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Abstract 

This study explores the efficacy of a pre-trained transformer model from the 
open source Hugging Face Library applied in the domain of Optical Character 
Recognition (OCR), specifically to the task of extraction of dates from scanned doc-
uments.  

Initially, OCR technology concentrated on recognizing patterns, using algo-
rithms based on specific rules, to identify letters and numbers through their distinct 
shapes. Deep learning greatly improved accuracy and the ability to work with more 
nuanced  text and complex layouts, which in combination with Large Language 
Models (LLMs) has made visual document understanding possible.  

Approach: The conventional OCR approach follows two steps: First, one would 
OCR a scanned document with the help of an OCR engine like Tesseract, and then 
process the output using pattern matching and regular expressions, or, alternatively, 
a LLM trained for the specific field of application. A major limitation of OCR engines, 
however, lies in their generic nature, which often brings challenges in accuracy and 
efficiency. 

The OCR-free or pseudo-OCR approach instead relies on a single encoder-de-
coder transformer model which integrates the aforementioned two steps, making it 
an end-to-end solution which can be adjusted and fine-tuned for a specific field of 
application.  

For this project I selected the OCR-free Document Understanding Transformer 
model (Donut) which was initially pre-trained on an extensive and varied collection 
of documents. I then fine-tuned it on a targeted datasets of diverse sizes to find out 
model’s ability to read, understand and extract dates from images. I evaluated the 
results based on accuracy and the model's adaptability to different document types 
and qualities, as well as different date formats. 

Conclusion: The results of the study are encouraging, achieving an average ac-
curacy of 75% on the somewhat limited training and test datasets meticulously as-
sembled for fine-tuning. The OCR-free approach undoubtedly shows promise in  
performing atomic tasks on images such as extracting dates. However, its efficacy 
could be significantly enhanced by incorporating a wider variety of document types 
and date formats. Additionally, adapting it to manage scenarios with zero, one, or 
multiple dates in a single image is likely necessary. Data engineering has emerged 
as a crucial element, even in this proof-of-concept stage. 
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Management Summary 

Overview 

In this summary I present the findings of my SA-project focused on the application 
of an advanced, pre-trained deep learning model, Documents Understanding Trans-
former (Donut), for Visual Document Understanding (VDU). Distinctively, Donut is 
designed to perform tasks traditionally associated with Optical Character Recogni-
tion (OCR) but operates without the conventional mechanisms of OCR systems. 

Objective of the study 

The primary goal of this project is to assess Donut effectiveness in performing atom-
ic, pattern recognition tasks, specifically identifying and extracting dates from im-
ages and document scans. The study aimed to demonstrate the capabilities of an 
OCR-free model in performing OCR tasks of high complexity. This task is particularly 
challenging due to the multitude of date formats and document layouts. 

Key Findings 

The following key findings were obtained during the study: 
• Model’s Proficiency in Date Recognition: The Donut model, despite being OCR-

free, demonstrated a notable proficiency in recognizing dates within documents. 
This indicates its potential as a valuable tool in automated document processing 
and analysis. 

• Challenges with Specific Date Formats and Numerals: Despite its overall effec-
tiveness, the model encountered difficulties with certain date formats, document 
layouts and numeral representations of the dates. This limitation is primarily due 
to the nature of the training datasets, which might not encompass the diversity 
of date formats encountered in practical applications, including human errors 
and inconsistencies. 

• Alignment with Original Hypothesis: The findings align with the study's hypothe-
sis, indicating that while the Donut model is proficient in basic date recognition 
tasks, its performance can be further enhanced with a more comprehensive 
training approach including large corpora of relevant data. 

Methodology 

The project was conducted in a structured manner, starting with the acquisition of 
the pre-trained Donut base model . Subsequently, I subjected the model to a fine-1

tuning process using targeted, more diverse datasets without adjustments of the 
model’s architecture. These datasets consisted of images of receipts and applica-

 Donut: naver-clova-ix/donut-base at https://huggingface.co/naver-clova-ix/donut-base. 1
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tion forms in four European languages, and contain dates in various formats  along 
with annotations. These datasets were specifically re-engineered to enhance the 
model's ability to recognize and extract dates accurately.  

Implications and Recommendations 

• Significance of VDU in Document Processing: VDU plays an extremely important 
role in handling the large volumes of scanned and archived documents. The 
OCR-free nature of the Donut model adds a new dimension to this field, offering 
a more streamlined and efficient approach to document analysis compared to 
traditional OCR systems that involve two steps, an OCR engine followed by an 
extraction or understanding process. 

• Potential of OCR-Free Transformer Models: The study demonstrates the potential 
of OCR-free transformer models like Donut in specific, atomic tasks like pattern 
recognition and extraction. This capability makes such models highly valuable 
for document analysis, especially in areas where traditional OCR systems may 
fall short. 

• Future Research and Development Directions: future studies should prioritize 
fine-tuning the mentioned models on targeted diverse datasets, with a focus on 
a minimum of 1000 images per language and document type. This approach is 
expected to significantly improve the accuracy of predictions. Additionally, ad-
justing the model's architecture is crucial for handling more complex tasks. This 
includes the ability to identify multiple instances per page and accurately return 
their localization on the input image, potentially using techniques like bounding 
boxes. Such advancements will broaden the practical applications and efficiency 
of these models in various document processing tasks. 

