTS CuSharp

3. Requirements

3.1. Functional Requirements

No. Level Requirement

FR-1 Must C# functions can be selected as a GPU-kernel.

FR-2 Must C# kernels can be compiled to GPU-runnable kernels.

FR-3 Must C# kernels can be launched on the GPU.

FR-4 Must Data can be transferred to the GPU.

FR-5 Must Data can be transferred from the GPU to main-memory.

FR-6 Must A thread can access its thread-ID, block-ID and block-size.

FR-7 Must Addition, multiplication and subtraction operations can be applied to data in
kernels.

FR-8 Must Any primitive numeric types of C# version 10.0 may be used as scalar or array-
parameters of the kernel.

FR-9 Should Division and modulo operations can be applied to data in kernels.

FR-10 Should The same kernel can be launched multiple times.

FR-11 Should Different kernels can be launched during a single program-execution.

FR-12 Should While-loops and for-loops can be used in kernels.

FR-13 Should If- and else-constructs can be used in kernels.

FR-14 Could Generics can be used with kernel parameters.

FR-15 Could Shared memory can be allocated and used in kernels.

FR-16 Could Length-property of arrays can be used in kernels.

FR-17 Could The framework supplies its user with tools to measure kernel-performance.

FR-18 Could Kernels can call other methods.

FR-19 Could Kernels can allocate new arrays.

FR-20 Could Multidimensional arrays can be used in kernels.

FR-21 Could Kernels can be compiled ahead of time.

Table 3.1.: Functional Requirements.

3.2. Non-Functional Requirements

No. Level Requirement

NFR-1 Must Kernels can be compiled and run in less than 5 lines of code (excluding kernel-
definition).

NFR-2 Must Compilation of a simple vector-addition-kernel takes less than 3 seconds on the
evaluation machines.

NFR-3 Must Evaluation kernels runtime-performance does not deviate more than 50% from
the same kernels run from the CUDA C++ library.

NFR-4 Must The compilation steps to achieve FR-6 are unit-tested for a simple case.

NFR-5 Should The compilation steps to achieve FR-8, FR-9, FR-12 & FR-13 are unit-tested
for a simple case.

NFR-6 Could The compilation steps to achieve FR-14 to FR-16 are unit-tested for a simple
case.

Table 3.2.: Non-Functional Requirements.

7

3.3. CONSTRAINTS CuSharp

3.3. Constraints

3.3.1. Source Language

The framework will be implemented in .NET/C# since the goal of this thesis is to run C# code on
GPU-devices.

3.3.2. Target Devices

The code translated and deployed by the framework has to be compatible with NVIDIA devices. It
may or may not be compatible with devices from vendors other than NVIDIA. In this project, only
compatibility with NVIDIA devices is explicitly implemented and tested.

3.4. Scope

3.4.1. Minimum Viable Product (MVP)

The minimum viable product of this thesis is a framework that is able to deploy the C#-kernel of
listing 3.1. Type T may be any numeric type. The generic type T of C# is not supported in the
MVP. Operator OP represents either addition, subtraction or multiplication.

1 void Kernel(T[] a, T[] b, T[] c)

2 {

3 int idx = blockDim.x * blockIdx.x + threadIdx.x;

4 c[idx] = a[idx] OP b[idx];

5 }

Listing 3.1: MVP Kernel.

3.4.2. Limitations

The cross-compiler developed during this thesis supports a limited subset of the C# language as listed
in the functional-requirements. Limitations include but are not limited to:

� Accessing fields not specified as a parameter of the kernel and not declared and defined inside
the kernel except for kernel-tools like accessing block-dimensions.

� Using or declaring structured data (classes, structs, etc.), except for arrays, inside a kernel.

� Using structured data types, except for arrays, as parameter-types of a kernel.

� Calling methods except for kernel-tools like SyncThreads.

Declaring a kernel non-void and returning data using the return-keyword inside the kernel will be
translated to a void-kernel returning no data.

8

CHAPTER 4. SOLUTION STRATEGY CuSharp

4. Solution Strategy
This chapter documents choices made before starting with software-development. These decisions are
required due to the great architectural impact imposed by the given alternatives.

To be able to run a piece of software on a GPU-device, it needs to be handed to a driver-API. Different
APIs offer different capabilities and accept a kernel to be deployed in different formats. Choosing an
API therefore also means choosing a target format that our C#-kernel needs to be compiled into.

4.1. Alternatives

The following alternatives were chosen for evaluation because they are established in academics and
industry, well documented and still receive support and development efforts by their respective vendors.

4.1.1. Vulkan Compute-API

To run a kernel written in C# via the Vulkan compute-API it would need to be translated to a shading
language such as GLSL or HLSL. Using the Vulkan libraries [3] provided by Khronos or a wrapper-
framework such as Kompute [11], the shader would then be translated to SPIRV and deployed to the
GPU-device. Since GLSL and HLSL are C-like languages, it would make sense to directly translate
C#, for example using the Roslyn compiler-project [2], to the respective shading language.

4.1.2. NVIDIA CUDA

To run a kernel via the CUDA API one would first need to translate the kernel to either NVVM IR or
PTX ISA. Since both NVVM IR and PTX ISA are assembly-like languages it is easiest to translate
the kernel from its compiled MSIL form.

While both NVVM IR and PTX ISA are viable compilation-targets, NVVM IR seems like the better
choice. As mentioned, NVVM IR is a subset of LLVM IR and there exist many compilers from LLVM
IR to different platforms. Therefore, choosing LLVM as a compile-target will make it easier to target
additional GPU-Compute-APIs in future projects without completely reimplementing everything done
during this thesis.

4.2. Performance Evaluation

4.2.1. Test Setup

To test CUDA, the CUDA driver-API [12] was used, getting a pre-compiled PTX-kernel as input.
The Kompute-library [11] was used to perform tests via the Vulkan API in a simplified manner. The
programming models of CUDA and Vulkan differ in certain areas. The exact source-files of the tests
can be found in Appendix E.

The following is a pseudocode representation of the test-kernel or test-shader respectively.

1 For i = 0 To 999

2 outArray[kernelIndex] = arrayA[kernelIndex]* arrayB[kernelIndex] +i

3 EndFor

Listing 4.1: Evaluation Kernel Pseudo-Code.

The for-loop is there to increase computational overhead and therefore make the kernel more compute-
bound.

4.2.2. Results

These results show an average of 10 measurements per input-size, device-model and API. The raw
data can be seen in Appendix F.

Notably, Vulkan compute-shaders not only perform worse than CUDA-kernels in general, but also start

9

4.3. ADDITIONAL EVALUATION CuSharp

100 101 102 103 104 105 106 107
0

50

100

150

200

250

300

350

400

450

500

Amount of elements per vector

T
im

e
in

m
il
li
se
co
n
d
s

NVIDIA Geforce RTX 3060TI

CUDA
Vulkan

100 101 102 103 104 105 106 107
0

50

100

150

200

250

300

350

400

450

500

Amount of elements per vector

T
im

e
in

m
il
li
se
co
n
d
s

NVIDIA Geforce GTX 970

CUDA
Vulkan

Figure 4.1.: CUDA vs Vulkan Testresults.

to scale linearly with the vector-size earlier. This is most likely due to limitations to the amount of
threads started in parallel in Vulkan. Additionally, CUDA scales stronger with the efficiency of newer
GPUs. At 10 million elements per vector CUDAs performance increased 506.5% from the GTX970 to
the RTX3060TI, while Vulkans performance increase is only at 11.2%.

4.3. Additional Evaluation

In addition to performance indicators, the type of IR we want to target and the way in which kernels
or shaders are executed are also important to the success of this thesis.

Since assembly-like languages are more simple in their grammar than C-like languages it will be less
labor to translate MSIL to NVVM IR than to translate C# to GLSL.

The CUDA driver-API has similar semantics as the product of this thesis should have. The Vulkan-
API itself is more cumbersome to use and differs in semantics, especially when comparing grid size
and block size definition in CUDA to workgroup-size definition in Vulkan/Kompute.

Even though a Vulkan-based product could natively be used on most modern GPU-devices, similar
platform independence can also be achieved by creating or using additional compilers from NVVM IR
to platform-specific instruction sets in future projects and theses.

4.4. Decision

Considering the results of the evaluation, this thesis will implement a product based on CUDAs
driver-API and the Nvidia NVVM IR Library (LibNVVM).

10

CHAPTER 5. ARCHITECTURE CuSharp

5. Architecture
This chapter describes the architecture of the software-library called CuSharp that enables its user to
run kernels written in C# on NVIDIA GPU-devices. The architecture is documented using the C4
template [13]. The context-diagram shows the library itself as a black-box and emphasizes external
dependencies. The container-diagram shows separately usable parts of the library. The component-
diagram further refines the architecture by presenting software-components and dependencies between
them in an abstract manner. Components are not necessarily single C# classes and not every C#
class is necessarily represented by a component.

5.1. Context

Figure 5.1.: C4 Context Diagram.

The program written by the user in C# uses the framework in development to configure how kernels
are run. It also specifies which C# functions are meant to be discovered as kernels by the library.

The kernel-itself also uses the library, to receive information about its thread-id, block-id and block-
size.

The LLVM Assembler allows the framework to emit LLVM IR.

