
VisualFP
Designing a Visual, Block-Based Environment to

Create & Execute Haskell Code

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Student Research Project, Autumn Term 2023

Authors: Lukas Streckeisen, Jann M. Flepp
Advisor: Prof. Dr. Farhad D. Mehta
Project Partner: IFS Institute for Software

Abstract
Most visual programming tools used to introduce children & young adults to the
programming world are based on the imperative paradigm. Existing tools based on
functional programming either lack a good user experience or hide critical concepts of the
functional paradigm.

To address this gap, a visual, block-based tool for functional programming should be
designed. This project aims to find a visual design of such a tool and then prove its
feasibility in a proof of concept application.

Existing visual programming tools are examined before creating a visual design. The
development of the design is approached in two iterations: In a first step, concept drafts are
based on researched tools and evaluated using a survey. Then, a new concept is created
using the received feedback and implemented in a proof of concept.

The created design concept focuses on function composition, guided by type holes that
indicate the type required for a valid function definition.

The implemented application proves that the proposed concept for function composition
works as envisioned. It includes an inference engine that determines the type of undefined
parts of a function and is built using Electron.js & Haskell.

It is recommended that an additional project be conducted to implement missing features of
the application so that it can be used in classrooms.

Keywords: Haskell, Functional Programming, Visual Programming

Management Summary

Initial Situation
Many teachers use tools like Scratch or LEGO Mindstorms when introducing children and
young adults to the programming world. Such visual, block-based tools eliminate the hurdle
of code syntax, allowing beginners to concentrate on the program they want to write.

However, almost all visual tools for teaching programming are made for the imperative
programming paradigm. Visual tools exist for functional programming, but either lack a
good user experience or hide essential concepts required to understand functional
programming.

Objective
With VisualFP, a visual, block-based tool should be designed that can be used to teach
functional programming. At the center of this project is a design concept for visual function
composition, describing how the visual editor of such a tool would work. A proof of concept
application with a visual function editor should be created to prove the concept is feasible.

A potent type inference engine is necessary for such an editor to work, which shall be
implemented using a unification algorithm as proposed by Simon Peyton Jones [1]. An
overview of a unification-based engine is shown in Figure 1.

Figure 1: Type-inference engine components

Additionally, the application should run on the user’s machine so that it can be used in
classrooms without server infrastructure.

Results
The developed concept uses nested blocks to represent function definitions. Type holes
guide the development flow as typed placeholders for missing pieces of a value definition.
Users can drop value blocks into a type hole to fill it with that value. Value blocks are
provided by the editor or are defined by the user.

The concept was implemented in a proof of concept application written using Haskell and
Electron.js. A component-level view of the application is provided in Figure 2.

Figure 2: C4 Component Diagram for VisualFP PoC

The application includes a small selection of pre-defined values that can be used to build a
user-defined function. A screenshot of the application is provided in Figure 3.

Figure 3: Screenshot of the mapAdd5 function definition in VisualFP

The implemented application proves that the developed design concept works as envisioned.
However, the application is not yet ready to be used in classrooms as additional design and
development is required to bring the idea to its full potential.

Table of Contents

Part I - Introduction

1. Motivation .. 6

2. Goals .. 6

3. Existing tools .. 7
3.1. Snap! ... 7
3.2. Eros ... 7
3.3. flo ... 8
3.4. Enso .. 9
3.5. Reddit Suggestion for visual pure functional programming ... 10
3.6. Agda .. 10

Part II - Design

4. Functional Requirements .. 12
4.1. Actors ... 12
4.2. Use Cases ... 12
4.3. Prioritization & Scope .. 14

5. Non Functional Requirements ... 14
5.1. NFR1 - Platform Compatibility .. 15
5.2. NFR2 - Learnability ... 15

6. First Design Iteration ... 15
6.1. Design Evaluation Criteria .. 15
6.2. Scratch-inspired design .. 16
6.3. Flo-inspired design .. 17
6.4. Haskell function notation-inspired design .. 20
6.5. Conclusions ... 21

7. Second Design Iteration .. 22
7.1. Final Design Proposal ... 22
7.2. Conclusion .. 25

Part III - Proof of Concept

8. Scope .. 26

9. Implementation Options ... 26
9.1. Deployment platform ... 26
9.2. UI Frameworks ... 27
9.3. Compiler Platform ... 29

10. Architecture ... 31
10.1. Client/Server Cut .. 31
10.2. Backend Components .. 32

11. Translation Component .. 32

12. User Interface ... 33
12.1. Features .. 33

12.2. Implementation .. 34
12.3. Functional Reactive Programming .. 34

13. Type Inference ... 35
13.1. Phases ... 35
13.2. Constraint Language .. 36

Part IV - Results & Outlook

14. Results ... 37
14.1. Requirement Validation ... 37
14.2. Design Concept .. 38
14.3. Proof of Concept .. 39
14.4. UI Demonstration .. 39

15. Outlook ... 41
15.1. IDE for visual functional programming ... 42
15.2. Visual and Textual Language ... 43

Part V - Appendix

16. Task Description ... 45

17. Design Evaluation Questionnaire Template ... 47

18. Design Iteration One - Survey Results .. 53

19. Glossary & List of Acronyms ... 70

20. Bibliography ... 71

21. List of Figures .. 73

22. List of Tables .. 75

23. List of Code Listings .. 76

VisualFP 1. Motivation

Part I - Introduction

This part discusses the motivation behind VisualFP, what it aims to achieve, and the
research that was done on existing alternatives.

Section 1 Motivation and Section 2 Goals are based on this project’s task description, which
can be found in full in Section 16.

1. Motivation
Block-based programming tools enable a purely visual introduction to programming for the
imperative programming paradigm. Common beginner mistakes, such as compiling code
with incorrect syntax, are impossible in such an environment. Examples include Scratch,
developed by MIT, and the LEGO Mindstorms software.

There aren’t many similar tools available to teach functional programming, which is why
most educators start their courses by either showing the logical nature of functional
programming through e.g. the lambda calculus, or by jumping right into code, leaving many
students puzzled.

Some visual approaches to functional programming exist; the ones researched during this
project are covered in Section 3. Unfortunately, none seem suitable as an introduction to
general-purpose functional programming.

However, block-based tools don’t need to be limited to education: A sufficiently powerful
environment that allows conversion to and from a text-based programming language could
also see adoption among professionals looking for ways to visualize their code.

2. Goals
The goal of this student research project is to design a tool, VisualFP, that allows the
graphical development of functional code and is block-based. The target audience of
VisualFP are students learning to program.

The core functionality of VisualFP will be implemented in a PoC (Proof of Concept) to prove
the feasibility of the design.

The central part of this project is to document the design process used to create VisualFP
transparently to allow others to better understand the decisions made during the project,
which alternatives were considered, and to evaluate whether they want to follow the same
path.

Due to the time constraints of this project, the goals deviate from the initial task description
in Section 16. While support for experienced programmers who want to view their code in a
visual context is included in Section 4, interoperability with Haskell isn’t a goal for this
project. In addition, the PoC is treated as a sample application to prove that the design
concept works and not necessarily as a starting point for fully implementing the VisualFP
application.

L. Streckeisen, J. Flepp Page 6 of 77

VisualFP 3. Existing tools

3. Existing tools
There already are tools available that could fill the role of a visual functional programming
language as described in Section 1.

But even if they fail to live up to the specific goals of this project, they may still be helpful
as inspiration or a starting point for a VisualFP.

This section discusses these tools, their strengths and weaknesses.

3.1. Snap!
Snap! is a block-based programming tool developed by Berkeley University which allows
the creation of imperative programs in a Scratch-like manner.

A user can create programs to control a cursor in a graphical environment, e.g., navigate the
cursor to a specific position and draw a line. For that, Snap! offers pre-defined commands
like basic arithmetic operations, cursor-, pen- & sound-controls, and flow controls like “if”
blocks. For lists, snap offers some control blocks that allow users to work with lists in a
functional fashion, as seen in the red blocks in Figure 4.

Figure 4: Screenshot of a block expression in Snap! [2]

However, everything else can only be done imperatively, making the functional aspects
more of an additional feature than a core concept of Snap!.

Users can also create new block commands based on existing commands, which allows
users to reuse their code. But unlike usual functions, custom blocks aren’t able to take
arguments from their caller [2].

Regarding usability, we feel that Snap! isn’t very difficult to understand, but also not very
intuitive, primarily because some icons and command names aren’t obvious in their
meaning.

3.2. Eros
Conal Elliott developed a way to visualize pure values in an interactive and composable
way. He calls this technique “Tangible Functional Programming” [3]. The technique allows
non-technical people to create content based on combinations of pure values.

L. Streckeisen, J. Flepp Page 7 of 77

VisualFP 3. Existing tools

At the core of the technique are tangible values, which are pure values, including functions,
that can be visualized and composed with other tangible values through a graphical user
interface.

To combine such values, a set of algebras is provided that allows values to be applied to
each other, even if they are nested in functions or tuples. Elliot calls this concept deep
application. [3]

Eliott also developed an application called Eros that implements these techniques. Eros is
particularly suited to creative people with an artistic interest. A screenshot of Eros is shown
in Figure 5.

Figure 5: Screenshot of Eros [3]

“Tangible Functional Programming” is a fascinating technique, and particularly the way
Eros visualizes pure values can be an inspiration for VisualFP. But ultimately, the technique
appears unsuitable for general-purpose functional programming, especially in an
educational context.

3.3. flo
flo is a visual and functional programming language. It features a programming
environment based on blocks connected using cables, as shown in Figure 6. The
corresponding compiler converts the visual arrangements and connections into Haskell
code.

Figure 6: Screenshot of an if function definition in flo [4]

L. Streckeisen, J. Flepp Page 8 of 77

VisualFP 3. Existing tools

A block’s parameters and outputs are represented by sockets, which can be connected to
compatible sockets through click-and-drag. The compiler can infer the sockets’ types and
reject incompatible connections.

A specialty of flo is that blocks represent values and types. A type block is either a basic
type, such as Int or Bool, or a constructor to a complex type with type parameters,
represented through sockets. An example of a type being used as type parameter is shown
in Figure 7.

Figure 7: Screenshot of a negation function application in flo [4]

flo was a research project and has not been actively developed since 2016. Out of all
researched tools, it is probably the one that comes closest to VisualFP in terms of its goals.

3.4. Enso
Enso is a functional programming language designed for data science that Enso
International Inc [5] created. There is a text and a visual editor to create programs.

The visual editor allows a user to define components that can be connected, symbolizing the
data flow from one component to another. The editor also offers previews for a component’s
data, which, e.g., allows a user to see a modified picture like in Figure 8.

Figure 8: Example program in Enso [5]

Enso is visually impressive and largely intuitive regarding data flow. For example,
downloading data from a public API (Application Programming Interface) and aggregating
it is super easy. However, some operations, such as dividing a number with another number,
are pretty complicated. Based on that, Enso seems to be an excellent tool to work with
datasets but not so much for creating programs with complex logic.

L. Streckeisen, J. Flepp Page 9 of 77

VisualFP 3. Existing tools

3.5. Reddit Suggestion for visual pure functional programming
The Reddit user ‘Jameshfisher’ suggested a style of pure visual programming [6]. It is only
theoretical and, therefore, not an existing tool. A picture of the suggestion is shown in
Figure 9.

Figure 9: Suggestion for visual pure function programming by Reddit user Jameshfisher
Source: Adapted from [6]

But the proposed concept is very intriguing. Instead of drawing a function from the outside,
functions are drawn from the inside.

A function’s input is displayed on the top, and the output on the bottom. The arrows show
how the output is composed of other expressions.

Out of all the researched tools, this suggestion shows functional programming concepts
best.

3.6. Agda
Even though Agda¹ isn’t a visual programming environment, the tools for it have been
designed in an interactive way and are of interest to this project.

¹https://wiki.portal.chalmers.se/agda/pmwiki.php

The basis for these tools is a language-server, which, in combination with the powerful
checker and editor extensions not only allow to verify the correctness of the code, but also
to check incomplete programs. Additional context, such as checker errors or incomplete
expressions, is then provided in a separate window inside the editor.