In conclusion, the Donut model represents a significant advancement in the field of 
VDU, showcasing the feasibility and effectiveness of OCR-free models in handling 
tasks reliant on conventional OCR systems, with potential to process and analyze 
documents. However, based on my study, I think that  to fully realize the capabilities 
of models like Donut, further research and development are necessary, particularly 
in expanding and diversifying the training datasets and with possible adjustments of 
the models architecture as well as its performance evaluation. 
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Introduction 

In the rapidly changing world of information technology and data science, Visual 
Document Understanding (VDU), a Deep Learning (DL) approach to the  interpreta-
tion and analysis of the content of documents, has become a field of interest due to 
its ability to process and interpret large quantities of unstructured data, predomi-
nantly found in scanned or photographed documents. This ability plays an impor-
tant role in transforming unstructured data into structured, analyzable formats. 
VDU has the potential to enhance automation and efficiency in various industries. In 
sectors like finance, healthcare, and legal services, document handling is a necessi-
ty but it is laborious and error prone. VDU introduces operational improvements in 
document processing thereby enhancing productivity and accuracy, for instance 
with the streamlining of tasks through automation, and the ability to classify and 
query documents. 
VDU stands at the forefront of recent developments in the fields of artificial intelli-
gence (AI) and machine learning (ML), with the integration of state-of-the-art gener-
ative general-purpose architectures for processing and understanding natural lan-
guages. Hugging Face Transformers is an open-source library that offers a vast col-
lection of pre-trained models for Natural Language Processing (NLP), providing tools 
for tasks like text classification, translation, summarization, and question answering. 
This library is widely used by AI community for its ability to integrate advanced VDU 
capabilities into various applications.  
The relevance of VDU is evident across multiple applications, from digitizing histori-
cal records to optimizing business workflows and ensuring regulatory compliance. 
In the era of Big Data, the capability to accurately and swiftly process document-
based information is invaluable. 
Nevertheless, VDU faces challenges, particularly in processing documents with 
complex layouts, such as columns, tables, boxes, or embedded images and the 
document formats. Issues with document design variability, image quality, and lan-
guage diversity make it a complex problem to solve  mostly due to misinterpretation 
of the structure, leading to errors in text extraction. 
Traditionally, VDU challenges have been addressed by combining Optical Character 
Recognition (OCR) outputs with visual encodings, but this approach has limitations. 
Tesseract and similar OCR engines, while effective for basic text recognition, often 
fall short in complex scenarios. They struggle with intricate document layouts, low-
quality images, and diverse fonts. Additionally, they lack the contextual and seman-
tic understanding crucial for modern VDU tasks. 
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In contrast, end-to-end pre-trained transformer models  from Hugging Face  (HF) 
Library , offer new options in the field. These models, unlike traditional OCR en2 -
gines, stand out in accuracy and robustness, particularly with complex layouts and 
various text formats. They combine DL and NLP to recognize text as well as under-
stand its context within the document. This ability to process unstructured data and 
adapt to a wide range of languages and fonts sets them apart from traditional meth-
ods. 
Furthermore, transformers continuously learn and improve, adapting to new data, a 
feature absent in static traditional OCR engines. They also offer better integration 
with modern systems and are scalable, addressing the evolving needs of VDU tasks 
more effectively. While these advanced models require more computational re-
sources, their efficiency in real-time processing and adaptability make them a more 
fitting choice for complex VDU applications. 
However,  a comprehensive exploration of integrating advanced transformers as 
complete substitutes for traditional OCR engines remains limited. Most current 
methodologies employ transformer models alongside OCR outputs, not as stand-
alone solutions. This gap presents an opportunity to expand knowledge by examin-
ing the potential of transformers to process and understand document images 
without relying on conventional OCR engines at all. Trials with specific tasks, such as 
date identification, could assess the feasibility, efficiency, and accuracy of trans-
former models as comprehensive solutions for text extraction and document under-
standing. 

Researchers from Naver CLOVA  AI team have developed an innovative end-to-end 3

OCR-free VDU solution using an encoder-decoder transformer model architecture, 
now accessible through the HF library. Documents Understanding Transformer 
(Donut) encodes images, segmented into patches using a SWIN (Shifted Window) 
transformer, into token vectors. The token vectors are then decoded into structured 
sequences, further parseable into, for instance, JSON, using the BART (Bidirectional 
and Auto-Regressive Transformers) as a decoder, to generate output based on task 
prompts. 