CUDA Libraries are used to translate our kernel to CUDA specific representations and to launch
kernels on a GPU-device.

5.2. Containers

Figure 5.2.: C4 Container Diagram.

11

5.3. COMPONENTS CuSharp

The Framework Frontend that gives the user the ability to configure and launch kernels allows various
compilation backends to be used.

The Cross-compiler compiles an MSIL function to NVVM IR and finally translates it to PTX ISA.

The NVVM Library Bindings use the NVVM Compiler Library to compile NVVM IR to PTX ISA

The CUDA Driver API Bindings make the CUDA-Driver API available to the Framework Frontend

5.3. Components

Figure 5.3.: C4 Component Diagram.

5.3.1. Framework Frontend

The framework-frontend consists of three components:

CuSharp AOTC is an executable that acts as an ahead-of-time compiler. It allows its users to compile
all kernels marked with the Kernel Annotation before the C# User Program is being executed.

A CuSharp Devicecontext allows the user to configure and launch kernels on the GPU-device. When
launching a kernel, the device context will either JIT-compile the method selected as kernel, or use
an AOT-compiled kernel, if it exists.

The Kernel Discovery component is encapsulated in its own component that is responsible for iden-
tifying kernels marked with a Kernel Annotation via reflection.

5.3.2. Cross-Compiler

The Cross-compilation layer contains the business logic of the framework in development.

The Compilation Management Unit acts as an abstraction layer for the compilation-process and man-
ages all stages of the tool chain. It makes compilation-results available to later stages in a Compiler
Cache as a Kernel Object that is no longer meant to be analyzed in detail by the framework in devel-
opment. It also tries to find any ahead-of-time compiled kernels to use instead of just-in-time compiled
ones.

12

5.4. ARCHITECTURAL DECISIONS CuSharp

The Kernel Object contains the final PTX-code.

TheMSIL to LLVM Cross-Compiler generates LLVM code with constraints such as NVVM as specified
in the Target API Settings component.

The CUDA NVVM Compiler Bindings translate NVVM compliant IR into PTX ISA, by using the
NVVM Compiler Library.

5.3.3. Hardware Dispatching

The CUDA Driver API Bindings are called upon by the Cuda Context and runs an Kernel Object by
passing it to the Cuda Driver Library.

5.4. Architectural Decisions

5.4.1. Framework Frontend

External dependencies In the context of maintainability we decided to hide all external dependencies
of our software from the user and to not allow any access to third-party libraries. This ensures that
external dependencies are easily replaceable. It also allows us to guarantee full control over the
frameworks interface, accepting more labor in implementation and architecture.

Kernel Launch API In the context of the API allowing the user of the framework in development
to launch a kernel on a GPU device, we decided to use multiple overloads of the launch-method and
against creating a single-method with generally-typed parameters or manually overloading the launch-
method, to give programmers more type-safety and allowing for faster changes of the framework-API,
accepting additional development time of the code-generator.

5.4.2. Compiler Frontend

Disassembling MSIL: In the context of disassembling MSIL code to cross-compile it to LLVM, we
decided not to use a dedicated disassembler-library or component. Instead, we chose to manually read
the binary MSIL-opcodes and operands as needed and cast them to a readable format to lessen the
performance overhead. While this approach may result in a loss of type-safety and convenience, we
deemed it to be an acceptable trade-off.

LLVM IR Assembling: In the context of assembling LLVM IR during cross-compilation, we decided
to use LLVMSharp [14] instead of developing a dedicated LLVM or NVVM assembler. This decision
was made to save time during development and to gain confidence in the generated code, as well as
to assemble more optimized code. However, we accepted less control over the generated code and the
need to learn the LLVMSharp API.

5.4.3. Compiler Backend

NVVM to PTX Compilation: In the context of NVVM IR to PTX ISA compilation, we faced the
need to programmatically and easily compile and access the results. We decided to create our own
libNVVM bindings instead of using the open-source executable compiler ”llc”. This choice allowed
us to achieve more control over compilation, although it required more overhead for creating and
maintaining the libNVVM bindings.

Cross-Compiler Device Specifics: In the context of device specifics, we decided to create a Compiler
Configuration component that encapsulates device specific datalayouts and kernel-annotations. By
doing so instead of integrating this information into the compiler, we enable future development of the
framework to expand the compiler to support more devices from different device-vendors. To support
this we accept a more complex interface of the cross-compiler.

13

5.4. ARCHITECTURAL DECISIONS CuSharp

5.4.4. Hardware Dispatching

GPU Kernel Execution Library: In the context of executing GPU kernels via the CUDA API, we
faced the need to transfer data to and from the GPU device, as well as launching kernels. In order to
achieve more control over the API, we decided to use the CUDA Driver Library instead of the CUDA
Runtime Library. This better fits our requirements, despite the Driver Library having a more complex
API compared to the Runtime Library.

Kernel Execution Bindings: In the context of executing GPU kernels via the CUDA Driver Library
in C#, we faced the need to access the CUDA Driver Library in an object-oriented manner. After
considering our options, we decided to use managedCUDA [15] instead of creating our own bindings.
This decision was made to save time in development and licensing research, even though we accepted
having to use the API of managedCUDA instead of having an API perfectly fitting our use-case.

14

CHAPTER 6. QUALITY ASSESSMENT CuSharp

6. Quality Assessment
The following chapter is a quality assessment of the product built during this thesis. The sections
below list the fulfillment status of requirements as well as a performance analysis.

6.1. Testing

Three classes of tests were performed to assess the quality of CuSharp:

Automated Unit-Tests: Contained in the CuSharp.Tests project. Test the behavior of single
components in the architecture.

Automated Integration-Tests: Contained in the CuSharp.Tests project. Test the behavior of the
whole system including compilation and runtime.

Performance-Tests: Contained in the CuSharp.PerformanceEvaluation project. Mea-
sure the performance of different types of kernels.

Table 6.1.: Overview of Test Types.

In total there are almost 300 automated tests. About two thirds are unit tests and one third are
integration tests.

6.1.1. Test Coverage

An evaluation of the test coverage has been done, but an exact coverage number cannot be given.

The problem is that certain tests need to run in debug mode and certain tests need to run in release
mode. The tests depend on the MSIL output from Roslyn. The output varies depending on the build
configuration. When evaluating the test coverage this leads to different reports being generated and
these would have to be manually merged to get the numbers (lines of code covered and branches
covered) right.

What can be said is that the coverage is at least 77%.

15

6.2. REQUIREMENTS ANALYSIS CuSharp

6.2. Requirements Analysis

6.2.1. Functional Requirements

No. Fulfilled? Level of Fulfillment

FR-1 Yes All static methods may be selected as kernels.

FR-2 Yes Fulfilled. All methods complying with the CuSharp language subset may be
compiled to GPU-runnable kernels.

FR-3 Yes All kernels complying with the CuSharp language subset may be launched on
Nvidia-GPUs.

FR-4 Yes All types as defined in Chapter D are transferrable to the GPU.

FR-5 Yes All types as defined in Chapter D are transferrable to main-memory.

FR-6 Yes NVVM intrinsic fields and functions are accessible as defined in Chapter D.

FR-7 Yes Fulfilled for all supported data types.

FR-8 Yes Fulfilled as specified in Chapter D.

FR-9 Yes Fulfilled for all supported data types.

FR-10 Yes Compiled kernels are cached and can be redeployed to the GPU.

FR-11 Yes Any number of kernels may be executed during one single program-execution.

FR-12 Yes Fulfilled as specified in Chapter D.

FR-13 Yes Fulfilled as specified in Chapter D.

FR-14 No Unfulfilled because of time-constraint.

FR-15 Yes Newly allocated arrays are put into shared memory.

FR-16 No Unsupported because it would generate major runtime-overhead.

FR-17 Yes CUDA-Events can be used to measure execution time.

FR-18 Yes Supported as specified in Chapter D.

FR-19 Yes Arrays allocated during kernel execution, are allocated in shared memory.

FR-20 Yes Multidimensional arrays can be used, both as parameter and local-variable.

FR-21 Yes Implemented by the CuSharp.AOTC executable.

Table 6.2.: Analysis of Functional Requirements.

6.2.2. Non-Functional Requirements

No. Fulfilled? Level of Fulfillment

NFR-1 Yes One line for specifying the device and one line to launch a kernel

NFR-2 Yes Fulfilled as specified in Section 6.4.

NFR-3 Yes Fulfilled as described in Section 6.4.

NFR-4 Yes FR-6 is extensively tested by many unit-tests and integration-tests.

NFR-5 Yes FR-8, FR-9, FR-12 & FR-13 are unit-tested and integration-tested.

NFR-6 Partially FR-16 is not implemented. FR-14 and FR-15 are implemented and tested.

Table 6.3.: Analysis of Non-Functional Requirements.

6.3. Technical Debt

6.3.1. Platform Independence

Due to the NVVM native bindings, CuSharp can only be used on Windows machines.

Windows library: ’nvvm\bin\nvvm64 40 0.dll’

Linux library: ’nvvm/lib64/libnvvm.so.4.0.0

16

6.4. PERFORMANCE ANALYSIS CuSharp

6.4. Performance Analysis

The following analysis show the results of experimental performance measurements of the compiled
kernels to be deployed on a CUDA enabled GPU-device. Measurements only include the time to run
on the devices and do not incorporate time to compile or data-transfer times. The results show the
performance of the MSIL to PTX compiler developed by this thesis in comparison to the proprietary
compilers developed by Nvidia.

