
Green Networking

Semester Thesis HS2023

Visibility, a first step towards sustainable networking

Advisor: Prof. Laurent Metzger
Co-Advisor: Severin Dellsperger
Partner: Alexander Clemm

Authors: Ramon Bister
Reto Furrer

Submission: 22. December 2023
Version: 1.0

Green Networking v 1.0

Revision History

Revision Date Author(s) Description
1.0 22.12.2023 Ramon Bister /

Reto Furrer
Release of the initial version of the document for
submission

Revision History i

Green Networking v 1.0

1. Abstract

As the global demand for network connectivity intensifies, the environmental impact of network-
ing infrastructure becomes increasingly significant. This study addresses the critical issue of
the lack of visibility into the energy efficiency of networks, hindering the optimization for sus-
tainability. Drawing from the Green Networking Metrics IETF draft, we propose a method to
bring transparency to energy efficiency within networks, laying the groundwork for green routing
strategies.

The research employs a two-fold approach. First, it involves a theoretical elaboration of mathe-
matical concepts, establishing a foundation for understanding and evaluating energy efficiency in
networking environments. Second, a Proof of Concept is implemented on a virtualized network,
demonstrating the feasibility of the proposed methodology.

The results showcase the potential for comparing path efficiency and identifying the most effi-
cient and inefficient hops along a network path. The findings underline the necessity for further
exploration, advocating for the implementation of the methodology on a physical network. Sub-
sequently, efficiency data should be exported and analyzed centrally, paving the way for informed
decision-making towards sustainable networking practices. This study contributes to the emerg-
ing field of green networking by providing a structured approach to enhance energy efficiency
visibility in network environments, fostering a more sustainable and ecologically responsible net-
working infrastructure.

1. Abstract ii

Green Networking v 1.0

2. Management Summary

In the current landscape of computer networks, the visibility into their energy efficiency is no-
tably limited, posing a significant challenge to the pursuit of sustainable networking practices.
Recognizing this inherent problem, this research project has undertaken the mission to contribute
to a solution to finally overcome these limitations.

At the core of this study is the development of meaningful efficiency indicators at both the
hop and path levels, addressing the prevailing dearth of insights into the energy performance
of individual nodes and network paths. The introduction of the Hop Efficiency Indicator (HEI)
and its calculation algorithm, designed for efficiency and flexibility, lays the groundwork for
a comprehensive understanding of node-level efficiency. The study goes further by proposing
the Path Efficiency Indicator (PEI) to summarize and compare hop efficiency indicators along
different network paths. The following figure uses a simple example to illustrate how HEI and
PEI are used in an energy efficiency enabled network to classify paths based on their energy
efficiency. In the following example, the PEI assigned to the green path is lower than the PEI
assigned to the red path. Considering that a lower PEI indicates better energy efficiency, the
green path is more energy efficient than the red path.

R1 (Encapsulating Node)

HEIR1 = 5020

R2 (Transit Node)

HEIR2 = 4800

R3 (Transit Node)

HEIR3 = 8800
R5 (Transit Node)

HEIR5 = 6700

R4 (Transit Node)

HEIR4 = 3900

R6 (Decapsulating Node)

HEIR6 = 6000

PEIG = 5020
PEIG = 9820

PEIG = 13720

PEIR = 5020
PEIR = 13820

PEIR =
 20520

PEIG = 19720

PEIR = 26520

Aggregation Server

Client 2Client 1

Legend:
HEI - Hop Efficiency Indicator
PEI - Path Efficiency Indicator

Figure 2.1.: Indicator Calculation Visualization

This research doesn’t merely stop at theoretical propositions; it translates these indicators into
practical implementation by incorporating them into user packets through the In-situ Operations,
Administration, and Maintenance (IOAM) protocol. By doing so, it provides a tangible solution
to the challenge of transporting efficiency metrics within network packets.

The implications of this study are profound for the quest towards sustainable networking prac-
tices. By embedding efficiency indicators into data forwarding and user packets, the research
enables real-time decision-making for optimizing network energy efficiency. This approach fa-
cilitates dynamic scaling of the network, routing traffic through the most efficient paths, and
selectively activating or deactivating routes based on actual needs.

Recognizing the need for continued progress, the study outlines recommendations for future
research. It suggests exploring the export of network energy efficiency data using IPFIX into
a time series database, enabling standardized data collection for comprehensive analysis. Addi-

2. Management Summary iii

Green Networking v 1.0

tionally, the proposal includes the development of a central monitoring platform and a central
management platform. These platforms would not only consolidate energy efficiency metrics but
also empower administrators to configure and customize parameters, contributing to the practical
implementation of energy efficiency indicators in diverse network environments.

In essence, this research project stands as a pivotal response to the critical issue of limited
visibility into the energy efficiency of networks. Through innovative indicators, protocols, and
practical implementations, it opens new avenues for sustainable networking practices and lays
the foundation for future advancements in the field.

2. Management Summary iv

Green Networking v 1.0

3. Acknowledgement

We would like to express our sincere gratitude to the following individuals and organizations who
have supported us throughout the process of completing this semester thesis.

First and foremost, we are deeply thankful to our thesis advisor, Professor Laurent Metzger,
for his support during this thesis. His commitment, passion and expertise helped and motivated
us a lot.

Thanks to Severin Dellsperger, for his support during this thesis. We greatly appreciated the
constructive discussions, the respectful interaction, his expertise and commitment to our semester
thesis.

A special thanks goes to our external partner, Alexander Clemm working at Futurewei Tech-
nologies, Inc., for his invaluable guidance, encouragement, and expertise. His insightful feedback
and constructive criticism played a pivotal role in shaping the direction of our research. We also
greatly appreciated the fact that we were involved in the standardisation work right from the
start and were given the opportunity to work on the implementation of the IOAM Aggregation
Option protocol extension in our simulated network environment. We were very pleased with the
uncomplicated nature of the collaboration and his personal visit to us in Rapperswil.

We owe a profound debt of gratitude to Professor Roman Fuchs for his exceptional support
and expertise in the realm of mathematics. He played a pivotal role during the development and
refinement of the energy efficiency indicator mathematical concept.

In conclusion, we are thankful to all those who played a role, big or small, in helping us bring
this thesis to fruition. Your support has been invaluable, and we are truly appreciative.

Ramon Bister, Reto Furrer
OST - Eastern Switzerland University of Applied Sciences
22. December 2023

3. Acknowledgement v

Green Networking v 1.0

4. Important Terms and Abbreviations

Hop Efficiency Indicator (HEI) Each hop on a network path calculates a value composed of an
arbitrary number of raw components. These components include but are not limited to idle
power, energy mix, embedded carbon and link cost. All these raw component values are
normalized and aggregated by sum operation to the HEI. A hop with a low HEI value is
considered more energy efficient.

Path Efficiency Indicator (PEI) The path efficiency indicator is an aggregation by sum operation
with all HEI values on a path. This value indicates the efficiency of the path the packet
traversed.

IOAM In situ Operations, Administration, and Maintenance (IOAM) collects operational and
telemetry information in the packet while the packet traverses a path between two points
in the network. [1]

P4 Programming Protocol-independent Packet Processors (P4) is a domain-specific language for
network devices, specifying how data plane devices (switches, NICs, routers, filters, etc.)
process packets. [8]

4. Important Terms and Abbreviations vi

Green Networking v 1.0

5. Introduction

5.1. Background
Climate change and the need to curb greenhouse emissions have been recognized by the United
Nations and by most governments as one of the biggest and most urgent challenges of our time.
As a result, reducing carbon footprint is becoming of increasing importance for society and all
industries. The networking industry is no exception. Future networking advances will thus in-
creasingly need to focus on becoming more sustainable and reducing carbon footprint, both for
economic reasons and for reasons of corporate responsibility. This shift has already begun as sus-
tainability is becoming an important concern for network providers. Opportunities exist not only
at the level of making networking hardware and transmission technology more energy-efficient,
but also at other levels. Examples include inclusion of carbon intensity as a cost factor in routing
or optimization of placement of virtual networking functions. Regardless of particular measures
being taken, there is a need to have visibility into green networking metrics. Having such visi-
bility allows to assess the effectiveness of measures being taken. In many cases, it also provides
the bases for control loops that optimize those metrics as well as for other decisions taken to
minimize carbon footprint. Many of the more “obvious” green network metrics are assessed at
the level of individual devices, for example measuring their power consumption and that of their
port. An aspect that has been much less explored concerns green metrics that allow to assess the
carbon footprints of paths, as well as ways in which a network could be instrumented to provide
such metrics. This in turn would enable a multitude of new optimization opportunities, for ex-
ample optimizing paths so that their overall footprint is minimized, then steering traffic across
the most carbon-efficient paths. The ability to collect network telemetry across networking paths
has received considerable attention in recent years. Specifically, IETF has been standardizing
in-situ OAM (iOAM), a set of protocol extensions designed to collect certain telemetry data from
nodes across networking paths. Likewise, the P4 consortium has been promoting the collection
of In-Network Telemetry (INT) as one of P4’s use cases. However, neither approach has been
applied to green networking metrics, such as relating to carbon efficiency or power consumption
across a path. Likewise, neither approach allow to aggregate metrics that are collected, relying
instead of outside applications.

Alexander Clemm, Futurewei Technologies Inc.
27. September 2023

5. Introduction vii

Green Networking v 1.0

5.2. Thesis Composition
The documentation of the semester thesis is structured in four main parts based on the RUP
(Rational Unified Process) project method. The goal of this documentation is to give you some
insights about the most important concepts and challenges in this project. To be able to follow
some basic knowledge in networking and mathematics is required. The terms Green Networking
and Sustainable Networking are used interchangeably in this project.

5.2.1. Inception
The first part outlines the initial situation, our vision and the overall project planning with the
defined use cases, requirements and risk assessment.

5.2.2. Elaboration
Our concept for calculating the efficiency indicators is described in the elaboration part. Further-
more data plane programming basics including a focus on the P4 programming language as well
as our development environment and testing approach are described in this part.

5.2.3. Construction
The construction part contains the most important facts about the implementation of the P4
efficiency indicators functions, the IOAM Pre-allocated Trace-Option and the IOAM Aggregation
Option. Additionally, the implementation of the testing environment and our demo application
are covered in this part.

5.2.4. Transition
The transition part contains a summary of the achieved work and outlines the next and upcoming
work steps.

5.2.5. Appendix
This part lists the meeting notes, the poster about the semester thesis and contains the IETF
Draft that emerged from the semester thesis.

5. Introduction viii

Green Networking v 1.0

Contents

Revision History i

1. Abstract ii

2. Management Summary iii

3. Acknowledgement v

4. Important Terms and Abbreviations vi

5. Introduction vii
5.1. Background . vii
5.2. Thesis Composition . viii

5.2.1. Inception . viii
5.2.2. Elaboration . viii
5.2.3. Construction . viii
5.2.4. Transition . viii
5.2.5. Appendix . viii

I. Inception 1

1. Initial Situation 2
1.1. Existing Research . 2

2. Vision 3
2.1. Goals . 3

2.1.1. Automated Network Efficiency Analysis . 3
2.1.2. Sustainable Networking . 3

3. Use Cases 4
3.1. UC01: Calculate Hop Efficiency Indicator (HEI) 4
3.2. UC02: Aggregate HEIs to Path Efficiency Indicator (PEI) 4
3.3. UC03: Append the PEI to the packet carrying user data 4
3.4. UC04: Determine the min/max HEI in a path . 4
3.5. UC05: Assign the PEI to the traversed path . 4
3.6. UC06: Collect the PEI in demo application . 5

4. Requirements 6
4.1. Functional Requirements . 6
4.2. Non Functional Requirements . 7

II. Elaboration 10

1. Design Decisions 11

Contents ix

Green Networking v 1.0

2. Efficiency Indicators 12
2.1. Gain . 12
2.2. Hop Efficiency Indicator - HEI . 12

2.2.1. HEI Components . 12
2.3. Path Efficiency Indicator - PEI . 12
2.4. Minimum / Maximum HEI on Traversed Path . 13
2.5. Average of HEIs on Traversed Path . 13
2.6. Mathematical Concept . 13

2.6.1. Get the Parameters . 15
2.6.2. Normalization . 15
2.6.3. Inversion . 15
2.6.4. Weighting . 15
2.6.5. HEI Calculation . 16
2.6.6. PEI calculation . 16

2.7. Calculation Example . 17
2.8. Requirements . 18
2.9. Decisions . 18
2.10. Limitations . 19

3. Programmable Forwarding Planes 20
3.1. Control Plane / Data Plane . 20
3.2. Introduction to P4 . 21
3.3. P4 Processing Pipeline . 22

3.3.1. Runtime Forwarding Rules (Control Plane Tables) 23
3.3.2. Parser . 23
3.3.3. Ingress Pipeline . 24
3.3.4. Egress Pipeline . 24
3.3.5. Deparser . 25

4. Development Environment 26
4.1. Decisions . 26

4.1.1. Behavioral Model Version 2 (BMv2) . 26
4.1.2. Mininet . 26
4.1.3. Virtual Machine . 27
4.1.4. Development Network . 27
4.1.5. Topology . 27
4.1.6. Control Plane Definition . 28
4.1.7. IPv6 Functionality . 28
4.1.8. Traffic simulation . 29
4.1.9. Automatic Packet Capture . 29

4.2. Installation . 30
4.2.1. Install Dependencies . 30
4.2.2. Install Mininet . 30
4.2.3. Install BMv2 . 30
4.2.4. Install P4 Compiler (p4c) . 30
4.2.5. Install Python Dependencies . 31

4.3. Operation . 31

5. Testing 32
5.1. Scope . 32
5.2. Requirements . 32

Contents x

Green Networking v 1.0

5.3. Architecture . 33
5.3.1. Design Decisions . 33
5.3.2. Context . 34
5.3.3. Test Procedure . 34

6. Demo Application 35
6.1. Jupyter Notebook . 35
6.2. Demonstration Content . 35

6.2.1. Example Calculation . 35

III. Construction 36

1. Parser 37
1.1. Concepts . 37

1.1.1. Parser Declaration . 37
1.1.2. Parser State Definition . 37

1.2. Parser State Machine . 38
1.2.1. Parsing Flow . 39
1.2.2. States . 40

2. Forwarding Pipelines 42
2.1. Ingress Pipeline . 42

2.1.1. Actions . 42
2.1.2. Tables . 42
2.1.3. Apply . 43

2.2. Egress Pipeline . 43
2.2.1. Apply . 43

3. IPv6 Extension Header 44
3.1. Hop-by-Hop Options Header . 44

3.1.1. Options . 44
3.2. Header Structure Overview . 45

3.2.1. Wireshark . 46
3.3. Header Initialization in P4 . 46

3.3.1. Actions . 46
3.3.2. Apply . 46

4. IOAM Tracing 48
4.1. Header Structure . 48

4.1.1. IOAM Trace-Type . 49
4.1.2. Wireshark . 49

4.2. Implementation in P4 . 49
4.2.1. Constants . 50
4.2.2. Types . 50
4.2.3. Headers . 50
4.2.4. Controller . 51

4.2.4.1. Actions . 51
4.2.4.2. Tables . 51
4.2.4.3. Apply . 52

4.3. Limitations . 53

Contents xi

Green Networking v 1.0

5. IOAM Aggregation 54
5.1. Header Structure . 54

5.1.1. IOAM Data Param . 54
5.1.2. Aggregator . 54
5.1.3. Aggregate . 55
5.1.4. Wireshark . 55

5.2. Implementation in P4 . 55
5.2.1. Constants . 55
5.2.2. Types . 56
5.2.3. Headers . 57
5.2.4. Controller . 57

5.2.4.1. Actions . 57
5.2.4.2. Tables . 58
5.2.4.3. Apply . 58

5.3. Limitations . 58

6. Efficiency Indicators 59
6.1. Implementation in P4 . 59

6.1.1. Constants . 59
6.1.2. Types . 59
6.1.3. Controller . 60

6.1.3.1. Actions . 60
6.1.3.2. Tables . 61
6.1.3.3. Apply . 62

6.1.4. IOAM Aggregation . 62
6.2. Add new Component . 62

7. Testing 64
7.1. Software Components . 64

7.1.1. Component Interaction Flow . 65
7.1.2. Source Code . 66
7.1.3. Scapy Library . 67

7.2. Definition of Tests . 67
7.2.1. Path Object . 68
7.2.2. Testcase Object . 69

7.3. Test Execution . 71
7.3.1. Makefile . 71
7.3.2. Results . 72

7.3.2.1. Console Output . 72
7.3.2.2. Logs . 72

8. Demo Application 74
8.1. Demo Execution . 74
8.2. Data Export . 75
8.3. Demo Cases . 76

8.3.1. Timeseries per Path . 76
8.3.2. Path Comparison . 78
8.3.3. Minimum / Maximum HEI on a Path . 78
8.3.4. PEI Composition . 79
8.3.5. Path Statistics . 80
8.3.6. Sample Step-by-Step PEI Calculation . 81

Contents xii

Green Networking v 1.0

IV. Transition 82

1. Conclusion and Discussion 83
1.1. Review of Findings . 83
1.2. Implications of the Study . 83
1.3. Recommendations for Future Research . 83

Bibliography 85

V. Appendix 86

A. IETF Draft 87

Contents xiii

Part I.

Inception

Inception v1.0
Green Networking

1. Initial Situation

As already described in the introduction, the networking industry will increasingly need to focus
on becoming more sustainable and reducing their carbon footprint. The goal of this thesis is
to evaluate a carbon metric with several parameters to calculate a path efficiency indicator per
packet and make the traversed paths comparable. With our external partner, Alexander Clemm,
we have a good connection to the IETF - Internet Engineering Task Force. With him we can
work future oriented and use modern solutions like the In-situ OAM (IOAM), a protocol extension
designed for collecting network telemetry from nodes across the network path.

1.1. Existing Research
The project is based on the previous work of the IETF Draft Green Networking Metric [3] and
the RFC 9197. Alexander Clemm is an author of the previous mentioned IETF Draft about the
Green Networking Metric and the tasks of this semester thesis were defined with him. At the
beginning of this project, Alexander Clemm published a new IETF Draft named Aggregation
Trace Option for In-situ Operations, Administration, and Maintenance (IOAM) [2]. The proto-
col extension defined in this draft is the basis for the elaboration of a concept on how to process
energy efficiency information in a computer network.

The project is mainly related to the RFC documents and drafts below.

Green Networking Metrics (Draft) Defines the underlying research field [3]

IOAM Aggregation Trace Option Type (Draft) Defines the method used to store the PEI or
min/max HEI values in the user packet header data [2]

IOAM Data Fields Defines the IOAM Trace Option type which is used to trace the path a packet
traverses RFC 9197

Internet Protocol, Version 6 (IPv6) Defines the Hop by Hop Extension header which is used to
encapsulate the IOAM data RFC 2460

1. Initial Situation 2 of 96

https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc2460

Inception v1.0
Green Networking

2. Vision

Gaining visibility about the energy efficiency and the carbon footprint of networks is only the
first step towards sustainable networking. Based on the information gathered with the HEI and
PEI, the gained visibility should enable the proposal of concrete measures to improve the overall
network energy efficiency.

2.1. Goals
The goal of this work is to define a metric that is used on each network node to determine the
hop efficiency indicator. To get an overview of the path, it should be possible to sum up all hop
efficiency indicators on a traversed path to obtain the path efficiency indicator. With this path
efficiency indicator it is possible to compare different paths and make further decisions based on
the efficiency of a path or a node.

In the next sections two possibilities are described what can be done in future based on this
work.

2.1.1. Automated Network Efficiency Analysis
A central system should be able to reconfigure the HEI/PEI calculation at runtime. For example
the most efficient and most inefficient routers could be discovered on a path using the MIN/MAX
aggregator. Another discovery would be to determine the impact of individual HEI components
by dynamically adjusting the HEI composition. This would include the addition and removal of
components to the HEI on demand which would mitigate the side effect of the loss of information
happening due to the aggregation by the sum operation from individual component values to the
HEI. All the results should then be displayed on a central dashboard.

2.1.2. Sustainable Networking
Sustainable networking will be the final goal. It does not only include the automated analysis but
also the automatic application of improvements to the network in order to increase its efficiency.
This could be achieved by:

Traffic Rerouting In case there are multiple paths available between an ingress- and egress router,
traffic could be routed via the more efficient path.

Network Scaling In case there are multiple paths available between an ingress- and egress router,
the less efficient paths could be disabled taking the current network load into account.

Identification of Network Topology Improvement Potential Based on the information gathered
using the green metrics, physical or logical topology changes could be proposed to network
administrators to further improve the network efficiency.

2. Vision 3 of 96

Inception v1.0
Green Networking

3. Use Cases

This chapter covers the use cases for the semester thesis and at the same time sets the framework
for our work. The possibilities and further scenarios are discussed in the chapter Outlook.

3.1. UC01: Calculate Hop Efficiency Indicator (HEI)
On each node in the network the hop efficiency indicator (HEI) should be calculated. The value of
the hop efficiency indicator states, as the name suggests, how efficient the respective node is. The
hop efficiency indicator is composed of different parameters and each of them has a weighting,
further referred to as components (parameter with weight). A specific but editable mathematical
formula is determined to calculate the HEI from the different components. The addition and
removal of components to the HEI should be possible in future. There should be a possibility to
control the impact of an individual component to the HEI. The calculation of the HEI should be
as efficient as possible (avoid division).