In my study I systematically explore the capabilities and limitations of Donut in the 
field of VDU in extracting dates, a basic but recurrent atomic task. In the Methods 
Chapter  I explain the methodology used for the scope of the study: 
1. Using the Pre-trained and fine-tuned Donut Model for Date Extraction 
This section evaluates effectiveness of Donut, generally fine-tuned on diverse 
datasets for text parsing to extract only dates from documents. It critically analyzes 

 Hugging Face open source library at https://huggingface.co/models?pipeline_tag=image-to-2

text&sort=trending

 Naver CLOVA on Hugging Face at https://huggingface.co/naver-clova-ix3
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the model's basic date identification capabilities and identifies key limitations, in-
cluding diverse date format handling and extraction accuracy. 
2. Building a Pipeline to Fine-Tune Donut-base Model 
Addressing the first section's findings, this part describes the development of a 
pipeline for fine-tuning the Donut model using targeted datasets. It details the 
dataset modifications and optimizations made to better align the Donut-base model 
with the task of varied date format recognition and improved accuracy. 
3. Fine-Tuning Donut-base on Various Datasets and Comparative Analysis 
The final section presents an in-depth comparative analysis of results from fine-tun-
ing Donut variants across various datasets. It aims to identify the most effective fine-
tuning strategies and understand how different datasets impact the model's perfor-
mance in date extraction tasks. 

This study contributes to the broader understanding of applying advanced trans-
formers in document understanding, highlighting the enhanced capabilities of the 
Donut model and opening paths for future research and development in VDU area of 
study. 
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Methods 

Traditional OCR follows a multi-step process (Fig.  1). Initially, an image undergoes 
preparation, which includes modifying brightness and contrast, noise reduction, 
correcting any skewing, and segmenting it to pinpoint text-containing areas. After 
that the OCR system identifies these text-containing areas, recognizing the docu-
ment's layout elements such as columns, paragraphs, headings, and specific text 
sections. Advanced OCRs are capable of discerning more complex structures like 
tables and lists. 

Figure 1 - Illustrated steps using traditional OCR solutions 

In the essential phase of OCR is character recognition the system runs through each 
identified text segment (also called a patch), segregating it into lines, words, and 
eventually singular characters. Each character is then matched against a character 
image database. Through pattern recognition algorithms, the system concludes the 
identity of each character, a challenging task due to the diversity in fonts and hand-
writing styles. 
In the post-recognition phase, OCR software undertakes post-processing to en-
hance accuracy. This involves rectifying typical errors, employing dictionaries for 
correct spelling, and applying linguistic rules applicable to grammar and syntax. The 
final stage involves converting recognized text into a preferred format, trying to pre-
serve the original document's layout. 

A more advanced approach integrates OCR with sophisticated language models, 
e.g., BERT (Bidirectional Encoder Representations from Transformers), combining 
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OCR's text extraction capability with the interpretative power of natural language 
processing. 
The principle however is similar to traditional OCR - an OCR engine transforms text 
in images into machine-encoded text, but additionally handling diverse fonts and 
formats. The extracted text is then tokenized, or broken into smaller units for NLP 
processing. The tokenized text then is fed into a LLM, able to ‘understand’ word con-
text and overall text meaning. If visual features are available and relevant, they can 
be integrated into the process. This can include information about the layout of the 
text, font style, size,  location of certain data, and other visual cues. These features 
can be particularly helpful in understanding the structure and meaning of complex 
documents containing tables, graphs, or multi-column layouts. 
This fusion of OCR and advanced language models allows for precise text extraction 
and a deeper, contextually aware interpretation and processing of the text. 
However, implementing advanced language models in conjunction with OCR de-
mands substantial computational resources and know-how. These requirements 
present difficulties in settings with constrained processing power, lack of expertise, 
or in applications that require rapid processing. Another drawback that comes to 
mind is that traditional OCR-based methods might exhibit limited adaptability when 
encountering documents of various formats, languages and styles as OCR engines 
are usually generic, not fine-tuned to the field of application of the subsequent pro-
cessing.  

Figure 2 - Illustrated steps in an end-to-end OCR-free approach 

In contrast, an OCR-free, end-to-end document recognition approach generally 
presents a more streamlined operation by eliminating separation of OCR and text 
processing and generation (Fig. 2). This method can learn directly from raw data to 
the final output, potentially reducing error propagation, a process by which uncer-
tainties and errors in input data or measurements amplify and affect the accuracy of 
subsequent computations and results. Additionally, it might demonstrate better 
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generalization across various document types and styles, as it is trained on the 
complete task rather than individual parts. 

Description of transfer learning approach 

The transfer-learning approach in ML involves careful selection of a model that has 
been trained on a large, comprehensive dataset and its fine-tuning for a specific 
task that may have a smaller and more specialized dataset. This approach leverages 
the ‘knowledge’, i.e., features, weights, etc., that the model has gained during its ini-
tial training phase to enhance its performance on a different but related task.  
In this project, I aimed to employ the transfer learning approach by fine-tuning 
Donut, the OCR-free pre-trained model I selected, for the task of pattern recognition 
and extraction from documents in image.  
The Document Understanding Transformer was developed by the research team at 
Naver CLOVA AI  in South Korea approximately one year ago. During my project I 4

explored the efficacy of this model, particularly in its ability to adapt and perform 
the specialized task of recognizing dates on scanned documents. By leveraging the 
transfer learning methodology.  
I try to ascertain whether the pre-existing knowledge and capabilities of the Donut 
model can be effectively tailored to address specific requirements of the extraction 
of dates, thus providing insights into the adaptability of the model in handling spe-
cialized pattern recognition challenges. 
Figure 3 - Architecture of the Document Understanding Transformer (Donut) model 