Using this tooling, it is, for example, possible to insert a hole in the code, a so-called
metavariable, which the checker will detect and display alongside the expected type in the
context window, as shown in Figure 10.

L. Streckeisen, J. Flepp Page 10 of 77

VisualFP 3. Existing tools

Figure 10: Screenshot of Agda context window after inserting a hole in an expression using
the ? sign

The Agda language server is also able to provide automatic case-splitting for pattern
matching. During this process, the checker will determine the possible cases and present
only those to the user. Thus, the user is freed from remembering and typing out all matching
cases.

Additionally, the language server offers to normalize or deduce any given expression inside
the context of the currently loaded code. The checker is also utilized for syntax highlighting,
providing the user with semantical value in the form of coloring.

L. Streckeisen, J. Flepp Page 11 of 77

VisualFP 4. Functional Requirements

Part II - Design

This part describes the requirements, the design proposals, the design evaluation process,
and the detailed final design for VisualFP.

4. Functional Requirements
The following section describes all actors and use cases identified for the VisualFP
application.

4.1. Actors
VisualFP has two actors:

Student User The student user is the primary user of VisualFP and, therefore, the main
influence on the visualization design. The student user wants to learn functional
programming using VisualFP. They want to do that by visually composing functions in
a simple UI (User Interface). The UI should simplify understanding functional concepts
that many beginners struggle with.

Expert User The expert user is an experienced professional who wants to use VisualFP to
help them understand their code better. For that, they want to import their existing
Haskell project into VisualFP.

4.2. Use Cases
Figure 11 gives an overview of all identified use cases. By default, “user” in the use case
description refers to the “student user”.

L. Streckeisen, J. Flepp Page 12 of 77

VisualFP 4. Functional Requirements

Figure 11: Use Case Diagram

As the aim of this project is to find a visual representation of functional programming, the
use case descriptions are kept very brief and only state the intention behind the use case.

4.2.1. UC1 - Simple Function Composition
A user wants to compose a simple function using pre-defined functions, e.g., Integer
parameters.

L. Streckeisen, J. Flepp Page 13 of 77

VisualFP 5. Non Functional Requirements

4.2.2. UC2 - Function Execution
A user wants to execute their visually composed functions to see the effects of their
functions on data.

4.2.3. UC3 - Recursive Function Composition
A user wants to compose a function that is defined using itself. To do so, the user needs
possibilities to distinguish between a recursive and a base case.

4.2.4. UC4 - Function Composition using Higher-Order Functions
To create reusable and composable functions, a user wants to compose functions that take
other functions as their input, in other words, higher-order functions.

4.2.5. UC5 - Curried Functions
A user wants to create a function by partially applying a curried function.

4.2.6. UC6 - Function Composition using Lists
A user wants to compose a function using lists, so that they can collect data and process it
further.

4.2.7. UC7 - Data Type Composition
A user wants to be able to create their own data types to represent data of their problem
domain accurately.

4.2.8. UC8 - Save Source File
A user wants to save their composed functions in a source file so they can keep their work
when, e.g., restarting their computer.

4.2.9. UC9 - Open Source File
A user wants to open a previously saved source file to continue working on their program.

4.2.10. UC10 - Group Functions into Modules
An expert user wants to group functions into modules to keep their code organized.

4.2.11. UC11 - Import Haskell code
An expert user wants to import their existing Haskell project into VisualFP so they can get a
better understanding of their code from its visualization.

4.3. Prioritization & Scope
The focus of this project lies in creating a design that allows to develop functional
applications visually and is suitable for beginners.

Use cases 1 - 6 have been deemed more important to reach this goal and thus have higher
priority than use cases 6 - 9. Use cases 10 and 11 are not in this project’s scope but are listed
for completion.

5. Non Functional Requirements
This section describes all non-functional requirements identified for VisualFP. To find a
relevant NFR (Non-Functional Requirement), ISO-25010 [7] was used for inspiration.

L. Streckeisen, J. Flepp Page 14 of 77

VisualFP 6. First Design Iteration

5.1. NFR1 - Platform Compatibility
VisualFP should be usable on Windows, MacOS, and Linux devices. No extra effort should
be required to run VisualFP on any particular OS (Operating System).

Verification Test the usage of VisualFP on all three mentioned operating systems.

Acceptance Criteria The installation steps are the same or of equivalent effort for all
three mentioned operating systems

Realisation Usage of platform-independent technologies

5.2. NFR2 - Learnability
Since VisualFP targets students who want to learn functional programming, the learning
effort shouldn’t be on the tool itself but on functional concepts.

Verification Usability Tests with a user without experience in functional programming

Acceptance Criteria A user without experience in functional programming understands
how to use VisualFP within 1 hour

Realisation Keep the design of VisualPF simple; offer help buttons on more complex
blocks

6. First Design Iteration
For the first iteration, multiple design directions were created and evaluated. The following
process was chosen to gain as much insight as possible:

1. Section 6.1 defines a set of evaluation criteria to compare the designs in the form of a
questionnaire.

2. Then, three proposals are presented: A Flo-based design in Section 6.3, a Scratch-based
design in Section 6.2, and a design inspired by the Haskell function notation in
Section 6.4.

3. The three designs are filled into a questionnaire and handed to a selected survey group.
The feedback is then further discussed in Section 6.5.

6.1. Design Evaluation Criteria
Since it is difficult to compare designs in a quantitative manner, the design evaluation
process is based on selected code scenarios and a non-quantitative questionnaire.

A survey will be conducted using the questionnaire and example visualizations for specific
code scenarios to get further valuable feedback to improve initial designs. The survey
targets a selected group of students and some more experienced functional programmers.

The code scenarios and questionnaire questions can be found below.

6.1.1. Code Scenarios
These code scenarios were defined to evaluate visualization designs regarding their
simplicity and clarity of the underlying functional concepts.

L. Streckeisen, J. Flepp Page 15 of 77

VisualFP 6. First Design Iteration

Simple Addition Function
Listing 1 has been chosen to evaluate designs for the composition of a simple function using
another function.

addition :: Num a => a -> a -> a
addition a b = (+) a b

Listing 1: Addition function for design evaluation

Even numbers from 1 to 10
Listing 2 has been chosen to evaluate designs for list handling.

evenOneToTen :: Integral a => [a]
evenOneToTen = [x | x <- [1 .. 10], even x]

Listing 2: Function that returns even numbers between 1 and 10

Product of Numbers
Listing 3 has been chosen to evaluate designs for recursive functions.

product :: Num a => [a] -> a
product [] = 1
product (n : ns) = (*) n (product ns)

Listing 3: Product function for design evaluation

Map Add 5 Function
Listing 4 has been chosen to evaluate designs for currying.

mapAdd5 :: Num b => [b] -> [b]
mapAdd5 = map ((+) 5)

6.1.2. Evaluation Questionnaire
The survey participants are asked to answer the following questions for every design
proposal:

• Were you able to understand the meaning of the boxes and arrows?
• Do you find the concept nice to look at?
• Could you imagine teaching functional programming using this visualization?
• Could you imagine how the concept scales to more complex expressions?
• Do you have any suggestions for improvement or general comments on the concept?

Additionally, every survey participant can suggest a visualization concept of their own.

The questionnaire template handed out to survey participants can be found in Section 17.

6.2. Scratch-inspired design
The proposal of the scratch-inspired design takes scratch’s imperative block style and
converts it into the context of an expressional and declarative setup.

Functions, variables, parameters, etc., are portrayed as colorful blocks that can be dragged
on top of each other.

L. Streckeisen, J. Flepp Page 16 of 77

VisualFP 6. First Design Iteration

6.2.1. Function Declaration, Composition and Application
Function declarations are displayed as red blocks with light-blue parameters below them,
and the main expression above it, as shown in Figure 12.

Figure 12: Example of scratch-inspired function definition for an addition function

Functions used in expressions are displayed as green blocks and can be applied by inserting
blocks to the parameters declared above them. Their name is shown inside the block,
whereas the alignment of the name (left, center, right) doesn’t bear any semantic meaning.

6.2.2. Type Holes
If a parameter is left unapplied, a type hole is shown instead as a violet block with the
expected value type as its name. Such a type hole can be seen in Figure 13.

Figure 13: Example of scratch-inspired function definition with a type hole

In Figure 13, the second parameter of the (+) function is left unapplied, and thus, a type
hole of type Int is shown.

6.2.3. Pattern Matching
Pattern matching is provided as a dedicated block that takes a value as a parameter and has
the list of possible patterns as its pre-applied arguments. These cases then offer the matched
patterns as values and can be supplied with blocks to specify the expression to be evaluated.
An example of such a function can be seen in Figure 14.

Figure 14: Example of scratch-inspired function definition with pattern matching

6.3. Flo-inspired design
This design proposal is inspired by flo (see Section 3.3). With this design, function elements
are distributed on a canvas. Every element (e.g., a variable or function) can be connected to
another element with arrows.

L. Streckeisen, J. Flepp Page 17 of 77

VisualFP 6. First Design Iteration

6.3.1. Function Parameter Editor
Parameters of a function are defined separately from the function body. A dialog, as
depicted in Figure 15, appears next to the editor canvas when opening a function with the
editor.

Figure 15: Draft of proposed function parameter editor

Users can add and name a parameter by clicking the plus sign. By clicking on the minus
sign, a parameter can be removed again. The user can drag a parameter from the parameter
editor onto the function editor canvas to use a parameter in the function body.

6.3.2. Function Editor
To define a function, the user can drag pre-defined functions, block elements, and self-
defined functions from a sidebar onto the editor canvas. As described above, the same can
be done with function parameters from the parameter editor. To connect a parameter to a
function call, the user can create a connector-arrow between them. This is achieved by
clicking on the parameter while holding Ctrl and then clicking on the function parameter
slot.

To visually display currying, every function block has only one or no parameter. If a
function has more than one parameter, the function block has dependent blocks for every
additional parameter. The “:apply” suffix to the function’s name recognizes such depending
blocks. The last block of a function is the value returned by the function. This value can be
used as a parameter for another function or marked as the function’s return value.

The types of a function or variable block can be viewed by hovering over it.

An example of a simple function definition can be seen in Figure 16, a visual representation
of the addition code scenario defined in Section 6.1.1.

L. Streckeisen, J. Flepp Page 18 of 77

VisualFP 6. First Design Iteration

Figure 16: Example of flow-inspired function definition for an addition function

Functions can, of course, also be used as parameters themselves. For that, the user can
create a connector arrow between a function block and a function parameter slot in the
same way as with function parameters. When using functions as parameters, it is possible to
leave some function parameters unapplied. Like this, a function parameter can be filled by
the function it’s used in.

An example of that can be seen in Figure 17, a visual representation of the “Map Add 5”
code scenario in Section 6.1.1. The fill-color of the parameter slot recognizes the auto-filled
parameter of the “(+)” function.

Figure 17: Example of functions used as parameters for other functions

Pattern-matching is a handy feature of Haskell. To support that in VisualFP, there is a pre-
defined match block with match cases for typical scenarios (e.g. empty list and head-tail
pattern). The match block has connector slots for each match case to which the user can
connect the definition of the case behavior.

Another essential concept in any language is recursion. To create the recursive behavior, the
user can drag the function they are defining from the sidebar onto the function editor
canvas and use it as any other function.

L. Streckeisen, J. Flepp Page 19 of 77

VisualFP 6. First Design Iteration

Figure 18, a visual representation of the product code scenario defined in Section 6.1.1,
shows how a recursive function definition using pattern-matching could look like.

Figure 18: Example of a flow-inspired recursive function

6.4. Haskell function notation-inspired design
The Haskell function notation-inspired design takes the notation of functions in Haskell and
converts the explicit and implicit parenthesis into blocks. The mapping from argument to
value through an arrow remains the same. A simple addition definition can be seen in
Figure 19.

Figure 19: Example of Haskell function-notation inspired function definition

In order to bring more clarity to the definition, the blocks and values are annotated with
their type.

Figure 20: Example of Haskell function-notation inspired function definition with higher
order function

L. Streckeisen, J. Flepp Page 20 of 77

VisualFP 6. First Design Iteration

The handling of type arguments is not yet defined, although a similar solution as for the
scratch inspired-design described in Section 6.2, could be used.