3.2. UC02: Aggregate HEIs to Path Efficiency Indicator (PEI)
In order to compare the different path efficiencies, a representative value is required that can
be compared. For this use case, a path efficiency indicator (PEI) is used to summarize the hop
efficiency indicators (HEI) of the nodes. The calculation of the PEI should be as efficient as
possible (avoid division). In addition, the calculation may include addition, incrementation, and
comparison (min/max).

3.3. UC03: Append the PEI to the packet carrying user data
To append the path efficiency indicator value the IOAM protocol shall be used. The imple-
mentation should focus on adding the header information to IPv6 packets using the hop by hop
extension header.

3.4. UC04: Determine the min/max HEI in a path
Instead of aggregating the hop efficiency indicators (HEIs) to a path efficiency indicator (PEI)
the minimum or maximum hop efficiency indicator value and the corresponding node ID shall be
recorded. The IOAM header should be used with the intended aggregator.

3.5. UC05: Assign the PEI to the traversed path
The path efficiency indicator (PEI) is only effective if the value can be assigned to a specific
path. The IOAM Aggregation Type Option currently does not support the assignment of the
aggregated value to a specific path the packet traversed. This leads to the fact that either the
IOAM Trace Option Type will be used in conjunction with the IOAM Aggregation Option Type.
As using the IOAM Trace Option Type is an option it is not a strict requirement that the added
header information must be of a fixed size. Preferred though would be a solution with a fixed

3. Use Cases 4 of 96

Inception v1.0
Green Networking

header size. This use case is intended to be optional. For demo purposes in our development
network we would be allowed to identify the taken path according the source and destination
address of the packet.

3.6. UC06: Collect the PEI in demo application
In the demo application, the traveled path and the path efficiency indicator (PEI) should be
extracted and displayed for each packet. The path efficiency indicators (PEI) written into the
user packets shall be extracted on an endpoint. The efficiency indicators must be mapped to the
specific path the packet traversed. A rudimentary output on the CLI containing the following
information shall be given (list may not be complete).

For each path in the dev network:

• Path Identification

• Timestamp of last update

• Hops traversed

• Number of packets received

• Amount of data received

• Latest PEI value

• Average PEI value

The output shall be updated in a short interval (e.g. 1s). For demo purposes the values of specific
hop efficiency components shall be adjusted during runtime to see an impact.

3. Use Cases 5 of 96

Inception v1.0
Green Networking

4. Requirements

This chapter contains the functional and non-functional requirements of the project. The re-
quirements are specified based on the FURPS classification method. FURPS is an acronym and
stands for:

Functionality Capability, Reusability, Security

Usability Human Factors, Aesthetics, Consistency

Reliability Availability, Recoverability, Accuracy

Performance Speed, Efficiency, Resource Consumption, Scalability

Supportability Maintainability, Testability, Flexibility

The information above is based on the FURPS Wikipedia entry [4].

4.1. Functional Requirements
The functional requirements below are all related to the F in FURPS.

ID FR1
Subject Calculate the Path Efficiency Indicator (PEI) for each packet
Summary Each packet traversing the network shall be labeled with an energy rating of

the traversed path.
Justification In order to optimize the energy efficiency of networks in future an insight

into how good a specific path of a network performs in regards to the energy
efficiency is needed.

ID FR2
Subject Calculate the Hop Efficiency Indicator (HEI) for each packet
Summary Each node the packet traverses the node calculates its own efficiency rating

based on the given parameters from the control plane.
Justification To get the efficiency rating of a path each individual node must participate in

the indicator calculation.

ID FR3
Subject Add the PEI to each packet as metadata
Summary The PEI shall be carried by the corresponding packet as part of the header

metadata.
Justification Each node on the way needs to aggregate the current PEI with its own PEI.

In order to be able to do this the current PEI value must be present.

4. Requirements 6 of 96

Inception v1.0
Green Networking

ID FR4
Subject Determine the node with the highest HEI
Summary Instead of aggregating the individual HEI values to the PEI, the highest HEI

value calculated during the path traversal shall be added to the packet as
header metadata.

Justification The nodes which have a high/bad impact on the PEI should be discoverable.

ID FR5
Subject Determine the nodes with the lowest HEI
Summary Instead of aggregating the individual HEI values to the PEI, the lowest HEI

value calculated during the path traversal shall be added to the packet as
header metadata.

Justification The nodes which have a low/good impact on the PEI should be discoverable.

ID FR6
Subject Determine the path a packet traversed
Summary The PEI value is path specific and must be assigned to the path the packet

traversed.
Justification Without the knowledge about the path a packet traversed the PEI value is

useless. The primary usage of the PEI value is the comparison of paths in
regards to their energy efficiency.

ID FR7
Subject HEI parameter weighting
Summary A network administrator shall be able to individually select the impact of

specific parameters to the HEI value.
Justification Some parameters might be more important than others and this shall be

represented in the HEI and finally the PEI value.

ID FR8
Subject HEI parameter inversion
Summary If parameters have a good (energy efficient) value it should have a low impact

(small increase) of the HEI. Parameter values which are good when they have
a high value need to be inversed in order to have a low impact on the HEI.

Justification Some parameters are better when they have a low value and other parameters
might be better if the have a high value. In order to have a consistent mapping
to the HEI impact the parameters which are good when their value is high,
an inversion of the parameter value is necessary.

4.2. Non Functional Requirements
Based on the FURPS classification the non functional requirements are categorized in the follow-
ing classes:

• Usability

• Reliability

• Performance

4. Requirements 7 of 96

Inception v1.0
Green Networking

• Supportability

ID NFR1
Subject Performant calculation of the HEI and PEI
Requirement Performance
Priority High
Summary The calculation of the HEI is performed on any node for every packet travers-

ing the network on its path. This implies that the calculation is performed
unimaginably often. Therefore the calculation operations should only include
integer arithmetic with a focus on bit shifting and other logical operations.
Floating point division is not allowed.

Justification The calculation is done very often and it should have negligible impact on
network performance. Floating point arithmetic is very costly and additionally
it is not supported on FPGA hardware.

ID NFR2
Subject All components mapped to the HEI must be comparable
Requirement Supportability
Priority High
Summary The HEI value is based on different components. Each of the components has

its own specific value range. In order to compare the component values they
need to be mapped on a common value range using a normalization technique.

Justification Each component has its own value range. To simplify the calculation of the
HEI and to ensure that the values of the components have the same effect on
the HEI.

ID NFR3
Subject Removal and addition of parameters to the HEI calculation process
Requirement Supportability
Priority High
Summary It should be possible to add and remove parameters to the dataplane program

without the need to adjust datastructures and existing actions.
Justification This project is an initial attempt on how to do the calculations and how to

store the calculated data inside the header of the packet. The selection of
all the relevant components is not the main focus of this project and the
availability of components on different hardware might vary. A future proof
solution must be easily adjustable in regards to which parameters are taken
into consideration.

4. Requirements 8 of 96

Inception v1.0
Green Networking

ID NFR4
Subject Forwarding of network traffic is not impaired by the indicator processing
Requirement Reliability
Priority High
Summary Whether the efficiency indicator processing is enabled or disabled in a net-

work should not affect the actual data forwarding. Packets which can not
carry additional metadata in the header because they already reached there
maximum size shall be forwarded without the efficiency indicator processing.

Justification Determining the efficiency of a network is not the core responsibility of a net-
work. The reliability of a network is one of the most important requirements.
This should not be undermined with the determination of the efficiency of the
network.

ID NFR5
Subject The overhead of the energy indicator shall be constant over an arbitrary num-

ber of nodes.
Requirement Performance
Priority Medium
Summary Metadata related to the energy efficiency indicator shall only be added on the

ingress node. Transit nodes are not allowed to add new data. Data may only
be aggregated in transit. The header storing the indicator data is of fixed
size. Data related to path tracing is not considered to be part of the energy
efficiency indicator metadata.

Justification A packet is not allowed to grow beyond the maximum transmission unit
(MTU). Adding metadata to a packet on every single node has the disad-
vantage that it is likely that the MTU will be reached and no more data can
be added. This would result in an incomplete calculation of the PEI.

4. Requirements 9 of 96

Part II.

Elaboration

Elaboration v1.0
Green Networking

1. Design Decisions

The following design decisions are documented as so called Y-Statements. The statements will
refer to the functional- and non functional requirements specified in chapter 4 in the inception
part.

• In the context of the energy metric calculation process (FR1-FR8), facing the need to not
impact network performance (NFR1), we decided to use bit shifting as an alternative to
the division operation, and neglected the usage of floating point arithmetic’s, to achieve the
maximum performance during packet processing, accepting that numbers not belonging to
the basis two can not be computed without a rounding error.

• In the context of the energy metric calculation process (FR1-FR8), facing the need of
the comparability of HEI values (NFR2), we decided that all nodes in a network process
the same set of components and neglected to implement functionality to indicate which
components where used on which node, to achieve comparability of the HEI values with
no additional processing overhead, accepting that only the subset of components which are
supported on all nodes can be used in a network.

• In the context of the energy metric calculation process (FR1-FR8), facing the need to remove
and add components on demand (NFR3), we decided to define a calculation method which
can be applied to any parameter and neglected to implement specific calculation methods
for each specific parameter, to achieve a maximum flexibility with the addition and removal
of parameters because almost no code changes are necessary, accepting that individual
characteristics of parameters cannot be taken into account.

• In the context of the energy metric calculation process (FR1-FR8), facing the need to not
impact the forwarding process of network traffic (NFR4), we decided to handle all efficiency
indicator related processing in the egress pipeline, and neglected the implementation of all
functionality inside the ingress pipeline, to achieve a logical division of functionality and
to avoid interference with the forwarding operations carried out in the ingress pipeline,
accepting that the application can only be run on a target which supports at least two
pipelines.

• In the context of the energy metric calculation process (FR1-FR8), facing the need of a
constant energy efficiency header size (NFR5), we decided to use the IOAM aggregation
option to store efficiency indicator related data, and neglected the usage of the IOAM trace
option, to achieve a constant size of efficiency indicator metadata over an arbitrary number
of nodes, accepting that information of individual hops is lost due to aggregation.

1. Design Decisions 11 of 96

https://medium.com/olzzio/y-statements-10eb07b5a177

Elaboration v1.0
Green Networking

2. Efficiency Indicators

This chapter describes the Hop and Path Efficiency Indicator and how the calculation of the HEI
and PEI works in this project. As transport method for the PEI value the IOAM Aggregation
Option Type is used as described in chapter 5 in the construction part.

2.1. Gain
Calculating the HEI and PEI values provides visibility into a network. The gained transparency
enables the identification of the most inefficient node on a specific path or the optimization of
the packet transfer based on the HEI and PEI.

2.2. Hop Efficiency Indicator - HEI
The efficiency of each node is measured by the HEI, which is composed of various weighted
components. A mathematical formula that is flexible is used to calculate the components, allowing
for future adjustments. Another benefit is the immediate feedback on changes in the network.

2.2.1. HEI Components
The hop efficiency indicator (HEI) is calculated using various components.

Examples for HEI components are:

Energy Mix Proportion of the electricity generated from renewable energy sources

Power Idle Power consumption when the device is powered on and not forwarding any data

Power to Bandwidth Ratio Coefficient how the device performs with increasing bandwidth

Link Cost Efficiency of the link the packet was received or sent from

 Information

The definition of a practical composition of HEI components is out of scope for this project.
The aim is to do a prove of concept with a small subset of possible components and build
the solution flexible enough for the future expansion of HEI components.

2.3. Path Efficiency Indicator - PEI
The path efficiency indicator is an aggregation by sum operation with all HEI values on a path.
This value indicates the efficiency of the path the packet has traversed. Using this information
about the different paths, it is possible to monitor the network and make active changes based
on the efficiency of the different nodes.

2. Efficiency Indicators 12 of 96

Elaboration v1.0
Green Networking

2.4. Minimum / Maximum HEI on Traversed Path
The IETF Draft about the IOAM Aggregation Option Type [2] specifies a min and a max ag-
gregator which obtain the node with the minimum or maximum aggregate value on a traversed
path. In this project and for this use case the aggregate value in the IOAM Aggregation Option
Type header represents the minimum or maximum HEI value on a specific path. In this case,
not every node on the traversed path will add its HEI value to the aggregate value field in the
header. Instead, each node checks whether the current value of the HEI is smaller or larger than
the previous aggregate value. If the condition is satisfied, the HEI value and node ID of the
current node are added to the IOAM Aggregation Option Type header to capture the node with
the smallest or largest value. Additionally the current node ID and hop limit are added to the
IOAM Pre-Allocated Trace-Option Type header to ensure the traceability of the traversed path.
This use case for determining the worst or most efficient node on a traversed path relates to the
functional requirement (FR4, FR5) specified in section 4.1 in the inception part.

2.5. Average of HEIs on Traversed Path
The IETF Draft about the IOAM Aggregation Option Type [2] specifies an aggregator to perform
the average of the aggregate values on a traversed path. In this thesis, the average aggregator is
not used and is not described in detail.

2.6. Mathematical Concept
This section explains the mathematical concept used to calculate the HEI and the PEI. In order to
follow this, some basic mathematical knowledge is required, in particular regarding normalization
and bit shifting.

 Information

The mathematical concept is based on the following calculation steps. No simulation,
such as the Monte Carlo method, was performed as part of this thesis to analyze how the
calculation procedure behaves over a wide range of values. The validation of the calculation
method is to be endeavoured in further research on this topic.

The following requirements were defined that the mathematical concept should cover:

Variable input size The input size of the parameters used in the calculation of the HEI value
should be variable.

256 components It should be possible to include up to 256 weighted component values in the
calculation of the HEI value.

256 HEI values It should be possible to include up to 256 HEI values in the calculation of the
PEI value.

Performant calculation of the HEI and PEI The calculation is done very often and it should
have negligible impact on network performance

On the following page is a graphical overview that illustrates the mathematical concept of
the HEI calculation which is added to the PEI and stored in the Aggregate field of the IOAM

2. Efficiency Indicators 13 of 96

Elaboration v1.0
Green Networking

Aggregation Option Type header. In the sections following the overview, there is a step-by-step
calculation example that shows the individual steps for determining the HEI value.

Add Path Efficiency Indicator (PEI) to IOAM Aggregation

Path Efficiency Indicator

32 Bit

Hop Efficiency Indicator
24 Bit

Weighted Component
16 Bit

Normalized Value

15 Bit

Parameter Value

Auxil-data Node-ID

Namespace-ID Flags Reserved
AggregatorIOAM Data Param

Aggregate
Hop Count

32 Bit

IOAM Aggregation Option Type Header

Max. 256
nodes per

path

Max. 256
components

per node

Value normalization function

Variable bit
size of the
parameter

Apply the
weighting to
normalized

value

Inverted Value

15 Bit

Invert the
value if
needed

Figure 2.1.: Exploded view drawing of the PEI composition

2. Efficiency Indicators 14 of 96

Elaboration v1.0
Green Networking

2.6.1. Get the Parameters
The parameters used to calculate the HEI value can be obtained from the control plane, set and
configured via gRPC, or obtained directly from the hardware via extern functions. In the P4
language, an extern function is a function that is defined outside the P4 program, but can be
called from inside the program. For example, this could be a function on specific hardware that
returns the current idle power of the device. The method that is used in this project to obtain
the parameters is described in the construction part.

2.6.2. Normalization
The obtained parameter values are within an arbitrary value range and must be mapped to a
predefined/normalized range in order to be comparable. This process is called normalization and
is a prerequisite for the subsequent calculations to work.

Cn = f(v, x, y) = v ∗ 2x

2y

Cn Normalized component value

v Parameter value that is used to calculate the HEI

x Number of bits in the normalized range

y Number of bits of the input range (value bit size)

2.6.3. Inversion
By definition a lower PEI value is considered more energy efficient. As the HEI component
values directly influence the PEI value, the higher the component value, the higher the increment
to the PEI value by that component. Some of the component values behave inversely to this
definition. For example, Energy Mix indicates the percentage of electricity that comes from
renewable sources. A higher energy mix value is better. Therefore, the energy mix value needs
to be inverted within the normalized range.

Ci = g(Cn, x, i) =
{

(2x − 1) − Cn, if i = true

Cn, otherwise

Ci Inverted component value

Cn Normalized component value

x Number of bits in the normalized range

i Boolean indicating if the component is inverse

2.6.4. Weighting
Finally, weights are applied to the normalized and potentially inverted values.

• A positive weight (weight=2) indicates that the component is more relevant than others
and doubles the calculated value which increases its effect on the HEI and PEI.

• A neutral weight (weight=1) does not change the value at all.

2. Efficiency Indicators 15 of 96

Elaboration v1.0
Green Networking

• A negative weight (weight=0) indicates that the component is less relevant than others and
halves the calculated value which decreases its effect on the HEI and PEI.

Cw = h(Ci, w) =

Ci · 2, if w = 2
Ci, if w = 1
Ci
2 , if w = 0

Cw Weighted, inverted and normalized component value

Ci Inverted and normalized component value

w Weight to be applied

2.6.5. HEI Calculation
The figure contains an overview of the calculation steps for determining the HEI value. The sum
of the various weighted components represents the HEI of a particular node.

Calculation steps for the Hop Efficiency Indicator

Get parameter value Normalize the value Invert the value
(if needed)

Repeat these steps for each parameter

Apply the weight Add all components to
get the HEI value.

Figure 2.2.: HEI calculation steps

The following formula defines the Hop Efficiency Indicator.

HEI =
{

n∑
i=0

Compi

∣∣∣∣∣ n < 256
}

2.6.6. PEI calculation
The path efficiency indicator is the sum of the HEI values of all nodes in a specific path.

Calculation steps for the Path Efficiency Indicator

Get the HEI value of
all nodes in a path

Add all HEI values to
get the PEI value.

Figure 2.3.: PEI calculation steps

The following formula defines the Path Efficiency Indicator.

PEI =
{

n∑
i=0

HEIi

∣∣∣∣∣ n < 256
}

2. Efficiency Indicators 16 of 96

Elaboration v1.0
Green Networking

2.7. Calculation Example
The hop efficiency indicator calculation is shown in the following step-by-step instructions. In
step 2, the value is normalized to a predefined range of 15 bits. The constant that defines the
range of the normalized value is: VALUE_NORMALIZED_BIT_SIZE = 15. That means the
maximum parameter value in this project can be 32767.

Step 1 Get the parameters that are used to calculate the hop efficiency indicator.
Energy mix: value = 34, type size = 7 bit, weight = 2, invert = 1

Step 2 The type of a parameter is in a variable range, so the value must be normalized to be
comparable to other parameters. The following python normalize function shows how the
normalization is done. The function gets the parameter value and the size of the parameter
type and will illustrate the normalized value.
normalize(34, 7) = 8704

1 def normalize(value, type_size):
2 if type_size < VALUE_NORMALIZED_BIT_SIZE:
3 return value << (VALUE_NORMALIZED_BIT_SIZE - type_size)
4 elif type_size > VALUE_NORMALIZED_BIT_SIZE:
5 return value >> (type_size - VALUE_NORMALIZED_BIT_SIZE)

Step 3 Parameter values which are considered more efficient if the value is higher, need to be
inverted due to the definition of the HEI. For example the parameter energy mix, that
shows how much of the used energy is from renewable energy sources. In that case a value
of 100% is better than 1% so the value must be inverted to represent the impact to our
calculation correctly.
invert(8704, 1) = 24063

1 def invert(value_normalized, inverse):
2 if inverse == True:
3 return (2 ** VALUE_NORMALIZED_BIT_SIZE - 1) - value_normalized
4 return value_normalized

Step 4 After the normalization process and inverting the parameter value if needed the compo-
nent is weighted.

• If the weight is set to the value 2, the component is shifted by 1 position to the left,
which doubles the value.

• If the weight is set to the value 0, the component is shifted by 1 position to the right,
which halves the value.

• If the weight is set to the value 1, nothing happens, the value stays as it is.
Example: weight(24063, 2) = 48126

1 def weight(value_inverted, weight):
2 if weight > 1:
3 return value_inverted << 1
4 elif weight < 1:
5 return value_inverted >> 1
6 return value_inverted

2. Efficiency Indicators 17 of 96

Elaboration v1.0
Green Networking

Step 5 Repeat the above Step 1-4 for each parameter.

Step 6 Sum all previously calculated components to the hop efficiency indicator.

2.8. Requirements
There are several requirements that must be met to ensure that the aggregation works efficiently
and does not interfere the regular network traffic. The related non functional requirements are
NFR1 and NFR4 which are specified in section 4.2 in the inception part.

2.9. Decisions
The mathematical calculation is based on the following design decisions:

Type sizes of the elements in the calculation The sizes of the different element types are all
determined by specific considerations. The following type names of the elements included
in the calculation are named as they are used in the P4 code.
Path Efficiency Indicator The calculation is designed to allow each PEI value to be cal-

culated based on a maximum of 256 HEI values. To be sure that no overflow occurs
the type path_efficiency_indicator_t is set to 32 bits what is also the Aggregate size
within the IOAM Aggregation Option. If 256 HEI values, all with the highest possible
value, are aggregated by sum, no overflow will occur because the result would be the
maximum value of path_efficiency_indicator_t.

