
Digitaler Briefversand

Autumn Term 2023

Department of Computer Science

OST - University of Applied Sciences

Campus Rapperswil-Jona

Author(s) Gian-Luca Vogel & Marc Kissling & Andrew Willi

Advisor Frank Koch
Project Partner Michael Güntensperger

December 22, 2023



Digitaler Briefversand

Abstract

Introduction

Communication in the modern business world is characterized by remarkable complexity. In
addition to conventional communication methods, such as postal mail, innovative approaches
have emerged that businesses can leverage. Email andmessenger services likeMicrosoft Teams
or WhatsApp have become widely adopted communication channels. The clear trend indicates
a significant preference for digital communication forms. The trend shows a clear preference
for digital forms of communication, which is at the expense of the still important, paper-based
postal correspondence. In this work, analogue postal traffic is to be digitally enriched in order to
combine the advantages of both worlds.

Objective

Within the scope of this project, a prototype of an application is being developed with the aim
of digitizing postal mail. The primary goal is to create a user-friendly application that makes it
easier for the sender to digitally send a letter to a recipient. If the digital route is not feasible,
the application will automatically send the letter through traditional means. The prototype is
designed to be easily expandable to facilitate the continuous development and implementation
of new features. Another crucial aspect of the application is its broad device compatibility to
ensure maximum user reach.

Conclusion

In the creation of the prototype for this project, we utilized the following technologies: Node.js
and TypeScript were employed for the backend. Electron, in conjunction with React, also in Type-
Script, was used for the desktop application. For the mobile application, we opted for Flutter.
The application allows an organization to digitally send a letter to a customer via the desktop
application, who then receives it through the mobile app. The application autonomously decides
whether the letter should be digitally sent to the recipient after verifying their address or if it should
be physically sent if verification is not successful. In further development, the desktop applica-
tion is planned to be enhanced with automatic address recognition, and the manual handling of
physical mail delivery will be improved as needed.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 2 of 117



Digitaler Briefversand

Management Summary

Introduction

The rise of digital channels such as email and messaging services has altered communication
in the modern working environment. By creating a prototype application that digitises postal
mail and combines the benefits of digital communication with the traditional postal system, this
project responds to the rapidly changing environment. Especially for small companies it would
be a great tool to streamline their communication.

Collaboration and Team Dynamics

Our team, consisting of three dedicated members, adopted a technology driven approach to the
project implementation. We divided the project workload into desktop, mobile and backend. Mo-
tivated by a common goal, our group worked incredibly well together to complete the project.
The dynamic interaction of the team members’ skills and knowledge enabled a smooth work-
flow that fostered innovation and creativity. In order to develop the frontend in parallel, we were
able to start working on the backend early on. This allowed us to quickly identify and fix any
problems that arose during the development process.

Achievements

Throughout the development process we successfully achieved several milestones. We imple-
mented all the functional requirements, and due to time constraints we were only able to partially
implement two optional requirements. All but three of the non-functional requirements have now
been implemented. And here is a result of the desktop application:

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 3 of 117



Digitaler Briefversand

Figure 0.1: Desktop Application

Here are three screenshots of the mobile application:

Figure 0.2: Mobile Application

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 4 of 117



Digitaler Briefversand

Challenges and Solutions

We faced a number of challengeswhichwere overcome during the implementation of the project:

• New Technology Exploration: Understanding the new Flutter framework posed an initial
challenge. To overcome this, we invested time in thoroughly exploring and learning its fea-
tures and capabilities.

• Project Time Management Misunderstanding: We thought it would be sufficient to sim-
ply track the time spent on the project. However, there is a need for estimation and issue
tracking, which we solved by using a github project board and the 7pace plugin.

• Deployment Process Complexity: We just had to spend more time on the deployment. The
desktop application was also a bit of a challenge. We were not familiar with the process
of deploying an Electron application. We solved this by using the Electron builder package
and creating an artefact.

Lessons learned

In retrospect, it was a good decision to start the backend early in the development process. This
allowed us to quickly adapt and address any issues that arose during the development process.
As everyone had their own main area with interfaces to the others, we were able to effectively
contain the effects of blocking each other.
We also learned why Latex is such a powerful tool for parallel development. Despite a slight
learning curve, the benefits of using LaTeX for documentation became apparent. It allowed us to
collaborate on professional and structured documents, ensuring version control and consistency.

Closing words

All in all the project has been a success. We are happy with the outcome and the way we worked
together. The experience of working collaboratively and communicating effectively not only en-
riched the project outcome but also contributed to the personal and professional growth of each
team member. These lessons in teamwork and communication are invaluable takeaways that
will undoubtedly influence our future collaborations.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 5 of 117



Contents

1 Starting Position 8

2 Conceptual Formulation 9

3 Requirements 11
3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Optional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Architecture and Design 15
4.1 Visualizing the Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Architecture in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Desktop Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Implementation 26
5.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Test Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Production Environment Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Function Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.1 Setup Development Environment . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.2 Sending and Receiving Letters . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.3 Viewing Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.4 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.5 Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.7 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.8 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6.1 REST-API Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6.2 Code Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Result 57

7 Conclusion 60
7.1 Needs to be addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Future Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Digitaler Briefversand

8 Project and Time Management 62
8.1 Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 Project organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2.2 GitHub Project Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2.3 Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2.4 Issue Managment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.5 Branching Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.6 Git-Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.7 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 Acknowledgement 75

10 Appendix 78
10.1 API Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.2 Screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 Task definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.4 Testing Desktop Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.4.1 UX Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.4.2 Usablity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.5 Testing Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.5.1 UX-Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.5.2 Usablity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.6 Testing Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.6.1 Test code snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 7 of 117



Digitaler Briefversand

1 Starting Position

This project piqued our interest and continues to do so. When we first looked at all the topics,
this one stood out the most. We have worked with similar technologies which was our main
reason why we wanted this project. Furthermore, digging deeper into Electron and Flutter gave
an interesting opportunity for additional study and skill development. What further motivated us
was the realization that we were actively digitizing the process.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 8 of 117



Digitaler Briefversand

2 Conceptual Formulation

The aim of this project is to develop a solution to bridge the gap between the user-friendliness of
digital communication and the security of traditional physical mail. To this end, a software sys-
tem is being created that consists of a desktop application, a mobile application and a backend.
The desktop application is used to send letters in PDF format to recipients. These recipients can
then receive and display the letters via the mobile application. If this is not possible, the letter
is automatically delivered physically by conventional means. The entire logic of the process is
handled by the backend application, which is implemented as a cloud application.

Figure 2.1: Letter sending process

The following diagram illustrates the process when a letter is sent physically. As you can see,
it’s a fairly simple process. The application saves the metadata and the letter in PDF format, and
then sends it to the postal service. The postal service is responsible for printing and mailing the
letter.

Figure 2.2: Letter sending physical

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 9 of 117



Digitaler Briefversand

In contrast, the digital route requires more effort on the part of the application. First, the letter
must be saved together with the metadata. The recipient is then notified and receives the letter’s
metadata via this notification. This metadata in turn contains a link that the recipient can use to
download the letter.

Figure 2.3: Letter sending digital

For security purposes, the user needs to confirm his address; the procedure is shown in the
diagram below.

Figure 2.4: Process chart address verification

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 10 of 117



Digitaler Briefversand

3 Requirements

To ensure agility, we track functional needs on GitHub and 7pace using user stories. (More in-
formation about 7pace in the chapter Project and Time Management under the section "Time
Tracking".) Our primary goal is to make letter sending and receiving as simple as possible. Re-
stricted mobile access to specific papers, user-friendly registration for new recipients, address
verification by QR-Code via mail, expedited registration for companies or senders, and rapid doc-
ument upload for dispatch are all key features.

We’re also considering cloud deployment to improve accessibility and scalability. These criteria,
which aremanaged via GitHub and 7pace, represent our commitment to digitising and optimising
the letter exchange process.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 11 of 117



Digitaler Briefversand

3.1 Functional Requirements

Figure 3.1: Use Case Diagram

Here we see two systems for the mobile and desktop application and two types of users:

• Sender: A user, who can be a company or an individual, who sends digital letters and has
access to the desktop application.

• Receiver: A user, usually a person, who receives digital letters and has access to themobile
application.

Following the use case diagram, each will be explained in detail:

1. User wants to register as new recipients

2. User needs address verification with QR code Adress verification with QR code which will
be sent through postal mail.

3. System should provide a way for companies/sender to register as new recipients.

4. Mobile application should have a feature that restricts access to a user’s own documents
while the desktop application has no restrictions.

5. User wants to upload document(s).

6. User wants to send letters after uploading document(s).

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 12 of 117



Digitaler Briefversand

3.2 Non-Functional Requirements

Our Non-functional requirements are defined using FURPS+’s definition. Unless otherwise spec-
ified, all of the NFRs mentioned below are requirements.

Type Description Acceptance Criteria
Feature Implement features as per agreed-upon priority. Features implemented in the agreed

priority order.
Performance Backend handles 1000 requests per minute. Backend maintains performance with

1000 requests per minute.
Performance Pages load within 200ms. All pages load within 200ms for re-

sponsive user experience.
Compatibility Desktop application runs on Windows. Desktop application is Windows-

compatible.
Usability Application is easy to install and use. Users can easily install and use the ap-

plication.
Usability Mobile UI should rate at least 8 out of 10 by three

out of four test users (layout, responsiveness,
color, content).

Chapter Test Concept

Performance Database manages up to 10,000 docu-
ments/PDFs without issues.

Tested with Performance Testing
Framework.

Reliability Errors display messages, revert the system, and
avoid system failures.

Errors show messages, restore the
system, and prevent failures.

Logging Every error is logged for monitoring and trou-
bleshooting.

All errors are logged for monitoring
and troubleshooting.

Security Encryption with SSL certificates for frontend-
backend communication.

SSL certificates secure frontend-
backend communication.

Security Input validation and no SQL injection vulnerabil-
ities.

Input data is validated, and no SQL in-
jection vulnerabilities exist.

Security User passwords securely hashed in the
database.

User passwords hashed securely, not
stored in plain text.

Flexibility Modular backend logic for easy expansion. Backend logic designed modularly for
easy expansion.

Testing Comprehensive backend API testing with appro-
priate tools.

Backend API thoroughly tested with
suitable tools, ensuring functionality
and reliability.

Deployment Database, backend, and frontend deployed on
separate instances for isolation and scalability.

CI/CD

Deployment Deployment inside the Cloud CI/CD

Table 3.2: Non-Functional Requirements

Additional information: In our opinion, the functional requirement "Deployment inside the Cloud"
is a Non-Functional Requirement, especially the backend.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 13 of 117



Digitaler Briefversand

3.3 Optional Requirements

These optional features address various aspects of documentmanagement, user interaction and
overall system customisation. The table below outlines these optional requirements:

Nr Description
1 Automatic address recognition in PDF.
2 Categorization of documents in the mobile application.
3 Selection of shipping method in the desktop application.
4 Cost display for shipping via the desktop application.
5 Dashboard for managing employees for letter shipment, including permissions.
6 Company branding for the desktop app.
7 Web application for recipients.

Table 3.3: Optional Requirements

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 14 of 117



Digitaler Briefversand

4 Architecture and Design

4.1 Visualizing the Architecture

Based on the Conceptual Formulation and the Requirements, we have created the architectures
and designs of the application described in the following chapters. To illustrate these architec-
tures, we have chosen to adopt the C4-Model standard. It is worth mentioning that we imple-
mented only the first three levels of the model, as the fourth level is too detailed and would not
provide any added value to the reader.

System Context (C4 Model Level 1 )

The diagram illustrates how the sender and the recipient interact with the eLetter application. The
eLetter application, in turn, interacts with two additional software systems. One is a Notification
Service required for sending push notifications to users on mobile devices, and the other is a
Postal Service necessary for physically sending letters in a traditional manner.

Figure 4.1: C4 Model Level 1

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 15 of 117

https://c4model.com/


Digitaler Briefversand

Container Diagram (C4 Model Level 2)

The focus in the following diagram is to provide a more detailed explanation of the eLetter appli-
cation. As depicted, it consists of five components: a desktop application enabling users to send
letters, a mobile application facilitating letter reception, the backend serving as the central hub
for the entire application logic, along with a database storing metadata, and an object storage
handling the storage of letters as PDFs.

Figure 4.2: C4 Model Level 2

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 16 of 117



Digitaler Briefversand

4.2 Architecture in Detail

In this section we examine the specific components and their interrelationships that make up
the design of our system. The preceding C4 model provides the third level for a more in-depth
examination of critical issues.

4.2.1 Desktop Application

Component diagram (C4 Model Level 3)

Since the desktop application is designed to be straightforward, we opted for a simple architec-
ture. In this setup, the user interacts with the application through a view, which, in turn, commu-
nicates with the backend via REST services. This interaction is illustrated in the diagram below.

Figure 4.3: C4 Model Level 3 Desktop Application

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 17 of 117



Digitaler Briefversand

UI Mock-ups

The next chapter contains the initial drafts of the desktop application’s mock-up, inspired by Mi-
crosoft Outlook and Apple Mail to provide a familiar user experience from the beginning.

The first two images display thewelcome page presented to the user when they open the desktop
app. The second image shows the page the user navigates to when clicking on "Sign up."

Figure 4.4: Welcome Page Figure 4.5: Sign up page

The next two images showcase the login page and the settings page, where the user can config-
ure profile settings.