All measurements are averages of 10 measurements.

6.4.1. Test Setups

Test device A

Device ID Nvidia GeForce GTX 970
No. of Cores 1664
Memory size 4 GB
Memory type GDDR 5
CUDA API Version 5.2

Test device B

Device ID Nvidia GeForce RTX 3060TI
No. of Cores 4864
Memory size 8 GB
Memory type GDDR 6
CUDA API Version 8.6

6.4.2. Matrix Multiplication Performance

The following charts show the execution time of matrix multiplication operations on double typed
data, with matrices of sizes between one and four million elements. Note that the x-Axis is not scaled
linearly but polynomially since we scaled the matrix width linearly. The kernel used in this evaluation
can be seen in appendix, Section E.1

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

20

40

60

80

100

120

140

160

180

Elements per Matrix in Thousands

E
x
ec
u
ti
on

ti
m
e
in

m
il
li
se
co
n
d
s

Test Device A

CUDA
CuSharp

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

10

20

30

40

50

60

Elements per Matrix in Thousands

E
x
ec
u
ti
on

ti
m
e
in

m
il
li
se
co
n
d
s

Test Device B

CUDA
CuSharp

Figure 6.1.: CUDA vs CuSharp Matrix Multiplication Test Results.

The kernel-code generated by the original cuda compiler generates more efficient code in all cases.

17

6.4. PERFORMANCE ANALYSIS CuSharp

This is likely due to more optimizations being made. The deviation between CuSharp and CUDA
performance is almost constant across all tested matrix sizes.

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

0.95

1

1.05

1.1

1.15

1.2

Elements per Matrix in Thousands

C
u
S
h
a
rp

P
er
f.

/
C
U
D
A

P
er
f.

CuSharp vs CUDA Performance

Test Device A
Test Device B

Figure 6.2.: CUDA vs CuSharp Matrix Multiplication Deviation Factor.

On average, CuSharp-compiled kernels executed 2.5% slower than CUDA-compiled kernels on test
device A and 4.7% slower on test device B.

6.4.3. Tiled Matrix Multiplication Performance

The following charts show matrix multiplication operation similar to the one performed in Subsection
6.4.2, but accelerated by first copying tiles of each input matrix into the shared memory of the devices.
The kernel used in this evaluation can be seen in appendix, Section E.2.

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

20

30

40

50

60

70

80

90

Elements per Matrix in Thousands

E
x
ec
u
ti
on

ti
m
e
in

m
il
li
se
co
n
d
s

Testdevice A

CUDA
CuSharp

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

5

10

15

20

25

30

35

Elements per Matrix in Thousands

E
x
ec
u
ti
on

ti
m
e
in

m
il
li
se
co
n
d
s

Testdevice B

CUDA
CuSharp

Figure 6.3.: CUDA vs CuSharp Tiled Matrix Multiplication Test Results.

The deviation between CuSharp and CUDA performance, again, has an almost constant relationship.

18

6.4. PERFORMANCE ANALYSIS CuSharp

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

0.95

1

1.05

1.1

1.15

1.2

Elements per Matrix in Thousands

C
u
S
h
ar
p
P
er
f.

/
C
U
D
A

P
er
f.

CuSharp vs CUDA Performance

Test Device A
Test Device B

Figure 6.4.: CUDA vs CuSharp Tiled Matrix Multiplication Deviation Factor.

On average, CuSharp-compiled kernels executed 1.4% slower than CUDA-compiled kernels on test
device A and 4.8% slower on test device B.

6.4.4. 2D-Array Matrix Multiplication Performance

As described in Chapter 7, two-dimensional arrays have a performance overhead over single-dimensional
arrays. The following chart illustrates this overhead. Measurements were performed on double-typed
matrix multiplication operations, on test device A.

1,
00
0

1,
21
0

1,
44
0

1,
69
0

1,
96
0

2,
25
0

2,
56
0

2,
89
0

3,
24
0

3,
61
0

4,
00
0

1.1

1.15

1.2

1.25

Elements per Matrix in Thousands

E
x
ec
u
ti
on

ti
m
e
in

m
il
li
se
co
n
d
s

2D-Array vs 1D-Array Performance

Test Device A

Figure 6.5.: CUDA vs CuSharp Matrix Multiplication Test Results.

The overhead scales linearly, since it stems from the fact that each array-access needs to dereference
two array-references in two-dimensional arrays, instead of the single dereferencing of single-dimensional
arrays.

19

CHAPTER 7. IMPLEMENTATION CHALLENGES CuSharp

7. Implementation Challenges
This chapter gives an overview of the hardest problems we encountered while implementing this thesis.

7.1. Language Execution Model Deviation

Our source and target-language deviate in how they handle kernel-local memory. While MSIL, the
source language, targets a virtual stack, NVVM IR, our target language, uses virtual registers. To
handle this deviation, we introduced a stack of registers in our cross-compiler. Any time MSIL pushes
a value onto the stack, we store it in a virtual register and push a reference to said register onto our
compiler stack. Any time MSIL instructs us to pop a value from the stack, we pop a register from the
compiler stack. This process is well known and is thoroughly described in literature [16].

Figure 7.1.: Compiling from Stackmachine to Registermachine via Compiler Stack.

7.2. Static Single Assignment (SSA)

LLVM IR and therefore NVVM IR constrains all code to static single assign (SSA) form [17]. Com-
piling any non-SSA language into LLVM IR needs special care, as described in sections 7.3 and 7.4.
To solve this issue, the cross-compiler built during this thesis creates a control-flow-graph (CFG) [18]
and populates its nodes with the necessary information.

Figure 7.2.: Control-Flow-Graph Definition for an MSIL Example.

7.3. Variable Deviation after Branching

Local variables are represented by virtual registers in LLVM. The SSA-constraint may lead to conflicts
between registers to use as a local-variable or parameter after multiple branches merge, by jumping
into the same target-branch.

20

7.3. VARIABLE DEVIATION AFTER BRANCHING CuSharp

To resolve the confusion, the phi -function is used. The phi-function accepts parameters where the i-th
parameter represents the value of the version of the variable that is valid if the i-th predecessor of the
current block led to the current block being executed.

Figure 7.3.: Phi-Problem (Left) and Solution (Right) after Branching (in Pseudocode).

An additional problem occurs when the block that is the target of two preceding blocks does not
access local variables of its predecessors. In this case, later blocks will not be able to refer to these
variables. Therefore, the phi-function has to be introduced regardless of the current blocks usage of
the respective variables.

Figure 7.4.: Phi-Problem (Left) and Solution (Right), after Branching to Predecessor (in Pseudocode).

Not all predecessors of a block in the control-flow-graph may be known at the time the block is
compiled. To solve this issue, compilation is separated into a main compilation phase and a post
compilation phase. During the main compilation phase, all op codes are compiled to their LLVM
counterparts and the control-flow-graph is being built. Phi-inststructions are built, but left empty
without parameters. During the post compilation phase, the control-flow-graph is being walked again

21

7.4. STACK DEVIATION AFTER BRANCHING CuSharp

and all phi-instructions get their incoming values.

Figure 7.5.: Compilation Steps for Building Correct Phi-Functions.

7.4. Stack Deviation after Branching

Additional branching conflicts might occur with respect to the variable-stack. MSIL allows for different
values to be pushed onto the stack right before branching occurs. Since we translate the stack based
MSIL language to the register based LLVM language by creating a stack of registers during compilation,
this means that, at compile time, it is unclear to us how the stack should look at the start of a block
with multiple predecessors.

Figure 7.6.: Branch-Conflict with Compiler Stack.

To resolve this conflict, additional phi-instructions need to be built. The newly built instructions
replace the conflicting ones on the stack. This ensures that the right register-values will be on the
stack regardless of which predecessor jumped to the current block.

22

7.5. ARRAY-LENGTH PROPERTY CuSharp

Figure 7.7.: Branch-Conflict with Compiler Stack Solution.

7.5. Array-Length Property

In C# the length of an array can be queried by using array.Length. This feature does not exist in
LLVM. To still be able to use the length-property in CuSharp-kernels, array-lengths of parameters
must be provided to the LLVM kernel at runtime as additional parameters.

This can either be achieved by creating a map from array-address to array-length, with an entry
for each array-parameter, or alternatively, instead of allocating just the array, by allocating a struct
containing a reference to the array and a field containing the length of the array.

Due to time-constraints and the performance overhead of managing the mechanisms to query the
array-length, CuSharp currently does not support the array length property.

7.6. Two-Dimensional Arrays

C# supports two-dimensional Arrays that, for instance, can be used to represent matrices.

Figure 7.8.: Two-Dimensional C# Arrays.

There are two ways to support two-dimensional arrays in our compiler.

Two-dimensional arrays can be flattened-out, so that they appear as a single dimensional array inside
NVVM IR.

23

7.6. TWO-DIMENSIONAL ARRAYS CuSharp

Figure 7.9.: Flattened-out 2D-Array.

Access to an element at position (x,y) in an array with a width of rowLength would look as described
in Listing 7.1.

