
Documentation

Studienarbeit
Documentation

What’s up in RJ
Semester: Fall 2023

Version: 1.0
Date: 2023-12-22

Project Team: Michael Enzler
Fabio Stocker

Project Advisor: Prof. Frank Koch
Industry Partner: Michael Güntensperger, AdaptIT GmbH

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

This project is about creating a simple-to-use web application that centralizes a list of events and
organizers in the vicinity of Rapperswil-Jona. Its purpose is to present all kinds of fun, interesting
and exciting events to the regional residents.

The application is built from scratch, there is no existing platform used as a base. With a centralized
platform it is possible for organizers to easily publish their own events. Anyone can sign up as an
organizer, making it appealing to all people and organizations looking to advertise their events. Users
of the platform benefit from this by being able to find events advertised by regional, national, and
even global organizers. After creating a user account, they can simply subscribe to the newsletter,
delivered twice a month, informing them about new and upcoming events that match their preferences.

The approach is to create a web application consisting of a frontend, backend, and database layer.
Deployed with a cloud hosting provider, the application is widely accessible to all users. Following
the initial inception phase, the application underwent design and development during the elaboration
phase. The implementation of the entire application was then done during the construction phase.
Additionally, various tests were conducted, including usability tests with real end users to evaluate
the user experience.

This first iteration is a good starting point to create a seamless platform where users and organizers are
able to interact with each other. In future steps, it is recommended to implement additional features
to increase the application’s appeal. This project has considerable potential to become a successful
platform for event organizers and attendees.

i

Management Summary

Initial Situation

Rapperswil-Jona is an active city with a diverse cultural program. There are a lot of activities and
events people can visit or participate in. However, if you want to be up-to-date with the latest
and greatest events, you currently have to visit many different websites or read through the daily
newspaper. There is no single source of information. This gives off a strange vibe that there isn’t
really a lot going on in the region. That’s where ‘What’s up in RJ’ comes in. The goal of this
project is to centralize this information and show the residents that there is actually a lot to do in
Rapperswil-Jona. With a central platform, it is possible for organizers to publish their own events.
Anyone can sign up as an organizer, making it very easy to create your first events. Normal users of
the platform benefit from this by being able to find interesting events advertised by many different
organizers. After creating a user account, you can simply subscribe to the newsletter, delivered twice
a month, informing you about new and upcoming events that match your preferences. This project is
built from scratch, there is no existing platform used as a base.

Procedure and Technologies

The approach is to create a web application consisting of a frontend, backend, and database layer.
The frontend is implemented with the Angular framework and its single-page application feature. To
style all pages easily and consistently, the Tailwind CSS library is used. Furthermore, the frontend
depicts an elegant user interface and communicates with the backend through a simple REST API. The
backend in turn implements the business logic and communicates with the database and handles all
data flows. It is based on Node.js, utilizing the Express web application framework to expose its API.
The database layer, based on PostgreSQL, stores the data persistently. All layers together build the
web application, deployed automatically to DigitalOcean using its App Platform. The application is
accessible to all users through a domain, just like any other website. SendGrid handles all personalized
newsletter deliveries, and is accessed through their easy-to-use API. Thanks to the different layers,
separation of concerns is achieved and any layer can easily be replaced by another technology stack
with minimal effort.

Results

The final result is a Minimum Viable Product. Everyone can access the application through their
browser and is able to create an account. Organizers are allowed to create, update and delete events.
All other normal users are able to view, search, and filter these events. Checking out various orga-
nizers is also possible. User accounts additionally can subscribe to the newsletter and set their event
preferences. They then receive a personalized newsletter twice a month with upcoming events that

ii

match their chosen preferences. With these core features, the application is on a basic level ready for
production. However, there are many things that can still be improved, and a ton of new features that
can be implemented in future iterations. They may even be necessary to improve the attractiveness of
the application. For example, an image upload feature to set an avatar for an organization, like their
logo, or have a primary image for an event, using a picture of a past iteration of the event. Other ideas
to implement are: a map view to geographically see where events are located, a calendar view just like
your calendar at home, and a more sophisticated search functionality. In conclusion, this project is a
good starting point to create a platform to share events with the residents of Rapperswil-Jona. The
project can be further developed to become a successful platform for event organizers and attendees.

Figure 1: Home page for visitors

iii

Contents

I Project Overview 1

1 Overview 2
1.1 Initial Situation . 2
1.2 Task . 2
1.3 Conditions . 2
1.4 System Context . 3

II Product Documentation 4

2 Requirements 5
2.1 Functional Requirements . 5
2.2 Non-Functional Requirements . 8
2.3 Minimum Viable Product . 11

3 Domain Analysis 12
3.1 Domain Model . 12

4 Architecture 14
4.1 Overall Architecture . 14
4.2 Backend Architecture . 15

4.2.1 Component . 15
4.2.2 Structure . 16

4.3 Frontend Architecture . 17
4.3.1 Frontend Structure . 18
4.3.2 Request Flow . 19

4.4 UI Mockups . 21
4.5 Deployment Architecture . 27
4.6 Technologies . 28

5 Quality Measures 30
5.1 Quality Assurance . 30

6 Test Plan 32
6.1 Introduction . 32
6.2 Test Objectives . 32
6.3 Test Strategy . 32
6.4 Test Environment . 32
6.5 Test Specifications Functional Requirements . 33

iv

6.6 Test Specifications Non-Functional Requirements . 34
6.7 End User Tests . 35
6.8 Test Schedule . 36

6.8.1 CI/CD Tests . 36
6.8.2 Integration Tests . 36
6.8.3 End User Tests . 36

7 Implementation 37
7.1 Visual Design . 37
7.2 Backend API Endpoints . 37

7.2.1 Special API Endpoints . 37
7.2.2 Rate Limiting . 38

7.3 Database . 38
7.4 Features . 40

7.4.1 Event Handling . 40
7.4.2 Newsletter . 43
7.4.3 Search . 44
7.4.4 Filtering . 44
7.4.5 Home . 45
7.4.6 Organizers . 46
7.4.7 Account . 46
7.4.8 Message . 46

7.5 Error Handling . 47
7.5.1 Backend . 47
7.5.2 Frontend . 48

7.6 Security . 48
7.6.1 Authentication . 48
7.6.2 Password Hashing . 49
7.6.3 Input Validation . 49

7.7 Code Documentation . 50
7.8 Deployment . 50

7.8.1 Scaling . 50
7.8.2 Frontend Environment Script . 52

7.9 Testing . 52
7.9.1 Automated Testing . 52
7.9.2 Manual Testing . 53

8 Results 54
8.1 Functional Requirements . 54
8.2 Non-Functional Requirements . 54
8.3 Minimum Viable Product . 55

9 Conclusion 56
9.1 Result Reflection . 56
9.2 Goal Achievement . 56
9.3 Future Vision . 56

v

III Project Documentation 59

10 Project Plan 60
10.1 Resources . 60
10.2 Processes and Meetings . 60
10.3 Schedule . 61
10.4 Organization and Roles . 62
10.5 Risk Management . 63
10.6 Planning Tools . 65
10.7 Git . 66

11 Time Tracking Report 67

Glossary 70

List of Figures 72

List of Tables 73

Listings 74

IV Appendix 75

12 Test Plans 76
12.1 Test Plan #1 . 76

12.1.1 Introduction . 76
12.1.2 Test Objectives . 76
12.1.3 Test Strategy . 76
12.1.4 Test Environment . 77
12.1.5 Test Schedule . 77

13 Test Reports 78
13.1 Functional Test Protocol 29.11.2023 . 78
13.2 Non-Functional Test Protocol 29.11.2023 . 79

13.2.1 Reports from Test Users . 82

14 Application Screenshots 88

15 Backend API Endpoints 100

16 Task 121

vi

Part I

Project Overview

1

Chapter 1

Overview

This document includes all the information about the project ‘What’s up in RJ’. It is divided into four
parts: Project Overview, Product Documentation, Project Documentation and Appendix. The first
part should give the reader the context and a short introduction to the project. In the Product Doc-
umentation, information about requirements, architecture, implementation and results of the product
itself are given. The Project Documentation part contains information about the project itself, like
the project plan and time tracking. The appendix holds a lot of additional information about the
project and product, such as reports and protocols of meetings.

1.1 Initial Situation

The product ‘What’s up in RJ’ is an idea of the industry partner ‘AdaptIT GmbH’. As there are a
lot of events in the region of Rapperswil-Jona, and there is no central place to view all these events,
the idea of ‘What’s up in RJ’ was born. The idea is to create a platform where all those events are
listed. The focus of this project is the implementation of a platform.

1.2 Task

The task is to create a web application, which lists all the events in the region of Rapperswil-Jona.
For an organizer, it should be possible to create an event. For a user, it should be possible to search
and filter for events. Additionally, as a user, there should be a possibility to subscribe to a newsletter.
The final goal is give the user the possibility to find an event with few clicks for a specific date or a
specific category.

1.3 Conditions

This project was done in the context of a ‘Studienarbeit’ at the Eastern Switzerland University of
Applied Sciences (OST). The team consists of two students of the Computer Science department.
The project was done in the time from 18.09.2023 to 22.12.2023, which is a total of 14 weeks, or one
semester. As it is a ‘Studienarbeit’, one student should work 240 hours on the project, meaning a
student should work roughly 17 hours per week. For every 30 hours, one credit point is granted. A
student will receive 8 credit points for this project.

2

1.4 System Context

No existing infrastructure exists for this project. Therefore, the web application has to be implemented
from scratch. There will be three layers: frontend, backend and database. The frontend is the part
visible to the user. It depicts the application. The backend implements the business logic, while the
database stores the data.

3

Part II

Product Documentation

4

Chapter 2

Requirements

2.1 Functional Requirements

In the requirements, a distinction is made between non-optional and optional requirements. Non-
optional requirements need to be implemented, while optional ones do not. The optional requirements
are marked with a *. All functional requirements are listed as use cases in table 2.1 and figures 2.1
and 2.2. They show the connection between actors and use cases in use case diagrams.

Actors

Following actors are defined for the system:

Organizer

Organizers are responsible for planning and executing events within the system. They have the
authority to create, manage, and oversee their own event details after successful login.

User

Users are individuals interested in discovering and participating in events. They can search for specific
events and apply filters to refine their event choices. They are also able to create an account to become
a registered user.

Registered User

Registered users are users that have created an account. In addition to the functionality of a normal
user, they can also subscribe to newsletters.

Administrator*

The administrator plays a pivotal role in managing the platform. They are responsible for overseeing
organizer accounts and the events they create. Additionally, administrators are in charge of approving
events for public visibility.

Use Cases

5

Actor Goal Description

UC1 Organizer Manage events The organizer can create, delete and edit
their own events.

UC2 User
Registered User
Organizer
Administrator

Search and find
events

All system actors have the capability to
view events and locate them through the
utilization of the search functionality.

UC3 User
Registered User
Organizer
Administrator

Filtering for events All actors possess the functionality to
apply event filters, such as filtering
events by category, e.g. sports.

UC4 User
Registered User
Organizer

Login Users and organizers of the platform
have the capability to register and cre-
ate an account, enabling them to become
registered users with persistent access
through login credentials.

UC5 Registered User Subscribe to
newsletter

Registered users possess the ability to
select categories aligned with their in-
terests, enabling them to subscribe to
newsletters accordingly.

UC6* Administrator Manage organizers The administrator oversees organizer ac-
counts and can perform standard CRUD
operations on them.

UC7* Administrator Approve events The administrator can approve events for
public visibility.

UC8* Organizer View dashboard and
statistics

Organizers are provided with a dedicated
dashboard where they can access statis-
tics, including metrics i.e. event clicks.

UC9* Organizer Create organizer
page

Organizers have the capability to oversee
and customize their individual pages,
allowing them to present themselves as
desired.

UC10* Registered User Get AI based
newsletter

Users receive newsletters generated by
an AI system, personalized according to
their interests on events.

UC11* User
Registered User

Use mobile app Users are provided with the opportunity
to install a mobile application on their
smartphones, enabling them to receive
push notifications.

UC12* User
Registered User
Organizer
Administrator

View news ticker The web application displays a news
ticker on the homepage.

UC13* Organizer Upload pictures Organizers can add pictures to various
entities (events, organizers page, etc.).

Continued on next page

6

Actor Goal Description

UC14* Registered User View onboarding
pages

After signing up, the registered user can
add their preferences and sign up for the
newsletter via onboarding pages.

UC15* User
Registered User
Organizer
Administrator

Use quick search The system actors can search for events
via quick search buttons on the home
page (e.g. ‘today’, ‘tomorrow’, or ‘this
week’)

UC16* User
Registered User
Organizer
Administrator

View / Manage
Pricing

The organizer can add a price to their
event and all actors can see that price.
Additionally, the organizer can supply
e.g. a ‘ticketmaster’ URL and the price
will then be displayed automatically by
fetching it from the respective API.

UC17* User
Registered User
Organizer
Administrator

View / Manage
Language

To see what languages are supported at
an event, the organizer can add a lan-
guage to their event and all actors can
see that language.

Table 2.1: All use cases

Figure 2.1: Use case diagram with required use cases
with optional actor ‘Administrator’ included

7

Figure 2.2: Use case diagram showing optional use
cases

2.2 Non-Functional Requirements

The non-functional requirements, short NFR, are evaluated according to ISO/IEC 25010:2011.

Collaborative

NFR1 — Collaborative: The development team implements the features according to the agreed-
upon priority in collaboration with the customer.

8

Acceptance Criteria: All required features are implemented.

Performance

NFR2 — Performance: The backend should handle 1000 requests per minute.

Acceptance Criteria: 1000 requests per minute are handled without errors.

Response Time

NFR3 — Response Time: Each page should load in under 200ms.

Acceptance Criteria: The pages load in under 200ms.

Responsiveness

NFR4 — Responsiveness: The web application should be responsive on mobile, tablet, and desk-
top.

Acceptance Criteria: Responsive design is implemented and tested on all required devices.

Browser Compatibility

NFR5 — Browser Compatibility: The web application should run on Firefox, Chrome, and Safari.

Acceptance Criteria: The web application is tested on Firefox, Chrome, and Safari.

Accessibility

NFR6 — Accessibility: Access should be available via the customer-provided domain over the
internet.

Acceptance Criteria: The web application is accessible via a domain, provided by the customer, over
the internet.

User Satisfaction

NFR7 — User Satisfaction: Three out of four test users should rate the UI (categories: layout,
responsiveness, color, content) of the application with a minimum score of 8 out of 10, with 10 being
the best.

Acceptance Criteria: User satisfaction is measured with a survey and the results are evaluated.

Scalability

NFR8 — Scalability: The database should handle up to 10,000 events and 1,000 users.

Acceptance Criteria: The database handles 10,000 events and 1,000 users without errors.

9

Error Handling

NFR9 — Error Handling: Errors should not cause system failures but display an error message
and reset the system to its previous state. Every error should be logged in the system.

Acceptance Criteria: Errors are logged, and a message is displayed to the user.

Security

NFR10 — Security: All communication between the frontend and backend should be encrypted
with an SSL certificate. Input field data must be validated before processing, and SQL injection tests
on input fields should not reveal vulnerabilities.

Acceptance Criteria: SSL encryption is implemented and tested. Input fields are validated and tested
for SQL injection vulnerabilities.

Privacy

NFR11 — Data Privacy: The web application should be implemented in compliance with data
protection regulations.

Acceptance Criteria: Privacy regulations are implemented and tested.

Password Security

NFR12 — Password Security: User passwords should not be stored in plain text in the database.

Acceptance Criteria: Passwords are hashed and salted before storing them in the database.

User Data Isolation

NFR13 — User Data Isolation: When a user logs into the web application, only their data or
data they have access to should be displayed.

Acceptance Criteria: User data is isolated and only accessible to the user that owns the data.

Modularity

NFR14 — Modularity: Business logic in the backend should be modular for extensibility.

Acceptance Criteria: Business logic is modular and extensible.

API Testing

NFR15 — API Testing: The backend API should be tested using API testing tools.

Acceptance Criteria: The backend API is tested using API testing tools.

