Institute for
I NS I Network and Security O OST

Ostschweizer
Fachhochschule

Secure Device Provisioning
Using SZTP

Department of Computer Science
OST — University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2023

Authors Vanessa Gyger | Patrick Lenherr
Advisor Urs Baumann
Co-Advisor Yannick Zwicker

Project Partner INS

Abstract

Initial Situation

Managing many network devices takes a lot of effort and poses risks of inconsistency in configuration.
Furthermore, time is needed to plug the device in, attach your computer and connect to the console
for configuration. With automation, this process can be made much more efficient and reliable. The
classical approach for this is called Zero Touch Provisioning (ZTP), meaning the device doesn’t have
to be touched to configure it. Instead, it is registered in an inventory and can load a predefined

configuration automatically.
Objective

The objective of this term project is to lay the groundworks for a network controller that handles zero
touch provisioning of newly installed devices, as well as transferring configuration in case of 1-to-1
device replacement. The scope of the controller is limited to Cisco devices for this project, but it should
be extendable to support various other devices. Furthermore, the controller should also be open for
future extension, providing more functionality like ongoing configuration after the provisioning process.

Result

The authors developed a controller that bridges between inventory management and network device.
The application is able to provision devices even in insecure environments. On one end Netbox is used
to manage device parameters and context-dependent configuration. Both are rendered into the target
devices configuration using a template. On the other end the devices use DHCP to get SZTP (Secure
ZTP) redirect information for the controller. The provisioning controller provides an endpoint for
SZTP-compliant devices to securely get the data needed to bootstrap themselves via HTTPS. The
bootstrapping data includes target firmware version, download source and integrity hash as well as the
configuration itself. During the devices lifetime our backup controller is used to automatically retrieve
configuration backups. Nornir and Napalm are used to run the backup task on all devices registered in
Netbox. In the event of a hardware failure, a replacement device can quickly be set up. By simply
setting the configuration source device in Netbox the provisioning controller will automatically load the

backup configuration.

Acknowledgments

We would like to thank our project advisors Urs Baumann and Yannick Zwicker, for their continued

support and guidance.
We are also appreciative of Jonas Meier for his assistance by proofreading our work.

Lastly, we are grateful for our patient friends, colleagues, family members and supporting employers.

Contents

COMEENES . .t 1
1. Management SUMMANY........oooiiiiiiiiii e 4
B N g 0 1=1 o S 5
B REQUITEMENTS ..o ettt e e e e e aa e 6
3.1 USE CaSES i 6
3.1.1 OVEIVIEW ... 7
3.1.2 AACLOTS e 8
313 (L O T [ol] o T) 8

3.2 Non-Functional ReqUIreMENTS...........ivuiiiiiiiii e 10
321 NFRL Reliabilityccooiiiiieeie e 10
3.2.2 NFR2 Maintainability / Reusability...........ccccociiiiiiii 10
323 NFR3 Maintainability / Changeabilitycooooiiiii 11
3.2.4 NFR4 Maintainability / Analyzabilityccooiiiiiiiii 11
325 NFR5 Transferability / Installability...........cccoooiiiiiii 11

3.3 Verification of NFRS........ooiiiiiii e 11
3.3.1 NFR 1 Reliabilityooiii e 11
3.32 NFR2 Maintainability / Reusability............cccccooiiiiiii 12
333 NFR3 Maintainability / Changeabilitycooooiiiii 12
334 NFR4 Maintainability / Analyzabilitycccoiiiiiii e 12
3.35 NFR5 Transferability / Installability..........cccooooiiiiiiii 12

4. RISK ANalYSIS ..o et 13
A1 OVEIVIEW oo 13
4.2 DEtailS. oo 13
4.3 Risk deVEIOPMENT......ccooiiiiii e 15
4.3.1 12.10.2023 ettt e e e eas 15
432 02.10.2023. oot e e e e 15

B EVAlUAtiON 16
5.1 Provisioning Protocol ... 16
5.1.1 Cisco Plug and Play PnP ... 16
5.1.2 Secure Zero Touch Provisioning SZTP ... 17
5.1.3 Suitability of SZTP as a solution for the assignment................cccccco. 19

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 1 / 49

514 Decision on Provisioning Protocol ... 19

5.2 Programming language. ... 20
5.2.1 GOlaNg 20
522 Pyt ON 20
5.2.3 DECISION ... e e e 20

5.3 DEVICE INVENTOIY ..ot 21
5.3.1 AANSIDIE ... 21
5.3.2 NETDOX ... 21
5.3.3 Custom IMplEeMENTATIONuuiiiii i 21
5.3.4 Decision on deviCe INVENTONYccooiiiiiii i 22

5.4 SZTP Provisioning Controller ... 22
54.1 Python Framework.........cooooiiiiiiii 22
5.4.2 WWED-APL .. 23
543 Evaluation on SZTP Provisioning Controller................ccoooiii 25

5.5 Netbox Interface to SZTP Controllerccccooviiiiiiiiiiiii 25
55.1 NEEDOX AP L. 25

5.6 Evaluation on Netbox Interface to SZTP Controller...........cccoiiiiiiiii 27

BT USer iNterface ...oooooiiiiiiiiiii e 27

5.8 Operation Controlleromiiiiiiiiii e 27
5.8.1 Creating Backups......ooooiiiii 27
5.8.2 Decision on creating backups.........coooiiiiiiiii 29
5.8.3 Operation Controller: Reporting and configurationccccccc 29
5.8.4 Decision on Operation Controller: Reporting and configuration................................ 31

6. Problems enCoUNTEredcoiiiiiiiiii e 32
6.1.1 DHOCP-0Ption 143 Lo 32
6.1.2 Little information in Request for Bootstrap data...........cccoooiiiiiiiiiiiiieiiiiiiie e 32
6.1.3 Change in Provisioning technology ... 33
6.1.4 Obtaining Device Certificate..........oooviiiiiiiiiiii 34
6.1.5 Getting Docker Containers to the lab ... 36
6.1.6 Testing the controller with a Cisco SWItChuiiiiiiiiiiiiii 37

T OULIOOK e 38

8. PrOJeCt Plan ..o e 39

8.1 Roles and obligationsooiiiiiiiiiiii 39

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 2 / 49

8.2 Process MO ... oo e 39

8.3 TimMe ManagemeENtcooiiiiiii e 39
8.3.1 Long-Term Planningcoooiiiiiiiiieeee e 39
8.3.2 Short-Term Planningooooiiiiiiiii 40

8.4 Collaborationcooi i 40
8.4.1 COMMUNICATION 40
8.4.2 M@ EFACKINE ...t 41
8.4.3 File storge, versioning and reVIEW...........cooiiiiiiiiiii 42

8.5 T g =P 42

0. APPENAIX e 43

0.1 GlOSSAIY ..o 43

0.2 LISt Of FIGUIES....ooiiiiiiiiiiiiiiii e 44

0.3 Bibliographyooooiiii 45

9.4 Assignment-DOCUMENToiiiiii e 46

9.5 Implementation & User Guide from mkdocsccoooiiiiii 49

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 3 / 49

1. Management Summary

Baseline

In the field of network infrastructure managing devices an always present task. The management during
the devices normal operation is automated by many organizations using either a vendor specific
automation solution or one of the many available open-source tools supporting a variety of different
vendors. One time-consuming aspect of device management is often overlooked, however: The devices
have to be configured initially so that the automation tools can connect to them. Moreover, to enable
more efficient deployment of devices, it should be possible to connect them in their final location
without having to touch their configuration interface beforehand. Since this location is not always
guaranteed to be in a trusted environment, both the device itself and the system doing the provisioning

should be able to authenticate one another.
Approach / Technologies

In a first step, the available systems and protocols for Zero Touch Provisioning were compared. After
initially planning to work with Cisco’s PnP (Plug-and-Play), the more standardized SZTP (Secure Zero
Touch Provisioning) was chosen. The choice aims at being extendable to work with devices from other
vendors as well. Due to the lack of well working complete systems, the decision was made to develop
an own application following the SZTP standard. The application is written in Python, using Flask as
a web server for the SZTP endpoints. For the inventory Netbox is used. It also provides the application
with the function of rendering configuration templates directly from the stored configuration settings.
The backup controller which creates configuration backups from the physical devices is written in
Python and composed of the automation framework Nornir with an inventory plugin to access Netbox

and the Napalm library for device connections.
Results

The result of this project consists of a Python application with provisioning controller and backup
controller. While the provisioning controller takes care of providing the devices with an extendable
initial configuration, the backup controller can be used to automatically create configuration backups
from all the devices. These backups can in turn be automatically restored on a replacement device
using the provisioning controller. Both controllers interface with Netbox as the inventory solution. A
user guide not only shows how to setup and the application but also describes how to configure Netbox
to automatically consolidate organization-wide configuration settings as well as render cisco-style

configurations based on these settings and device specific values.
Forecast

While this project is focused on Cisco devices, the implemented SZTP standard is supported by a
variety of vendors. With the increasing demand for more security in every aspect of networking, the
organizations’ growing awareness of the problematic vendor lock-in and the expected growth in the

vendor support of standardized management solutions, the use of SZTP will likely grow in the future.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 4 / 49

2. Assignment

Introduction

Network infrastructure consists of routers and switches. The larger the network the more of these
devices are present within the network. The number of such devices can thus become quickly so large,
that managing them manually is not only tedious but also poses significant risks of inconsistent
configuration and extended downtimes in case of hardware failure. Automation mechanisms for device
and configuration management are therefore a necessity as soon as the networks surpass a certain size.
Especially the initial device onboarding can be automated efficiently.

Status quo

Many large network device vendors have realized the demand for automation and are offering their
own automation solutions, like Cisco's Catalyst Center [2]. Most of these solutions are however not
only restricted to the vendor’'s own devices but are also closed source and often too expensive for small
to medium network operators. Some of them have come together with their idea of a standardized
way to securely provision new devices without manual intervention on the device itself (zero-touch)

[3]-
Goals of the Project

The objective of our term project is to lay the groundwork for a network controller that handles zero-
touch provisioning of newly installed devices as well as transferring configuration in case of 1-to-1
device replacement. The scope of the controller is limited to Cisco devices for this project, but it should
be extendable to support various devices that implement SZTP according to RFC 8572. Furthermore,
the controller should also be open for future extension providing more functionality like ongoing

configuration after the provisioning process.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 5 / 49

3. Requirements

3.1 Use Cases

Once the team had decided what the topic of the semester term should be about, they thought about
what use cases should be covered. This step is dedicated to defining the scenarios, in which a system

receives an external request and how it should respond to it.
The fundamentals of this project are the Use Cases and the NFR (Non-Functional Requirements).

The Use Cases were assigned to the following three categories: required, optional and out-of-scope.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 6 / 49

3.1.1 Overview

The following Use Case diagram shows an overview of the defined use cases. More details can be found
in the later sections.

Network Campus Controller

UC 1.1 Register device
wextend» T

UC 1 Manage Device inventory

wextend» -,

S
UC 1.2 get device information
T

--==="&include»

UC 2 Onboard new device
E«include» <<inC|[Ja_é>3“"—-__
: UC 2.1 Send bootstrap config

UC 3 Distribute SSH Key

/ «extend»

UC 4.1 Reporting 10S Version
/ T
1 o s UC 4 Up- and Downgrade 10S

Network Engineer |

I «include»
UC 5 Replace device >--------: UC 5.1 Create config backups

«ir‘lClLIde;; Tl N
UC 5.2 Install config backup

UC 6 Manage certificates

UC 7 Extend stacked switch

UC 8 Install licenses

Figure 1 Use Cases

Legend:

e Green: Are required. They must be implemented.
e Blue: Optional goal. If times allows, the team will start with these.

e Rose: Is out-of-scope but would be a nice feature to have.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 7 / 49

3.1.2 Actors

Our system has two actors: the Network Engineer and the Licensing Server. The Network Engineers
goal is to manage the devices, set those up and replace it. The Network Engineer will be the only
Actor that will interact with the devices.

Optionally, there is also the Licensing Server. Its function is to provide the correct licenses and

evaluating.
3.1.3 Use Case description
3.1.3.1 UC 1 Manage device inventory

e As a Network Engineer, | want to have an inventory of all devices, which should be managed by the controller.

The Controllers inventory should be managed via a SSOT.

3.1.3.2 UC 1.1 Register device

e As a Network Engineer, | want to add a new device to the device inventory.
As a precondition, Use Case 1 must be fulfilled. To add a device to the inventory, some basic

information (e.g. MAC-Address, Serial number or Certificates) are needed.