Figure 4.6: Log in page Figure 4.7: Letters page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 18 of 117



Digitaler Briefversand

The final two images show the application’s necessary pages for sending a letter. The first image
presents the upload page, where users can drag and drop a letter for upload.
The second page previews the uploaded letter and requires users to enter the address details
before submission.

Figure 4.8: Sending and uploading page 1 Figure 4.9: Sending and uploading page 2

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 19 of 117



Digitaler Briefversand

4.2.2 Mobile Application

Component diagram (C4 Model Level 3)

The following diagram shows that the mobile application contains slightly more UI logic than
the desktop app. This is due to the fact that, in addition to loading data from the backend, it
is also necessary to process notifications that are sent to the mobile application when the user
receives a new letter. For this reason, we have decided to abstract the view from the logic using
a ViewModel (MVVM pattern). This offers the advantage that the view only contains the pure
display logic, while the ViewModel handles state management and data loading.

Figure 4.10: C4 Model Level 3 Mobile-Application

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 20 of 117

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel


Digitaler Briefversand

UI Mock-ups

The first three images show all the pages a user needs to register and log in to the app. From
right to left, these are the Welcome Page, displayed when the application is launched, the Sign
Up Page needed for user registration, and finally, the Login Page.

Figure 4.11: Welcome page Figure 4.12: Sign up page Figure 4.13: Sign in page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 21 of 117



Digitaler Briefversand

The next three pictures show the "Letter Details Page" (on the left), which is displayed when the
user clicks "Open" in the mailbox. Here, the user can view all the important meta-information
about the letter, and additionally, a preview of the first page is displayed.
If the user clicks on this preview, they will access the PDF view, depicted in the middle image.
The third image shows the "Settings Page," where the user can manage their information, verify
their address, and log out.

Figure 4.14: Detail page Figure 4.15: PDF view page Figure 4.16: Settings page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 22 of 117



Digitaler Briefversand

The last two pictures show the user’s mailbox, displaying all the letters they have received (on
the right). The "New Mail Page" shows all the letters that the user has not yet read. Switching
between these two views is done through the navigation bar at the bottom of the screen. Clicking
on the middle icon takes the user to the mailbox, clicking on the far left icon takes them to the
"New Mail Page," and clicking on the far right icon takes them to the "Settings Page."

Figure 4.17: New letters Figure 4.18: All letters page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 23 of 117



Digitaler Briefversand

4.2.3 Backend

Component diagram (C4 Model Level 3)

The diagram below illustrates the planned architecture for the backend. As can be seen, all re-
quired functions are encapsulated in individual modules that share services among themselves.
This modular approach aims tomake the code easily maintainable and extendable. Furthermore,
this architecture is intended to simplify the testability of the code.

Figure 4.19: C4 Model Level 3 Backend

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 24 of 117



Digitaler Briefversand

Data Model

The following graphic displays our datamodel. Asmentioned in previous chapters, we use a rela-
tional database to persist the data, where each rectangle in the diagram represents a table. The
decision to create a separate table for addresseswasmade deliberately to simplifymaintenance,
for instance, if the "Country" field needs to be extended in the future.
Additionally, it is worth noting that wemade a deliberate choice to allow each user of the applica-
tion to have only one address. Given that the application is currently in the prototype stage, this
decision adequately encompasses the full range of functionalities.
When our application sends a letter, it can be done in two ways: physically or digitally. This is
represented in the "Letter" table with the "type" field, which can take either the value "PHYSICAL" or
"DIGITAL". The "recipientName" field is redundant in the digital case compared to the "firstName"
and "lastName" fields in the "User" table but is required when sending a physical letter.

Figure 4.20: Data Model

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 25 of 117



Digitaler Briefversand

5 Implementation

5.1 Technology

Our decision process was led by the project requirements, with some technologies prescribed
to ensure a standardised approach and others chosen to correspond with our team’s skills and
preferences. Each technology plays an important part in various portions of the project, resulting
in a comprehensive and versatile solution. More information on each technology choice can be
found in the sections that follow.

Programming Language

Since our industry partner specified that the backend must be a Node application and that we
also had to choose internet technologies for the desktop and mobile applications, the only pro-
gramming languages we considered were JavaScript, TypeScript and Dart.
Since we decided to write the mobile application in Flutter, we chose Dart as the programming
language for the mobile application.
For the backend and the desktop applicationlication we chose TypeScript because it is a super-
set of JavaScript and is a strongly typed language. And for team collaboration it is better to use
the same language if we have clear interfaces and expectations.

Frontend Framework and Libraries

Electron

Asmentioned, this is a requirement fromour industry partner andwehave chosen Electron-vite. A
tool that simplifies the setup process and speeds up the creation of our application. Electron-vite
includes pre-configured settings that reduce the complexity associated with setting up Electron
projects, allowing us to focus more on the application logic and features.

React

We chose React as our frontend framework because it is a popular framework with a large com-
munity and lots of documentation. It is also a component-based framework which makes it easy
to reuse components and create a consistent user interface. But themain reasonwe chose React
is because we have experience with it and we know how to use it.

Flutter

We chose Flutter as our frontend framework for the mobile application, because it is a cross-
platform framework that allows us to write one codebase for both Android and iOS. It is also a
component-based framework which makes it easy to reuse components and create a consistent
user interface. But the main reason we chose Flutter over React Native is the fact that it is faster
and has a better performance.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 26 of 117

https://electron-vite.org/
https://reactjs.org/
https://flutter.dev/


Digitaler Briefversand

PDF-Viewer Desktop Application

To view the uploaded PDF, we decided to use react-pdf as the PDF viewer. We looked at the
available options such as simply using <iframe src="files/example.pdf"/> which is easy to
implement, but we only wanted to have the first page of a PDF.
Another option was to use pdf.js which is a JavaScript library for rendering PDF documents in
the browser. But we decided to use react-pdf because it is a React component that allows us to
render PDF documents in the browser and it is easy to use.

PDF-Viewer Mobile Application

For the integration of PDF viewing functionality in our application, we chose to utilize a pre-built
package within the Flutter framework. Our primary criterion for selecting this package was its
compatibility with the required platforms, specifically Android and iOS.
After evaluating various options, we decided on the PDFx package, which is available on pub.dev.
PDFx is a comprehensive Flutter plugin, designed to render and display PDF documents as im-
ages. It supports a wide range of platforms including Web, MacOS, Windows, Android, and iOS,
making it an ideal choice for our cross-platform application needs.

QR-Code Scanner

In addition to PDF viewing, our application required the capability to scan QR codes. To achieve
this, we opted for a well-established solution within the Flutter ecosystem. Our choice fell on
the ’qr_code_scanner’ plugin, a popular tool among Flutter developers. This plugin is known
for its reliability and widespread use in the community, making it a trustworthy choice for our
application.

Backend Framework and Libraries

Nestjs

Although Express is widely used and better suited for small applications, offering more flexibility,
we deliberately chose NestJS for the following reasons:

• TypeScript-based: Nest is built in TypeScript, leading to increased stability. Static typing
allows for early error detection and a clearer codebase.

• Convention over Configuration: In contrast to Express, NestJS follows the "Convention over
Configuration" paradigm. This means that developers can avoid much of the configuration
by adhering to clear conventions. This promotes a unified code structure and accelerates
the development process by relieving developers of certain decisions.

• Modular Architecture: NestJS provides amodular architecture that facilitates development
and maintenance. By using modules, different functionalities can be cleanly separated and
reused.

• Dependency Injection: NestJS integrates the concept of Dependency Injection, contribut-
ing to well-structured and testable code. This also encourages loose coupling between
different components.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 27 of 117

https://github.com/wojtekmaj/react-pdf/tree/eceea625461f0fabe0425b156314f3f391ad1848
https://mozilla.github.io/pdf.js/
https://pub.dev/packages/pdfx
https://expressjs.com/
https://nestjs.com/


Digitaler Briefversand

Orm Prisma

We have chosen Prisma as our ORM tool for the following three reasons:

• Type-Safety and Code Auto-Generation: Prisma fully leverages the advantages of Type-
Script by providing strong typing for database queries. This means that queries can be
statically checked during development, reducing runtime errors. Prisma automatically gen-
erates part of the code based on the database schema, reducing development time and
ensuring code synchronization with the schema.

• Performance and Optimizations: Prisma is designed to create efficient database queries
and offers optimizations such as batch data loading. This allows for the generation of
efficient queries and minimizes the number of database accesses, enhancing the overall
performance of the application.

• DataModeling and Simplicity: Prisma enables clear and declarative datamodeling through
the schema.prisma file, leading to a simpler and more understandable codebase.

Localization i18n

At this point, it is worth noting that we utilize the Node package nestjs-i18n to extract all mes-
sage strings from the code files to a single point. This will simplify the management of different
messages and facilitate the implementation of localization in the next phase of this project.
Currently, this may seem a bit overhead, but in our opinion, it is the correct approach, especially
considering that when this application is intended for use throughout Switzerland, it must sup-
port at least three languages. Therefore, this implementation will establish a solid foundation for
the localization process.

PDF to PNG Converter

After deciding to show the user an image of the first page of the letter, we had to implement
this logic in the backend. What initially seemed simple turned out to be a greater challenge, as
most libraries we evaluated faced a common issue: dependency on external scripts, which was
impractical for us due tomaintenance reasons. Nevertheless, after extensive research, we found
a solution to this problem with the Node package pdf-to-png-converter.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 28 of 117

https://www.prisma.io/
https://nestjs-i18n.com/
https://www.npmjs.com/package/pdf-to-png-converter


Digitaler Briefversand

Database

In the decision-making process regarding the choice of the database, we opted for PostgreSQL.
This decision was driven by straightforward considerations. Firstly, our industrial partner ex-
pressed a preference for a relational database. Secondly, all team members possessed prior
experience with PostgreSQL.

For local development environments, we implemented a Dockerized PostgreSQL database to en-
sure consistency across development machines. Dockerization facilitates the seamless setup
and teardown of the database environment, ensuring that all team members can work with a
standardized PostgreSQL instance. The use of Docker containers ensures that dependencies
are isolated, making it easier to manage and reproduce the development environment.

In the production environment, we chose to leverage Digital Ocean’s managed PostgreSQL ser-
vice for its robust features and ease of administration. Digital Ocean’s managed PostgreSQL
service provides automated backups, scaling capabilities, and optimized performance, reducing
the operational overhead for our team. The decision to utilize a managed service aligns with
our goal of ensuring a reliable and scalable production database, allowing us to focus more on
application development and less on database management.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 29 of 117

https://www.postgresql.org/
https://www.digitalocean.com/products/managed-databases-postgresql
https://www.digitalocean.com/products/managed-databases-postgresql


Digitaler Briefversand

External Services

Shared Preferences Mobile App

Since we set up the endpoints in the backend and their paths dynamically, we had to provide
functionality to store some data on the mobile device. To implement this, we used shared pref-
erences. This feature is particularly useful for storing user settings or preferences. It allows
applications to remember choices made by the user, such as login details, theme preferences, or
language settings. Moreover, it is easier to implement than a database connection on a mobile
device.

Object-Storage Digital Ocean

As the main task of the application is to digitally send letters, it is logical to utilize Object-Storage
for file storage. Our initial choice was Azure Blob Storage from Microsoft, as the team already
had experience working with it. However, the industrial partner requested the entire application
to be hosted on Digital Ocean. Consequently, we opted for the Object-Storage offered by Digital
Ocean, specifically Digital Ocean Spaces.

Digital Ocean Spaces provides us with a reliablemeans of storing andmanaging files. In compar-
ison to the setup of Azure Blob Storage, the onboarding and implementation of Spaces proved
significantly more straightforward.

The seamless integration of the Amazon S3 SDK for Spaces connectivity was a crucial part of this
procedure. We achieved the flawless integration with Spaces by using Amazon’s AWS S3 SDK.
This SDK provides a uniform interface to access many Object-Storage services, which greatly
simplifies implementation and adds a ton of functionality.

The following code snippets from the project illustrates the simplicity of the implementation:

export class FileService {
client: any;
constructor(private readonly i18n: I18nService) {
// Initialize the S3 client with the credentials and endpoint details
this.client = new S3({
forcePathStyle: false,
endpoint: process.env.DO_SPACES_ENDPOINT,
region: process.env.DO_SPACES_REGION,
credentials: {
accessKeyId: process.env.DO_SPACES_KEY as string,
secretAccessKey: process.env.DO_SPACES_SECRET as string,

},
});

}

Listing 5.1: Code to instanciate the S3 Client

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 30 of 117

https://www.digitalocean.com/products/spaces


Digitaler Briefversand

async uploadFile(file: Buffer, Key: string, fileName: string) {
try {
// Send the file to the S3 bucket using the PutObjectCommand
await this.client.send(
new PutObjectCommand({
Bucket: process.env.DO_SPACES_NAME,
Key,
Body: file,
Metadata: { 'file-name': `${fileName}` },

}),
);

} catch (err) {
console.error(err);
throw new BadRequestException(this.i18n.t('messages.errorSaveFile'));

}
}
...