 OCR-free Document Understanding Transformer by Geewook Kim et al. https://arxiv.org/abs/4

2111.15664
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Architecture of the Donut 

Donut (Fig. 3) employs a visual encoder to extract features from document images, 
instead of relying on OCR modules. The visual encoder (SWIN) segments the input 
image into discrete patches which then undergo processing by SWIN Transformer 
blocks, which include a shifted window-based multi-head self-attention module and 
a two-layer multilayer perceptron . Patch merging layers further refine the tokens at 5

each stage. The final output from the SWIN Transformer block feeds into the textual 
decoder. 
The textual decoder translates these features into subword tokens, creating a struc-
tured format. This model is built entirely on Transformer technology, facilitating 
straightforward end-to-end training. Using the output, the decoder produces a se-
quence of tokens, each represented as a one-hot vector. The BART architecture 
forms the basis of the decoder, initialized with weights from a pre-trained multi-lin-
gual BART model. 
Adopting the original Transformer's approach, Donut uses a teacher-forcing scheme 
during training, where ground truth, rather than previous model outputs, informs 
each step. The model generates token sequences from a given prompt. Task-specif-
ic new special tokens are incorporated into the prompts for various downstream ap-
plications. The produced token sequence is transformed into a structured format, 
with a preference for JSON. 

Initial tests 

In a pre-phase, I executed inference tests on Donut to evaluate its capability in iden-
tifying date patterns, “out of the box”. The Donut model is designed to handle three 
specific tasks:  
1. Classification,  
2. Text Extraction, and  
3. Document Visual Question Answering (DocVQA), 
given the corpora it was fine-tuned on. For the purpose of my study I tested Donut 
on data parsing and DocVQA, as document classification is not directly relevant. 

The results revealed that the Donut model was indeed capable of recognizing dates 
in the text found on an image. However, the model faced challenges when dealing 
with dates in various formats and often confused the dates with other numeric pat-
terns. As illustrated in figure 4, the model fails to predict dates correctly in three fol-
lowing attempts: in the first attempt it captures the reference number (“11-14”); in 
the second it fabricates a date (“frift June 2001”); and, in the third the model returns 
a time instead of a date (“11:39 a.m.”). But it also undoubtedly recognizes dates, as 
per the fourth (“january 11,  2005”), and numerous other attempts.  

 OCR-free Document Understanding Transformer https://arxiv.org/pdf/2111.15664.pdf5
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Figure 4 - Initial, ‘out of the box’ testing of Donut on date extraction 

Recognizing the model's inherent ability to identify dates, I determined that it was 
unnecessary to modify the architecture of the Donut model, unless I wanted to fine-
tune the model to extract multiple dates and their bounding boxes.  

First, over-engineered pipeline 

As the initial tests with the Donut model proved promising and the HF ecosystem 
seemed highly adaptable, I embarked on building a pipeline that would prove to be 
overly complex. Indeed, I thought I could fairly simply extract not just a date but all 
dates on a document and also identify the matching bounding boxes.  

I started with the creation of  an explorative, tailor-made dataset specifically con-
taining documents with dates in various formats. The dataset comprised 20 images 
to represent a diverse range of document layouts and formats, including documents 
with and without color to test the model's performance under different visual condi-
tions; a variety of layouts, including letter type documents, plain texts, text struc-
tures in columns and tables, to challenge the model's adaptability to different struc-
tural formats. 
Each image in the dataset was accompanied by corresponding annotations, format-
ted in JSON. The annotations were obtained with help of RectLabel , and prepared 6

by careful examination of each image. The process involved: 
• Selecting regions in the image that contained dates and possible non-date pat-

terns. This process aimed to test the model's proficiency in differentiating gen-
uine date patterns from similar-looking elements, such as reference numbers 
(e.g., “38/1908"); 

• Annotating each identified area with labels indicating whether it was a date or a 
non-date; and for dates: 

• Specifying the text of the date, providing a reference for the expected output of 
the model;  

• Documenting the format of the date to evaluate the model's ability to recognize 
and process various date formats; and 

• Defining the bounding boxes. 

My next step then consisted in preparing a HF dataset ,  underlying training and 7 8

testing in the HF ecosystem. The heavy lifting is done in my Python parse_-anno-
tations_files function which processes image and annotation files in parallel, 
and produces the underlying data for the dataset. As I was still experimenting a lot 

  RectLabel is an offline image annotation tool for object detection and segmentation for MacOS 6

(https://rectlabel.com/).

 https://huggingface.co/docs/datasets/index7

 For guidance I used https://www.kaggle.com/code/nbroad/donut-train-benetech8
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at this stage with the training data,   parse_annotations_files allows me to pro-
duce different ground truths, tokens and groupings of image and annotations, with 
or without bounding boxes. 
The transformer is then setup with the tokens I introduced for the date extraction 
task, e.g., <s_date> and </s_date>  to denote the start and end of a date token, 9

and the training and testing dataset is constructed by mapping transform_and_-
tokenize to all data items. In essence, image paths are casts to image objects and 
converted to their pixel values, and the Donut tokenizer generates ids. 