1 element = flattArray[x * rowLength + y]

Listing 7.1: Pseudo-Code of Two-Dimensional Array Access Using Array-Length.

Given that the array-length access is implemented efficiently, this way would be efficient itself, since
we would only need a single dereferencing of an array-reference. However, since CuSharp currently
does not support array-length access, we cannot implement the access this way.

Alternatively we can create an additional array, containing a reference to each row-start.

Figure 7.10.: Flatted out 2D-Array with Additional Row Array.

To access an element at position (x,y) we can proceed as described in Listing 7.2.

1 rowArray = arrayOfRows[x];

2 element = rowArray[y];

Listing 7.2: Pseudo-Code of Two-Dimensional Array Access Using Two Arrays.

This approach has the performance disadvantage of an additional indirection. However, it is more
suitable if we do not have any information about the with of the 2D-array at runtime. As a result,
CuSharp implements the later approach.

7.6.1. Initialization of Two-Dimensional Arrays

CuSharp kernel-parameters receive two-dimensional arrays as arguments of type T** where T is the
type of the arrays elements. To do this, CuSharp copies the two-dimensional array of type T[,] to a
one-dimensional array of type T[] and stores pointers to each row in an additional array, passing the
latter typed T**.

A series of NVVM IR restrictions on LLVM IR lead to a more complicated process for initialization
of multidimensional, locally-allocated arrays.

24

7.6. TWO-DIMENSIONAL ARRAYS CuSharp

The first restriction is that the alloca-instruction is not supported except for thread-local memory
allocation [19]. To allocate memory in address-spaces global and shared, the only possible way found
during research is to declare an array-typed global variable.

LLVM-arrays are declared with the type specifier [N x T] where N is the statically defined number of
elements in the array and T is the type of the elements of the array. The phi-function can only return
values of a single type. In the case of the one-dimensional array, this poses no problem since a value
of type [N x T] can simply be cast to T*.

In the case of two-dimensional arrays, however, allocation becomes more complicated. Type [N x [M x T]],
where N is the height of the array and M is the width of the array, cannot be cast to T**, which is the
type of two-dimensional arrays used as parameters.

Because a single phi-function returns one type, using both [N x [M x T]] and T** typed registers in
a single phi-call is not possible.

Therefore, using [N x [M x T]] would mean that parameters could not be assigned to local variables,
and local variables could not be assigned to parameter variables, since these assignments require both
types to be used in single phi-calls.

The solution to this is to simply declare one global variable of type [NM x T], containing the elements of
all rows of the array (N times M elements) and one global variable of type [N x T*] containing pointers
to the rows of the first array. The later variable will then be used to refer to the two-dimensional
array.

The array of row-pointers now needs to be initialized by a series of N store-operations. For arrays
passed as arguments, this process is performed outside the kernel. However, for locally allocated
arrays this needs to be performed inside the kernel.

25

CHAPTER 8. FINAL PRODUCT CuSharp

8. Final Product

8.1. API

8.1.1. Static Class: Cu

Methods:

� static IEnumerator<(int ID, string Name)> GetDeviceList()

Returns an enumerator to a tuple of CUDA-enabled device-IDs and device-names.

� static CuDevice GetDeviceById(int deviceId)

Accepts a device-ID as argument.
Returns a CuDevice instance.

� static CuDevice GetDefaultDevice()

Returns a CuDevice instance of the system-default CUDA-device.

� static CuEvent CreateEvent()

Returns a CuEvent instance.

Properties:

� static bool EnableOptimizer

Is used to enable or disable NVVM IR optimization.
Defaults to true in release-mode, false in debug-mode.

� static string AotKernelFolder

Is used to set a folder of precompiled kernels to be used instead of JIT-compilation.

8.1.2. Class: CuDevice

Implementing: IDisposable

Methods:

� string ToString()

Returns the device-name as string.

� void Synchronize()

Blocks until the device has completed all requested tasks.

� Tensor<T[]> Allocate<T>(int size)

Accepts a size to be allocated
Returns a Tensor instance as reference to the allocated array on the GPU-device.

� Tensor<T[,] Allocate<T>(int sizeX, int sizeY)

Accepts x and y sizes of the 2D-array to be allocated.
Returns a Tensor instance as reference to the allocated array on the GPU-device.

� Tensor<T[]> Copy<T>(T[] hostTensor) where T : struct

Accepts an array of value-type elements as argument, allocating it on the GPU-device.
Returns a Tensor instance as reference to the allocated array on the GPU-device.

� Tensor<T[,]> Copy<T>(T[,] hostTensor) where T : struct

Accepts a 2D-array of value-type elements as argument, allocating it on the GPU-device.
Returns a Tensor instance as reference to the allocated 2D-array.

� Tensor<T> CreateScalar<T>(T hostScalar) where T : struct

Accepts a scalar of value-type as argument, preparing it to be used as a parameter to the kernel.
Returns a Tensor instance as reference to scalar value.

26

8.1. API CuSharp

� T[] Copy<T>(Tensor<T[]> deviceTensor) where T : struct

Accepts a Tensor with an array generic type-parameter copying it back to host-memory.
Returns the array copied back from the GPU-device.

� T[,] Copy<T>(Tensor<T[,] deviceTensor) where T : struct

Accepts a Tensor with a generic 2D-array type-parameter copying it back to host-memory.
Returns the 2D-array copied back from the GPU-device.

� void Launch<T0, ..., TN>(Action<T0, ..., TN> kernel, (uint, uint, uint) gridDimensions,

(uint, uint, uint) blockDimensions, Tensor<T0> param0, ... , Tensor<TN> paramN)

Compiles a kernel-method and launches it with the specified grid and block dimensions as well
as arguments.
Accepts a method reference, a grid-dimensions triple, a block-dimensions triple, up to 10 pa-
rameters.
Scalars may be directly passed as tensor-arguments. They will be implicitly converted to tensors.
For this to happen, the generic type parameters must be specified explicitly.

IDisposable implementations:

� void Dispose()

Deallocates resources of the device handle.

8.1.3. Interface: ICuEvent

Implementing: IDisposable
Can be used to measure runtime performance of GPU kernels.

Methods:

� void Record()

Records the event at the current point in time.

� float GetDeltaTo(CuEvent secondEvent)

Calculates the timespan in milliseconds between the event and the event specified as parameter.
Accepts a CuEvent instance representing the second event.

IDisposable implementation:

� void Dispose()

Deallocates resources of the event handle.

8.1.4. Attribute: Kernel

Constructors:

� [Kernel]

Marks a static method as kernel. Sets the memory-location for locally allocated arrays to:
ArrayMemoryLocation.GLOBAL (global memory).

� [Kernel(ArrayMemoryLocation location)]

Marks a static method as kernel. Sets the memory-location for locally allocated arrays to
location.
Allowed values for location are: ArrayMemoryLocation.GLOBAL and ArrayMemoryLocation.SHARED.

27

8.1. API CuSharp

8.1.5. Examples

1 [Kernel]

2 static void IntAdditionKernel(int[] a, int[] b, int[] result)

3 {

4 uint index = KernelTools.BlockIndex.X *

5 KernelTools.BlockDimensions.X +

6 KernelTools.ThreadIndex.X;

7

8 result[index] = a[index] + b[index];

9 }

Listing 8.1: Kernel Definition Example.

1 Cu.EnableOptimizer = true; // optional

2 Cu.AotKernelFolder = "./ resources"; // optional

3 var device = Cu.GetDefaultDevice ();

4

5 var arrayA = new int[] {1,2,3};

6 var arrayB = new int[] {4,5,6};

7

8 var deviceArrayA = device.Copy(arrayA);

9 var deviceArrayB = device.Copy(arrayB);

10 var deviceResultArray = device.Allocate <int >(3);

11

12 device.Launch(IntAdditionKernel , (1,1,1), (3,1,1),

13 deviceArrayA , deviceArrayB , deviceResultArray);

14

15 var arrayResult = device.Copy(deviceResultArray);

Listing 8.2: Kernel Launch Example.

1 [Kernel]

2 static void FillArrayWithIntKernel(int[] array , int scalarValue)

3 {

4 uint index = KernelTools.BlockIndex.X *

5 KernelTools.BlockDimensions.X +

6 KernelTools.ThreadIndex.X;

7

8 array[index] = scalarValue;

9 }

Listing 8.3: Kernel Definition Example with Scalar.

1 var device = Cu.GetDefaultDevice ();

2

3 var deviceArray = device.Allocate <int >(3);

4

5 device.Launch <int[], int >(FillArrayWithIntKernel , (1,1,1), (3,1,1),

6 deviceArray , 42);

7

8 var result = device.Copy(deviceArray);

Listing 8.4: Kernel Launch with Scalar Example.

28

8.2. AHEAD-OF-TIME COMPILER CuSharp

8.2. Ahead-of-Time Compiler

CuSharp.AOTC.exe <path to dll> <path to output-folder>

The ahead-of-time compiler is an executable taking two arguments as input:

1. Path to the DLL containing the kernel-methods.

2. Path to the output folder for the compiled PTX Kernels.

Kernels to be compiled must be marked with the [Kernel] attribute. The name of the output kernel-
files must not be changed for the framework to use them instead of JIT compilation.

8.3. Supported Language

CuSharp supports a subset of C#. A detailed description of this subset can be found in Appendix D.