10

Deployment

NFR16 — Deployment: Implemented functionality (database, backend, frontend, etc.) should be
deployed.

Acceptance Criteria: The implemented functionality is deployed on DigitalOcean.

2.3 Minimum Viable Product

The Minimum Viable Product, short MVP, consists of:

� Events can be created, deleted, and edited by organizers.

� Search for events is possible.

� Events can be filtered by category.

� Users can register and login.

� Users can subscribe to a newsletter.

11

Chapter 3

Domain Analysis

3.1 Domain Model

Figure 3.1: Domain model for the MVP

12

The main actors of the application, user and organizer, are both extending the base user entity. This is
done to avoid code duplication and to allow the application to be easily extended with more user types
in the future. As seen in the diagram, an organizer and a user have different attributes and different
relations to other entities. The user has the additional attribute of newsletter and has a relation to
preference, as a user can have multiple preferences. These preferences belong to a category, which is
also its own entity. Each event is able to have a single category. Thanks to the relation between user
and preference, it is possible to create a relation between user and category. Thus, it is possible to
create a newsletter for a user based on the user’s preferences. The organizer on the other hand has
several more attributes: a description, phone, website, etc. Those attributes are a preparation for
the optional requirement of the organizer page and are not needed for the MVP. The organizer has a
relation to the event as the organizer is the one creating the event. The central element of the domain
model is the event, which is the main entity of the application. An event has several attributes: a
title, description, start date, end date, start time, end time, etc. Finally, the location is an entity that
has a relation to the event and the organizer. This is done to avoid code duplication as both events
and organizers can have the same type of location. However, each entity has its own location object
and relation.

Notes

This domain model (see figure 3.1) contains all elements from the MVP and the functional require-
ments. Optional requirements are, except for some attributes, not included.

13

Chapter 4

Architecture

4.1 Overall Architecture

Figure 4.1: Architecture of the project

14

The architecture shown in figure 4.1 displays the architecture of the project on a high level. The
project is deployed on DigitalOcean using the App Platform feature. Both frontend and backend are
running in separate containers. The mail service used for the newsletter is not part of DigitalOcean
but rather a third-party service. The frontend is a web application built with Angular. The backend
is a REST API built with Express running on Node.js. It communicates directly with the MySQL
database. Furthermore, the backend can access the internet to update newsletter subscriptions and
send emails via the mail service. The user can access the website via a web browser. First a request
is sent to the frontend to get the page content. After a successful request, the browser sends another
request to the backend to get the data for the page, if applicable. Finally, the page will then be
displayed to the user, optionally with the data provided by the backend. The user will receive a
newsletter by email if they have subscribed to it directly from the mail service.

4.2 Backend Architecture

Node.js and TypeScript as well as the Express framework are used to build the backend. The decision
for this is described in the technologies section 4.6. In the following sections, the architecture and the
structure of the backend is described in more detail.

4.2.1 Component

Figure 4.2: Component Diagram

15

The component diagram in figure 4.2 shows the components from a backend perspective. The frontend
is, from this perspective, a single component: A web application. It provides the user interface, where
all the functionality is accessible. The backend is accessed through API calls, where the route sub-
component handles the incoming requests. The route subcomponent then forwards the traffic to the
correct controller subcomponent, which handles the logic of the request. The controller subcomponent
also calls the related store subcomponent, which handles all database queries. The store subcompo-
nent is the only part of the code that directly reads from and writes to the database. The helper
subcomponent contains standalone scripts such as the ‘mail.ts’ script, which calls the SendGrid API
to send out all newsletter emails. Finally, the database is a component on its own, which stores all
the data.

Notes

The diagram is a generalization of the backend architecture and does not include all components.
There are also components for models, middlewares, helpers and errors. They will be described in
more detail during the following section.

4.2.2 Structure

Figure 4.3: Backend Structure

16

The figure 4.3 shows the structure of the backend. This is a common structure for a Node.js application
using the Express framework, with some additional folders needed for this project. The ‘src’ directory
contains all the source code of the backend. The directories for routes, controllers and stores contain
the files for the components described in the component diagram, see 4.2. The ‘errors’ directory
contains all the error classes used to handle and throw specific errors of the API. The directory named
‘helpers’ includes all relevant helper functions. With those helper functions it is possible to reduce code
duplication and to make the code more readable. The ‘middleware’ directory contains all middleware
functions, which usually get called in between the route and controller subcomponents. An example
would be authentication, where a route is locked behind authentication, the request gets checked for
a valid token before being handled in the controller. The models are used to define the structure
of the data stored in the database. All database models and associations are stored in the ‘models’
directory, where they will be set up by Sequelize on startup. Finally, the entry point of the backend
is the ‘main.ts’ file, which is stored in the ‘src’ directory. This file initializes the backend and starts
the server.

4.3 Frontend Architecture

The Angular framework together with the TypeScript and SCSS languages are used to build the
frontend. The decision for this is described in the technologies section 4.6. Angular implements a
component-based architecture. This means that the application is built out of components that are
reusable and can be combined to create more complex components. All components are then combined
to create the application. A bootstrap component is defined that acts as the root component of the
single page application. The next section describes the structure of the frontend in more detail.

17

4.3.1 Frontend Structure

Figure 4.4: Structure of the frontend

In the figure 4.4 the structure of the frontend is shown. The ‘src’ directory not only contains the
visible folders but also some core files:

� index.html: The main HTML file of the application. It contains the root component of the
application.

� main.ts: The main TypeScript file of the application. It contains the bootstrap function that
starts the application.

� styles.scss: The main SCSS file of the application. It contains the global styles of the applica-
tion.

The actual components are located in the ‘app’ directory. Inside the ‘app’ directory are additional
core files of the application:

18

� app-routing.module.ts: The routing module of the application. It contains all the routes of
the application including guards that specify when a user can activate or deactivate a route, and
additional metadata.

� app.component.html: The HTML template of the root component.

� app.component.scss: The SCSS styles of the root component.

� app.component.spec.ts: The unit tests of the root component.

� app.component.ts: The TypeScript file of the root component handling the logic.

� app.module.ts: The main module of the application. It contains all the components, services,
etc. that are used in the application.

The subdirectory ‘components’ itself contains all the reusable components of the application. This
means that there are several subdirectories for every single component e.g. home, message, etc. Each of
those directories contain a HTML template, a SCSS styles, a spec file for unit tests, and a TypeScript
file for the logic of the component. All helper functions that are used in multiple components are
located in the ‘helpers’ directory. They are used to avoid code duplication of functions that are
being used in multiple components, e.g. a function to format a date. The ‘models’ directory contains
all custom TypeScript typings. The typings contain the structure of each object received from the
backend, and also the object that gets sent to the backend (to create or update). Additionally, a
few other interfaces are defined for various components and guards. With the ‘pipes’ directory it is
possible to create custom pipes that can be used directly in the HTML templates, making it easier
to use helper functions. The ‘services’ directory is used to define the functionality of guards and
communicate with external resources (as seen from the frontend’s perspective), such as the backend
API. Each service consists of a TypeScript file for the logic, and a spec file to test the service. At least
one service exists for each backend API endpoint, e.g. ‘/api/me’ uses the MeService, ‘/api/events’
uses the EventService, etc.

4.3.2 Request Flow

The following graphic shows the flow of a request from the user when accessing the events page. The
flow for the other pages is similar, but sometimes additional data is supplied by the user, e.g. when
creating a new event.

19

Figure 4.5: Flow of a request for an event

The next graphic illustrates what happens when a user subscribes to the newsletter.

Figure 4.6: Flow of a request for subscribing to the newsletter

20

4.4 UI Mockups

A series of mockups were created to visualize the user interface of the web application.

Figure 4.7: Header

In figure 4.7 the header of the web application is shown, with focus on the extended search bar. After
a keyword for the search is entered, there will be a list of suggestions of events and organizers that
match the keyword. Moreover, the header features buttons for both logging in and signing up, as well
as for navigating to the events or organizers pages.

21

Figure 4.8: Home Page

In figure 4.8 the home page including the footer is shown. This page shows some different suggestions
for events. In a first section there will be a list of featured popular events. The section below shows
preferred events based on the user’s interests. This will only be shown if a user is logged in and has
preferences set. In the third section there will be a list of new events and new organizers. The last
section shows recently used events if the user is logged in.

22

Figure 4.9: Login and Sign-up Pages

The figure 4.9 visualizes the login and sign-up pages. From the login page the user can navigate to
the sign-up page and vice versa. On the sign-up page one can also sign up as a new organizer.

Figure 4.10: Search Page

This figure 4.10 shows the search page. The user is able to change between events and organizers,
depending on what they are looking for. On the left of the search results there will be a filter bar to
filter the results by different criteria. If a filter is active, it will always be shown regardless of the state
of the filter bar. An active filter can be removed by clicking on the cross next to it.

23

Figure 4.11: Event Pages

This figure 4.11 shows all four pages related to events. The first page is the overview page, which shows
all upcoming events and provides filter options. The second page is the view of a single event with all
its information. Depending on the visibility set by the organizer, the page might not be accessible for
everyone. The third page is the page for creating a new event with all the necessary information. It
is only accessible for organizers. With the last page the user can edit an existing event. This page is
also only accessible for the organizer of the event.

24

Figure 4.12: Organizer Pages

The figure 4.12 shows all three pages related to organizers. Using the first page, one gets an overview
of all organizers and can filter them. The second page shows the profile of an organizer. The last
image shows the page for editing an organizer and its information displayed in the profile.

25

Figure 4.13: Account Page

The figure 4.13 shows the account page from a logged-in user or organizer. It is possible to change
name, email and password. Only a user is also able to set preferences for events. Additionally, only
an organizer can access the profile editor and can view (private), edit, delete or create their events.

26

4.5 Deployment Architecture

Figure 4.14: Deployment architecture of the project

The deployment architecture shown in figure 4.14 displays the architecture of the project from the
perspective of DigitalOcean. For the deployment of the project, the App Platform feature by Digi-
talOcean is used. Therefore, the following three components are created in the context of an app on
the App Platform:

� Frontend: The frontend is built as a static site. A static site gets pre-rendered and can then
be easily distributed across content delivery networks (CDN), which is done by DigitalOcean.
With this, a user can easily access the frontend without having to wait for the server to render
the page first, decreasing latency.

� Backend: As the backend has to provide the API functionality, it is built as a web-service,
which is a container running Node.js. Port ‘3000’ and the path /api, routed to the backend

27

with the ‘HTTP Request Routes’ feature, are exposed to the internet. This allows the user to
access the backend API with the /api path.

� Database The database is a Postgres development database provided by DigitalOcean. As it is
a development database, it is unmanaged and not backed up. A development database is used
because it delivers enough performance for the project and the costs can be kept low. For a
production database, a managed database should be used.

The custom domain needs to be configured to point to the project. All nameserver and DNS records
of this domain will be managed by the industry partner. Therefore, this will not be part of this
documentation.

4.6 Technologies

Table 4.1 shows the chosen technologies for the project and the reasoning behind the selection. It is
important that the chosen technologies are easily accessible and have a large community. This is to
ensure that the project is maintainable in the future. Additionally, the project shall be JavaScript
based.

Technology Objective Statement

Angular Frontend Angular is a popular frontend framework with
a large community and a lot of documenta-
tion to go on. Another suitable option would
be React, but Angular was chosen as we have
used similar frameworks e.g. Nuxt in past
projects. React has a steeper learning curve
and is more difficult to get started with. Ad-
ditionally, it comes with JSX, which is not as
easy to use as HTML. On the other hand, An-
gular has many features out of the box that
React does not have (e.g. routing, forms, etc.).

SCSS Frontend SCSS is a CSS preprocessor. It is a good
choice for this project as it is easy to use and
has a lot of features that make it easier to
write CSS.

Tailwind Frontend Tailwind is a CSS library. We chose Tailwind
over other design libraries because it is utility-
first, therefore very flexible, easy to use, and
you do not have to explicitly write CSS, mak-
ing it easier to understand the code.

Continued on next page

28

Technology Objective Statement

Node.js / Express Backend Using Node.js for the backend is required
for this project as the project needs to be
JavaScript based. Additionally, Node.js is one
of the most popular backend frameworks. As
the frontend is Angular, it makes sense to use
Node.js for the backend as they both depend
on JavaScript. Therefore, no other backend
framework was considered.

PostgreSQL Database The first decision was to use MySQL for the
database as it is a popular choice for web ap-
plications. However, as the project is hosted
on DigitalOcean and they provide Postgres-
only development databases for low costs, the
decision was made to use Postgres instead.

DigitalOcean Hosting DigitalOcean is a cloud hosting provider. This
is a condition set by the industry partner for
this project. Nevertheless, DigitalOcean is a
suitable hosting provider as it is easy to use
and has many useful features.

DigitalOcean App Platform Deployment The DigitalOcean App Platform is a ser-
vice provided by DigitalOcean. It allows for
easy deployment of applications. It is a great
choice, as deploying the application is done
fast and easy, and can additionally be auto-
mated.

SendGrid Mail SendGrid is a third-party service for send-
ing and creating emails. Other options like
Mailchimp or Mailgun were considered, but
SendGrid was chosen because of the free plan
and the easy-to-use API, which has a good
documentation. Therefore, with its full range
of features and a developer-friendly free plan,
SendGrid has been chosen.

Table 4.1: Technologies used in the project

29

Chapter 5

Quality Measures

5.1 Quality Assurance

Definition of Done

Code review: All code changes are put in a merge request and must be reviewed by the other team
member to ensure code quality.
Unit testing: All code changes must be accompanied by automated tests that pass without error.
Manual testing: All test cases defined in chapter 6 have passed successfully, and the software meets
the acceptance criteria.
Test documentation: All test cases are reported in a test summary containing the test result.
Documentation: The documentation is always up-to-date. In the event of changes, the documenta-
tion is adjusted.

Continuous Integration Pipeline

The CI/CD pipeline on GitLab is used to optimize the development process and improve quality
of the software. The test process is integrated in the pipeline to ensure that the software is tested
consistently. This includes unit and linter tests and lets the pipeline fail if a unit tests fails. When
the linter fails, the pipeline issues a warning, and merging remains possible. However, an exception is
made for merges into the main branch, where both lint and unit tests must pass, to ensure the quality
of the code in the main branch.

Code Metrics

Code quality metrics are measured with Code Quality, which is integrated into the CI/CD pipeline.
The following metrics are measured:

� Complexity: The complexity of the code is measured with the Cognitive Complexity met-
ric. The higher the complexity, the more difficult it is to understand the code. The metric is
calculated based on the number of conditions and the nesting level of the code.

� Bug Risk: The bug risk is measured with maintainability and keywords that indicate a high
bug risk.

30

Quality Measurement Tools

Table 5.1 shows the used technologies to ensure code quality for the project.

Technology Objective Statement

Code Quality Code analysis Code Climate (Code Quality) is directly
implemented on the GitLab CI/CD and
analyses the source code’s quality and
complexity.

ESLint Project code quality The linter is used to analyse the code
syntax of the front- and backend and is
also integrated in the CI/CD pipeline to
ensure code quality.

Table 5.1: Technologies for quality measurement

Table 5.2 shows the technologies that were planned to be used to ensure code quality for the project,
but were not implemented due to time constraints.

Technology Objective Statement

Jasmine Backend unit testing Jasmine is used for backend unit tests
due to its clean syntax and built-in test
runner, ensuring the reliability and qual-
ity of the backend code.

Jasmine + Karma Frontend unit testing Jasmine and Karma handle frontend unit
testing. Karma, acting as a test runner,
simplifies testing frontend code in dif-
ferent browsers, guaranteeing code reli-
ability and quality. It’s also the default
testing suite of Angular.

Table 5.2: Additional technologies for quality measurement

31

Chapter 6

Test Plan

6.1 Introduction

This test plan aims to verify the functionalities of this project based on the requirements provided in
the document. Depending on project progress, the test plan will be updated accordingly. Only the
latest version of the test plan will be included in this chapter. Previous iterations of the test plan will
be archived in the appendix in chapter 12. The archive only contains sections that have been changed.

6.2 Test Objectives

The objectives of this test plan are as follows:

� To verify that the system and its relevant actors can add, modify and delete events.