Hop Efficiency Indicator The calculation is designed to be able to calculate the HEI value
based on a maximum of 256 components. To be sure that no overflow occurs the type
hop_efficiency_indicator_t is set to 24 bits. If 256 components, all with the highest
possible value, are aggregated by sum, no overflow will occur because the result would
be the maximum value of hop_efficiency_indicator_t.

Weighted Component In Step 4 above, the normalized value is weighted using one of the
weighting parameters. If the weight is applied that causes a left shift to double the
value, it needs 1 bit more, that’s why the type component_t is size of 16 bits.

Normalized Value The parameter will be normalized to a predefined type with a range of
15 bits to be comparable to other parameter values.

Parameter Value The size of the parameter type can be of arbitrary size.

Transport Concept The IPv6 Hop by Hop Extension header with the IOAM Aggregation Option
and the IOAM Pre-Allocated Trace Option Type will be used as transport the HEI and PEI
values. Further details about the aggregation of efficiency indicators, the IOAM Aggregation
Option and the IOAM Pre-Allocated Trace Type Option are described in detail in chapter
3 in the construction part.

2. Efficiency Indicators 18 of 96

Elaboration v1.0
Green Networking

2.10. Limitations

 Information

The current implementation of the mathematical calculation has some limitations. However,
these limitations do not interfere with the basic use case of our work.

• The parameter type must be the smallest possible where the maximum value fits. If the
parameter’s type size is not set to the smallest possible size, it cannot be compared accu-
rately with the other values, and the result will be distorted.
The following example with the energy mix component, which has a range of 0 to 100, and
the value 50 shows the consequences of not setting the type size to the smallest possible
size, which in this case is 7 bits:

 Warning

Type size 7 bit

EngergyMixnormalized = f(50, 15, 7) = 50 ∗ 215

27 = 12800

Type size 8 bit

EngergyMixnormalized = f(50, 15, 8) = 50 ∗ 215

28 = 6400

This minor detail changes the normalized value by half and leads to a distortion of
the entire calculation.

• The weighting of the different components may cause a rounding error during a right shift
because the least significant bit is lost.

• Normalization can cause loss of value granularity.

2. Efficiency Indicators 19 of 96

Elaboration v1.0
Green Networking

3. Programmable Forwarding Planes

In the past network devices had a fixed set of available features defined by the manufacturer.
The implementation of new protocols and additional functionality could only be achieved by the
manufacturer. Usually the implementation of new features required a redesign of the hardware
chip. As modifications to hardware are costly and very time intense this had a negative impact
on innovations in the network industry. [5]

As it happened in other domains, today also in networking there is a domain specific processor
following the Protocol Independent Switch Architecture (PISA). PISA describes a pipeline of
identical match action stages and is a generic forwarding engine designed to be very fast. At the
beginning of the pipeline is a parser extracting packet information and at the end of the pipeline
there is a deparser writing the modified header information back into the packet. Section 3.3 in
the elaboration part, contains a description of PISA in regards to the domain specific language
P4. [5]

Figure 3.1 contains an overview of domain specific processors.

Figure 3.1.: P4 Workflow [5]

P4 programs following the PISA architecture can be compiled down to a binary which can be
run on field programmable gate arrays which are chips, which circuits can be modified on the
field. With those chips the forwarding pipelines written in P4 achieve the same performance as
fixed functions chips. The pipeline can be executed at line rate. [5]

3.1. Control Plane / Data Plane
At this point the difference between the control plane and data plane shall be clarified. The
understanding of this basic concept is very important in order to be able to follow the descriptions
below.

Control Plane The control plane is the component gathering the information about neighboring
routers and the network topology in general. This information is used to build the routing
tables also called the forwarding information base (FIB) which contain the forwarding rule-
set for each available network. In todays networks protocols like for example OSPF, IS-IS

3. Programmable Forwarding Planes 20 of 96

Elaboration v1.0
Green Networking

and BGP are responsible to generate the FIB. In the simulated network used in this project
the FIB is statically defined without the use of routing protocols.

Data Plane The data plane is the component actually forwarding the data based on forwarding
information in the FIB. The FIB is the linkage between the control plane and data plane.
During the forwarding operation the data plane updates the header fields of all involved
protocols. One can think of the data plane as a pipeline where each packet passes through
during forwarding.

3.2. Introduction to P4
The domain specific programming language for network devices Programming Protocol-independent
Packet Processors (P4) is used in this project. P4 is a language which can be used to define the
forwarding pipeline of network devices.

With P4 in combination with a programmable target arbitrary network features and protocols
can be implemented and operated on testing and productive networks. In this project part of the
IOAM protocol are implemented in P4 as well as the calculation of the green networking metrics.

These are the components involved in a P4 workflow. [8]

P4 Target Is a network device which can be hardware-based (FPGA, Programmable ASICs) or
software (running on x86).

P4 Program (prog.p4) Is target specific and classifies packets by header and the actions to take
on incoming packets (e.g., forward, drop).

P4 Compiler Is target specific and generates the runtime mapping metadata to allow the con-
trol and data planes to communicate using P4Runtime (prog.p4info). It also generates an
executable for the target data plane (target_prog.bin), specifying the header formats and
corresponding actions for the target device.

Figure 3.2 contains a logical overview of the components involved in a P4 program.

3. Programmable Forwarding Planes 21 of 96

Elaboration v1.0
Green Networking

Figure 3.2.: P4 Workflow [8]

For detailed information about P4 refer to the P4 Language Specification.

3.3. P4 Processing Pipeline
The P4 processing pipeline is based on the PISA architecture. Therefore the forwarding of packets
by a programmable network device always follows the same structure. Figure 3.3 illustrates the
packet forwarding process in a programmable network device.

1. Packet is received as INPUT

2. The headers of the packet is parsed into predefined data structures

3. The predefined data structures holding the header information is passed to the ingress
pipeline where forwarding decisions are made

4. The predefined data structures holding the header information is passed to the egress
pipeline where additional calculations are performed

5. The updated header information is deparsed into the outgoing packet format

6. The packet is sent as OUTPUT through the port which was determined as part of the
forwarding decisions

The following sections will describe the individual components in more detail.

3. Programmable Forwarding Planes 22 of 96

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

Elaboration v1.0
Green Networking

Figure 3.3.: P4 Processing Pipeline

3.3.1. Runtime Forwarding Rules (Control Plane Tables)
With P4 one can define how a network device does the forwarding operation but the behavior of
the control plane (e.g. routing protocols such as OSPF) are not programmed using P4. But with
P4 one can query information gathered by the control plane doing so called table lookups. These
table lookups are the interaction between the data plane and the control plane.

Information inside the control plane tables is accessed once a packet passes the ingress or egress
pipelines.

3.3.2. Parser
A parser is a finite state machine which maps the headers and metadata of the incoming packet
to predefined data structures. In the code snippet below there are two states.

• start

• parse_ethernet

Once a packet is received the parser is started and immediately transitions to the parse_ethernet
state. Inside the parse_ethernet state based on the ethernet header length (14 bytes) the extract
methods writes the same number of bytes into the predefined ethernet header data structure.
Depending on the information inside the type field of the already parsed ethernet header, the
parser transitions to the state parse_ipv4 or parse_ipv6 to continue parsing the IPv4 or IPv6
header respectively. Once all headers are parsed the parser will end up in the accept or reject
state.

In case the accept state was reached the program will continue executing the ingress pipeline
otherwise the packet will be dropped.

The code listing 3.1 defines the parser described above and additionally defines all related
constants, types and headers.

Listing 3.1: P4 Parsing Example
1 // Constants definition
2 const bit<16> TYPE_IPV4 = 0x800;
3 const bit<16> TYPE_IPV6 = 0x86DD;
4
5 // Type definition

3. Programmable Forwarding Planes 23 of 96

Elaboration v1.0
Green Networking

6 typedef bit<48> macAddr_t;
7
8 // Header definition
9 header ethernet_t {

10 macAddr_t dstAddr;
11 macAddr_t srcAddr;
12 bit<16> etherType;
13 }
14
15 // Parser
16 state start {
17 transition parse_ethernet;
18 }
19
20 state parse_ethernet {
21 packet.extract(hdr.ethernet);
22 transition select(hdr.ethernet.etherType) {
23 TYPE_IPV4: parse_ipv4;
24 TYPE_IPV6: parse_ipv6;
25 default: accept;
26 }
27 }
28
29 state parse_ipv4 {
30 <-- omitted -->
31 }
32
33 state parse_ipv6 {
34 <-- omitted -->
35 }

3.3.3. Ingress Pipeline
The ingress pipeline does the IPv4 and IPv6 forwarding. The information required to do the
forwarding correctly is stored inside the runtime forwarding rules in the control plane.

3.3.4. Egress Pipeline
The egress pipeline does additional processing related to network telemetry data stored within
the IOAM header. The following operations are performed within the egress pipeline.

• Initialization of network telemetry related headers
– IPv6 Hop by Hop Extension Header
– IOAM Trace Option Header
– IOAM Aggregation Option Header
– PadN Option Header

• Add trace data of the current node to the IOAM Trace Option Header

• Calculate the HEI

• Aggregate the HEI with the aggregate stored in the IOAM Aggregation Option Header to
set the current PEI value in the packet

3. Programmable Forwarding Planes 24 of 96

Elaboration v1.0
Green Networking

Similar to the ingress pipeline the egress pipeline uses the runtime forwarding rules in the
control plane for IOAM related processing. All related information regarding path tracing and
HEI calculation are defined in the control plane.

3.3.5. Deparser
The deparser is used to write the updated header information that was updated in the ingress
and egress pipelines back into the packet before it is resent. The emit function, which is defined
in the P4 core library for the packet_out data type, is used for this purpose. The emit function
writes all headers that are set as valid in the defined sequence to the packet.

3. Programmable Forwarding Planes 25 of 96

Elaboration v1.0
Green Networking

4. Development Environment

Before one can get started programming in general, one does need a development environment.
Dataplane-Programming in P4 does not only include the installation of an IDE but also the pro-
visioning of network devices - referred to as targets from now on - and the design and deployment
of a development network. The programmable targets can either be hardware devices with a
field-programmable gate array (FPGA) or can be virtualized.

The following section will discuss the most important decisions taken concerning the develop-
ment environment.

4.1. Decisions
Given the circumstance that currently no programmable network hardware is available at OST
Eastern Switzerland University of Applied Sciences, it was clear that a virtualized environment
will be used. Alexander Clemm, our external advisor, suggested to use Open vSwitch as a
programmable target. The setup and usage of Open vSwitch as P4 programmable targets is rather
complex and the P4-OVS project is not very well maintained. Without further investigation it
would have been a high risk to base our development platform on Open vSwitch.

As an alternative a fully simulated software switch called Behavioral Model Version 2 (BMv2)
is available and is the suggested platform to be used to develop P4 programs.

The following sections will further describe the BMv2 programmable target and will discuss
other important decisions taken.

4.1.1. Behavioral Model Version 2 (BMv2)
The BMv2 target is a software switch written in C++ not meant to be a production switch
but designed for P4 programming with flexibility in mind. One of the key advantage of this
target is, that the *control plane* can be defined with arbitrary tables using JSON syntax. This
implies that one has great flexibility during development as there are no limitations in the means
of available data in the control plane. For the development of efficiency indicators, which are
most likely based on data which is not available in todays control plane tables, this is an optimal
starting point.

For further information refer to the project behavioral-model on GitHub.

4.1.2. Mininet
In our project Mininet is used to run the development network including BMv2 nodes and Linux
endpoints. There is some very nice tooling already available by P4Lang to run networks based
on the BMv2 programmable target in Mininet mostly out of the box.

Mininet is an open-source software emulator that is primarily used for creating virtual networks
on a single physical or virtual machine. It allows users to simulate complex network topologies and
experiment with network configurations in a controlled and isolated environment. Mininet’s main
purpose is to provide a platform for testing, development, and research in the field of computer
networking, enabling users to study and evaluate network protocols and applications without the
need for physical network infrastructure.

4. Development Environment 26 of 96

https://github.com/p4lang/behavioral-model

Elaboration v1.0
Green Networking

4.1.3. Virtual Machine
In order to effectively work together in the team without struggling with compatibility issues
during development, a dedicated virtual machine is used by both team members. The virtual
machine is based on Ubuntu 23.04 which is compatible with all the required software components.

4.1.4. Development Network
As discussed in the previous chapter our development network is run virtually based on BMv2
on Mininet. This chapter describes the topology and the control plane definition of the BMv2
targets in more detail.

The requirements for the development network are:

• Predictable forwarding of traffic

• There should be paths with different lengths

• For direct comparability of PEI values there shall be at least two different paths between
an ingress- and an egress router

• Good troubleshooting capabilities (automatic captures and detailed logging)

4.1.5. Topology
The topology of the development network is illustraded in figure 8.1. It consists of six BMv2
programmable targets and four Linux endpoints.

2

10.100.0.0/24
2001:DB8:64::/64

10.200.0.0/24
2001:DB8:C8::/64

10.100.0.10
2001:DB8:64::10

10.200.0.20
2001:DB8:C8::20

S1 S2

S3 S4

1

3 1

2

2
1 3

1

2

H2

H1

H3

10.201.0.30
2001:DB8:C9::30

10.201.0.0/24
2001:DB8:C9::/64

4

Traffic Flow:

path1: H1-S1-S2-S4-H2
path2: H1-S1-S3-S4-H3
path3: H1-S1-S3-S4-S5-S6-H4

S6

S5

5

H4

10.255.0.40
2001:DB8:FF::40

10.255.0.0/24
2001:DB8:FF::/64

1

1

2

2

Figure 4.1.: Development Network Topology

Each endpoint is in a different network and connected to one of the BMv2 targets. The
endpoints are configured with IPv4 only but IPv6 traffic can still be sent and received using
Scapy which is sufficient to test our protocol on IPv6.

The BMv2 targets have no IP addresses assigned to their interfaces as they are not relevant
for IP forwarding when using a static control plane.

4. Development Environment 27 of 96

Elaboration v1.0
Green Networking

4.1.6. Control Plane Definition
One of the requirements to the development network is that the traffic forwarding is predictable.

 Information

Traffic can flow in both directions. To simplify the testing in a later stage, traffic usually
flows from left to right. That implies that H1 is the sender and H2, H3 and H4 are
considered receivers.

The resulting paths of the situation described in the info box are:

H1 - H2 Traffic on this path flows via S1-S2-S4.

H1 - H3 Traffic on this path flows via S1-S3-S4 and together with the previous path it fulfils the
requirement of two different paths between the same ingress- and egress routers.

H1 - H4 Traffic on this path flows via S1-S3-S4-S5-S6 and fulfils the requirement that there must
be paths with different lengths.

 Information

Traffic sent to H1 will always flow via S2.

The following JSON snippet is part of the control plane definition of S1. It adds a new
entry for the IP prefix 10.201.0.0/24 to the MyIngress.ipv4_lpm table. Part of the entry is the
specification of the action to call, in this case MyIngress.ipv4_forward and the action parameters.
The action parameters required for IPv4 forwarding is the destination MAC address of the next
hop and the egress port used to forward the packet.

1 {
2 "table": "MyIngress.ipv4_lpm",
3 "match": {
4 "hdr.ipv4.dstAddr": ["10.201.0.0", 24]
5 },
6 "action_name": "MyIngress.ipv4_forward",
7 "action_params": {
8 "dstAddr": "08:00:00:00:03:00",
9 "port": 2

10 }
11 }

4.1.7. IPv6 Functionality
With the tooling provided by P4lang IPv6 forwarding did not work out of the box. Besides
the implementation of IPv6 forwarding in P4 and the definition of IPv6 forwarding tables, the
p4_runtime library had to be expanded. The library did not support the encoding of IPv6
addresses.

Similar to the IPv4 forwarding table, the IPv6 entry looks as follows.
1 {
2 "table": "MyIngress.ipv6_lpm",

4. Development Environment 28 of 96

Elaboration v1.0
Green Networking

3 "match": {
4 "hdr.ipv6.dstAddr": ["2001:DB8:C9::", 64]
5 },
6 "action_name": "MyIngress.ipv6_forward",
7 "action_params": {
8 "dstAddr": "08:00:00:00:03:00",
9 "port": 2

10 }
11 },

4.1.8. Traffic simulation
In order to be able to efficiently test our P4 implementation, there is the need to easily simulate
traffic. A simple python CLI-application was written which can be used on the Linux endpoints
to send UDP traffic from a station A to a station B.

The CLI-application supports the following command line options.

–ipv4 Send only IPv4 traffic

–ipv6 Send only IPv6 traffic

–src The source of the traffic

–dst The destination of the traffic

–count Number of packets to be sent

 Information

The application sends real user traffic captured earlier. The usage of real user traffic is a
more realistic test scenario as packets of arbitrary size are transmitted over the network.
This is particularly interesting to analyze the behavior on exceedance of the maximum
transmission unit when adding metadata to a very large packet.

To send 50 packets from h2 to h3 with IPv4 and IPv6 each, the following command would be
used within the Mininet CLI.

1 > h2 python3 ./dev-network/utils/testing/send.py --src "h2" --dst "h3" --count 50

4.1.9. Automatic Packet Capture
For optimal insight and efficient debugging the Mininet environment is configured to automatically
capture traffic on all interfaces of the BMv2 targets. The captures are recreated every time the
topology is started. There is an individual pcap file for each interface and direction.

Consider the target S2 with two interfaces eth1 and eth2. The following four pcap files would
be created and traffic the traffic captured accordingly.

• s2-eth1_in.pcap

• s2-eth1_out.pcap

• s2-eth2_in.pcap

• s2-eth2_out.pcap

4. Development Environment 29 of 96

Elaboration v1.0
Green Networking

4.2. Installation
All required software is installed on our development virtual machine. As mentioned earlier the
virtual machine is based on Ubuntu 23.04.

To get the development environment up and running the following components need to be
installed.

4.2.1. Install Dependencies
Some of the installation steps require ‘curl‘ to be installed. Curl is available from the standard
Ubuntu apt repository and can be installed with the ‘apt-get install‘ command.

1 sudo apt-get install curl

4.2.2. Install Mininet
Mininet is available from the standard Ubuntu apt repository and can be installed with the
‘apt-get install‘ command.

1 sudo apt-get install mininet

4.2.3. Install BMv2
The BMv2 software switches are not available in the standard Ubuntu apt repository but after
adding the p4lang repository to the apt sources the required software can be installed with the
‘apt-get install‘ command.

1 . /etc/os-release
2 echo "deb

http://download.opensuse.org/repositories/home:/p4lang/xUbuntu_${VERSION_ID}/ /" |
sudo tee /etc/apt/sources.list.d/home:p4lang.list

3 curl -fsSL
"https://download.opensuse.org/repositories/home:p4lang/xUbuntu_${VERSION_ID}/Release.key"
| gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/home_p4lang.gpg > /dev/null

4 sudo apt update
5 sudo apt install p4lang-bmv2

4.2.4. Install P4 Compiler (p4c)
The P4 compiler is not available in the standard Ubuntu apt repository but after adding the
p4lang repository to the apt sources the required software can be installed with the ‘apt-get
install‘ command.

1 source /etc/lsb-release
2 echo "deb

http://download.opensuse.org/repositories/home:/p4lang/xUbuntu_${DISTRIB_RELEASE}/
/" | sudo tee /etc/apt/sources.list.d/home:p4lang.list

3 curl -fsSL
https://download.opensuse.org/repositories/home:p4lang/xUbuntu_${DISTRIB_RELEASE}/Release.key
| gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/home_p4lang.gpg > /dev/null

4 sudo apt-get update
5 sudo apt install p4lang-p4c

4. Development Environment 30 of 96

Elaboration v1.0
Green Networking

4.2.5. Install Python Dependencies
The python library scapy is used to send test traffic over the network. Install scapy using the
following command.

1 sudo apt-get install python3-scapy

4.3. Operation
To start and stop the development network with the BMv2 targets programmed with the current
version of the P4 application the ‘make‘ command can be used.

1 # start development network
2 make run
3 # stop the development network
4 make stop
5 # run automated tests
6 make test
7 # run automated demos
8 make demo

 Information

This only works inside the root directory of our P4 projects. The Makefile and the tooling
behind is provided by P4lang.

4. Development Environment 31 of 96

Elaboration v1.0
Green Networking

5. Testing

Testing is an essential part in software development. Find bugs before they end up in the pro-
duction environment. In the software engineering practices 2 module at the Eastern Switzerland
University of Applied Sciences the citation below was mentioned and it emphasizes the importance
of tests in software development.

Legacy code is code without tests. - Michael Feathers

As P4 is a domain-specific language and the code can only run on an actual target, there is
no option to perform unit tests on individual actions. As explained earlier with P4 one describes
the layout of the forwarding pipeline and this pipeline can only be tested in one piece. This
leads to the fact, that performing integration tests by sending traffic through a test network and
validating the packet contents on the receiver side, is the way to test the proper functioning of
P4 applications. In P4 there is no built in test framework as it is the case in other languages so
a solution to test our code needs to be elaborated in the scope of this project.