3.1.3.3 UC 1.2 Get device information

e As a Network Engineer, | want to gather all my managed devices with their additional information from the
database.

As a precondition, Use Case 1 must be fulfilled. When a new device is connected for the first time, the

controller has to know which configuration is needed for this specific device.

3.1.3.4 UC 2 Onboard new device

o As a Network Engineer, | want to onboard the new device with the controller.

As a precondition, Use Case 1.2 must be fulfilled. It is required to define the device in the inventory
before it boots. When a new device boots up and has configured the DHCP with the correct information
for the controller, it sends a request message to the controller. The controller matches the device with

its specific information from the inventory. The state of the device should be updated in the inventory.
UC 2.1 Send bootstrap configuration

e As a Network Engineer, | want to send a bootstrap configuration to a cisco device.

As a precondition, Use Case 2 must be fulfilled. The main part of zero touch is to not connect to the

console of the device, it should be integrated automatically in the existing network.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 8 / 49

3.1.3.5 UC 3 Distribute SSH Key

e As a Network Engineer, | want to distribute SSH Keys to the device.

As a precondition, Use Case 1.2 must be fulfilled. This is used for faster, simpler and safer login to the
devices.

3.1.3.6 UC 4 Up- and Downgrade 10S

e As a Network Engineer, | want to upgrade and downgrade the 10S Firmware within the controller,

The image should be saved, and accessible from the network. The Up- and Downgrade should be done at the
onboarding process. The device receives a link to the desired image version.

UC 4.1 Reporting 10S Version

e As a Network Engineer, | want to get a report, if a firmware of a cisco device isn't up to date with the
configuration on the controller.

Today a common scenario is that a crucial security issue was identified. A patch from the vendor is already
available for installation. We want to handle the scenario fast without much effort. In this case we want to get
a report, which devices aren't up to date.

3.1.3.7 UC 5 Replace device

e As Network Engineer, | want to replace a failed device with a new one.

As a condition, it only should be replaced with the same model. To onboard the new device, only a backup from
the old one is needed.

3.1.3.8 UC 5.1 Create config backup

e As Network Engineer, | want to create a backup from a device within the controller.

The device has to be in the inventory to create backups. The backup has to be stored in a location,

which is managed by the controller.

3.1.3.9 UC 5.2 Install config backup

e As Network Engineer, | want to install a backup from a previous device.

As a precondition, Use Case 5.1 must be fulfilled. To replace a device, a backup is first needed. The
new device has to be configured with the backup.

3.1.3.10 UC 6 Manage Certificates

e As Network Engineer, | want to import new certificates to the device.

To meet the proper standard today, the provisioning controller has to be able to install the company

CA certificate on the device at the time of bootstrapping.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 9 / 49

3.1.3.11 UC 7 Extend stacked switch

e As Network Engineer, | want to manage stacked switches.

As stacks are used to increase the capacity, this feature is often used in practice. This feature is not
vital however: Even if not used, the switches do still work, but more configuration is needed. We can
implement this feature if time allows.

3.1.3.12 UC 8 Install licenses

e As a Network Engineer, | want to install licenses on the devices.

This Use Cases is out-of-scope because the expenditure of time exceeds our time budget.

The licenses, which come from cisco have to be implemented on the correct cisco device. With those
licenses, different functionalities can be unlocked.

3.2 Non-Functional Requirements
3.2.1 NFR1 Reliability

Our term project aims to lay the groundwork for an application that automates staging and
configuration of network devices. The main goals are to reduce the risk of errors by manual
configuration and importantly to save time. The same steps should end in the same configuration.

Acceptance criteria: The configuration sent to the device is the same as if the router were configured

manually. The device can process the pre-defined configuration without a problem.

Verification process: The generated configuration from Netbox is the same as, when configured on

the device itself.
3.2.2 NFR2 Maintainability / Reusability

During this term project an application with basic use cases will be developed. It is expected that in
the future i.e., during a bachelor thesis or other projects, the application will be extended with further
functionality. In order to make the reuse of our code possible and easy, we aim at writing modular

code.

Acceptance criteria: Each task can be executed separate from the others. The corresponding code is

also divided in a modular fashion.

Verification process: Every change to the code will be checked by the other developer before merging

takes place.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 10 / 49

3.2.3 NFR3 Maintainability / Changeability

Our application should be extendable and changeable in the future. To enable this, we need to avoid
redundancy in the code, which complicates changes and reuse of code.

Acceptance criteria: The code contains only well justified code duplicates.

Verification process: The code is checked by the other developer. This happens before the branch

will be merged.
3.2.4 NFR4 Maintainability / Analyzability

Since our application will work — in large parts — automatic, we need to make sure that we can track,
what actions were taken by the application. This helps not only to control the work progress of the

zero-touch configuration process but also to enable easy debugging in case of failures.

Acceptance criteria: Each communication between the controller and the network device to be

configured is logged. The log allows to determine which device was involved and which action was
taken.

Verification process: The SZTP Controller will be started and a test request for get-bootstrapping-

data is sent to the controller. After the request, the log contains the specific device and what action
has been done.

3.2.5 NFRb5 Transferability / Installability

We want to make sure, that the installation and provisioning of the service in the future should be
easy. It is common that hardware fails, or human errors happens therefore it should be easy to recover

from these mistakes.

Acceptance criteria: The installation can be done in an acceptable time frame. A cloud native

architecture isn't a prerequisite.

Verification process: The configuration on the provided lab setup with the user guide on the mkdocs

site can be done in an hour.

3.3 Verification of NFRs
3.3.1 NFR 1 Reliability

Detailed verification process: The configuration from the test with the mocked device is taken as

reference. Based on the generated configuration each step was done manually “by hand” directly on
the device. There were no issues regarding the generated configuration and the manually typed in
commands worked successfully.

Protocol: No issues found.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 11 / 49

3.3.2 NFR2 Maintainability / Reusability

Detailed: verification process: Every change to the application branch will be reviewed by the other

developer. Only after this, the branch can be merged to the main branch.

Protocol: Was done regularly.
3.3.3 NFR3 Maintainability / Changeability

Detailed verification process: As the code will be checked by the opposite before merging — the code
was analyzed and verified that there are no duplicates in the code. But there is always room for
improvement and it's a consistent learning curve how the code can be made better readable and faster.

Protocol: Was done regularly.
3.3.4 NFR4 Maintainability / Analyzability

Detailed: verification process: The SZTP Controller is running and can accept requests. The mock

“test controller with mock device” was started and starts the get-bootstrapping-data request and
the “report-progress" request. The request was successfully logged. Below is an excerpt from the log.
-- Provi 'Jnin controller started on port

<<<{ REQUEST * a" received from: 8.
>>> RESPONSE a" sent to: .8.8.1 (S/N: FOC2404XeFl)

<<< REQUEST " eceived from: .8.8.1 (5/N: FOC2484X0F]) (Type: bootstrap-complete Message: Bootstrap Success)
>>> RESPONSE acknowledgement sent to: .8.e.1 (Type: bootstrap-complete)

Figure 2 Log SZTP Controller

Protocol: The log contains the information about the requests and responses.
3.3.5 NFRb5 Transferability / Installability

Detailed verification process: The setup can be accomplished within an hour. First the git repository
was locally cloned to the server. After this, a new CA certificate was created or if this the network
campus controller will be integrated to an existing working environment, there should be already the
CA certificate available. The Docker Netbox image was pulled, and the override file was configured
according to the environment. In Netbox the regions, the API token and other required information
must be defined. Next, at the existing DHCP Server, the Option 143 SZTP has to be defined. Finally,

the provisioning server can be started successfully.

Protocol: The installation was completed successfully in about 40 minutes.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 12 / 49

4, Risk analysis

Issues can always arise, when working on a project. In preparation we have identified potential risks
we could face along the way. The risks have been assessed according to their possibility and impact.
Mitigation strategies have been developed in order to reduce or eliminate them.

4.1 Overview
Severity
Probability
Negligible Marginal Critical Catastrophic
Certain Risk level
Likely
Possible 3 3 7

Medi
Unlikely I:l edium

Y A 4 A 4
|
¥ ¥ h 4
Eliminated 1)(3 2 I:l Eliminated
Risks

1 Not enough information on Ciscos PnP protocol
2 Used hardware has no support for PnP

3 Implementing PnP requires too much time

4 Not enough expertise in programming language
5 lliness of a team member

6 Not enough information on SZTP available

7 Problems in implementing SZTP

8 SZTP in virtual devices

9 Chain of trust for SZTP controller

Figure 3 Risk overview

4.2 Details

1. Not enough information on Cisco's PnP Protocol

In this project we will use Cisco's proprietary protocol PnP (Plug-and-Play) to setup and
configure the network devices. Since Cisco uses this protocol in their paid solution DNA Center,
official resources about the workings of PnP are scarce to non-existent. This means we must
rely on unofficial sources and former work of the INS. Additional features/functions will have
to be reverse engineered by the authors. Depending on the number and complexity of functions,
this will need a considerable amount of time and effort.

Mitigation: To reduce this risk, we planned for an extended elaboration phase to make time

for our research.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 13 / 49

2. Used hardware has no support for PnP
There exist many Cisco devices. Since the PnP protocol is proprietary there's no simple way of
knowing if all the devices, we want to support with our controller are compatible with all
necessary PnP functions. Missing functions would have to be implemented manually, therefore

consuming more time, and adding complexity.

Mitigation: To avoid this risk, we plan to start out with a single network switch model. We

will add support for more models if time permits.

3. Implementing PnP requires too much time

Neither of the authors had any experience with PnP protocol prior to this project. This
circumstance along with the fact, that information on the PnP protocol is scarce, makes
estimating the complexity and time required to implement the protocol rather difficult.
Therefore, implementing PnP could turn out to be more difficult and time-consuming than
expected.

Mitigation: To avoid ending up with a not finished product, we start with a limited amount

of mandatory use cases and consider additional use cases optional.

4. Not enough expertise in programming language

There are programming languages that are more or less suited in the area of network
automation. The most represented language in our study is Java which unfortunately is not
necessarily well suited for network automation. Python on the other hand is often used for
such tasks. Since the authors do not have very much experience in Python, there will be

additional time needed to fill these knowledge gaps.

Mitigation: Since we will already need programming for the prototype, we expect to need time
in the elaboration to brush up on our Python skills. This phase is therefore planned with extra

time.

5. lllness of a team member

Considering that only two students work in this project, the prolonged absence of one of them

poses a risk to the project’s success i.e., delivering a finished product on time.

Mitigation: We will make use of available collaboration tools to ensure that both team

members always have the latest version of the documentation and code base. We furthermore
keep track of all short-term scheduled an in-progress tasks as well as the assigned member.
This will help the continuation of work in case a team member gets ill.

6. Availability of SZTP implementation in virtual devices

Since SZTP is a relatively new RFC, chances are that not all devices implement it. High risk
is especially present for virtual devices, since a key requirement for the security lies in a

hardware based tamper-proof authentication module (at least for Cisco).

Mitigation: We consider using physical devices which feature the hardware TAM.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 14 / 49

7. Chain of trust for SZTP controller

An obstacle could be acquiring the ownership vouchers for the devices (in the scope of Cisco
devices).

Mitigation: We consider using the traditional ZTP approach to avoid the certificate issues.
4.3 Risk development
431 12.10.2023

Risk 1, 2, 3

To circumvent the risks concerning PnP and to lower dependency on a single vendor, we decided to
switch from the proprietary PnP and instead plan to base our controller on the SZTP approach
described in RFC8572. All risks concerning PnP are therefore eliminated.

Risk 6

Since SZTP is a rather new standard, and neither of the team members has any prior experience with
it, a lack of information in form of documentation and examples could hinder the development of the
application.

Risk 7

Especially since SZTP is a new approach which seems to no be widely used at all, the degree of which
SZTP is implemented by vendors, in this case Cisco, as well as their adherence to the standard is
unknown. So any problems encountered during the development could impact the success of this
project.