Listing 5.2: Code for uploading file to Digital Ocean Spaces

Pingen Postal Service

Pingen is an online mail service that dispatches physical letters. This functionality is essential
within the application, as previously mentioned, to enable the sending of letters even when the
recipient is not registered on the platform or the address has not yet been verified.
The application itself relies on the Pingen service to send users a letter for address verification.
Communication takes place through a REST API with the Pingen service. The following details
the exact process:

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 31 of 117

https://www.pingen.ch/en/


Digitaler Briefversand

The first step involves the application authenticating with Pingen.

private async authenticateOnPingen(): Promise<PingenGetAccessTokenResponse> {
try {
return (
await this.httpService.axiosRef.post(
process.env.PINGEN_AUTH_URL as string,
{
grant_type: 'client_credentials',
client_id: process.env.PINGEN_CLIENT_ID,
client_secret: process.env.PINGEN_CLIENT_CREDENTIALS,

},
{
headers: {
'Content-Type': 'application/x-www-form-urlencoded',

},},)
).data as PingenGetAccessTokenResponse;

} catch (err) {
console.error(err);
throw new InternalServerErrorException(...);

}
}

Listing 5.3: Code for authenticate the application on pingen

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 32 of 117



Digitaler Briefversand

Subsequently, another request is made to obtain an upload URL for the letter.

private async getUploadUrl(access_toke: string) {
try {
const result = (
await this.httpService.axiosRef.get(`${process.env.PINGEN_URL}/file-upload`,
{

headers: { Authorization: `Bearer ${access_toke}` },
})

).data;
return result.data as PingenGetUploadUrlResponse;

} catch (err) {
console.error(err);
throw new InternalServerErrorException(...);

}
}

Listing 5.4: Code to get the upload URL from pingen

The letter can then be uploaded to Pingen using this URL.

private async uploadLetterToPingen(url: string, file: Buffer) {
try {
await this.httpService.axiosRef.put(url, file);

} catch (err) {
console.log(err);
throw new InternalServerErrorException(...);

}
}

Listing 5.5: Code for uploading a file to pingen

Pingen automatically verifies if the letter has a valid format and subsequently dispatches it.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 33 of 117



Digitaler Briefversand

Notification Service

Due to the fact that the majority of eLetter users utilize the application through a mobile appli-
cation, we have chosen to integrate a notification service for sending push notifications to the
application.
Initially, we evaluated OneSignal, as their documentation suggested it to be straightforward to
implement. However, it turned out that, for sending notifications to Android devices, a Firebase
account is required, which is then linked with OneSignal. As a result, we opted to simply leverage
the SDKs and tools that Firebase inherently utilizes. This allowed us to bypass the overhead that
would have been introduced by OneSignal.
This decision proved to be correct, as the implementation in both the backend and frontend was
straightforward. The following code snippets showcase the entire code needed to send a notifi-
cation to the user.

export class NotificationService {
...
public async sendNotificationToDevice(token: string, organisationName: string)

{
try {

await this.firebase.messaging().send({
token,
notification: {
title: this.i18n.t('messages.notificationTitle'),
body: `${this.i18n.t('messages.notificationText')} ${organisationName}`,

},
});

} catch (err) {
console.error(err);

}
}

}

Listing 5.6: Code for sending push notification to a mobile device

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 34 of 117

https://onesignal.com/
https://firebase.google.com/


Digitaler Briefversand

5.2 Test Concept

5.2.1 Frontend

Unit-Tests
We initially planned to use unit testing, but after talking to our industry partner we decided that it
would not make sense and that the features were more important than the testing.

Usability-Tests
Although the end-user test is not required for the Desktop application, we thought it would be
nice to present it to users and test it. The non-functional requirement was that three test users
would rate our mobile application eight or higher out of ten. So we decided to do the desktop
application with 2 more people, for a total of 6 people.

Result Desktop Application

The results for the Usabilty-Tests were the following:

• Participant 1: Overall rating of 7

• Participant 2: Overall rating of 8

• Overall rating: 7 + 8 => 7.5

In the context of our project we consider these ratings to be good, but they show us that there is
still work to be done in our UI. Detailed information can be found in the chapter appendix under
the section "Usablity Test Desktop Application" and under the the section "Testing code snippet".

Result Mobile Application

The results for the Usabilty-Tests, broken down by user, were the following:

• Participant 1: 9 + 8 + 9 + 7 => 8.25

• Participant 2: 9 + 10 + 10 + 9 => 9.50

• Participant 3: 9 + 9 + 10 + 8 => 9.00

• Participant 4: 9 + 8 + 9 + 8 => 8.50

• Overall rating: 8.25 + 9.50 + 9.00 + 8.50 => 8.8125

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 35 of 117



Digitaler Briefversand

The results for the Usabilty-Tests, broken down by category, were the following:

• Overall Experience: 9 + 9 + 9 + 9 = 9.00
(content, layout)

• Usability: 8 + 10 + 9 + 8 = 8.75
(layout, responsiveness)

• Dynamic-Content: 9 + 10 + 10 + 9 = 9.50
(responsiveness, content)

• Look and feel: 7 + 9 + 8 + 8 = 8.00
(color)

• Overall rating: 9.00 + 8.75 + 9.50 + 8.00 => 8.8125

Detailed information can be found in the chapter appendix under the section
"Usablity Test Mobile Application".

5.2.2 Backend

The decisions regarding the test concept for the backend are based on two key aspects. The
backend application is characterized by a limited manifestation of business logic, with the main
focus primarily on writing and reading data in the database. A central objective is to link these
data and transmit them through corresponding APIs.

In this project, the prioritization of features by our industrial partner takes center stage, lead-
ing to the decision to emphasize integration tests for the backend and entirely omit unit tests.

The benefits of integration tests extend to the comprehensive verification of the entire applica-
tion, ensuring smooth collaboration among all components. Through this extensive test cover-
age, potential weaknesses in the application can be identified and addressed early. An additional
advantage of integration tests lies in their proximity to user behavior, enabling a more realistic
simulation of user interaction. This contributes to a more effective validation of the application
from the perspective of end-users and prepares for potential challenges.

Test implementation

For the execution of integration tests, we utilized the provided tools from NestJs. In conjunction
with the Supertest library, these tools enable the sending of HTTP requests to endpoints, allow-
ing for a comprehensive examination of the application from start to finish. To avoid API calls to
external services, we employed NestJs’s internal mocking mechanisms.
This allows for the straightforward replacement of affectedmodules or serviceswith correspond-
ing mocks during the instantiation of the application for testing purposes.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 36 of 117

https://github.com/ladjs/supertest#readme


Digitaler Briefversand

A more significant challenge arose with the database. The optimal solution would have been to
use an in-memory database for testing to enhance test performance. Unfortunately, Prisma does
not offer an interface for an in-memory database. Consequently, we were compelled to launch a
Docker container containing a PostgreSQL database for the tests. However, this led to additional
issues since the Jest test runner conducts tests in parallel by default. This resulted in unforeseen
errors, as entities sometimes remained in the database when they should have been removed or
data was deleted that shouldn’t have been.

To address this issue, we opted to run the tests sequentially. It turned out that this had no signif-
icant impact on runtime since the number of tests was not substantial. The overhead incurred
by parallelization had a greater influence on the test runtime.

Result

The tests run successfully. You can see a screenshot of a test run in the chapter appendix under
the section Screenshots.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 37 of 117

https://jestjs.io/


Digitaler Briefversand

5.3 Deployment

User Applications Deployment

The deployment of the desktop and mobile applications is relatively straightforward. Since we
are not publishing the applications as part of this work, deployment simply involves creating
(building) the respective application. For this purpose, we used GitHub Actions, which builds the
applications directly onGitHub. It is worthmentioning that we only create the desktop application
for Windows, as our industrial partner expressed the preference for the application to primarily
run on Windows. Similarly, we create the mobile application only for Android devices and not

for Apple devices. This is because creating an iOS application requires an Apple device. To save
resources, we have therefore decided to deploy only for Android devices. If themobile application
build process is successful, we can download the APK-file as an artifact.
The desktop application is also available as an artifact, which contains the windows exe-file.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 38 of 117

https://github.com/features/actions


Digitaler Briefversand

Backend Deployment

We also use GitHub Actions for the backend deployment. However, deploying the backend appli-
cation is somewhat more complex than deploying the user applications. It begins by conducting
tests, and only after successful testing does the build step commence.
Additionally, for deployment, we had to set up a self-hosted runner on our Digital Ocean Droplet.
The exact functioning of these two steps in the workflow is explained in the following.

End-to-End Tests (e2e-tests):

The first job in our workflow performs End-to-End tests. These tests run in an Ubuntu Latest
environment on GitHub, with a specially configured PostgreSQL service provided. The Post-
greSQL database is configured on a port of our choice, ensuring that our tests run against a
clean database environment. The individual steps of this job include checking out the repository,
setting up Node.js, installing dependencies, and finally, running the End-to-End tests.

Build and Deployment (build):

The second job in our workflow is responsible for the actual building and deployment. This job
runs on a self-hosted runner located on the same droplet as the production environment. The
steps of this job include checking out the code, setting up Node.js, installing dependencies, build-
ing the application, stopping the existing API, starting the new changes, creating a snapshot of
the process, and finally restarting the server to activate the updated application. The second job
not only deploys the backend it also applies the databasemigrations to the production database.

The diagram below illustrates the deployment workflow

Figure 5.1: Backend Deployment

If you needmore information about the deployment steps you can find screenshots of the GitHub
Actions in the appendix under the chapter Screenshots.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 39 of 117



Digitaler Briefversand

5.4 Production Environment Backend

The production environment is hosted on aDigital OceanDroplet, equippedwith 1vCPU, 2GBRAM,
25GB disk space, and running Ubuntu 23.10 x64. This Droplet represents the second smallest
option offered by Digital Ocean. Initial attempts to host the application on the smallest Droplet
were unsuccessful due to insufficientmemory. The Droplet is located in the Frankfurt data center,
chosen for its proximity to Switzerland. The application is deployed on the Droplet using a self-
hosted runner from GitHub Actions, details on this process can be found in the following chapter
(Deployment).

For the database, we utilize the managed PostgreSQL database service from Digital Ocean, as
mentioned in the Database section. The database is situated in the same data center as the
Droplet. We opted for the cheapest plan, named single node, offering 1 GB RAM and 10 GB disk
space. While Digital Ocean does not recommend this plan for production, we decided to use it
as it aligns with the resource requirements of our project.

As discussed in the External Services chapter, we employ Digital Ocean Spaces for file storage.
Additionally, for the notification service, we use Firebase Cloud Messaging, and Pingen serves
as the postal service provider.

To serve the application on the web, we use the NGINX web server as a reverse proxy, forwarding
all requests. NGINX was selected for its popularity and ease of configuration. Meeting a non-
functional requirement requiring HTTPS encryption for all requests, we have blocked HTTP port
80 and redirected all traffic to HTTPS port 443. Due to the absence of a dedicated domain, a
self-signed certificate is used for secure communication.

To run the application in the background, we utilize the PM2 process manager. Which is a pro-
duction process manager for Node.js applications which allows to demonize node application
so that they can run in the background as a service.

The following image shows the architecture of the production environment.

Figure 5.2: Backend Production Environment

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 40 of 117

https://www.nginx.com/
https://pm2.keymetrics.io/


Digitaler Briefversand

5.5 Function Implementation

Before starting the implementation, we divided the application based on functionality and prior-
itized the implementation according to importance we also had to setup the development envi-
ronment before we could start the implementation. We initiated with the functionality of sending
and receiving letters and viewing them in the mobile application since it constitutes the core
task of the application and should thus be included in a Minimal Viable Product (MVP). Follow-
ing that, we introduced the capability for users to register and login. Recognizing the significance
of address verification as a crucial security feature, we decided to implement this prior to the au-
thentication functionality. Lastly, with the lowest priority, we developed the Settings functionality,
encompassing all aspects related to modifying user data.
How we implemented each of these functionalities is described in the following sections.

5.5.1 Setup Development Environment

Before setting up a development environment, we decided to build simple applications for both
front-ends to gain hands-on experience with the chosen technologies. For the simple applica-
tions we need to setup locally on our computer.

For the desktop application we needed to have Node.js version 14.18+ and Vite version 3.0+ be-
fore installing Electron-Vite, which will scaffold the application.

For the mobile application we needed to have Windows PowerShell 5.0 and Git for Windows be-
fore Flutter SDK can be installed.

For the backend, we needed Node.js before we could use NestJS and Docker. We first imple-
mented a simple REST endpoint that integrated all the technologies, from the controller to the
database. This ensured that our approach would work.

After gaining hands-on experience with the technologies, we decided to move on to the develop-
ment environment. To do this, we created a monorepo with the following structure:

eLetter/
code

backend/
desktopApp/
mobileApp/

documentation/

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 41 of 117

https://nodejs.org/en
https://vitejs.dev/
https://docs.flutter.dev/get-started/install/windows
https://docs.nestjs.com/first-steps


Digitaler Briefversand

After that each team member can start the development. For the desktop application it is the
following command:

yarn create @quick-start/electron

Then follows the prompts:

Project name: ... <app-name>
Select a framework: > react
Add TypeScript? ... No / Yes
Add Electron updater plugin? ... No / Yes
Enable Electron download mirror proxy? ... No / Yes

Scaffolding project in ./<app-name>...
Done.