6.5. Conclusions
Based on the questionnaire answers for the first three designs, which can be seen in
Section 18, it can be concluded that each design received valid criticism.

6.5.1. Flo-inspired Design
It is clear that the Flo-inspired design received the most negative feedback. While this
concept keeps blocks small due to blocks being connected through arrows, it quickly looks
overloaded. This is partly because the type annotations on the questionnaire images are
visible for every block (these are only supposed to be visible when hovering over a block).
Still, the main reason is the currying visualization.

By trying to visualize currying, the amount of blocks grows with every additional function
parameter, leading to a high total number of blocks. This problem could be improved by
displaying functions as one block with multiple parameters, giving up the visualization of
currying. As suggested by Rafael Das Gupta, an option could also be to offer the user the
possibility to activate/deactivate currying in the function editor.

6.5.2. Scratch-inspired Design
The Scratch-inspired design received the most positive feedback but also some negative
feedback.

The most consistent criticism was about the operator functions being aligned in the middle,
implying that the design accounts for infix application but was written in parentheses (e.g.,
(+)), which in Haskell is a form of regular function application of operators that would
support an infix notation. This is a very valid point and something the design wasn’t
supposed to imply. It is fairly easy to fix by aligning the operators to the left.

Another point of critique repeated by several participants was that unapplied parameters
are not used correctly and/or inconsistently and some felt that the type holes were
unintuitive.

Finally, all participants agreed that the design wouldn’t scale, as it requires a lot of
horizontal space to grow.

Compared to the other designs, the Scratch-inspired design was praised for its extensive use
of coloring, and as the most easy to understand.

6.5.3. Haskell Function Notation-inspired Design
The Haskell function notation-inspired design received the most mixed feedback.

A common point of critique was that the design was too overloaded and difficult to
understand, especially for beginners.

But some participants like the design the most, as it is the most similar to Haskell. Other
participants disliked the design the most, maybe because the relationship between the
design and Haskell was not clear enough. Still, it isn’t a good sign if one needs to
understand Haskell to understand the concept, as that goes against the goals of VisualFP.

L. Streckeisen, J. Flepp Page 21 of 77

VisualFP 7. Second Design Iteration

7. Second Design Iteration
After the initial proposals received mixed feedback in the survey, project advisor Prof. Dr.
Farhad D. Mehta suggested an additional design, which combines some aspects of the
previous proposals and adds some new ideas.

Below, this suggestion is described in detail.

7.1. Final Design Proposal
The basic structure consists of nested blocks, each
representing a different expression. In that regard, it
is similar to the scratch-inspired design as described
in Section 6.2, with the difference that the blocks are
completely enclosing their children, as can be seen in
Figure 21.

Figure 21: Proposal 2 - basic structure

Another similarity to the scratch-inspired design is the
use of type holes for parameters that are not yet
supplied. In such a case, a placeholder with nothing
but the type of the parameter is shown, as can be seen
in Figure 22.

Figure 22: Proposal 2 - type hole

The main difference to the previous proposals is how
scoping is solved: Instead of providing specialized
expressions for constructs such as pattern matching,
list comprehension, etc., the idea is to do scoping using
only basic structures of functional programming such
as lambda expressions. An example of that can be seen
in Figure 23.

Figure 23: Proposal 2 - lambda

Regarding the re-use of expressions, the idea is to define multiple small functions and then
stick them together rather than providing a let ... in ...-like expression to declare re-
usable values.

7.1.1. Function Application
For function application, there are two possible application styles up for discussion:

Explicit Leave higher-order function values as such and apply them explicitly using a
dedicated application function.

Elaborate Embedd a deeper understanding of application into the language, which allows
to resolve nested curried function values to their arguments if necessary.

A side-by-side comparison of how double application of two 5 literals to an addition
function would look like in both styles can be seen in Figure 24 and Figure 25.

Figure 24: Elaborate application
Figure 25: Explicit application

L. Streckeisen, J. Flepp Page 22 of 77

VisualFP 7. Second Design Iteration

Of these two styles, the elaborate application style was chosen over explicit application
since the elaborate style stays readable when scaling up to more extensive examples, while
the explicit style would start to feel overloaded more quickly.

The type resolution for the elaborate application style works like this:

1. A type hole of a value 𝐴1 → …→ 𝐴𝑛 is encountered.
2. A value of type 𝐵1 → …→ 𝐵𝑛 → 𝐴1 → …→ 𝐴𝑛 is inserted into the type hole,
3. The editor resolves the curried function into its nested values and matches the ending

values 𝐴1 → …→ 𝐴𝑛 with the expected type of the hole.

The remaining arguments 𝐵1 → …→ 𝐵𝑛 are then processed as new type holes to be
filled in.

An example of the elaborate application system can be seen in Table 1.

Type hole Inserted Value Result
𝐴 → 𝐴 𝐴 error

𝐴 𝐴 → 𝐴 new type hole: 𝐴
𝐵 → 𝐶 𝐴 → 𝐵 → 𝐶 new type hole: 𝐴
𝐶 𝐴 → 𝐵 → 𝐶 new type holes: 𝐴, 𝐵

Table 1: Examples of elaborate application resolution

7.1.2. Sum Type Destruction
Sum types consist of a set of constructors, each with a different type. The type of a sum type
is the union of the types of its constructors.

To work with a value of a sum type, it must be possible to destruct the value into its
constructor and arguments. Since while developing one usually cannot know which
constructor was used to create a value, all possible constructors must be handled.

A common approach in functional languages is to use pattern matching. Pattern matching
allows to match values against a set of patterns and execute user-provided code per pattern.
Each code path needs to have the same return type, which will then be used as the type of
the matching expression. One of the pattern types usually destructs sum type constructors.

An example of pattern-matching in Haskell can be seen in Listing 5, which defines a sum
type named Expression with two constructors, Value and Addition, and a function calc
that pattern matches a value of type Expression against its constructors.

data Expression where
 Value :: Int -> Expression
 Addition :: Expression -> Expression -> Expression

calc :: Expression -> Int
calc e = case e of
 Value v -> v
 Addition left right -> calc left + calc right

Listing 5: Example of pattern-matching in Haskell

L. Streckeisen, J. Flepp Page 23 of 77

VisualFP 7. Second Design Iteration

An easier way to implement sum type destruction is to generate a function that takes a
function parameter per constructor of the sum type. These parameter functions take the
type constructor arguments as input parameters and map them to a common output type.
These kinds of functions are called destruction functions. Listing 6 shows what such a
destruction function would look like for the abovementioned example.

data Expression where
 Value :: Int -> Expression
 Addition :: Expression -> Expression -> Expression

destruct :: Expression -> (Int -> b) -> (Expression -> Expression -> b) -> b
destruct = -- implementation omitted

calc :: Expression -> Int
calc e = destruct e (\x -> x) (\l r -> calc l + calc r)

Listing 6: Example of a destruction function in Haskell

Unfortunately, such a destruction function is not as powerful as pattern-matching in a few
ways:

• It is not possible to specify multiple overlapping patterns, which are matched against in
order of definition.

• It is not possible to combine patterns into more complex patterns.
• It is not possible to specify a default case.

This list is not exhaustive, but it already shows how the lack of pattern-matching would
make the import of Haskell code into VisualFP more difficult.

How pattern-matching and destruction functions would look in VisualFP can be seen in
Figure 26 and Figure 27.

Figure 26: Example of a destruction function in VisualFP

Figure 27: Example of pattern-matching in VisualFP

L. Streckeisen, J. Flepp Page 24 of 77

VisualFP 7. Second Design Iteration

The decision was made in favor of the destruction function since the pattern-matching
approach does not translate as well into an exclusively visual language. The fact that it
makes the import of Haskell code more difficult is unfortunate but acceptable since the
primary goal of VisualFP is to be a visual language to introduce beginners to functional
programming.

7.2. Conclusion
During the first iteration, three very different approaches were explored. Valuable feedback
was gained on their advantages and shortcomings through a survey. Prof. Dr. Farhad Mehta
proposed a new design concept in the second iteration based on that feedback and some
new ideas.

This new concept has the potential to provide beginners with more guidance during
function composition than the previous concepts, which is why it is implemented in a PoC.

L. Streckeisen, J. Flepp Page 25 of 77

VisualFP 8. Scope

Part III - Proof of Concept

This part describes the development of the proof of concept application as described in the
goals defined in Section 2.

8. Scope
The goal of the PoC application is to show that the visual concept described in Section 7
works.

To show that, the PoC needs to implement
• UC1 - Simple function composition
• UC3 - Function composition using lists
• UC4 - Function composition using higher-order functions
• UC5 - Curried Functions
• UC6 - Recursive function composition

as described in Section 4.2.

Although all other described use cases are integral to a fully functioning visual editor for
functional programming as well, they are not included in the PoC due to time constraints.

9. Implementation Options
Different implementation options were considered for the PoC. The following sections
describe the options that were considered and choices that have been made.

9.1. Deployment platform
For VisualFP, two possible deployment platforms were considered: A web application or a
desktop application.

9.1.1. Desktop Application
A desktop application can be installed on the user’s device with one installer. Both the
frontend and backend are executed on the user’s device.

This means that there is no special infrastructure required to host the application. The
application can also access the local file system and other development tools such as Cabal¹.

¹https://www.haskell.org/cabal/

Unfortunately, every user would need to install the application themselves. The application
also would need to be built separately per operating system and depending on the chosen
runtime also per processor architecture.

9.1.2. Web Application
A web application has a frontend and a backend. The frontend is statically served to the user
in a web browser and communicates through an API with the backend, which is hosted on a
server.

L. Streckeisen, J. Flepp Page 26 of 77

VisualFP 9. Implementation Options

The advantages are that the frontend and backend can be written in entirely different
programming languages, that the users don’t have to install anything on their devices, and
that there is no need to support multiple operating systems explicitly since most devices can
run a web browser.

The drawbacks are that the application must be hosted on a server and other development
tools that may require access to the user’s device cannot be used.

9.1.3. Deployment Decision
VisualFP targets students, so it will primarily be used in classrooms. Such environments
often do not allow for easy deployment and maintenance of application servers. Thus, the
decision has been made to develop VisualFP as a desktop application.

9.2. UI Frameworks
VisualFP requires external technologies to implement a UI, especially to achieve cross-
platform support without duplication. The following technologies were considered.

9.2.1. Electron.js
Electron.js is a framework for creating desktop apps using HTML (HyperText Markup
Language), JS (JavaScript), and CSS (Cascading Style Sheets), implemented by combining
chromium and Node.js.

Electron allows the creation of desktop apps in web-app style, which means that, as long as
no native OS features are needed, an app is automatically capable of running on different OS
platforms without adjustments. [8]

For VisualFP, Electron.js can implement the UI and the backend logic.

Since Electron apps can be created like any web app, many libraries are available for
frontend development. This also allows the combination with any other UI framework that
targets the web.

The authors already have experience with JavaScript and its ecosystem.

Electron, like any browser, requires the application to be written in JavaScript. JavaScript is
an interpreted language and has a weak type system. It is also not considered a primarily
functional language, as it offers many imperative features and APIs.

Considering that both a Node.js and a Chromium runtime are bundled in Electron, the
resulting app sizes are quite large, even for apps with little logic. Rendering the app in a
browser also requires much more resources than UIs built with native OS APIs (e.g., Win32
on Windows)

9.2.2. Haskell-gi
GTK (GIMP ToolKit) is a widget toolkit that allows the creation of UIs that work on many
popular operating systems. GTK widgets can be created programmatically or with an XML
UI definition. [9]

Haskell-gi is a Haskell library that offers bindings to GTK. The library allows widget
creation in a rather imperative style.

L. Streckeisen, J. Flepp Page 27 of 77

VisualFP 9. Implementation Options

There also is a library that supports widget creation in a functional style called ‘gi-gtk-
declarative’¹, but that library is still experimental. [10]

¹https://github.com/owickstrom/gi-gtk-declarative

Using Haskell-gi to create the UI of VisualFP would allow the frontend and backend logic to
be implemented in Haskell.

The downside to Haskell-gi is that GTK is unknown to both authors and it doesn’t seem to
be used as much as web-based frameworks, which could impact the availability of
documentation and examples.