Risk 8

After elaborating the necessity of a physical device to be able to use SZTP with our advisors, they
committed to provide us with a suitable switch or router. The risk probability is therefore lowered to

rare for the moment.
Risk 9

After elaborating the necessity of the ownership voucher for using SZTP with our advisors, they
committed to make the necessary inquiries to their supplier for us. The risk is therefore lowered to rare

for the moment.
4.3.2 02.11.2023

Risk 4

After taking some time to read into a Python tutorial, Patrick feels more comfortable with the
Language. The Flask Framework is still new to both team members, but they are confident, that the

programming language won't pose unmanageable hurdles. This risk is therefore lowered to rare.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 15 / 49

5. Evaluation

5.1 Provisioning Protocol

The first decision is the fundament of the project. The goal is to create a Campus Network Controller,
there are a few different protocols which can be used. The question is which protocol best suited to
use to realize the Campus Network Controller. Every protocol has their own up- and downsides. The
evaluation is focused on Cisco PnP and the RFC 8572 SZTP.

5.1.1 Cisco Plug and Play PnP

First released was Cisco PnP in 2016.[4] This protocol has already a few years on it, nevertheless this
means that the protocol is mainly bug-free and was well-updated over the years. Nowadays Cisco PnP
isn't open source anymore, it is integrated in the Cisco controller Cisco Catalyst and DNA Essentials[1]
or Cisco Catalyst and DNA Advantage.

5.1.1.1 How Cisco PnP works

PnP is the zero-touch solution by Cisco for its devices. First there are the Cisco devices, which embed
the PnP agent. The PnP Server also known as DNA Center, is the core of Cisco's PnP solution. There
happens all the magic for the configuration of the devices. The DNA Center works with PnP Protocol,
which is no longer open source. It works with HTTPs and XML protocols. The problem here is that it
is unknown how the product will develop in the future. Cisco might change the available features or
protocol syntax without public notice. The same is true for successor devices to those that reach their
end of life. That means, continuous checks and adaption to the new syntax are needed. If this project

should be maintained after the initial term, it needs more care afterwards.
The last part is PnP Connect, it's a cloud link-up, the on-prem server to enable cloud access.

This won't be a part of the Network Campus Controller, the team would focus on the local server for

now.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 16 / 49

@) DNA Center (PnP

" Server)
Auto-provision device w/
images & configs.

© DNA Center
() p
PnP Connect @ *

P

Al

9 2 Poli { iyt
Ckluddibased e o == s s owmis wme .- ey 'Aulomatvon fravicy Customer On-Premise
7/

I 7/

. PnP Connect /7

Redirects devices to On- A -

Premise DNA Center | 7

. / @ PnP Protocol
I 7 HTTPs/XML based protocol
. 7
("4

&=.== pnP Solution

0 PnP Agent
_ésco‘ switches, routers, CO m p o n e nts /

and wireless AP /

Figure 4 Cisco PnP [1]

Advantages

o It is widely used.

e Much information was available online when it was free. Therefore, this information is not quite up to
date.

e Protocols which are used are a good start.

e When you have a problem and use the licensed version you receive support.

Disadvantages
e The Cisco PnP protocol isn't open source anymore.
e For PnP you have to pay now (and not a little).

e More time is used to find out, how the protocol works. And even at with time it can happen that you
can't reverse engineer everything.

5.1.2 Secure Zero Touch Provisioning SZTP

Secure Zero Touch Provisioning is an RFC standard since 2019, the relatively new protocol has adopted
the secure component to ZTP. ZTP helps to quickly deploy new devices with pre-configured scripts or
commands. The protocol has really similar functions and methods, the devices also work the same so
there also has to be same configuration at the end. SZTP is supported by the vendors Cisco, Juniper,
Huawei and Nokia, among others.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 17 / 49

In addition to ZTP, the new standard adds a chain of trust to the vendor. The issuing of certificates
is controlled via the vendors servers, the API is called MASA.

DHCP Server (ZTP Anifacts

ZTP Server
(Bootstrap Server 1)

Restconf Server WWeb 59"’9\
(Artifacts)

Reference: hiy

Figure 5 SZTP on Cisco devices [5]

In the picture above the workflow of SZTP is displayed. The protocols used within SZTP are YANG,
RESTCONF or HTTP(-S).

Advantages:

e Standard by IETF, this means there are no possibilities that this feature would become closed source at
some time.

e Better, well formatted protocols are supported (e.g No XML)
e It's free to use, only the device costs.

Disadvantages:

e There is no support, if something doesn’t work, you have to do the troubleshooting by yourself.

e The standard is relatively new, so on the internet there is not so much information to find about it.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 18 / 49

5.1.3 Suitability of SZTP as a solution for the assignment

Since the scope of this project has been limited to Cisco devices, this chapter focuses on a current
version of Cisco 10S XE.

Prerequisites for using SZTP on Cisco I0OS XE Dublin 17.11.x[6]

e The management system must validate that it is provisioning a valid device.

e The device must validate that it is being deployed in the correct network.

e The device must validate that the provisioning data has not been tampered with.

e Provisioning must use a secure transport protocol for data communication.
The mutual validation of device and server is accomplished by certificates secured with a trust anchor.
This means, the device provides a signed version of its identifier, the Secure Unique Device Identifier
(SUDI) which signature the server can check against a Cisco root certificate. The secret keys used for
signing the SUDI reside in a proprietary tamper-resistant Trust Anchor module (TAM) on the device.

The device on the other hand, validates the server by an ownership voucher - containing its serial
number — signed by Cisco. This ownership voucher is normally generated by an API service by supplying
proof of purchase.

This validation method leads to the following questions:

1. Are there a SUDI and ownership voucher for virtual devices (no hardware TAM)?
2. Is there a way to use SZTP without ownership voucher (in case there will be none available for our
project)?
After bringing up this issue at the weekly advisor meeting, the advisors committed to supply us with

a physical device along with its corresponding ownership voucher.

Another remaining question is whether SZTP provides any function to act as a client for management
of the device after the provisioning process. The team could find no indication, that such a function
exists. SZTP includes pre- and post-configuration scripts that run before and after the provisioning

process, but once they are finished, no further functionality is provided by SZTP.

This means that we need another mechanism to manage the device after staging.
5.1.4 Decision on Provisioning Protocol

PnP provides a bad starting point for our project, mainly because of two reasons: 1. It's proprietary,
meaning there will be little information publicly accessible on how it works. Which is bad because we
will rely on detailed information in order to implement our solution. 2. Its compatible only with Cisco
devices. Which will limit the scope of the controller's usefulness for future extensions beyond the

timeframe of out semester project to a single vendor.

SZTP on the other hand is an IETF standard in the making (proposed standard). It is already supported
by different vendors and by being a standard, the protocols working mechanisms are publicly available.

The team therefore decided to go with SZTP as provisioning protocol for this project.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 19 / 49

5.2 Programming language

The programming language is the base of this project and is an important part of it because different
languages have different support for tools.

5.2.1 Golang

Golang is an open-source language, which is supported by Google. The first stable version Golang was
released in 2012.[7]

Advantages

* It's a modern programming language.
¢ It's often used for cloud-services.

Disadvantages

e Patrick and Vanessa do not have any previous knowledge of this language.

5.2.2 Python
Same as Go, Python is also an open-source programming language, but it was first released in 1991.
Advantages

e It's a modern programming language with a good ecosystem.

e It's the most used language.

e Vanessa has attended the module at OST “Automation with Python".
e Patrick would like to learn Python.

Disadvantages

e Patrick does not have any previous knowledge about Python.

5.2.3 Decision

Because of the highest common denominator, the team decided to use python as the programming

language in the SA. The team has more interest in learning and deepening their knowledge of Python.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 20 / 49

5.3 Device Inventory

The application needs an inventory to record the devices which are present. Additionally, their base
configuration values, ownership vouchers and so on are needed. Furthermore, the application needs to

store some operational data like target firmware version.

The team evaluated three possible solutions to address the needs concerning device inventory: Ansible,

Netbox and a custom implementation.
5.3.1 Ansible

Advantages:

e The tool is already known by the team members from earlier semesters (Network Automation).
e Also provides easy interaction with devices in the form of tasks.

Disadvantages:

e The inventory is stored in flat files: no GUI, complicated process to write variables like device status.

e Ansible focuses mainly on automation action rather than on device inventory.

5.3.2 Netbox

Advantages:

e Netbox includes a WebGUI.

e Netbox provides database storage.

o Netbox provides read and write API access.

e Netbox includes configuration template rendering, which might be usable for the needs of this project.

e Netbox can be used as SSoT to provide all configuration information in future extensions of the
controller.

Disadvantages:

e Netbox is new to the team members.

e Netbox provides much more functionality than needed for this project.
5.3.3 Custom implementation

Advantages:

e A custom implementation provides maximum flexibility in regards of data storage structure and
adaptability in interfacing with the provisioning and operation controller as well as possible other systems.

Disadvantages:

e A custom implementation needs much more work to develop, thus reducing time from our time budget.
e A custom implementation also needs development of additional elements like GUI.

e A custom implementation poses additional work for maintenance.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 21 / 49

5.3.4 Decision on device inventory

The team decided to use Netbox for this project, as it fulfils all the functional needs, while not requiring
much additional development effort. Additionally, it is future-proof, meaning it can be used as SSoT
for all configuration when the provisioning and operation controller will be extended. Furthermore, it
is open-source and allows to be extended with (custom) plugins, should the need ever arise.

5.4 SZTP Provisioning Controller

The SZTP Server is the central piece of this project, and the operation controller consists of different
parts. The Controller is responsible for the different SZTP tasks, such as managing the secure part:
Certificates, vouchers, onboard devices or upgrade the firmware. There are more segments, which are
going to be implemented and need different interfaces to the outside. Here only cover the most

important sections of the SZTP controller are covered and their advantages and disadvantages
described.

5.4.1 Python Framework

Python Frameworks are here for the communication to devices, the inventory and to the MASA Server
for obtaining ownership vouchers and licenses.

54.1.1 SZTPD Python Framework

This Python Framework was developed by Watson, a member, who also wrote the RFC standard. The
SZTPD library is now in the Alpha release and as of today (26.10.2023) the current version is 0.0.11.[8].

Advantages:

e Already a usable Framework for SZTP.
e With this Framework a lot of time could be saved — don't reinvent the wheel.

e Is written in Python, our preferred language.

Disadvantages:

e This tool is in Alpha release and could have a lot of bugs.

e When something does not work, figuring out the problem could be time consuming.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 22 / 49

5.4.1.2 Research on SZTPD Framework

During the research, we tried to install and configure the SZTPD Bootstrapping Server[9]. The Repo was last
updated early February with the second release of this repo (Checked on November).This is repo has a Dockerfile
included, which uses the Python library[8] from Watson, who is the main-contributor of the SZTP Standard.

The team tried to install SZTPD — but unfortunately without success.

The run command was successful, but the container didn’t have any logs and the SZTPD INIT PORT=8080
wasn't even assigned.

vani@nbvg01-1046g8:~$ docker pull opiproject/sztpd:latest
latest: Pulling from opiproject/sztpd

bb263680fedl: Pull complete

43900b2bbd7f: Pull complete

c0f518b07058: Pull complete

494044b06174: Pull complete

flabba28b551: Pull complete

1e1102f9e002: Pull complete

0ae3f5045bf2: Pull complete

0f6ffbdef58b: Pull complete

Digest: sha256:7aeld4196feaf6ed0f6d7d1d91b325310e04594d9e5cfdd7a7a07fab8U692857d

Status: Downloaded newer image for opiproject/sztpd:latest

docker.io/opiproject/sztpd:latest

vani@nbvg01-1040g8:~$ docker run —-rm —e SZTPD_INIT_MODE=1 -e SZTPD_ACCEPT_CONTRACT=Yes —e SZTPD_INIT_PORT=8080 —e SZTPD_INIT_ADDR=127.0.0.1 opiproject/sztpd:latest
vani@nbvgf1-1040g8:~$ docker ps . .

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
575d60cf7703 opiproject/sztpd:latest "sztpd sqlite:///:me..” 8 minutes ago Up 8 minutes (healthy) dazzling_elgamal
vani@nbvgel-1 $ docker logs 575d60cf7703

vani@nb 1 $ docker logs opiproject/sztpd:latest

Figllre 6 No -logs from SZTPD

In this case, SZTPD Bootstrapping Server can't be used, since it's difficult to debug something without any logs.

542 Web-API

For the communication with the devices and other services a web-server-framework is needed. Here
are two frameworks described, which can both be used with Python.

5421 Flask
Advantages

e It's simple to learn and build up.
e It has a large community for help.

Disadvantages

e It doesn't scale/needs more time for requests, because flask is a single source[10].

e Flask is new to the team members.