With the data set at hand my next step was to do perform training using PyTorch 
Lightning  considering that the Donut model itself had been trained and tested in 10

that environment. I ran into numerous challenges, possibly due to my lack of experi-
ence with PyTorch and PyTorch Lightning, from fundamental but difficult to address 
compatibility issues with how my dataset and elements thereof at the interface of 

 Other start-end pairs of tokens I experimented with include: <s_dates> and </s_dates> to fine-tune 9

on multiple dates (<s_dates> <s_date> date1 </s_date> <s_date> date2 </s_date> </s_-
dates>), <s_bb> and </s_bb> for bounding boxes (<s_bb> x1, y1, x2, y2 </s_bb>).

 A lightweight wrapper for PyTorch aimed at simplifying machine learning applications. https://pyp10 -
i.org/project/pytorch-lightning
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the  HF and PyTorch environments, to my model training indefinitely which is indica-
tive of an issue with the training loop or the data being fed into the model. Every 
time I tried to fix an issue, I ended up with another one in a different part of the pipe-
line. 

Unwind and restart: Proof of concept pipeline 

Given the obstacles I faced with my first pipeline, I made the difficult decision to 
unwind and restart with the simplest possible pipeline , to stay in the HF ecosystem 11

as far as possible, and, with available time, to iteratively improve the pipeline and 
expand the training and test data sets. Importantly, instead of the custom PyTorch  
Lightning module, I explored the possibilities of HF sequence to sequence training  
(Seq2SeqTrainer ) for my own needs. 12

Going back to the pre-phase testing, I decided to build a proof of concept pipeline 
for me to understand the data engineering, fine-tuning, up to prediction and infer-
ence results, end-to-end, before embarking on the compilation of a more compre-
hensive dataset, longer training and testing cycles, and more detailed accuracy test-
ing. To that effect, I reused the explorative, tailor-made dataset of 20  images and 
own annotations. 
I then adapted my Python parse_annotations_files function to only handle the 
date element of my annotations. Similarly, the preparation of the HF dataset had to 
be streamlined to concentrate on the date element, and the tokens involved in fine-
tuning reduced to <s_date> and </s_date>. All in all, the data preparation and 
engineering steps remained the same, and ultimately images are converted to their 
pixel values and the Donut tokenizer generates ids. The processed dataset then 
consist of three features: 
• labels:  the tokenized input ids, 
• pixel_values, and 
• target_sequence: the date to extract. 

The next steps consist in:  
• Setting up a repository for my own fine-tuned model, e.g., Anagra/ 

donut-base-ost-sa. Indeed, HF provides an extensive repository for machine 
learning models. Each model in the HF Hub has a unique identifier, known as the 
repository ID. This ID is used to reference and access the specific model one 
wants to work with. After fine-tuning, the updated model can be saved back on 
HF Hub, possibly with a new hf_repository_id which is specified among ar-
guments for the Seq2Seq-Trainer. The repository may be either closed for 

 As a guidance I used https://www.philschmid.de/fine-tuning-donut11

 https://huggingface.co/docs/transformers/v4.36.1/en/main_classes/trainer#transformers.Seq2Seq12 -
Trainer
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public access (with an assigned private repository tag) or used to share the 
knowledge with the community (public repository tag). 

• Defining the training arguments of the sequence-to-sequence trainer with 
Seq2SeqTrainingArguments,  

• Training the model on my dataset, and lastly, 
• Saving the fine-tuned model on HF repository and the processed dataset, locally, 

for subsequent testing purposes. 

Building the proper pipeline  

With the proof of concept pipeline working, I started searching for  more compre-
hensive datasets and to make better use of the HF ecosystem, in particular for the 
data engineering part.  
I found two useful datasets with both images and annotations, SROIE and XFUND: 
• The SROIE dataset is an extensive collection of 1000 whole scanned receipt im-

ages and corresponding annotations . A smaller subset of this dataset, compris13 -
ing 625 images, was obtained for further study. The choice of SROIE was driven 
by its public domain availability, its relevance and pre-existing annotations. 

• XFUND, a multilingual (7 languages) form understanding benchmark dataset, 
with 150 training and 50 validation images per language, was chosen to bring in 
more linguistic diversity and additional formats. I focused on European lan-
guages, therefore only the German, Spanish, French, and Italian subsets were 
employed. 

Figure 5 - Meta data for the XFUND dataset 

The SROIE and XFUND material does understandably not follow the same organiza-
tion. I therefore had to develop modules (setup_sroie.py and setup_xfund.py) 
to prepare the material in way that lends itself to efficient loading into a HF dataset. 
In essence the tasks consists in setting up a data folder, possibly split in train, test, 

 https://paperswithcode.com/dataset/sroie13
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and validation, with all images together with a single JSONL  file (metadata.jsonl, 14

Fig. 5) for the annotations and reference to the corresponding image files. With the 
SROIE data set the preprocessing is relatively straightforward as possible dates are 
tagged in the JSON annotations. With the XFUND data set the preprocessing is sig-
nificantly more involved as possible dates are embedded in a multi-level nested 
JSON annotations, and often treated as filled-in field of forms of different nature and 
purpose. 