� To verify that the web application is able to find events by search.

� To verify that the system can filter events by category.

� To verify that the system is able to let users register and login.

� To verify that the system is capable of sending newsletter emails to subscribed users.

� To verify that the system is capable of unsubscribing users from the newsletter.

6.3 Test Strategy

The testing strategy will be a combination of manual and automated testing techniques. Manual
testing is used to verify the functionalities of the system, while automated testing is used to lint the
code and successfully build the project. The automated tests will be executed on every push to a
branch and on every merge request. Optional requirements are excluded from this test plan as they
are not required for the project to be successful.

6.4 Test Environment

The following environment will be used for testing:

� Operating System: Apple macOS

32

� Browser: Firefox, Google Chrome, Safari

� Testing Tool: Postman

6.5 Test Specifications Functional Requirements

The following test cases, as shown in table 6.1, will be executed manually for the project:

No. Description
of test case

Precondition Input Expected Output

1 Organizer
creates
event

Organizer
must be
logged in and
approved

Click on ‘New
Event’ and enter
details

Event is added and visible on
the events overview page

2 Search for
event

User is on the
page and fo-
cuses search
field

Use search field to
type the name or
category of an event
one is looking for

Events that are related to
this search will be displayed

3 Filter
events

User has
searched for
an event or is
on the event
overview

Apply filters in the
menu

Only related events will be
visible

4 Users and
organizers
can sign up
or login

User or orga-
nizer is on the
login/sign up
page

User/organizer en-
ters login details

User/organizer is logged in
and sees user/organizer re-
lated data

5 Subscribe
to newslet-
ter

User is logged
in

User selects sub-
scribe button

User will receive newsletters
per email

6 Unsubscribe
from
newsletter

User is logged
in and sub-
scribed to
newsletter

User selects unsub-
scribe button

User will not receive newslet-
ters per email

Table 6.1: Test specifications for the functional requirements

33

https://www.postman.com/

6.6 Test Specifications Non-Functional Requirements

The test cases shown in table 6.2 will be executed manually for the project:

No. Description of
test case

Precondition Input Expected Output

1 Collaborative:
Desired features
are implemented

— User tries to do all
use cases from the
MVP

All use cases can be ac-
complished

2 Performance:
Backend is able
to handle 1000
requests per
minute

— Backend requests The whole system keeps
running without errors

3 Response Time:
The pages are
loaded in under
200ms

The user has a
reliable inter-
net connection
and is using
an up-to-date
web browser

Load pages Each page is loaded in
under 200ms

4 Responsiveness:
Web-application
is responsive on
mobile, tablet,
and desktop

— Pages are loaded
on the mentioned
devices

The web application is
responsive and visually
appealing on all devices

5 Browser Com-
patibility: Web-
application
runs on Firefox,
Chrome, and Sa-
fari

Browsers are
installed

Web-application is
loaded on the men-
tioned browsers

Pages are shown and fully
functional on all browsers

6 Accessibility:
Access over
the customer-
provided domain
is available

— Load page using the
provided domain
name

Pages are loaded

7 User Satisfaction:
Users rate the UI

Test users are
selected and
can provide
ratings

Test users navigate
the page and pro-
vide ratings

3/4 users rate the UI min-
imum 8/10

8 Scalability:
Database han-
dles up to 10,000
events and 1,000
users

A database
capable of
handling those
numbers of
events and
users is run-
ning

— Database can handle
those numbers without
errors

Continued on next page

34

No. Description of
test case

Precondition Input Expected Output

9 Error Handling:
Errors do not
cause failures
but display error
messages

— Errors are triggered Error messages are dis-
played and logged

10 Security: Com-
munication en-
crypted

— Communication be-
tween frontend and
backend is triggered

Communication is SSL
encrypted

11 Security: Input
validation

— SQL injection is at-
tempted

SQL injection is prevented

12 Data Privacy:
Application is
implemented
with data protec-
tion regulations
in mind

— User data is stored User data is stored in a
way that complies with
data protection regula-
tions

13 Password Secu-
rity: Passwords
are stored se-
curely

— User registers and
enters a password

Passwords are securely
hashed and not stored in
plain text in the database

14 User Data Isola-
tion: Users can
only access their
own data

User is logged
in

User tries to access
data of another user

User is not able to access
data of another user

15 Modularity:
Business logic
is modular and
extensible

— New features are
added

New features can be
added without changing
existing code

16 Testing: API
testing

The API test-
ing tool has
been config-
ured

Tests have been exe-
cuted

All tests successfully pass

17 Deployment: Im-
plemented func-
tionality is de-
ployed

Developer is
authenticated
on DigitalO-
cean

Deployment is trig-
gered

Implemented functionality
is deployed

Table 6.2: Test specifications for the non-functional requirements

6.7 End User Tests

The end user tests will be conducted by 4 different test users. Each test user will be given a question-
naire. The same test cases will be utilized as outlined in the functional requirements section. These
tests verify the use cases and ensure coverage across all layers of the application. Additionally, the end
users have the opportunity to provide feedback on the user interface and the overall user experience.
They are asked to rate the user interface on a scale from 1 to 10, with 1 being the lowest and 10 being

35

the highest possible rating.

6.8 Test Schedule

6.8.1 CI/CD Tests

The CI/CD tests are executed on every push to a branch. All tests have to pass before a merge request
can be merged.

6.8.2 Integration Tests

The mentioned integration tests have to be done once the corresponding features are implemented.
Those functional tests should be done before 01.12.2023. All non-functional tests are done before
01.12.2023.

6.8.3 End User Tests

The end user tests will take place before 15.12.2023.

36

Chapter 7

Implementation

This chapter describes the most important aspects and details regarding the implementation of the
project.

7.1 Visual Design

The design of the project is based on the wireframes that were created in the design phase. The
wireframes were used as a guideline for the design, but were not strictly followed. The current design
uses blue and white as its main colours. The blue colour is used for almost all elements, while the
white colour is mostly used as a background colour. Red is applied as an accent colour for error
messages and certain buttons like delete and reset. The colour green is used for success messages,
while grey is an additional colour for buttons. The design is kept simple and minimalistic, with the
goal of making it easy to use and understand. It’s also important to note that the design is aimed to
be consistent across all pages, making it easier for the user to use different pages with the same design.
One example of this are the overview pages and the search page, which all have the same design and
layout.

7.2 Backend API Endpoints

All backend API endpoints have been described in the ‘README.md’ file of the ‘backend’ directory
in the project itself. Due to the length of the document, it is not included in this chapter. However,
a copy has been added to the appendix chapter 15. The document contains a list of all endpoints,
including their URL, method, access, parameters, and return values. Additionally, it contains a list
of all enums and models that are used in the project. The enums and models are described in detail,
including all properties and their types.

7.2.1 Special API Endpoints

Some endpoints seem to be duplicated, however, they serve different purposes. Good examples are the
‘GET /events’ and ‘GET /me/events’ endpoints. The first endpoint returns all public events, while
the second endpoint returns all events of the currently logged-in user only, including private events.
The same applies to the ‘GET /events/:id’ and ‘GET /me/events/:id’ endpoints. The first endpoint
returns the event with the given ID, while the second endpoint returns the event with the given ID if
the currently logged-in user is the organizer of the event.

37

7.2.2 Rate Limiting

The backend API is rate limited to prevent abuse. The rate limiting is done with the help of the
express-rate-limit npm package and is applied to all routes on the backend component. Rate limiting
is currently configured to 100 requests per 60 seconds per IP address. If a user exceeds the limit, they
will receive a 429 error code with the message ‘Too many requests, please try again later’.

7.3 Database

The database has already been described and designed in previous chapters. Therefore, this section
concentrates on the implementation of the database. To implement the domain model, the ‘sequelize’
npm package was used as an Object Relational Mapper (ORM). This makes it possible to easily define
the models as objects. The generated models can then be used to interact with the database’s entities.
Each model corresponds to a table in the database. Sequelize makes sure that all entities and their
associations exist when the application boots up.
In a first step, Sequelize authenticates with the database and makes sure the credentials are correct
by creating a test connection. Next, the entities and associations of the database get set up by
defining their respective models. Lastly, a model synchronization gets executed, syncing states of the
local JavaScript model with the database. The following code is simplified to showcase the different
actions.

1 // Create the Sequelize object

2 const sequelize = new Sequelize(

3 process.env.POSTGRES_DATABASE ,

4 process.env.POSTGRES_USER ,

5 process.env.POSTGRES_PASSWORD ,

6 {

7 host: process.env.POSTGRES_HOST || 'localhost ',

8 port: port || 5432,

9 dialect: 'postgres ',

10 dialectOptions: {

11 ssl: {

12 require: true ,

13 rejectUnauthorized: false

14 }

15 },

16 logging: false ,

17 pool: {

18 max: 10,

19 min: 0,

20 acquire: 30000,

21 idle: 10000

22 }

23 }

24);

25
26 // Test the connection to the database

27 await sequelize.authenticate ();

28
29 // Set up all models and associations

30 setupAssociations(sequelize);

31

38

https://www.npmjs.com/package/express-rate-limit

32 // Model Synchronization

33 await sequelize.sync();

Listing 7.1: Sequelize Sync

The following example shows the ‘id’ and ‘name’ fields of the base user model. The ‘id’ field is an
integer, set as a primary key, and will auto increment with each new entry. The ‘name’ field is of type
‘string’, cannot be ‘null’ or empty, and is defined to have between 3 and 255 characters.

1 export const initializeBaseUser = (sequelize: Sequelize) => {

2 return sequelize.define(name , {

3 id: {

4 type: DataTypes.INTEGER ,

5 primaryKey: true ,

6 autoIncrement: true

7 },

8 name: {

9 type: DataTypes.STRING (255),

10 allowNull: false ,

11 validate: {

12 notEmpty: {

13 msg: 'Name cannot be empty'

14 },

15 len: {

16 args: [3, 255],

17 msg: 'Name must be between 3 and 255 characters '

18 }

19 }

20 },

21 // additional properties as defined in the domain model

22 // ...

23 }, {

24 // additional options for the model

25 });

26 }

Listing 7.2: Base User Model

Additionally, the associations need to be defined, so Sequelize knows how the tables are connected
with each other. The following code snippet shows the associations of the base user model with the
organizer and user models. The organizer and user model each have the foreign key of the base user
on their ‘id’ field.

1 User.belongsTo(BaseUser , {

2 foreignKey: 'id',

3 as: 'base_user '

4 });

5
6 Organizer.belongsTo(BaseUser , {

7 foreignKey: 'id',

8 as: 'base_user '

9 });

Listing 7.3: Base User Associations

The outcome of the start-up procedure, whether it was successful or not, gets logged to the console.
The backend is ready to interact with the database if no error messages are shown.

39

7.4 Features

This section describes the implementation of the major features of the project.

7.4.1 Event Handling

Each of the following features is a page of the application and is defined as a component.

Create Event

Several attributes are required to create an event. It is differed between public and private events.
Public events are visible to all users, while private events are only visible to the organizer who created
the event. For public events it is required to set a title, a description, a start date and a category.
This ensures that an event has a minimum amount of information for a user to decide on whether
they want to attend the event. On the other hand, a private event only requires setting a title. This
makes an event more flexible for an organizer as they can add more information at a later date and
do not have to fill out all the information at once. All events currently use a placeholder image, which
is identical for all events.
The create event page consists of a simple form. All required fields are marked with an asterisk to
let the user know, which fields need to be filled out. Per default the event visibility is set to private.
If the user changes the visibility to public (or vice versa), the required fields and their corresponding
asterisks get updated. After the organizer submits the create event form, several checks are done to
ensure that the event is valid. Those checks are done through the service ‘EventValidatorService’. This
makes it possible to reuse the validation logic for other components, e.g. the edit event component.
There are many checks and therefore only the most important ones are described in the following list:

� If an event is public, check if the event has the required fields title, description, start date and
category.

� The end date of an event must be exactly the same as or after the start date, it cannot be before
the start date.

� If the event is a one-day event, the end time must be after the start time.

� The zip code must be between 1000 and 9999.

� A location requires a street, a zip code and a city.

If one of the aforementioned checks fails, the field is marked as invalid and the user receives a message
that describes the error near the field. This makes it easy for the organizer to find the error and
correct it. The same behaviour is implemented in all other forms on the website.

Figure 7.1: Time Field Error

Additionally, when the organizer reloads or leaves the page without saving the event, a confirmation
dialogue pops up to prevent the user from losing the unsaved data. This is done with the help of a

40

host listener that listens to the ‘beforeunload’ event of the browser. It shows the dialogue, if there are
any unsaved changes in the form. The following code snippet shows the host listener.

1 @HostListener('window:beforeunload ', ['$event '])

2 public unloadNotification($event: BeforeUnloadEvent): void {

3 if (this.showBeforeUnloadNotification () && this.hasUnsavedChanges ()) {

4 $event.preventDefault ();

5 $event.returnValue = true;

6 }

7 }

Listing 7.4: Host Listener

Since Angular acts as a single page application in this project, another check is also needed in order
to prevent the user from losing any data when switching pages. The current host listener only covers
the ‘beforeunload’ event, for example when the user navigates away from the page by entering a
new address in the browser address bar, or decides to reload the page entirely through the browser
function. However, normal navigation on the website itself does not emit this event. The additional
check uses Angular’s guards feature in coordination with ‘canDeactivate’ that defines if a route can
be deactivated. When registering the event create route, the ‘canDeactivate’ property is passed with
the ‘UnsavedChangesGuard’ guard. The ‘UnsavedChangesGuard’ checks if the message should be
shown and if there are unsaved changes in the component that is about to be deactivated. There are
some edge cases where you do not want the message to pop up, hence the additional check with the
‘showBeforeUnloadNotification()’ function.

1 export class UnsavedChangesGuard {

2
3 public canDeactivate(component: CanComponentDeactivate): boolean {

4 if (component.showBeforeUnloadNotification () &&

component.hasUnsavedChanges ()) {

5 return window.confirm('You have unsaved changes! Do you really want

to leave?');

6 }

7
8 return true;

9 }

10
11 }

Listing 7.5: UnsavedChangesGuard

This applies to all other routes using a form, except for the login and register forms as there is no
benefit in using this feature there.
Once the organizer creates the event, they will get forwarded to the edit page of the freshly created
event.

Edit Event

The edit event page is similar to the create event page. It shares the same form and the same
validation logic, with the sole difference that the form is pre-filled with the data of the current event.
More difficult for an edit page is to check if there are any changes on the form. This is relevant if the
organizer leaves the page while having pending changes. This is done by comparing the form data
with the data of the event that is edited. If there are any changes, the confirmation dialogue pops up
and asks the organizer if they want to leave the page without saving the changes. Additionally, the

41

organizer can delete the event, which leads them to the account page, displaying a success message.
The page remains the same if an event is saved, and a success message is shown.

Event Overview

The event overview page consists of a list of events that are directly loaded via the backend API. By
default, only 50 events get fetched from the backend API to reduce the amount of data that is loaded
and prevent the page from slowing down with huge data sets. At the end of the list exists a load more
button, which loads the next 50 events from the backend API. This pagination system ensures better
stability for the client.

Event Single

The event single page can be found whenever an event gets displayed in an overview. Various in-
formation is visible on this page: All the event details as well as the organizer with their contact
information. The data gets fetched from the backend API, using the URL path as an indicator, which
event the user is viewing. Minor styling decisions improve the readability of the event details. For
example, when an event has the same start and end date, only the start date is shown, to improve
readability. The description field also allows Markdown formatting. If an organizer writes their de-
scription in Markdown, it will be rendered with HTML tags on the event single page, thus making
the whole description design customizable. The Markdown is rendered directly in the backend before
a response to an API request is returned. It is also only done on endpoints that require the rendered
content, implying there is a different endpoint to receive the raw Markdown content, e.g. when editing
an event you typically do not want the HTML output inside the form. The backend uses the custom
renderer shown below to render the Markdown into HTML and set the heading levels correctly. As
an underlying Markdown library handling all rendering, marked is used. Setting the headings is done
because in Markdown the ‘#’, or hashtag, is used as a heading. It starts at the ‘h1’ HTML tag with
a single hashtag. However, the document’s ‘h1’ tag is already set to the event title and would cause
semantic issues. Therefore, the headings get shifted accordingly: ‘h1’ to ‘h2’, ‘h2’ to ‘h3’, etc. This
also means that there are only five headings available instead of the original six.