5.1. Scope
With the elaborated testing platform all IOAM Aggregation Option and IOAM Pre-allocated
Trace-Option header fields shall be validated for correctness. All other header fields are not part
of the validation process.

5.2. Requirements
The following requirements shall be met by the test application in order to ensure the testability
of the elaborated P4 application. Additionally the elaborated solution shall be usable as a traffic
generator and data exporter for our demo application.

• The test execution must be fully automated

• The testcases must be definable in a flexible and declarative way so that:
– The test path can be selected
– The number of packets can be selected
– The values in the control plane of an arbitrary table can be set to an arbitrary value

(also referred to as parameter patching)
– Chose whether to automatically continue to the next testcase or wait for user input

(especially relevant for the demo application use case)

• The control plane of the software switches must be configurable by testcase

• The receiving station must be able to precalculate the results by testcase

• The test results must be displayed clearly

• The test results must be logged in detail to ensure maximum transparency

5. Testing 32 of 96

Elaboration v1.0
Green Networking

• All implemented IOAM Aggregation Option aggregators must be testable

• The IOAM Trace-Option must be testable (including overflow)

• The received data shall be exported to a JSON file readable by the demo application

5.3. Architecture
The specification of a well-designed architecture during the elaboration phase is key for the
success in the construction phase. Figure 5.1 illustrates the elaborated architecture for the testing
platform.

2

10.100.0.0/24
2001:DB8:64::/64

10.200.0.0/24
2001:DB8:C8::/64

10.100.0.10
2001:DB8:64::10

10.200.0.20
2001:DB8:C8::20

S1 S2

S3 S4

1

3 1

2

2
1 3

1

2

H2

H1

H3

10.201.0.30
2001:DB8:C9::30

10.201.0.0/24
2001:DB8:C9::/64

4

Traffic Flow:

path1: H1-S1-S2-S4-H2
path2: H1-S1-S3-S4-H3
path3: H1-S1-S3-S4-S5-S6-H4

S6

S5

5

H4

10.255.0.40
2001:DB8:FF::40

10.255.0.0/24
2001:DB8:FF::/64

1

1

2

2

Demo Application
Jupyter Notebook

Network Admin

write to file on VM

write to file on VM

import

import

h2.json

h3.json

hx.json files contain packet data
relevant for the demo in JSON

format

write to file on VM
import

h4.json

Mininet

Ubuntu DEV-VM

Figure 5.1.: Testing Architecture

5.3.1. Design Decisions
• H2 and H3 are connected to the same switch to ensure that traffic can be sent via the

network from S1 (ingress) to S4 (egress) via two different paths.

• The path to H4 is longer than 4 hops, which is more than the pre-allocated node list length,
to be able to test the overflow case of the IOAM Pre-allocated Trace-Option.

• Traffic is always sent by H1 and received by H2, H3 or H4 as this will reduce the number
of possible paths and therefore reduce overall complexity.

• Data received by H2, H3 and H4 is exported using the JSON format, to a file on the host
virtual machine which can be imported by a demo application for further investigation. We
neglected the export of data using a network connection, to avoid interference with the test
execution and reduce overall complexity.

5. Testing 33 of 96

Elaboration v1.0
Green Networking

• The sender and the receivers shall be configured with the exact same testcases file.

5.3.2. Context
The orange boundary in figure 5.1 clarifies that the whole environment is executed on the Ubuntu
development virtual machine. Inside that virtual machine the development environment illus-
trated by the green boundary described in chapter 4 in the elaboration part is run using Mininet.

5.3.3. Test Procedure
This section describes on a high level how the tests are carried out and again refers to figure 5.1.

A user on the Ubuntu DEV-VM, typically the developer who wants to run the test, types make
test to run the test job defined in the Makefile. The test job will start the Mininet development
environment. Once the environment is started the testcases definition is read. On all destinations
of all testcases H2, H3 and H4 an instance of the test receiver program is started.

Test Sender According to the parameter patches defined in the current testcase the BMv2 soft-
ware switches are reprogrammed. Once the network is ready, a process on H1 is started to
send traffic to the destination specified in the testcase. Once the traffic was sent the BMv2
configuration is reset to default. This happens again for every testcase defined.

Test Receiver According to the paths defined inside the testcases json file the relevant testcases
are extracted. The receiver now waits for the number of packets expected for the first test
case. As soon as the expected number of packets is received the program will carry on and
calculate the expected values of all header fields which need to be verified. Each verification
is logged. Finally each packet is exported in json format.

The test view collects the information out of the log files.

5. Testing 34 of 96

Elaboration v1.0
Green Networking

6. Demo Application

As defined in UC06 in chapter 3 in the inception part, energy efficiency related data shall be
collected in a demo application. The use case originally specified that the statistics should be
displayed on a CLI interface, but to present the collected data more clearly, it was decided to
use a Jupyter Notebook instead, which supports plotting the collected data in diagrams. For
demonstration purposes, the specific parameter values will be updated during runtime to see the
impact on the PEI of a path.

6.1. Jupyter Notebook
A decision was made to use a Jupyter Notebook as a demo application, which brings several
advantages to our project:

• Jupyter Notebooks are interactive, which means that users can play around with the code
and see the results in real-time.

• The Jupyter Notebook allows to create visualizations, such as graphs, charts and plots to
illustrate complex concepts and data. This makes it easier to understand and remember
the demo.

• Jupyter Notebook is relatively easy to set up and it’s not necessary to install huge testing
framework to visualize the findings of the project.

6.2. Demonstration Content
The following scenarios should be provided in the demo application:

• The variation of the energy mix value on path 1 (S1-S2-S4) and path 2 (S1-S3-S4) is to be
visualized during a simulated day where the sustainable energy generated by solar power
fluctuates.

• A comparison should visualize the different PEI values between path 1 and path 2. For this
demo case it is necessary that the ingress and egress nodes are the same because paths with
different origins and destinations are not directly comparable.

• The most efficient and most inefficient node of path 1 should be visualized in a diagram.

• A diagram should visualize the composition of the PEI value divided into the individual
components which contributed to the PEI value.

• A path statistic shows the most important information of a path as defined in UC06 in
chapter 3 in the inception part.

6.2.1. Example Calculation
The demo application should provide a step-by-step guide explaining the calculation of the PEI
value based on a specified demo case.

6. Demo Application 35 of 96

Part III.

Construction

Construction v1.0
Green Networking

1. Parser

This chapter describes the basic concepts related to a packet parser in P4. Furthermore the
parser logic implemented in this project to parse network packets in the format introduced in the
previous chapter will be described in detail.

1.1. Concepts
A P4 parser describes a state machine with one start state and two final states. The start state
is always named start. The two final states are named accept (indicating successful parsing) and
reject (indicating a parsing failure). The start state is part of the parser, while the accept and
reject states are distinct from the states provided by the programmer and are logically outside of
the parser. Figure 1.1 illustrates the general structure of a parser state machine. [9]

Figure 1.1.: P4 Parser Structure

1.1.1. Parser Declaration
To declare a parser in P4 the parser keyword is used. The arguments provided to a parser are
the incoming packet, the target headers data structure and metadata which might be updated
during parsing.

Listing 1.1: P4 Parser Declaration
1 parser MyParser(packet_in packet,
2 out headers hdr,
3 inout metadata meta,
4 inout standard_metadata_t standard_metadata) {}

1.1.2. Parser State Definition
An example state definition is given in section 3.3.2 in the elaboration part within the introduction
to P4. For even more information refer to the P4 language specification section Packet parsing.

1. Parser 37 of 96

https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html#sec-packet-parsing

Construction v1.0
Green Networking

1.2. Parser State Machine
This section outlines the state machine of the parser elaborated during this project. Figure 1.2
contains the diagram of the finite state machine of the parser.

Packet Parser

parse_ethernetType = 0x800

parse_ipv4

Type = 0x86DD

parse_ipv6parse_ipv6_ioam_t_ext_hop_by_hop NH = 0x0

parse_ioam_t_ipv6_option

parse_ioam_t_ioam

parse_ioam_t_ioam_trace

parse_ioam_a_ioam

parse_udp NH = 0x11

parse_padn_ipv6_option

parse_padn_data

Type = 0x1

Option-Type = 0x0

NH = 0x11

parse_ioam_a_ipv6_option

Type = 0x31

parse_ioam_a_ioam_aggregation

Option-Type = 0x20

Type = 0x31

accept reject

default

default

default

default

default

default

default

start

default

default

Figure 1.2.: Packet Parser State Machine

1. Parser 38 of 96

Construction v1.0
Green Networking

1.2.1. Parsing Flow
This section explicates in prose the flow of packet parsing given the state machine in figure 1.2.

Once a network packet enters the programmable target it is parsed using the given state
machine.

• The parsing process begins in the start state and to parse the first header it immediately
transitions to the parse ethernet state because the very first header present is the Ethernet
header. The Ethernet header contains a type field which identifies the following protocol.
Our implementation supports the forwarding of IPv4 and IPv6 packets or native Ethernet
frames. In the parse ethernet state the transition to the next state depends on the value
in the type field.

• If the value is equal to 0x800 the state machine transitions to the parse ipv4 state. In
this state the IPv4 header data is extracted and because no efficiency indicator specific
implementation was attempted for IPv4 in this project, after extraction the parsing ends in
the accept state.

• If the value is equal to 0x86DD the state machine transitions to the parse ipv6 state. In
this state the IPv6 header data is extracted and the transition to the next state is based on
the Next Header field inside the IPv6 header.

• If the value is neither 0x11 nor 0x0 the state machine transitions to the accept state.

• If the value is equal to 0x11 the state machine transitions to the parse udp state where
the data is extracted into the provided UDP header data structure. After the UDP header
was extracted the state machine transitions to the accept state.

• If the value is equal to 0x0 the state machine transitions to the parse ipv6 ioam t ext
hop by hop state where the Next Header and Length of the Hop-by-Hop Options extension
header is extracted. Once the data is extracted the state machine transitions to the parse
ioam t ipv6 option state where the Option Type and Option Length is extracted. The
transition to the next state is based on the Option Type value.

• If the value is anything else than 0x31 the state machine transition to the accept state.

• If the value is equal to 0x31 the option type is IOAM and the state machine transitions to
the parse ioam t ioam state. In this state the IOAM Option Type and the Reserved field
are extracted. The transition to the next state is based on the IOAM Option Type value.

• If the value is anything else than 0x0 the state machine transition to the accept state.

• If the value is equal to 0x0 the IOAM option type is the Pre-allocated Trace-Option and
the state machine transitions to parse ioam t ioam trace. In this state the IOAM Trace
Option data is extracted into the given data structure. Once the data is extracted the state
machine transitions to the parse ioam a ipv6 option state where the Option Type and
Option Length is extracted. The transition to the next state is based on the Option Type
value.

• If the value is anything else than 0x31 the state machine transition to the accept state.

• If the value is equal to 0x31 the option type is IOAM and the state machine transitions to
the parse ioam a ioam state. In this state the IOAM Option Type and the Reserved field
are extracted. The transition to the next state is based on the IOAM Option Type value.

1. Parser 39 of 96

Construction v1.0
Green Networking

• If the value is anything else than 0x0 the state machine transition to the accept state.

• If the value is equal to 0x20 the IOAM option type is the Aggregation-Option and the
state machine transitions to parse ioam a ioam aggregation. In this state the IOAM
Aggregation Option data is extracted into the given data structure. Once the data is
extracted the state machine transitions to the parse padn ipv6 option state where the
Option Type and Option Length is extracted. The transition to the next state is based on
the Option Type value.

• If the value is anything else than 0x1 the state machine transition to the accept state.

• If the value is equal to 0x1 the option type is the PadN Option and the state machine
transitions to the parse padn data state. In this state the padding data is extracted and
depending on the Next Header field of the Hop-by-Hop Options extension header the state
machine transitions to the next state.

• If the value is anything else than 0x11 the state machine transitions to the accept state.

• If the value is equal to 0x11 the state machine transitions to the parse udp state where
the data is extracted into the provided UDP header data structure. After the UDP header
was extracted the state machine transitions to the accept state.

1.2.2. States
This section briefly explains each state of the state machine mentioning the target data structure
and transition conditions.

parse_ethernet Parses the Ethernet header. 14 bytes are extracted into an instance of the
ethernet_t data structure and the transition to the next state is based on the Ethernet
type field.

parse_ipv4 Parses the IPv4 header. 20 bytes are extracted into an instance of the ipv4_t data
structure. There are no transition conditions.

parse_ipv6 Parses the IPv6 header. 40 bytes are extracted into an instance of the ipv6_t data
structure. The transition is based on the next header field.

parse_ipv6_ioam_t_ext_hop_by_hop Parses IPv6 extension header related fields. The Hop-
by-Hop Option data parsing is not part of this state. 2 bytes are extracted into the
ipv6_ext_hop_by_hop_t data structure. There are no transition conditions.

parse_ioam_t_ipv6_option Parses the fields identifying the IPv6 Hop-by-Hop Option. In this
state the expected option type is the IOAM option. 2 bytes are extracted into an instance
of the ipv6_option_t data structure. The transition is based on the option type field.

parse_ioam_t_ioam Parses the fields identifying the IOAM option type. In this state the ex-
pected option type is the Pre-allocated IOAM Trace-Option. 2 bytes are extracted into an
instance of the ioam_t data structure and the transition is based on the IOAM option type.

parse_ioam_t_ioam_trace Parses the Pre-allocated IOAM Trace-Option data. 8 bytes plus the
length of the node list are extracted into an instance of the ioam_trace_t data structure.
There are no transition conditions.

parse_ioam_a_ipv6_option Parses the fields identifying the IPv6 Hop-by-Hop Option. In this
state the expected option type is the IOAM option. 2 bytes are extracted into an instance
of the ipv6_option_t data structure. The transition is based on the option type field.

1. Parser 40 of 96

Construction v1.0
Green Networking

parse_ioam_a_ioam Parses the fields identifying the IOAM option type. In this state the
expected option type is the IOAM Aggregation-Option. 2 bytes are extracted into an
instance of the ioam_t data structure and the transition is based on the IOAM option
type.

parse_ioam_a_ioam_aggregation Parses the IOAM Aggregation-Option data. 8 bytes plus
the length of the node list are extracted into an instance of the ioam_aggregation_t data
structure. There are no transition conditions.

parse_padn_ipv6_option Parses the fields identifying the IPv6 Hop-by-Hop Option. In this
state the expected option type is the PadN option. 2 bytes are extracted into an instance
of the ipv6_option_t data structure. The transition is based on the option type field.

parse_padn_data Parses the PadN NULL bytes. The number of NULL bytes depends on the
amount of padding required. In this scenario 6 bytes padding is required in total, less the 2
bytes required for the PadN option identification, so a total of 4 NULL bytes are present.
4 bytes are extracted into an instance of the option_padn_data_t data structure. The
transition is based on the next header field of the Hop-by-Hop Options extension header.

parse_udp Parses the UDP header. 8 bytes are extracted into an instance of the udp_t data
structure. There are no transition conditions.

accept Final state after successful parsing.

reject Final state after failed parsing.

1. Parser 41 of 96

Construction v1.0
Green Networking

2. Forwarding Pipelines

This chapter describes the implementation of the two forwarding pipelines which are present in
the P4 program. For more information about conceptual decisions refer to the section 3.3 in the
elaboration part.

2.1. Ingress Pipeline
As soon as the parsing of the packet is complete, it is processed by the ingress pipeline. The
ingress pipeline is responsible for the proper IPv4 and IPv6 forwarding. Header fields are updated
and forwarding decisions are made based on the information inside the runtime configuration of
the BMv2 targets.

2.1.1. Actions
The following actions are defined in the ingress pipeline.

drop This action is used to drop a packet in case no matching forwarding entry was found in the
control plane tables.

ipv4_forward This action is used to update the IPv4 header fields and the metadata accordingly.
It takes the destination MAC address and the egress port as input. The egress_spec field
of the metadata is set to the value of the egress port parameter. The Ethernet header fields
are updated accordingly. The time to live header field is decremented by one.

ipv6_forward This action is used to update the IPv6 header fields and the metadata accordingly.
It takes the destination MAC address and the egress port as input. The egress_spec field
of the metadata is set to the value of the egress port parameter. The Ethernet header fields
are updated accordingly. The hop limit header field is decremented by one.

2.1.2. Tables
The following tables are defined in the ingress pipeline.

ipv4_lpm This table is used to lookup the forwarding information required to forward an IPv4
packet given the IPv4 destination address. The required forwarding information is the
destination MAC address and the egress port. The matching is based on the longest prefix
match algorithm which is applied on the specified key which is the destination IPv4 address.
On a match the action ipv4_forward is called and on a miss the drop action is called.

ipv6_lpm This table is used to lookup the forwarding information required to forward an IPv6
packet given the IPv6 destination address. The required forwarding information is the
destination MAC address and the egress port. The matching is based on the longest prefix
match algorithm which is applied on the specified key which is the destination IPv6 address.
On a match the action ipv6_forward is called and on a miss the drop action is called.

2. Forwarding Pipelines 42 of 96

Construction v1.0
Green Networking

2.1.3. Apply
The apply block of the ingress pipeline applies the appropriate table based on the IP header
validity. In case the IPv4 header is valid, which means that the header was parsed successfully,
the ipv4_lpm table is applied. In case the IPv6 header is valid, the ipv6_lpm table is applied.

Listing 2.1: Ingress pipeline apply block
1 apply {
2 // IP Forwarding
3 if (hdr.ipv4.isValid()) {
4 ipv4_lpm.apply();
5 }
6 if (hdr.ipv6.isValid()) {
7 ipv6_lpm.apply();
8 }
9 }

2.2. Egress Pipeline
Once a packet has passed the ingress pipeline, it is processed by the egress pipeline. The egress
pipeline does not specify any actions or tables but calls dedicated controllers instead. In the
egress pipeline energy efficiency indicator related process is carried out.

2.2.1. Apply
As specified in UC03 in chapter 3 in the inception part, the energy efficiency related data should
be stored inside the Hop-by-Hop Option extension header. This implies that the controllers
specified in the apply block of the egress pipeline are only applied in case the IPv6 header is
valid. If the incoming packet is a valid IPv6 packet the controllers are called in the specific order.

1. Initialize the IPv6 Hop-by-Hop Options extension header

2. Add path tracing information using the IOAM Pre-Allocated Trace Option

3. Calculate the HEI and initialize related IOAM Aggregation Option metadata

4. Aggregate the HEI stored inside the metadata to the data packet with the specified aggre-
gator

Listing 2.2: Egress pipeline apply block
1 apply {
2 if (hdr.ipv6.isValid()) {
3 // Initialize IPv6 Extension Headers
4 process_ipv6_ext_header_init.apply(hdr, meta, standard_metadata);
5 // IOAM Tracing
6 process_ioam_tracing.apply(hdr, meta, standard_metadata);
7 // Efficiency Indicator
8 process_efficiency_indicator.apply(hdr, meta, standard_metadata);
9 // IOAM Aggregation

10 process_ioam_aggregation.apply(hdr, meta, standard_metadata);
11 }
12 }

The controllers are described in more detail in the following chapters.

2. Forwarding Pipelines 43 of 96

Construction v1.0
Green Networking

3. IPv6 Extension Header

As specified in the use case description of UC03 in chapter 3 in the inception part, the IOAM
header information shall be added to IPv6 packets using the Hop-by-Hop Options header defined
in RFC 2460. This chapter briefly describes the header format elaborated during the construction
phase of this project.

3.1. Hop-by-Hop Options Header
The Hop-by-Hop Options header is used to carry optional information that must be examined
by every node along a packet’s delivery path. The Hop-by-Hop Options header is identified by a
Next Header value of 0 in the IPv6 header, and has the following format: RFC 2460

 Information

The Options field in the format specification in listing 3.1 is of variable length and carries
option specific data.

Listing 3.1: Hop-by-Hop Option Format
+-+
| Option Type | Opt Data Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Options .
. .
| |
+-+

 Warning

Each extension header should occur at most once, except for the Destination Options header
which should occur at most twice (once before a Routing header and once before the upper-
layer header). This means that there will be one Hop-by-Hop Options header
carrying multiple options inside an IPv6 packet.

3.1.1. Options
The options carried by an IPv6 packet in an efficiency indicator enabled network, contains at
least the following options inside the Hop-by-Hop Options header.

3. IPv6 Extension Header 44 of 96

https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460

Construction v1.0
Green Networking

IOAM Trace Option 224-bit (including the fields: Option Type and Opt Data Len) header area
used to store path tracing related data. More detailed information about the specific header
fields of that option are described in chapter 4 in the construction part.

IOAM Aggregation Option 160-bit (including the fields: Option Type and Opt Data Len) header
area used to store energy efficiency indicator data More detailed information about the spe-
cific header fields of that option are described in chapter 5 in the construction part.

PadN 48-bit (including the fields: Option Type and Opt Data Len) header area used to pad out
the containing header to a multiple of 8 octets in length.