9.2.3. Threepenny-GUI
The Threepenny-GUI framework was written in Haskell to create desktop applications that
run in a web browser. The framework can be combined with Electron for a tighter
integration with the desktop environment.

Threepenny starts a local web server written in Haskell that serves a HTML page. Then, the
server establishes a WebSocket connection to communicate with the browser. Finally, using
a JavaScript FFI (Foreign Functional Interface), Threepenny sends JavaScript code via this
connection to execute it on the client.

Threepenny also offers the possibility of implementing the application in FRP (Functional
Reactive Programming) style [11].

Using Haskell on both the front and backend would be an advantage over other
frameworks. Threepenny’s FRP specific functions should allow for a good architecture.

It is to be noted that Threepenny is still in an experimental phase, according to the package
author [12]. Also, neither author is familiar with the technology.

9.2.4. GHCJS
There are many other Haskell libraries for UI implementations, but many rely on compiling
Haskell to JavaScript. This cross-compilation is often based on GHCJS. GHCJS implements a
JS backend for GHC (Glasgow Haskell Compiler) and has recently been merged into the
GHC repository [13].

Using GHCJS with an accompanying UI library, which would optimally support FRP, could
make a lot of sense for an application like VisualFP. Since all code would be compiled to
JavaScript, it would automatically be platform-independent without the need for a
supporting server infrastructure other than a way of serving static files.

But GHCJS has merged only recently [13], and thus its usage poses some challenges:

• No pre-built binaries are available at the time of writing, meaning the complete GHC
compiler must be built manually.

• While there is some documentation, it doesn’t seem to be very comprehensive.

The downsides could be overcome, and it is to be expected that GHCJS will get better
tooling support in the future.

L. Streckeisen, J. Flepp Page 28 of 77

VisualFP 9. Implementation Options

But after writing some samples in GHCJS, it is to be expected that a considerable amount of
time would need to be invested to get GHCJS to work for the PoC.

9.2.5. Bolero
Bolero is an F# wrapper around Blazor¹, leveraging different libraries to create web
applications. With Blazor, web applications can run both on the server side through web-
sockets or on the client side through WebAssembly.

¹https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

While Beloro doesn’t implement FRP, it has a Model-View-Update architecture, clearly
separating UI from business logic in a reactive way. In addition to defining the web page
structure from F# code, Bolero also offers the possibility to use HTML templates with
“holes” as placeholders for page values, event listeners, etc. [14]

The clear separation of the UI and business logic and the support of the established .NET
platform is a significant advantage for Bolero.

The two downsides are that neither of the authors is familiar with the framework and that
F# doesn’t really fit into a project, that aims to create a Haskell-compatible visual editor.

9.2.6. UI Framework Decision
All technologies to implement UIs in a functional language are unfamiliar to the authors.

Because of that, it is crucial to have a good abstraction between UI and business logic in
place so that the UI framework, if necessary, can be exchanged with another option with as
little effort as possible.

FRP is an excellent concept for incorporating UI behavior and events into functional
programming. Of the frameworks considered, only threepenny-gui includes a library that
supports FRP. Despite not following the FRP concepts, Bolero also supports reactive
handling of UI contents.

Since the project intends to create a tool for visual programming in Haskell, it also makes
sense to implement the UI of VisualFP in Haskell. For that reason, Threepenny will be used
for the PoC.

As already mentioned in Section 9.2.4, using GHCJS as a Haskell compiler that targets
JavaScript would enable other interesting possibilities but has been deemed too time-
consuming for the PoC.

9.3. Compiler Platform
A compiler platform is a set of tools and libraries that can be used to compile code. VisualFP
requires a compiler platform to build the application itself but also as a library to compile
programs created by the users in the visual editor.

These two use cases pose different requirements on the compiler platform:

• To be used as a compiler, the platform must have a set of support tooling available, such
as a build tool and a language server.

L. Streckeisen, J. Flepp Page 29 of 77

VisualFP 9. Implementation Options

• To be used as a library, the compiler platform must offer a well-defined API that can be
used to create, parse, and compile an AST (Abstract Syntax Tree) programmatically.

For these two use cases, two different compiler platforms may be used.

The compiler used to build the PoC itself depends on the language and other frameworks
chosen to implement the application. This section focuses on the use of a compiler platform
as a library.

9.3.1. GHC
The most obvious choice for a Haskell compiler platform is GHC¹. In combination with build
tooling, such as Cabal² and the language server HLS³, it provides a great development
experience.

¹https://www.haskell.org/ghc/
²https://www.haskell.org/cabal/
³https://github.com/haskell/haskell-language-server

Unfortunately, the usage of GHC as a library is not as straightforward as using it as a
compiler:

• Given the large amount of supported features, the API is more complex than necessary for
the use-case of representing a visual editor code snippet in an AST.

• The API documentation is limited. Even though there is a great starting point for the
internals of GHC available at GHC commentary [15], and some bloggers such as Stephen
Diehl took the time to write about the GHC API [16], much of the available
documentation seems to be out-of-date, incomplete, or missing.

9.3.2. Other Haskell Compiler-Platforms
Outside of the ubiquitous GHC, described in Section 9.3.1, a few other Haskell compilers
were considered for this project. The most notable ones are:

Hugs, which is a compiler that provides an almost complete implementation of Haskell 98
[17]. Unfortunately, Hugs is is not actively maintained anymore [17], thus, it wasn’t
considered further.

Another Haskell compiler platform is the Haskell Suite, which is a collection of tools and
libraries that aim to implement a complete Haskell compiler [18]. The AST interpreter is
provided on hackage as the package haskell-src-exts⁴. After creating some example

⁴https://hackage.haskell.org/package/haskell-src-exts

programs with it, it seems that the API is quite nice to use. Unfortunately, the Haskell Suite
is also not actively developed anymore, and is currently on maintenance support [19].

9.3.3. Custom Compiler Platform
Given that the PoC is simple and limited in its features, it might be an option to skip the use
of a compiler platform as a library altogether:

• It is not necessary for the compiler platform to parse Haskell code. For the PoC, being able
to type-check simple expressions is sufficient.

• Execution of expressions is optional as well.

L. Streckeisen, J. Flepp Page 30 of 77

VisualFP 10. Architecture

So, instead of aligning with a complex API of a full-blown compiler platform, a custom
implementation tailored to the specific needs of the PoC could be created. Given the
requirements, the implementation could even be reduced to just type-checking.

9.3.4. Compiler Platform Decision
Since VisualFP will rely heavily on the chosen platform, a platform change later down the
road would be expensive.

GHC is the only still actively developed compiler platform out of the considered platforms.
But after testing and research, the GHC API was deemed to complex, and not easy enough
to integrate within the limited timeframe available for the PoC.

This is why VisualFP will implement a custom compiler platform. Given the low
requirements, it could be considered an exaggeration to call such an implementation a
compiler platform, which is why it’ll be called an inference engine from now on.

10. Architecture
This chapter describes the architecture chosen for the PoC application.

10.1. Client/Server Cut
As described in Section 9.2.6, the PoC uses Electron.js and Threepenny-GUI for its
implementation.

Using the client-server cut classification by Klaus Renzel [20], the technology choice results
in the application having a “remote user interface” as shown in Figure 28.

Figure 28: C4 Container Diagram for VisualFP PoC

The Threepenny UI starts a local web server from which it serves static files to the UI. The
Electron.js app doesn’t contain any logic and acts as a browser.

Theoretically, Threepenny could also host a regular web application, eliminating the need
for an Electron app. However, Threepenny controls the browser via web sockets, so a
performant server and a good network connection are required. It is recommended to avoid
this, as a high latency connection would be noticeable through slow UI updates. [11]

L. Streckeisen, J. Flepp Page 31 of 77

VisualFP 11. Translation Component

10.2. Backend Components
Simon Brown suggests to use the C4 model to visualize the architecture of an application
through diagrams on 4 levels [21]. The container diagram has been used to showcase the
client/server cut in Figure 28, the component diagram of the backend is shown in Figure 29.

Figure 29: C4 Component Diagram for VisualFP's Threepenny UI

Splitting the backend into these three components isolates the UI from the business logic,
making either of them easily replaceable.

The translation component is described in more detail in Section 11, the UI component in
Section 12 and the inference engine in Section 13.

11. Translation Component
The translation component has been built between the UI and the inference engine. As can
be seen in Figure 29, it is responsible for translating between the data models used by the UI
and the type inference engine:
1. From the untyped model of the UI to the input model of the inference engine
2. From the inferred model of the inference engine to the typed UI model

This process isn’t as straightforward as one might think, as the UI and inference engine
have different representations of function application: The UI maintains a list of arguments
per reference. In contrast, the inference engine expects application to happen in dedicated
nodes. This discrepancy has also been described in Section 7.1.1.

Translating the inferred model into the typed UI model is quite simple: Applications are
simplified into arguments of the underlying element. Translating untyped UI values, where
the amount of arguments is unknown, into the input model of the inference engine requires
a more elaborate process.

One approach might be to try out different numbers of nested applications and see if one
might successfully type-check.

For VisualFP a different approach was chosen: In case the arguments of a reference need to
be inferred, the UI model passes the original type hole along. The translation component
then compares the arity of the type hole with the arity of the reference and adds as many
applications as needed for the two to match.

L. Streckeisen, J. Flepp Page 32 of 77

VisualFP 12. User Interface

12. User Interface
This section describes the features of the PoC application UI, the high-level implementation,
and how functional reactive programming could be applied to VisualFP.

12.1. Features
The UI for the PoC application includes two main components, as shown in Figure 30: A
sidebar with pre-defined value blocks and the function editor.

Figure 30: Undefined function value in the VisualFP UI

The PoC allows the construction of a value, the “userDefinedFunction”, which starts with a
generic type hole. Starting with a generic function type allows more flexible testing. In a
completed application version, the user can define the function name and type when
creating it.

Figure 31: Dragging lambda block into value definition Figure 32: Updated function
definition including a lambda block

Figure 31 and Figure 32 show how a lambda block is inserted into the value definition. To
build the value definition, the user drags the lambda block from the sidebar into the type
hole. The drop event then triggers the application to insert the lambda block into the
function definition and infer the types of the new function definition. This process can be
repeated with suiting value blocks until no type hole is left.

As the PoC is intended to test the concept, only a reset button exists to return to the initial
empty definition. In a full version, this would be replaced with the possibility to remove
specific blocks from the definition.

Finally, the user-built function definitions can be viewed as Haskell code by clicking the
“View Haskell” button. Figure 33 shows the Haskell code for the mapAdd5 function.

L. Streckeisen, J. Flepp Page 33 of 77

VisualFP 12. User Interface

Figure 33: Haskell defintion of mapAdd5 function in VisualFP

12.2. Implementation
The UI implementation consists of an Electron.js app hosting a Threepenny UI. The Electron
app is packaged with an executable of the Threepenny UI and all UI related static files, i.e.
CSS & JavaScript files. When starting the Threepenny UI, the Electron app passes a usable
port for the local web server and the file path of the static UI files to the Threepenny UI.

The function editor is the most significant part of the Threepenny UI and has two primary
responsibilities:

• Rendering of function value blocks
• Reacting to value block drop events

The rendering part creates an HTML representation of each block in the value definition
and annotates it with CSS classes according to its block type.

Reacting to the drop events is a bit more complicated. The block values in the application’s
sidebar carry their names as data transfer data. When the user drops a block value into a
type hole, the data transfer data is included in the event data.

Unfortunately, the drop events cannot be registered when creating the type hole elements in
the rendering part. So, to register the drop event listeners, the IDs of type holes need to be
collected upfront. With these IDs, the HTML elements added to the DOM (Document Object
Model) can be loaded, and the event handlers registered.

The drop event handlers always do the same, regardless of the block value that was dropped:

1. Replace the type hole with the dropped value
2. Infer the updated function definition
3. Clear all elements from the function editor
4. Render the inferred function definition

12.3. Functional Reactive Programming
Threepenny includes an FRP library, which follows the concepts described by Conal Elliott
and Paul Hudak. FRP has two main concepts: Events and Behaviors. An Event is defined as a
list of occurrences in time. A Behavior represents a value that changes over time. [22]

While the first intention was to build the PoC with an FRP architecture, it became clear over
time that Threepenny’s FRP library is not yet ready for more complex use-cases like

L. Streckeisen, J. Flepp Page 34 of 77

VisualFP 13. Type Inference

VisualFP’s function editor. The main problem is that no function allows it to merge multiple
events. Implementing the FRP architecture through Threepenny could be considered again
once the FRP library is replaced by reactive-banana¹. The author of Threepenny, Heinrich
Apfelmus, plans to do that in a future release [23].