1 const customRenderer = new marked.Renderer ();

2
3 customRenderer.heading = function (text , level) {

4 if (level < 6) {

5 level += 1;

6 }

7
8 return `<h${level}>${text}</h${level}>`;

9 };

10
11 marked.setOptions ({

12 renderer: customRenderer

13 });

14
15 export function markdownToHtml(markdown: string): string {

16 return DOMPurify.sanitize(marked(markdown));

17 }

Listing 7.6: Markdown Rendering

The rendered HTML is then set as the inner HTML of a ‘div’ HTML element with class ‘markdown’,
which is styled with the aforementioned class. This is done in the frontend component.

42

https://www.npmjs.com/package/marked

1 <div class="mt -1">

2 <div class="markdown" [innerHTML]="event.description"></div >

3 </div >

Listing 7.7: Markdown HTML

As the description should have slightly smaller font sizes and stylings since it’s a subcomponent of the
page, it was necessary to style each HTML element that the Markdown parser supports. This gives
an organizer the possibility to have almost complete control over their description style and make it
more unique and appealing for the user.

7.4.2 Newsletter

The newsletter is a feature that is only available to registered users. It is not available to organizers
as they are the ones publishing the events. The ‘mail.ts’ file in the ‘helpers’ directory contains all the
logic for the newsletter. Sending out the newsletter is scheduled with the help of a cron job. It is
scheduled to be sent out twice a month: On the 1st and 15th of each month at midnight server time.
Certain criteria need to be met for a newsletter to be sent out, as shown in the following list.

� The user is subscribed to the newsletter.

� The user has at least one preference set.

� The selected preference has at least one event. This means that at least one event needs to have
the same category as the preference.

� The event is public.

� The event has been created in between the last newsletter date and the current newsletter date
(today), e.g. in the range of 1st to 14th of the month if today’s date is the 15th.

� The event start date is at the earliest the day after the current newsletter date (today).

If all criteria are met, the event is added to the newsletter. This is repeated for all matching events.
A maximum of 10 events are then added to the newsletter. The content is prepared, namely the date
format of all date and time fields is changed to a more readable format. Finally, the full event object
is then passed to the newsletter template with the SendGrid API and the email is sent out. This is
done for each user that meets the criteria. Interacting with the SendGrid API is done through an API
key.
The newsletter template is a predefined HTML template that is used for every newsletter. It uses
SendGrid’s dynamic template feature, which allows passing in your own data to the template, replacing
the predefined placeholders. This also means that a dynamic template needs to be created in the
SendGrid dashboard and the template ID needs to be set in the environment variables. The template
can be designed in the SendGrid dashboard using a drag and drop editor or simple HTML code.
For the sending to work, a sender name, sender email address and a reply-to email address have
to be specified. The sender email address has to first be verified on SendGrid’s dashboard as an
approved sender address. This can be done through a simple verification email to the specified email.
An alternative approach would be to verify ownership of the whole domain through a DNS record,
however, this has not been done for this project as it doesn’t use the whole domain and just a single
address is needed.

43

7.4.3 Search

The search is split into two components, the search page and the search popover. The search bar,
including the search popover, is accessible on every page, as long as the header is visible. The search
algorithm is a simple string matching algorithm, looking for the search query in multiple fields of the
event and organizer models. It even includes lookups in the event’s organizer, including the base user,
category and location. For organizers it includes lookups in the organizer’s base user and location.
Values that are not strings, e.g. dates, have a separate comparison. Dates have a predefined list of
formats the user can enter in the search bar, which then automatically get converted into dates to
compare to the actual values saved inside the database. For zip codes, it checks if the user entered
a number. If valid, the zip code can be compared and found. It’s a relatively expensive search
approach compared to alternatives as multiple queries need to be done, one for each entity. Creating
a more sophisticated search algorithm was not a priority, as the current algorithm is sufficient for the
project’s scope. It also opens up the possibility to implement a more sophisticated search algorithm
like Elasticsearch in the future, as the current search algorithm is easily replaceable.

Search Page

The search page shows a list of events and organizers that match the search query. The search query
is set as a parameter in the URL, similar to event IDs on single pages, which then returns the specified
amount of events and organizers that match the query. The search page content itself is an Angular
component. It shows two tabs ‘Events’ and ‘Organizers’, which are both filled with the corresponding
search results. The separation had to be done because of the different filters that are available for
events and organizers.

Search Popover

The search popover is a separate component that is used inside the header component. It is only
visible if the user enters at least three characters in the search bar. The popover hides itself if the
user clicks outside of the popover or if the user enters less than three characters in the search bar. It
includes a short overview of the search, suggesting events and organizers that match the search query.
The popover is fully interactive, meaning the user can click on the search results and gets redirected
to the corresponding page. If the user presses ‘Enter’, the view switches to the search page, where
additional functionality is available.

7.4.4 Filtering

The filter component is used on the event and organizer overview pages, and the search page. It is a
separate component designed for reusability in other components. It accepts multiple parameters as
shown in the list below.

� ‘filters’: The filters that are available for the component as an array. The following strings can
be passed in an array to enable the corresponding filter: ‘order’, ‘category id’, and ‘organizer id’.

� ‘defaultOpen’: Whether the filter’s collapsible elements should be open by default.

� ‘categories’: An array of all available categories. This is used to display all available categories
in the category filter.

� ‘organizers’: An array of all available organizers. This is used to display all available organizers
in the organizer filter.

44

� ‘filterChanged’: An event emitter that emits an event whenever a filter has been changed. This
is used to notify the parent component that the filters have changed.

By default, the filters are collapsed. The user can expand the filters by clicking on the filter title. If a
filter has active items, they are shown even if the filter is collapsed. This makes it easier for the user
to see which filters are active, and the user can easily remove them again by clicking on the ‘x’ icon.
Filters are added to the URL as query parameters, thus making it possible to share the current filter
state with other users or save the current filter state for later use.

The backend handles the filtering through query parameters. The following default filters can be used
with all entities.

� ‘limit’: The amount of entities to return. Defaults to unlimited.

� ‘offset’: The offset of the entities to return. Defaults to 0.

� ‘order’: The order of the entities to return. The default order is different for each entity.

Depending on the entity, additional filters are available.

� ‘category id’: A list of category IDs to filter by. Only entities that match at least one of the
category IDs are returned.

� ‘organizer id’: A list of organizer IDs to filter by. Only entities that match at least one of the
organizer IDs are returned.

This makes the filtering highly customizable and flexible.

7.4.5 Home

The home page is the first page a user sees when visiting the website without any additional path. Its
purpose is to give the user a quick overview of interesting events, and encouraging them to subscribe
to the newsletter. Multiple views of different events are shown. The ongoing/upcoming events section,
including six events, whose start date and time is closest to the current date/time. The new events
section showcasing the six newest events created. They are queried with the ‘created at’ field, which
holds the date the event has been created. Additional sections on the home page are only visible if
different conditions are met. Following cases will show the described sections:

� The user is not logged in: The user sees a button to subscribe to the newsletter. This will lead
them directly to the sign-up page, as they need to be registered and logged in to subscribe to
the newsletter.

� The user is logged in but is not subscribed to the newsletter: The user sees the same button,
which should convince them to subscribe to the newsletter. The button leads to the account
page instead, where the user can easily subscribe to the newsletter.

� The user is logged in and subscribed but has no preferences set: The subscribe button now tries
to get the user to set or change their interests. This button also leads to the account page, where
the user can set their interests.

45

� The user is logged in, subscribed and has preferences set: The user additionally sees a section
with a list of events that are recommended for them. It uses the user’s preferences to determine,
which event categories are suitable for the user. If there are no events matching the user’s
preferences, the ‘preferred events’ section is not shown.

� An organizer is logged in: As an organizer can not subscribe to the newsletter and has no
preferences, they only see the default sections.

Additionally, to make the home page more appealing and interactive, the main title and the prompt
to subscribe to the newsletter are changing on every reload of the page. This is done with a predefined
list of sentences, from which a random entry is chosen each time.

7.4.6 Organizers

Organizers are one type of user in the system. They are able to create, edit and delete their own
events. Everyone is able to register as an organizer. This makes it possible for organizers to create
events even before the admin has verified their account. The events cannot be set to public and
therefore are not visible to other users until the organizer’s account has been verified. The goal of this
procedure is to make it easier for organizers to start using the platform while still ensuring that spam
events are not published and fake organizers do not have any influence. Due to the non-existent admin
portal, the verification process is currently disabled and every organizer is automatically verified. The
organizer can only edit and delete their own events and not events from other organizers. This is done
by checking if the current user is the organizer of the event that is about to be edited or deleted. If
the user is not the organizer, the backend API returns an error message with the corresponding error
code. The frontend then shows a message to the user, informing them that they are not allowed to
edit or delete the event. This ensures user data isolation and prevents unauthorized access to other
organizers’ data.

7.4.7 Account

Any registered user can access the account page. The account page is split into multiple sections, each
section containing different information and functionality. It shows the user’s information, including
their name and email address. Additionally, all users can change their password in the security section
of the account page. Users of type ‘user’ can subscribe to the newsletter and set their preferences.
Organizers can access and edit their events. Events are split into two sections: ‘Ongoing/Future’
and ‘Past’. The ongoing/future section shows all events that are currently ongoing, will start in the
future, or have no date set (private events). The past section allows the user to view, edit, and delete
old events. The split has been done intentionally to better organize events on the account page. By
default, the ongoing/future tab is active. The last section is the ‘Delete Account’ section named
‘Danger Zone’, where all users can delete their account. Deleting an account is a permanent action
and cannot be undone. The user is asked to confirm the deletion of their account before proceeding. If
the user confirms the deletion, the account is deleted and the user gets logged out. All data associated
with the user gets deleted as well, including events, preferences, etc.

7.4.8 Message

A message has the properties ‘type’ and ‘text’. The type can either be ‘success’ or ‘error’, styling the
message accordingly. The text contains the message content that is to be shown to the user. Setting
and showing the message is mostly done by the message component. It generates the needed HTML
markup and handles the styling. A success message has a title ‘Success’ with a green background and

46

the message text. An error message has a title ‘Error’ with a red background and the error message
text. The component is used on most pages, usually whenever an error message is warranted.

Figure 7.2: Success Message

7.5 Error Handling

7.5.1 Backend

When an error occurs on the backend side during a request, the system will not crash. Instead, the
error will be caught and a response with the corresponding error code and an error message is sent.
The following error codes can currently be sent out by the backend API.

� 400: Bad Request

� 401: Unauthorized

� 403: Forbidden

� 404: Not Found

� 409: Conflict

� 500: Internal Server Error

� 502: Bad Gateway

� 503: Service Unavailable

� 504: Gateway Timeout

� Default: Internal Server Error

These error codes are used throughout the whole backend. For example, in the following code snippet,
if the logout fails, the backend would send a 500 error response with the message ‘Internal Server
Error’.

1 static logout = (req: Request , res: Response , next: NextFunction): void => {

2 try {

3 req.session = null;

4 res.status (200).json({ success: true });

5 } catch (err) {

6 return next(new InternalServerError(undefined , err));

7 }

8 }

Listing 7.8: Logout Error Handling

47

The error responses are handled through a global error handler at a central location in the code. This
makes it easy to change the error handling logic or error messages in the future. To create errors,
new instances of the class ‘ApiError’ are created. Multiple helper classes exist, named accordingly to
the error, to ease the process of generating error instances, which inherit from the ‘ApiError’ class.
These error instances are then used to generate the error message and status code of the response.
The error classes use basic information like status code, error message, the original error object, the
transaction that was used at the time of failure, and whether the error should be logged. The original
error object is used to log the original error, if log equals true. The supplied transaction will be rolled
back automatically. This way, all transaction rollbacks happen at one place. The error ‘Expired JWT’
is not logged, as it happens too frequently and is not relevant for the operation of the project. It can
be safely ignored. The following code snippet shows the constructor of the ‘ApiError’ class.

1 constructor(statusCode ?: number , message ?: string , originalError ?: unknown ,

transaction ?: Transaction , log?: boolean) {

2 // ApiError extends the default Error JavaScript class , setting a default

message with the help of the status code if none has been defined yet.

3 super(message || ApiError.getDefaultMessage(statusCode));

4 // Sets the status code , defaults to Internal Server Error

5 this.statusCode = statusCode || 500;

6 // Sets the original error for further use

7 this.originalError = originalError;

8 // Sets the transaction that was used while the error occurred

9 this.transaction = transaction;

10 // Sets the (default) log value

11 if (log === undefined) {

12 log = true;

13 }

14 this.log = log;

15 // Adds additional basic information to the error

16 this.name = this.constructor.name;

17 Error.captureStackTrace(this , this.constructor);

18 }

Listing 7.9: ApiError Class

The constructors of the subclasses are similar to the ‘ApiError’ constructor, minus the status code
as each class itself already represents a status code. They solely pass the information to their parent
class, in this case ‘ApiError’, directly defining the status code.

7.5.2 Frontend

The frontend catches errors every time it interacts with the backend API as these are the most likely
spots where errors occur. A lot of errors can happen with network requests, reaching from a DNS
issue to an unreachable component due to an outage or incorrectly configured network configuration.
Catching these errors is done by simple ‘try catch’ blocks that wrap around the API call.

7.6 Security

7.6.1 Authentication

The current authentication system is based on JSON Web Tokens (JWT). The JWT is stored in the
browser as an HTTP-only cookie. This makes it impossible for JavaScript to access the cookie. The

48

cookie is set to expire after one day. The JWT contains the user ID and the user type. The user ID
is used to identify the user and the user type is used to determine, which features are available to
the user. The JWT is signed with a secret key, which is stored in the environment variables. The
secret key is also used to verify the JWT. The JWT is verified each time a protected route is accessed,
e.g. the account page. In the backend, the token is received with the ‘express-session’ middleware
and passed to other custom middlewares for verification and further use. If the JWT is invalid, the
user is not authenticated and cannot access the protected route. Each request from the frontend to
the backend API is intercepted by an HTTP interceptor. The interceptor checks if the request failed
with a 401 error code, logs out the user, and redirects them to the login page if this is the case. This
ensures that the user is not able to access any protected routes if they are not authenticated. Even if
the user tries to access a protected route by entering the URL in the browser address bar, they will
be redirected to the login page. Should the case arise that the user accesses a protected route with
an expired JWT and not get redirected, the frontend will show an error message, and no data will
be loaded. Once the user logs out, the cookie gets deleted and the user is no longer authenticated.
If a new user registers, they are automatically logged in and redirected to the home page. The same
applies to users who log in. The user is redirected to the page they tried to access before logging in.

When a user logs in, the first check is if the user exists. If the user does not exist, an error is immedi-
ately returned. This can lead to timing attacks, as the response time is different if the user exists or
not. However, we decided to not implement a time attack prevention as it is not a critical part of the
application and the attacker can not do much with this information. If the user exists, the password
is compared with the hashed password. If the passwords match, the user is logged in, the last login
date is updated, and the JWT is generated and sent to the user.

All changes to the current user and the user’s data are done through the ‘/me’ endpoints. It checks
the JWT for validity and authorization. This allows the data to be isolated from other users, ensuring
data can only be edited by its owner.

7.6.2 Password Hashing

The passwords are hashed with the help of the bcrypt npm package. The package uses the ‘bcrypt’
hashing algorithm to hash the passwords. The passwords are hashed with a salt of 15 rounds, greatly
increasing the security of the passwords. The salt is automatically generated by the package and is
stored together with the hashed password. Hashing and comparing passwords takes a lot of time, thus
the process isn’t the fastest. However, this is not a problem as the hashing and comparing is only
done when a user registers, logs in, or changes their password. It also makes it harder for an attacker
to brute force the passwords.