The chosen preparation and organization of training and testing material makes the 
creation of a HF dataset as simple as a single instruction  
 load_dataset('imagefolder', data_dir=base_path), 
which efficiently and consistently loads image and annotation pairs, and handles 
image casting from file to image in the same process. 
For the dataset to be used in training and testing (fine-tuning), it requires additional 
processing, along the lines of what I implemented for the proof of concept pipeline.  

 https://jsonlines.org/14
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Results 

In this chapter, I present a comprehensive overview of the most significant findings 
from evaluating Donut's performance across various stages of its fine-tuning. I con-
centrate on those observations that hold relevance and potential applicability for 
future developments. 

The datasets used in the study are the following: 
1. HR Private Dataset (HRPD) - a collection of scanned private documents of 20 im-

ages in high resolution. Images include documents in various forms, written in 
English. Each image may or may not contain a date, or contain multiples dates.   

2. SROIE - an open source collection of 625 images of receipts 
3. XFUND - an open source collection of 706 images of application forms in 4 lan-

guages (DE, FR, IT, ES) 
4. Random Samples Dataset (RSD) - a collection of 20 images, randomly obtained 

from Google Image Search. Includes letters, receipts, invoices in different lan-
guages. 

These datasets were split into Training and Test subsets. I opted against the forma-
tion of Validation splits as my datasets are comparatively modest. For evaluation 
purposes HRPD and RSD were used. 

Donut-base + HR Private Dataset (HRPD) 

Fine-tuning of Donut-base on HRPD played a role mostly for me to set up the proof 
of concept HF pipeline, and adapting a dataset to a Donut compatible format.  
Therefore there were no serious expectations that this fine-tuning would bring some 
comprehensible results. After the training, the model was not able to find any dates 
and during inference it was returning a meaningless mix of alphanumeric and spe-
cial characters and could not recognize any date on the given image. 

Donut-base + SROIE 

This dataset was split into Training (563 images) and Test (63 images) subsets. 
The trained Donut-base + SROIE model showed performance on the Test split of an 
acceptable level with 74.60% accuracy (executed on 18.12.2023). 

The model showed solid understanding of the dates in DD/MM/YYYY format (the 
format used for the receipts), but not without challenges.  Inference on RSD showed 
calculated accuracy of 22.73% (executed on 18.12.2023). 

Firstly, the model encountered difficulties in identifying non-numeric dates (e.g., 
“March 10, 1987”, Fig. 6) in images of archived documents. This difficulty can be at-
tributed to the training of the model, which has not sufficiently covered archived 
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documents characterized by the specific features of such images. I see two factors 
that contributed to the models low performance on this particular samples:  
1. the presence of non-white backgrounds in these documents could have acted as 

a distracting factor, complicating the date recognition process. 
2. the training data's possible bias towards certain fonts, styles, or layouts, typical of 

modern documents, might have limited the model's exposure to and familiarity 
with typewriter-style papers often found in archives. This lack of diversity in the 
training dataset, especially in terms of not including typewriter-specific charac-
teristics, likely hindered the model's ability to accurately recognize and process 
dates within such contexts. 

Figure 6 - Examples of improper date extraction involving non-numeric formats 

Secondly, documents in non-Latin languages, such as those using the Cyrillic script 
(here: Russian, Fig. 7), posed another challenge for the model. Despite being familiar 
with the date format used on these images, the model struggled to accurately read 
dates in these contexts. This underlines a critical observation: a model trained pre-
dominantly on Latin languages may fail to recognize numerical patterns in images 
with Cyrillic texts, even if these patterns are similar to those in the training data. This 
limitation is likely contextual in nature. The model, having learned to identify numer-
ical patterns within the specific context of Latin alphabets, might not effectively 
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transfer this recognition to contexts where these patterns are surrounded by Cyrillic 
text. The contrast in linguistic environment can disrupt its ability to accurately iso-
late and interpret numerical data. 

Figure 7 - Examples of improper date extraction involving non-latin scripts 

Another interesting aspect I would like to highlight is the model's tendency to gen-
erate dates that appear valid but do not correspond to the actual content (I call this 
phenomenon “hallucinating dates”). This behavior can primarily be attributed to the 
nature of predictive machine learning models, which are typically conditioned to 
yield an output for every input, even if the input data is unclear or unfamiliar. These 
models do not inherently possess the ability to express uncertainty or refrain from 
making a prediction. Instead, they will attempt to find the closest match based on 
their training, which can lead to seemingly fabricated outputs. The model's perfor-
mance is significantly shaped by the nature of its training data and the loss function 
employed. In scenarios when the model was trained on a dataset where every image 
had a date and the loss function penalized not predicting a date, the model would 
learn to always predict a date, even when the input is vague or uncertain. 
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Donut-base + XFUND 

This dataset was split into Training (635 images) and Test (71 images) subsets. 