8.4. Publication of the Application and Sourcecode

All sourcecode comprising CuSharp is published on GitHub inside the CuSharp git-repository [20].
CuSharp is also deployed as a NuGet-packages [21] on the official NuGet-gallery [22].

8.4.1. Licensing

All code, developed in the scope of this thesis is licensed under the GNU General Public License
v3.0 (GPL3) [23]. GPL3 was chosen to ensure that CuSharp and any derivative work will remain
open-source and free of charge to the public.

8.4.2. Git Workflow

Most development of CuSharp was conducted on the main-branch of the git-repository. To keep
the main-branch in a working state after the public release of CuSharp, development will only be
performed on branches derived from the main-branch and later merged back into the main-branch.

Development branch-names are prefixed feature , for branches intended for development of new fea-
tures, and bugfix , for branches intendet to fix issues that exist on the main-branch.

29

CuSharp

Part II.

Conclusion and Outlook

30

CHAPTER 9. CONCLUSION AND OUTLOOK CuSharp

9. Conclusion and Outlook
The thesis results in a working prototype of a framework, to deploy C# methods to the GPU.

9.1. Production Readiness

All example use-cases described throughout this document are thoroughly tested. Despite this, we
do not recommend to use CuSharp in safety-critical applications. To make CuSharp ready for de-
velopment of safety-critical systems, it would need to be verified using more formal techniques than
unit-testing.

Still, we think that CuSharp can be used in less than safety-critical production environments. To do
so, we recommend testing CuSharp in the specific environment it is to be used in and with the specific
kernels to be compiled.

9.2. Outlook

There are multiple areas where CuSharp could be extended to support more features which were not
implemented due to the time constraint.

Using CuSharp on a linux system is currently unsupported. To support this, CuSharps libNVVM
bindings need to be extended.

Data types other than primitives can currently not be used in kernels. To implement the use of classes,
the class declarations need to be compiled to NVVM IR as well.

The initialization overhead through store-operations described in Subsection 7.6.1 is parallelizable by
a GPU-kernel itself. Further research and experiments could find out in which cases this would provide
a performance benefit.

For reasons specified in Section 7.5, use of the length-property of arrays is not supported. Implementing
this, will take a lot of thought to find the most efficient way to do so.

As mentioned in Section 7.6, with the implementation of the length-property of arrays, multidimen-
sional arrays could potentially be implemented more efficiently and more cleanly.

An additional feature that could be implemented in CuSharp is that CuSharp could cross-compile
anonymous-functions, making it easier and more readable to deploy small kernels.

Lastly, support for LINQ queries on arrays would generate significant development comfort.

31

CuSharp

Part III.

Appendix

32

APPENDIX A. PROJECT PLAN CuSharp

A. Project Plan

A.1. Important Dates

� 20.02.2023: Project kickoff

� 10.04.2023: One week of vacation

� 13.04.2023: Interim presentation

� 12.06.2023: Start of block week

� 12.06.2023: Abstract submission

� 16.06.2023: Final Submission (report and code)

� 26.06.2023: Final presentation with the bachelor exam

A.2. Working Process

Since the team consists of two people, the process framework ”Ration Unified Process (RUP)” is
applied to plan the workload of the bachelor thesis. RUP contains four project life-cycle phases
covering the following project-specific work areas:

Inception phase, elaboration phase, construction phase and transition phase

A.3. Phases and Milestones

In addition to the phases specified by RUP, the project was more finely divided into the following
phases, with a focus on the technical aspects:

� Part 1: Evaluation

� Part 2: MVP (technical breakthrough and meeting all must requirements)

� Part 3: Adding functionality (meeting all should requirements)

� Part 4: Testing and optimization (bringing the cross-compiler to a beta state)

� Part 5: Final Submission (submitting all deliverables)

No. Milestone Goal Due Date Ass. Part

M1 Evaluation Finalized Existing technologies and tools were eval-
uated, and a rough concept was created.
All essential decisions were made and
documented.

19.03.2023 Part 1

M2 Must-Requirements The MVP (= all must requirements are
fulfilled) has been completed, and the
technical breakthrough has been made.

02.04.2023 Part 2

M3 Should-Requirements All should requirements have been imple-
mented. Optionally, the could require-
ments have also been fulfilled.

28.05.2023 Part 3

M4 Beta The cross-compiler was tested and im-
proved. Where possible, it was also op-
timized. The final product is in a state
where it can be released as a beta version.

11.06.2023 Part 4

M5 Final Submission Final work has been done, and all deliv-
erables have been submitted.

16.06.2023 Part 5

Table A.1.: Milestones.

33

A.4. BIG PICTURE CuSharp

A.4. Big Picture

The following section contains a rough project plan that was refined in the first part of the project
and which was be completed during the project.

These abbreviations were used in the title bar:

� In. = Inception Phase

� Elabor. = Elaboration Phase

� Tr. = Transition Phase

The color codes used in the diagram have the meaning as follows:

� Entire bar = Total estimated duration of the task

� Green = Required time for the task

� Gray = Not required time for the task (= finished earlier than estimated)

The Gantt chart shows the different project phases and tasks. Based on experience from previous
projects, we planned conservatively. In addition, there was enough time in the penultimate phase to
test and optimize the product. This schedule worked very well. We often finished ahead of schedule
because there were fewer negative surprises than expected.

34

A.4. BIG PICTURE CuSharp

In. Elabor. Construction Tr.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

1. Evaluation

1.1 Initial Research

1.2 Tool-Chain Evaluation

1.3 Tool Evaluation

1.4 Solution Strategy

1.5 Software Architecture

M1: Evaluation Finalized

2. MVP

2.6 Decompilation

2.7 Compilation

2.8 Code Generation

2.9 Frontend and Kernel Discovery

2.10 GPU Bindings and Dispatching

2.11 Technical Breakthrough

2.12 Testing and Improving the MVP

M2: Must-Requirements

3. Adding Functionality

3.13 Adding more Operations

3.14 While- and For-Loops

3.15 If- and Else-Constructs

3.16 Logical Operators

3.17 Launching Kernel Multiple Times

3.18 Launching Different Kernels

3.19 Call Support

3.20 Array Allocation Support

3.21 Shared Memory Allocation Support

3.22 Ahead-of-Time Compilation

3.23 Multidimensional Array Support

3.24 Generics Support

3.25 Bitwise and Shift Operators

M3: Should-Requirements

4. Testing / Optimization

4.26 Optimization and Improvement

4.27 Intensive Testing

M4: Beta

5. Finalization

5.28 Report Finalization

5.29 Code Finalization

5.30 Final Submission

M5: Final Submission

Table A.2.: Project Plan as Gantt Diagram.
35

APPENDIX B. PERSONAL REPORTS CuSharp

B. Personal Reports

B.1. Adrian Locher

Developing compilers, to me, is the single most interesting discipline in software-engineering. I was
certain from the start that this thesis would pose a challenge I could sink my teeth in. I was not
disappointed. While developing the framework resulting from this thesis, I learned a lot about compiler
and library design, GPUs and formal languages.

While being the challenge that I’ve anticipated, I’m now reassured that I’m ready for the challenges
that await me as a software-engineer in the industry. Having worked on most projects of my studies
together with Jason Benz, we are a well rehearsed team and development of the CuSharp framework
ran as flawlessly as I had hoped for.

B.2. Jason Benz

The backend is my preferred area in software engineering and through the module ’Compiler Con-
struction’ I came into contact with a compiler for the first time from a compiler developer’s point of
view. This aroused my interest in this topic and therefore this thesis was exactly what I was looking
for.

While I was able to apply some hard skills I have learned in my studies to this thesis, I quickly
encountered implementation challenges. With a lot of research and testing I was able to solve them.
I was able to learn a lot during this thesis and broaden my horizons. Not only was I able to learn
technically, but also how to approach problems that are not so widespread and well documented. I
think this will also help me on my further path in life.

Since we completed most of the projects together during our studies, Adrian Locher and I are a very
well-practiced team. The collaboration with him was great, as usual.

36

APPENDIX C. COMPILER SPECIFICATION CuSharp

C. Compiler Specification
This chapter describes the most important traits of the behavior of the CuSharp cross-compiler.

C.1. Introduction

CuSharp is an MSIL to LLVM IR cross-compiler that enables its user to execute C# code on Nvidia
GPUs. The framework facilitates the compilation of annotated or manually selected methods from
MSIL to PTX via the LLVM compiler backend for CUDA. CuSharp supports a subset of C#, which
is described in Chapter D.

Figure C.1.: LLVM Structure with C# Language Support.

C.2. Tested Version

CuSharp is a cross-compiler that was specifically designed for the C# programming language. While
other .NET languages - or subsets of them - may be supported, they have not been tested. The latest
version of CuSharp has been tested for compatibility with C# 11.0, respectively .NET 7.0, compiled
by the Roslyn compiler. Only the language features specified below are supported.

C.3. Configuration

The compilation process to NVVM requires a configuration to be specified. The default configuration
includes:

37

C.3. CONFIGURATION CuSharp

Setting Name Description Default Value

DataLayout Data layout for Nvidia GPUs Default Nvidia data layout

Target Target architecture for the com-
piled code

nvptx64-nvidia-cuda

KernelName Name of the kernel. Needs to be
overwritten.