7.6.3 Input Validation

Every input field is validated, sanitized and escaped. The frontend validation is done with the help
of Angular’s built-in form validators and custom validators. Validating the input fields is done by
checking if the input field is empty, if the input field is required, and if the input field has a minimum
and maximum length. The validators are used in the corresponding HTML template of the component.
On the backend side, the inputs are validated by checking each field individually. Sanitizing and
escaping is only done for the description fields in an event and an organizer, as they are the only fields
that also allow HTML to render, though this is only done after the select query has been executed, and
the Markdown has been rendered, e.g. for the event single page. The sanitizing and escaping is done
with the help of the DOMPurify npm package. All inputs are automatically escaped by the Sequelize

49

https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/dompurify

ORM, as it uses prepared statements to prevent SQL injection attacks. Angular also automatically
treats all values as untrusted and sanitizes and escapes all inputs by default.

7.7 Code Documentation

The backend API is documented in a single ‘README.md’ file in the backend repository. The
README contains a list of all enums, models, and endpoints as well as other important information,
e.g. rate limiting. Each enum, model and endpoint is described thoroughly, including all needed
information to use the API. Additionally, core parts of the backend, like the store subcomponents, have
a more detailed description of the methods and their parameters directly in the code. Those comments
contain parameters, return values and possible errors that can occur as shown in the following example.

1 /**

2 * Gets a base user by email

3 *

4 * @param email The email of the base user to get

5 * @param includePassword Whether to include the base user password field

6 * @param transaction The transaction to use

7 * @returns The base user with the given email or null if the base user was

not found

8 * @throws {Error} if an error occurred

9 */

Listing 7.10: BaseUserStore Comments

7.8 Deployment

The deployment is done with the DigitalOcean App Platform feature. First, it is necessary to connect
DigitalOcean with the GitLab repository. An app can then be created where the paths of the frontend
and the backend can be selected. The deployment is fully automated, meaning every push to the main
branch triggers a new deployment. The backend is defined as web service and has a running instance
with the cheapest plan. The specs of the machine are 1 vCPU and 512 MB of memory. The frontend
component is hosted as a static website. It does not require any additional resources to run. The
database is a Postgres development database, which has 512 MB of memory, a shared CPU, and 1 GB
of disk space available. The ‘What’s up in RJ’ app is added as a trusted source to the database. Only
trusted sources are able to connect to the database, hardening security. In addition, all environment
variables are set directly in the DigitalOcean App Platform. For local development, ‘dotenv’ files
are used that need to be defined every time the project is set up on a new machine. However, since
environment variables holding sensitive information such as API keys, etc. should not be uploaded
to the Git repository, the environment variables are defined through DigitalOcean’s environment
variables feature. An additional benefit of defining the environment variables in DigitalOcean is that
the variables can be selectively encrypted. As such, secrets, database credentials, and the SendGrid
API key are encrypted and not visible in the user interface. The rest of the variables do not need
to be handled confidentially and are therefore not encrypted. App wide variables like the application
URL or the environment ‘production’ are set for both frontend and backend.

7.8.1 Scaling

As scaling may be important for the application in the future, it is possible to further scale up the
application. The backend can easily be scaled horizontally by having multiple instances users can

50

use. The following screenshot shows possible scaling options, however, even more powerful options are
available.

Figure 7.3: Scaling Backend

On the other hand, the database can and needs to be scaled up for a production environment. The
database has a lot of headroom to scale up. The following screenshot shows the most powerful options
generally available.

Figure 7.4: Scaling Database

For a production environment we recommend to start with the smallest options: 1 GB RAM / 1
vCPU for the backend, and 1 GB RAM / 1 vCPU / 10 GB disk for the database. The logs can then
be analysed over time, and if the performance is deemed to be insufficient, the performance can be
increased together with the growing number of users accessing the application.

51

7.8.2 Frontend Environment Script

The frontend environment script ‘setenv.mjs’ is a simple Node.js script that is executed right before
the Angular build process. The file ends with ‘.mjs’ because it is written in ECMAScript modules.
It is used to set the environment variables for the frontend in the ‘environment.ts’ file. The script
is executed in the ‘build’ script in the ‘package.json’ file, together with the Angular build process.
It is needed because the ‘APP URL’ environment variable is not the same in a local development
environment as it is in the production environment. The ‘APP URL’ environment variable is set by
DigitalOcean and defines the application URL. It is not used locally as the frontend and the backend
are simply hosted on different ports on the same machine. The variable is dynamic, meaning it
changes depending on the configuration of the DigitalOcean App Platform. The script creates the
‘environment.ts’ file with the correct environment variables at build time. The following code snippet
shows the script.

1 import { writeFileSync } from 'fs';

2
3 const targetPath = './src/environments/environment.ts';

4 const envConfigFile = `

5 export const environment = {

6 production: true ,

7 apiUrl:

'${process.env.APP_URL}${process.env.APP_URL ?. includes('localhost ') ?

'' : '/api'}'

8 };

9 `;

10
11 writeFileSync(targetPath , envConfigFile , { encoding: 'utf -8' });

Listing 7.11: Frontend Environment Script

It defines the target path and the contents of the ‘environment.ts’ file. Should the ‘APP URL’ envi-
ronment variable not contain ‘localhost’, ‘/api’ is appended to the URL because the backend API is
hosted on the same domain as the frontend but on a different path. The script is only executed in the
production environment, as the ‘APP URL’ environment variable is normally not set in a local devel-
opment environment. If the script is executed in a local development environment, the ‘APP URL’
environment variable is undefined and the application would define an invalid URL. However, if the
‘APP URL’ environment variable is set in a local development environment before the script is exe-
cuted, the script would work as intended. The ‘build:prod’ script in the ‘package.json’ file does just
that to make it easier to test the build for the production environment locally.

7.9 Testing

The testing is divided into automated and manual testing. They are both described in the following
sections.

7.9.1 Automated Testing

For automated testing it was planned to use popular unit testing frameworks. Due to time constraints
all parties involved agreed to not implement any automated tests. Therefore, the following section
describes how the automated tests would have been implemented. The tests would have been run on
every push to a Git branch with GitLab’s CI/CD feature, ensuring that the tests are always up-to-date.

52

Backend Testing

The backend would have been tested with the help of Jasmine, a JavaScript testing framework. The
frontend’s test suite encouraged the use of Jasmine as it is the default testing framework for Angular.
The tests would have been written in TypeScript, as the backend is written in TypeScript as well.
They would have been split into multiple files, each file testing a specific component. API testing
would have been done by mocking the API calls and testing the responses.

Frontend Testing

The frontend would have been tested with the help of the built-in Angular testing framework ‘Jasmine’
and the test runner ‘Karma’. The tests would have been written in TypeScript, as the frontend is
written in TypeScript as well. They would have been split into multiple files, each file testing a specific
component. The tests would have been run in a headless browser, e.g. Chrome, to ensure that the
tests are not affected by the browser. Additional tests could have been done, including interaction
testing, e.g. testing if a button click leads to the correct page, or if a form submission leads to the
correct API call. However, this would have required a lot of additional time and was therefore not
implemented.

7.9.2 Manual Testing

The manual testing was done with a checklist of the functional requirements 6.5 and the non-functional
requirements 6.6. The functional requirements test all required features from an end user perspective.
The non-functional requirements test the performance and the security of the application. The test
reports with comments can be found in the appendix chapter 13. Additionally, end user testing has
been conducted with the help of four different users who were not involved in the project. Therefore, a
questionnaire was created to guide the users through the testing process. The idea of the questionnaire
is to let the user test all the functional requirements without a detailed description on how to achieve
the various goals. This ensures that the users test the application as they would use it in a real-life
scenario. Finally, the users were asked to write feedback if there were any issues, and how they rate
the user interface design of the application. The reports of the end user tests can be found in the
appendix chapter 13.2.1.

53

Chapter 8

Results

This chapter describes the results of the project. It defines, which of the functional and non-functional
requirements are fulfilled and which are not. Additionally, it describes if the minimum viable product
is achieved.

8.1 Functional Requirements

The final product implements the following functional requirements defined as use cases in chapter 2.1.

� UC1: Manage events

� UC2: Search and find events

� UC3: Filtering for events

� UC4: Login

� UC5: Subscribe to newsletter

All the required use cases are achieved and working. The table 13.1 shows the testing of the functional
requirements and their results.
Use cases UC6 to UC17 are defined as optional requirements. None of them were implemented.
The focus lied on the core functionality as well as the required use cases. Therefore, the time was not
sufficient to implement any optional requirements.

8.2 Non-Functional Requirements

The final product fulfills the most non-functional requirements. The following list contains the names
of the fulfilled non-functional requirements, which were defined in chapter 2.2.

� NFR1 Collaborative

� NFR2 Performance

� NFR5 Browser Compatibility

� NFR6 Accessibility

� NFR7 User Satisfaction

54

� NFR8 Scalability

� NFR9 Error Handling

� NFR10 Security

� NFR11 Data Privacy

� NFR12 Password Security

� NFR13 User Data Isolation

� NFR14 Modularity

� NFR15 API Testing

� NFR16 Deployment

The following non-functional requirement is partly fulfilled.

� NFR3 Response Time

The ‘Response Time’ NFR defines that pages have to load in less than 200ms. This is not possible for
pages that handle passwords, e.g. the login, sign up, and account pages. As the requirement NFR12
Password Security is more important, this requirement can not be fulfilled with today’s hardware
and is therefore set to ‘Partial Pass’.

One non-functional requirement has not been fulfilled.

� NFR4 Responsiveness

Due to time constraints the responsive design was not implemented. This was accepted by the industry
partner as the focus of this project is set on the core functionality and the required requirements.
All non-functional requirements are tested, and the results are shown in the table 13.2.

8.3 Minimum Viable Product

This project created a working web application with the following features:

� Everyone can access the application through a web browser (optimized for laptop and desktop
computers using Chrome, Firefox or Safari).

� Everyone can view events and their details.

� Everyone can search and filter for events.

� Organizers and users can create an account, log in and change their account details.

� Organizers can create, edit and delete events.

� Users can define preferences by selecting categories they are interested in.

� Users can subscribe to a newsletter that contains events matching their preferences.

� Users can unsubscribe from the newsletter.

With these features, the application implements all points of the minimum viable product defined
in 2.3.

55

Chapter 9

Conclusion

This chapter contains the conclusion of the project and sets the results in relation to the goals. It also
contains the vision for the future of the project.

9.1 Result Reflection

With the result chapter 8, the achieved functional and non-functional requirements are described.
The project was able to achieve all required functional requirements and most of the non-functional
requirements. Two non-functional requirements were not completely achieved. The ‘Response Time’
NFR only partially passed, though with security in mind, making the application more secure thanks
to longer loading times. The password uses multiple rounds to hash, making it more difficult for
attackers to crack any password hash. The ‘Responsiveness’ NFR failed due to time constraints. This
is one of the requirements, which needs a lot of effort to complete and also has a high impact, as the
application would be usable on mobile devices and smaller screens in general. Throughout the project
the decision was made to not implement the responsive design and instead focus on functionality. As
this has been accepted by the industry partner, the project can be considered a success.

9.2 Goal Achievement

The goal was to create a responsive web application, which is able to showcase events of a city. From
an end user perspective, the goal was to create a web page, where they can find events they like with
just a few clicks. Furthermore, an end user should be able to receive a newsletter with their preferred
events.
This is a basic summary of the main goal. Except the responsive design, which was described in
previous sections, all goals were achieved. A web application is available, where users and organizers
can log in. Organizers can create events and users can find events they like, through the website and
the newsletter. The main goal of this project has been achieved.

9.3 Future Vision

The project still has a lot of potential to grow. First, some changes and improvements need to be
done. The following list contains the most important items.

� Implement the responsive design of the website.

56

� An event cannot be updated once it has started due to the event start date and time being in
the past. This should be changed to allow updates until the event has ended.

� The code quality report still contains some minor issues e.g. simplify if statements, which should
be fixed.

� Implement lazy loading of Angular components, as any restricted component is not needed on
the first load unless the user is logged in.

� The search term in the search input field should be deleted when the search context is left.

� Preferences should be deleted, and optionally created, in bulk to reduce requests to the database.
Currently, each preference is created/deleted individually.

� Add a new property ‘hasMore’ to the response of any list (events, organizers, search) that holds a
boolean and lets the requester know if more items can be fetched. This only applies to paginated
lists and is used for the load more button on overview pages and the search page.

� Send a default newsletter even if there are no events in the users preferences. Currently, no
newsletter gets sent if there are no new events available in the user’s selected categories.

� Add JWT refresh tokens to the authentication process for better security.

� Use UUID or similar for all IDs of entities. This mostly prevents guessing of IDs and the ability
to see how many items in total there are per entity.

� Add extensive testing to front- and backend and include it in the CI/CD pipeline.

� All optional requirements defined in chapter 2.1 can be implemented. Some preparations are
already done, e.g. organizer attributes for the profile editor.

The following list shows optional improvements, which need further discussion before implementation.

� Newsletter should only include new events in the upcoming X weeks instead of all events in the
future.

� Add ‘RETURNING’ to SQL queries, so they only return the needed rows, e.g. the ‘create’
function only returns the ID, no other information is needed.

� The title on the home page could be changed to a catching slogan or something similar instead
of a rotating title.

Additionally, there are many features and improvements, which could also be implemented. The
following list contains some ideas, which could be implemented in the future.

� Authentication through passkeys, making the application more future-proof.

� Better notifications for the user, e.g. toast notifications.

� A sitemap for search engine optimization.

� A simple Markdown preview for all description fields.

� Use Elasticsearch (or similar) for better search results.

57

� A dashboard for organizers with statistics and dedicated event management.

� Implement tags for events. Organizers can add existing tags to events or create new ones. Users
can then search and filter by tags in addition to categories.

� A calendar and map view for events.

� The ability to bookmark events. Logged-in users will be able to check their bookmark list to
easily see the events they’re interested in.

� Event registration, including payment (e.g. through Stripe).

� Friends list for users, letting them see events friends attend, etc.

� Event reviews, discussions and ratings.

These ideas could be implemented in future iterations of the project and would greatly raise usability
of the project.

58

Part III

Project Documentation

59

Chapter 10

Project Plan

10.1 Resources

Time

The project is expected to last for 14 weeks, with a planned effort of 240 hours per person. This
means that each person has an average of 17 hours per week available to contribute to the project.

Cost

The only costs that will be incurred during the project are the cloud service costs. To keep the costs
as low as possible, the cheapest machines and database will be used on DigitalOcean. The machine for
the backend has a monthly cost of $5, while the database costs $7 per month as it is only a development
database with low performance. The total cost for the cloud services is $12 per month. Furthermore,
the mail service for the newsletter will be provided by SendGrid, which is free for up to 100 emails per
day. For the duration of the project, no costs will be incurred for the mail service. Additionally, the
domain name will also charge a small fee, which is not known, as the industry partner will provide it.
In conclusion, the industry partner has the costs for the domain name and the cloud services.

10.2 Processes and Meetings

Processes

Scrum+ is utilized to plan the project, which enables the combination between long-term planning
with RUP and short-term planning with Scrum. The four project phases of RUP are used as a rough
plan in conjunction with milestones, as shown below. The sprint duration is two weeks, with the start
and end on Fridays. Each team member is assigned a specific role to distribute responsibilities.

Meetings

Most of the meetings are scheduled on Fridays, including the daily scrum, sprint planning and sprint
review. In these meetings, the backlog is updated and tasks are assigned for the following sprint.
Additionally, the progress is verified. All meetings between project advisor and industry partner are
scheduled on Friday afternoons. Further meetings such as refinement meetings will take place as
needed.

60

10.3 Schedule

Figure 10.1: Project schedule

The optional tasks, marked dark grey, were omitted to prioritize refining the remaining parts of the
application.
The reserve time, marked blue, is added due to the absence of one team member for two weeks because
of military service.

Phases

As Scrum+ is used for this project, the four-phase framework included in RUP will be adopted.

� Inception: The first phase of a project involves setting up the necessary environment, tools,
and resources for the team to begin working. This includes the setup of Jira, the creation of
both GitLab projects for the documentation and source code, and assigning roles to the team
members. This phase is completed once the ’Initial Project Setup’ milestone has been reached.