¹https://github.com/HeinrichApfelmus/reactive-banana

Generally, there is no reason why VisualFP couldn’t be implemented using FRP. In such an
implementation, there would be three kinds of events:

• “Reset Editor” button is clicked
• “View Haskell” button is clicked
• A block value is dropped into a type hole. This event combines all events from every type

hole in the function definition.

The value definition of the user-defined function is a behavior that changes every time a
block value is dropped into the value definition. When the value definition changes, the
elements displayed in the function editor must also be updated.

13. Type Inference
VisualFP features a type-inference engine responsible for figuring out which expressions are
valid, determine which type holes are necessary, and annotate sub-expressions with their
according types.

It operates on a separate expression model to isolate the inference engine. The engine is not
responsible for converting to and from the UI model; this is done by a translation layer
described in Section 11.

Heavy inspiration for the implementation of the engine was taken from the talk “Type
inference as constraint solving” by Simon Peyton Jones [1].

13.1. Phases
An overview of the inference engine is shown in Figure 34. It shows how the process is
separated into 3 phases.

Figure 34: Type-inference engine components

1. Elaboration: The elaboration phase takes an input expression and annotates all elements
with placeholder types called unification variables. Along the way, it collects these
variables and creates a list of constraints for them. For example, if a value of type 𝛼 is
applied to a value of type 𝛽, then 𝛼 must be a function taking 𝛽 as the argument.

A more detailed description of these constraints can be found in Section 13.2.

L. Streckeisen, J. Flepp Page 35 of 77

VisualFP 13. Type Inference

2. Unification: Next, the unification algorithm tries to find a solution for the unification
variables that satisfy all constraints. If it succeeds, a concrete type can be assigned to
each unification variable.

The algorithm is based on Prolog, as described by Prof. Dr. Farhad D. Mehta in his lecture
[24].

3. Zonking: Using the elaborated expression, still filled with unification variables, and the
results of the unification phase, the zonking phase inserts the concrete types into a new
expression.

13.2. Constraint Language
The inference engine is based on what Simon Peyton Jones describes as “the French
Approach” [1]. It has been described in the paper “The Essence of ML Type Inference” by
Francois Pottier and Didier Rémy [25].

In such an engine, the constraints are essential. They contain all the knowledge gained
through the elaboration pass of the input and can be used by the unification algorithm to
sort out all types. They are also what differentiates the “French approach” from a classical
Dalmas-Milner inference: The solving of constraints is deferred, as opposed to being solved
in one pass [1].

The constraint language describes the structure of constraints. Simon Peyton Jones’
implementation [1] inspires the constraint language used by VisualFP with a few
adjustments.

• There is no implication constraint.
• Constant, constructed, and unification types are summarized as a single sum type.
• Conjunctions are represented as lists of constraints instead of combinations of two to

form a tree. As a flat list, there is also no need for an empty constraint.

L. Streckeisen, J. Flepp Page 36 of 77

VisualFP 14. Results

Part IV - Results & Outlook

14. Results
This section evaluates the results of the project, including a review of which of the initially
stated requirements have been implemented, how the concept and the PoC application
turned out, and a small demonstration of the PoC application.

14.1. Requirement Validation
Section 4 and Section 5 defined 9 use cases and 2 NFRs.

Table 2 shows which of these requirements were fulfilled during the project and which are
still open.

ID Requirement Result
UC1 Simple Function Composition Achieved in PoC
UC2 Function Execution This requirement is considered as out-

of-scope for this project.
UC3 Recursive Function Composition Achieved in PoC
UC4 Function Composition using Higher-

Order Functions
Achieved in PoC

UC5 Curried Functions Achieved in PoC
UC6 Function Composition using Lists Achieved in PoC
UC7 Data Type Composition This requirement is considered as out-

of-scope for this project.
UC8 Save Source File This requirement is considered as out-

of-scope for this project.
UC9 Open Source File This requirement is considered as out-

of-scope for this project.
NFR1 Platform Compatibility The PoC application can be executed on

all target platforms. The app's
compatibility could be improved by
switching to a GHCJS-based UI
technology.

NFR2 Learnability This requirement was achieved with
some notes. A more detailed
explanation can be found in
Section 14.1.1

Table 2: Requirement verification

The project’s main focus was to create a visual concept for function composition and prove
that it is feasible with a PoC application. As can be seen in Table 2, all requirements related
to function composition have been achieved.

L. Streckeisen, J. Flepp Page 37 of 77

VisualFP 14. Results

Due to time constraints, the requirements UC2, UC7, UC8 and UC9 had to be considered as
out-of-scope. However, during the implementation of the type inference engine, UC7 was
kept in mind so that custom data types could be added without much effort.

14.1.1. Validation of NFR2
The non-functional requirement NFR2, as described in Section 5.2, states that a user that
isn’t familiar with functional programming should be able to use VisualFP within 1 hour.

This requirement was validated by showcasing the PoC to Samuel Bernhard, a software
engineer at Hamilton Bonaduz AG. Samuel is a seasoned software developer but isn’t
familiar with functional programming.

He was able to use VisualFP within 1 hour, so we deem the requirement to be achieved.

Still, the trial pointed out some aspects that are worth to be noted for future development
on the project:

• As he wasn’t familiar with the function notation used by Haskell, he wasn’t able to make
use of type hints (type-holes, function signatures, etc) without additional explanation.

• He also wasn’t familiar with the cons and nil construction of lists, additional explanation
was necessary before he could use it.

• He would have liked to execute his created values.

• After the showcase, the envisioned outlooks were presented to him. He liked the option of
the visual and textual language (Section 15.2) very much.

These shortcomings could be fixed by adding a getting-started tour for beginners, which
would explain the different UI components, provide a tutorial for value construction, and
explain Haskell’s function type notation. In addition, block values provided by VisualFP
could feature a brief description.

14.2. Design Concept
The design concept described in Section 7 focuses on visual function composition. It
proposes a function editor that features all the basic functionalities needed to create
functional applications in a block-based fashion.

The editor allows learners to approach functional programming through blocks instead of
code. The type-inference engine offers much guidance, especially the automatically
generated type holes, which can help to understand how e.g. parametric polymorphism or
currying works.

But other aspects not covered in the concept are also essential to create modern functional
programs. For example, a robust type system with support for sum types, type classes, etc.,
can be found in most current functional programming languages.

Given that the project’s goal is to allow beginners to approach functional programming
more easily, the concept should also address a clear transition to code-based programming.
One possibility to integrate this idea has been described in a possible outlook in
Section 15.2.

L. Streckeisen, J. Flepp Page 38 of 77

VisualFP 14. Results

14.3. Proof of Concept
The project produced a proof of concept application that implements the design concept as
described in Section 7. Although the application doesn’t offer visualizations for some of the
most common aspects of functional programming, such as the construction of custom data
types, the application shows that the proposed concept for function composition works and
is easy to use. So, in the author’s opinion, the project’s main goal was achieved.

To make the application ready for use in a classroom, the use cases that weren’t achieved
during this project, as shown in Section 14.1, need to be implemented.

In addition, there is some potential for improvement in the current implementation of the
PoC. The choice for Threepenny as the UI framework was made primarily due to the given
time constraints and the expectation that Threepenny allows for fast progress while
implementing the PoC, which proved to be true. But a UI technology that doesn’t require a
local web server, probably a GHCJS-based framework, would be better suited to implement
a full version of VisualFP, as it would enable the application to be served to any browser as a
set of static files. A different UI framework may also provide better support for functional
reactive programming, which is expected to make the UI implementation more concise.

14.3.1. macOS Electron App
For the project submission, the PoC Electron application was packaged for Windows, Linux
& macOS. Unfortunately, the macOS app has an unforeseen issue: It doesn’t pass the macOS
gatekeeper checks.

Based on code signature, notarization, and comparison with known malware, gatekeeper
flags potentially dangerous applications and restricts them from execution. [26]

In the case of VisualFP, the error message ““VFP.app” is damaged and can’t be opened. You
should move it to the Bin.” appears when trying to execute the application. Gatekeeper can
be bypassed using the command xattr -c VFP.app, with “VFP.app” being the application
name, to execute the application anyway. A future project would need to address this issue
to make the application usable for a broader audience.

14.4. UI Demonstration
Figure 35 through Figure 40 depict a step-by-step construction of the mapAdd5 code scenario,
described in Section 6.1.1, using the PoC application.

L. Streckeisen, J. Flepp Page 39 of 77

VisualFP 14. Results

Figure 35: Step by step demonstration of mapAdd5 construction - Part 1

Figure 36: Step by step demonstration of mapAdd5 construction - Part 2

Figure 37: Step by step demonstration of mapAdd5 construction - Part 3

L. Streckeisen, J. Flepp Page 40 of 77

VisualFP 15. Outlook

Figure 38: Step by step demonstration of mapAdd5 construction - Part 4

Figure 39: Step by step demonstration of mapAdd5 construction - Part 5

Figure 40: Step by step demonstration of mapAdd5 construction - Part 6

15. Outlook
During the PoC development, two possible variants of a feature-complete application
emerged. Both are briefly described below.

L. Streckeisen, J. Flepp Page 41 of 77

VisualFP 15. Outlook

15.1. IDE for visual functional programming
In a future project, VisualFP could be further enhanced into a visual IDE for Haskell.

Besides the functionality already implemented in the PoC application, additional features
offered by Haskell would also need to be implemented visually, such as an editor for
Haskell-type definitions, a way to organize user definitions into modules, integration with a
package manager, etc.

On the other hand, such a development would offer the opportunity to outsource
functionality, such as compilation and execution, to Haskell tooling. A Haskell compiler
could also replace the already-built type-inference engine, and an integration with, e.g., the
Haskell Substitution Stepper¹ could be helpful as well.

¹https://eprints.ost.ch/id/eprint/991/

Figure 41 shows a mockup of what such an IDE could look like. The two main elements are
the sidebar, which gives the user access to libraries and self-defined functions, and the large
editor section containing the visual editor.

Figure 41: Mockup of VisualFP IDE

If interpreted as a learning tool, the VisualFP IDE would offer a clear learning path from
dragging visual blocks to writing Haskell code. Learners could first build an understanding
of functional concepts visually and then apply the same understanding to Haskell code.

Haskell programmers could find use in such a tool as well. Specifically, debugging tools
could offer an advantage over a pure textual development approach. Visual representations

L. Streckeisen, J. Flepp Page 42 of 77

VisualFP 15. Outlook

would be equivalent to textual code, so VisualFP could be considered a new tool in the
toolbox of seasoned Haskell programmers.

Full compatibility with a typical Haskell project would not be a trivial goal. A deep
integration with GHC, Cabal, etc., would be necessary. It would bind VisualFP exclusively to
Haskell, support for other functional languages, such as F# or Scala, could not be easily
added afterward.

15.2. Visual and Textual Language
The function editor shown in the PoC application could be extended into a language that
can be viewed, edited, and executed in both a visual and textual fashion simultaneously.

One could imagine a dedicated application for such an environment, but a web application
or an extension for existing editors could also be envisioned. A Visual Studio Code
extension mockup can be seen in Figure 42 to illustrate the idea.

Figure 42: Visual Studio Code Concept

The advantage of such an approach is that learners can build an understanding of functional
concepts graphically and then have a clear learning path into code.