For the mobile application it is the following command:

flutter create app-name
cd my_app
flutter analyze
flutter test
flutter run lib/main.dart

For the backend it is the following command:

npm i -g @nestjs/cli
nest new project-name
npx tsc --init
npm install prisma --save-dev
npx prisma init --datasource-provider sqlite

The backend is equipped with a pre-existing REST endpoint that benefits from NestJS’s "Con-
vention over Configuration" paradigm. To maintain a consistent approach across both desktop
and mobile applications, we have implemented a organized set of principles for using the REST
handler
At the core of this strategy is a basic service class responsible for facilitating REST calls to the
backend. In the desktop application we use the Axios base service, while in the mobile appli-
cation we use the RestBaseHandler. This approach ensures consistency and efficiency when
communicating with the backend. Further information is available in following chapter Authenti-
cation.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 42 of 117



Digitaler Briefversand

5.5.2 Sending and Receiving Letters

Sending and receiving letters constitute the central function of this application. The application is
designed in such a way that an organization, through the desktop application, can digitally send
a letter to a customer, i.e., a user of the eLetter mobile application, provided that the user has
verified their address.

The implementation of sending in the desktop application is relatively straightforward. We have
created two views for this purpose. In the first view, the user can upload a letter in the form of
a PDF using drag and drop. It should be noted that the letter must adhere to the letter format of
Switzerland (see Conclusion). After the PDF has been loaded into the application, the user moves
to the second view, where they can provide the corresponding metadata (address and name of
the recipient). Once these details are provided, the user can send the letter, meaning the letter is
sent to the backend via a POST request.

In the backend, data is first validated, and it is checked whether a file exists and whether the
file has the correct format. Subsequently, the database is queried for the user with the specified
address provided by the organization. This search is performed through a simple string compar-
ison of various values at the database level. If the user is not found or if the user exists in the
database but has not verified their address, the letter is delivered to them in the conventional way.
For this purpose, we have integrated a Post Service in the backend, namely Pingen. Details about
integrating this service can be found in the Pingen Postal Service chapter. If the transmission is
successful, the metadata of the letter is written to the database (for more information, see the
Database section).

In the event that the identified user has verified their address, the letter is sent digitally to them.
This means that the backend initially creates a preview image of the first page and then stores it
along with the letter in an Object Storage (see Object-Storage Digital Ocean section). If the files
are successfully stored, a preSigned URL is generated for them, along with the metadata of the
letter, and written to the database.

If this process is successful, the recipient of the letter can view it on their smartphone. To notify
them, the backend utilizes the Notification Service from Firebase to send a push notification to
the user’s smartphone (see Notification Service).

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 43 of 117



Digitaler Briefversand

The following code snippet shows the implementation of the function which is responsible for
the sending process in the backend:

async sendLetter(file: Express.Multer.File, dto: LettersRequestDto) {
const user = await

this.userRepo.findUserByAddress(this.createUserAddressFromDto(dto));
const organisation = await this.organisationRepo.findeById(dto.organisationId);

if (!organisation) throw new
BadRequestException(this.i18n.t('messages.dataError'));

if (!organisation.addressVerified) throw new
UnauthorizedException(this.i18n.t('messages.errorNotVerified'));

if (!user || !user.addressVerified) {
await this.lettersRepo.createPhysicalLetter(dto, 'NOT_YET', organisation.id,
file.originalname);
this.postalService.sendLetterOverPingen(file.buffer, file.originalname);
return this.i18n.t('messages.sendLetterPhysically');

}

const documentId = `${organisation.id}/${uuid()}_${file.originalname}`;
await this.fileService.uploadFile(file.buffer, documentId, file.originalname);
const url = await this.fileService.generatePreSignedUrl(documentId);

const firstPageImage = await this.createImageFromFirstPage(file);
const imageId = `${organisation.id}/${uuid()}_${firstPageImage.name}`;
await this.fileService.uploadFile(firstPageImage.content, imageId,

firstPageImage.name);
const imageURL = await this.fileService.generatePreSignedUrl(imageId);

await this.lettersRepo.createDigitalLetter(
dto,
ocumentId,
organisation.id,
user.id,
url,
file.originalname,
imageURL,

);
if (user.deviceToken) {
await this.notificationService.sendNotificationToDevice(user.deviceToken,

organisation.name);
}
return this.i18n.t('messages.sendLetterDigitally');

}

Listing 5.7: Backend code responsible to send letters

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 44 of 117



Digitaler Briefversand

5.5.3 Viewing Letters

For the display of letters, we have implemented four views in the mobile application. These in-
clude the mailbox, which shows all the mails the user has received, the "New Mail Page," which
only displays the letters the user has not yet read, the "Letter Details Page," which displays the
metadata and a preview of the letter, and finally, the "PDF View Page," where a letter can be read,
meaning the PDF is displayed.

When a user wants to open a letter, they can do so either in themailbox or on the "NewMail Page"
by clicking on the corresponding letter. Once this is done, a REST call is sent to the backend, which
returns themetadata of the letter as a response. In themetadata, in addition to the sender’s name
and time, there is also the filename and a pre-signed URL for the image of the first page. This is
needed to display the image of the first page to the user. Additionally, there is a pre-signed URL
through which the document can be downloaded directly from Digital Ocean. This is required if
the user wants to view the PDF file in the application.

We opted for this approach with the pre-signed URLs on the advice of our industry partner be-
cause it avoids the detour through our own backend when downloading letters, leading to re-
source savings on our part.

5.5.4 Register

The registration process is largely identical for both the user and the organization. Instead of a
first and last name, the organization needs to provide its name and additionally upload an image
of the organizational logo, which will be displayed to the user in the mailbox.

In the backend, during the registration process, validation is performed on the entered data, and it
is checked whether the email address provided by the organization or the user has already been
used, using a Unique Constraint in the database. After the successful registration of the user,
meaning after the data has been successfully stored in the database, it is worth noting that the
passwords are hashed before they are stored in the database. The verification process is then
initiated.

Further information can be found in the Verification section. Relevant UI images of the applica-
tions can be found in the Screenshots section of the appendix.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 45 of 117



Digitaler Briefversand

It should be noted that, in addition to the backend validations, a validation for the fields email,
password, and postal code has been implemented in the desktop application. This helps avoid
unnecessary requests and optimizes the response time in the user interface. Particularly in the
registration of organizations, more data processing is required in the backend due to the logo
that needs to be stored. For this reason, we have opted for this approach and the necessary
code snippet can be seen below.

class inputValidator {
public email = (email: string): string => {
// This regex therm is shortend in this documentation for better readability.
const re = /^(([^<>()[\]\\.,;:\s@"]+(\.[^<>()[\]\\.,;:\s@"]+)*)|(".+"))...
if (!re.test(email)) {
return 'Invalid email address'

}
return ''

}

public password = (password: string): string => {
if (password.length < 3 || password.length > 20) {
return 'Password has to be between 3 and 20 characters'

}
return ''

}

public postalcode = (postalCode: string): string => {
const numericPostalCode = parseInt(postalCode, 10)
if (isNaN(numericPostalCode) || numericPostalCode < 1000 || numericPostalCode

> 9999) {
return 'Postal code has to be a number between 1000 and 9999'

}
return ''

}
}

Listing 5.8: Desktop Application code to verifi input values

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 46 of 117



Digitaler Briefversand

5.5.5 Login

A user can use their email address and password to log in after successfully registering. The
desktop and mobile applications use the same implementation: we’ve made a view where users
can input their email address and password. After a successful registration, the organization’s
email is kept in the local storage to improve the desktop application’s usability. It loads automat-
ically into the email input area upon reopening the login window, requiring only the password to
be typed.

When a user logs in through themobile application, in addition to the email and password, the de-
vice token generated by Firebase is also sent. This token is necessary to send push notifications
through Firebase.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 47 of 117



Digitaler Briefversand

The following code snippet shows the login view code in the desktop application:

const LoginPage: React.FC = () => {
...
return (
<div className={`login-container ${loading ? 'loading' : ''}`}>
<div className="return-button-login" onClick={handleReturn}>
<i className="fa fa-arrow-left"></i>

</div>
<h1 className="login-title">Login</h1>
<form onSubmit={handleSubmit} className="login-form">
<div className="login-group">
<label>

E-Mail:
<input
type="text"
value={email}
onBlur={handleEmailBlur}
onChange={handleEmailChange}
className="login-input"

/>
</label>
</div>
<div className="login-group">
<label>

Password:
<input
type="password"
value={password}
onChange={handlePasswordChange}
className="login-input"

/>
</label>

</div>
<button type="submit" className="login-button">
Login

</button>
</form>
<div className="vertical-line-login"></div>
<div className="email-icon"><LetterIcon/></div>
{loading && (

<div className="loader-wrapper">
<BarLoader loading={loading} aria-label="Loading Spinner"

data-testid="loader" />
</div>

)}
</div>

)
}

Listing 5.9: UI code for logine desktop application view

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 48 of 117



Digitaler Briefversand

To better understand the login process in the backend you can look at the following code snippet
which shows the function that is called when the user wants to login.

public async signInUser({ email, password, deviceToken }: SignInUserRequestDto,
res: Response) {

const foundUser = await this.userRepo.findUserByEmail(email);
if (!foundUser) throw new

BadRequestException(this.i18n.t('messages.wrongCredentials'));
if (!(await this.comparePasswords(password, foundUser.hashedPassword))) {
throw new ForbiddenException(this.i18n.t('messages.wrongPassword'));

}

if (!foundUser.deviceToken || foundUser.deviceToken !== deviceToken) {
this.userRepo.updateDeviceToken(foundUser.id, deviceToken);

}

// Add auth cookie to response
const token = await this.signToken(foundUser.id, foundUser.email);
if (!token) throw new ForbiddenException();
res.cookie('token', token, {
expires: new Date(Date.now() + 3600 * 1000 * 24),
secure: true,
sameSite: 'none',
httpOnly: true,

});
return res.status(200).send(foundUser.id);

}

Listing 5.10: Backend code responsible for user login

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 49 of 117



Digitaler Briefversand

5.5.6 Verification

Start a new verification process:

After a user successfully registered or updating his address, which requires a new verification,
the following steps follow:

1. Generate Verification Code:
• After a user successfully registers or updates their address, a new verification code is
generated.

2. Insert Code into PDF Template:
• The generated code is inserted into a predefined PDF template.

3. Distinguish Between Desktop and Mobile Applications:
• If the user registers via the desktop application, the code is inserted into the letter as
a character string.

• If the user registers via the mobile application, the code is integrated into the letter as
a QR code.

4. Use Pingen Postal Service for Sending Letters:
• The letters, containing the verification code, are sent using the samemethods as phys-
ical letters. (See section Pingen Postal Service.)

5. Enter Code into Database:
• Once the PDF with the verification code is successfully created and sent to the postal
service, the code is entered into the database.

• The status in the database is set to "LETTER_SEND."

6. Database Unit Represents Link Between User/Organization and Address:
• The database unit serves as a link between the user/organization and the respective
address. (See section Backend.)

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 50 of 117



Digitaler Briefversand

Completion of the verification process:

To complete the verification process, we have created an input field in the desktop application
(see screenshots in the appendix section Screenshots) that is displayed when the user is not
verified and clicks on "Settings". They will now need to enter the code from the letter into the
field. Once they have done this, the code is sent to the backend via a REST call along with their
user ID, which then checks that the code is still valid and that the code and user ID match.
In the mobile application, the process is slightly different. Instead of entering the code manually,
the user can scan a QR code by clicking on the button in the "Settings" area (see screenshots in
the appendix section Screenshots). The part in the backend remains identical.

The following code snippet shows the verification logic in the backend:

...
// This method is used to verify an User
public async verifyUser(ownerId: string, code: string) {
const verification = await this.verify(ownerId, code);
await this.userRepo.updateVerificationStatus(verification.ownerId, true);
return this.i18n.t('messages.userVerified');

}

// This method is used to verify an Organisation
public async verifyOrganisation(ownerId: string, code: string) {
const verification = await this.verify(ownerId, code);
await this.organisationRepo.updateVerificationStatus(verification.ownerId,

true);
return this.i18n.t('messages.organisationVerified');

}
...
// This methods contains the logic of verifing an user or an organisation
private async verify(ownerId: string, code: string):

Promise<AddressVerfication> {
if (!ownerId || !code) throw new ForbiddenException();
const verification = await

this.verificationRepo.getVerificationByOwnerIdAndCode(ownerId, code);
if (!verification) throw new

ForbiddenException(this.i18n.t('messages.verificationNoMatchOwnerCode'));
if (verification.status === 'DONE') throw new

BadRequestException(this.i18n.t('messages.verificationCodeUsed'));
await this.verificationRepo.updateVerificationStatus(verification.id, 'DONE');
return verification;

}
...

Listing 5.11: Backend code for verifing user/organisation address

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 51 of 117



Digitaler Briefversand

5.5.7 Authentication

In the authentication process, we opted for a cookie-based approach. The use of NestJS for
implementation facilitated this choice, as Nest already provides pre-implemented functions for
integrating cookie-based authentication in projects.

The authentication process for users and organizations is identical during a request. After a
successful account creation, the user must log in with an email and password. Upon success, a
cookie with a token is sent back to the user client, which is included in every subsequent request
requiring authentication.
If the user clicks "Logout" in the mobile appication or desktop application, the cookie becomes
invalid, preventing access to protected API endpoints. Regarding authorization, we structured it
so that each user can only access entities in the database linked to their respective user/organi-
zation ID, eliminating the need for a role system. The following diagram illustrates the authenti-
cation process.

Figure 5.3: Authentication Process

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 52 of 117



Digitaler Briefversand

For the implementation of the authentication process in the desktop application, we did not need
to do much. This is because Electron is a browser-based technology, and the browser manages
cookies. So we only need to whether the user has permission to access the requested page and
react accordingly if not.