5.4.2.2 FastAPI
Advantages

e It's faster than Django and Flask to load a page. Below is a comparison[11]:

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 23 / 49

Framework Casea Caseb

FastAPI 17 ms 6.2 ms
Django 5172 ms 5.834 ms
Flask 507.2 ms 508.9 ms

Figure 7 Comparison web frameworks

e It has a built-in inspector for queries, with “/docs” added at the end of the URI. Here is an example[12]:

[FastAPI-Swagger Ul

Fast AP| ™

lopenapi.json

default v

“ /items/{item_id} Read item Get
Parameters Try it out

Name Description

item_id % required
integer
(path)

q

string
(query)

Responses

Code Description Links

200 No links

Successful Response

l applicationljson ~ l

Controls Accept header.

422 Validation Error No links

l applicationljson ~ l

Example Value | Schema

Figure 8 Screenshot Fast API

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 24 / 49

Disadvantages

e It's more complicated than flask.
e It has a smaller community for help.

e |t's also new to the team members.

5.4.3 Evaluation on SZTP Provisioning Controller

As shown in the research it's a challenge to implement an already available SZTP Controller. The
documentation is often lacking information, or it isn't up to date anymore. If the team were to work
with an existing SZTPD controller, it could quickly become confusing, and the troubleshooting would
take more time than if everything was set up by the team itself. From the teams experience it's
advisable to build an own controller.

Because both members are beginners in Pythons Web APls, they prefer a Framework which can offer
much community-help. FastAPi has great features, but a smaller community as Flask. However, the
most impact from the advantages is the huge community. For these reasons the Flask framework was
chosen.

5.5 Netbox Interface to SZTP Controller

As Netbox is used for the inventory, a programable interface for the SZTP provisioning controller and
the operation controller is needed. Available for selection is the pure APl access or the pynetbox library.
Both use a token created from within Netbox to authenticate the requests.

5.5.1 Netbox API

The Netbox API is at first sight well structured. It looks just like any other applications API.

Below is an excerpt of the API.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 25 / 49

[localhost

APl Root

This is the root of NetBox's REST API. APl endpoints are arranged by app and model name; e.g. /api/dcim

feites/ .
GET /api

HTTP 288 0K

Allow: GQET, HEAD, OPTIONS
Content-Type: applicatiaon/json
Vary: Accept

"circuits": "http://localhost:9888/api/circuits/ "
"core™: “http://localhost:9888/api/core/"

"dcim™: "http://localhost:9@@8/api/dcim/"
"extras": "http://localhost:9888/api/extras/"
"ipam": "http://localhost:9888/api/ipam/ "
"plugins": “"http://localhost:9888/api/plugins/™"
"status": "http://localhost:9808/api/status/"
"tenancy": “"http://localhost:9888/api/tenancy/"
"users"™: "http://localhost: 9888/ api/users/"
"virtualization™: "http://localhost:9888/api/virtualization/"
"wireless"™: "http://localhost:9808/api/wireless/"

Figure 9 Netbox API

Advantages

e It's structure is the same as any other API interface, therefore only little knowledge is required.
e It has no dependencies.

Disadvantages

e More parsing of the answer is needed.

55.1.1 Pynetbox

Pynetbox is a Python library. As mentioned on the Github repo of this library, it provides more features
than Netbox-python. Maybe not all features are needed, but there would be the possibility for it. The

repo was last updated in September with the Version 7.2.0 (as of late November).

Git-Repo: Releases - netbox-community/pynetbox (github.com)

Documentation: https://pynetbox.readthedocs.io/en/latest/

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 26 / 49

https://github.com/netbox-community/pynetbox
https://pynetbox.readthedocs.io/en/latest/

Advantages

e It regularly receives updates.
e It's well documented.
e Less code is need for the same result as with the pure API.

Disadvantages

e lts usability depends on the further development, whether the library receives updates and is well
maintained.

5.6 Evaluation on Netbox Interface to SZTP Controller

Because less and better structured code and the all-in-one documentation is preferred, the team decided
to use the pynetbox library.

5.7 User interface

Like every other application, this Network Controller also needs a Ul. The team thought about different
options, one of which was develop a complete graphical web-based interface. On the other hand, the
application could have also been configured and controlled completely via text files and CLI.

For the inventory part Netbox was chosen, which already provides an organized and easy to use web
interface. Since most user interaction will be happening with the inventory management, a large part

of the Ul is already covered.

As for the provisioning and backup controller: They both only need starting via CLI and no other user
interaction. The provisioning controller can thus be easily auto started at boot time via cron or could
also be enveloped in a service. The backup controller is supposed to be run frequently automated via

cron.

Therefore, no additional development time is needed for the user interface.
5.8 Operation Controller

The operation controller is responsible for the devices after the bootstrapping process. The operation
controller should send a new configuration to the device and must create backups from the devices,

which are in the inventory.
5.8.1 Creating Backups

The process of creating backups of the devices include, that the backups will be saved at a location,
which can be also accessed by the provisioning controller. The provisioning controller needs the backup
for the device replacement.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 27 / 49

5.8.1.1.1 Netbox Backup Plugin
Advantages

e One less additional tool, which has to be taken care of and get to know means less effort.

Disadvantages

e Netbox isn't made for this aspect, so there could be functionality missing or bugs, that have not yet
been fixed.

e Not many people use such a plugin — not much additional information is available on the internet.

5.8.1.1.2 Netbox Scripts
Advantages

e One less additional tool, which has to be taken care of and get to know means less effiort.

Disadvantages

e Support for additional features is limited or needs much more effort.

e Netbox isn't made for this aspect, so there could be bugs.

5.8.1.1.3 Nornir mit Napalm

Advantages

e The team is already a little familiar with Nornir from the Network Automation module.
e There are already guides available online for backing up devices.

Disadvantages

e One additional tool, which has to be taken care of.

5.8.1.1.4 Rancid[13]
Advantages

e This tool has been available for more than 10 years. It is not new on the market and is certainly stable.
e The team knows a user who has successfully deployed it and could provide help.

Disadvantages

e The website looks a little old-fashioned. The copyright stamp was from 1996-2016. Maybe it is not well
maintained anymore.

e One additional tool, which has to be taken care of.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 28 / 49

5.8.1.1.5 Ansible
Advantages

e The team is already familiar with Ansible from the Network Automation module.
e There is much information available about Ansible. Ansible is known and used by a lot of people.

Disadvantages

e Ansible has many features to offer — maybe already a little too much. Ansible is more heavy weight and
sluggish than Nornir.

5.8.2 Decision on creating backups

The Netbox tools and script are behind Ansible, Rancid and Nornir with Napalm. Because the others
aren’t just little used plugins and have a lot more downloads. Rancid's website does not look
trustworthy — it looks like a website which was made ten years ago and didn't receive many updates
since its creation. The project however should live on.

Because Nornir and Napalm is more lightweight than Ansible and an interesting guide was already
found, the team decided to use Nornir with Napalm for the backup.

5.8.3 Operation Controller: Reporting and configuration

In addition to creating backups the operation controller should also be able to report the device 10S
version and configure the device. The device should also be able to be configured as a stack with

another device.

5.8.3.1 Ansible
Advantages

e It uses structured data for configuration: YAML.
e It has many modules: open for further development.

Disadvantages

e Maybe it's too slow: Tasks are only processed in a serial way.

e Ansible has many features to offer — already a little too many?

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 29 / 49

5.8.3.2 RestConf

Configuring a Cisco device using RESTCONF (RESTful Network Configuration Protocol) involves
REST-like methods as GET, POST, PUT, PATCH, and DELETE.

Advantages

e REST-full architecture: Already known processes.
e It's human readable, what will be sent: easier for debugging.

Disadvantages

e Older devices maybe do not implement Restconf.
o (Restconf has to be enabled on the device first.)

e Limited operations: the operations are bound to the HTTP methods, which may not cover all the uses
cases or further development. A better option would be to use Netconf with more options.

5833 gRPC

gRPC(gRPC Remote Procedure Call)[14] was developed by Google, but is now maintained by CNCF.
It's implemented with HTTP /2.

Advantages

e It has high efficiency by using HTTP/2.

Disadvantages

e Not all devices may have a good support for gRPC.
e It must be configured on the device.

e It has a steep learning curve.

5.8.3.4 Netmiko

Netmiko is a CLI based automation tool and implements Paramiko. Python is the only language which

is supported.[15]
Advantages

e lIt's easy to use: Could be implemented with Netbox and modified for every different OS.
e It's supported by many vendors.
e It supports Python: The chosen language for this project.

Disadvantages

e It relies on SSH only.

e It's limited to CLI Automation: Might be unstable when more advanced interactions are needed. A better
option would be using an API.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 30 / 49

5.8.4 Decision on Operation Controller: Reporting and configuration

There are many nice tools to get into und learn how they work. All are a little bit different and have
their own advantages and disadvantages.

Unfortunately, there wasn't enough time at the end of the project to implement this part. Therefore,
a decision a tool for the reporting and configuration operations was not made.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 31 / 49

6. Problems encountered

6.1.1 DHCP-Option 143

The RFC 8572 on SZTP[3] references RFC 7227 on DHCP Options Guidelines[16] for information on
options with URI information. This RFC presents two possibilities. One, include a single URI of variable
length in the options data field. Since there is only one URI, it's length can be inferred from the options
length contained in the option-len field which is set automatically by the DHCP server software.
Possibility two is including a list of URIs in the option data field. To separate the URIs on the client
side, each URI needs to be preposed by a 2-Byte number representing its length.

Since there is only one bootstrap server, the team went with possibility one. After many tries, they
found out, that the Cisco device in use, always needs a list (meaning with the preposed 2-Byte length
of the URI) even when only one URI is used.

6.1.2 Little information in Request for Bootstrap data

The controller needs to be able to identify the device making the request to query the corresponding
values for the configuration from our inventory. Unfortunately, the request only contains information
about the device model and its OS.

<input xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
<signed-data-preferred/>
<hw-model1>C9300-24P</hw-model>
<os-name>I0SXE</os-name>
<os-version>17.12.01</os-version>
</input>

Figure 10 Data contained in request to /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrapping-data

The team knows that the client certificate used by the device to authenticate itself to the server
includes the serial number. If the certificate data can be passed from the web server to the application,

the team would be able to extract the device id from there.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 32 / 49

Certificate
Status: Available
Certificate Serial Number (hex): O01lFCCFBD
Certificate Usage: General Purpose
Issuer:
o=Cisco
cn=High Assurance SUDI CA
Subject:
Name: C9300-24Pp
Serial Number: PID:C9300-24P SN:FOC2404X0FJ
cn=C9%300-24Pp
ou=ACT-2 Lite SUDI
o=Cisco
serialNumber=PID:C9300-24P SN:FOC2404X0FJ
Validity Date:
start date: 02:19:36 UTC Jan 22 2020
end date: 20:38:26 UTC Aug 9 2098
Associated Trustpoints: CISCO IDEVID SUDT

Figure 11 Command output extract of 'show crypto pki certificate’

Another less elegant option would be to only provide a generic script via SZTP to the device that then
could read the serial number from the device locally and request the specific configuration in another
request to the controller.

6.1.3 Change in Provisioning technology

In this project zero-touch configuration for network devices should be realized. The base of the zero-
touch is the protocol. There are a few available, but the challenge here is to implement it as open
source. In this case, the Cisco DNA Center can't be used, but the PnP protocol from the DNA center
could be reverse engineered.

First in the term project the team started with Cisco PnP, collected information and tried to understand
how the protocol works. Cisco PnP was some time ago documented in their resources. In this time
PnP could be implemented with Cisco devices, now PnP was added to the DNA Center and isn't
documented in their resources anymore. The team got to know that it could be a huge challenge to
implement Cisco PnP because of the lacking information or that there aren’t any more updates for the

PnP Protocol. More information can be found in the evaluation of Cisco PnP or SZTP.

After the evaluation phase, the team progressed with the RFC standard SZTP. A new research process
began with SZTP, again collecting information and try to find some examples of other network

engineers.

Now in the eighth week of the term project, the team had made some progress for the prototype, but
the most important thing was missing: the voucher for the Cisco devices. The voucher is issued by
Cisco to complete the chain of trust. In the meeting of this week, it was decided to proceed with ZTP
— without the secure part. This would cost us an additional amount of time — ZTP would use some

basics of SZTP. Nevertheless, it again meant repeating the research about another technology.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 33 / 49

Fortunately, at the evening of the meeting, Yannick gained access rights with the correct permissions.
He handed the vouchers to the team so that the project could now proceed with SZTP.