L. Streckeisen, J. Flepp Page 43 of 77

VisualFP 15. Outlook

Part V - Appendix

L. Streckeisen, J. Flepp Page 44 of 77

VisualFP 16. Task Description

16. Task Description

L. Streckeisen, J. Flepp Page 45 of 77

VisualFP 16. Task Description

L. Streckeisen, J. Flepp Page 46 of 77

VisualFP 17. Design Evaluation Questionnaire Template

17. Design Evaluation Questionnaire Template

L. Streckeisen, J. Flepp Page 47 of 77

VisualFP 17. Design Evaluation Questionnaire Template

L. Streckeisen, J. Flepp Page 48 of 77

VisualFP 17. Design Evaluation Questionnaire Template

L. Streckeisen, J. Flepp Page 49 of 77

VisualFP 17. Design Evaluation Questionnaire Template

L. Streckeisen, J. Flepp Page 50 of 77

VisualFP 17. Design Evaluation Questionnaire Template

L. Streckeisen, J. Flepp Page 51 of 77

VisualFP 17. Design Evaluation Questionnaire Template

L. Streckeisen, J. Flepp Page 52 of 77

VisualFP 18. Design Iteration One - Survey Results

18. Design Iteration One - Survey Results
The design evaluation questionnaire (as described in Section 6.1.2) was given to 7 students
and exprienced programmers. These are the results:

18.1.1. Survey Results from Prof. Dr. Farhad Mehta
Prof. Dr. Farhad Mehta is a lecturer at OST and advisor of this project.

Flo-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Not really. Semantics & the arrows are
unclear (insertion or reverse result)

Do you find the concept nice to look at? Not really.
Could you imagine teaching functional
programming using this vizualization?

Not really. The arrows obsucre the
denotational semantics.

Could you imagine how the concept
scales to more complex expressions?

Yes. The arrows allow blocks to remain
small.

Do you have any suggestions for
improvement or general comments on
the concept?

Table 3: Design questionnaire answers for Flo-inspired design from Prof. Dr. Farhad Mehta

Scratch-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Somewhat better than the Flo-inspired
version.

Do you find the concept nice to look at? Somewhat better than the Flo-inspired
version.

Could you imagine teaching functional
programming using this vizualization?

Somewhat better than the Flo-inspired
version.

Could you imagine how the concept
scales to more complex expressions?

Somewhat better than the Flo-inspired
version.

Do you have any suggestions for
improvement or general comments on
the concept?

Without types, one has no guidance on
which blocks fit where

Table 4: Design questionnaire answers for Scratch-inspired design from Prof. Dr. Farhad
Mehta

Haskell Function-Notation inspired

L. Streckeisen, J. Flepp Page 53 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Better than the other two, but not quite
there yet.

Do you find the concept nice to look at? Better than the other two, but not quite
there yet.

Could you imagine teaching functional
programming using this vizualization?

Better than the other two, but not quite
there yet.

Could you imagine how the concept
scales to more complex expressions?

Better than the other two, but not quite
there yet.

Do you have any suggestions for
improvement or general comments on
the concept?

Table 5: Design questionnaire answers for Haskell Function-Notation inspired design from
Prof. Dr. Farhad Mehta

General Comments
The questionnaire may not do full justice to the visual programming methods since it only
reviews the end state, and not the method of programming.

All methods seem to have a “bottom-up” strategy on constructing programs (i.e. start with
small steps with what is available, and tinker with it unit you come up with something that
you can use). The imperative paradigm forces one to do this (top level blocks are always “;”,
and therefore uninteresting). In FP, we are able to design our programs “top-down”, starting
with a specification (type definition at least). This specification often admits a top-level
function that is often interesting (e.g. filter, map), with further “holes” that can similarly be
filled successively.

It may be a good idea to design the VP tool around to support the method we want people
to learn “how to design programs” (see “recipe for defining functions” & video on “Schreib
dein program”).

There are huge parallels between programming & constructing formal proofs (Curry-
Howard-Lambek isomorphism) that can be a mental aid in designing such a tool - even if
one does not immediately expose this to the beginner (please don’t).

The more I think about it, the more I am under the impression the VP tool and concept
should support the existing recommended methodology and process of designing
(functional) programs. This process has been quite well thought out, and does not need to be
re-invented. What I feel is missing, when doing this in a textual form, is that the “visual
model” of what this text should look like in the minds of the learners is not immediately
visible. A visual tool can help learners build the correct visual model/intuition faster. Once
this visual model/intuition is finally in place, the tool will often little benefit and become
tedious to use. The users will then switch to the textual representation, but still always have
the visual model in mind.

L. Streckeisen, J. Flepp Page 54 of 77

VisualFP 18. Design Iteration One - Survey Results

18.1.2. Survey Results from Raphael Das Gupta
Raphael Das Gupta is a scientific employee at the institute for software at OST

Flo-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Mostly. I was first wondering why the
arrow in the “Product of Numbers” example
goes from the interim-result-ellipse ‘Num a
=> a’ to the argument slot of “(*):apply”,
instead of the product-block as with all
other cases where functions are passed as
parameters. But then I realised that the
result of the function call with xs is passed
and not the function itself.

Do you find the concept nice to look at? No, too noisy.
Could you imagine teaching functional
programming using this vizualization?

Perhaps, but only as an aid to show certain
signatures of a partial expression, not in
general to teach functional programming
from the ground up.

Could you imagine how the concept
scales to more complex expressions?

It'll get very complex very fast.

Do you have any suggestions for
improvement or general comments on
the concept?

• Move type-signatures into the blocks
instead of above them

• Make type-signatures hideable
• Option to switch between curried-

interpretation and n-ary-function
interpretation

Table 6: Design questionnaire answers for Flo-inspired design from Raphael Das Gupta

Scratch-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

I think so.

Do you find the concept nice to look at? Yes
Could you imagine teaching functional
programming using this vizualization?

Yes, but I don't see an advantage compared
to a pretty AST.

Could you imagine how the concept
scales to more complex expressions?

It'll look like a mountain-skyline.

Do you have any suggestions for
improvement or general comments on
the concept?

Highlight which argument-instances belong
to which argument-bindings when
hovering over them.

Table 7: Design questionnaire answers for Scratch-inspired design from Raphael Das Gupta

L. Streckeisen, J. Flepp Page 55 of 77

VisualFP 18. Design Iteration One - Survey Results

Haskell Function-Notation inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Mostly, but I'm not sure if I understood
everything right.

Do you find the concept nice to look at? Yes
Could you imagine teaching functional
programming using this vizualization?

Perhaps, but only as an aid to show certain
signatures of a partial expression, not in
general to teach functional programming
from the ground up.

Could you imagine how the concept
scales to more complex expressions?

It would probably get complex too, but
probably not as complex as the other two
designs.

Do you have any suggestions for
improvement or general comments on
the concept?

• Put the function-types next to the
function name, so that there is no danger
of confusing them.

• Your approach for pattern-matching
nicely shows that you don’t have access
to parts of a pattern that aren’t named.
But somehow the way it’s visualized
seems strange to me and is somewhat
unsatisfying. But I don’t know how to do
it better.

Table 8: Design questionnaire answers for Haskell Function-Notation inspired design from
Raphael Das Gupta

General Comments
I quite like the bock-arrow diagrams in “The state monad” in “Programming in Haskell” by
Graham Hutton (second edition, chapter 12.3 Monads, pages 168 - 141). I don’t know how
well that approach generalises without overloading it like the Flo-inspired examples. In
contrast to your examples the diagrams from the book show the data flow (but not how calls
are plugged together syntactically).

18.1.3. Survey Results from Noah Geeler
Noah Geeler is a third-year software-development apprentice at Vontobel.

Flo-inspired

L. Streckeisen, J. Flepp Page 56 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

No, but I assume that the squares are some
kind of input?

Do you find the concept nice to look at? If I understood this concept, I assume that I
would've thought that it looked to
complicated.

Could you imagine teaching functional
programming using this vizualization?
Could you imagine how the concept
scales to more complex expressions?
Do you have any suggestions for
improvement or general comments on
the concept?

Table 9: Design questionnaire answers for Flo-inspired design from Noah Geeler

Scratch-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

I think I understood this concept the most.

Do you find the concept nice to look at? Yes
Could you imagine teaching functional
programming using this vizualization?

Probably.

Could you imagine how the concept
scales to more complex expressions?

I think complex expressions would take up
a wide space and would be very
complicated to understand.

Do you have any suggestions for
improvement or general comments on
the concept?

Keep the explanation (like in the first
example) of the boxes (definition,
declaration & parameters)

Table 10: Design questionnaire answers for Scratch-inspired design from Noah Geeler

Haskell Function-Notation inspired

L. Streckeisen, J. Flepp Page 57 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

No.

Do you find the concept nice to look at?
Could you imagine teaching functional
programming using this vizualization?
Could you imagine how the concept
scales to more complex expressions?
Do you have any suggestions for
improvement or general comments on
the concept?

Table 11: Design questionnaire answers for Haskell Function-Notation inspired design from
Noah Geeler

General Comments

18.1.4. Survey Results from Mathias Fischler
Mathias Fischler is a student at OST and has visited the functional programming lecture.

Flo-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?
Do you find the concept nice to look at? No, very confusing with too many arrows

and annotations.
Could you imagine teaching functional
programming using this vizualization?
Could you imagine how the concept
scales to more complex expressions?
Do you have any suggestions for
improvement or general comments on
the concept?

Table 12: Design questionnaire answers for Flo-inspired design from Mathias Fischler

Scratch-inspired

L. Streckeisen, J. Flepp Page 58 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?
Do you find the concept nice to look at? Yes
Could you imagine teaching functional
programming using this vizualization?
Could you imagine how the concept
scales to more complex expressions?
Do you have any suggestions for
improvement or general comments on
the concept?

• No type-annotations, so it’s difficult to
tell what goes where

• Type-Hole isn’t intuitive
• Operators should be treated like any

other function

Table 13: Design questionnaire answers for Scratch-inspired design from Mathias Fischler

Haskell Function-Notation inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?
Do you find the concept nice to look at? Yes
Could you imagine teaching functional
programming using this vizualization?
Could you imagine how the concept
scales to more complex expressions?
Do you have any suggestions for
improvement or general comments on
the concept?

Table 14: Design questionnaire answers for Haskell Function-Notation inspired design from
Mathias Fischler

General Comments
It would be nice to have 'referential-transparency', i.e. hovering over a block to see the type
of a specific argument.

18.1.5. Survey Results from Lukas Buchli
Lukas Buchli is a technical employee at the institute for software at OST

Flo-inspired

L. Streckeisen, J. Flepp Page 59 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

I don't know Flo and for me it is not a very
obvious notation. I can guess the semantics
though.

Do you find the concept nice to look at? It looks a bit cluttered to me.
Could you imagine teaching functional
programming using this vizualization?

I think I would visualize it differently.

Could you imagine how the concept
scales to more complex expressions?

It will probably clutter quite fast, I already
find 'Product of Numbers' hard to read. I
don't see a simple way to split it into
multiple parts.

Do you have any suggestions for
improvement or general comments on
the concept?

Maybe multiple argument functions can
have the argument in the same block
instead of the :apply notation? I understand
that this is to highlight currying, but I think
you could also explain this by only
highlighting the empty argument boxes.
This would reduce clutter and make it more
scalable.

Table 15: Design questionnaire answers for Flo-inspired design from Lukas Buchli

Scratch-inspired

L. Streckeisen, J. Flepp Page 60 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

I find this quite easy to read. The only
confusing bits I find are the type
annotations (purple), especially because it
mixes up constraints and types, but also
because it could be interpreted as being part
of the lower layer (i.e. in 'Map Add 5
Function' it could be interpreted as
describing the (+) and not the 5).

Do you find the concept nice to look at? Yes, it looks clean and colorful.
Could you imagine teaching functional
programming using this vizualization?

Yes.

Could you imagine how the concept
scales to more complex expressions?

It seems to clutter up less fast, and even
then, it could be possible to split it up into
multiple towers with references to each
other (maybe when visualizing Haskell
code, definitions in 'where' or in a let
expression could be a separate tower, this
would also solve the problem of multiple
references.

Do you have any suggestions for
improvement or general comments on
the concept?

• Type annotations: There could be a
separate type annotation tower that can
be enabled or disabled. Or it should be
more obvious where the type annotation
applies. At the moment it looks like the
types are arguments to the function
(which is actually the case in GHC Core
or with the TypeApplications extension,
but not in normal Haskell). Constraints
should be ignored or handled differently.

• Infix functions should look like +, not (+),
if they are visualized in an infix way.