In the mobile application, a bit more implementation was required for cookie handling. Since
Flutter does not handle cookie management by default, we implemented it ourselves. We wrote
the RestBaseHandler to handle communication with the backend.
For specific areas such as sending letters and authentication, we defined our own handlers that
call the RestBaseHandler through dependency injection. When a user logs in through the mobile
app, the RestBaseHandler sends a REST call to the backend. If authentication is successful, it
receives the response along with the cookie. It reads the token from the cookie and stores it
in the shared preferences. When another endpoint, such as the Settings endpoint, is called, the
RestBaseHandler reads the token from the shared preferences and creates the cookie, which is
then sent to the backend with the subsequent REST call.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 53 of 117



Digitaler Briefversand

The following code snippet shows the implementation of the cookie handling in the RestBase-
Handler:

class RestBaseHandler {
...
RestBaseHandler({required bool withCookie, required this.baseUrl})
: dio = Dio(BaseOptions(
baseUrl: baseUrl,
headers: {
'Content-Type': 'application/json',
'Accept': 'application/json',

},
)) {
if (withCookie) {
_loadCookie();

}
_configureDio();

}
Future<void> _loadCookie() async {
String? token = await _loadToken();
// This line loads the token from the shared preferences
String cookieToken = "token=" + token! + ";";
await headers.remove("Cookie" ?? '');
await headers.putIfAbsent("Cookie", () => cookieToken ?? '');

}
Future<String?> _loadToken() async {
return await storage.read(key: 'bearerToken');

}
....
Future<void> _saveToken(String cookie) async {
var match = RegExp(r'token=([^;]+)').firstMatch(cookie);
if (match != null) {
String token = match.group(1)!;
await storage.write(key: 'bearerToken', value: token);

}
}
Future<void> _saveCookie(String cookie) async {
var match = RegExp(r'token=([^;]+)').firstMatch(cookie);
if (match != null) {
String token = match.group(1)!;
// This line saves the token in the shared preferences
await storage.write(key: 'cookie', value: token);

}
}

}

Listing 5.12: Mobile application RestBaseHandler with save and load cookie function

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 54 of 117



Digitaler Briefversand

The function below is part of the RestBaseHandler and is used when a post call is sent to the
backend.

Future<dynamic> post(String endpoint, Object data) async {
try {
Response response = await dio.post(endpoint, data: data);
String? cookie = response.headers.value('set-cookie');
if (cookie != null) {
_saveCookie(cookie);
_saveToken(cookie);

}
return response.data;
} on DioError catch (e) {
throw Exception('Failed to update data: ${e.message}');

}
}

Listing 5.13: Mobile application RestBaseHandler post method

The code snippet below contains a part of the AuthHandler the the method which is shows uses
the method form the code snipped above to send a post request to the backend when the user
wants to login.

class AuthHandler {
...
Future<String> signIn(Login credentials) async {
String jsonBody = json.encode(credentials.toJson());
final api = RestBaseHandler(

baseUrl: 'https://209.38.244.175/auth/signIn/user', withCookie: false);
return await api.post('', jsonBody);

}
...

}

Listing 5.14: Mobile application AuthHandler post method

5.5.8 Settings

Customizing the settings is a relatively straightforward process. However, during the implemen-
tation, we had to distinguish between a user and an organization. This was necessary because
an organization can have a profile picture, while a user cannot. This implies that an organiza-
tion can change its picture. However, this change should not trigger a new address verification
process, a consideration we had to address when implementing the logic in the backend.
In implementing the logic, we kept it straightforward: when a user clicks on "Update Settings" in
one of the applications, the entire form is sent to the backend. The backend then checks whether
the content has changed compared to the stored values andwhether a newaddress verification is
needed. If this is the case, the new data is written to the database, and a new address verification
letter is sent to the user. If the address has not changed, the new data is written to the database,
and the user is notified that the settings have been updated.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 55 of 117



Digitaler Briefversand

5.6 Documentation

5.6.1 REST-API Documentation

The comprehensive documentation of the REST API was crucial for the entire development pro-
cess, as it serves as the interface for both the desktop application and the mobile application.
Therefore, we decided to document all REST endpoints using Postman. The use of Postman not
only allows effective sharing of the current REST endpoints among all team members but also
permits themanual execution of requests. An export file of the Postman collections can be found
in the code repository in the "code/backend/postman-collections" folder.
An Detailed documentation of the REST endpoints can be found in the appendix in the Rest API
documentation chapter. At this point it is worth mentioning that we have not created an endpoint
for downloading the letters. This is due to the fact that the PDF file of the letter is stored on Digital
Ocean Spaces, and to allow secure access, we store a pre-signed URL in the database. This
pre-signed URL is then included in the response of the GET /detailsOf/<LETTER_ID> endpoint.
Consequently, the client application can download the PDF letter file directly from Digital Ocean
Spaces by using this provided, pre-signed URL.

5.6.2 Code Documentation

For readability and consistency we decided to use TSDoc. TSDoc is a TypeScript documentation
standardisation proposal that looks like this:

1 export class Statistics {
2 /**
3 * Returns the average of two numbers.
4 *
5 * @remarks
6 * This method is part of the {@link core-library#Statistics | Statistics

subsystem}.
7 *
8 * @param x - The first input number
9 * @param y - The second input number

10 * @returns The arithmetic mean of `x` and `y`
11 *
12 * @beta
13 */
14 public static getAverage(x: number, y: number): number {
15 return (x + y) / 2.0;
16 }
17 }

Listing 5.15: TSDoc Example

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 56 of 117

https://www.postman.com/
https://tsdoc.org/


Digitaler Briefversand

6 Result

In this project, we developed an application that enables companies to digitize their correspon-
dence using a desktop application. The prerequisite is that the customer has installed the cor-
responding application on their mobile phone and has already verified their address. Once this
is done, they can digitally receive all their letters from companies that also use the application.
The backend of this application is hosted on Digital Ocean and managed by the publisher of the
application. Thus, we were able to fulfill all previously defined functional requirements.

Due to time constraints, it was not possible to implement the optional requirements. However,
we were able to partially implement two of them:

1. This concerns the web application for recipients. Since we decided to develop the mobile
application using Flutter, it would be fundamentally possible to deploy it as a web appli-
cation. However, this would still require some additional effort. To ensure a good user
experience, we would need to adjust the styling, and additionally, the deployment would
need to be set up.

2. This concerns the branding of the desktop application with the companys own design. The
application requires companies to add their own logo to the application, which is then dis-
played. However, for a complete corporate design, colors and fonts should also be cus-
tomizable.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 57 of 117



Digitaler Briefversand

In contrast to the optional requirements, we were able to fulfill almost all non-functional require-
ments. The following lists all the requirements we achieved, and those we did not achieve are
listed at the end with an explanation of why they were not achieved.

Fulfilled Non-Functional Requirements:

• The development team implemented the features according to the agreed priority with the
customer.

• Each page should not take longer than 200 ms to load.

• The desktop application should run on Windows.

• Three out of four test users should rate the UI (categories: layout, responsiveness, color,
content) of the applicationwith aminimumscore of 8 out of 10 using amobile phone, where
10 is the best.

• Errors should not generate system failures but showan errormessage and reset the system
to the previous state.

• Every error should be logged in the system.

• Each communication between the front and backend should be encrypted with an SSL cer-
tificate.

• Data filled in input fields should be validated before being processed by the system. SQL
injection tests of the input fields should not reveal vulnerabilities.

• User passwords are not stored in plain text in the database.

• Business logic in the backend should be modular for easy expansion.

• The backend API should be tested using API testing tools.

• Database, backend, and frontend should be deployed on different instances.

Non-Functional Requirements that were not fulfilled:

In the course of this work, we could not test the requirement that the backend can handle 1000
requests per minute. This was not prioritized highly by us, as the application is intended to be an
initial prototype that demonstrates functionality. Therefore, due to time constraints, it could not
be tested.

The second requirement that was not fulfilled is the ease of installation. It is fundamentally a
simple process for an Electron application to be installed via an exe file, which we successfully
created and installed. However, the corresponding exe file also needs to be made available to a
user, whichwas not done in the course of this work. The same applies to the APK file for installing
the mobile application.

It is also worth mentioning that the following NFR was not tested: "The database should be able
to manage up to 10,000 documents/PDFs." However, in contrast to the other two, this should
have been fundamentally achieved. Digital Ocean Spaces provides the necessary resources and
capacities to meet the specified requirement. Nevertheless, capacity is always a matter of cost,
as additional storage space is associated with higher expenses.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 58 of 117



Digitaler Briefversand

Important to note:

It should be noted that we discovered a flaw in our implementation at the end of the project that
affects the long-term usability of the application. Specifically, we incorrectly assumed that the
pre-signed URL for file downloadswould remain valid indefinitely in our database. However, it has
been discovered that a pre-signed URL is only valid for a maximum of 7 days, which was realized
too late in the project.

To address this issue in future work, it is recommended to generate the pre-signed URL each time
the user views or downloads the document instead of saving it in the database.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 59 of 117



Digitaler Briefversand

7 Conclusion

As mentioned in the "Results" section, we have developed an application as part of this project,
enabling companies to digitize their communication with customers. We successfully met all
requirements, with the exception of three specified by our industry partner. Consequently, the
application we developed serves as a robust foundation for a future application that can signifi-
cantly simplify correspondence management for companies.
In the ongoing development of the application, particular attention should be given to improving
the interface with the postal service. Currently, the application relies on the assumption that
the company sending a letter also uploads it in the correct format. If this is not the case, it
must be corrected by the application administrator. Unfortunately, time and resource constraints
prevented us from addressing this issue during the project. In the following sections, we will
discuss the most important points that need to be addressed in the future development of the
application.

7.1 Needs to be addressed

Desktop Application

The desktop application has a lot of potential for future development. Looking at the optional
requirements, there could be features such as

• cost display for sending

• dashboard for managing employees for sending letters

• automatic address entry for the recipient

• improved company branding

We also have some additional input that can guide further development:

• Creating a website where you can download the application.

• Integration with third-party authentication services for added user security.

• Conducting regular user feedback sessions to identify areas for improvement and user sat-
isfaction.

• Multi-language support.

• Integration with calendars and scheduling.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 60 of 117



Digitaler Briefversand

Mobile Application

In the context of a semester’s work, what we have achieved is, in our opinion, a broadly supported
feature scope. If you want to take the idea beyond the level of a proof-of-concept, the existing
code base should be expanded. This could include the following features.

• Categorization of documents using tags

• Sharing documents with each other

• Functionality to print the documents

• Scanning of documents after they have been filled out

• Creating responses to documents

• Web version for display on devices with larger screens

However, existing features and the code base should also be made more robust if the decision
is made to bring the idea to market.

For example, when displaying error messages, only a very coarse-grained distinction was made
as to the cause of the error that occurred.

Although we have already carried out some user tests during the creation of the mock-ups, this
would be an iterative process that should now go into the next round.

Backend

In the backend application, there are three points that, in our opinion, have room for improvement.

Firstly, there is the library used to generate the preview image of the first page of the letter. The
chosen library sometimes encounters difficulties in generating an image from a PDF because it
struggles to recognize certain characters.

The second point concerns authentication, which is currently only possible through email and
password. For an enhanced user experience, it would be beneficial to allow users to sign in using
platforms such as Google, Microsoft, etc. To enhance the security of the application, it would
also be advisable to verify not only the user’s address but also their email address.

The third point concerns the address comparison. When the user is searched in the sending pro-
cess of a letter, at the moment we implemented a simple value comparison. On the database
side, this is not a problem, but it would be better to use a more sophisticated comparison algo-
rithm which also takes into account the similarity of the values and not only the equality.

7.2 Future Vision

In our opinion, the application has great potential, as there is currently no truly effective solution to
digitize mail correspondence in the manner that this application does. For further development,
we have the following thoughts and questions:

• It might be beneficial to facilitate mail communication not only for business customer re-
lationships but also for person-to-person interactions.

• A web application would complement the existing application well, making it accessible to
an even larger audience.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 61 of 117



Digitaler Briefversand

8 Project and Time Management

8.1 Project Plan

This is the content of the Project Plan section.

Figure 8.1: Initial Project Plan

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 62 of 117



Digitaler Briefversand

Planning

During the planning phase, all necessary documents and platforms are created. Additionally, the
solution design is developed in this phase.

Platform

In the platform phase, the focus is on integrating the frameworks and establishing the connec-
tions and interfaces. The primary goal of this phase is not to fully define the interfaces or elabo-
rate on all tables, but rather to implement the frameworks and test their functionalities.

MVP

During the MVP phase, the aim is to implement all functionalities to the extent that the features
can be developed. For instance, by the end of this phase, all central objects should be storable
in the tables, and basic push notifications should be sendable.

Feature

In the feature phase, the primary objective is to ensure that all functional requirements are metic-
ulously and comprehensively implemented. This phase is crucial as it brings the solution to its
fullest potential, ensuring that every specified functionality is translated into tangible features.
If, during this process, we find that we have additional capacity—whether in terms of time, we
won’t just stop at the baseline requirements. Instead, we’ll seize the opportunity to integrate fur-
ther features, enhancing the overall value and capability of the solution. This proactive approach
ensures that we maximize the output and efficiency of this phase.

Refactoring

The refactoring phase is intended to review the entire code again, ensuring that potential im-
provements can still be incorporated. Moreover, during this phase, it is checked whether all tests
cover all edge cases.