””

DefaultArrayMemoryLocation Default memory location of arrays
allocated with ’new ...’ inside of a
Kernel. Can be overwritten with
the kernel attribute.

GLOBAL

DeclareAnnotations Declaration of required named
metadata

Default NVVM annotations

DeclareExternalFunctions Declaration of NVVM IR intrinsic
functions

See Subsection C.3.1

Table C.1.: NVVM Configuration.

When creating the configuration, the values can also be set manually if adjustments are required or a
different target device needs to be used.

C.3.1. NVVM IR Intrinsic Functions

NVVM IR (Intermediate Representation) declares a series of functions that are specific to the NVPTX
(NVIDIA Parallel Thread Execution) architecture. These functions allow the program to access various
system-level parameters, such as block-index, block dimension and thread-index, which is required for
implementing parallel programs on NVIDIA GPUs. These functions are essential for thread and block
coordination.

Since C# does not provide these intrinsic functions, the static class ’KernelTools’ is introduced. It
contains properties which can be used in the C# source code to execute the intrinsic functions. The
mapping of the properties to the functions is defined in the configuration object.

The functions for grid dimension, block index, thread index and block dimension always have the
suffixes x(), y() and z() to access the corresponding axis. The equivalent on the properties are the
fields X, Y and Z:

38

C.4. LAUNCHING KERNELS CuSharp

C# Property NVVM IR Intrinsic Function Description

GridDimension @llvm.nvvm.read.ptx.sreg.nctaid Returns the total number of
blocks along an axis (X, Y or
Z) of a grid.

BlockIndex @llvm.nvvm.read.ptx.sreg.ctaid Returns the IDs of the call-
ing block.

ThreadIndex @llvm.nvvm.read.ptx.sreg.tid Returns the IDs of the call-
ing thread.

BlockDimensions @llvm.nvvm.read.ptx.sreg.ntid Returns the total number of
threads along an axis (X, Y
or Z) in a block.

SyncThreads() @llvm.nvvm.barrier0() Inserts a barrier for synchro-
nizing threads in a block.
Waits until all threads in the
thread block have reached
this point [24].

GlobalThreadFence() @llvm.nvvm.membar.gl() Is a memory fence at the
device level [24]. Inserts
a barrier for synchronizing
threads across all blocks
within the grid.

SystemThreadFence() @llvm.nvvm.membar.sys() Is a memory fence at the
system level [24]. Inserts a
barrier for synchronizing be-
tween the CPU and GPU.

WarpSize @llvm.nvvm.read.ptx.sreg.warpsize() Returns the size of the warp
which is the number of
threads that can be executed
in parallel on a single in-
struction in a SIMD archi-
tecture.

Table C.2.: LLVM IR Intrinsic Functions.

The mapping from the KernelTools properties to the intrinsic functions is defined in the configuration
file. The example below shows which NVVM IR output is generated when using the KernelTools:

1 // Usage in a C# method to determine the correct index

2 int i = (int) (KernelTools.BlockIndex.X *

3 KernelTools.BlockDimensions.X +

4 KernelTools.ThreadIndex.X);

5

6 // NVVM IR output with the usage of the intrinsic functions

7 %reg0 = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()

8 %reg1 = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()

9 %reg2 = mul i32 %reg0 , %reg1

10 %reg3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()

11 %reg4 = add i32 %reg2 , %reg3

Listing C.1: Usage Example and Mapping of Intrinsic Functions.

C.4. Launching Kernels

Kernels can be defined and launched as described in Section 8.1. Examples are available in Subsection
8.1.5.

39

C.5. KERNEL ATTRIBUTE CuSharp

C.5. Kernel Attribute

A kernel can be annotated with the [Kernel] attribute (see Subsection 8.1.4) to be discovered by the
AOT-compiler.

C.6. Optimizer

CuSharp provides a static property ’Cu.EnableOptimizer’. By default, the optimizer is enabled in
release mode and disabled in debug mode. If enabled, the optimizations from the following sections
will be performed.

C.6.1. Built-In Optimizations

There are a number of built-in optimization steps in the LLVM compiler infrastructure that sig-
nificantly improve performance. It is important to execute them in the right order to achieve the
maximum performance gain. [25]

1. Supporting basic alias analysis for global value numbering (GVN)

2. Promoting allocas to registers (replaces stack-allocated variables with register-allocated vari-
ables)

3. Doing simple ’peephole’ optimizations and bit-twiddling optimizations

4. Reassociating expressions

5. Simplifying the control flow graph (deleting unreachable blocks, etc.)

6. Eliminating common subexpressions

40

APPENDIX D. LANGUAGE SPECIFICATION CuSharp

D. Language Specification
This chapter is directed at developers that want to use CuSharp to write and deploy GPU-kernels. It
describes the C# subset that is supported by CuSharp.

D.1. Supported C# Features

D.1.1. Supported Types

C# Type LLVM Type Description

void void Void, represents the absence of a value

bool i1 Boolean value, aligned to 1 byte

byte i8 Byte value, aligned to 1 byte

short i16 Short value, aligned to 2 bytes

int i32 Integer value, aligned to 4 bytes

uint i32 Unsigned integer value, aligned to 4 bytes

long i64 Long integer value, aligned to 8 bytes

float float Floating point value, aligned to 4 bytes

double double Double floating point value, aligned to 8 bytes

T[] T* Array of numeric elements

T[,] T** Two dimensional array of numeric elements, may be slower than sin-
gle dimensional arrays

Table D.1.: Supported Types.

D.1.2. Generic Types

Generic types can be used in a kernel. For mathematical calculations the constraint INumber<T> can
be used. Allocations of type T within the kernel are enabled with the constraint new(). new() will
initialize a variable with its default value. A possible kernel method signature with generics can look
like this:

public static void KernelName<T>(T param) where T : INumber<T>, new()

41

D.1. SUPPORTED C# FEATURES CuSharp

D.1.3. Control Flow Statements

The following control flow statements are supported. They can be nested.

Statement Description

if-else statement Used for conditional branching based on the evaluation of a Boolean expres-
sion.

switch statement Used for selecting one of several possible code blocks to execute based on the
value of an expression.

for loop Used for executing a code block a specific number of times.

while loop Used for executing a code block repeatedly as long as a Boolean expression
evaluates to true.

do-while loop Used for executing a code block repeatedly as long as a Boolean expression
evaluates to true, but the block is executed at least once regardless of the
initial evaluation of the expression

break statement Used for breaking out of a loop or switch statement.

continue statement Used for skipping the rest of the current iteration of a loop and moving on to
the next iteration.

goto statement Used for jumping to a labeled statement in the code.

Table D.2.: Supported Control Flow Statements.

D.1.4. Arithmetic Operators

All arithmetic operators are supported as expanded version (e.g. a = a + b) and as shorthand version
(e.g. a += b).

Sign Name Description

+ Addition Adds two operands together.

- Subtraction Subtracts the right operand from the left operand.

* Multiplication Multiplies two operands together.

/ Division Divides the left operand by the right operand.

% Remainder Returns the remainder of the division of the left operand by the right
operand.

Table D.3.: Supported Arithmetic Operators.

D.1.5. Logical Operators

If possible the operators are evaluated short circuit.

Sign Name Description

&& Logical AND Returns true if both operands are true, otherwise returns false.

|| Logical OR Returns true if at least one operand is true, otherwise returns false.

! Logical NOT Reverses the logical state of its operand. If the operand is true, returns
false. If the operand is false, returns true.

Table D.4.: Supported Logical Operators.

42

D.1. SUPPORTED C# FEATURES CuSharp

D.1.6. Bitwise Operators

Sign Name Description

& Bitwise AND Performs a bitwise AND operation between two operands, resulting
in a new value where every bit is set to 1 if both bits of the operands
are the same, otherwise it is set to 0.

| Bitwise OR Performs a bitwise OR operation between two operands, resulting
in a new value where every bit is set to 1 if at least one bit is 1,
otherwise it is set to 0.

^ Bitwise XOR Performs a bitwise XOR operation between two operands, resulting
in a new value where every bit is set to 1 if the bits of the operands
are different, otherwise it is set to 0.

~ Bitwise NOT Flips every bit.

<< Shift Left Shifts the bits of an operand to the left by a specified number of
positions.

>> Signed Right Shift Sifts the bits of an operand to the right by a specified number of
positions.

>> Unsigned Right Shift Shifts the bits of an operand to the right by a specified number of
positions and fills the shifted positions with zeros.

Table D.5.: Supported Logical Operators.

D.1.7. Comparison Operators

Sign Name Description

< Less than Returns true if the left operand is less than the right operand.

<= Less than or equal to Returns true if the left operand is less than or equal to the right
operand.

> Greater than Returns true if the left operand is greater than the right operand.

>= Greater than or equal to Returns true if the left operand is greater than or equal to the
right operand.

== Equal to Returns true if the left and right operands are equal.

!= Not equal to Returns true if the left and right operands are not equal.

Table D.6.: Supported Comparison Operators.

D.1.8. Calls

Kernel Tools

The following table lists the kernel tool functions and variables with there CUDA C++ equivalent.