� Elaboration: In this phase, the project’s requirements are identified and more documentation
such as the domain model and use cases are created. First prototypes are created to ensure
the compatibility of the technologies used and GUIs are sketched. The elaboration phase is
completed with the reach of milestone ’End of Elaboration’.

� Construction: The Construction phase is the primary stage where the development work
takes place. During this phase, the team writes the business logic and implements the UI.
Comprehensive testing is also performed to ensure the web API and the frontend work together
as expected. The goal of this phase is to produce a fully functional and deployable software
system. This phase is completed if either all optional requirements are implemented or week 11
is reached.

� Transition: The final phase will be used to finish the documentation. This project and phase
will be finished with the milestone ’Final Submission’.

Milestones

The project progress will be mostly measured using the following milestones. The milestones should be
reached before the meetings between the team members, the project advisor and the industry partner.

61

� Initial Project Setup: Required tools and documentation is set up.

� Requirements: Domain model, requirements and use cases are defined.

� End of Elaboration: Software architecture plan exists.

� Architecture: All required functionality is implemented. The MVP is working. Only optional
requirements and integration testing remains to be done.

� Final Submission: The project is finished.

10.4 Organization and Roles

Roles

To better divide the project workload, tasks are split into multiple roles between the project members.
The roles are defined as shown in table 10.1.

Project Owner Michael Enzler

Scrum Master Fabio Stocker

Backend Developer Michael Enzler

Frontend Developer Fabio Stocker

Deployment Manager Michael Enzler

Architect Fabio Stocker

Table 10.1: All roles with the assigned members

Project Owner

The Project Owner is responsible for defining the requirements of the project. They verify the fulfill-
ment of all requirements, manage the processing and updating of the backlog, as well as communicate
with the project advisor. They also work with the Scrum Master to ensure that the project is delivered
on time.

Scrum Master

The Scrum Master is in charge of weekly meetings, sprint meetings and review meetings. They are
responsible for ensuring that the development team follows the Scrum process. They also support the
team’s progression and remove any obstacles that may be blocking the team from completing their
tasks.

Backend Developer

The Backend Developer is responsible for building the server-side of the software. They write the
code that processes requests from the user interface and interacts with the database. They are also
responsible for the communication between the frontend and the backend by exposing the needed
information through an API.

62

Frontend Developer

The Frontend Developer is responsible for building the user interface and user experience of the
software. They create a visually appealing and intuitive interface that is easy to use. They also ensure
that the interface is responsive and works on different devices and platforms. Additionally, they are
responsible for the communication between the frontend and the backend by sending requests to the
backend and displaying the received information.

Deployment Manager

The Deployment Manager is responsible for deploying the software to the production environment.
They ensure that the software is deployed without any issues and that it is available to users. They
also monitor the performance of the software and ensure that it is scalable and reliable. Additionally,
the Deployment Manager takes care of the CI/CD pipeline during development and release.

Architect

The Architect is responsible for the software architecture of the project. They ensure that the software
is designed in a way that is easy to maintain and extend. Additionally, they ensure that the software
is scalable and reliable. Furthermore, they are responsible that the software architecture is secure.

10.5 Risk Management

Table 10.2 shows the risks that were identified during the inception phase.

63

No. Risk Mitigation Probability Severity Exposure

1 Cloud service
charges high costs.

Switch to a lower-
end machine.

Possible Marginal Medium

2 Cloud service
provider is down.

A reputable cloud
service provider
with strong uptime
should be used. Im-
plement redundancy
by deploying across
multiple availability
zones if possible.

Unlikely Critical Medium

3 Newsletter emails
get sent to spam
folder.

Use services like
MailChimp that
mark emails trust-
worthy.

Possible Marginal Medium

4 Third party service
for newsletter ser-
vice is down.

As the newslet-
ter emails will be
sent out after the
provider outage,
which possibly lasts
only a few hours,
this risk can be ac-
cepted.

Unlikely Marginal Medium

Table 10.2: Initially identified risks

Table 10.3 shows the current status of the risks.

64

No. Risk Mitigation Probability Severity Exposure

1 Cloud service
charges high costs.

The costs are fixed
to $12 per month
for the deployed ap-
plication. As this
has been accepted
by the industry
partner, this risk
is mitigated for this
project.

Possible Marginal Mitigated

2 Cloud service
provider is down.

A reputable cloud
service provider
with strong uptime
should be used. Im-
plement redundancy
by deploying across
multiple availabil-
ity zones if possible.
With that the risk
can be accepted.

Unlikely Minor Low

3 Newsletter emails
get sent to spam
folder.

With the use of
SendGrid, this risk
is mitigated.

Possible Marginal Mitigated

4 Third party service
for newsletter ser-
vice is down.

As the newslet-
ter emails will be
sent out after the
provider outage,
which possibly lasts
only a few hours,
this risk can be ac-
cepted. Given Send-
Grid’s high relia-
bility with mini-
mal downtimes, the
probability is cate-
gorized as rare.

Rare Marginal Low

Table 10.3: Current status of the risks

This table can get extended, if more risks are identified during the project.
The risk matrix was utilized to evaluate the identified risks.

10.6 Planning Tools

For issue and time tracking, Jira is used. This tool gives a good overview over all current issues and
their status, and it also supports Scrum. The additional plugin ‘Clockwork Free’ is used to summarize
the recorded times per issues. The meetings and documentation work are also tracked by separate
issues.

65

https://en.wikipedia.org/wiki/Risk_matrix

10.7 Git

Gitflow

The Gitflow branching model is used for this project. This means that there are at least two branches:
main and develop.
The main branch is used for releases into production.
The develop branch is used for development and is the main/default branch for the project. It is
created from the main branch.
Feature branches are created from the develop branch and are not prefixed. They are merged back
into the develop branch once a feature has been completed.
Additionally, branches prefixed with hotfix/ are for critical bugfixes that need to be deployed to
production immediately (e.g. last minute fixes). The hotfix branches are created from the main

branch and are merged back into both main and develop.

GitLab Repositories

To share and separate the source code and documentation, two different GitLab repositories are used.
The branches described in the Gitflow section are being used. A merge request is created for every fea-
ture branch, which will be merged into the develop branch. After the merge request has been approved
by another team member, the feature branch will get merged by the assignee and is deleted afterwards.

The GitLab repository for the documentation is located at
https://gitlab.ost.ch/wuir/documentation/.

The GitLab repository for the source code is located at
https://gitlab.com/mguenten/whats-up-in-rj/.

66

https://gitlab.ost.ch/wuir/documentation/
https://gitlab.com/mguenten/whats-up-in-rj/

Chapter 11

Time Tracking Report

Procedure

All issues are created on the Jira backlog. On sprint planning meetings, issues are assigned to the
ongoing sprint. For an overview, the current issues of a sprint are allocated to a status: TO DO, IN
PROGRESS, AWAITING REVIEW, DONE, TIME TRACKING. The last category is only used for
tracking time of meetings, general work on the documentation, etc. The spent time is noted on each
task and summarized with the ‘Clockwork Free’ plugin. Using this data, it is possible to estimate if
the final project submission is still on schedule.

Statistics

The following graphs illustrate the current status of the time spent on different sub-areas. All numbers
in the graphs are in hours, and are rounded to the nearest single digit decimal number. The phase
‘Other’ includes tasks outside of a specific phase, e.g. meetings, overall documentation, etc.

Figure 11.1: Time spent per person

67

Figure 11.2: Time spent per phase

Figure 11.3: Time spent per phase and person

68

Figure 11.4: Time spent per week

69

Glossary

API Application Programming Interface: A set of functions and procedures that allow the creation
of applications which access the features or data of an operating system, application, or other
service.

CI Continuous Integration: The practice of merging all developers’ working copies to a shared main-
line several times a day.

CD Continuous Delivery: A software engineering approach in which teams produce software in short
cycles, ensuring that the software can be reliably released at any time.

CI/CD Continuous Integration/Continuous Delivery: A set of practices that combines the processes
of continuous integration and continuous delivery.

CLI Command-Line Interface: A means of interacting with a computer program where the user (or
client) issues commands to the program in the form of successive lines of text (command lines).

CPU Central Processing Unit: The electronic circuitry within a computer that carries out the in-
structions of a computer program by performing the basic arithmetic, logical, control and in-
put/output (I/O) operations specified by the instructions.

CRUD Create, Read, Update, Delete: The four basic functions of persistent storage.

CSS Cascading Style Sheets: A style sheet language used for describing the presentation of a docu-
ment written in a markup language like HTML.

DOM Document Object Model: A cross-platform and language-independent interface that treats an
XML or HTML document as a tree structure wherein each node is an object representing a part
of the document.

FR Functional Requirement: A requirement that specifies a function that a system or system com-
ponent must be able to perform.

HTML Hypertext Markup Language: The standard markup language for documents designed to be
displayed in a web browser.

HTTP Hypertext Transfer Protocol: An application-layer protocol for transmitting hypermedia doc-
uments, such as HTML.

HTTPS Hypertext Transfer Protocol Secure: An extension of the Hypertext Transfer Protocol
(HTTP) for secure communication over a computer network.

JSON JavaScript Object Notation: An open-standard file format that uses human-readable text to
transmit data objects consisting of attribute-value pairs and array data types.

70

JWT JSON Web Token: An open standard (RFC 7519) that defines a compact and self-contained
way for securely transmitting information between parties as a JSON object.

MVP Minimum Viable Product: A product with just enough features to satisfy early customers, and
to provide feedback for future product development.

NFR Non-Functional Requirement: A requirement that specifies criteria that can be used to judge
the operation of a system, rather than specific behaviors.

npm Node Package Manager: A package manager for the JavaScript programming language.

ORM Object-Relational Mapping: A programming technique for converting data between incompat-
ible type systems using object-oriented programming languages.

RAM Random-Access Memory: A form of computer memory that can be read and changed in any
order, typically used to store working data and machine code.

REST Representational State Transfer: A software architectural style that defines a set of constraints
to be used for creating web services.

RJ Rapperswil-Jona: A municipality in the Wahlkreis (constituency) of See-Gaster in the canton of
St. Gallen in Switzerland.

SCSS Sassy CSS: A superset of CSS3’s syntax that’s uses the power of JavaScript to create more
maintainable style sheets.

SPA Single-Page Application: A web application or website that interacts with the user by dynami-
cally rewriting the current web page with new data from the web server, instead of the default
method of a web browser loading entire new pages.

SSL Secure Sockets Layer: A standard security technology for establishing an encrypted link between
a server and a client.

SQL Structured Query Language: A domain-specific language used in programming and designed for
managing data held in a relational database management system.

UI User Interface: The space where interactions between humans and machines occur.

URL Uniform Resource Locator: A reference to a web resource that specifies its location on a com-
puter network and a mechanism for retrieving it.

UUID Universally Unique Identifier: A 128-bit number used to identify information in computer
systems.

UX User Experience: A person’s emotions and attitudes about using a particular product, system or
service.

vCPU Virtual Central Processing Unit: A unit of measurement provided to a virtual machine (VM),
commonly known as a virtual private server (VPS).

71

List of Figures

1 Home page for visitors . iii

2.1 Use Case Diagram . 7
2.2 Use Case Diagram . 8

3.1 Domain Model . 12

4.1 Architecture Overview . 14
4.2 Component Diagram . 15
4.3 Backend Structure . 16
4.4 Frontend Structure . 18
4.5 Request Flow Event . 20
4.6 Request Flow Mail . 20
4.7 Header . 21
4.8 Home Page . 22
4.9 Login and Sign-up Pages . 23
4.10 Search Page . 23
4.11 Event Pages . 24
4.12 Organizer Pages . 25
4.13 Account Page . 26
4.14 Deployment Architecture . 27

7.1 Time Field Error . 40
7.2 Success Message . 47
7.3 Scaling Backend . 51
7.4 Scaling Database . 51

10.1 Project Schedule . 61

11.1 Time spent per person . 67
11.2 Time spent per phase . 68
11.3 Time spent per phase and person . 68
11.4 Time spent per week . 69

72

List of Tables

2.1 Use Cases . 7

4.1 Technologies . 29

5.1 Quality Measurement Technologies . 31
5.2 Additional Quality Measurement Technologies . 31

6.1 Test Specifications Functional Requirements . 33
6.2 Test Specifications Non-Functional Requirements . 35

10.1 Role Assignments . 62
10.2 Initial Risks . 64
10.3 Current Risks . 65

73

Listings

7.1 Sequelize Sync . 38
7.2 Base User Model . 39
7.3 Base User Associations . 39
7.4 Host Listener . 41
7.5 UnsavedChangesGuard . 41
7.6 Markdown Rendering . 42
7.7 Markdown HTML . 43
7.8 Logout Error Handling . 47
7.9 ApiError Class . 48
7.10 BaseUserStore Comments . 50
7.11 Frontend Environment Script . 52

74

Part IV

Appendix

75

Chapter 12

Test Plans

12.1 Test Plan #1

12.1.1 Introduction

This test plan aims to verify the functionalities of this project based on the requirements provided in
the document.

12.1.2 Test Objectives

The objectives of this test plan are as follows:

� To verify that the system and its relevant actors can add, modify and delete events.

� To verify that the web application is able to find events by search.

� To verify that the system can filter events by category.

� To verify that the system is able to let users register and login.

� To verify that the system is capable of sending newsletter emails to subscribed users.

� To verify that the system is capable of unsubscribing users from the newsletter.

� To achieve 80% test coverage of the business logic.

12.1.3 Test Strategy

The testing strategy will be a combination of manual and automated testing techniques. Manual
testing is used to verify the functionalities of the system, while automated testing is used to verify the
business logic of the system. The automated tests will be executed on every push to a branch. Goal
of the testing strategy is to achieve 80% test coverage of the business logic.

Optional requirements are excluded from this test plan, since it is unknown whether they will be
implemented.

76

12.1.4 Test Environment

The following environment will be used for testing:

� Operating System: Apple macOS

� Browser: Firefox, Google Chrome, Safari

� Unit Testing Tool: Jasmine

12.1.5 Test Schedule

Unit Tests

The unit tests must be created and executed, before a merge request with new or modified code is
accepted.

77

https://jasmine.github.io/

Chapter 13

Test Reports

13.1 Functional Test Protocol 29.11.2023

No. Description
of test case

Precondition Input Expected Output Actual Output Pass/Fail

1 Organizer
creates
event

Organizer
must be
logged in
and ap-
proved

Click on ‘New
Event’ and
enter details

Event is added and
visible on the events
overview page

Event is added
and visible

Pass

2 Search for
event

User is on
the page
and focuses
search field

Use search
field to type
the name or
category of an
event one is
looking for

Events that are re-
lated to this search
will be displayed

Related events
are displayed

Pass

3 Filter
events

User has
searched
for an
event
or is on
the event
overview

Apply filters
in the menu

Only related events
will be visible

Only related
events are dis-
played

Pass

4 Users and
organizers
can sign up
or login

User or
organizer
is on the
login/sign
up page

User/organizer
enters login
details

User/organizer is
logged in and sees
user/organizer re-
lated data

Sign up is suc-
cessful and
user/organizer
is logged in

Pass

5 Subscribe
to newslet-
ter

User is
logged in

User selects
subscribe but-
ton

User will receive
newsletters per
email

Newsletter has
been received
on the 01. De-
cember 2023

Pass

Continued on next page

78

No. Description
of test case

Precondition Input Expected Output Actual Output Pass/Fail

6 Unsubscribe
from
newsletter

User is
logged in
and sub-
scribed to
newsletter

User selects
unsubscribe
button

User will not re-
ceive newsletters per
email

No newslet-
ter has been
received

Pass

Test report for the functional requirements

Notes

The test case #5 and #6 were tested with two different users (email addresses) to ensure that the
newsletter is only sent to the subscribed user. The two users were created at 29.11.2023 and one of
them subscribed to the newsletter. As the newsletter is sent out at the first of every month, only one
of the users should receive the newsletter, which was the case and therefore the test was successful.