3.2. Header Structure Overview
The header structure specification in listing 3.2 shows the structure of the Hop-by-Hop Options
header used in this project. Each line has a length of 4 bytes and the total header has a size of
56 bytes.

 Information

The three Options already explained above are preceded by the two fields Option Type and
Opt Data Len.

Listing 3.2: IPv6 Hop-by-Hop Options Header Structure
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Next Header | Hdr Ext Len | Option Type | Opt Data Len |
+-+
| IOAM Trace Option |
+-+
| IOAM Trace Option |
+-+
| IOAM Trace Option |
+-+
| IOAM Trace Option |
+-+
| IOAM Trace Option |
+-+
| IOAM Trace Option |
+-+
| IOAM Trace Option | Option Type | Opt Data Len |
+-+
| IOAM Aggregation Option |
+-+
| IOAM Aggregation Option |
+-+
| IOAM Aggregation Option |
+-+
| IOAM Aggregation Option |
+-+
| IOAM Aggregation Option | Option Type | Opt Data Len |
+-+

3. IPv6 Extension Header 45 of 96

Construction v1.0
Green Networking

| PadN |
+-+

3.2.1. Wireshark
In the following Wireshark capture, the previously described IPv6 Hop-by-Hop Option header is
visible in the structure of a packet. As one can see, there is one IOAM Option for the IOAM
Pre-allocated Trace-Option and another one for the IOAM Aggregation Option. At the end there
is the PadN option, adding the required padding for the extension header alignment.

Figure 3.1.: Wireshark capture of the IPv6 Hop-by-Hop Option header

3.3. Header Initialization in P4
The initialization of the IPv6 Hop-by-Hop extension header is implemented in a seperate controller
called process_ipv6_ext_header_init located in efficiency-indicator-p4/includes/ipv6_ext_header.p4.

3.3.1. Actions
init_ipv6_ext_hop_by_hop This action is used to initialize the header fields of the IPv6 Hop-

by-Hop Option extension header. Additionally the next header field of the IPv6 header is
updated to the value of 0, which is defined to identify the following header as a Hop-by-Hop
extension header.

3.3.2. Apply
The apply block calls the action described above in case the IPv6 Hop-by-Hop extension header
is not yet initialized.

Listing 3.3: Hop-by-Hop extension header controller apply block
1 apply {
2 if (!hdr.ipv6_ext_hop_by_hop.isValid()) {
3 init_ipv6_ext_hop_by_hop();

3. IPv6 Extension Header 46 of 96

Construction v1.0
Green Networking

4 }
5 }

3. IPv6 Extension Header 47 of 96

Construction v1.0
Green Networking

4. IOAM Tracing

As specified in section 4.1 in the inception part in FR6, the calculated PEI value must be
assignable to the path the packet traversed. In order to fulfill that functional requirement the
IOAM Trace-Option type is used to store the node identifiers of the nodes the packet traversed
as metadata in the packet.

The IOAM Trace-Option is stored inside the IPv6 Hop-By-Hop extension header as described
in chapter 3 in the construction part.

4.1. Header Structure
As described in chapter 3 in the construction part, the Pre-allocated IOAM Trace-Option header
is inserted into the IOAM option as part of the IPv6 Hop-by-Hop Options extension header.
The Pre-allocated IOAM Trace-Option header is of fixed size and consists of two components.
The first component, illustrated by listing 4.1, contains general IOAM metadata required during
processing. The second component, illustrated by listing 4.2, is the pre-allocated node data
list containing the actual trace data in the format of a defined IOAM Trace-Type according to
RFC 9197.

In our test environment the number of pre-allocated node data list entries is four, which means
that a maximum number of four hops can be traced.

For more information about the individual fields refer to RFC 9197.

Listing 4.1: Pre-allocated and Incremental Trace-Option header RFC 9197
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Namespace-ID |NodeLen | Flags | RemainingLen|
+-+
| IOAM Trace-Type | Reserved |
+-+

Listing 4.2: 4 octets aligned option data RFC 9197
+-+<-+
node data list [0]	
+-+ D	
	a
node data list [1]	t
	a
+-+	
~ ... ~ S	
+-+ p	
	a
node data list [n-1]	c
	e
+-+ |

4. IOAM Tracing 48 of 96

https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc9197

Construction v1.0
Green Networking

node data list [n]	
+-+<-+

4.1.1. IOAM Trace-Type
The format of the node data list entries follows the Hop_Lim and node_id Short format as
specified in RFC 9197. The first 8 bits of each entry is used to store the current hop limit and
the last 24 bits are used to store the node id of the current node.

Listing 4.3: Hop_Lim and node_id Short Format RFC 9197
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+

4.1.2. Wireshark
In the following Wireshark capture, the previously described IOAM Pre-allocated Trace-Option
is visible in the header structure of a packet. As one can see, three nodes have already been
traced and it’s possible to trace one more due to the pre-allocation of four entries in the node
list.

Figure 4.1.: Wireshark capture of the IOAM Trace-Type

4.2. Implementation in P4
The following sections will describe the individual P4 software components related to the IOAM
Pre-allocated Trace-Option in more detail excluding the parser which is described in chapter 1 in
the construction part.

4. IOAM Tracing 49 of 96

https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc9197

Construction v1.0
Green Networking

4.2.1. Constants
The constants definition can be found in efficiency-indicator-p4/includes/constants.p4. The fol-
lowing values related to the IOAM Trace-Option are defined as constants.

Listing 4.4: IOAM Trace-Option Constants
1 const bit<8> IOAM_OPTION_TYPE_CHG = 0x31;
2 const bit<8> IOAM_PRE_ALLOC_TRACE_OPTION_TYPE = 0x0;
3 const bit<8> IOAM_TRACE_NUM_NODES = 4;
4 const bit<8> IOAM_TRACE_DATA_LIST_LEN = IOAM_TRACE_NUM_NODES * 32;
5 const bit<8> IOAM_TRACE_OPTION_DATA_LEN = 10 + IOAM_TRACE_NUM_NODES * 4;

IOAM_OPTION_TYPE_CHG This value is used in the IPv6 Hop-By-Hop extension header
to identify the IOAM Option. This specific value specifies that the IOAM Option data is
allowed to change in transit. The value is defined by IANA [7].

IOAM_PRE_ALLOC_TRACE_OPTION_TYPE This value is used to identify the IOAM Pre-
allocated Trace-Option type. The value is defined by IANA [6].

IOAM_TRACE_NUM_NODES This value defines the length in number of nodes of the pre-
allocated node_list.

IOAM_TRACE_DATA_LIST_LEN This value defines the length in bits of the pre-allocated
node_list. One node_list entry is 32 bits in size. To calculate the value apply the formula
below.

IOAM_TRACE_DATA_LIST_LEN = IOAM_TRACE_NUM_NODES · 32 Bits

IOAM_TRACE_OPTION_DATA_LEN This value defines the total length of the IOAM Pre-
allocated Trace-Option. It includes IOAM Option identifying information and the IOAM
Pre-allocated Trace-Option header. The value is the sum of the following headers and
header fields, where the last summand of the calculation represents the size of the node list
in bytes containing the trace data.

IOAM_TRACE_OPTION_DATA_LEN = 1 Byte IOAM Opt-Type
+ 1 Byte Reserved
+ 8 Byte IOAM Trace-Option Header
+ (IOAM_TRACE_NUM_NODES · 4 Byte)

The constants described above are used in the following type, header and controller definition.

4.2.2. Types
There are no IOAM Trace-Option specific type aliases.

4.2.3. Headers
This section describes the definition of the IOAM Trace-Option header. The header definition can
be found in efficiency-indicator-p4/includes/headers.p4. The header fields are defined according
to RFC 9197.

The IOAM Trace-Option header type is called ioam_trace_t and contains seven fixed sized
header fields. The size of the dataList field is defined at compile time using one of the constants
described in the previous section.

4. IOAM Tracing 50 of 96

https://tools.ietf.org/html/rfc9197

Construction v1.0
Green Networking

Listing 4.5: IOAM Trace-Option Header
1 header ioam_trace_t {
2 bit<16> namespaceID;
3 bit<5> nodeLen;
4 bit<4> flags;
5 bit<7> remainingLen;
6 bit<24> ioamTraceType;
7 bit<8> reserved;
8 bit<(IOAM_TRACE_DATA_LIST_LEN)> dataList;
9 }

4.2.4. Controller
The process_ioam_tracing controller is responsible for IOAM Trace-Option related processing.
It takes the header structures initialized by the parser, custom metadata and standard metadata
as input.

The controller definition can be found in efficiency-indicator-p4/includes/ioam_tracing.p4.
In the following section the controllers actions are described which give information about how

header fields are updated in this state of the match action pipeline.

4.2.4.1. Actions

Actions are the place where the actual manipulation of header data occurs. In the case of the
IOAM Trace-Option controller there are mainly two actions where one is responsible to initialize
the IOAM Trace-Option header if it does not exist and the other one is used to add an additional
trace entry.

ioam_trace_push This action sets the IPv6 Hop-by-Hop option, IOAM option and the IOAM
Trace-Option headers to valid and all related header fields are set to the initial value.

ioam_trace_node This action is used to add the 32 bit node entry in the hop_lim node_id
short format according to RFC 9197. The content of the dataList field is shifted to the left
by 32 bits and afterwards the last 32 bits of the dataList are set to the new node entry
using the logical OR operation. Finally the remaining length field is decremented by one.

4.2.4.2. Tables

This section describes the tables relevant for the IOAM Trace-Option. As described in section
3.3.1 in the elaboration part, the control plane tables are the linkage between the control plane
and the data plane. In this case the nodeID value needed in the ioam_trace_node action is
gathered from the control plane through a table lookup.

The table is called ioam_trace_node_exact and is defined as follows for s1 in efficiency-
indicator-p4/dev-network/s1-runtime.json.

Listing 4.6: S1 IOAM Trace-Option Table Definition
1 {
2 "table": "MyEgress.process_ioam_tracing.ioam_trace_node_exact",
3 "match": {
4 "hdr.ethernet.srcAddr": [
5 "08:00:00:00:01:00"
6]
7 },
8 "action_name": "MyEgress.process_ioam_tracing.ioam_trace_node",

4. IOAM Tracing 51 of 96

https://tools.ietf.org/html/rfc9197

Construction v1.0
Green Networking

9 "action_params": {
10 "nodeID": 1
11 }
12 }

The complete table name consists of multiple parts separated by a dot.

MyEgress Name of the pipeline

process_ioam_tracing Name of the controller

ioam_trace_node_exact Name of the actual table

Each table must specify at least one match entry. In this case the source ethernet address is
matched on the given address. The given address is the address of s1.

Each table must specify an action which will be called on a match. In this case the action
ioam_trace_node will be called on a match and the parameter nodeID with the value set to 1
will be passed to the specified action.

In P4 the table match action is specified as follows.

Listing 4.7: IOAM Trace-Option Match Action
1 table ioam_trace_node_exact {
2 key = {
3 hdr.ethernet.srcAddr: exact;
4 }
5 actions = {
6 ioam_trace_node;
7 NoAction;
8 }
9 size = 1;

10 }

4.2.4.3. Apply

The apply block in a P4 program is used to make decision which table to apply or action to
call based on conditions most likely given by header values or header validity state. To initialize
the IOAM Trace-Option header, based on the statement in the apply block, the controller calls
the ioam_trace_push action in case the IOAM trace header is invalid. In case the remainingLen
is greater than 0 the table ioam_trace_node_exact is applied to add the current node to the
nodeList. Otherwise the overflow bit is set to 1.

Listing 4.8: IOAM Trace-Option Apply Block
1 apply {
2 if (!hdr.ioam_t_ioam_trace.isValid()) {
3 ioam_trace_push();
4 }
5 if (hdr.ioam_t_ioam_trace.remainingLen > 0) {
6 // add node id and hop count to array
7 ioam_trace_node_exact.apply();
8 } else {
9 // set overflow bit

10 hdr.ioam_t_ioam_trace.flags = hdr.ioam_t_ioam_trace.flags | 0x8;
11 }
12 }

4. IOAM Tracing 52 of 96

Construction v1.0
Green Networking

4.3. Limitations
• The current implementation supports a maximum number of 4 traceable nodes which is

enough for testing purposes in the simulated environment. This limitation arises due to the
maximum header field size of 128 bits on the BMv2 target. Each entry in the node list has
a size of 32 bits. In case similar limitations exist on hardware targets, a possible mitigation
could the usage of a dedicated header stack type for the node list.

4. IOAM Tracing 53 of 96

Construction v1.0
Green Networking

5. IOAM Aggregation

As specified in section 4.1 in the inception part, in FR3, FR4 and FR5, the energy efficiency
related data shall be stored in the corresponding packet as part of the header metadata. The
non functional requirement NFR5 specified in 4.2 in the inception part additionally states that
the energy efficiency related data shall be of constant size regardless of the number of hops. In
order to fulfill this requirement data of an individual node must be aggregated and that is where
the IOAM Aggregation Option comes in. The IOAM Aggregation Option is used to aggregate
the HEI to the PEI. The IOAM Aggregation Option supports different aggregators with which
all three mentioned functional requirements can be fulfilled.

5.1. Header Structure
As described in chapter 3 in the construction part, the IOAM Aggregation Option header is
inserted into the IOAM option as part of the IPv6 Hop-by-Hop Options extension header. The
structure of the IOAM Aggregation Option header is illustrated in listing 5.1. The header has a
constant size of 16 bytes.

Listing 5.1: IOAM Aggregation Option Type Format [2]
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Namespace-ID | Flags | Reserved |
+-+
| IOAM Data Param | Aggregator |
+-+
| Aggregate |
+-+
| Auxil-data Node-ID | Hop Count |
+-+

A selection of header fields are further explained in the following sections. For more information
refer to the IETF draft-cxx-ippm-ioamaggr [2].

5.1.1. IOAM Data Param
This 24-bit field identifies the data parameter that is to be aggregated across the nodes. As
of today there is no data parameter defined by IANA for the IOAM Aggregation Option. In
the scope of this project the value 0xFF was selected to identify the efficiency indicator data
parameter.

5.1.2. Aggregator
This 8-bit field specifies the aggregator to be used for aggregation. The IOAM Aggregation
Option supports four different aggregators which are sum, minimum, maximum and average.
Three of the four aggregators are implemented and used in this project to fulfill the functional
requirements specified in 4.1 in the inception part.

5. IOAM Aggregation 54 of 96

Construction v1.0
Green Networking

SUM (0x1) Aggregates the HEI values to the PEI value (FR3).

MIN (0x2) Determines the node with the minimum HEI (most efficient) in a path (FR5).

MAX (0x4) Determines the node with the maximum HEI (most inefficient) in a path (FR4).

AVG (0x8) No use case in this project for this aggregator.

5.1.3. Aggregate
This 32-bit field contains the aggregated value. In case the SUM aggregator is used the aggregated
value corresponds to the PEI otherwise to the minimum or maximum HEI on a path.

5.1.4. Wireshark
In the following Wireshark capture, the raw data of the previously described IOAM Aggregation
Option header is visible. Wireshark does currently not support the decoding of the IOAM Ag-
gregation Option header format as the IOAM Aggregation Option is not yet standardized and
still in a draft state. Therefore a legend was added to identify the individual header fields inside
the byte-stream.

Namespace-ID Flags Reserved IOAM Data Param Aggregator Aggregate Auxil-data Node-ID Hop Count

Figure 5.1.: Wireshark Capture of the IOAM Aggregation Option

5.2. Implementation in P4
The following sections will describe the individual P4 software components related to the IOAM
Aggregation Option in more detail excluding the parser which is described in chapter 1 in the
construction part.

5.2.1. Constants
The constants definition can be found in efficiency-indicator-p4/includes/constants.p4. The fol-
lowing values related to the IOAM Aggregation Option are defined as constants.

Listing 5.2: IOAM Aggregation Option Constants
1 const bit<8> IOAM_OPTION_TYPE_CHG = 0x31;
2 const bit<8> IOAM_AGGREGATION_OPTION_TYPE = 0x20;
3 const bit<8> IOAM_AGGREGATION_OPTION_DATA_LEN = 18;
4 const bit<8> IOAM_AGGREGATOR_SUM = 0x1;
5 const bit<8> IOAM_AGGREGATOR_MIN = 0x2;
6 const bit<8> IOAM_AGGREGATOR_MAX = 0x4;
7 const bit<8> IOAM_AGGREGATOR_AVG = 0x8;

5. IOAM Aggregation 55 of 96

Construction v1.0
Green Networking

IOAM_OPTION_TYPE_CHG This value is used in the IPv6 Hop-By-Hop extension header
to identify the IOAM Option. This specific value specifies that the IOAM Option data is
allowed to change in transit. The value is defined by IANA [7].

IOAM_AGGREGATION_OPTION_TYPE This value is used to identify the IOAM Aggrega-
tion Option type. The value is not yet defined by IANA so the unassigned value 0x20 was
chosen for identification.

IOAM_AGGREGATION_OPTION_DATA_LEN This value defines the total length of the IOAM
Aggregation Option. It includes IOAM Option identifying information and the IOAM Ag-
gregation Option header. The value is the sum of the following headers and header fields.

IOAM_AGGREGATION_OPTION_DATA_LEN = 1 Byte IOAM Opt-Type
+ 1 Byte Reserved
+ 16 Byte IOAM Aggregation Header

IOAM_AGGREGATOR_SUM This value specifies that the sum aggregation function is to be
applied.

IOAM_AGGREGATOR_MIN This value specifies that the minimum aggregation function is to
be applied.

IOAM_AGGREGATOR_MAX This value specifies that the maximum aggregation function is
to be applied.

IOAM_AGGREGATOR_AVG This value specifies that the average aggregation function is to
be applied.

5.2.2. Types
The types definition can be found in efficiency-indicator-p4/includes/types.p4. The following
types related to the IOAM Aggregation Option are defined.

Listing 5.3: IOAM Aggregation Option Types
1 typedef bit<24> ioamNodeID_t;
2 typedef bit<8> ioamAggregator_t;
3 typedef bit<32> ioamAggregate_t;
4
5 struct ioamAggrMeta_t {
6 ioamAggregate_t aggregate;
7 ioamNodeID_t nodeID;
8 }

ioamNodeID_t Is a 24-bit unsigned number used to store the node identifier.

ioamAggregator_t Is a 8-bit unsigned number used to store the aggregator identifier.

ioamAggregate_t Is a 32-bit unsigned number used to store the aggregate value.

ioamAggrMeta_t Structured type with two fields which are relevant for IOAM Aggregation
specific processing. An instance of this struct is instantiated as an attribute of the metadata
struct. The values of that instance inside the metadata struct are initialized before the
execution of IOAM Aggregation specific actions.

5. IOAM Aggregation 56 of 96

Construction v1.0
Green Networking

5.2.3. Headers
This section describes the definition of the IOAM Aggregation Option header. The header defi-
nition can be found in efficiency-indicator-p4/includes/headers.p4. The header fields are defined
according to draft-cxx-ippm-ioamaggr [2].

The IOAM Aggregation Option header type is called ioam_aggregation_t and contains eight
fixed sized header fields.

Listing 5.4: IOAM Aggregation Option Header
1 header ioam_aggregation_t {
2 bit<16> namespaceID;
3 bit<4> flags;
4 bit<12> reserved;
5 bit<24> dataParam; // identifies the type of data being aggregated
6 ioamAggregator_t aggregator;
7 ioamAggregate_t aggregate;
8 ioamNodeID_t auxilDataNodeID;
9 bit<8> hopCount;

10 }

5.2.4. Controller
The process_ioam_aggregation controller is responsible for IOAM Aggregation Option related
processing. It takes the header structures initialized by the parser, custom metadata and standard
metadata as input.

The controller definition can be found in efficiency-indicator-p4/includes/ioam_tracing.p4.
In the following section the controllers actions are described which give information about how

header fields are updated in this state of the match action pipeline.

5.2.4.1. Actions

Actions are the place where the actual manipulation of header data occurs. The IOAM Aggrega-
tion Controller includes an action to initialize the IOAM Aggregation header data structure and
actions to perform the already described aggregation operations.

ioam_aggr_push This action sets the IOAM option and the IOAM Aggregation Option headers
to valid. All associated header fields are set to the initial value.

ioam_aggr_sum In this action, the current value stored in the aggregate field is aggregated with
the HEI value stored in the metadata using the sum aggregation function. Additionally the
auxil data node ID field is updated to the ID of the current node.

ioam_aggr_min In this action, the current value stored in the aggregate field is aggregated with
the HEI value stored in the metadata using the min aggregation function. The aggregate
value and the auxil data node ID fields are only updated in case the HEI value inside the
metadata is smaller than the current aggregate value.

ioam_aggr_max In this action, the current value stored in the aggregate field is aggregated with
the HEI value stored in the metadata using the max aggregation function. The aggregate
value and the auxil data node ID fields are only updated in case the HEI value inside the
metadata is larger than the current aggregate value.

get_node_id This action is used to initialize the node ID inside the metadata. It can be thought
of a helper action that gets the required information from the control plane. In this case
the node ID.

5. IOAM Aggregation 57 of 96

Construction v1.0
Green Networking

5.2.4.2. Tables

This section describes the tables relevant for the IOAM Aggregation Option. As described in
section 3.3.1 in the elaboration part, the control plane tables are the linkage between the control
plane and the data plane.