Final Documentation

During the ’Final Documentation’ phase, the primary focus is on adjusting the documentation
materials to the newly created solution. While documentation is continuously updated alongside
development, the emphasis in previous phases was on the creation of the solution. This phase
ensures that the documentation maintains a consistent thread and allows all interested parties
to trace the entire development process.

Reserve

Given that unforeseen delays can occur during the development of such a solution, we have
allocated a one-week buffer. If we determine that this buffer is not needed, we will, of course,
adjust the scope in a timely manner.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 63 of 117



Digitaler Briefversand

8.2 Project organization

8.2.1 Roles

Although, as described in the chapter, we have chosen amore or less traditional SCRUMapproach
in issue management, we did not allocate roles in the project according to the classical SCRUM
roles. This decision was made because, given the team’s size of three people, strict adherence
to traditional roles is not practical. Instead, we opted for a role distribution based on the specific
areas of the application: Marc Kissling for the Mobile Application, Andrew Willi for the Desktop
Application, and Gian-Luca Vogel for the Backend.

8.2.2 GitHub Project Board

Our GitHub board is organized into five categories: Backlog, Sprint Backlog, In Progress, In Re-
view, and Done. When a new issue is created, it is initially placed in the Backlog. Issues slated
for specific sprints are transferred to the Sprint Backlog. Once a developer begins working on an
issue, it transitions to the In Progress category. Subsequently, it moves to the In Review stage.
When the issue is successfully merged into the main branch, it is then marked as Done.

Figure 8.2: GitHub Project Board

8.2.3 Code Repository

Source code management is conducted through a GitHub repository which we set up by our
self. We have chosen to centralize both the code and documentation within a monorepo, which
is structured into two main folders: one for the code and another for the documentation. The
code folder is further divided into three subfolders: desktop application, mobile application, and
backend.

There are several reasons we decided to use a monorepo

1. Simplifies keeping all code up to date with the latest version.

2. It’s a lot easier to work on tasks that affect all three applications.

3. Issue management needs to be done within one repository (limitation of GitHub)

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 64 of 117



Digitaler Briefversand

8.2.4 Issue Managment

We’ve chosen to organize our tasks using a classic Scrum hierarchy, which includes Epics, User
Stories, and Tasks. In addition to this traditional structure, we’ve introduced a fourth component
called "Meetings."
To address GitHub’s lack of native support for hierarchical issue structures, we’ve implemented a
solution that involves linking within the issue descriptions. This linking establishes connections
between tasks, user stories, and epics, enabling smooth navigation between related issues in all
directions.
Tomaintain consistency, we’ve created dedicated templates for each issue type within the repos-
itory. These templates ensure that the desired hierarchical structure is upheld across all issues.
More details on the precise structure and functionality of these four elements will be provided
below.

Epic

During the Planning phase, each process step is identified and defined as an Epic. An Epic is
comprised of multiple user stories and can extend beyond the sprint boundaries.

Figure 8.3: GitHub Epic

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 65 of 117



Digitaler Briefversand

User Story

A user story describes a single functionality that needs to be implemented. It itself consists
of individual tasks that must be completed for successful completion. A User Story should not
exceed the scope of a sprint. At the user story level, we will ensure functionality using integration
testing. This differs from unit testing in that dependencies can also be tested.

Figure 8.4: GitHub User Story

Task

A Task is a single task that cannot be further subdivided. It should be processed within a few
hours and is part of a User Story. Since each task has a self-contained task, this can also be
tested well using unit testing. These should not have any external dependencies.

Figure 8.5: GitHub Task

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 66 of 117



Digitaler Briefversand

Meeting

Meetings serve the purpose of organizing and documenting our meeting time, also within the
context of a sprint.

Figure 8.6: GitHub Meeting

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 67 of 117



Digitaler Briefversand

8.2.5 Branching Strategy

Since each subdomain (Backend, Desktop Application, and Mobile Application) is located in its
own folder, and each of us works exclusively in a specific area, we were able to apply a very
simple branching strategy. Each story is divided into tasks for the respective area. A branch is
then created from the main branch for this task, on which the changes for the specific area are
made. Once the task is completed, the branch can be merged back into the main branch.

Figure 8.7: Branching Strategy

Definition of done

An issue is considered complete when it has gone through the development pipeline, passed
all necessary tests, and been reviewed by at least one other member of the team. Once these
steps have been completed, the branch associated with the issue must be merged. If the merge
is successful and the time spent on the issue has been accurately recorded as outlined in this
documentation the issue can then be marked as ”Done”.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 68 of 117



Digitaler Briefversand

8.2.6 Git-Workflow

The branching strategy described above results in the following workflow for all developers.

Figure 8.8: Git-Workflow

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 69 of 117



Digitaler Briefversand

8.2.7 Risk Management

This section will address the risks to our project. If they happen, they are listed below the Riask
Acceptance Graph with the associated likelihood and severity of the project. This section will be
updated frequently to include new risks that arise during the project as well as dangers that have
already been discovered. Additionally, the success of any countermeasures will be noted.

Risk ID Risk Countermeasure Severity Likelihood
1 Team member is unavail-

able
Communicate through
channels to distribute tasks
between other team mem-
bers.

Moderate Possible

2 Technical inexperience Assign issues to the per-
son best suited. Eliminate
any inexperience as early as
possible

Major Likely

3 Poor project planning Review project plan after ev-
ery sprint

Major Unlikely

4 Scope creep Clearly communicate con-
sequences.

Major Possible

5 Stakeholder disagreements Maintain transparent
communication. Define
decision-making protocols.

Moderate Unlikely

Table 8.1: Project Risks

Figure 8.9: Risk Acceptance Graph

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 70 of 117



Digitaler Briefversand

Realized risks

Team member is unavailable

A teammember was unavailable for 3 days due to illness. This absence was covered by the other
team members.
Severity: Moderate
Countermeasure: Successful

Technical inexperience

We were unfamiliar with flutter and dart. This was offset by the fact that we had plenty of time
to learn the technology.
Severity: Major
Countermeasure: Successful

8.3 Time Management

Initially, we attempted time tracking using Excel, amethod that our advisor and project partner did
not endorse. This approach solely involved recording the actual time spent, without accounting
for planned time on each issue.
Subsequently, we opted for the 7pace tool for our time tracking needs. In our view, 7pace offers
three significant advantages compared to other tools:

1. The tool is free for the number of users we require.

2. It features excellent GitHub integration, allowing us to capture time directly on the issues.

3. When it comes to analysis, we can easily resort to a simple CSV format, enabling us to
conduct detailed evaluations using Python as desired.

The image below shows the menu that allows you to track the time spent directly on the respec-
tive issue.

Figure 8.10: 7pace GitHub Addon

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 71 of 117

https://www.7pace.com/


Digitaler Briefversand

Time evaluation

The diagram below illustrates the workload of team members over the course of the project. We
have divided the timeframe into the following 7 sprints:

• Sprint 1: 18.09.2023 - 01.10.2023

• Sprint 2: 02.10.2023 - 15.10.2023

• Sprint 3: 16.10.2023 - 29.10.2023

• Sprint 4: 30.10.2023 - 12.11.2023

• Sprint 5: 13.11.2023 - 26.11.2023

• Sprint 6: 27.11.2023 - 10.12.2023

• Sprint 7: 11.12.2023 - 22.12.2023

Figure 8.11: Bar chart distribution working hour per sprint area per sprint

The total workload per team member is as follows:

• Andrew Willi: 251.3 hours

• Marc Kissling: 258.05 hours

• Gian-Luca Vogel: 266.25 hours

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 72 of 117



Digitaler Briefversand

Thepie chart belowdisplays the distribution ofworking hours in this project by area. As canbeob-
served, the distribution is essentially equal across all sub-applications. The slightly greater share
in the Mobile App category is owing to our lack of experience in this domain, which necessitated
additional time for research. The database has a tiny percentage, denoted as 0% in the chart,
because we used an ORM Mapper that successfully abstracts and maintains the database. As
a result, database-related tasks are also included in the Backend part. At first look, the 9% share
for meetings may appear excessive, however it should be emphasized that this corresponds to
only 3% per team member.

Legend:

• Backend

• Desktop App

•Mobile App

• Documentation

•Meetings

• Database

Figure 8.12: Pie chart distribution working hours per application area

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 73 of 117



Digitaler Briefversand

The following bar chart shows the distribution of work per project area across various sprints.
The first noticeable aspect is the significant effort invested in documentation during Sprint 7.
This was planned from the outset, as it was crucial for us to implement features after planning
the architecture before dedicating time to document everything. The second noteworthy obser-
vation is that substantial work on the mobile application occurred relatively late, specifically in
Sprint 4. This is attributed to the initial need to acquaint ourselves with Flutter and the additional
time required for creating mockups for the mobile app. As evident, in contrast to the other appli-
cations, we initiated work on the backend in the first sprint. This was necessary as the other two
applications were dependent on the backend.

Figure 8.13: Bar chart distribution working hour per application area per sprint

The detailed figures for the time evaluations can be found in the appendix under the chapter time
evaluation numbers

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 74 of 117



9 Acknowledgement

We would like to express our thanks to our supervisor Frank Koch, who took the time and was
always available for questions. Furthermore, we would also like to thank our industry partner
AdaptIT GmbH, specifically Michael Güntensperger, who granted us great freedom in developing
the application and provided the necessary resources.

List of Figures

0.1 Desktop Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.2 Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Letter sending process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Letter sending physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Letter sending digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Process chart address verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 C4 Model Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 C4 Model Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 C4 Model Level 3 Desktop Application . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Welcome Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Sign up page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Log in page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Letters page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8 Sending and uploading page 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Sending and uploading page 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.10 C4 Model Level 3 Mobile-Application . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.11 Welcome page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.12 Sign up page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.13 Sign in page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.14 Detail page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.15 PDF view page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.16 Settings page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.17 New letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.18 All letters page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.19 C4 Model Level 3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.20 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Backend Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Backend Production Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



5.3 Authentication Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1 Initial Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 GitHub Project Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.3 GitHub Epic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.4 GitHub User Story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.5 GitHub Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.6 GitHub Meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.7 Branching Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.8 Git-Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.9 Risk Acceptance Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.10 7pace GitHub Addon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.11 Bar chart distribution working hour per sprint area per sprint . . . . . . . . . . . . 72
8.12 Pie chart distribution working hours per application area . . . . . . . . . . . . . . 73
8.13 Bar chart distribution working hour per application area per sprint . . . . . . . . . 74

10.1 Screenshot of the user verification letter . . . . . . . . . . . . . . . . . . . . . . . 85
10.2 Screenshot of the organisation verification letter . . . . . . . . . . . . . . . . . . . 86
10.3 Backend Test Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.4 Desktop Application Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.5 Mobile Application Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.6 Backend Test run GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.7 Backend Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.8 Desktop application welcome page . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.9 Desktop application sign up page . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.10 Desktop application sign in page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.11 Desktop application home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.12 Desktop application verification page . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.13 Desktop application settings page . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.14 Mobile application welcome page . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.15 Mobile application sign up page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.16 Mobile application login page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.17 Mobile application settings page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.18 Mobile application QR code scanning . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.19 Mobile application settings page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.20 Mobile application unread letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.21 Mobile application all letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.22 Mobile application letter details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.23 Mobile application pdf view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.24 Mobile application push-notification . . . . . . . . . . . . . . . . . . . . . . . . . . 98

List of Tables

3.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Optional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



Digitaler Briefversand

8.1 Project Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.1 Body of the signUp/organisation request . . . . . . . . . . . . . . . . . . . . . . . . 79
10.2 Body of the organisations/settings/ request . . . . . . . . . . . . . . . . . . . . . . 82
10.3 Body of the letters/send request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 77 of 117



Digitaler Briefversand

10 Appendix

10.1 API Documentation

Authentication Controller

The authentication controller is responsible for all authentication-related endpoints such as sign
in, sign up, and sign out.
Base-URL: /auth
Endpoints:

• POST /signIn/user: Sign in an existing user with email and password
Body: JSON

{
"email": String,
"password": String,
"deviceToken": String

}

Listing 10.1: Body of the signIn/user request

Response: String
USER_ID

• POST /signUp/user: Sign up an user with given data in the body
Body: JSON

{
"firstName": String,
"lastName": String,
"email": String,
"password": String,
"street": String,
"streetNumber": String,
"postalCode": Number,
"city": String,
"state": String

}

Listing 10.2: Body of the signUp/user request

Response: String
Signe up was successful

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 78 of 117



Digitaler Briefversand

• GET /signOut/user: Sign out an user
Body: none
Response: String
Logged out successfully

• POST /signIn/organisation: Sign in an organisation with email and password
Body: JSON

{
"email": String,
"password": String,

}

Listing 10.3: Body of the signIn/organisation request

Response: String
ORGANISATION_ID

• POST /signUp/organisation: Sign up an organisation with given data in the body
Body: Form-Data

Key Value
file Buffer
name String
email String
password String
street String
streetNumber String
postalCode String
city String
state String

Table 10.1: Body of the signUp/organisation request

Response: String
Signe up was successful

• GET /signOut/organisation: Sign out an organisation
Body: none
Response: String
Logged out successfully

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 79 of 117



Digitaler Briefversand

Hello Controller

The hello controller contains only one endpoint, which is used to check whether the backend is
running.
Base-URL: /hello
Endpoint:

• GET /: Check if the backend is running
Body: none
Response: String
Hello World!