C# Property CUDA C++ Equivalent

KernelTools.GridDimension.[X|Y|Z] gridDim.[x|y|z]

KernelTools.BlockIndex.[X|Y|Z] blockIdx.[x|y|z]

KernelTools.ThreadIndex.[X|Y|Z] threadIdx.[x|y|z]

KernelTools.BlockDimensions.[X|Y|Z] blockDim.[x|y|z]

KernelTools.SyncThreads() __syncthreads()

KernelTools.GlobalThreadFence() __threadfence()

KernelTools.SystemThreadFence() __threadfence_system()

KernelTools.WarpSize warpSize

Table D.7.: C# Kernel Tools with CUDA C++ Equivalent.

43

D.2. UNSUPPORTED FEATURES CuSharp

Nested Calls

Static methods can be called from a kernel. These methods can have a numeric return type (primitive
and as array) or void. The method calls can be nested over several levels. Primitive data types or
numeric arrays can be passed as parameters. The primitive data types are passed as call by value, the
arrays are passed as call by reference.

D.1.9. Implicit Casts

All implicit casts in C# such as int to long work.

D.2. Unsupported Features

All features that are not described in the preceding chapters are generally unsupported. It may be
that individual functionalities work anyway, but they have not been tested or checked for side effects.

There are some C# functions that one would expect to work, but that are unsupported at this time.
These are, including but not limited to:

� Array length property

� Array initialization using an array initializer with values instead of parameters and variables
(e.g. var a = new int[]{1,2,3};)

� Foreach loop (due to the missing array length property)

� Any calls to non-static methods and non-intrinsic functions

� Anonymous functions i.e. lambdas

� LINQ queries (query syntax and method syntax)

� Data types other than primitives

� Native int

� Overflow checks by using the checked keyword

� . . .

44

APPENDIX E. EVALUATION AND EXAMPLE CODE CuSharp

E. Evaluation and Example Code

E.1. Double-Matrix Multiplication Kernel

1 [Kernel]

2 public static void MatrixMultiplication(double [] a, double [] b, double [] c,

int matrixWidth)

3 {

4 var row = KernelTools.BlockDimension.Y * KernelTools.BlockIndex.Y +

KernelTools.ThreadIndex.Y;

5 var col = KernelTools.BlockDimension.X * KernelTools.BlockIndex.X +

KernelTools.ThreadIndex.X;

6 double result = 0.0;

7 if (row < matrixWidth && col < matrixWidth)

8 {

9 for (int i = 0; i < matrixWidth; i++)

10 {

11 result += a[matrixWidth * row + i] * b[i * matrixWidth + col];

12 }

13

14 c[row * matrixWidth + col] = result;

15 }

16 }

Listing E.1: Matrix Multiplication Kernel.

E.2. Tiled Double-Matrix Multiplication Kernel

1 [Kernel(ArrayMemoryLocation.SHARED)]

2 public static void TiledMatrixMultiplication(double [] a, double [] b, double

[] c, int matrixWidth , int tileWidth , int nofTiles)

3 {

4 var tx = KernelTools.ThreadIndex.X;

5 var ty = KernelTools.ThreadIndex.Y;

6 var col = KernelTools.BlockIndex.X * tileWidth + tx;

7 var row = KernelTools.BlockIndex.Y * tileWidth + ty;

8

9 var aSub = new double [1024];

10 var bSub = new double [1024];

11

12 double sum = 0;

13 for (int tile = 0; tile < nofTiles; tile ++)

14 {

15 if (row < matrixWidth && tile * tileWidth + tx < matrixWidth)

16 {

17 aSub[ty * tileWidth + tx] = a[row * matrixWidth + tile *

tileWidth + tx];

18 }

19

20 if (col < matrixWidth && tile * tileWidth + ty < matrixWidth)

21 {

22 bSub[ty * tileWidth + tx] = b[(tile * tileWidth + ty) *

matrixWidth + col];

23 }

24

25 KernelTools.SyncThreads ();

26

27 if (row < matrixWidth && col < matrixWidth)

28 {

45

E.3. 2D-ARRAY MATRIX MULTIPLICATION KERNEL CuSharp

29 for (int ksub = 0; ksub < tileWidth; ksub ++)

30 {

31 if (tile * tileWidth + ksub < matrixWidth)

32 {

33 sum += aSub[ty * tileWidth + ksub] * bSub[ksub *

tileWidth + tx];

34 }

35 }

36 }

37 KernelTools.SyncThreads ();

38 }

39 if (row < matrixWidth && col < matrixWidth)

40 {

41 c[row * matrixWidth + col] = sum;

42 }

43 }

Listing E.2: Tiled Matrix Multiplication Kernel.

E.3. 2D-Array Matrix Multiplication Kernel

1 [Kernel]

2 public static void MultiDimMatrixMultiplication(double[,] a, double[,] b,

double[,] c, int matrixWidth)

3 {

4 var row = KernelTools.BlockDimension.Y * KernelTools.BlockIndex.Y +

KernelTools.ThreadIndex.Y;

5 var col = KernelTools.BlockDimension.X * KernelTools.BlockIndex.X +

KernelTools.ThreadIndex.X;

6

7 double result = 0;

8 if(row < matrixWidth && col < matrixWidth)

9 {

10 for(int i = 0; i < matrixWidth; i++)

11 {

12 result += a[row , i] * b[i, col];

13 }

14 c[row , col] = result;

15 }

16 }

Listing E.3: 2D-Array Matrix Multiplication Kernel.

E.4. Mandelbrot Kernel

1 [Kernel]

2 public static void MandelBrot(float[] light , int maxIterations , int N,

float zoom , float deltaX , float deltaY)

3 {

4 var row = KernelTools.BlockDimension.Y * KernelTools.BlockIndex.Y +

KernelTools.ThreadIndex.Y;

5 var col = KernelTools.BlockDimension.X * KernelTools.BlockIndex.X +

KernelTools.ThreadIndex.X;

6

7 if (row < N && col < N)

8 {

9 float fromX = col / zoom - deltaX;

10 float fromY = row / zoom - deltaY;

11 float x = 0.0f;

12 float y = 0.0f;

46

E.4. MANDELBROT KERNEL CuSharp

13 int iteration = 0;

14 while (x * x + y * y <= 2 * 2 && iteration < maxIterations)

15 {

16 var xtemp = x * x - y * y + fromX;

17 y = 2 * x * y + fromY;

18 x = xtemp;

19 iteration ++;

20 }

21

22 light[row * N + col] = iteration;

23 }

24 }

Listing E.4: Mandelbrot Kernel.

47

APPENDIX F. PERFORMANCE RESULTS CuSharp

F. Performance Results

F.1. Double Matrix Multiplication in Global Memory

The following numbers are the average of 10 time measurements, of the kernel specified in Section
E.1, in milliseconds.

CUDA GTX 970 CUDA RTX 3060TI CuSharp GTX 970 CuSharp RTX 3060 TI

23.19 8.42 24.55 8.98

28.82 10.02 29.46 10.29

36.73 12.22 37.87 12.96

45.37 15.24 46.85 16.14

55.94 19.16 57.46 20.2

68.82 23.94 70.34 24.53

88.09 28.69 89.97 29.74

101.48 35.44 103.6 36.17

118.13 40.37 120.21 42.76

143.98 47.52 144.85 50.07

169.17 55.18 171.46 58.0

F.2. Double Matrix Multiplication Tiled using Shared Memory

The following numbers are the average of 10 time measurements, of the kernel specified in Section
E.2, in milliseconds.

CUDA GTX 970 CUDA RTX 3060TI CuSharp GTX 970 CuSharp RTX 3060 TI

24.6 9.17 24.94 10.53

27.42 9.58 28.12 10.3

32.45 11.35 32.87 11.83

37.99 13.2 38.44 13.92

43.83 15.37 44.36 15.97

50.24 17.78 50.77 18.37

56.77 19.83 57.43 20.51

65.2 22.7 66.3 23.58

72.85 26.26 74.15 26.26

80.96 28.26 82.04 29.25

89.39 31.21 90.21 32.19

48

APPENDIX G. BIBLIOGRAPHY CuSharp

G. Bibliography
[1] “CUDA Toolkit.” https://developer.nvidia.com/cuda-toolkit. Accessed: 2023-02-25.

[2] “C# Compiler Roslyn.” https://github.com/dotnet/roslyn. Accessed: 2023-02-25.

[3] “Vulkan.” https://www.vulkan.org/. Accessed: 2023-02-23.

[4] “OpenCL.” https://www.khronos.org/opencl/. Accessed: 2023-02-22.

[5] “LLVM Compiler Structure.” https://developer.nvidia.com/cuda-llvm-compiler. Ac-
cessed: 2023-02-25.

[6] “Alea GPU.” https://developer.nvidia.com/blog/accelerate-net-applications-alea-gpu/.
Accessed: 2023-05-16.

[7] “Altimesh Hybridizer.” https://developer.nvidia.com/blog/hybridizer-csharp/. Ac-
cessed: 2023-05-16.

[8] “CUDAfy.NET.” https://github.com/lepoco/CUDAfy.NET. Accessed: 2023-05-16.

[9] “AMD HIP API.” https://github.com/ROCm-Developer-Tools/HIP. Accessed: 2023-02-22.

[10] “OpenCL Adopters.” https://www.khronos.org/conformance/adopters/

conformant-companies. Accessed: 2023-03-14.

[11] “Kompute API.” https://kompute.cc/. Accessed: 2023-02-23.