The IOAM Aggregation controller involves two tables which are defined in the runtime defini-
tion of each BMv2 software switch accordingly. For example for s1 the definition can be found
in efficiency-indicator-p4/dev-network/s1-runtime.json.

Two of the tables defined inside the runtime definition are directly related to the IOAM Ag-
gregation Option which are further described below.

ioam_aggr_push_exact This table is used to lookup the aggregator value and to call the action
ioam_aggr_push in case of a match.

node_id This table is used to lookup the node ID value and to call the action get_node_id in
case of a match.

For more information about the table declaration syntax for the BMv2 model and table state-
ments in P4 refer to the IOAM Pre-allocated Trace-Option table description in section 4.2.4.2 in
the construction part.

5.2.4.3. Apply

The apply block in a P4 program is used to make decisions which table to apply or action to call
based on conditions most likely given by header values or header validity state. In the apply block
of the IOAM Aggregation Option first the action node_id is applied to initialize the metadata
with the appropriate node ID. If the IOAM Aggregation Option header is already initialized the
aggregation functions are called based on the aggregator specified inside the aggregator header
field. In case the IOAM Aggregation Option header is not initialized (most likely on the ingress
node) the table ioam_aggr_push_exact is applied which will initialize the IOAM Aggregation
Option header.

Listing 5.5: IOAM Aggregation Option Apply Block
1 apply {
2 node_id.apply();
3 if (hdr.ioam_a_ioam_aggregation.isValid()) {
4 switch (hdr.ioam_a_ioam_aggregation.aggregator) {
5 IOAM_AGGREGATOR_SUM: {ioam_aggr_sum();}
6 IOAM_AGGREGATOR_MIN: {ioam_aggr_min();}
7 IOAM_AGGREGATOR_MAX: {ioam_aggr_max();}
8 }
9 } else {

10 ioam_aggr_push_exact.apply();
11 }
12 }

5.3. Limitations
• This implementation of the IOAM Aggregation Option does not fully comply with draft-

cxx-ippm-ioamaggr as the average aggregator is currently not implemented [2].

5. IOAM Aggregation 58 of 96

Construction v1.0
Green Networking

6. Efficiency Indicators

6.1. Implementation in P4
The following sections will describe the individual P4 software components related to the calcu-
lation of the HEI and PEI value.

6.1.1. Constants
The constants definition can be found in efficiency-indicator-p4/includes/constants.p4. The fol-
lowing values related to the Efficiency Indicators are defined as constants.

Listing 6.1: Efficiency Indicator Constants
1 const bit<15> MAX_VALUE_15_BIT = 32767;

MAX_VALUE_15_BIT This value is used during calculation. This specific value specifies the
maximum value of a 15 bit size variable.

6.1.2. Types
The types definition can be found in efficiency-indicator-p4/includes/types.p4. The following
types related to the Efficiency Indicators are defined.

Listing 6.2: Efficiency Indicator Types
1 typedef bit<1> inverse_t;
2 typedef bit<2> weight_t;
3 typedef bit<32> parameter_t;
4 typedef bit<5> parameterSize_t;
5 typedef bit<16> component_t;
6 typedef bit<15> normValue_t;

inverse_t Is a 1-bit unsigned number used to store the inverse parameter, 0 = false, 1 = true.

weight_t Is a 2-bit unsigned number used to store the weight parameter.

parameter_t Is a 32-bit unsigned number used to store the parameter value.

parameterSize_t Is a 5-bit unsigned number used to store the type size of the parameter.

component_t Is a 16-bit unsigned number used to store the weighted normalized value.

normValue_t Is a 15-bit unsigned number used to store the normalized value.

6. Efficiency Indicators 59 of 96

Construction v1.0
Green Networking

6.1.3. Controller
The process_efficiency_indicator controller is responsible for Efficiency Indicators related pro-
cessing. It takes the header structures initialized by the parser, custom metadata and standard
metadata as input.

The controller definition can be found in efficiency-indicator-p4/includes/efficiency_indicator.p4.
In the following section the controllers actions are described which give information about how

header fields are updated in this state of the match action pipeline.

6.1.3.1. Actions

Actions are the place where the actual manipulation of header data occurs. The Efficiency
Indicator Controller includes an actions to get the needed parameter values to calculate the HEI
and PEI from the control plane table and actions to perform the calculation.

calc_carbon_metric_parameter This action calculates the component value and adds it to the
HEI value.

get_carbon_metric_energy_mix This action is called from
the carbon_metric_component_energy_mix table and get the parameter values from the
control plane table. After receiving the parameter the function calls the
calc_carbon_metric_parameter action to calculate the energy mix component and add this
component value to the HEI.

get_carbon_metric_idle_power This action is called from
the carbon_metric_component_idle_power table and get the parameter values from the
control plane table. After receiving the parameter the function calls the
calc_carbon_metric_parameter action to calculate the idle power component and add this
component value to the HEI.

get_carbon_metric_embedded_carbon This action is called from
the carbon_metric_component_embedded_carbon table and get the parameter values from
the control plane table. After receiving the parameter the function calls the
calc_carbon_metric_parameter action to calculate the embedded carbon component and
add this component value to the HEI.

Listing 6.3: Action calc_carbon_metric_parameter
1 action calc_carbon_metric_parameter(parameter_t parameter, parameterSize_t

parameterSize, weight_t weight, inverse_t inverse) {
2 // Normalization
3 normValue_t normValue = 0;
4 if(parameterSize < normValue_t.minSizeInBits()) {
5 normValue = (normValue_t)parameter << (normValue_t.minSizeInBits() -

parameterSize);
6 } else if(parameterSize > normValue_t.minSizeInBits()){
7 parameter_t tempNormValue = parameter >> (parameterSize -

normValue_t.minSizeInBits());
8 normValue = (normValue_t)tempNormValue;
9 }

10
11 // Inversion
12 if(inverse == 1) {
13 normValue = MAX_VALUE_15_BIT - normValue;
14 }

6. Efficiency Indicators 60 of 96

Construction v1.0
Green Networking

15
16 // Weighting normValue
17 component_t component = 0;
18 if(weight == 2) {
19 component = (component_t)normValue << 1;
20 } else if(weight == 1) {
21 component = (component_t)normValue;
22 } else if(weight == 0) {
23 component = (component_t)normValue >> 1;
24 }
25
26 // Add component to HEI value
27 meta.ioamAggrMeta.aggregate = meta.ioamAggrMeta.aggregate +

(ioamAggregate_t)component;
28 }

6.1.3.2. Tables

This section describes the relevant tables for calculating the efficiency indicators. As described in
section 3.3.1 in the elaboration part, the control plane tables are the linkage between the control
plane and the data plane.

The Efficiency Indicator Controller involves three tables which are defined in the runtime
definition of each BMv2 software switch accordingly. For example for s1 the definition can be
found in efficiency-indicator-p4/dev-network/s1-runtime.json.

carbon_metric_component_energy_mix This table is used to lookup the value, weight and
inverse parameter of the energy mix and to call the action get_carbon_metric_energy_mix
in case of a match.

carbon_metric_component_idle_power This table is used to lookup the value, weight and
inverse parameter of the idle power and to call the action get_carbon_metric_idle_power
in case of a match.

carbon_metric_component_embedded_carbon This table is used to lookup the value, weight
and inverse parameter of the embedded carbon and to call
the action get_carbon_metric_embedded_carbon

The following table is used for the parameter lookup of the energy mix parameter. In each
parameter table are the three parameters defined:

value The value is the specific parameter value of this node.

weight The weight defines how important this parameter is for the calculation of the HEI and
PEI. The weight for a parameter type is on all nodes the same.

inverse The inverse parameter defines if it’s needed to inverse the value during calculation. The
reason for that is specified in chapter 2 in the elaboration part.

Listing 6.4: Energy Mix Table Definition
1 {
2 "table": "MyEgress.process_efficiency_indicator.carbon_metric_component_energy_mix",
3 "match": {
4 "hdr.ethernet.srcAddr": [
5 "08:00:00:00:01:00"

6. Efficiency Indicators 61 of 96

Construction v1.0
Green Networking

6]
7 },
8 "action_name": "MyEgress.process_efficiency_indicator.get_carbon_metric_energy_mix",
9 "action_params": {

10 "value": 10,
11 "weight": 2,
12 "inverse": 1
13 }
14 }

For more information about the table declaration syntax for the BMv2 model and table state-
ments in P4 refer to the IOAM Pre-allocated Trace-Option table description in section 4.2.4.2 in
the construction part.

6.1.3.3. Apply

The apply block in a P4 program is used to make decisions which table to apply or action to call
based on conditions most likely given by header values or header validity state.

Listing 6.5: Efficiency Indicator Apply Block
1 apply {
2 // IOAM Carbon Metric Aggregation
3 carbon_metric_component_energy_mix.apply();
4 carbon_metric_component_idle_power.apply();
5 carbon_metric_component_embedded_carbon.apply();
6 }

6.1.4. IOAM Aggregation
After the process_efficiency_indicator controller is processed and the HEI was calculated the
following apply block of the process_ioam_aggregation controller is called, which will handle
what further happens with the HEI value. The IOAM Aggregation Option is described in detail
in chapter 5 in the construction part.

6.2. Add new Component
The following steps describe how to implement a new component that is added to the calculation
of HEI. The example is made with the component named Energy Mix.

Step 1 Add a new control plane definition for the new component in all sx-runtime.json. For ex-
ample for s1 the definition can be found in efficiency-indicator-p4/dev-network/s1-runtime.json.
This entry defines the parameter value, weight, and whether it should be inverted.

Listing 6.6: Energy Mix Table Definition
1 {
2 "table":

"MyEgress.process_efficiency_indicator.carbon_metric_component_energy_mix",
3 "match": {
4 "hdr.ethernet.srcAddr": [
5 "08:00:00:00:01:00"
6]
7 },
8 "action_name":

"MyEgress.process_efficiency_indicator.get_carbon_metric_energy_mix",

6. Efficiency Indicators 62 of 96

Construction v1.0
Green Networking

9 "action_params": {
10 "value": 10,
11 "weight": 2,
12 "inverse": 1
13 }
14 }

Step 2 A new type for the component must be initialized. The size of the type must be as small
as possible as described in 2.10 in the elaboration part.

Listing 6.7: Energy Mix Table Definition
1 typedef bit<7> energyMix_t;

Step 3 Create a new Action for the component in the file
efficiency-indicator-p4/includes/efficiency_indicator.p4. This action gets the parameter
from the control table look up and will call the calc_carbon_metric_parameter function to
calculate the component value and add them to the HEI.

Listing 6.8: Action to get the Energy Mix parameters
1 action get_carbon_metric_energy_mix(energyMix_t value, weight_t weight,

inverse_t inverse) {
2 calc_carbon_metric_parameter((parameter_t)value, value.minSizeInBits(),

weight, inverse);
3 }

Step 4 Add a new table that is used to lookup the value, weight and inverse parameter of the
energy mix and to call the action get_carbon_metric_energy_mix in case of a match.

Listing 6.9: Energy Mix Table
1 table carbon_metric_component_energy_mix {
2 key = {
3 hdr.ethernet.srcAddr: exact;
4 }
5 actions = {
6 get_carbon_metric_energy_mix;
7 drop;
8 NoAction;
9 }

10 size = 1;
11 default_action = drop();
12 }

Step 5 Add the following line of code to the apply block to retrieve the new component data
from the control plane and to use it in the HEI calculation.

Listing 6.10: Add the Table to the apply block
1 carbon_metric_component_energy_mix.apply();

6. Efficiency Indicators 63 of 96

Construction v1.0
Green Networking

7. Testing

This chapter describes how the elaborated testing approach described in chapter 5 in the elabo-
ration part is implemented.

The implementation is an extension of the already existing P4 language tutorial environment
available on GitHub, written in the Python programming language by p4lang. The extension of
the tutorial environment includes the following challenges which had to be overcome during the
development phase:

• Define a structured format to specify test cases containing all the relevant information for
both the sending and receiving component.

• Reprogram the BMv2 targets at runtime based on patches defined for the individual test
case.

• Synchronize the sending and receiving component.

• Send data through the network based on the test case specifications.

• Validate the received data on correctness considering the test case specific condition of the
control plane of the BMv2 targets.

• Display the results to the developer executing the automated tests.

The following sections go into further detail on how these challenges where mastered.

7.1. Software Components
Before diving into any implementation detail the role and purpose of all related software compo-
nents must be clear. All relevant components are shown in the context diagram in figure 7.1 and
are related to each other.

Test Sender Main component to trigger the bootstrapping and reconfiguration of the test en-
vironment, send test traffic and to start the needed test listener processes on the specific
Mininet endpoints.

Test Receiver Validate the IOAM header fields of the received test traffic for correctness.

P4 Tutorial Utilities Python application developed by p4lang available on GitHub. Called by
the Test Sender to provision and reprogram the test network. For the reconfiguration of the
BMv2 targets control plane, the P4 runtime shell is used and the connection to the targets
is done via gRPC. Refer to the p4runtime-shell project for more information.

Test Network (BMv2 Targets) Corresponds to the development environment described in chap-
ter 4 in the elaboration part.

Runtime Definitions JSON definition of the control plane of the BMv2 targets.

Test Specific Runtime Definitions Copies of the patched runtime definitions specific for a test
case.

7. Testing 64 of 96

https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials
https://github.com/p4lang/p4runtime-shell

Construction v1.0
Green Networking

Test Case Definition JSON definition of the test cases further described in section 7.2 in the
construction part.

Test Sender Test Receiver

P4 Tutorial
Utilities

Runtime Defintions

Test Specific
Runtime Definitions

Test Case
Definition

Test Network
(BMv2 Targets)

applies patches/
reset to default

reads reads

generates

reads

reads

triggers switch reconfiguration /
test network provisioning

reconfigures

Test Network
Packets

sends receives/
validates

forwards

starts

Figure 7.1.: Testing Context Diagram

7.1.1. Component Interaction Flow
Figure 7.1 shows the relation between components but gives no information about the flow of
interactions between the actual components. The enumeration below describes the component
interactions and the resulting test procedure.

1. The Test Sender triggers the provisioning of the Test Network by calling the corresponding
P4 Tutorial Utilities.

2. The Test Sender reads the Test Case Definitions.

3. The Test Sender starts a Test Receiver process on every endpoint which is specified as the
destination of test traffic at least once inside the Test Case Definition.

4. Each Test Receiver started by the Test Sender reads the Test Case Definitions and deter-
mines the test cases which are relevant for the specific Test Receiver. Relevant test cases
are those, in which the Test Receiver is specified as destination.

7. Testing 65 of 96

Construction v1.0
Green Networking

5. For each test case specified inside the Test Case Definitions the Test Sender :
• Applies patches to the Runtime Definitions, in case parameter patches are specified in

the test case definition.
• Generates the Test Specific Runtime Definitions by copying the patched Runtime Def-

initions, in case parameter patches are specified in the test case definition.
• Triggers a reconfiguration of the Test Network by calling the corresponding P4 Tutorial

Utilities, in case parameter patches are specified in the test case definition.
• Sends the specified number of Test Network Packets to the Test Receiver specified in

the Test Case Definition.
• Resets the Runtime Definitions to default.
• Triggers a reconfiguration of the Test Network by calling the corresponding P4 Tutorial

Utilities, in case parameter patches are specified in the test case definition.

6. For each relevant test case specified inside the Test Case Definitions the Test Receiver :
• Listens for the packets of the current test case.
• Calculates the expected IOAM header values based on the control plane table values

specified in the Test Specific Runtime Definition.
• Validates the IOAM header fields for correctness after reception. The result of each

validation step is logged to a Test Receiver specific log file.

7. The Test Sender shuts down the Test Network by calling the corresponding P4 Tutorial
Utilities.

7.1.2. Source Code
The source code is located inside the efficiency-indicator-p4 repository as part of the dev-network
resources. The directory structure is depicted below.

dev-network/
test/

cases.json
tmp_runtimes/

omitted
utils/

captures/
quic_ipv4.pcapng
quic_ipv6.pcapng

mininet/
omitted

p4_runtime_lib/
omitted

testing/
calc.py
send.py
utils.py

run_test_receiver.py
run_test_sender.py

s1-runtime.py

7. Testing 66 of 96

Construction v1.0
Green Networking

omitted
s6-runtime.py
topology.json

The following description gives information about the most important files listed in the directory
structure above and how they are related to the individual software components and interactions.

test/cases.json This file holds the Test Case Definition. It is read by both the Test Sender and
Test Receiver. The definition of the test cases is further described in section 7.2 in the
construction part.

tmp_runtimes/ This directory contains the Test Specific Runtime Definitions generated by the
Test Sender and read by the Test Receiver.

utils/ This directory contains all related Python utilities and resources.

utils/captures/ This directory contains wireshark captures which contain template packets, which
are modified and sent by the Test Sender.

utils/mininet/ Mininet specific Python package and part of the P4 Tutorial Utilities.

utils/p4_runtime_lib P4 and BMv2 specific Python package and part of the P4 Tutorial Utili-
ties.

utils/testing Python package containing helper functions used by the Test Sender and Test
Receiver.

utils/testing/run_test_sender.py Implementation of the Test Sender and caller of specific P4
Tutorial Utilities.

utils/testing/run_test_receiver.py Implementation of the Test Receiver.

7.1.3. Scapy Library
Scapy is a powerful interactive packet manipulation library written in Python. Scapy is able to
forge or decode packets of a wide number of protocols, send them on the wire, capture them,
match requests and replies, and much more. [10] For more information about Scapy refer to the
official documentation: https://scapy.net/

• Scapy is used by the Test Sender to forge and send packets over the network. The Test
Sender reads the capture containing real user traffic from utils/capture, modifies the source
and destination MAC and IP addresses and emits the packets into the Test Network.

• Scapy is used by the Test Receiver to decode the packets which where sent via the Test
Network. Before the IOAM header data validation occurs a dummy packet is forged and
initialized with the expected values. The actual packet and the dummy packet are then
compared for equality.

7.2. Definition of Tests
In this section the Test Case Definition is examined. According to figure 7.1 the Test Case
Definition is read by both the Test Sender and Test Receiver.

The tests are defined in JSON format. The file follows the structure below which is defined
as a list of paths followed by a list of testcases. Details about the path and testcase objects are
documented in the following two sections.

7. Testing 67 of 96

https://scapy.net/

Construction v1.0
Green Networking

Listing 7.1: Tests definition
1 {
2 "paths": [
3 // path1,
4 // path2,
5 // ...
6],
7 "testcases": [
8 // testcase1,
9 // testcase2,

10 // ...
11]
12 }

7.2.1. Path Object
A path object contains all path relevant information. The information is used by the Test Sender
to determine the correct source and destination MAC and IP addresses. The Test Receiver reads
the nodes list to be able to perform IOAM Aggregation and IOAM Pre-allocated Trace-Option
calculations.

The following JSON snippet is a valid path object definition. The snippet defines the path
from h1 to h2 which passes via the switches s1-s2-s4.

Listing 7.2: Path object definition
1 {
2 "id": 1,
3 "src": "h1",
4 "dst": "h2",
5 "nodes": [
6 {
7 "name": "s1",
8 "id": 1
9 },

10 {
11 "name": "s2",
12 "id": 2
13 },
14 {
15 "name": "s4",
16 "id": 4
17 }
18]
19 }

The following description gives more information about the individual object properties.

id Identification number of the path

src Name of the source host as defined in the Mininet topology (Test Sender)

dst Name of the sending host as defined in the Mininet topology (Test Receiver)

nodes List of nodes

nodes / name Name of the node as defined in the Mininet topology

7. Testing 68 of 96

Construction v1.0
Green Networking

nodes / id Identification of the node as defined in the runtime definition (corresponds to the
IOAM node ID)

7.2.2. Testcase Object
A testcase object contains all testcase relevant information. The information is used by the
Test Sender to reconfigure the Test Network and send the appropriate number of packets to the
destination of the specified path. The information is used by the Test Receiver to determine the
relevant testcases, number of relevant packets, Test Specific Runtime Definition (based on the id
of the test) and to calculate the IOAM Aggregation and IOAM Pre-allocated Trace-Option based
on the defined path for this testcase.

 Information

The id field must not be defined manually. During the first execution of a testcase an ID
is automatically defined and set inside the testcase definition.

The following JSON snippet is a valid testcase object definition. The snippet defines a testcase
to:

• send 1 packet from the Test Sender via path 1 without the application of parameter patches
to the BMv2 targets in the Test Network

• validate the packets on the Test Receiver whether the IOAM Aggregation was performed
correctly using the sum aggregator

• validate the packets on the Test Receiver whether the IOAM Tracing corresponds to the
trace via path 1

Listing 7.3: Testcase object definition
1 {
2 "name": "Test with default control plane on path H1 to H2",
3 "path": 1,
4 "protocol": "ipv6",
5 "num_packets": 1,
6 "ioam_aggregation": {
7 "aggregator": "sum"
8 },
9 "id": "4be8d9aa-8c75-11ee-99de-0800270cf606"

10 }

The testcase definition above in listing 7.3 does not cover the requirement of having the possi-
bility to flexibly define the control plane of BMv2 targets specifically for a testcase. The testcase
definition below in listing 7.4 introduces the specification of parameter patches. With the pro-
vided specification syntax one can set any parameter value of any action in any table on any
switch by desire.