User Controller

The user controller is responsible for all endpoints related to the user, such as updating the user
settings and the address verification process.
Base-URL: /users
Endpoints:

• GET /settings/<USER_ID>: Get user settings
Body: none
Response: JSON

{
"id": String,
"firstName": String,
"lastName": String,
"street": String,
"streetNumber": String,
"postalCode": Number,
"city": String,
"state": String
"addressVerified": boolean;

}

Listing 10.4: Response of the users/settings/ get request

• PUT /settings/: Update user settings
Body: JSON

{
"id": String,
"firstName": String,
"lastName": String,
"street": String,
"streetNumber": String,
"postalCode": Number,
"city": String,
"state": String

}

Listing 10.5: Body of the users/settings/ put request

Response: JSON

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 80 of 117



Digitaler Briefversand

{
"id": String,
"firstName": String,
"lastName": String,
"street": String,
"streetNumber": String,
"postalCode": Number,
"city": String,
"state": String
"addressVerified": boolean;

}

Listing 10.6: Body of the users/settings/ put request

• Patch /verifications/?userId=<USER_ID>&verificationCode=<CODE>: It verifies the address
of the user
Body: none

Response: String
User was successfully verified

Organisation Controller

The organisation controller is responsible for all endpoints related to the organisation, such as
updating the organisation settings and the address verification process.
Base-URL: /organisations
Endpoints:

• GET /settings/<ORGANISATION_ID>: Get organisation settings
Body: none
Response: JSON

{
"id": String,
"name": String,
"email": String,
"street": String,
"streetNumber": String,
"postalCode": Number,
"city": String,
"state": String
"addressVerified": Boolean
"imageURL": String (pre-signed URL)

}

Listing 10.7: Response of the organisations/settings/ get request

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 81 of 117



Digitaler Briefversand

• PUT /settings/: Update user settings
Body: Form-Data

Key Value
id String
file String
email String
name String
street String
streetNumber String
postalCode String
city String
state String

Table 10.2: Body of the organisations/settings/ request

Response: JSON

{
"id": String,
"name": String,
"email": String,
"street": String,
"streetNumber": String,
"postalCode": Number,
"city": String,
"state": String
"addressVerified": Boolean
"imageURL": String (pre-signed URL)

}

Listing 10.8: Response of the organisations/settings/ get request

• Patch /verifications/?userId=<ORGANISATION_ID>&verificationCode=<CODE>: It verifies
the address of the organisation
Body: none
Response: String
Organisation was successfully verified

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 82 of 117



Digitaler Briefversand

Letter Controller

The letter controller is responsible for all endpoints related to the postal service.
Base-URL: /letters
Endpoints:

• POST /send: It sends a letter
Body: Form-Data

Key Value
file Buffer
firstName String
lastName String
streetNumber String
streetNumber String
postalCode String
city String
state String
organisationId String

Table 10.3: Body of the letters/send request

Response: String Send letter digitally or Send letter physically

• GET /byUser/<USER_ID>: It gets all letters of an user
Body: none
Response: JSON

[
{
"letterid": String,
"date": Date,
"senderName": String,
"organisatonImage": String (pre-signed URL),
"status": String,

},
...

]

Listing 10.9: Response of the letters/byUser/ get request

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 83 of 117



Digitaler Briefversand

• GET /detailsOf/<LETTER_ID>: It gets the letter data of a letter
Body: none
Response: JSON

{
"id": String,
"date": Date,
"downloadUrl": String (pre-signed URL),
"senderName": String,
"fileName": String,
"firstPageURL": String (pre-signed URL),
"recipientId": String

}

Listing 10.10: Response of the letters/detailsOf/ get request

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 84 of 117



Digitaler Briefversand

10.2 Screenshots

Verification Letters

Figure 10.1: Screenshot of the user verification letter

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 85 of 117



Digitaler Briefversand

Figure 10.2: Screenshot of the organisation verification letter

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 86 of 117



Digitaler Briefversand

Backend test run

Figure 10.3: Backend Test Run

GitHub Actions runs

Figure 10.4: Desktop Application Build

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 87 of 117



Digitaler Briefversand

Figure 10.5: Mobile Application Build

Figure 10.6: Backend Test run GitHub Actions

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 88 of 117



Digitaler Briefversand

Figure 10.7: Backend Build

Desktop Application

Figure 10.8: Desktop application welcome page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 89 of 117



Digitaler Briefversand

Figure 10.9: Desktop application sign up page

Figure 10.10: Desktop application sign in page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 90 of 117



Digitaler Briefversand

Figure 10.11: Desktop application home page

Figure 10.12: Desktop application verification page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 91 of 117



Digitaler Briefversand

Figure 10.13: Desktop application settings page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 92 of 117



Digitaler Briefversand

Mobile Application

Figure 10.14: Mobile application welcome
page

Figure 10.15: Mobile application sign up
page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 93 of 117



Digitaler Briefversand

Figure 10.16: Mobile application login page Figure 10.17: Mobile application settings
page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 94 of 117



Digitaler Briefversand

Figure 10.18: Mobile application QR code
scanning

Figure 10.19: Mobile application settings
page

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 95 of 117



Digitaler Briefversand

Figure 10.20: Mobile application unread let-
ters Figure 10.21: Mobile application all letters

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 96 of 117



Digitaler Briefversand

Figure 10.22: Mobile application letter de-
tails Figure 10.23: Mobile application pdf view

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 97 of 117



Digitaler Briefversand

Figure 10.24: Mobile application push-
notification

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 98 of 117



Digitaler Briefversand

10.3 Task definition

Aufgabenstellung Semesterarbeit "Digitaler Briefversand"

1. Beteiligte Personen

• Studierende: Marc Kissling, Andrew Willi, Gian-Luca Vogel

• Industriepartner: AdaptIT GmbH, Michael Güntensperger

• Betreuer: Frank Koch

2. Problembeschrieb

Wichtige Unterlagen werden meist per Mail oder Brief versendet. Die Brief-Variante kostet Zeit
und Geld. Beim Mailversand hingegen ist von Nachteil, dass wichtige Informationen leicht in der
Masse untergehen. Mit der zu entwickelnden Lösung soll sowohl das Senden wie auch Empfan-
gen vereinfacht werden. Ver- sendet wird durch den Upload eines PDF’s im Brief-Format in einer
Desktop-Applikation. Im Anschluss wird das Dokument sofort an die zu entwickelnde App des
Empfängers ausgeliefert. Falls der Empfänger die App noch nicht im Einsatz hat, wird das Doku-
ment physisch versendet und Informationen zum App-Download sowie zur Account-Erstellung
beigelegt. Empfänger wie auch Versender werden an- hand ihrer Wohnadresse verifiziert.

3. Aufgabenstellung

In dieser Arbeit soll nur ein Teil der umfangreichenApplikation entwickeltwerden. Dafür angedacht
sind:

• Desktop-App für denVersandder digitalenBriefe (bzgl Empfang siehe optionaleAnforderun-
gen)

• Einfache Mobile-App zum Empfangen von digitalen Briefen

• Backend für Verwaltung von Accounts und Dokumenten

• Registration als neuer Empfänger, inklusive Validierung der Adresse

• Möglichkeit zum Upload von Briefen (z.B. nach Amazon S3)

Gerne werden die Interessen und Ideen der Studierenden berücksichtigt.

Technische Umgebung

Für die Umsetzung wird mit Web-Technologien gearbeitet.

• Frontend-Desktop: React Native / Electron

• Frontend-App: Flutter / React Native / ionic

• Backend: Node.js

• Datenbank: MySQL / PostgreSQL

• Object Storage: AWS S3 / Spaces on Digital Ocean

• Hoster: DigitalOcean (und Hostpoint)

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 99 of 117



Digitaler Briefversand

Funktionale Anforderungen

• Eingeschränkter Zugriff auf eigene Dokumente (Mobile-App)

• Registration als neuer Empfänger

• Adressverifikation mittels z.B. QR-Code per Post

• Registration als Firma / Versender

• Upload von Dokumenten für Versand

• Deployment in die Cloud

Optionale Anforderungen

• Automatische Adresserkennung im PDF

• Kategorisierung der Dokumente in Mobile-App

• Versandart in Desktop-App auswählen

• Kostenanzeige beim Versand via Desktop-App

• Dashboard zur Verwaltung von Mitarbeitenden für Briefversand inkl. Berechtigungen

• Firmenbranding für Desktop-App

• Webapplikation für Empfänger

Nicht-Funktionale Anforderungen

• Das Entwicklerteam implementiert die Features gemäss der abgesprochenen Priorität mit
dem Kunden

• Das Backend sollte 1000 Requests pro Minute handeln können

• Jede Seite sollte nicht länger als 200ms für das Laden benötigen

• Die Desktop-Applikation soll auf Windows laufen

• Die Applikation soll einfach installiert / ausgeführt werden können

• Drei von vier Test-user sollten das UI (Kategorien: layout, responsiveness, colour, content)
der Applikation mit einem handy mit einer Note von mindestens 8 von 10 bewerten, wobei
10 das beste ist.

• Die Datenbank soll bis zu 10’000 Dokumente / PDF’s managen können.

• Errors sollen keine Systemfehler erzeugen, aber eine Error Nachricht Zeigen und das Sys-
tem auf den vorherigen Zustand zurücksetzen.

• Jeder Error soll im System geloggt werden

• Jede Kommunikation zwischen Fron- und Backend soll mit einem SSL-Zertifikat verschlüs-
selt werden.

• Daten welche in Eingabefelder abgefüllt werden, sollen zuerst validiert werden, bevor diese
durch das System verarbeitet werden. SQL Injection test der Eingabefelder sollte keine
Verletzlichkeiten zeigen.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 100 of 117



Digitaler Briefversand

• User-Passwörter werden nicht in plain-text in der Datenbank gespeichert.

• Businesslogik im Backend soll modular aufgebaut werden, so dass sie erweitert werden
kann.

• Die Backend-API soll durch API-testing Tools getestet werden.

• Datenbank, Backend und Frontend sollen auf unterschiedlichen Instanzen deployed wer-
den.

4. Zur Durchführung

Mit dem Betreuer finden Besprechungen gemäss Absprache statt. Die Besprechungen sind von
den Stu- dierendenmit einer Traktandenliste vorzubereiten und die Ergebnisse in einem Protokoll
zu dokumentie- ren, das dem Betreuer per E-Mail zugestellt wird. Für die Durchführung der Ar-
beit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuierlichen und sichtbaren Arbeits-
fortschritt zu achten. An Meilensteinen gemäss Projektplan sind einzelne Arbeitsresultate in
vorläufigen Versionen abzugeben.

5. Dokumentation und Abgabe

Siehe Leitfaden Abschnitt 5.5 "Umfang und Form der Abgabe".

6. Termine

Siehe veröffentlichte «Termine SA HS23».

7. Bewertung

Siehe veröffentlichter «Leitfaden BA SA» Abschnitt 6 "Bewertung", insbesondere 6.4.
Rapperswil, den 28.08.23

Frank Koch

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 101 of 117



Digitaler Briefversand

10.4 Testing Desktop Application

10.4.1 UX Testing

Flow:

1. Welcome Page:
Please open and view the Welcome Page.

2. Sign up:
Create a user account by signing up. Follow the registration process.

3. Login:
Log in using the credentials you just created.

4. Upload:
Now that you are logged in, upload a file.

5. Address input:
Now put in the address.

6. Send:
Now send the letter.

7. Settings:
Now locate where you can change the picture, but do not change it.

8. Finish:
Congratulations you did it! Thank you for participating.

Test Person 1

User Description:
The test participant is a 24-year-old female with a strong affinity for design and a normal affinity
for technology. She uses mainly Apple products.

She is an intersting candidate for evaluating an application’s usability and appeal to a broader
demographic. Because she is not very tech-savvy, she can provide valuable insights into how
well an application caters to users of younger generation.

Negative Feedback:

• The user expressed that the color scheme of the application is not very appealing and the
design is outdated. It does not have the flair, which the modern applications have.

• In her opinion the icon for uploading and sending document(s) is not clear. She suggested
to use a house icon. And overall that the icons are a little bit big.

• She was very surprised how fast the whole process was.

Positive Feedback:

• On the other side she said it is very easy to do the tasks.

• The upload process is very fast.

Conclusion:
In summary, the design is not very appealing but the process is very easy.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 102 of 117



Digitaler Briefversand

10.4.2 Usablity Test

Only the scenario and tasks will be shown to the test users. We will ask all other questions.
Background Questions:

• Can you briefly describe your experience with similar applications or online services?

• Have you used applications with similar features before?

Scenario:
Imagine you own a small start-up business that frequently needs to send and receive important
documents such as contracts and legal papers. Currently, you rely on traditional methods such
as mail and email, each of which has its own set of challenges. You are now introduced to a new
solution that aims to streamline both the sending and receiving of important documents.

Tasks:

1. Sign up:
Create a user account by signing up. Follow the registration process.

2. Login:
Log in using the credentials you just created.

3. Settings:
Verify your account.

4. Upload:
Now that you are logged in, upload a file.

5. Address input:
Now put in the address of the receiver, which is visible on the uploaded file.

6. Send:
Now send the letter.

7. Settings:
Change your logo.

Closing questions (in order of importance):

1. On a scale of 1 to 10, how satisfied are you with the overall layout of the application?

2. What did you think of the layout and design of the different pages/forms?

3. Did you find the application responsive to your actions?

4. Thoughts on the colour scheme used throughout the application?

5. Were the instructions and content presented in a clear and understandable manner?

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 103 of 117



Digitaler Briefversand

Result of Usability test:

Participant 1:

1. Test date: 01.12.2023

2. Background: 24-year-old female student with some experience of similar applications. She
has already done our UX testing.