Table 16: Design questionnaire answers for Scratch-inspired design from Lukas Buchli

Haskell Function-Notation inspired

L. Streckeisen, J. Flepp Page 61 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

I find this one difficult to read. I especially
have difficulty with the apparent mix-up of
types and values. It seems that the last part
of an arrow chain is the return type, and
the rest is a value if present and a type if
partially applied? I like the currying
visualization with nested boxes though.

Do you find the concept nice to look at? It looks more formal than Scratch-inspired,
which to me is a disadvantage. It also has
more text.

Could you imagine teaching functional
programming using this vizualization?

No, I find it difficult to describe the
semantics of single components. Maybe I'd
be able to if you gave me an explanation of
their meaning.

Could you imagine how the concept
scales to more complex expressions?

I guess it would be possible to use cross
references. It looks less cluttered than the
Flo -inspired one.

Do you have any suggestions for
improvement or general comments on
the concept?

It seems like the single component
semantics are not entirely consistent here.

Table 17: Design questionnaire answers for Haskell Function-Notation inspired design from
Lukas Buchli

General Comments
• I think it is important to have clear and simple semantics for single components of your

visualization. In order to ensure this, it may be useful to think about reduction rules for
your visualization.

• I like your use of color and how it distinguishes different things (types, value, arguments,
…)

• Type polymorphism and constraints seems to be a challenge to visualize. For polymorphic
types, TypeApplications may be a useful inspiration (i.e. receive types as a different kind
of argument to functions). Constraints could maybe then be applied to these kinds of type
arguments. Con of this approach is that in Haskell, you don’t pass types as arguments.

• Do you also plan on visualizing type definitions?
• My vote is on a Scratch-inspired version.

18.1.6. Survey Results from Eliane Schmidli
Eliane Schmidli is a master student & scientific assistant at the institute for software at OST

Flo-inspired

L. Streckeisen, J. Flepp Page 62 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Ja, ich bin mir jedoch nicht sicher, ob man
es ohne Haskell Erfahrung versteht.
Ausserdem hätte ich die Pfeile fürs
Verständnis eher von unten nach oben
gemacht (siehe erste Box). Ich möchte nicht
vom Resultat zurück gehen, sondern wende
ein Argument nach dem anderen an und
gelange am Schluss zum Resultat. (wenn
man jedoch die Argumente im UI dann so
hinziehen kann macht von unten nach oben
mehr Sinn)

Do you find the concept nice to look at? Grundsätzlich ja, es wird jedoch schnell
unübersichtlich. Es bräuchte noch mehr
Farbe und die Pfeile könnten je nach
Funktionalität unterschiedlich gestaltet
werden.

Could you imagine teaching functional
programming using this vizualization?

So wie es jetzt ist, eher nicht, da es zu
unübersichtlich ist. Aber wenn es etwas
ausgereifter ist, denke ich schon. Man kann
es ja dann wahrscheinlich Schritt für Schritt
einblenden, bzw. zusammensetzen.

Could you imagine how the concept
scales to more complex expressions?

Ich glaube es wird immer
unübersichtlicher…

Do you have any suggestions for
improvement or general comments on
the concept?

Ich finde die Rekursion nicht so
verständlich. Man sieht nicht, dass product
rekursiv aufgerufen wird. Ich hätte die
match Box als noch mit product beschriftet
und mit Farbe gearbeitet. Die ::Num a -> a
Box verwirrt mich. Ausserdem fände ich es
besser die Applikation in einer Box zu
machen

Table 18: Design questionnaire answers for Flo-inspired design from Eliane Schmidli

Scratch-inspired

L. Streckeisen, J. Flepp Page 63 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Ja, ich finde hier sieht man am besten, wie
die Parameter in einander verschachtelt
sind

Do you find the concept nice to look at? Ja, die Farben sind mega gut fürs
Verständnis und es ist sehr übersichtlich.
Rein visuell der beste Vorschlag.

Could you imagine teaching functional
programming using this vizualization?

Gut ist hier, dass man sieht wie man Schritt
für Schritt etwas einblenden könnte. Ich
weiss jedoch nicht, ob es wirklich einen
Mehrwert gegenüber dem Code bietet…
Bzw. Man sieht wie im Code die
Zusammenhänge nicht ganz

Could you imagine how the concept
scales to more complex expressions?

Ich könnte mir vorstellen, dass es schnell zu
überladen wird

Do you have any suggestions for
improvement or general comments on
the concept?

• Type annotations: There could be a
separate type annotation tower that can
be enabled or disabled. Or it should be
more obvious where the type annotation
applies. At the moment it looks like the
types are arguments to the function
(which is actually the case in GHC Core
or with the TypeApplications extension,
but not in normal Haskell). Constraints
should be ignored or handled differently.

• Infix functions should look like +, not (+),
if they are visualized in an infix way.

Table 19: Design questionnaire answers for Scratch-inspired design from Eliane Schmidli

Haskell Function-Notation inspired

L. Streckeisen, J. Flepp Page 64 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Ich finde es schlechter verständlich als der
erste Vorschlag. Ich könnte mir aber
vorstellen, dass eine Kombination aus
diesem und dem ersten funktionieren
könnte.

Do you find the concept nice to look at? Farben und Boxen finde ich gut und dass
die Applikation und der Zusammenhang
zwischen Argumenten und den Typen
besser sichtbar ist. Aber es sieht irgendwie
zu mathematisch aus :) Ich könnte mir
vorstellen, dass das Personen abschrecken
könnte

Could you imagine teaching functional
programming using this vizualization?

So nicht unbedingt. Aber wenn man es mit
dem ersten Vorschlag verbinden würde,
denke ich schon

Could you imagine how the concept
scales to more complex expressions?

Ich glaube, es wird mega kompliziert mit
der Verschachtelung. Ich finde die Pfeile
beim ersten Vorschlag besser

Do you have any suggestions for
improvement or general comments on
the concept?

It seems like the single component
semantics are not entirely consistent here.

Table 20: Design questionnaire answers for Haskell Function-Notation inspired design from
Eliane Schmidli

General Comments

L. Streckeisen, J. Flepp Page 65 of 77

VisualFP 18. Design Iteration One - Survey Results

L. Streckeisen, J. Flepp Page 66 of 77

VisualFP 18. Design Iteration One - Survey Results

18.1.7. Survey Results from Timon Erhart
Timon Erhart is a scientific assistant at the institute for software at OST

Flo-inspired

L. Streckeisen, J. Flepp Page 67 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

Mostly. It is confusing, that the input (e.g.) a
and output (results) have the same arrow
direction. It is not clear where to begin and
how the data 'flows'

Do you find the concept nice to look at? No. In my opinion it looks more
complicated than the code

Could you imagine teaching functional
programming using this vizualization?

No

Could you imagine how the concept
scales to more complex expressions?

No. More complex would probably look
more messy

Do you have any suggestions for
improvement or general comments on
the concept?

If grey boxes are type only, draw just a line
or place it inside. But use no arrow

Table 21: Design questionnaire answers for Flo-inspired design from Timon Erhart

Scratch-inspired

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

The match-case are where confusing to me.
But the rest yes

Do you find the concept nice to look at? Better than Flo. Cleaner and smaler. It has
some structure visible

Could you imagine teaching functional
programming using this vizualization?

Rather no

Could you imagine how the concept
scales to more complex expressions?

Yes (at least better than the others)

Do you have any suggestions for
improvement or general comments on
the concept?

Maybe an other syntax for match-case to
dinstinguish between functions names

Table 22: Design questionnaire answers for Scratch-inspired design from Timon Erhart

Haskell Function-Notation inspired

L. Streckeisen, J. Flepp Page 68 of 77

VisualFP 18. Design Iteration One - Survey Results

Question Answer
Were you able to understand the
meaning of the boxes and arrows?

No

Do you find the concept nice to look at? No, gets to big/messy soon
Could you imagine teaching functional
programming using this vizualization?

No

Could you imagine how the concept
scales to more complex expressions?

No, gets big very soon

Do you have any suggestions for
improvement or general comments on
the concept?

Table 23: Design questionnaire answers for Haskell Function-Notation inspired design from
Timon Erhart

General Comments
Maybe something like a tree structure (similar to expression trees) that goes from top to
bottom? It would may be some kind of mix between Flo and Scratch. Make a own symbol
for match-cases (to distinguish from functions). Make sure it is tidy (same thing on same
height level etc.)

L. Streckeisen, J. Flepp Page 69 of 77

VisualFP 19. Glossary & List of Acronyms

19. Glossary & List of Acronyms

API: Application Programming Interface

AST: Abstract Syntax Tree - Tree representation of a program’s structure

CSS: Cascading Style Sheets - Language to style the content of, e.g., web sites

DOM: Document Object Model - Tree representation of, e.g., a HTML document

FFI: Foreign Functional Interface - Interface between two different programming
languages

FRP: Functional Reactive Programming - A concept that defines types and functions for
interactive applications written in a functional language [22]

GHC: Glasgow Haskell Compiler

GTK: GIMP ToolKit - Toolkit for creating graphical user interfaces

HTML: HyperText Markup Language - Language to define the content structure of, e.g.,
web sites

JS: JavaScript

NFR: Non-Functional Requirement

OS: Operating System

PoC: Proof of Concept

UI: User Interface

L. Streckeisen, J. Flepp Page 70 of 77

VisualFP 20. Bibliography

20. Bibliography
[1] S. P. Jones, “Type inference as constraint solving.” https://simon.peytonjones.org/

assets/ppts/type-inference.pptx (accessed: Dec. 5, 2023).

[2] B. Harvey, and J. Mönig, SNAP! Reference Manual, 8.0, (2020). [Online]. Available:
https://snap.berkeley.edu/snap/help/SnapManual.pdf

[3] C. M. Elliot, “Tangible functional programming,” Oct. 2007. [Online]. Available: http://
conal.net/papers/Eros/eros.pdf

[4] E. Lawrence, Flo: A Visual, Purely Functional Programming Language, (Apr. 2016).
[Online]. Available: https://github.com/elliottlawrence/flo/blob/master/Documents/
CSC%20411%20Final%20Report.pdf

[5] Enso International Inc, “Enso the language.” https://enso.org/language (accessed: Sep.
23, 2023).

[6] Jameshfisher, “A humble suggestion for visual pure functional programming.” https://
www.reddit.com/r/haskell/comments/q7m8i/
a_humble_suggestion_for_visual_pure_functional (accessed: Sep. 30, 2023).

[7] “Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models,” International
Organization for Standardization, Geneva, CH, Mar. 2011.

[8] OpenJS Foundation, “Electron js.” https://www.electronjs.org/ (accessed: Sep. 28, 2023).

[9] T. G. Team, “The gtk project - a free and open-source cross-platform widget toolkit.”
https://www.gtk.org/ (accessed: Oct. 20, 2023).

[10] I. G. Etxebarria, “Haskell-gi.” https://github.com/haskell-gi/haskell-gi (accessed: Oct.
20, 2023).

[11] H. Apfelbaum, “Threepenny-gui.” https://github.com/HeinrichApfelmus/threepenny-
gui (accessed: Oct. 21, 2023).

[12] H. Apfelbaum, “Threepenny-gui: gui framework that uses the web browser as a
display. https://hackage.haskell.org/package/threepenny-gui (accessed: Oct. 21, 2023).

[13] S. Henry, J. M. Young, L. Stegeman, and others.

[14] fsbolero.io, “Getting started | bolero: f# in webassembly.” https://fsbolero.io/docs/
(accessed: Nov. 6, 2023).

[15] GHC Developers, “The GHC Commentary.” https://gitlab.haskell.org/ghc/ghc/-/wikis/
commentary (accessed: Sep. 30, 2023).

[16] S. Diehl, “Dive into ghc: pipeline.” https://www.stephendiehl.com/posts/ghc_01.html
(accessed: Sep. 30, 2023).

[17] hugs Developers, “hugs online.” https://www.haskell.org/hugs/ (accessed: Sep. 30,
2023).