13.2 Non-Functional Test Protocol 29.11.2023

No. Description of
test case

Precondition Input Expected Output Actual
Output

Pass/Fail

1 Collaborative:
Desired fea-
tures are im-
plemented

— User tries
to do all use
cases from the
MVP

All use cases can be
accomplished

All use
cases can
be accom-
plished via
the user
interface

Pass

2 Performance:
Backend is
able to handle
1000 requests
per minute

— Backend re-
quests

The whole system
keeps running with-
out errors

The sys-
tems keeps
running,
no error
occurs

Pass

3 Response
Time: The
pages are
loaded in un-
der 200ms

The user
has a reli-
able inter-
net connec-
tion and
is using
an up-to-
date web
browser

Load pages Each page is loaded
in under 200ms

All pages
that are re-
lated to the
authenti-
cation take
longer than
200ms. All
other pages
load under
200ms

Partial
Pass

Continued on next page

79

No. Description of
test case

Precondition Input Expected Output Actual
Output

Pass/Fail

4 Responsiveness:
The web ap-
plication is
responsive on
mobile, tablet,
and desktop

— Pages are
loaded on the
mentioned de-
vices

The web application
is responsive and
visually appealing
on all devices

The web
applica-
tion is not
responsive.

Fail

5 Browser
Compatibil-
ity: Web-
application
runs on Fire-
fox, Chrome,
and Safari

Browsers
are in-
stalled

Web-
application
is loaded on
the mentioned
browsers

Pages are shown
and fully functional
on all browsers

Pages are
shown cor-
rectly on
all men-
tioned
browsers

Pass

6 Accessibility:
Access over
the customer-
provided do-
main is avail-
able

— Load page
using the pro-
vided domain
name

Pages are loaded Web-
application
is loaded
via the
provided
domain

Pass

7 User Satisfac-
tion: Users
rate the UI

Test users
are selected
and can
provide
ratings

Test users
navigate the
page and pro-
vide ratings

3/4 users rate the
UI minimum 8/10

All 4 users
gave a min-
imum rat-
ing of 8.

Pass

8 Scalability:
Database han-
dles up to
10,000 events
and 1,000
users

A database
capable
of han-
dling those
numbers
of events
and users is
running

— Database can han-
dle those numbers
without errors

No errors
occurred
with 10,000
public
events and
1,000 users

Pass

9 Error Han-
dling: Errors
do not cause
failures but
display error
messages

— Errors are
triggered

Error messages are
displayed

Errors ei-
ther from
the fron-
tend or
the back-
end are
displayed
and do not
cause fail-
ures

Pass

Continued on next page

80

No. Description of
test case

Precondition Input Expected Output Actual
Output

Pass/Fail

10 Security:
Communica-
tion encrypted

— Communication
between fron-
tend and
backend is
triggered

Communication is
SSL encrypted

Communi-
cation to
frontend
and back-
end is SSL
encrypted

Pass

11 Security: In-
put validation

— SQL injection
is attempted

SQL injection is
prevented

SQL in-
jection is
prevented

Pass

12 Data Privacy:
Application is
implemented
with data pro-
tection regula-
tions in mind

— User data is
stored

User data is stored
in a way that com-
plies with data pro-
tection regulations

User data
is securely
stored

Pass

13 Password Se-
curity: Pass-
words are
stored securely

— User registers
and enters a
password

Passwords are se-
curely hashed and
not stored in plain
text in the database

Password is
hashed

Pass

14 User Data Iso-
lation: Users
can only ac-
cess their own
data

User is
logged in

User tries to
access data of
another user

User is not able to
access data of an-
other user

User can’t
access any
other data
than his
own

Pass

15 Modularity:
Business logic
is modular
and extensible

— New features
are added

New features can
be added without
changing existing
code

Features
are added
without
changing
existing
code.

Pass

16 Testing: API
testing

The API
testing tool
has been
configured

Tests have
been executed

All tests successfully
pass

Manual
tests are
successful.

Pass

17 Deployment:
Implemented
functionality
is deployed

Developer
is authen-
ticated on
DigitalO-
cean

Deployment is
triggered

Implemented func-
tionality is deployed

Deployment
is triggered
after a
push into
the main
branch is
done

Pass

Test specifications for the non-functional requirements

81

Notes

Test case #3 was set to ‘Partial Pass’ even tough the authentication pages take longer than 200ms
to load. This is because when a password is entered, set or changed, the password is hashed, and
the hash is stored in the database. The hashing process takes longer than 200ms as it is configured
to do multiple rounds of hashing. As security is more important than performance when handling
passwords, the test case is set to passed. Test case #4 was set to ‘Fail’ as the web application does
not incorporate a responsive design. Due to time constraints, and the focus being set on functionality
by the industry partner, this has not been implemented. The decision was discussed in meeting 10
(see ??) and approved to fail by the industry partner. Test case #7 was tested with four different
users and the results of their testing and rating are documented in the section 13.2.1. For privacy
reasons, the names of the test users have been redacted. Test case #8 was tested locally due to various
constraints with DigitalOcean. Test case #16 was tested manually instead of automatically. This was
discussed in the meeting 6 (see ??), where it was decided to concentrate on the functionality and not
on automated tests. Therefore, only manual tests were executed.

13.2.1 Reports from Test Users

82

01.12.2023

9

I cannot contact support

Timon Rudolph

05.12.2023

10

Very easy to use, espacially if you want to create an event!

Notes

Test user #1 gave the suggestion to reposition the save button on the account page. This is under-
standable as it isn’t obvious to the normal user that this button is not just for the password change.
A new position for the button can be considered in further development of the application.

Test user #2 had some suggestions and issues. The described suggestions don’t need further expla-
nation here, they can be considered for future projects. The problem with the automatic filling of
the location form is a difficult problem, as there are several tools that can be used to fill the form
automatically, and each browser handles autocomplete attributes differently. To make it fit all tools is
not possible to achieve in this project, but it should be considered in further development. The issue
regarding the inability to change the thumbnail is known, as that feature will not be implemented
during this project. For question 5, they had the same problem as already mentioned by test user #1.
The save button should be repositioned. Additionally, they mentioned that the filter title looks too
similar compared to the filter options. Therefore, a restyling of the filter title should be considered in
the future.

Test user #3 wasn’t able to contact the support. They may get this message by generating an error.
In the case of an error, the user gets a message that advises them to try the action again or contact
the support if the issue persists. As there isn’t a support set up yet, the user is not able to contact
them. The error message should be changed in further development, or a support contact should be
set up.

Test user #4 has not encountered any issues.

87

Chapter 14

Application Screenshots

Home page for visitors

88

Home page for users

Home page for organizers

89

Login page

90

Signup page for users and organizers

91

User account page

92

Organizer account page

93

Events Overview page

94

Organizers Overview page

95

Event pages

96

Search popover

97

Search page

98

Newsletter

99

Chapter 15

Backend API Endpoints

100

README.md 2023-12-20

1 / 20

What's up in RJ - Backend

This is the backend part of the project. The frontend part can be found here. The backend is a Node.js

application that runs an Express server. It handles the API and the interaction with the database.

Rate Limiting

The API is rate limited using express-rate-limit. The rate limit is 100 requests per 60 seconds per IP

address. If the rate limit is exceeded, the server will respond with a 429 Too Many Requests status

code. The rate limit can be configured in the main.ts file.

Enums

UserType

The user type enum is used to represent the type of a user. It has the following values:

user: The user is a normal user.

organizer: The user is an organizer.

admin: The user is an administrator.

Objects

Error

The error object is used to represent an error in the API. It has the following structure:

{
 "error": {
 "message": "The error message."
 }
}

Success

The success object is used to represent a successful operation in the API. It has the following structure:

{
 "success": true
}

BaseUser

The base user object is used to represent a user in the database. It has the following properties:

id: (number) The ID of the user.

README.md 2023-12-20

2 / 20

name: (string) The name of the user.

email: (string) The email address of the user.

password: (string) The password of the user in hashed form.

type: (UserType) The type of the user.

User

The user object is used to represent a user in the database. It extends the BaseUser object and has the

following additional properties:

id: (number) The ID of the user.

newsletter: (boolean) Whether the user is subscribed to the newsletter or not.

base_user (BaseUser) The base user object.

Organizer

The organizer object is used to represent an organizer in the database. It extends the BaseUser object and

has the following additional properties:

id: (number) The ID of the organizer.

description: (string | null) The description of the organizer.

contact_email: (string | null) The contact email address of the organizer.

phone: (string | null) The phone number of the organizer.

website: (string | null) The website of the organizer.

verified: (boolean) Whether the organizer is verified or not.

base_user: (BaseUser) The base user object.

location: (Location) The location of the organizer.

Location

The location object is used to represent a location in the database. It has the following properties:

id: (number) The ID of the location.

street: (string) The street of the location.

street2: (string | null) Additional street information of the location.

zip: (string) The ZIP code of the location.

city: (string) The city of the location.

Category

The category object is used to represent a category in the database. It has the following properties:

id: (number) The ID of the category.

name: (string) The name of the category.

Event

The event object is used to represent an event in the database. It has the following properties:

id: (number) The ID of the event.

title: (string) The title of the event.

README.md 2023-12-20

3 / 20

description: (string | null) The description of the event.

start_date: (string | null) The start date of the event.

end_date: (string | null) The end date of the event.

start_time: (string | null) The start time of the event.

end_time: (string | null) The end time of the event.

public: (boolean) Whether the event is public or not.

organizer: (Organizer) The organizer of the event.

category: (Category) The category of the event.

location: (Location) The location of the event.

Preference

The preference object is used to represent a preference in the database. It has the following properties:

user: (User) The user of the preference.

category: (Category) The category of the preference.

Endpoints

/auth

Handles authentication.

POST /auth/register

Registers a new user.

Access

Everyone

Parameters

Body Parameters

name: (string) Required. The name of the user.

email: (string) Required. The email address of the user.

password: (string) Required. The password of the user in plain text.

type: (string) Required. The type of the user. Can be either user or organizer.

Response

201 Created
(User | Organizer) The user object if the user was created successfully.

400 Bad Request
If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

Returns an Error object.

409 Conflict

README.md 2023-12-20

4 / 20

If the email address is already in use.

Returns an Error object.

500 Internal Server Error
If the user could not be created.

Returns an Error object.

POST /auth/login

Logs in a user.

Access

Everyone

Parameters

Body Parameters

email: (string) Required. The email address of the user.

password: (string) Required. The password of the user in plain text.

Response

200 OK
(User | Organizer) The user object if the user was logged in successfully.

400 Bad Request
If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

If the specified user does not exist.

If the password is incorrect.

Returns an Error object.

500 Internal Server Error
If the user could not be logged in.

Returns an Error object.

POST /auth/logout

Logs out a user.

Access

Everyone

Parameters

This endpoint does not accept any parameters.

Response

README.md 2023-12-20

5 / 20

200 OK
(Success) The success object if the user was logged out successfully.

500 Internal Server Error
If the user could not be logged out.

Returns an Error object.

/me

Handles the current user. All endpoints in this section require authentication, meaning that the token in the

current session must be valid.

GET /me

Gets the current user.

Access

Authenticated users

Parameters

This endpoint does not accept any parameters.

Response

200 OK
(User | Organizer) The user object if the user was retrieved successfully.

400 Bad Request
If the token is invalid.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

Returns an Error object.

500 Internal Server Error
If the user could not be retrieved.

Returns an Error object.

PUT /me

Updates the current user.

Access

Authenticated users

Parameters

Body Parameters

README.md 2023-12-20

6 / 20

name: (string) Optional. The name of the user.

email: (string) Optional. The email address of the user.

password: (string) Optional. The password of the user in plain text.

currentPassword: (string) Optional. The current password of the user in plain text. Required if

password is specified, otherwise it will not update the password.

User only:

newsletter: (boolean) Optional. Whether the user is subscribed to the newsletter or not.

preferences: ({ id: number; value: boolean }[]) Optional. The preferences of the

user. The id is the ID of the category and the value is whether the user wants to enable the

category or not.

Organizer only:

description: (string) Optional. The description of the organizer.

contact_email: (string) Optional. The contact email address of the organizer.

phone: (string) Optional. The phone number of the organizer.

website: (string) Optional. The website of the organizer.

location: (Location) Optional. The location of the organizer.

Response

200 OK
(User | Organizer) The user object if the user was updated successfully.

400 Bad Request
If the token is invalid.

If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

If the specified user does not exist.

If the password is incorrect.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

Returns an Error object.

404 Not Found
If the user does not exist.

Returns an Error object.

409 Conflict
If the email address is already in use.

Returns an Error object.

500 Internal Server Error
If the user could not be updated.

Returns an Error object.

DELETE /me

Deletes the current user.

Access

README.md 2023-12-20

7 / 20

Authenticated users

Parameters

This endpoint does not accept any parameters.

Response

200 OK
(Success) The success object if the user was deleted successfully.

400 Bad Request
If the token is invalid.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

Returns an Error object.

500 Internal Server Error
If the user could not be deleted.

Returns an Error object.

GET /me/preferences

Gets the preferences of the current user.

Access

Authenticated User users

Parameters

This endpoint does not accept any parameters.

Response

200 OK
(Preference[]) An array of preference objects if the preferences were retrieved successfully.

401 Unauthorized
If the user is not authenticated.

If the user type is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not a User.
Returns an Error object.

500 Internal Server Error
If the preferences could not be retrieved.

Returns an Error object.

GET /me/events

README.md 2023-12-20

8 / 20

Gets all events, including private events, of the current user.

Access

Authenticated Organizer users

Parameters

Query Parameters

limit: (number) Optional. The maximum number of events to return. Defaults to unlimited.

offset: (number) Optional. The number of events to skip. Defaults to 0.
order: (Order) Optional. The order of the events. Can be of type Order from sequelize.
category_id: (number[]) Optional. The IDs of the categories to filter by.

organizer_id: (number[]) Optional. The IDs of the organizers to filter by.

Response

200 OK
(Event[]) An array of event objects if the events were retrieved successfully.

400 Bad Request
If the token is invalid.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

If the user type is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an Organizer.
Returns an Error object.

500 Internal Server Error
If the events could not be retrieved.

Returns an Error object.

GET /me/events/: id

Gets an event of the current user.

Access

Authenticated Organizer users

Parameters

Path Parameters

id: (number) Required. The ID of the event.

README.md 2023-12-20

9 / 20

Response

200 OK
(Event) The event object if the event was retrieved successfully.

400 Bad Request
If the token is invalid.

If the ID is not supplied or not a number.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

If the user type is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an Organizer.
If the event does not belong to the current user.

Returns an Error object.

404 Not Found
If the event does not exist.

Returns an Error object.

500 Internal Server Error
If the event could not be retrieved.

Returns an Error object.

/categories

Handles categories.

GET /categories

Gets all categories.

Access

Everyone

Parameters

Query Parameters

limit: (number) Optional. The maximum number of categories to return. Defaults to unlimited.

offset: (number) Optional. The number of categories to skip. Defaults to 0.
order: (Order) Optional. The order of the categories. Can be of type Order from sequelize.

Response

200 OK
(Category[]) An array of category objects if the categories were retrieved successfully.

500 Internal Server Error

README.md 2023-12-20

10 / 20

If the categories could not be retrieved.

Returns an Error object.

GET /categories/: id

Gets a category.

Access

Everyone

Parameters

Path Parameters

id: (number) Required. The ID of the category.

Response

200 OK
(Category) The category object if the category was retrieved successfully.

400 Bad Request
If the ID is not supplied or not a number.

Returns an Error object.

404 Not Found
If the category does not exist.

Returns an Error object.

500 Internal Server Error
If the category could not be retrieved.

Returns an Error object.

POST /categories

Creates a new category.

Access

Admin users

Parameters

Body Parameters

name: (string) Required. The name of the category.

Response

201 Created

README.md 2023-12-20

11 / 20

(number) The ID of the category if the category was created successfully.

400 Bad Request
If the token is invalid.

If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

Returns an Error object.

401 Unauthorized
If the user type is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an administrator.

Returns an Error object.

409 Conflict
If the category already exists.

Returns an Error object.

500 Internal Server Error
If the category could not be created.

Returns an Error object.

PUT /categories/: id

Updates a category.

Access

Admin users

Parameters

Path Parameters

id: (number) Required. The ID of the category.

Body Parameters

name: (string) Required. The name of the category.