6.1.4 Obtaining Device Certificate

The device uses its private key to initiate the TLS session with the SZTP Server and therefore sends
the corresponding certificate in the TLS request. On the server side the team needs to extract this
certificate from the TLS session, in particular the devices serial number from the subject field.
Unfortunately, this proved to be much harder, than anticipated.

The early tries with just the built-in development webserver of flask couldn't get the team the client
certificate content. They then tried to use uWSGI to serve the app on a socket and use Nginx as a
proxy to forward the certificate content to the flask application. Unfortunately, this didn't bring any

more success.

From our advisors, the team got the idea of using the werkzeug library and a custom request handler
to serve the app without Nginx. With this solution they finally could get the client certificate retrieval
to work. However, this only applied to their own test client certificates signed by their own test CA.

With client authentication enabled the Cisco device could not establish a TLS session correctly. Since
cisco uses a large variety of CAs, some research and a lot of testing were necessary to get the chain
of root CA and intermediate CA right. With the devices client certificate extracted from a TCP dump
and the correct chain of CA certificates, the team managed to verify the client certificate manually

using OpenSSL commands. However, mTLS in their application still wasn't working.

The team tested again some other theories. The first of which was that maybe client and server can't
find a common cipher suite. An analysis of the TLS handshake in Wireshark proved this theory wrong.
The client advertised a bunch of cipher suites, and the server chose one of them, specifically
TLS ECDHE RSA WITH AES 256 GCM SHA384.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 34 / 49

Wireshark - Packet 170 - cert.pcapng =) B

» Transmission Control Protocol, Src Port: 52714, Dst Port: 8443, Seq: 1, Ack: 1, Len: 212 -
~ Transport Layer Security
~ TLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 207
~ Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 203
Version: TLS 1.2 (0x0303)
Random: 62b65b18bde6d79cf32de5973e96ee9aac0082010¢58b473b13d2b83457227bd
Session ID Length: @
Cipher Suites Length: 56
~ Cipher Suites (28 suites)
Cipher Suite: TLS_ECDHE _ECDSA WITH_AES 256 _GCM_SHA384 (©xc@2c)
Cipher Suite: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x009f)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (Oxcca9)
Cipher Suite: TLS_ECDHE_RSA WITH_CHACHA20_ POLY1305 SHA256 (®xcca8)
Cipher Suite: TLS_DHE RSA WITH_CHACHA20_ POLY1305_SHA256 (@xccaa)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (©xc@2b)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (Oxce2f)
Cipher Suite: TLS_DHE_RSA_WITH_AES_128 GCM_SHA256 (0x009e)
Cipher Suite: TLS_ECDHE_ECDSA WITH_AES 256 _CBC_SHA384 (©xc024)
Cipher Suite: TLS_ECDHE_RSA WITH_AES 256 CBC_SHA384 (©xc©28)

=Y DR T W P T M RS TR AEA A ene ot s e e o aeen b\

Wireshark - Packet 172 - cert.pcapng - O X

» Frame 172: 1651 bytes on wire (13208 bits), 1651 bytes captured (13208 bits) on interface enxcd41~
Ethernet II, Src: BelkinIn_fe:ca:bl (c4:41:1e:fe:ca:bl), Dst: Cisco_ad:e5:80 (24:16:9d:ad:e5:80)
Internet Protocol Version 4, Src: 10.0.0.1, Dst: 10.0.0.16
Transmission Control Protocol, Src Port: 8443, Dst Port: 52714, Seq: 1, Ack: 213, Len: 1585
~ Transport Layer Security
~ TLSv1.2 Record Layer: Handshake Protocol: Server Hello
content Type: Handshake (22)
version: TLS 1.2 (6x0303)
Length: 93
~ Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 89
version: TLS 1.2 (0x0303)
» Random: e7bc12a28a0f84c55e8b07d626cfIdf8c7f966bB3T7950764447574e47524401
Session ID Length: 32
Session ID: 52c¢6ab1c62403d6df054182b4adcfof68a61a35d97360d36de26ccd3cc2798266
Compression Method: null (0)
Extensions Length: 17
~ Extension: renegotiation_info (len=1)
Type: renegotiation_info (65281)
Length: 1
» Renegotiation Info extension
» Extension: ec_point_formats (len=4)
Type: ec_point_formats (11)

-

Figure 12 Comparison of supported TLS Cipher Suites

The team received another hint from our advisors on a setting in Python's SSL library that lets the
developer log information on the secret keys in a TLS session. In their tests however, they could find
no benefit of it: With their own CA and client certificate, they got the log messages. If they switched
to the cisco device as client and the corresponding CA chain, the log file stayed empty. Thus proving,

that there is a problem, but not bringing them any closer to the solution.

y $ secrets.log
TLS secrets log file, generated by OpenSSL / Python
SERVER HANDSHAKE TRAFFI! ET 7692fdla3ade5d5f4f4dObcf1fod2d16 5a0a82168f190 e7dfca%e 5d07c1992 5510b9867f88097eabbeacd38
CLIENT_HANDSHAKE_TRAFFI RET 7692fdla3ade5d5f4f4dObcf1fod2d16 5a0a821681190 e7dfca%e d 02fa dd182510ce7cff85995e2
EXPORTER_SECRET 7692f e5d5f4f4 1fed2d168 0 3 7e7dfcade 1lcaab51bbf29a98de8e87c 97 fc6f6ca3.
SERVER TRAFFI dla3ade5d5f4f4de 0 5a0a8216819080 e7dfca%e 4dclb 6d26e183ea’9% daBca5841

SERVER_HANDSHAI ET 920eadedBbe 698| 381a77k bc58a2e1f0810358 37c2 b50 2 b1de24 2 3ac8!) 4fb
CLIENT_HANDSHAKE TRAFFI! 'CRET 920eaded@@e 3

EXPORTER_SECRET 920eaded00e733c9dc698|

SERVER_TRAFFI ET_0 920eaded0Be 698 1a77b1b3bc58. 0810358 fccB87c2a5

CLIENT_TRAFFI CRET_@ 920eadedbfe 698| 381a77b1b9bc58a2e 1108 58fcc87c2ab

Figure 13 SSL library secret log for client test certificate

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 35 / 49

The final idea was to compare the devices client certificate with their own test certificate in terms of
structure and values. The comparison showed that the structure and chosen algorithms were mostly
identical. However, the Cisco certificate contained some parameters of the X509v3 extensions. Of
particular interest to the team was the Key Usage parameter. They then created a new client test
certificate with their own CA that contained the mentioned X509v3 extension parameters and tested
this one, expecting the test to fail. Unfortunately, the test succeeded, proving that the certificate's
structure is not the problem.

Version: 3 (8x2)
Serial Number: 23345469 (0x1fccfbd)

Si Algorithm: RS

Issuer: “"High Assurance SUDI CA

Va

Not Before: Jan 22 02 36 2020 GMT Not Before: Nov 15 16:
Not After : Aug 2899 GMT Not After : Nov 12 :

Subject: serialNumbe @0-24P SN:FOC2484X0F], 0 = Cisc Subject: C = CH, ST = St. Gal 05T, 0OU
ject Public K bject Public :

taa:

0001)

on, Key Encipherment

Figure 14 Cisco device certificate (left) and original test client certificate (right)

This problem has already cost the team a lot of time, so they finally decided to stop investigating it
for now. Instead, they focused on other parts of the project, like completing the workflow of the
application and integrating the Netbox API, leave the device communication with only a server-side
certificate and no serial number extraction of the device certificate.

The code providing the functionality for the mTLS authentication and device certificate parsing is left

in the source code file with corresponding comments for further development.

6.1.5 Getting Docker Containers to the lab

To set up the inventory, Netbox, can be configure and customize from scratch. Fortunately, there is a

Docker Netbox image, so a lot of effort can be saved.

However, it is not as easy as thought by the team. They have tried to install the Docker Netbox image
in a lab environment. The lab computers have two namespaces, one of which is connected to the
Internet and the other to the test switch.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 36 / 49

The first suggested solution was to attach a router (with internet access) between the test switch and
the lab computer. The second one would be to download the Netbox images manually via the other
browser on the lab computer. The team chose the second option because it's less complex and they
would only need a docker image this one time.

The necessary docker images were transferred to the server manually. Luckily docker provides the
commands “docker save” and “docker load” to export/import the images into a tar file. The team
created the tar files on their development notebook, transferred it to the server and imported them
again.

6.1.6 Testing the controller with a Cisco Switch

After the very time-consuming problems with the devices certificate, the decision was made not to use
it for authentication. Since this certificate is also the only way to get the devices serial number at the
time of bootstrapping, the decision was made to set it manually in the Provisioning Controller.

Having combined or mocked all other data sources the team tried to do a real-world test of the
Provisioning Controller in combination with the physical switch. The results were that the device
requests the bootstrapping data five times in a row but does not do anything else. Specifically, it
neither tries to load the firmware image nor applies the supplied configuration. This behavior lead them
to the conclusion, that there must be an error somewhere in the structure of our bootstrapping data.

Unfortunately, the device itself does not report any errors. Neither to its internal log nor via the
“bootstrap-error" progress report specified in the SZTP RFC. This is likely due to the RFC allowing
error progress reports only to trusted servers and would imply the error lying somewhere in the server

authentication.

Since this is accomplished via the ownership voucher from Cisco, which is not human readable, and
without any further error details available from logs, chances of resolving this problem in any reasonable
amount of time are practically nonexistent. It was therefore decided, that for this project the device

and its requests will be replaced by a mock.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 37 / 49

7. Outlook

This project provides the basis of a Network Controller. While it contains the most basic functions
such as initial provisioning and automatic configuration backup, it also lacks some functionality such
as configuring devices in their operation phase and collecting performance statistics. In a future project,
extensions like these could be developed.

On the other hand, there is the mutual TLS authentication, which we couldn’t implement successfully
due to time constraints. Also, there's the interaction with the real physical device which is still to be
implemented. As a continuation of this project, these aspects would need to be addressed as well.

This application relies heavily on Netbox as a data source and is written in the same language (Python).
So, there would also be the possibility to transform its logic into a plugin, that could be integrated in
Netbox and used from there.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 38 / 49

8. Project Plan

8.1 Roles and obligations
8.2 Process Model

It was decided to use in this project the Kanban-Method for the short-term planning and the RUP
Process model for the long-term planning. The decision is based on the fact, that the Kanban method
is easy to use, the team is small so there is no need for extra complexity, and Kanban is already known
from the SEP project. The RUP Process Model is also already known and found to be self-
comprehending by the team.

8.3 Time Management
8.3.1 Long-Term Planning

The Long-Term Planning is for the whole Semester. The project phases Inception, Elaboration,
Construction and Transition are mapped in the diagram. It also includes all the milestones. The plan
is separated per week. Below is the RUP plan.

22.09.2023
29.09.2023
06.10.2023
13.10.2023
20.10.2023
27.10.2023
03.11.2023
10.11.2023
17.11.2023
24.11.2023
01.12.2023
08.12.2023
15.12.2023
22.12.2023

Phases

Date

KW

w
o
w
[Xa)
I
[an]
o~
=
o~
[\ 8]
I~
[¥8)
I~
~
I~
[93]
I~
[=2]
I
~J
o
co
o~
[X=]
[¥)]
o
w
ey

z
[y
%)
(98]
I
w
(=]
~]
[o.4)
[Y=)
[y
]
[
[
[y
%)
=
(98]
[
I

Inception
MS 1 - long term planning and tools

Elaboration

Elaboration 1

MS 2 - project planning

Elaboration 2

MS 3 - requirements and analysis
Elaboration 3

MS 4 - architecture analysis and prototype

Construction

Construction 1

MS 5 - Alpha Release
Construction 2

MS 6 - Beta Release
Construction 3

MS 7 End of Construction

Transition / Presentation
MS 8 - Project Closure
Documentation

Figure 15 Long-Term Plan

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 39 / 49

Below are some important symbols according to Figure 15 Long-Term Plan.

n the diagram the striped boxes are optional and can be used if the time is needed. In case the
team doesn’t need the time, they can procced with the next phase.

o @ The green squares are milestones.

The project delivery is in KW 51, on Friday at 5:00pm.

8.3.2 Short-Term Planning

For the short-term planning the Kanban-Method is used. It was decided to use the tool in Teams,
“Tasks". It is best suited for the team, because it's already known from work and the team didn't want
to use many different tools, keeping it simple and clean.

8.4 Collaboration
8.4.1 Communication

For the communication between the two developers, MS Teams is used.