L. Streckeisen, J. Flepp Page 71 of 77

https://simon.peytonjones.org/assets/ppts/type-inference.pptx
https://simon.peytonjones.org/assets/ppts/type-inference.pptx
https://snap.berkeley.edu/snap/help/SnapManual.pdf
http://conal.net/papers/Eros/eros.pdf
http://conal.net/papers/Eros/eros.pdf
https://github.com/elliottlawrence/flo/blob/master/Documents/CSC%20411%20Final%20Report.pdf
https://github.com/elliottlawrence/flo/blob/master/Documents/CSC%20411%20Final%20Report.pdf
https://enso.org/language
https://www.reddit.com/r/haskell/comments/q7m8i/a_humble_suggestion_for_visual_pure_functional
https://www.reddit.com/r/haskell/comments/q7m8i/a_humble_suggestion_for_visual_pure_functional
https://www.reddit.com/r/haskell/comments/q7m8i/a_humble_suggestion_for_visual_pure_functional
https://www.electronjs.org/
https://www.gtk.org/
https://github.com/haskell-gi/haskell-gi
https://github.com/HeinrichApfelmus/threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui
https://hackage.haskell.org/package/threepenny-gui
https://fsbolero.io/docs/
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary
https://www.stephendiehl.com/posts/ghc_01.html
https://www.haskell.org/hugs/

VisualFP 20. Bibliography

[18] R. Cheplyaka, E. Hesselink, and others, “Haskell Suite.” https://github.com/haskell-
suite (accessed: Sep. 30, 2023).

[19] R. Cheplyaka, E. Hesselink, and others, “Haskell Source Extensions.” https://
github.com/haskell-suite/haskell-src-exts#maintenance (accessed: Sep. 30, 2023).

[20] K. Renzel, and W. Keller, “Client/server architectures for business information systems
a pattern language,” 1997. [Online]. Available: https://api.semanticscholar.org/
CorpusID:59847813

[21] S. Brown, “Type inference as constraint solving.” https://www.infoq.com/articles/C4-
architecture-model (accessed: Dec. 20, 2023).

[22] C. Elliott, and P. Hudak, “Functional reactive animation,” in Int. Conf. Functional
Program., 1997. [Online]. Available: http://conal.net/papers/icfp97/

[23] H. Apfelmus, “Dynamic switching events.” https://github.com/HeinrichApfelmus/
threepenny-gui/issues/180 (accessed: Nov. 28, 2023).

[24] P. D. F. D. Mehta, “Lecture slides: programming in prolog unification and proof
search,” Hochschule für Technik Rapperswil, 2019.

[25] F. Pottier, and D. Rémy, “The essence of ml type inference,” pp. 389–489.

[26] “Gatekeeper and runtime protection in macos.” https://support.apple.com/en-gb/guide/
security/sec5599b66df/web (accessed: Dec. 15, 2023).

L. Streckeisen, J. Flepp Page 72 of 77

https://github.com/haskell-suite
https://github.com/haskell-suite
https://github.com/haskell-suite/haskell-src-exts#maintenance
https://github.com/haskell-suite/haskell-src-exts#maintenance
https://api.semanticscholar.org/CorpusID:59847813
https://api.semanticscholar.org/CorpusID:59847813
https://www.infoq.com/articles/C4-architecture-model
https://www.infoq.com/articles/C4-architecture-model
http://conal.net/papers/icfp97/
https://github.com/HeinrichApfelmus/threepenny-gui/issues/180
https://github.com/HeinrichApfelmus/threepenny-gui/issues/180
https://support.apple.com/en-gb/guide/security/sec5599b66df/web
https://support.apple.com/en-gb/guide/security/sec5599b66df/web

VisualFP 21. List of Figures

21. List of Figures

Figure 1: Type-inference engine components .. 2
Figure 2: C4 Component Diagram for VisualFP PoC .. 3
Figure 3: Screenshot of the mapAdd5 function definition in VisualFP ... 3
Figure 4: Screenshot of a block expression in Snap! [2] .. 7
Figure 5: Screenshot of Eros [3] ... 8
Figure 6: Screenshot of an if function definition in flo [4] .. 8
Figure 7: Screenshot of a negation function application in flo [4] .. 9
Figure 8: Example program in Enso [5] ... 9
Figure 9: Suggestion for visual pure function programming by Reddit user Jameshfisher
Source: Adapted from [6] .. 10
Figure 10: Screenshot of Agda context window after inserting a hole in an expression using
the ? sign ... 11
Figure 11: Use Case Diagram .. 13
Figure 12: Example of scratch-inspired function definition for an addition function 17
Figure 13: Example of scratch-inspired function definition with a type hole 17
Figure 14: Example of scratch-inspired function definition with pattern matching 17
Figure 15: Draft of proposed function parameter editor .. 18
Figure 16: Example of flow-inspired function definition for an addition function 19
Figure 17: Example of functions used as parameters for other functions 19
Figure 18: Example of a flow-inspired recursive function ... 20
Figure 19: Example of Haskell function-notation inspired function definition 20
Figure 20: Example of Haskell function-notation inspired function definition with higher
order function .. 20
Figure 21: Proposal 2 - basic structure ... 22
Figure 22: Proposal 2 - type hole ... 22
Figure 23: Proposal 2 - lambda ... 22
Figure 24: Elaborate application .. 22
Figure 25: Explicit application .. 22
Figure 26: Example of a destruction function in VisualFP .. 24
Figure 27: Example of pattern-matching in VisualFP ... 24
Figure 28: C4 Container Diagram for VisualFP PoC ... 31
Figure 29: C4 Component Diagram for VisualFP's Threepenny UI ... 32
Figure 30: Undefined function value in the VisualFP UI .. 33
Figure 31: Dragging lambda block into value definition ... 33
Figure 32: Updated function definition including a lambda block .. 33
Figure 33: Haskell defintion of mapAdd5 function in VisualFP ... 34
Figure 34: Type-inference engine components .. 35
Figure 35: Step by step demonstration of mapAdd5 construction - Part 1 40
Figure 36: Step by step demonstration of mapAdd5 construction - Part 2 40
Figure 37: Step by step demonstration of mapAdd5 construction - Part 3 40
Figure 38: Step by step demonstration of mapAdd5 construction - Part 4 41
Figure 39: Step by step demonstration of mapAdd5 construction - Part 5 41
Figure 40: Step by step demonstration of mapAdd5 construction - Part 6 41

L. Streckeisen, J. Flepp Page 73 of 77

VisualFP 21. List of Figures

Figure 41: Mockup of VisualFP IDE .. 42
Figure 42: Visual Studio Code Concept .. 43

L. Streckeisen, J. Flepp Page 74 of 77

VisualFP 22. List of Tables

22. List of Tables
Table 1: Examples of elaborate application resolution ... 23
Table 2: Requirement verification ... 37
Table 3: Design questionnaire answers for Flo-inspired design from Prof. Dr. Farhad Mehta . .
53
Table 4: Design questionnaire answers for Scratch-inspired design from Prof. Dr. Farhad
Mehta ... 53
Table 5: Design questionnaire answers for Haskell Function-Notation inspired design from
Prof. Dr. Farhad Mehta ... 54
Table 6: Design questionnaire answers for Flo-inspired design from Raphael Das Gupta 55
Table 7: Design questionnaire answers for Scratch-inspired design from Raphael Das Gupta .
55
Table 8: Design questionnaire answers for Haskell Function-Notation inspired design from
Raphael Das Gupta ... 56
Table 9: Design questionnaire answers for Flo-inspired design from Noah Geeler 57
Table 10: Design questionnaire answers for Scratch-inspired design from Noah Geeler 57
Table 11: Design questionnaire answers for Haskell Function-Notation inspired design from
Noah Geeler .. 58
Table 12: Design questionnaire answers for Flo-inspired design from Mathias Fischler 58
Table 13: Design questionnaire answers for Scratch-inspired design from Mathias Fischler
59
Table 14: Design questionnaire answers for Haskell Function-Notation inspired design from
Mathias Fischler .. 59
Table 15: Design questionnaire answers for Flo-inspired design from Lukas Buchli 60
Table 16: Design questionnaire answers for Scratch-inspired design from Lukas Buchli 61
Table 17: Design questionnaire answers for Haskell Function-Notation inspired design from
Lukas Buchli ... 62
Table 18: Design questionnaire answers for Flo-inspired design from Eliane Schmidli 63
Table 19: Design questionnaire answers for Scratch-inspired design from Eliane Schmidli . 64
Table 20: Design questionnaire answers for Haskell Function-Notation inspired design from
Eliane Schmidli .. 65
Table 21: Design questionnaire answers for Flo-inspired design from Timon Erhart 68
Table 22: Design questionnaire answers for Scratch-inspired design from Timon Erhart 68
Table 23: Design questionnaire answers for Haskell Function-Notation inspired design from
Timon Erhart .. 69

L. Streckeisen, J. Flepp Page 75 of 77

VisualFP 23. List of Code Listings

23. List of Code Listings
Listing 1: Addition function for design evaluation ... 16
Listing 2: Function that returns even numbers between 1 and 10 .. 16
Listing 3: Product function for design evaluation ... 16
Listing 5: Example of pattern-matching in Haskell .. 23
Listing 6: Example of a destruction function in Haskell .. 24

L. Streckeisen, J. Flepp Page 76 of 77

Disclaimer

Parts of this paper were rephrased using the following tools:

• GitHub Copilot¹
• Grammarly²

¹https://github.com/features/copilot/
²https://www.grammarly.com/

	Abstract
	Management Summary
	Initial Situation
	Objective
	Results

	- Part Introduction
	Motivation
	Goals
	Existing tools
	Snap!
	Eros
	flo
	Enso
	Reddit Suggestion for visual pure functional programming
	Agda

	- Part Design
	Functional Requirements
	Actors
	Use Cases
	UC1 - Simple Function Composition
	UC2 - Function Execution
	UC3 - Recursive Function Composition
	UC4 - Function Composition using Higher-Order Functions
	UC5 - Curried Functions
	UC6 - Function Composition using Lists
	UC7 - Data Type Composition
	UC8 - Save Source File
	UC9 - Open Source File
	UC10 - Group Functions into Modules
	UC11 - Import Haskell code

	Prioritization & Scope

	Non Functional Requirements
	NFR1 - Platform Compatibility
	NFR2 - Learnability

	First Design Iteration
	Design Evaluation Criteria
	Code Scenarios
	Simple Addition Function
	Even numbers from 1 to 10
	Product of Numbers
	Map Add 5 Function

	Evaluation Questionnaire

	Scratch-inspired design
	Function Declaration, Composition and Application
	Type Holes
	Pattern Matching

	Flo-inspired design
	Function Parameter Editor
	Function Editor

	Haskell function notation-inspired design
	Conclusions
	Flo-inspired Design
	Scratch-inspired Design
	Haskell Function Notation-inspired Design

	Second Design Iteration
	Final Design Proposal
	Function Application
	Sum Type Destruction

	Conclusion

	- Part Proof of Concept
	Scope
	Implementation Options
	Deployment platform
	Desktop Application
	Web Application
	Deployment Decision

	UI Frameworks
	Electron.js
	Haskell-gi
	Threepenny-GUI
	GHCJS
	Bolero
	UI Framework Decision

	Compiler Platform
	GHC
	Other Haskell Compiler-Platforms
	Custom Compiler Platform
	Compiler Platform Decision

	Architecture
	Client/Server Cut
	Backend Components

	Translation Component
	User Interface
	Features
	Implementation
	Functional Reactive Programming

	Type Inference
	Phases
	Constraint Language

	- Part Results & Outlook
	Results
	Requirement Validation
	Validation of NFR2

	Design Concept
	Proof of Concept
	macOS Electron App

	UI Demonstration

	Outlook
	IDE for visual functional programming
	Visual and Textual Language

	- Part Appendix
	Task Description
	Design Evaluation Questionnaire Template
	Design Iteration One - Survey Results
	Survey Results from Prof. Dr. Farhad Mehta
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Survey Results from Raphael Das Gupta
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Survey Results from Noah Geeler
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Survey Results from Mathias Fischler
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Survey Results from Lukas Buchli
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Survey Results from Eliane Schmidli
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Survey Results from Timon Erhart
	Flo-inspired
	Scratch-inspired
	Haskell Function-Notation inspired
	General Comments

	Glossary & List of Acronyms
	Bibliography
	List of Figures
	List of Tables
	List of Code Listings