Despite a slight increase in the dataset size, the model underperformed, achieving 
an accuracy of only 54.93% on the test split, as assessed on 19.12.2023. A likely con-
tributing factor to this outcome is the contextual nature of the training and testing 
data. The dataset was evenly distributed across four languages, which meant that 
for each language, the model had only 150 images for training. This quantity is rela-
tively insufficient for robust learning. Additionally, the variation in date formats 
across these languages should be considered. For instance, while the date August 9, 
1997, would be represented as “09.08.1997” in German (DE), it takes the form 
“09/08/1997” in Italian (IT). In Spanish (ES), the date might appear as either 
“09/08/1997” or “09-08-1997”. Such differences in date notation can further compli-
cate the model’s learning process, impacting its accuracy. 

Donut-base + (SROIE + XFUND) 

After merging the SROIE and XFUND datasets, I conducted training on this com-
bined dataset, comprising 1166 images in the training split and 292 images in the 
test split. The test split yielded a calculated accuracy of 68.84%, which falls short of 
the performance achieved with Donut-base + SROIE alone.  
Figure 8 - Challenges with the multiplicity of date separators  

Interestingly, in some cases the model accurate-
ly identified the correct date but represented it 
in a slightly mixed format (e.g., predicting 
“06-10.2019” vs actual “06-10-2019”, Fig.  8). In 
standard accuracy calculations, which have 
been used to evaluate Donut performance in this 
project, such predictions would be classified as 
errors, despite the model correctly identifying 
the date, significantly impacting model accuracy 
on unseen data. 
Another example: the model correctly predicts 
the date as "12-07-2021", matching the target 
date. However, the evaluation flags a MISMATCH 
due to a subtle difference in the dash characters 
used. In the target, both dashes are short, 
whereas in the prediction, the first dash between 
"12" and "07" is a short dash, and the second be-
tween "07" and "2021" is a long, en-dash (Fig. 9).  
Both cases illustrate the importance of precision 
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in character recognition and the complexities involved in evaluating model perfor-
mance even in an atomic task like date extraction. While the model successfully 
captured the essential information (the correct date) in both cases, discrepancies in 
format and ancillary details can lead, in a strict sense, to an incorrect prediction. 
This suggests the need for a more refined metric or evaluation approach that can 
acknowledge and credit partial correctness, especially in applications where exact 
replication of text format is irrelevant. 
Figure 9 - Challenges with the date separators: dash v. en-dash v. em-dash 

Two additional factors which may impair the accuracy of Donut-base + (SROIE + 
XFUND) come to mind: 
1. Varied and Complex Layouts in Application Forms: The combined dataset in-

cludes both receipts and application forms (in even parts), with the latter featur-
ing more diverse and intricate layouts. Unlike receipts, application forms often 
contain text arranged in columns or boxes or both, and their formatting can vary 
significantly, including lined and unlined styles. This complexity in layout 
presents a more challenging task for the model to accurately interpret and ex-
tract information. The model performed well on less complex forms, but strug-
gled in identifying a date correctly on “busy” layouts (Fig. 10) 

2. Multilingual Context of Application Forms: as previously mentioned, the multilin-
gual context poses a challenge for the model, potentially hindering its ability to un-
derstand and process the content effectively due to variations in language-specific 
contexts. 

Based on these insights, I hypothesize that enlarging the XFUND dataset to to in-
clude approximately 600 images for each language, while retaining consistent lay-
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out features, particularly with application forms, incorporating typical errors or dis-
crepancies  and refining the methods for assessing model performance could boost 
the model's accuracy on the combined SROIE+XFUND dataset. By focusing on the 
overall correctness of the predicted date, rather than minor format details or char-
acter nuances, the evaluation process will more accurately reflect the model's date 
recognition capabilities. Expanding the dataset size and diversifying the range of 
examples per language should enrich the model's training, enhancing its proficiency 
in navigating complex layouts and multilingual content. This approach aims to pro-
vide a more holistic understanding of the model's ability to accurately identify dates. 
Figure 10 - Challenges with ‘busy’ forms 
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Conclusion 

The exploration of the Donut model's capabilities in date recognition within docu-
ment images has yielded several insights, central for both the development and ap-
plication of machine learning models in document parsing and analysis. 

The HF library with the large number of pre-trained models it offers is an invaluable 
resource. These models, while robust in their current form, can be  (and should be) 
fine-tuned to address specific tasks. This adaptability underscores the versatility and 
potential of pre-trained models in custom applications - from documents classifica-
tion and digitalization, to image analysis and automated data entry in areas such as 
finance, healthcare, and legal services. 

An essential finding is the influence of dataset size and variety on model perfor-
mance. The study proved that a small dataset would definitely lead to underperfor-
mance, despite the pre-training factor. To enhance its ability to accurately identify 
and extract dates, regardless of their format, the model requires a larger dataset en-
compassing a broader spectrum of documents, beyond just receipts and applica-
tion forms. This diversity is critical for the model to generalize effectively across var-
ious document types. 
For applications involving documents in languages other than those in the training 
set, it is imperative to include such language samples in the training process. Given 
the contextual nature of the model, its ability to recognize patterns is heavily de-
pendent on the context provided during training. Therefore, incorporating a wide 
range of languages ensures better adaptability and accuracy in diverse linguistic 
environments. 
The complexity of a document’s layout has a direct impact on the model’s efficiency 
in recognizing date patterns. Training the model with documents featuring complex 
layouts is essential to improve its proficiency in these scenarios. This aspect must be 
carefully considered to enhance the model's overall effectiveness. 
Another encouraging observation from this study is the feasibility of fine-tuning the 
Donut model on large datasets using standard home computing hardware. For in-
stance, training on 700 images with a Mac M1 Max having 32Gb RAM was complet-
ed in approximately 1 hour and increasing the dataset to 1200 images resulted in 
completing the training within just 1.5 hours. This finding opens up possibilities for 
individual researchers and small teams to conduct significant model training with-
out requiring extensive computational resources. 