Group by Bucket

Ready to start In Progress Done

+ Add task + sk + Add task

Project Management Project Management

— " — - Completed tasks
(C) Agenda Meeting 27.09.2023 () Mkdocs Gitlab Page = <

[ogr2s o] Due @
=

() Define Goals ~. Documentation: Desaibe tools we
- O
~ use

) Due

5 oue)

Anatysis

") Define Use Cases

Figure 16 Short-Term Planning with MS Teams

In MS Teams the team has defined the Buckets Backlog, Ready to start, In Progress and Done. Team

members and due dates can be assigned to tasks.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 40 / 49

8.4.2 Time tracking

To track the time, Toggl is used. In Toggl various projects were created to represent the different
disciplines. Toggl allows the team to automatically create reports grouping time by discipline and team
member as well as filter by time range. Below is a screenshot of out Toggl time tracking.

Projects

| showactive v | Futers: (3 client [Team @ Billable [Project name

3= Bulk edit |
Reports
Insights PROJECT © CLIENT 2 TIME STATUS {
® Analysis Th
Projects
Clients ® Development T1h
Billable rates
® Documentation 7h
&t Team
@ Tags ® Project Managen 13h
% Integrations ® Requirements 2h
® Research 4 h
Testing Oh

Figure 17 Toggl Track for time tracking

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 41 / 49

8.4.3 File storge, versioning and review

For this is the OST Gitlab used. To ensure the expected code quality, each merge request is assigned
to the other team member for review. This review ensures also that the code to be merged is structured
in a comprehensible fashion. In addition, Mkdocs is used for the technical documentation.

In Gitlab, the team used a group with two different repositories “application” and “documentation”.

S SA-HS23-1aC-OpenSlot &

Group ID: 12166 [Leave group

o~ New subgroup New project

Subgroups and projects Shared projects Archived projects

| Q, Search
Name v |z
(0 A application & % 0 2 minutes age
(1 D documentation @ * 0 21 hours ago

Figure 18 Gitlab repositories

8.5 Meetings

Meetings are set up on Wednesday, 11:00am with the supervisors Urs Baumann and Yannick Zwicker
and the developers Patrick Lenherr and Vanessa Gyger.

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 42 / 49

9. Appendix

9.1 Glossary
Abbreviation | Name Description
CA Certification Authority | Service to sign certificates
DNA Center Digital Network Centralized network management solution by Cisco

Architecture Center

Generation

MASA Server | Manufacturer Service to generate Ownership Vouchers
Authorized Signing
Authority
0oC Owner Certificate This is an X.509 certificate. This certificate is used for
identifying the organization
oV Ownership Voucher Used to securely identify the devices associated owner
organization.
PDC pinned-domain- The PDC is used as a trust anchor in a certificate chain
certificate that does not lead up to a root CA.
PK Private Key Is used with the PDC to generate the Ownership
certificate.
PnP Plug-and-Play Cisco Service to configure network devices
RestConf RESTful Network HTTP-based protocol providing an interface to access
Configuration Protocol | YANG data
SSoT Single Source of Truth | Concept of keeping any and all configuration data in
one location
SUDI Secure Unique Device Device identity (product identifier and serial number) in
Identifier a certificate that is chained to a root CA
SZTP Secure Zero Touch Protocol standardized in RFC8572 to Provision network
Provisioning devices
TAM Trust Anchor Module Hardware module containing the cryptographic secrets
YANG Yet Another Next Data modeling language for network management

protocols

Figure 19 Glossary

Secure Device Provisioning Using SZTP

22.12.2023 Page 43 / 49

9.2 List of Figures

Figure 1 Use Cases.......oooiiiiiiiiiiiiieee e 7
Figure 2 Log SZTP Controlleroooiiiiiiiii 12
Figure 3 Risk OVEIVIEW........ooiiiiiiiiii 13
Figure 4 Cisco PP [1] ..o e 17
Figure 5 SZTP on Cisco deViCeS [B]........uiiiuiiiiiiiiiiiii e 18
Figure 6 No [ogs from SZTPD ... 23
Figure 7 Comparison web frameworks ... 24
Figure 8 Screenshot Fast APl ... o 24
Figure 9 Netbox APlo 26
Figure 10 Data contained in request to /restconf/operations/ietf-sztp-bootstrap-server:get-

DOOTSErAPPING-AAtA .. . eeiii i 32
Figure 11 Command output extract of 'show crypto pki certificate'cccco 33
Figure 12 Comparison of supported TLS Cipher Suites.............cccccciiiii 35
Figure 13 SSL library secret log for client test certificate............ooooiviiiiiiiiiiiii 35
Figure 14 Cisco device certificate (left) and original test client certificate (right)..............c.....oco.. 36
Figure 15 Long-Term Plan..........cooooiiii 39
Figure 16 Short-Term Planning with MS Teams...........cccccooiiiiiiiii 40
Figure 17 Toggl Track for time tracking............oooiiiiiiiiiiiii e 41
Figure 18 Gitlab repoSItOriesooiiiiiiiiiiii 42
Figure 10 GlOSSary.........oooiiiiiiiiiiii 43

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 44 / 49

9.3 Bibliography

[1] Cisco. "Cisco Catalyst and DNA Software Subscription Matrix for Switching." [Online].
Available: https://www.cisco.com/c/m/en_us/products/software/dna-subscription-switching/en-
sw-sub-matrix-switching.html

[2] Cisco. "Cisco Catalyst Center Network Managment.” [Online]. Available: https://
www.cisco.com/site/us/en/products/networking/dna-center-platform/index.html?dtid=
0sscdc000283

[3] K. Watsen, M. Abrahamsson, and Farrer lan. "Secure Zero Touch Provisioning (SZTP)."
[Online]. Available: https://datatracker.ietf.org/doc/rfc8572/

[4] Ford Arad. "Network Automation with Plug and Play (PnP) — Part 1." [Online]. Available:
https://community.cisco.com/t5/networking-blogs/network-automation-with-plug-and-play-pnp-
part-1/ba-p/3658231

[5] Cisco. "CiscoLive Innovations SZTP." [Online]. Available: https://www.ciscolive.com/c/
dam/r/ciscolive/us/docs/2021/pdf/BRKSPG-2024.pdf

[6] Cisco. "Programmability Configuration Guide, Cisco IOS XE Dublin 17.11.x." Accessed:
Oct. 19, 2023. [Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/
configuration/1711/b_1711 programmability cg/m_1711 prog_ztp.html#secure-ztp

[7] Wikipedia. "Golang." [Online]. Available: https://de.wikipedia.org/wiki/Go__
(Programmiersprache)

[8] Watson. "SZTP Python Framework." [Online]. Available: https://pypi.org/project/sztpd/
[9] Boris Glimcher. "opiproject/sztp.” [Online]. Available: https://github.com/opiproject/sztp

[10] STEPHEN CASS. "Top Programming Languages 2022." [Online]. Available: https://
spectrum.ieee.org/top-programming-languages-2022

[11] Muhtasim Fuad Rafid. "FastAPI Pros and Cons." [Online]. Available: https://dev.to/
fuadrafid/fastapi-the-good-the-bad-and-the-ugly-200b

[12] tiangolo. "FastAPL." [Online]. Available: https://fastapi.tiangolo.com/
[13] shrubbery. "RANCID Backup." [Online]. Available: https://shrubbery.net/rancid/

[14] IONOS. "gRPC." [Online]. Available: https://www.ionos.de/digitalguide/server/knowhow/
grpc-vorgestellt/

[15] pyneng. "Netmiko." [Online]. Available: https://pyneng.readthedocs.io/en/latest/book/18_
ssh_telnet/netmiko.html

[16] Hankins, D., Mrugalski, T., Jiang, S., and S. Krishnan. "Guidelines for Creating New
DHCPv6 Options." [Online]. Available: https://datatracker.ietf.org/doc/html/rfc7227

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 45 / 49

9.4 Assignment-Document

I NS Institute for
Network and Security

Semester Project Assignment

Secure Device Provisioning Using SZTP

Version 1.0
December 20, 2023
Institute for Network and Security

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 46 / 49

INS I Institute for v1.0
Network and Security : oo -
BRIk AnC ey Secure Device Provisioning Using SZTP

1 Assignment

1.1 Supervisor

This student project will be supervised by Yannick Zwicker (yannick.zwicker@ost.ch) and Urs
Baumann (urs.baumann@ost.ch), OST.

1.2 Students

This project is conducted in the context of the module “Studienarbeit” in the department “In-
formatik” by:

o Vanessa Gyger
o Patrick Lenherr

1.3 Introduction

Network infrastructure consists of routers and switches. The larger the network the more of these
devices are present within the network. The number of such devices can thus become quickly =o
large, that managing them manually is not only tedious but also poses significant risks of inconsis-
tent configuration and extended downtimes in case of hardware failure. Automation mechanisms
for device and configuration management are therefore a necessity as soon as the networks surpass
a certain size. Especially the initial device onboarding can be automated efficiently.

1.4 Status quo

Many large network device vendors have realized the demand for automation and are offering
their own automation solutions, like Cisco’s Catalyst Center. Most of these golutions are however
not only restricted to the vendor’s own devices but are also cloged source and often too expensive
for small to medium network operators. Some of them have come together with their idea of a
standardized way to securely provision new devices without manual intervention on the device
iteelf (zero-touch).

1.5 Goals of the Project

The objective of our term project is to lay the groundwork for a network controller that handles
zero-touch provisioning of newly installed devices as well as transferring configuration in case
of 1-to-1 device replacement. The scope of the controller is limited to Cisco devices for this
project, but it should be extendable to support various devices that implement SZTP according
to RFC 8572. Furthermore, the controller should also be open for future extension providing
more functionality like ongoing configuration after the provisioning process.

1 Assignment 1of2

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 47 / 49

INS R s Secure Device Provisioning Using SZTP v 1.0

1.6 Documentation

This project must be documented according to the guidelines of the “Informatik” department.
This includes all analysis, design, implementation, project management, etc. sections. All docu-
mentation is expected to be written in English. The project plan aleo contains the documentation
tasks. All resulte must be complete in the final upload to the archive server. There is no need to
print out the documentation

1.7 Important Dates

A Official documents

Check the official documents and relegments

“ Date I Event ”
18.09.2023 Start of the student project 7
18.12.2023 Hand-in of the abstract using the online tool abstract.rj.ost.ch
22.12.2023 17:00 | Final hand-in of the report using the online tool avt.i.ost.ch
04.01.2024 Presentation

1.8 Evaluation

A Official documents

Check the official documents and relegments

“ Criterion | Weight |
Organization and implementation = 20%
Formal quality of the report 20 %
Analysis, design and evaluation 20 %
Technical implementation 40 %

N

1 Assignment

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 48 / 49

9.5 Implementation & User Guide from mkdocs

Online version: http://ins-stud.pages.gitlab.ost.ch /sa-ba/sa-hs23-iac-openslot /documentation/

Secure Device Provisioning Using SZTP ~ 22.12.2023 Page 49 / 49

http://ins-stud.pages.gitlab.ost.ch/sa-ba/sa-hs23-iac-openslot/documentation/

Secure Device Provisioning Using SZTP

Description Secure Device Provisioning Using SZTP

Author(s) Patrick Lenherr, Vanessa Gyger

Copyright Copyright © Patrick Lenherr, Vanessa Gyger

Table of Contents

1 Secure Device Provisioning Using SZTP

| Architecture & Design

2 SZTP Controller diagram
e 2.1 Class Diagram
e 2.2 Device Lifecycle
¢ 2.3 Sequence Diagram
e 2.3.1 Get bootstrapping data
¢ 2.3.2 Report progress
e 2.4 SZTP-Workflow
e 2.4.1 General SZTP-Workflow
e 2.4.2 Adoption of SZTP-Workflow
3 Application Architecture C4 Model
¢ 3.1 System Context
¢ 3.2 Container
+ 3.3 Network device controller component

+ 3.4 Inventory management component

4 Workflow of the Ownership Voucher OV
e 4.1 KeyTerms
» 4.2 Workflow issuing OV Ownership Voucher
e 4.3 Authentication Workflow

[l User guide

5 DHCP Configuration
+ 5.1 DHCPv4 Kea Configuration
6 Netbox
e 6.1 Setup
* 6.2 Device Configuration
e 6.2.1 Create device and related objects
e 6.2.2 Custom Fields
e 6.2.3 Config Context
e 6.2.4 Config Templates
e 6.3 APl Access
7 Controller
e 7.1 Setup

¢ 7.2 Usage
e 7.2.1 Configuration

e 7.2.2 Provisioning Controller
o 7.2.2.1 Test

e 7.2.3 Backup controller

8 About
e 8.1 Authors

1 Secure Device Provisioning Using SZTP

The objective of this term project is to lay the groundworks for a network controller that handles zero touch
provisioning of newly installed devices as well as transferring configuration in case of 1-to-1 device replacement.