Response

200 OK
(Category) The category object if the category was updated successfully.

400 Bad Request
If the token is invalid.

If the ID is not supplied or not a number.

If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

Returns an Error object.

README.md 2023-12-20

12 / 20

401 Unauthorized
If the user type is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an administrator.

Returns an Error object.

500 Internal Server Error
If the category could not be updated.

Returns an Error object.

DELETE /categories/: id

Deletes a category.

Access

Admin users

Parameters

Path Parameters

id: (number) Required. The ID of the category.

Response

200 OK
(Success) The success object if the category was deleted successfully.

400 Bad Request
If the token is invalid.

If the ID is not supplied or not a number.

Returns an Error object.

401 Unauthorized
If the user type is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an administrator.

Returns an Error object.

500 Internal Server Error
If the category could not be deleted.

Returns an Error object.

/events

Handles events.

GET /events

README.md 2023-12-20

13 / 20

Gets all public events, which are not in the past.

Access

Everyone

Parameters

Query Parameters

limit: (number) Optional. The maximum number of events to return. Defaults to unlimited.

offset: (number) Optional. The number of events to skip. Defaults to 0.
order: (Order) Optional. The order of the events. Can be of type Order from sequelize.
category_id: (number[]) Optional. The IDs of the categories to filter by.

organizer_id: (number[]) Optional. The IDs of the organizers to filter by.

Response

200 OK
(Event[]) An array of event objects if the events were retrieved successfully.

500 Internal Server Error
If the events could not be retrieved.

Returns an Error object.

GET /events/: id

Gets an event.

Access

Everyone

Parameters

Path Parameters

id: (number) Required. The ID of the event.

Response

200 OK
(Event) The event object if the event was retrieved successfully.

400 Bad Request
If the ID is not supplied or not a number.

Returns an Error object.

404 Not Found
If the event does not exist, is private or the organizer is not verified.

Returns an Error object.

README.md 2023-12-20

14 / 20

500 Internal Server Error
If the event could not be retrieved.

Returns an Error object.

POST /events

Creates a new event.

Access

Authenticated Organizer users

Parameters

Body Parameters

title: (string) Required. The title of the event.

description: (string) Optional. The description of the event.

start_date: (string) Optional. The start date of the event.

end_date: (string) Optional. The end date of the event.

start_time: (string) Optional. The start time of the event.

end_time: (string) Optional. The end time of the event.

public: (boolean) Optional. Whether the event is public or not. If set to true, description,
start_date, and category_id are required.

category_id: (number) Optional. The ID of the category of the event.

location: (Location) Optional. The location of the event.

Response

201 Created
(number) The ID of the event if the event was created successfully.

400 Bad Request
If the token is invalid.

If the user type is missing from the token.

If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

If the user ID is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an Organizer.
If the organizer is not verified and the event is set to public.

Returns an Error object.

404 Not Found
If the organizer does not exist.

README.md 2023-12-20

15 / 20

Returns an Error object.

500 Internal Server Error
If the event could not be created.

Returns an Error object.

PUT /events/: id

Updates an event.

Access

Authenticated Organizer users

Parameters

Path Parameters

id: (number) Required. The ID of the event.

Body Parameters

title: (string) Optional. The title of the event.

description: (string) Optional. The description of the event.

start_date: (string) Optional. The start date of the event.

end_date: (string) Optional. The end date of the event.

start_time: (string) Optional. The start time of the event.

end_time: (string) Optional. The end time of the event.

public: (boolean) Optional. Whether the event is public or not. If set to true, description,
start_date, and category_id are required.

category_id: (number) Optional. The ID of the category of the event.

location: (Location) Optional. The location of the event.

Response

200 OK
(Event) The event object if the event was updated successfully.

400 Bad Request
If the token is invalid.

If the ID is not supplied or not a number.

If the user type is missing from the token.

If the request body is missing any of the required parameters.

If the request body contains invalid parameters.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

If the user ID is missing from the token.

Returns an Error object.

README.md 2023-12-20

16 / 20

403 Forbidden
If the user is not an Organizer.
If the owner of the event is not the current user.

If the organizer is not verified and the event is set to public.

Returns an Error object.

404 Not Found
If the event does not exist.

Returns an Error object.

500 Internal Server Error
If the event could not be updated.

Returns an Error object.

DELETE /events/: id

Deletes an event.

Access

Authenticated Organizer users

Parameters

Path Parameters

id: (number) Required. The ID of the event.

Response

200 OK
(Success) The success object if the event was deleted successfully.

400 Bad Request
If the token is invalid.

If the ID is not supplied or not a number.

If the user type is missing from the token.

Returns an Error object.

401 Unauthorized
If the user is not authenticated.

If the user ID is missing from the token.

Returns an Error object.

403 Forbidden
If the user is not an Organizer.
If the owner of the event is not the current user.

Returns an Error object.

404 Not Found
If the event does not exist.

Returns an Error object.

500 Internal Server Error

README.md 2023-12-20

17 / 20

If the event could not be deleted.

Returns an Error object.

/organizers

Handles organizers.

GET /organizers

Gets all verified organizers.

Access

Everyone

Parameters

Query Parameters

limit: (number) Optional. The maximum number of organizers to return. Defaults to unlimited.

offset: (number) Optional. The number of organizers to skip. Defaults to 0.
order: (Order) Optional. The order of the organizers. Can be of type Order from sequelize.
category_id: (number[]) Optional. The IDs of the categories to filter by.

Response

200 OK
(Organizer[]) An array of organizer objects if the organizers were retrieved successfully.

500 Internal Server Error
If the organizers could not be retrieved.

Returns an Error object.

GET /organizers/: id

Gets a verified organizer.

Access

Everyone

Parameters

Path Parameters

id: (number) Required. The ID of the organizer.

Response

200 OK

README.md 2023-12-20

18 / 20

(Organizer) The organizer object if the organizer was retrieved successfully.

400 Bad Request
If the ID is not supplied or not a number.

Returns an Error object.

404 Not Found
If the organizer does not exist or is not verified.

Returns an Error object.

500 Internal Server Error
If the organizer could not be retrieved.

Returns an Error object.

/search

Handles search.

GET /search/:query

Searches for events and organizers.

Access

Everyone

Parameters

Path Parameters

query: (string) Required. The search query.

Query Parameters

limit: (number) Optional. The maximum number of results to return. Defaults to unlimited.

offset: (number) Optional. The number of results to skip. Defaults to 0.
order: (Order) Optional. The order of the results. Can be of type Order from sequelize.
category_id: (number[]) Optional. The IDs of the categories to filter by.

organizer_id: (number[]) Optional. The IDs of the organizers to filter by.

Response

200 OK
(object) An object containing the results. It has the following properties:

events: (Event[]) An array of event objects.

organizers: (Organizer[]) An array of organizer objects.

400 Bad Request
If the query is not supplied or not a string.

Returns an Error object.

500 Internal Server Error
If the results could not be retrieved.

README.md 2023-12-20

19 / 20

Returns an Error object.

/search/events/:query

Searches for events.

Access

Everyone

Parameters

Path Parameters

query: (string) Required. The search query.

Query Parameters

limit: (number) Optional. The maximum number of results to return. Defaults to unlimited.

offset: (number) Optional. The number of results to skip. Defaults to 0.
order: (Order) Optional. The order of the results. Can be of type Order from sequelize.
category_id: (number[]) Optional. The IDs of the categories to filter by.

organizer_id: (number[]) Optional. The IDs of the organizers to filter by.

Response

200 OK
(Event[]) An array of event objects if the events were retrieved successfully.

400 Bad Request
If the query is not supplied or not a string.

Returns an Error object.

500 Internal Server Error
If the events could not be retrieved.

Returns an Error object.

/search/organizers/:query

Searches for organizers.

Access

Everyone

Parameters

Path Parameters

query: (string) Required. The search query.

README.md 2023-12-20

20 / 20

Query Parameters

limit: (number) Optional. The maximum number of results to return. Defaults to unlimited.

offset: (number) Optional. The number of results to skip. Defaults to 0.
order: (Order) Optional. The order of the results. Can be of type Order from sequelize.
category_id: (number[]) Optional. The IDs of the categories to filter by.

Response

200 OK
(Organizer[]) An array of organizer objects if the organizers were retrieved successfully.

400 Bad Request
If the query is not supplied or not a string.

Returns an Error object.

500 Internal Server Error
If the organizers could not be retrieved.

Returns an Error object.

Chapter 16

Task

121

 Seite 1/3

Aufgabenstellung Semesterarbeit
„What's up in RJ“

Autor: Frank Koch

Version: 1.0

Anpasst am: 07.09.23

1. Beteiligte Personen

• Studierende: Michael Enzler, Fabio Stocker

• Industriepartner: AdaptIT GmbH, Michael Güntensperger

• Betreuer: Frank Koch

2. Problembeschrieb

In Rapperswil-Jona gibt es ein vielfältiges Kulturprogramm. Um nichts zu verpassen muss man regelmäs-
sig die Zeitung durchsuchen und sich bei den Newslettern der jeweiligen Veranstalter anmelden. Schnell
geht die Übersicht verloren und viele Personen in der Region klagen, dass es kein rechtes Abendpro-
gramm gibt.

Ziel wäre deshalb die Entwicklung einer Website, ähnlich aufgebaut wie eine Newsseite mit dem Programm
des heutigen / der nächsten Tage. Organisatoren sollen die Möglichkeit haben ihre Events aufzuschalten,
Vereine sollen sich vorstelle können, usw.

Durch einen Login und die Auswahl persönlicher Interessen soll eine Seite inklusive Newsletter erstellt wer-
den, welche auf entsprechende Events in den nächsten 2-4 Wochen aufmerksam machen.

Natürlich könnte die angestrebte Lösung auch in anderen Regionen eingesetzt werden.

3. Aufgabenstellung

Um die Zielgruppe anzusprechen soll eine responsive Website erstellt werden, die sowohl auf Desktop wie
auch auf dem Handy übersichtlich dargestellt wird. Für die Eventorganisatoren gibt es einen Bereich, wel-
cher Auswertungen zu den Events generiert, z.B. Buttonklicks, etc. Die Webseite soll nach aktuellen UI-
Standards entwickelt werden. Ziel ist das Finden eines passenden Abendprogramms mit möglichst weni-
gen Klicks.

Gerne werden die Interessen und Ideen der Studierenden berücksichtigt.

Technische Umgebung

Für die Umsetzung wird mit Web-Technologien gearbeitet.

• Frontend: React / Angular

• Backend: Node.js

• Datenbank: MySQL

• Hoster: Z.B. DigitalOcean

Funktionale Anforderungen

• Ausgewählte Veranstaltende können Events erfassen

• Suchfunktion auf der Hauptseite, um entsprechende Events zu finden

• Filterfunktion nach Themengebieten z.B. Sport

• Login für Seitenbesuchende

• Seitenbesuchende können für Sie interessante Kategorien auswählen und erhalten entsprechende
Newsletter

Optionale Anforderungen

• Admin-Bereich um die Accounts von Veranstaltenden zu verwalten

• Freigabeprozess von Events durch Admin

• Dashboard für Veranstaltende mit Auswertungen z.B. Buttonklicks

• Erstellung von Einzelseiten für Vereine

• AI um auf Basis von gewählten Interessen, Newsletter mit Events zusammenzustellen

• Mobile-App mit Push-Nachrichten

Nicht-Funktionale Anforderungen

• Das Entwicklerteam implementiert die Features gemäss der abgesprochenen Priorität mit dem Kun-
den

• Das Backend sollte 1000 Requests pro Minute handeln können

• Jede Seite sollte nicht länger als 200ms für das Laden benötigen

• Die Seite soll sowohl auf dem Mobile, Tablet und Desktop gut aussehen (Responsive)

• Die Web-Applikation sollte auf Firefox, Chrome und Safari laufen.

• Via Internet sollte auf eine vom Kunden zur Verfügung gestellte Domain zugegriffen werden kön-
nen.

• Drei von vier Test-user sollten das UI (Kategorien: layout, responsiveness, colour, content) der Ap-
plikation mit einem Tablet mit einer Note von mindestens 8 von 10 bewerten, wobei 10 das beste
ist.

• Die Datenbank soll bis zu 10'000 Events und 1'000 Benutzende managen können.

• Errors sollen keine Systemfehler erzeugen, aber eine Error Nachricht Zeigen und das System auf
den vorherigen Zustand zurücksetzen.

• Jeder Error soll im System geloggt werden

• Jede Kommunikation zwischen Fron- und Backend soll mit einem SSL-Zertifikat verschlüsselt wer-
den.

• Daten welche in Eingabefelder abgefüllt werden, sollen zuerst validiert werden, bevor diese durch
das System verarbeitet werden. SQL Injection test der Eingabefelder sollte keine Verletzlichkeiten
zeigen.

• Die Webapplikation soll datenschutzkonform umgesetzt werden.

• User-Passwörter werden nicht in plain-text in der Datenbank gespeichert.

• Wenn sich ein User in die Web-Applikation einloggt, werden ihm auch nur seine Daten / auf Daten
die er Zugriff haben soll, angezeigt.

• Businesslogik im Backend soll modular aufgebaut werden, so dass sie erweitert werden kann.

• Die Backend-API soll durch API-testing Tools getestet werden.

• Implementierte Funktionalität (Datenbank, Backend, Frontend,…) sollen deployed werden.

4. Zur Durchführung

Mit dem Betreuer finden Besprechungen gemäss Absprache statt. Die Besprechungen sind von den Stu-
dierenden mit einer Traktandenliste vorzubereiten und die Ergebnisse in einem Protokoll zu dokumentie-
ren, das dem Betreuer per E-Mail zugestellt wird.

Für die Durchführung der Arbeit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuierlichen und
sichtbaren Arbeitsfortschritt zu achten. An Meilensteinen gemäss Projektplan sind einzelne Arbeitsresultate
in vorläufigen Versionen abzugeben.

5. Dokumentation und Abgabe

Siehe Leitfaden Abschnitt 5.5 "Umfang und Form der Abgabe".

6. Termine

Siehe veröffentlichte «Termine SA HS23».

7. Bewertung

Siehe veröffentlichter «Leitfaden BA SA» Abschnitt 6 "Bewertung", insbesondere 6.4.

Rapperswil, den 28.08.23

Frank Koch

	I Project Overview
	Overview
	Initial Situation
	Task
	Conditions
	System Context

	II Product Documentation
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Minimum Viable Product

	Domain Analysis
	Domain Model

	Architecture
	Overall Architecture
	Backend Architecture
	Component
	Structure

	Frontend Architecture
	Frontend Structure
	Request Flow

	UI Mockups
	Deployment Architecture
	Technologies

	Quality Measures
	Quality Assurance

	Test Plan
	Introduction
	Test Objectives
	Test Strategy
	Test Environment
	Test Specifications Functional Requirements
	Test Specifications Non-Functional Requirements
	End User Tests
	Test Schedule
	CI/CD Tests
	Integration Tests
	End User Tests

	Implementation
	Visual Design
	Backend API Endpoints
	Special API Endpoints
	Rate Limiting

	Database
	Features
	Event Handling
	Newsletter
	Search
	Filtering
	Home
	Organizers
	Account
	Message

	Error Handling
	Backend
	Frontend

	Security
	Authentication
	Password Hashing
	Input Validation

	Code Documentation
	Deployment
	Scaling
	Frontend Environment Script

	Testing
	Automated Testing
	Manual Testing

	Results
	Functional Requirements
	Non-Functional Requirements
	Minimum Viable Product

	Conclusion
	Result Reflection
	Goal Achievement
	Future Vision

	III Project Documentation
	Project Plan
	Resources
	Processes and Meetings
	Schedule
	Organization and Roles
	Risk Management
	Planning Tools
	Git

	Time Tracking Report
	Glossary
	List of Figures
	List of Tables
	Listings

	IV Appendix
	Test Plans
	Test Plan #1
	Introduction
	Test Objectives
	Test Strategy
	Test Environment
	Test Schedule

	Test Reports
	Functional Test Protocol 29.11.2023
	Non-Functional Test Protocol 29.11.2023
	Reports from Test Users

	Application Screenshots
	Backend API Endpoints
	Task