[12] “Cuda Driver API.” https://docs.nvidia.com/cuda/cuda-driver-api/index.html. Ac-
cessed: 2023-02-27.

[13] “The C4 model for visualising software architecture.” https://c4model.com/. Accessed: 2023-
02-03.

[14] “LLVMSharp Project.” https://github.com/dotnet/LLVMSharp. Accessed: 2023-03-01.

[15] “managedCuda Project.” https://kunzmi.github.io/managedCuda/. Accessed: 2023-03-02.

[16] L. Bläser, Modern Runtime System and Compiler Design, ch. 13.9. Local Register Allocation,
pp. 361–363. Independent, 2019.

[17] L. Bläser, Modern Runtime System and Compiler Design, ch. 8.11. Static Single Assignment,
pp. 182–185. Independent, 2019.

[18] L. Bläser, Modern Runtime System and Compiler Design, ch. 8.13.1. Control Flow Graph,
pp. 191–193. Independent, 2019.

[19] Nvidia, NVVM IR Specification v2.0, ch. 10.6.1 alloca instruction. Nvidia, 2023.

[20] “CuSharp Git-Repository.” https://github.com/CuSharp/CuSharp/, 2023.

[21] “CuSharp Nuget Packages.” https://https://nuget.org/profiles/CuSharp, 2023.

[22] “NuGet Gallery.” https://www.nuget.org/, 2023.

[23] “Gnu general public license v3.0.” https://www.gnu.org/licenses/gpl-3.0.en.html. Ac-
cessed: 2023-05-18.

[24] Nvidia, NVVM IR Specification v2.0, ch. 15.2. Barrier and Memory Fence. Nvidia, 2023.

[25] “Llvmsharp optimization tutorial.” https://github.com/dotnet/LLVMSharp/blob/main/

samples/KaleidoscopeTutorial/Chapter4/KaleidoscopeLLVM/Program.cs. Accessed:
2023-04-15.

49

https://developer.nvidia.com/cuda-toolkit
https://github.com/dotnet/roslyn
https://www.vulkan.org/
https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/blog/accelerate-net-applications-alea-gpu/
https://developer.nvidia.com/blog/hybridizer-csharp/
https://github.com/lepoco/CUDAfy.NET
https://github.com/ROCm-Developer-Tools/HIP
https://www.khronos.org/conformance/adopters/conformant-companies
https://www.khronos.org/conformance/adopters/conformant-companies
https://kompute.cc/
https://docs.nvidia.com/cuda/cuda-driver-api/index.html
https://c4model.com/
https://github.com/dotnet/LLVMSharp
https://kunzmi.github.io/managedCuda/
https://github.com/CuSharp/CuSharp/
https://https://nuget.org/profiles/CuSharp
https://www.nuget.org/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/dotnet/LLVMSharp/blob/main/samples/KaleidoscopeTutorial/Chapter4/KaleidoscopeLLVM/Program.cs
https://github.com/dotnet/LLVMSharp/blob/main/samples/KaleidoscopeTutorial/Chapter4/KaleidoscopeLLVM/Program.cs

APPENDIX H. LIST OF FIGURES CuSharp

H. List of Figures
2.1. Compilation to GPU Process Overview. 3
2.2. .NET Compilation Process Overview Using the Roslyn C# Compiler [2]. 4
2.3. GPU Toolchain Overview, Showing Toolchains for CUDA [1], Vulkan [3] and OpenCL

[4]. 5
2.4. Structure of LLVM Compiler for CUDA [5]. 6

4.1. CUDA vs Vulkan Testresults. 10

5.1. C4 Context Diagram. 11
5.2. C4 Container Diagram. 11
5.3. C4 Component Diagram. 12

6.1. CUDA vs CuSharp Matrix Multiplication Test Results. 17
6.2. CUDA vs CuSharp Matrix Multiplication Deviation Factor. 18
6.3. CUDA vs CuSharp Tiled Matrix Multiplication Test Results. 18
6.4. CUDA vs CuSharp Tiled Matrix Multiplication Deviation Factor. 19
6.5. CUDA vs CuSharp Matrix Multiplication Test Results. 19

7.1. Compiling from Stackmachine to Registermachine via Compiler Stack. 20
7.2. Control-Flow-Graph Definition for an MSIL Example. 20
7.3. Phi-Problem (Left) and Solution (Right) after Branching (in Pseudocode). 21
7.4. Phi-Problem (Left) and Solution (Right), after Branching to Predecessor (in Pseudocode). 21
7.5. Compilation Steps for Building Correct Phi-Functions. 22
7.6. Branch-Conflict with Compiler Stack. 22
7.7. Branch-Conflict with Compiler Stack Solution. 23
7.8. Two-Dimensional C# Arrays. 23
7.9. Flattened-out 2D-Array. 24
7.10. Flatted out 2D-Array with Additional Row Array. 24

C.1. LLVM Structure with C# Language Support. 37

50

APPENDIX I. LIST OF TABLES CuSharp

I. List of Tables
1. Glossary. V

3.1. Functional Requirements. 7
3.2. Non-Functional Requirements. 7

6.1. Overview of Test Types. 15
6.2. Analysis of Functional Requirements. 16
6.3. Analysis of Non-Functional Requirements. 16

A.1. Milestones. 33
A.2. Project Plan as Gantt Diagram. 35

C.1. NVVM Configuration. 38
C.2. LLVM IR Intrinsic Functions. 39

D.1. Supported Types. 41
D.2. Supported Control Flow Statements. 42
D.3. Supported Arithmetic Operators. 42
D.4. Supported Logical Operators. 42
D.5. Supported Logical Operators. 43
D.6. Supported Comparison Operators. 43
D.7. C# Kernel Tools with CUDA C++ Equivalent. 43

51

List of Listings CuSharp

J. List of Listings

3.1. MVP Kernel. 8

4.1. Evaluation Kernel Pseudo-Code. 9

7.1. Pseudo-Code of Two-Dimensional Array Access Using Array-Length. 24
7.2. Pseudo-Code of Two-Dimensional Array Access Using Two Arrays. 24

8.1. Kernel Definition Example. 28
8.2. Kernel Launch Example. 28
8.3. Kernel Definition Example with Scalar. 28
8.4. Kernel Launch with Scalar Example. 28

C.1. Usage Example and Mapping of Intrinsic Functions. 39

E.1. Matrix Multiplication Kernel. 45
E.2. Tiled Matrix Multiplication Kernel. 45
E.3. 2D-Array Matrix Multiplication Kernel. 46
E.4. Mandelbrot Kernel. 46

52

	Abstract
	Lay Summary
	Acknowledgements
	Glossary
	Report
	Introduction
	Background Information
	Overview
	.NET Framework / C#
	Toolchains
	Nvidia CUDA
	AMD HIP
	Vulkan
	OpenCL

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Constraints
	Source Language
	Target Devices

	Scope
	Minimum Viable Product (MVP)
	Limitations

	Solution Strategy
	Alternatives
	Vulkan Compute-API
	NVIDIA CUDA

	Performance Evaluation
	Test Setup
	Results

	Additional Evaluation
	Decision

	Architecture
	Context
	Containers
	Components
	Framework Frontend
	Cross-Compiler
	Hardware Dispatching

	Architectural Decisions
	Framework Frontend
	Compiler Frontend
	Compiler Backend
	Hardware Dispatching

	Quality Assessment
	Testing
	Test Coverage

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	Technical Debt
	Platform Independence

	Performance Analysis
	Test Setups
	Matrix Multiplication Performance
	Tiled Matrix Multiplication Performance
	2D-Array Matrix Multiplication Performance

	Implementation Challenges
	Language Execution Model Deviation
	Static Single Assignment (SSA)
	Variable Deviation after Branching
	Stack Deviation after Branching
	Array-Length Property
	Two-Dimensional Arrays
	Initialization of Two-Dimensional Arrays

	Final Product
	API
	Static Class: Cu
	Class: CuDevice
	Interface: ICuEvent
	Attribute: Kernel
	Examples

	Ahead-of-Time Compiler
	Supported Language
	Publication of the Application and Sourcecode
	Licensing
	Git Workflow

	Conclusion and Outlook
	Conclusion and Outlook
	Production Readiness
	Outlook

	Appendix
	Project Plan
	Important Dates
	Working Process
	Phases and Milestones
	Big Picture

	Personal Reports
	Adrian Locher
	Jason Benz

	Compiler Specification
	Introduction
	Tested Version
	Configuration
	NVVM IR Intrinsic Functions

	Launching Kernels
	Kernel Attribute
	Optimizer
	Built-In Optimizations

	Language Specification
	Supported C# Features
	Supported Types
	Generic Types
	Control Flow Statements
	Arithmetic Operators
	Logical Operators
	Bitwise Operators
	Comparison Operators
	Calls
	Implicit Casts

	Unsupported Features

	Evaluation and Example Code
	Double-Matrix Multiplication Kernel
	Tiled Double-Matrix Multiplication Kernel
	2D-Array Matrix Multiplication Kernel
	Mandelbrot Kernel

	Performance Results
	Double Matrix Multiplication in Global Memory
	Double Matrix Multiplication Tiled using Shared Memory

	Bibliography
	List of Figures
	List of Tables
	List of Listings