The following JSON snippet is a valid testcase object definition. The snippet defines a testcase
to:

• send 5 packets from the Test Sender via path 2

• set the weight parameter value of the get_carbon_metric_energy_mix action in the car-
bon_metric_energy_mix table to 1 on s1, s2 and s4.

7. Testing 69 of 96

Construction v1.0
Green Networking

• validate the packets on the Test Receiver whether the IOAM Aggregation was performed
correctly using the sum aggregator

• validate the packets on the Test Receiver whether the IOAM Tracing corresponds to the
trace via path 2

Listing 7.4: Testcase object definition with parameter patches
1 {
2 "name": "Test with neutral weight for energy mix parameter on path H1 to H3",
3 "path": 2,
4 "protocol": "ipv6",
5 "num_packets": 5,
6 "ioam_aggregation": {
7 "aggregator": "sum",
8 "parameter_patches": [
9 {

10 "switches": [
11 "s1",
12 "s3",
13 "s4"
14],
15 "table":

"MyEgress.process_efficiency_indicator.carbon_metric_component_energy_mix",
16 "action":

"MyEgress.process_efficiency_indicator.get_carbon_metric_energy_mix",
17 "parameters": [
18 {
19 "weight": 1
20 }
21]
22 },
23]
24 },
25 }

name Name of the testcase (only descriptive no technical use)

path Identification number of the path used in this test case

protocol Protocol to use (only ipv6 is implemented)

num_packets Number of packets to send

ioam_aggregation IOAM Aggregation Option specific configuration parameters

ioam_aggregation/aggregator IOAM Aggregation Option aggregator (sum/min/max) to be
used for validation only

ioam_aggregation/parameter_patches List of patches to apply for this testcase

ioam_aggregation/parameter_patches/switches List of switches to apply the patch on

ioam_aggregation/parameter_patches/table The table to apply the patch on

ioam_aggregation/parameter_patches/action The action to apply the patch on

7. Testing 70 of 96

Construction v1.0
Green Networking

ioam_aggregation/parameter_patches/parameters List of parameters (arbitrary key value ob-
jects) to be set by the patch

id Identification number of the testcase (automatically generated UUID)

 Information

Setting the aggregator option has no impact to the control plane tables of the BMv2 targets.
In case a test is set to validate the min or max aggregator, the parameter_patches to
reconfigure the control plane of the BMv2 targets to use the specific aggregator, must be
specified explicitely.

7.3. Test Execution
As stated in the requirements the test execution should be fully automated. To execute the
specified tests a developer has to enter the command make test. This will trigger the job called
test, specified in the Makefile, to run.

7.3.1. Makefile
The make utility is used to automate the necessary steps for the test execution. The required
action to execute the tests are:

1. Build the P4 project

2. Run the test utility

3. Reset file permission

Listing 7.5: Test job definition
1 test: build
2 sudo bash ./run_tests.sh
3 sudo chown -R ${USER}:${USER} ./

The test job defined in listing 7.5 is executed after the build job has completed. The test utilities
are started by running the run_test.sh bash script. The script initializes required variables, starts
the run_test_sender.py Python utility with the required arguments. Additionally a watch screen
is displayed which shows the output of the command below updated every second.

Listing 7.6: Watch command console output
1 watch -n 1 "grep -r -E 'TEST (FAILED|PASSED|RUN)' "${log_dir}" | awk -F 'log:' '{print

\$2}' | sort"

grep Filter for the given pattern in the log directory of the current test run

awk Returns the second row of the grep output delimited at log: which removes the preceding
file name added by grep

sort Sorts the output alphabetically which leads to a chronological ordering of the events because
each event begins with the timestamp

After the completion of the test the file ownership is reset to the user named boss.

7. Testing 71 of 96

Construction v1.0
Green Networking

7.3.2. Results
All test results are logged in the log directory of the current test run. Each host has its own log
file.

7.3.2.1. Console Output

The console output is generated by the watch command described in the previous section. The
output lists the test results. For illustrative purpose the P4 program was modified, which caused
the last test with the ID 1c6a122-8d01-11ee-99de-0800270cf606 to fail.

Listing 7.7: Console outpuut of a sample test run
1 2023-12-14 20:34:22,860:INFO:TEST RUN STARTED (please wait this might take a few

seconds)
2 2023-12-14 20:34:31,415:INFO:TEST PASSED (id: 4be8d9aa-8c75-11ee-99de-0800270cf606)
3 2023-12-14 20:34:33,962:INFO:TEST PASSED (id: 4be8d9ab-8c75-11ee-99de-0800270cf606)
4 2023-12-14 20:34:36,573:INFO:TEST PASSED (id: 4be8d9ac-8c75-11ee-99de-0800270cf606)
5 2023-12-14 20:34:39,314:INFO:TEST PASSED (id: 4be8d9ad-8c75-11ee-99de-0800270cf606)
6 2023-12-14 20:34:42,156:INFO:TEST PASSED (id: 604e1b4e-95d5-11ee-85ca-0800270cf606)
7 2023-12-14 20:34:44,966:INFO:TEST PASSED (id: 77ddef58-8cfe-11ee-99de-0800270cf606)
8 2023-12-14 20:34:47,798:ERROR:TEST FAILED (id: a1c6a122-8d01-11ee-99de-0800270cf606)
9 2023-12-14 20:34:51,005:INFO:TEST RUN COMPLETED (detailed logs about the results are

located at: /home/boss/git/efficiency-indicator-p4/logs/testing/20231214203422)

One can now search in the log directory given in the last line for either ERROR events or the
ID of the failed test.

7.3.2.2. Logs

Each host involved, has its own log file located in a subdirectory with the current timestamp.
The log directory follows the structure below.

efficiency-indicator-p4/
logs/

testing/
20231209105915/

h1-test-sender.log
h2-test-receiver.log
h3-test-receiver.log
h4-test-receiver.log

20231214203422/
h1-test-sender.log
h2-test-receiver.log
h3-test-receiver.log
h4-test-receiver.log

To search for ERROR messages of the test run attempted at 20231214203422 one would enter
the following command.

Listing 7.8: Search for errors
1 grep -r "ERROR" /home/boss/git/efficiency-indicator-p4/logs/testing/20231214203422

7. Testing 72 of 96

Construction v1.0
Green Networking

1 2023-12-14 20:34:47,798:ERROR:Test failed, packet 1/1 field invalid
(auxil_data_node_id: expected = 4 / received = 5) (id:
a1c6a122-8d01-11ee-99de-0800270cf606)

2 2023-12-14 20:34:47,798:ERROR:TEST FAILED (id: a1c6a122-8d01-11ee-99de-0800270cf606)

The log message shows that an error occurred validating the auxil_data_node_id field.
To filter for all messages regarding the failed test with the ID a1c6a122-8d01-11ee-99de-

0800270cf606 the same command could be used replacing ERROR with the ID of the test to be
filtered for.

7. Testing 73 of 96

Construction v1.0
Green Networking

8. Demo Application
The demo application is based on the network topology as described in the chapter 4 in the
elaboration part. The following paths are used in the demo application and will be further
named Path 1 and Path 2.

Path 1 H1 - S1 - S2 - S4 - H2

Path 2 H1 - S1 - S3 - S4 - H3

2

10.100.0.0/24
2001:DB8:64::/64

10.200.0.0/24
2001:DB8:C8::/64

10.100.0.10
2001:DB8:64::10

10.200.0.20
2001:DB8:C8::20

S1 S2

S3 S4

1

3 1

2

2
1 3

1

2

H2

H1

H3

10.201.0.30
2001:DB8:C9::30

10.201.0.0/24
2001:DB8:C9::/64

4

Traffic Flow:

path1: H1-S1-S2-S4-H2
path2: H1-S1-S3-S4-H3
path3: H1-S1-S3-S4-S5-S6-H4

S6

S5

5

H4

10.255.0.40
2001:DB8:FF::40

10.255.0.0/24
2001:DB8:FF::/64

1

1

2

2

Figure 8.1.: Development Network Topology

8.1. Demo Execution
The demo application is based on the testing framework described in chapter 7 in the construction
part. The make utility automates the necessary steps to execute the demo, as described in chapter
4 in the elaboration part. The main difference to the testing is that not the same Test Case
Definitions are used for the demo application.

test/cases.json This file holds the Test Case Definition. It is read by both the Test Sender and
Test Receiver. The definition of the test cases is further described in section 7.2 in the
construction part.

demo/cases.json This file holds the Demo Case Definition. It is read by both the Test Sender
and Test Receiver. The definition of the demo cases is further described in section 7.2 in
the construction part and also applies to the demo cases.

8. Demo Application 74 of 96

Construction v1.0
Green Networking

Additionally, in demo cases, it is possible to add a stop attribute that will pause the demo until
the demo executor hits enter.

8.2. Data Export
Each receiving host exports the received packets into the following data structures and stores
them in a json file named after the host name. The file for the host 2 with the exported data is
stored for example in the following directory dev-network/demo/h2.json

Listing 8.1: Data structure for export data
1 {
2 "test_id": "d15b0dd2-9b80-11ee-99de-0800270cf606",
3 "timestamp": 1702741414627986932,
4 "size": 1455,
5 "ethernet": {
6 "src": "08:00:00:00:04:00",
7 "dst": "08:00:00:20:00:20"
8 },
9 "ipv6": {

10 "src": "2001:db8:64::10",
11 "dst": "2001:db8:c8::20",
12 "hop_limit": 57
13 },
14 "hop_by_hop_option": {
15 "ioam_option_tracing": {
16 "type": 49,
17 "length": 26,
18 "reserved": 0,
19 "option_type": 0,
20 "namespace_id": 0,
21 "node_length": 1,
22 "flags": 0,
23 "remaining_length": 1,
24 "trace_type": 8388608,
25 "ioam_reserved": 0,
26 "node_list": [
27 {
28 "hop_limit": 0,
29 "node_id": 0
30 },
31 {
32 "hop_limit": 59,
33 "node_id": 1
34 },
35 {
36 "hop_limit": 58,
37 "node_id": 2
38 },
39 {
40 "hop_limit": 57,
41 "node_id": 4
42 }
43]
44 },
45 "ioam_option_aggregation": {
46 "type": 49,

8. Demo Application 75 of 96

Construction v1.0
Green Networking

47 "length": 18,
48 "reserved": 0,
49 "option_type": 32,
50 "namespace_id": 0,
51 "flags": 0,
52 "ioam_reserved": 0,
53 "ioam_data_param": 255,
54 "aggregator": 1,
55 "aggregate": 196162,
56 "auxil_data_node_id": 4,
57 "hop_count": 3
58 }
59 }
60 }

8.3. Demo Cases
This section describes all demo scenarios which are implemented in the demo application. All
demo scenarios are defined in the section 6.2 in the elaboration part.

8.3.1. Timeseries per Path
In the first demonstration the default runtime configuration is initially loaded and five packets
will be sent over path 1. For each demo case listed below, five packets will be sent with a different
energy mix parameter value. After all packets are sent via path 1 the same amount of packets
with the same energy mix values are sent over path 2. Both diagrams display individual packets
and their corresponding PEI values as dots.

Path 1 Simulated day where the sustainable energy generated by solar power fluctuates
Packets 0 to 4 Demo with the default energy mix value on each node.
Packets 5 to 9 Demo with energy mix value in the morning, set value to 30 on all nodes

in path 1.
Packets 10 to 14 Demo with energy mix value at lunch time, set value to 90 on all nodes

in path 1.
Packets 15 to 19 Demo with energy mix value in the afternoon, set value to 65 on all

nodes in path 1.
Packets 20 to 24 Demo with energy mix value in the evening, set value to 15 on all nodes

in path 1.

8. Demo Application 76 of 96

Construction v1.0
Green Networking

Figure 8.2.: Diagram about changing the energy mix value on all nodes in path 1

Path 2 Simulated day where the sustainable energy generated by solar power fluctuates
Packets 0 to 4 Demo with the default energy mix value on each node.
Packets 5 to 9 Demo with energy mix value in the morning, set value to 30 on all nodes

in path 2.
Packets 10 to 14 Demo with energy mix value at lunch time, set value to 90 on all nodes

in path 2.
Packets 15 to 19 Demo with energy mix value in the afternoon, set value to 65 on all

nodes in path 2.
Packets 20 to 24 Demo with energy mix value in the evening, set value to 15 on all nodes

in path 2.

Figure 8.3.: Diagram about changing the energy mix value on all nodes in path 2

8. Demo Application 77 of 96

Construction v1.0
Green Networking

8.3.2. Path Comparison
In this example, it is important that the weights are set to the same value at all nodes, otherwise
the result will be distorted. The graphic below shows that path 1 has a slightly lower PEI value
than path 2, which indicates that packets sent over path 1 are using the more efficient path. The
difference is fairly small because the energy mix values are all set to the same values on each
node, but the idle power and embedded carbon parameter values vary.

Figure 8.4.: Diagram about the Path Comparison

8.3.3. Minimum / Maximum HEI on a Path
The most efficient and most inefficient node on path 1 is visualized in the diagram below. For
this demo case, packets were sent with the IOAM Aggregator set to Min and Max instead of the
Sum aggregator. With the Min and Max aggregation option, it is possible to determine the best or
worst node on a path and make further topology improvements by changing the routing path or
replacing the node.

Figure 8.5.: Diagram of nodes with minimum and maximum HEI on path 1

8. Demo Application 78 of 96

Construction v1.0
Green Networking

8.3.4. PEI Composition
The PEI composition area chart shows how the individual components contribute to the resulting
PEI on path 1. One can see that the two components idle_power and embedded_carbon are
constant and that the energy_mix component varies over time. More details about this variation
is given in the following description.

 Information

The composition of the PEI cannot be read directly from the packet metadata. The cal-
culations performed in the project network are simulated by the demo application and the
results are displayed accordingly. The information about the invidual component and HEI
values are usually lost in transit due to aggregation.

The first 25 packets in the chart represents the previously sent packets for the demo cases
above. The changes on the PEI value on the last 15 packets (packet number 25 - 39) are caused
by the following changes:

Packets 25 to 29 Demo with increased weight on the energy mix, set value to 50 and the weight
to 2.

Packets 30 to 34 Demo with neutral weight on the energy mix, set value to 50 and the weight
to 1.

Packets 35 to 39 Demo with negative weight on the energy mix, set value to 50 and the weight
to 0.

For each demo case listed above, five packets will be sent with a different weight on the energy
mix parameter.

Figure 8.6.: Diagram about the PEI Composition

Hint: The weight influences the value of the energy mix component on each hop, that means
the weight is applied once to each HEI which implies that the effect to the PEI for that specific
component is directly dependent to the amount of hops on the specific path. This is why there
is such a big difference in the PEI. The drop from packet 29 to 30 is caused by the energy mix

8. Demo Application 79 of 96

Construction v1.0
Green Networking

component value on each HEI being 20’000 smaller than before. The drop from packet 34 to 35 is
caused by the energy mix component value on each HEI being 10,000 lower than before, resulting
in the drop from packet 29 to 30 being three times higher than from packet 34 to 35.

8.3.5. Path Statistics
The demo case about the path statistics which fulfills the definition of UC06 specified in chapter
3 in the inception part shows the following information about the paths:

path_id The identifier path id represents a specific path.

timestamp The timestamp shows the last information update.

node_list The node list contains all nodes of the path with their node id and the current hop
limit of the packet.

num_packets The number of packets indicates the number of packets sent over this path.

amount_data Shows how much data was sent over this path.

latest_pei Shows the latest PEI of this path.

average_pei Shows the average of the PEI over this path.

max_hei Indicates the node that is currently the most inefficient node in this path.

min_hei Indicates the node that is currently the most efficient node in this path.

Figure 8.7.: Diagram about the path statistics

8. Demo Application 80 of 96

Construction v1.0
Green Networking

8.3.6. Sample Step-by-Step PEI Calculation
The step-by-step PEI calculation is based on a previously calculated demo case. Each calculation
step is listed and described, providing a clear and concise explanation of the resulting value. For
more detailed information, please run the demo application.

Figure 8.8.: Cutout of the step-by-step PEI calculation

8. Demo Application 81 of 96

Part IV.

Transition

Transition v1.0
Green Networking

1. Conclusion and Discussion

The primary goal of this research project was to propose a practical solution for aggregating,
transporting, and interpreting green metrics within a simulated computer network. The study
focused on developing efficiency indicators at both the hop and path levels, utilizing a robust
mathematical framework to calculate these indicators. The findings, implications, and recom-
mendations for future research are discussed below.

1.1. Review of Findings
The study successfully defined and implemented meaningful indicators at both the hop and path
levels, contributing to the understanding of network efficiency. The Hop Efficiency Indicator
(HEI) was introduced as a measure of each node’s efficiency, with a flexible mathematical for-
mula allowing for future adjustments. Importantly, the calculation algorithm for HEI maximized
efficiency by avoiding division operations, ensuring optimal performance.

To compare different path efficiencies, a Path Efficiency Indicator (PEI) was proposed, sum-
marizing the hop efficiency indicators of nodes along a path. The study explored alternatives for
aggregation, considering the trade-off between minimizing additional data in packet headers and
preserving information about individual hops. The implementation also allows the discovery of
minimum and maximum HEI values and the corresponding node IDs within a path, providing
valuable insights into efficient and inefficient nodes.

The integration of PEI into user packets using the In-situ Operations, Administration, and
Maintenance (IOAM) protocol, specifically the hop-by-hop extension header, showcased a prac-
tical approach to transport efficiency metrics. The study also addressed the limitation of the
IOAM Aggregation Type Option by recommending the use of the IOAM Trace Option Type in
conjunction with the IOAM Aggregation Option Type for path assignment.

The demo application demonstrated the successful extraction and display of both the path trav-
eled and the PEI for each packet. This innovative approach to incorporating efficiency indicators
into user packets offers a tangible solution for optimizing network energy efficiency.

1.2. Implications of the Study
The study’s implications extend to the optimization of network energy efficiency based on the
elaborated efficiency indicators. By incorporating these indicators into data forwarding and
including them as part of user packets, the network can be dynamically scaled up or down.
For instance, traffic can be routed through the most efficient paths, and inefficient routes can
remain deactivated until needed, leading to more sustainable networking practices. The study
lays the foundation for increased visibility into the energy efficiency of network paths, marking a
significant step toward sustainable networking practices.

1.3. Recommendations for Future Research
While the study successfully introduced efficiency indicators and demonstrated their application,
there are potential limitations associated with mapping arbitrarily large values and restricting

1. Conclusion and Discussion 83 of 96

Transition v1.0
Green Networking

them to numerical ranges based on 2. Future research should delve deeper into analyzing these
limitations and explore alternative approaches to address potential constraints. Additionally,
investigating the scalability of the proposed solution and its performance in larger, more com-
plex network scenarios could further enhance the practicality and applicability of the proposed
methodology.

In addition to the considerations mentioned earlier, future research endeavors can focus on the
development and implementation of complementary features to enhance the proposed solution’s
overall functionality and applicability.

Export of Network Energy Efficiency Data Using IPFIX into a Time Series Database Exploring
the integration of the proposed energy efficiency indicators with the IP Flow Information
Export (IPFIX) protocol RFC 7011 could offer a standardized and efficient means of export-
ing network energy efficiency data. By leveraging IPFIX, which is designed for collecting
and exporting flow information, researchers can establish a structured approach to feed
energy efficiency metrics into a time series database. This integration could facilitate com-
prehensive analysis, trending, and historical comparisons of network energy efficiency over
time.

Central Monitoring Platform Accessing Time Series Data A critical aspect of advancing net-
work energy efficiency research is the establishment of a central monitoring platform. This
platform would interface with the time series database, providing a consolidated view of
energy efficiency metrics across the network. Researchers can develop sophisticated vi-
sualization tools and analytics within the central monitoring platform, enabling real-time
monitoring, trend analysis, and the identification of potential optimizations. Such a plat-
form would serve as a valuable resource for network administrators and researchers seeking
deeper insights into the dynamic nature of energy efficiency within the network.

Central Management Platform for Configuration To further enhance the practicality of an en-
ergy efficiency indicator-enabled network, the development of a central management plat-
form is recommended. This platform would empower network administrators to configure
parameters essential for running and customizing energy efficiency indicators. Researchers
can explore user-friendly interfaces that allow for the adjustment of weighting components
in the Hop Efficiency Indicator (HEI) calculation, fine-tuning of aggregation methods, and
customization of alert thresholds. A central management platform would streamline the
deployment and management of energy efficiency metrics within diverse network environ-
ments.

These additional research avenues not only extend the scope of the proposed solution but
also contribute to the establishment of a comprehensive framework for managing and optimizing
network energy efficiency. By integrating IPFIX, developing central monitoring platforms, and
creating user-friendly management interfaces, future research can address the practical challenges
associated with deploying and maintaining energy efficiency indicators within complex network
infrastructures.