The scope of the controller is limited to Cisco devices for this project, but it should be extendable to support various

devices which implement SZTP according to RFC 8572.

. Architecture & Design

2 SZTP Controller diagram

2.1 Class Diagram

The following figure focuses on the classes which are implemented for the network device controller component.
Interfaces (or interface-like constructs for Python) are used to allow for easy extension of the application. Contrary
to the philosophy of SZTP — which is to request an ownership voucher from the vendor, this application treats it as
an attribute to the device since it is provided as file for the scope of this term project.

ProvisioningController

-provisioning_controller_config: dict
-sztp_server: SztpServer
-logger: Logger

+handle_bootstrapping_data_request()
+handle_report_progress_request()
+extract_data_preference(req)
+load_config(config_file)

-sztp_server

SztpServer

-cms

-inventory: NetboxInventory

-logger

+get_bootstrap_data(serial_number, data_preference)
+compile_conveyed_information(boot_image, bootstrap_configuration_b64, data_preference)
+update_status(inventory, serial_number, progress_type)

-conveyed_information

-inventory

NetboxInventory

«static»
CMS

-netbox_options
-netbox_api

+create(conveyed_information)

+get_device_information(serial_number)
+collectDevicelnformation(search_serial)
+getConfig(device)
+remove_backup_boot_option(device)
+getFirmware(device)
+updateStatus(search_serial, newState)

A4

Device

-serial_number

-status

-vendor

-model

-0s_name

-os_version
-os_filename
-os_filehash
-configuration
-device_to_restore_from

+get_ownership_voucher()
+get_bootstrap_configuration()
+get_boot_image()

-logger

Logger

-path

+write_log(message)

2.2 Device Lifecycle

network controller /

N

managment

Methox states J

Inventory
(Set manually)

Flanned /
ready for provisioning
{Set manually)

dlé comission de;:*we_:l

Staged /
provisioned with base
configuration
(Set by provisioning controller)

_' connected .‘+
(empty) e

Active f

fully configured, by Operation
Controller or manually

(Set by operation contraller)

Decommissioning
(Set manually)

Failed f
Task on provisioning or
operation controller failed
{Set by provisioning / operation

controiler)

plan deulce

planned
(device type
known)

Drdered
{(vendor/model
known)

ord er d evice

r&l:ewe device
replace

delivered
(S/N known)

connect device

onboard device

provisioned
(bootstrapped)

run post-configuration
script

®

create device
(optional)

update device
(optional)

+

create ! update
device

onboard device

restore configuration
(optional)

monitor device
e.g. F\W version

’ e.0. manage ssh keys

configure device

1 backup configuration

delete device

Imrentory Managment

(S5LTF Senver) | |

Frovisioning Cantroller

1
A

Qperation Cantroller

i
Lt

[entan
Managment

2.3 Sequence Diagram
The following diagrams shows how the different components interact together.
There are two main sequences, which are triggered by the device:

e Get bootstrapping data

e Report progress

For comprehensibility, the logger is not added in the following diagrams.

2.3.1 Get bootstrapping data

Below is the sequence diagram of how the bootstrapping data is collected, generated and sent to the device.

SztpServer NetboxInventory ‘ Device CMS

get_bootstrapping_data

ProvisioningController

»

extract_ssl_client_certificate

extract_data_preference

U

extract_serial

get_bootstrap_data

\4

get_device_information

collectDevicelnformation

get_ownership_voucher

device_information

get_boot_image

bootLimage

get_bootstrap_configuration

bootstrap_configuration

compile_conveyed_information

get_signed_data

signed_data

bootstrap_data

SztpServer NetboxInventory ‘ Device CMS

(response) bootstrap_data

2.3.2 Report progress

ProvisioningController

The report progress is sent from the device to the provisioning server. With this request, the status of the device is
updated. If the provisioning was successful, the updated status in Netbox is set to "staged", otherwise to "failed".

ProvisioningController

SztpServer I NetboxInventory

Switch I

send report-progress

\ 4

get_inventory

A\ 4

update_device_status

B
>

updateStatus(staged or failed)

O

Response(status=204)

<&
«

ProvisioningController

SztpServer I NetboxInventory

Switch I

2.4 SZTP-Workflow

2.4.1 General SZTP-Workflow

This is the device lifecycle is from Ciscos SZTP implementation. This is how they would implement the SZTP

feature.

https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-infrastructure/4-0/AdminGuide/b_CiscoCrossworkAdminGuide_4_0/m_ztp.html

Restconf/REST POST request to the Redirect URL with Payload (nonce, trust-anchor-certs

e

alt |

loop |

alt

78

i DHCP Discovery ’
| ol

DHC[g offer with redirect URL (option]1 43/136)

Back to DHCP
Discovery Phase

[Is not a valid device]
Mo Response

[Is a valid
Response - ZTP Yang Model

aevice

Validate Owner Cert
against OV,

Error Out

[For each bootstrap server in Yang Model]

[I= not a valid owner cert]

[valid owner cert]

Request Image

D Error Out

[Is not a valid owner cert]

|Is a valid :|!'.':-._;J.::
D Reload the box with imagk.

Request configs

SZTP Workflow from Cisco

2.4.2 Adoption of SZTP-Workflow

D Validate signature, execute: 1. Pre-config, 2.Day0, 3.Post-config

SZTP Server

suDI
certificate
Validation

A55EH4

https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-infrastructure/4-0/AdminGuide/b_CiscoCrossworkAdminGuide_4_0/m_ztp.html

This is the adopted finished workflow of how the device gets its bootstrapping data.

REST POST Reguest
to /bootstrap

b A

i Load device
information from
A Inventory J

Device in
inventony?

Verifiy Device
Certificate

Certificate
valid?

[Check status

Device in
planned status?

[F{ender Cnnﬂguratinn]

[Send Configuration]

Abort resquest

Abaort request

Befor it should be in
the inventory status

s

e

Error response{500)

)

A

3 Application Architecture C4 Model

3.1 System Context

The following figure shows the context of the Campus Network Controller. The controller is used by the Network
administrator. The controller itself in turn uses a Licensing Server to get the Ownership Voucher needed to
authenticate itself to the device which should be provisioned.

Additional Information: In the diagrams below, the connection via the API to the MASA-Server is not part of the
project — this was done manually. More information on this decision can be found in the project documentation, in
the evaluation section. This applies to the further diagrams in this chapter as well.

Network Administrator

Person responsible for the
operation of the network

Manages in".rentary and
configuration variables
using

‘_-_-_

Campus Network
Provides Bootstrappil i MASA-Server
. pping Controller e
Network Device -~ Data for provisioing - o . Network Devicas ~— Obtains proofof ___ Vendor's Licensing Server io
Router, Switch, etc. in the network and interacts with rovisions new Network Devices ™ o cpio 1 ising API obtain proof of ownership of the
and manages them through their Network Devices
life-cycle

3.2 Container

The following figure shows the application with its core piece — the Network Device Controller — and its additional
services for DHCP, Inventory, File Storage and Logging.

Network Administrator

Person responsible for the
operation of the network

Manage inventory and
configuration variables

using HTTPS
rTT T T T rTr—-~ -~ -~~~ - - - - - -~ [
| ! |
I v |
[| MASA-Server
Get Device Info, - = -
I - o TR }. Obtainproofef _________ Vendor's Licensing Server to
| Inventory Management .Managz_a Device State- Network Device | ownership using API obtain proof of ownership of the
| Contains configuration variables %~ using JSON Controller <. Network Devices
| and device state REST API Provisions and Manages the . J:“ S
| o L TTointeractwith B ictrap with SZTP
Store / Get Config w-. device .. el
! EBackup and FW Image kel el
I using OF filesystem ‘~-,_“_1. el
I & get FW Image using HTTPS) .
| File Storage DHCP Server et 1P an Network [!evlce
| =11 an Router, Swiich, eic. in the network
[Backups Controller (STZP redirect) -
|
|
|
|

|
|
|
Contains FW Images and Config Provides Redirect to Provisioning *=--+---- DHCP Option 143
|
|
|
|
|

LNetv.'ork Campus Controller

3.3 Network device controller component

The following figure focuses on the core component containing Provisioning Controller, File Controller and Operation
Controller.

Get Device Info
using JSON
RESTAPI

-

[

|

|

|

|

|

i P

| Get Config Backup
| using OS filesystem
|

+

|

|

|

|

¢

¥

|_=|Ie Storage | Store Config Backup

Contains FW Images and <------- T using OS filesystem
Config Backups n

|
N |
b
el
...

éét FW Image

using OS filesystem

MASA-Server
Vendor's Licensing Server to

obtain proof of ownership of
the Network Devices

Obtain proof of
ownership using API

R

Provisioning Controller
Authenticates and provisions
new Network Devices with
.~ FW Image, Initial or backup *._
configuration,

(SSH Keys and certificates)

—————— -

i
A4

Logging service
Provides Logging for
Debugging

A
Operation Controller

Get running configuration
and FW version.

File Controller “
Provides FW Images

Network Device Controller

.

Get Bootstrap Data
using HTTPS

get FW Image
using HTTPS

-

3.4 Inventory management component

The following figure focuses on the Inventory Management for the Network Campus Controller.

DHCP Server
Provides Redirect to
Provisioning Controller

A
Get IP and

DHCP Option 143
(STZP redirect)

Network Device

Router, Switch, etc. in the

network

I
I
I
I
I
I
Postgres |
I
i
I
I
I

|
|
|
|
|
|
|
|
|
|
I .
I Tl Netbox Nginx Manage inventory and VTSV T g L TN TTEY G 1 g
| _.-** Contains configuration variables %-------- e «---configuration vanables-- Person responsible for the
| It and device state sy using HTTRS operation of the network
e
o I
A
i
Redis i !
Get Device Info,
Manage Device State
using JSOM
REST AFI
i '
!
i !
‘ '
[i [
Inventory Management i |
L - - e - e e — - — - — o — — {_ ____________
j
. Bootsfrap with SZTP
Network Device oo e
Controller I Network Device
----- Interact with device ---) .
Provisions and Manages the Router, Switch, efc. in the network
L1 Device L get FW Image -----
il using HTTPS
Obtain pmol't;f" i 1
u!wneiship using APl Stare / Get Config GetIP _and
.- Backup and FW Image DHCP Option 143
using OS filesystem (sTZP 'i"d'm}
v v
i SEEE File Storage DHCP Server
bt :ﬂ o 15ing _"'?;" 1:19 Contains FW Images and Config Provides Redirect to Provisioning
[- Backups Controller

Network Devices

4 Workflow of the Ownership Voucher OV

The Ownership Voucher OV is a certificate from Cisco. With this certificate the customer can prove that this device
belongs to their organization. The goal is for the device to be able to authenticate the server. When the device boots,
it validates the OV and verifies the signature of the received bootstrapping data.

4.7 Key Terms

o MASA Server (Manufacturer Authorized Signing Authority): This service is in our case offered by Cisco. With this
service the OV is generated with the Owner Certificate and the serial number of the device.

» 0OV (Ownership Voucher): to securely identify the devices associated owner organization. The OV is generated by
Cisco, for generation the PDC and the serial number of the device is required. The OV is used to complete the
chain of trust, which is leading to the PDC. This is described in the RFC 8366.

» OC (Owner Certificate): This is an X.509 certificate. This certificate is used for identifying the organization. The
OC is signed by an CA certificate authority. The OC contains the owner certificate itself and the PDC pinned-
domain-cert, which is specified in the OV.

» PDC (pinned-domain-certificate): The PDC is in the OV and pins a domain certificate.

4.2 Workflow issuing OV Ownership Voucher

The voucher can be created manually or automatically with the MASA API. Below is the workflow of obtaining the
Ownership Voucher.

https://www.rfc-editor.org/rfc/rfc8366
https://www.rfc-editor.org/rfc/rfc8366

Request from an
authorized MASA
user

Verify serial
number

Valid serial >-2

number?

Yes

Validate ownership with
Manufacturing data

Mo

E

|

Valid owner?