Finally, the method of validating the model’s accuracy should align with the expect-
ed output. If the precision of the date format is not as crucial as the general recogni-
tion of the date itself, the accuracy metrics should reflect this priority. Tailoring the 
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validation approach to emphasize overall identification over format accuracy en-
sures that the model's performance is evaluated in a manner consistent with its in-
tended application. 

Recommendations for Future Research 
Investigating potential architectural modifications of Donut and understanding 
model behavior in the context of targeted VDU tasks are crucial areas that warrant 
detailed exploration. Such modifications are vital for enhancing model performance, 
especially in ability of the model to locate the extracted pattern on the input image. 
This can involve two approaches: 
• Layer Optimization. Adjusting the number and types of layers within the model 

can impact how it processes and interprets data. For example, adding convolu-
tional layers and attention mechanisms can enhance a model's ability to recog-
nize bounding boxes and predict the position of dates on images. CNNs excel in 
spatial feature extraction, while attention mechanisms focus the model on rele-
vant areas, improving accuracy in localizing specific elements like dates. 

• Customization for Date Recognition. Tailoring the model specifically for date 
recognition could involve training it on a dataset with a wide array of date for-
mats, or even tweaking the model to focus on the specific areas of a document 
where dates are likely to appear. To achieve significant accuracy across various 
types and forms of documents as well as date formats, the dataset for the proper 
training must include at least a million of image samples and their annotations. 

In conclusion, this study underscores the intricate balance between dataset diversi-
ty, model training, and validation methods in the development of effective machine 
learning models for document analysis. The insights gained provide a roadmap for 
future enhancements, ensuring that models like Donut can meet the evolving de-
mands of document parsing and pattern recognition. 
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Glossary 

AI. Artificial Intelligence, “a branch of computer science dealing with the simulation of 
intelligent behavior in computers” (https://www.merriam-webster.com/dictionary/artificial 
intelligence)

BART. Bidirectional and Auto-Regressive Transformers (https://huggingface.co/docs/
transformers/model_doc/bart)

CORD. Consolidated Receipt Dataset for Post-OCR Parsing (https://github.com/clovaai/
cord)

DL. Deep Learning, “a form of machine learning in which the computer network rapidly 
teaches itself to understand a concept without human intervention by performing a large 
number of iterative calculations on an extremely large dataset” (https://www.merriam-
webster.com/dictionary/deep learning)

DocVQA. Document Visual Question Answering (https://www.docvqa.org/)

GPT. Generative Pre-trained Transformer (https://en.wikipedia.org/wiki/Generative_pre-
trained_transformer)

JSON. JavaScript Object Notation, a lightweight data interchange format

JSONL. JSON Lines text format (https://jsonlines.org/)

LLM. Large Language Model, “a large-scale language model notable for its ability to 
achieve general-purpose language understanding and generation” (https://en.wikipedi-
a.org/wiki/Large_language_model)

ML. Machine Learning, “a computational method that is a subfield of artificial intelli-
gence and that enables a computer to learn to perform tasks by analyzing a large 
dataset without being explicitly programmed” (https://www.merriam-webster.com/dic-
tionary/machine learning)

NLP. Natural Language Processing, “an interdisciplinary subfield of computer science 
and linguistics. It is primarily concerned with giving computers the ability to support and 
manipulate human language.” 
(https://en.wikipedia.org/wiki/Natural_language_processing)

OCR. Optical character recognition, “electronic or mechanical conversion of images of 
typed, handwritten or printed text into machine-encoded text, whether from a scanned 
document” (https://en.wikipedia.org/wiki/Optical_character_recognition)

RVL-CDIP. A dataset that “consists of scanned document images belonging to 16 
classes such as letter, form, email, resume, memo, etc.” (https://paperswithcode.com/
dataset/rvl-cdip)

SROIE. An open source dataset of scanned receipts (https://huggingface.co/datasets/
darentang/sroie)

SWIN. Pre-trained Shifted Window transformer model (https://huggingface.co/docs/
transformers/v4.19.0/model_doc/swin)

VDU. Visual Document Understanding, an area in computer vision and NLP that focuses 
on interpreting and extraction of visual information from images

XFUND. An open source dataset of scanned forms (https://github.com/doc-analysis/
XFUND)

XLMRoBERTa. A Cross-Lingual Language based on Facebook’s RoBERTa (Robustly 
Optimized BERT pre-training Approach) model released in 2019 ((https://huggingface.-
co/docs/transformers/model_doc/xlm-roberta, and https://ai.meta.com/blog/roberta-an-
optimized-method-for-pretraining-self-supervised-nlp-systems/).
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