In conclusion, this research project has made substantial strides in proposing and implementing
a practical solution for aggregating, transporting, and interpreting green metrics in a simulated
computer network. The findings provide valuable insights into network efficiency, and the impli-
cations pave the way for more sustainable networking practices. Future research can build upon
these foundations to address potential limitations and enhance the scalability of the proposed
solution.

1. Conclusion and Discussion 84 of 96

https://tools.ietf.org/html/rfc7011

Transition v1.0
Green Networking

Bibliography

[1] Frank Brockners, Shwetha Bhandari, and Tal Mizrahi. Data Fields for In Situ Operations,
Administration, and Maintenance (IOAM). Request for Comments RFC 9197. Num Pages:
40. Internet Engineering Task Force, May 2022. doi: 10 . 17487 / RFC9197. url: https :
//datatracker.ietf.org/doc/rfc9197 (visited on 12/13/2023).

[2] Alexander Clemm and Laurent Metzger. Aggregation Trace Option for In-situ Operations,
Administration, and Maintenance (IOAM). Internet Draft draft-cxx-ippm-ioamaggr-00. Num
Pages: 9. Internet Engineering Task Force, Oct. 23, 2023. url: https://datatracker.ietf.
org/doc/draft-cxx-ippm-ioamaggr (visited on 12/09/2023).

[3] Alexander Clemm et al. Green Networking Metrics. Internet Draft draft-cx-green-metrics-
02. Num Pages: 19. Internet Engineering Task Force, Mar. 8, 2023. url: https://datatracker.
ietf.org/doc/draft-cx-green-metrics (visited on 12/13/2023).

[4] FURPS. In: Wikipedia. Page Version ID: 1110147882. Sept. 13, 2022. url: https ://en.
wikipedia.org/w/index.php?title=FURPS&oldid=1110147882 (visited on 11/01/2023).

[5] IEEEComSoc. IEEE ICC 2018 // Keynote: Nick McKeown, Programmable Forwarding
Planes Are Here To Stay. June 14, 2018. url: https ://www.youtube .com/watch?v=
8ie0FcsN07U (visited on 11/28/2023).

[6] In Situ OAM (IOAM). url: https://www.iana.org/assignments/ioam/ioam.xhtml (visited
on 12/10/2023).

[7] Internet Protocol Version 6 (IPv6) Parameters. url: https://www.iana.org/assignments/
ipv6-parameters/ipv6-parameters.xhtml (visited on 12/10/2023).

[8] P4 – Language Consortium. url: https://p4.org/ (visited on 11/29/2023).
[9] P4~16~ Language Specification. url: https : / / staging . p4 . org / p4 - spec / docs / P4 - 16 -

v1.2.4.html (visited on 12/07/2023).
[10] Scapy. url: https://scapy.net/ (visited on 12/14/2023).

Bibliography 85 of 96

https://doi.org/10.17487/RFC9197
https://datatracker.ietf.org/doc/rfc9197
https://datatracker.ietf.org/doc/rfc9197
https://datatracker.ietf.org/doc/draft-cxx-ippm-ioamaggr
https://datatracker.ietf.org/doc/draft-cxx-ippm-ioamaggr
https://datatracker.ietf.org/doc/draft-cx-green-metrics
https://datatracker.ietf.org/doc/draft-cx-green-metrics
https://en.wikipedia.org/w/index.php?title=FURPS&oldid=1110147882
https://en.wikipedia.org/w/index.php?title=FURPS&oldid=1110147882
https://www.youtube.com/watch?v=8ie0FcsN07U
https://www.youtube.com/watch?v=8ie0FcsN07U
https://www.iana.org/assignments/ioam/ioam.xhtml
https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml
https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml
https://p4.org/
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://scapy.net/

Part V.

Appendix

Appendix v1.0
Green Networking

A. IETF Draft

As already mentioned throughout this document the IETF draft draft-cxx-ippm-ioamaggr au-
thored by Alexander Clemm served as the foundation for the research attempted during this
semester thesis. The following pages enclose the current version of the draft.

A. IETF Draft 87 of 96

Workgroup: IPPM

Internet-Draft: draft-cxx-ippm-ioamaggr-00

Published: 23 October 2023

Intended Status: Standards Track

Expires: 25 April 2024

Authors: A. Clemm

Futurewei Technologies, Inc.

L. Metzger

Ostschweizer Fachhochschule - OST

Aggregation Trace Option for In-situ Operations, Administration, and

Maintenance (IOAM)

Abstract

The purpose of this memo is to describe a new option type for In-

Situ Operations, Administration, and Maintenance (IOAM). This option

type allows to aggregate IOAM data along a network path. Aggregates

include functions such as the sum, average, minimum, or maximum of a

given data parameter.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 April 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Background

3. IOAM Aggregation Option-Type

3.1. Overview

3.2. Discussion

4. Security Considerations

5. IANA Considerations

6. Contributors

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

This memo proposes a new option type for In-Situ Operations,

Administration, and Maintenance (IOAM) [RFC9197]. The IOAM Aggregate

option type allows to aggregate IOAM data along a network path.

Aggregates include functions such as the sum, average, minimum, or

maximum of a given data parameter.

Many applications interested in telemetry data across a path are not

so much interested in each individual node's telemetry, but an

aggregate to paint a more holistic picture. An example of an

aggregate could be a sum (for example, the sum of packet dwell times

experienced across a path), an average (for example, the average

dwell time experienced across a path), or a minimum or maximum (for

example, of the dwell time experienced on any hop across the path,

along with the node ID where the extreme was experienced). Other

applications include sustainable networking, where (for example) the

carbon-intensity of a path as a whole needs to be determined as an

input to applications that attempt to minimize pollution

attributable to specific networking traffic.

The aggregation option type proposed in this memo addresses the

needs of those applications. Rather than collecting individual IOAM

data parameters at each node and exporting them for further

processing, IOAM Aggregate allows to preprocess telemetry data into

an aggregate as a packet traverses a path. Aggregating parameters

¶

¶

¶

along the path, instead of merely collecting them, offers the

following advantages:

It keeps the packet size constant. This avoids problems such as

the possibility of packets exceeding their MTU and need for

fragmentation and reassembly in case of longer data paths, or

deteriorating packet delays as packets grow in size along a path.

It reduces the volume of data to be exported.

It obviates the need to correlate data exported from individual

nodes as belonging to the same flow, when compared with

processing of postcard telemetry data [RFC9326].

It significantly reduces the amount of processing that needs to

be done by applications, simplifying their development and

deployment.

It enables greater network intelligence, such as taking actions

on aggregates when certain thresholds are exceeded.

Aggregating parameters does require a small amount of processing

(such as, an arithmetic operations to add to a sum, or a comparison

operation to determine a minimum) at each hop, requiring some

additional processing cycles. This is a small tradeoff to be aware

of when choosing this option. We believe that this tradeoff will be

acceptable in many implementations and deployment scenarios.

2. Background

[RFC9197] defines the scope of IOAM as well as the different IOAM

nodes. The following section reiterates those roles and explains how

they are applied in the context of IOAM Aggregation.

IOAM is focused on "limited domains", as defined in [RFC8799]. IOAM

is not targeted for a deployment on the global Internet, which would

incur additional considerations such as the crossing of Trust

Boundaries, authentication of IOAM data, or the desire to obfuscate

domain internals to outside parties. The part of the network that

employs IOAM is referred to as the "IOAM-Domain".

An IOAM-Domain consists of "IOAM encapsulating nodes", "IOAM

decapsulating nodes", and "IOAM transit nodes", as depicted in

Figure 1.

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

Figure 1: Roles of IOAM nodes

The role of these nodes is as follows:

The Encapsulating Node originates the IOAM aggregation. It adds

the IOAM Aggregation Option to the packet for which telemetry

data is to be aggregated across the path and populates the fields

with their initial values.

The Transit Node is an IOAM-enabled node that aggregates the

value of its own telemetry with the aggregate in the packet,

updating the aggregation data as needed.

The Decapsulating Node terminates the IOAM aggregation. It

aggregates the value of its own telemetry with the aggregate in

the packet and updates the aggregation data as needed. It

subsequently exports the aggregated data, specifically, including

the value of the aggregate itself as well as auxiliary data as

applicable (e.g. node ID for min, max, and in case of errors).

3. IOAM Aggregation Option-Type

3.1. Overview

This section defines the data fields for the IOAM Aggregation Option

Type format. Like other IOAM Aggregation Option Types, these data

fields can be mapped into a number of transport protocols [RFC9378].

For example, a transport over IPv6 [RFC8200] has been defined in

[RFC9486].

The format of the IOAM Aggregation Option Type data fields is

depicted in Figure 2.

 Export of

 IOAM data (opt.)

 ^

 |

User +--------+ +--------+ +--------+ +---+----+

packets |Encapsu-| | Transit| | Transit| |Decapsu-|

-------->|lating |====>| Node |====>| Node |====>|lating |-->

 |Node | | A | | B | |Node |

 +--------+ +--------+ +--------+ +--------+

¶

*

¶

*

¶

*

¶

¶

¶

Figure 2: IOAM Aggregation Option Type Format

The total length of the IOAM Aggregation Option Type data fields is

fixed at 16 octets (word-aligned). These 16 octets hold header

information as well as aggregation data in the following fields:

Namespace-ID: 16-bit identifier of an IOAM-Namespace, as defined

in [RFC9197]. The Namespace-ID is populated by the encapsulating

node and MUST NOT be changed by any of the intermediate nodes.

The Namespace-ID value of 0x0000 is defined as the "Default-

Namespace-ID" and MUST be known to all the nodes implementing

IOAM. For any other Namespace-ID value that does not match any

Namespace-ID the node is configured to operate on, the node MUST

NOT change the contents of the IOAM-Data-Fields except for the

Namespace Flag (see below).

Flags: 4-bit field to indicate errors that were encountered when

attempting to process the IOAM Aggregation Option along the path.

Once a flag is set, no further aggregation occurs along the path.

An intermediate node that encounters an error during processing

of the IOAM Aggregation that prevents it from updating the

aggregate as requested MUST set the corresponding flag to 1. In

order to facilitate troubleshooting, it also MUST set the value

of the Auxil-data Node-ID field to its own Node-ID. The

encapsulating node MUST set the value of Flags to zero upon

transmission. When an intermediate node encounters receives a

packet in which any of the Flags are non-zero, the node MUST NOT

perform further IOAM operations on that packet; instead, the IOAM

data MUST be forwarded as-is unchanged. The following flags are

defined:

Flag 1: Aggregator not supported

Flag 2: Unsupported IOAM data parameter

Flag 3: Unsupported Namespace

Flag 4: Any other error

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Namespace-ID | Flags | Reserved |

+-+

| IOAM Data Param | Aggregator |

+-+

| Aggregate |

+-+

| Auxil-data Node-ID | Hop Count |

+-+

¶

*

¶

*

¶

- ¶

- ¶

- ¶

- ¶

Reserved: An IOAM encapsulating node MUST set the value to zero

upon transmission. IOAM transit nodes MUST ignore the received

value.

IOAM Data Param: This field identifies the data parameter that is

to be aggregated across the nodes. It MUST be set by the IOAM

encapsulating node. IOAM transit nodes MUST NOT change it.

Contrary to IOAM Trace-Type in the pre-allocated and incremental

trace option types, only a single parameter is aggregated at a

time. Accordingly, the data parameter to be aggregated is not

identified by a a particular bit, but by a value.

Aggregator: This 8-bit field identifies the aggregation function

that is to be applied. Its value MUST be set by the IOAM

encapsulating node. IOAM transit nodes MUST not change it. The

following aggregators are defined:

Sum (value: 0b1)

Min (value: 0b10)

Max (value: 0b100)

Average (value: 0b1000)

Aggregate: This 32-bit field contains the aggregated value. Its

value is initialized by the encapsulating node,in general by

simply recording the value of its data parameter that is to be

aggregated. The field is updated by each subsequent node pre the

requested aggregation, including IOAM transit nodes as well as

the IOAM decapsulating node (prior to performing decapsulation).

Auxil-data Node-ID: This 24-bit field contains a Node-ID. It MUST

be set by the encapsulating node to its own Node ID. Subsequent

nodes (IOAM transit nodes, as well as the IOAM decapsulating node

prior to performing decapsulation) MUST update the value to their

own Node-ID IF AND ONLY IF one of the following conditions hold,

otherwise they MUST NOT change its value:

When a flag is set by the node (i.e., the first time any type

of error is encounted along the path)

When the aggregator is one of Min or Max, and a new minimum

respectively maximum is encountered. The value of the Auxil-

data Node-ID field is hence used to record where the minimum

respectively maximum value was first encountered. (When a node

matches an existing minimum or maximum but does not beat it,

the Node-ID is not updated.)

*

¶

*

¶

*

¶

- ¶

- ¶

- ¶

- ¶

*

¶

*

¶

-

¶

-

¶

Hop Count. This 8-bit fields contains a hop count to record the

number of nodes along the path that successfully processed the

IOAM Aggregation. The encapsulating node MUST set the value to 1,

and each subsequent node (transit nodes, as well as the

decapsulating node prior to performing decapsulation) MUST

increment its value by 1. If the Hop Count at a node exceeds 255,

that node MUST set the Hop Count to 0 and set Flag 4 ("any other

error") to prevent further processing of the IOAM Aggregation.

3.2. Discussion

This section explains some of the design choices and points out

items that may be subjected to further discussion.

Single versus multiple parameters. The Aggregation Option Type

allows to only aggregate one data parameter at a time. This

allows to keep the format of the data structure simple and of

fixed size. This facilitates processing. It also limits the

number of processing cycles that need to be spent for aggregation

at each node. An application seeking to perform multiple types of

aggregation at a time will need to apply different types of

aggregation for different packets.

IOAM data parameter identification. Unlike other IOAM Option

Types, data parameters are not represented by a bit position in a

field but by a 24-bit identifier. This allows to support a

greater number of parameters. In order to facilitate

compatibility, initially only identifiers SHOULD be used that

utilize bits 12 through 22, with other bits set to 0. The

assignment of IOAM data parameter identifiers is at this point up

to the network operator, with IOAM data parameters being specific

to an IOAM name space. It is conceivable that a global namespace

and a corresponding IANA registry for IOAM data parameters would

be introduced at a later point in time.

Average aggregator. An average can be easily derived from

dividing a sum obtained across all nodes by the hopcount.

Avoiding division operations along the path can save considerable

processing cycles. It is FFS if the average aggregator is really

required.

Simultaneous use with other IOAM Option Types. There are use

cases conceivable that would benefit from also adding a trace of

which nodes were actually traversed on the path. The possibility

to do so is already provided with other IOAM Option Types and

does not need to be added here. In order to use multiple IOAM

Option Types simultaneously, applications can use one of several

alternatives. In one alternative, multiple IOAM Option Types with

their corresponding data structures are simultaneously used in

*

¶

¶

*

¶

*

¶

*

¶

*

[RFC9197]

[RFC8200]

[RFC8799]

the same packet. In another alternative, different packets of the

same flow are each send with a different IOAM Option Type, a form

of sampling which however provides no absolute guarantees of path

congruency (i.e., different packets traversing the exact same

path).

4. Security Considerations

A malicious node along the path could attempt to forge the

aggregate, resulting in a wrong aggregate to be reported. This might

mislead applications. Likewise, a malicious node along the path

could set a flag to trick other nodes not to process the aggregate

any further, or clear a flag to make an errored result appear

legitimate. To avoid this, network operators need to ensure that

their network nodes can be trusted and are not compromised.

5. IANA Considerations

IANA requests are TBD. Future versions of this document may request

the establishment of a registry for Aggregators as well as for IOAM

Data Parameters.

6. Contributors

Ramon Bister, OST

Severin Dellsperger, OST

Reto Furrer, OST

7. References

7.1. Normative References

Brockners, F., Ed., Bhandari, S., Ed., and T. Mizrahi,

Ed., "Data Fields for In Situ Operations, Administration,

and Maintenance (IOAM)", RFC 9197, DOI 10.17487/RFC9197,

May 2022, <https://www.rfc-editor.org/rfc/rfc9197>.

7.2. Informative References

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/rfc/

rfc8200>.

Carpenter, B. and B. Liu, "Limited Domains and Internet

Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,

<https://www.rfc-editor.org/rfc/rfc8799>.

¶

¶

¶

* ¶

* ¶

* ¶

[RFC9326]

[RFC9378]

[RFC9486]

Song, H., Gafni, B., Brockners, F., Bhandari, S., and T.

Mizrahi, "In Situ Operations, Administration, and

Maintenance (IOAM) Direct Exporting", RFC 9326, DOI

10.17487/RFC9326, November 2022, <https://www.rfc-

editor.org/rfc/rfc9326>.

Brockners, F., Ed., Bhandari, S., Ed., Bernier, D., and

T. Mizrahi, Ed., "In Situ Operations, Administration, and

Maintenance (IOAM) Deployment", RFC 9378, DOI 10.17487/

RFC9378, April 2023, <https://www.rfc-editor.org/rfc/

rfc9378>.

Bhandari, S., Ed. and F. Brockners, Ed., "IPv6 Options

for In Situ Operations, Administration, and Maintenance

(IOAM)", RFC 9486, DOI 10.17487/RFC9486, September 2023,

<https://www.rfc-editor.org/rfc/rfc9486>.

Authors' Addresses

Alexander Clemm

Futurewei Technologies, Inc.

Email: ludwig@clemm.org

Laurent Metzger

Ostschweizer Fachhochschule - OST

Email: laurent.metzger@ost.ch

	Revision History
	Abstract
	Management Summary
	Acknowledgement
	Important Terms and Abbreviations
	Introduction
	Background
	Thesis Composition
	Inception
	Elaboration
	Construction
	Transition
	Appendix

	Inception
	Initial Situation
	Existing Research

	Vision
	Goals
	Automated Network Efficiency Analysis
	Sustainable Networking

	Use Cases
	UC01: Calculate Hop Efficiency Indicator (HEI)
	UC02: Aggregate HEIs to Path Efficiency Indicator (PEI)
	UC03: Append the PEI to the packet carrying user data
	UC04: Determine the min/max HEI in a path
	UC05: Assign the PEI to the traversed path
	UC06: Collect the PEI in demo application

	Requirements
	Functional Requirements
	Non Functional Requirements

	Elaboration
	Design Decisions
	Efficiency Indicators
	Gain
	Hop Efficiency Indicator - HEI
	HEI Components

	Path Efficiency Indicator - PEI
	Minimum / Maximum HEI on Traversed Path
	Average of HEIs on Traversed Path
	Mathematical Concept
	Get the Parameters
	Normalization
	Inversion
	Weighting
	HEI Calculation
	PEI calculation

	Calculation Example
	Requirements
	Decisions
	Limitations

	Programmable Forwarding Planes
	Control Plane / Data Plane
	Introduction to P4
	P4 Processing Pipeline
	Runtime Forwarding Rules (Control Plane Tables)
	Parser
	Ingress Pipeline
	Egress Pipeline
	Deparser

	Development Environment
	Decisions
	Behavioral Model Version 2 (BMv2)
	Mininet
	Virtual Machine
	Development Network
	Topology
	Control Plane Definition
	IPv6 Functionality
	Traffic simulation
	Automatic Packet Capture

	Installation
	Install Dependencies
	Install Mininet
	Install BMv2
	Install P4 Compiler (p4c)
	Install Python Dependencies

	Operation

	Testing
	Scope
	Requirements
	Architecture
	Design Decisions
	Context
	Test Procedure

	Demo Application
	Jupyter Notebook
	Demonstration Content
	Example Calculation

	Construction
	Parser
	Concepts
	Parser Declaration
	Parser State Definition

	Parser State Machine
	Parsing Flow
	States

	Forwarding Pipelines
	Ingress Pipeline
	Actions
	Tables
	Apply

	Egress Pipeline
	Apply

	IPv6 Extension Header
	Hop-by-Hop Options Header
	Options

	Header Structure Overview
	Wireshark

	Header Initialization in P4
	Actions
	Apply

	IOAM Tracing
	Header Structure
	IOAM Trace-Type
	Wireshark

	Implementation in P4
	Constants
	Types
	Headers
	Controller
	Actions
	Tables
	Apply

	Limitations

	IOAM Aggregation
	Header Structure
	IOAM Data Param
	Aggregator
	Aggregate
	Wireshark

	Implementation in P4
	Constants
	Types
	Headers
	Controller
	Actions
	Tables
	Apply

	Limitations

	Efficiency Indicators
	Implementation in P4
	Constants
	Types
	Controller
	Actions
	Tables
	Apply

	IOAM Aggregation

	Add new Component

	Testing
	Software Components
	Component Interaction Flow
	Source Code
	Scapy Library

	Definition of Tests
	Path Object
	Testcase Object

	Test Execution
	Makefile
	Results
	Console Output
	Logs

	Demo Application
	Demo Execution
	Data Export
	Demo Cases
	Timeseries per Path
	Path Comparison
	Minimum / Maximum HEI on a Path
	PEI Composition
	Path Statistics
	Sample Step-by-Step PEI Calculation

	Transition
	Conclusion and Discussion
	Review of Findings
	Implications of the Study
	Recommendations for Future Research

	Bibliography

	Appendix
	IETF Draft