Generate voucher using
signing service

/__"f

Returmn voucher

Return Error

522955

Reference

This workflow is the same if the MASA API or the manual way is chosen. In our case, the OVs were created manually.

It is out of scope of this project to implement it automatically with the MASA API, because it requires more time than

doing it manually. If time allows, we can implement this feature. After the advisors got access to the Web-interface

from the MASA server, they uploaded the needed files (PDC and serial numbers) and sent us the two Ownership

Vouchers.

4.3 Authentication Workflow

Below is the complete authentication workflow of authenticating a device. This workflow is for a better

understanding of the ownership voucher. The diagram is adopted to our environment from the Cisco Ownership

Voucher Workflow.

https://www.rfc-editor.org/rfc/rfc8366

MASA Server

Customer

SZTP
Bootstrapsarver
+DHCP Servar

Router

4, Send Serial number
+ PK to MASA Server

]

5. Recelve signed
Ownership Vioucher OV

1. Purchase a davice

2.1 Generate PK

2.2 Create PDC with PK
2.3 Create ownership cert
with PDC

B, Save OV

9, Validates SUID from
Router

11. Rendars bootstraping
data and signs with PDC

_ bootstrapingdata

7. Get DHCP configuration
8. Request for

10. Provides OV for server
verification

12. Sends bootstraping
data

13. Validate recived data
and provisions device

I. User guide

5 DHCP Configuration

SZTP relies on DHCP to redirect network devices to thir bootstrapping server. The option used for the redirect via
IPv4 is 143 (v4-sztp-redirect). SZTP uses URI format specified in RFC7227 under the section 5.7, however with a
restriction: Even though only one URI can be encapsulated in the option, it's length still has to be included in the
bytestring. Since the DHCP server does not seem to support this requirement, the option data is already given in
hexadecimal encoding in the configuration below.

5.1 DHCPv4 Kea Configuration

"Dhcpd”: {
"interfaces-config": {
"interfaces": ["enxc4411efecab1"]

Do
"control-socket": {

"socket-type": "unix",

"socket-name": "/run/kea/kead-ctrl-socket"
Do

"lease-database": {
"type": "memfile",
"1fc-interval”: 3600

b
"valid-lifetime": 600,
"max-valid-lifetime": 7200,
"subnet4": [
{
"id": 1,
"subnet": "10.0.60.0/24",
"pools": [
{
"pool": "10.0.0.10 - 10.0.0.99"
}
1,
"option-data": [
{
"name": "routers",
"data": "10.0.0.1"
b
{
"always-send": true,
"code": 143,
"name": "v4-sztp-redirect",
//"data": "<2-byte url length>https://10.0.0.1:8443"
"data": "0x001568747470733A2F2F31302E302E302E313A38343433"
}
]
}
]
}

https://www.rfc-editor.org/rfc/rfc7227

6 Netbox

6.1 Setup

In this project, the Github repository is used to install Netbox with Docker. After the docker pull command of the
docker Netbox image, the override file has to be customized. The setup is straight-forward: adapting the port setting
(here 9000) and start the containers with docker compose up. The repository provides a script to create the admin
user and after a few minutes the user can login on the web interface.

6.2 Device Configuration

6.2.1 Create device and related objects

To start with a Region “Global” has to be created, which can later be used to assign the SSH credentials. Also, a Site,
in this case “Campus Rapperswil” is created, as well the Manufacturer “Cisco”, Device Type “C9300", Device Role
“Access Switch” and Platform “I0S”. All this is needed to create the device. An important aspect is the Platform of
the device. This is later needed for Napalm, to find the correct connection driver.

£ b AT REpEe T

B0 ovpanizatiea
sw-access-01 [+ 4]
Doaces Devce wefscrif] CoofigComtent Rendercaafly Conticti
pevee
madulet + .
- Device Management
Derwioe Boles
Platforms Forgen L Sabin L1
Wirbed Chassa ke O Arr— ke e
irtal Doevice Conbests —
; Plalloem, ws
DEVICE TYPEL
5 Prievaly Py 18 o
Coewice Types Tty vl ﬂ
e 2 [+ I Fosen Prievaary v
Mgl WEWETL _ S Coardinates T
DEVICE COMPONERTL Tenank
nberi ey Device Type L]
Front Parts _ DecigRion Sarvices
Frar Ports [+ I
hama Fapat Frotocs.
Console Posty _
vl Fusssbe FOCS04R08)
Conacle Tereer Ports _
Postd POIEL _ At T
Powed Gutlets B: el Template
Maduli By m
Dorwice Bapt [+ 0
.. & i Images
b Custom Fields 3
VAL 06T ACiet Cantunt Typs Purent -
Bathog ABCIIMENYT

N rannasbions

6.2.2 Custom Fields

Netbox itself already provides many pre-defined fields for a device. For a more complex usage, custom fields can be
used to store a new key value pair. For the backup option in this project, a custom field is used. If the device should
boot with a backup, it must be filled with the serial number of the device, which will be replaced.

https://github.com/netbox-community/netbox-docker

At creation of the custom backup field, the content type has to be set to DCIM>Device,the name to backup and the

type to text.

'_r netbox

[Bg organization
om Devices

Connections

%

= Wireless

B 1paM

;&, Overlay

|:_] Virtualization
S Circuits

¥ Power

@ Provisioning

B Customization

CUSTOMIZATION
Custom Fields

Custom Field Choices

>

Ill ¢ N N N v - v ’ ”

Custom Fields

Backup

Created 2023-12-02 11:43 - Updated 1 week, 6 days ago

Custom Field

Changelog

Custom Field

Name

Type

Label

Group Name
Description
Required
Cloneable

Default Value

Behavior

Search Weight

=T

backup

Text

None

1000

Object Types

dcim | device

Validation Rules

Minimum Value —

Maximum
Value

Regular
Expression

Related Objects

Devices

6.2.3 Config Context

Next, two Config Contexts have to be created to provide configuration values that are shared by multiple devices.
One of which is for the SSH settings and the other one for the target firmware. The Config Contexts can be assigned
on different levels, depending on how broad they should be applied. The SSH settings have to be assigned to the
“Global” Region and an example firmware to the Role “Access Switch” and Device Type “C9300” because firmware
images are likely to be device dependent.

—r netbox

LALULLY UL S TL WL DT WU W L PSS, 1 TR UL B g
m ’u SN

Config Context Changelog

Config Context Data
Hame firmware_iosxe_171201 all
Weight 1000 :]
Description — *firmeare™: {

"08_filehash™: "7@:42:37:71:cB:Bb:87:61:99:68:b6:4c:56:28
Active o *os_filename™: "105 XE_17.12.61.bin",

"os_name®: *J105 XE®,
Data . "os_wersion”: =17.12.01"
Source 3}

¥

Data File —
Data
Synced
Assignment

Regions Hone
Site Groups Mone
Sites Hone
Locations Mone

Device
Types

Roles Access Switch

C3300

Platforms Mone

All applicable configuration contexts are automatically merged at the device level and can be queried via the API.

Source Contexts

ca_certificate 1000

BEGIN CERTIFICATE- ----\nMIIFiTCCAIGOAwIBAQIUYQROAS+/5BRIQTd1gkaHdn1h2 1BwDY IK

firmware iosxe 171201 1000

i
"tirmeare”: [
"os_filehash™: ®79:42:37:71:cB:00:087:61:99:68:06:4c:56:26:2a:63:7Td:54:3d:Th:ed:3d 87 :dc: 273
"os_filename®: "I05 XE 17.12.84.bin",
"os_name": "I0S XE",
"gs_wersion®: "i7.12.81"

ssh_settings 1000

"enable_secret": "#g3GVvxZlUd",
"ssh_key": " AAMCINZaCl117DIINTESAAMATAL ev15dSFhH1)+3Ze546TulziavBLAT EKSyoTIloydln®,
"ssh_user": "admin"

Devices » Campus Rapperswil

sw-access-01

Created 2023-12-02 10:24 - Updated 20 hours, 15 minukes ago

Device Interfaces [Config Context Render Config Contacts Journal Changelog

Rendered Context

"ca_cert™: "-----BEGIN CERTIFICATE-----‘\nMIIFiTCCA3GgAWwIBAgIUYgRo45+,/5BhJ)Td1igKgHdn]lh2iswh(YIKc
"enaple_secret": "#qaGVvaZud",
“firmware": {
"os_Tilehash™: "T9:42:37:71:cB:0b:0T7:61:99:68:b6:4c:56:26:2a:63:7d:54:3d:7bied:3d:BF:dc:272
"05_Tllemame™: "I0G XE_17.12.81.b1n",
“ps_name': "I0S XE",
"gs_wersion": “1T7.12. 81"

}e
"ssh_key": " AAMACINTAC11ZDIINTESAAAATALev1SaSFhHL)+3Ze546Tu3z1AVBLpTEKSyol loydln",
“ssh_user": "admin"

6.2.4 Config Templates

For the configuration, that needs to be written to the device, a Cisco-style configuration is needed. To achieve this,
the built-in Config template option in Netbox is used. The templates are automatically rendered with the values
provided by either the device object itself, Custom Fields or the Config Context. Below is the Config Template, which
is used in this project.

configure terminal
no logging console informational
hostname {{ device.name }}

IInterfaces
{% for interface in device.interfaces.filter(ip_addresses__isnull=False) -%}
interface {{ interface.name }}
no shutdown
ip address {{ interface.ip_addresses.first().address.ip }} {{
interface.ip_addresses.first().address.netmask }}
exit
{% endfor -%}

I SSH
ip domain name sztp.local
crypto key generate ec keysize 384

ip ssh version 2
ip ssh pubkey-chain
username {{ device.get_config_context().ssh_user }}
key-string
{{ device.get_config_context().ssh_key }}
exit
exit
exit
line vty 0 4
transport input ssh
login local
exit
enable password {{ device.get_config_context().enable_secret}}

ICA-Cert
crypto pki trustpoint sztp-ca
enrollment terminal pem
exit
crypto pki authenticate sztp-ca
{{ device.get_config_context().ca_cert }}

yes
end

In case we want to restore a configuration backup file from another device, we added a custom field “Backup” to the
device which would contain the serial number of the old device which the backup should be taken from. Lastly, we
need to create an IP address and attach it to the corresponding interface of the device, so that it is reachable over
SSH after provisioning.

6.3 AP| Access

Netbox features a built-in API which will be used by the controller to connect to Netbox. In order to use the APl we
needed to create a token for the controller. This could be easily done on the “API Tokens” menu in the user

==

My API Tokens ® DarkMode

& Admin
£ Profile
R Bookmarks

Praofile Bookmarks Preferences Password APl Tokens

XA, Preferences

o AP| Tokens

Writ E Log Cut
I Key Description En-lt'ltd Created Explres Lask Used oy

12a0184d2bdf SeeadT2c86fc05648701F72F dal provisioning_controller » 2023-11-24 2024-11-23 ggﬁ?‘”'” - ;-

. Per Page = ._

dropdown.

7 Controller

/.1 Setup

1. Install python and pip on the system.

2. Create a virtual environment for python and activate it.

python3 -m venv venv
source venv/bin/activate

3. Install the required pip packages. (At the time of writing this application, there was an incompatibility, that
requires to install cython and pyyaml with special options.)

pip install "cython<3.6.0" wheel
pip install "pyyaml==5.4.1" --no-build-isolation
pip install -r requirements.txt

/.2 Usage

This application contains two controllers: - Provisioning controller: This controller provides the endpoints for network
devices to get their bootstrapping data. - Backup controller: This controller creates backups of the devices in the
inventory.

7.2.1 Configuration
The provisioning controller can be configured using the config.json file.

The backup controller can be configured using the backup_controller/config.yaml file (Netbox URL) and the
backup_controller/.env file (device authentication, Netbox token).

7.2.2 Provisioning Controller

The provisioning controller can be run directly with flasks built-in web server:
python3 provisioning_controller.py

7.2.2.1 Test

To test the Provisioning Controller (including the inventory), the mocked device test in the tests folder can be used:

python3 test_controller_with_mock_device.py

7.2.3 Backup controller

The backup controller should be run regularly. It's advised to add a cron job for the following command:

python3 backup_controller/backup_controller.py

8 About

This project was realised as a term project at the Eastern Switzerland University of Applied Sciences.

8.7 Authors

o Patrick Lenherr

« Vanessa Gyger

mailto:patrick.lenherr@ost.ch
mailto:vanessa.gyger@ost.ch