Ratings:

1. General satisfaction rating (scale 1-10): 7

2. Layout and design: The design of the different pages and forms is good. She liked the
navigation bar at the top, which is different from the mock-up.

3. Responsiveness rating: She did not give specific feedback on responsiveness. But she did
try different email formats and postcode formats, which gave her the helpful error mes-
sages.

4. Colour scheme thoughts: The overall colour scheme was good, but she thought the red
colour of the unsubscribe button was too aggressive.

5. Clarity of instructions and content: In the login task, she did not fully understand the pur-
pose of the upload functionality because there was no description of it. After seeing the
test file she realised what it was.

Conclusion: It has not many features, but the upload functionality should be better.

Participant 2:

1. Test date: 12.12.2023

2. Background: 23 year old male student with experience of similar applications.

Ratings:

1. General satisfaction rating (scale 1-10): 8

2. Layout and design: The design is very simple, but nothing more. For what it is, it is a solid
application.

3. Responsiveness Rating: Tried different streets and postcodes. Hewas happywith the error
messages.

4. Colour scheme thoughts: It is good.

5. Clarity of instructions and content: In the registration task, he completely ignored the pur-
pose of the upload functionality. After the login button did not work, he asked what was
wrong.

Conclusion: Simple and clear application, it does what it should.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 104 of 117



Digitaler Briefversand

10.5 Testing Mobile Application

10.5.1 UX-Testing

Flow:

1. Welcome Page:
Please open and view the Welcome Page.

2. Sign-up:
Create a user account by signing up. Follow the registration process.

3. Login:
Log in using the login credentials you just created.

4. Home:
Navigate to the Home screen of the app.

5. Open a Document (PDF from Ostschweizer Fachhochschule):
Search for and open the specified document.

6. Find Document Name and Sending Time:
Locate the name and sending time of the opened document from the detail view.

7. View the Document Itself:
Open and view the document.

8. Return to Detail View:
Navigate back from the document view to the detail view.

9. Show All New Documents (via bottommenu navigation): Use the bottommenu navigation
to find and display all new documents.

10. Increase the House Number in Settings:
Go to the app’s settings and increase the house number by one.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 105 of 117



Digitaler Briefversand

Test Person 1

User Description:
The test participant is a 60-year-old male with a strong affinity for technology, particularly in the
field of information technology (IT). He brings with him several decades of experience and a keen
interest in exploring and evaluating new digital solutions. His age and background make him an
interesting candidate for assessing the usability and accessibility of software, as he represents
an older demographic with a deep understanding of technology.

Despite his age, this user maintains an active engagement with modern digital tools and ap-
plications. He has a wealth of experience in using various software applications and can offer
valuable insights into how well an application caters to users of his generation.+
Negative Feedback:

• Theuser expresseddissatisfactionwith the app’s color scheme, describing it asmonotonous
and lacking variety.

• He found the app’s design somewhat outdated, suggesting that it could benefit from amore
contemporary look.

• During his interaction with the app, the user mistakenly confused the "Scan Code" button
in the settings with the "Update Settings" button, highlighting potential issues with button
labels and clarity.

• The user also noted that, in his opinion, the application appeared to have a relatively limited
amount of content for a standalone application.

Positive Feedback:

• On a positive note, the user commended the app’s ability to provide a clear and comprehen-
sive overview of its features, making it easy to navigate and understand.

• He was able to complete all tasks assigned during the testing session efficiently and with-
out encountering significant obstacles.

• The user appreciated the app’s clean and uncluttered interface, noting that it wasn’t over-
loaded with information.

• The inclusion of large buttons in the application was a particularly welcome feature for the
user, as it made the interface more accessible, even for individuals with less precise motor
skills.

Conclusion:
In summary, this test participant’s IT background, combined with his age, makes him a valu-
able resource for evaluating an application’s usability and appeal to a broader demographic. His
feedback, both positive and negative, offers valuable insights for improving the app’s design and
functionality.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 106 of 117



Digitaler Briefversand

10.5.2 Usablity Test

To evaluate the user experience and functionality of the mobile application through a series of
tasks that encompass starting the app, registration, login, address validation, and information
retrieval.

Test Environment:
Device: Test-Device (Android)
Application Version: preinstalled version on the device
Internet Connection: Wi-Fi/3G/4G/5G

Participant Profile:
Age: 18-80
Tech-Savviness: Moderate to High

Flow:

1. Start the App
Objective: Assess the app’s loading time and initial responsiveness.
Steps: Locate the application icon and open the app.
ExpectedOutcome: The application should loadwithin [2 seconds] and display thewelcome
screen.

2. Navigate to the Registration
Objective: Evaluate the intuitiveness of the navigation to the registration page.
Steps: From the home screen, locate and select the option to register.
ExpectedOutcome: The registration page should be easily accessible from the homescreen.

3. Register on the Platform
Objective: Test the registration process for ease and efficiency.
Steps: Complete the registration form with the required details and submit.
Expected Outcome: Registration should be successful without errors, and the user should
be directed to a confirmation screen.

4. Log Into the App
Objective: Assess the login process and its functionality.
Steps: Log in using the newly created credentials.
Expected Outcome: The login should be smooth, and the user should be directed to the
main dashboard.

5. Increment House Number in Settings
Objective: Test the functionality of incrementing the house number by one in the settings.
Steps: Go to the address modification section in the Settings. Select the current house
number, increase it by one and update the settings.
Expected Outcome: The application should successfully increment the house number by
one and display the updated address in the settings.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 107 of 117



Digitaler Briefversand

6. Validate the Address with the QR-Code
Objective: Test the QR code scanning feature for address validation.
Steps: Navigate to the address validation section in the Settings and use the application to
scan a provided QR code.
Expected Outcome: The application should successfully scan the QR code and validate the
address.

7. Log Out
Objective: Ensure the log-out process is user-friendly and secure.
Steps: Navigate to the settings or account menu and select the option to log out.
Expected Outcome: The application should successfully log the user out, redirecting them
to the login or welcome screen, ensuring that no personal data is accessible until the next
login.

8. Log Into the application again with prepared credentials
Objective:Evaluate the login procedure for an existing account.
Steps: Log in using the prepared credentials. Credentials: E-Mail: anna.zuellig@gmail.com,
Password: Anna01!
Expected Outcome: The login should be smooth, and the user should be directed to the
main dashboard with the prepared letters.

9. Write Down Who is the Sender of the Letter
Objective: Evaluate the app’s ability to retrieve specific historical data.
Steps: Locate and open the correspondence history, find the letter dated 07.12.2023, and
identify the sender.
Expected Outcome: The application should display the history accurately, and the user
should easily find the sender’s name.

10. Write Down at what Time the Letter was Sent
Objective: Test the app’s functionality in providing detailed information about past activi-
ties.
Steps: In the correspondence history, locate the letter dated 08.12.2023 and note the time
it was sent.
Expected Outcome: The time the letter was sent should be clearly displayed and accurate.

11. Write Down the Last Sentence from the PDF
Objective: Assess the app’s ability to handle document viewing and information extraction.
Steps: Find the PDF sent by Ost-Rapperswil, open it, and write down the last sentence.
Expected Outcome: The PDF should open seamlessly within the app, and the user should
be able to easily read and extract the required information.

12. Open Push Notification
Objective: Evaluate the effectiveness and responsiveness of push notifications.
Steps: Wait for a push notification to arrive and open it by tapping on the notification. Ex-
pected Outcome: The application should respond immediately to the App.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 108 of 117



Digitaler Briefversand

Test Person 1

User Description:
The test participant is a 60-year-old male with a strong affinity for technology, particularly in the
field of information technology (IT). He brings with him several decades of experience and a keen
interest in exploring and evaluating new digital solutions. His age and background make him an
interesting candidate for assessing the usability and accessibility of software, as he represents
an older demographic with a deep understanding of technology.

Despite his age, this user maintains an active engagement with modern digital tools and ap-
plications. He has a wealth of experience in using various software applications and can offer
valuable insights into how well an application caters to users of his generation.

It was the same test person who had already tested the UX prototype.

1. Overall Experience
The overall experience includes thematic areas such asmeta content, images and relevance,
which are all sub-themes of the content. But the overall experience also includes balance and
alignment, contrast and proportionality as well as scaling in relation to the layout.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

2. Usability
This includes balance and alignment, contrast and proportionality as well as scaling in re-
lation to the layout. Usability also includes aspects such as touchscreen friendliness, fast
loading time and the interactivity of the elements in terms of responsiveness.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[X] 9[ ] 10[ ] (1 - Very Poor, 10 - Excellent)

3. Dynamic-Content
Responsiveness also includes aspects such as fast loading times, touchscreen friendliness
and interactivity. Criteria such as meta content, images and relevance, which fall under the
content category, are also part of content which, like responsiveness, is a sub-category of
dynamic content.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

4. Look and feel
The look and feel should evaluate the color harmony as well as the contrast and the interplay
of background and texture.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[X] 8[ ] 9[ ] 10[ ] (1 - Very Poor, 10 - Excellent)

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 109 of 117



Digitaler Briefversand

5. Features and Functionality
Are there any features or functionalities that you particularly liked or found useful?

• Good overview page before opening the letters
• Intuitive display after the address has been verified (button highlighted in green).

Are there any features or functionalities that you think need improvement?
• Web solution for customerswith advanced agewould still be desirable due to the screen
sizes of mobile devices.

• Print function would also be desirable.

6. Problems or Issues
Did you encounter any problems or issues while using our product/service?

The keyboard covered one of the fields when registering the address.

7. Recommendations
Based on your experience, what improvements or additional features would you recom-
mend for our product/service?

It would be more intuitive for me personally if the buttons for login and registration would
swap places.

8. Additional Comments
Please provide any other comments or suggestions you may have.

With regard to the benefit for the user of the app, I doubt whether it offers the company
or the user any significant benefit.

Negative Feedback:

• swap login and registration buttons

Positive Feedback:

• Tidy and clean look

• Fast response time within the application

Conclusion:
On the whole, the application was intuitive to use and you quickly recognized where, what and
how you could reach. It would be nice if there was a web version, but this has nothing to do with
the application directly. I wish the team continued success in their studies and fun at work in the
coming years.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 110 of 117



Digitaler Briefversand

Test Person 2

User Description:
The third participant is a 23-year-old woman living in amedium-sized city, sharing her living space
in a shared housing. She has a pronounced passion for travel, often exploring new destinations.
Her urban living situation and communal lifestyle provide her with diverse interpersonal inter-
actions and experiences, enriching her understanding of various cultures and lifestyles. This
background, combined with her love for travel, gives her a broad perspective on life, potentially
influencing her approach to personal and professional challenges.

1. Overall Experience
The overall experience includes thematic areas such asmeta content, images and relevance,
which are all sub-themes of the content. But the overall experience also includes balance and
alignment, contrast and proportionality as well as scaling in relation to the layout.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

2. Usability
This includes balance and alignment, contrast and proportionality as well as scaling in re-
lation to the layout. Usability also includes aspects such as touchscreen friendliness, fast
loading time and the interactivity of the elements in terms of responsiveness.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[ ] 10[X] (1 - Very Poor, 10 - Excellent)

3. Dynamic-Content
Responsiveness also includes aspects such as fast loading times, touchscreen friendliness
and interactivity. Criteria such as meta content, images and relevance, which fall under the
content category, are also part of content which, like responsiveness, is a sub-category of
dynamic content.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[ ] 10[X] (1 - Very Poor, 10 - Excellent)

4. Look and feel
The look and feel should evaluate the color harmony as well as the contrast and the interplay
of background and texture.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

5. Features and Functionality
Are there any features or functionalities that you particularly liked or found useful?

• I thought it was good that the new documents were displayed separately. This way you
always have an overview of which documents you have already viewed and which you
haven’t yet.

Are there any features or functionalities that you think need improvement?
• Signup
• Login

6. Problems or Issues
Did you encounter any problems or issues while using our product/service?

No significant

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 111 of 117



Digitaler Briefversand

7. Recommendations
Based on your experience, what improvements or additional features would you recom-
mend for our product/service?

It might be a good idea to be able to share the documents with other people who also have
this app.

8. Additional Comments
Please provide any other comments or suggestions you may have.

I like the idea. But I have not found a way to group the documents. This would generally
make it easier for me to add my own kind of sorting.

Negative Feedback:

• No Navigate, feedback.

Positive Feedback:

• Realy fast App.

Conclusion:
It was fun to use the application and I can well imagine that this will become the new way to man-
age documents. I can also imagine using it in the business sector, but there would have to be a
few more functions added. I hope that the idea will catch on in the future and that I won’t have to
scan in all my documents like I have to do so far.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 112 of 117



Digitaler Briefversand

Test Person 3

User Description:
The second individual is a 27-year-old man working in sales, known for his dynamic lifestyle.
He resides in a mountainous region, embracing solitude during the weekdays. His home envi-
ronment reflects a blend of tranquility and ruggedness, shaping his personal and professional
demeanor. Despite his isolated living situation, he maintains an active social life, traveling every
weekend to visit his girlfriend in a different city. This routine highlights his adaptability and ded-
ication to maintaining personal relationships, qualities that likely translate into his professional
life as a salesperson.

1. Overall Experience
The overall experience includes thematic areas such asmeta content, images and relevance,
which are all sub-themes of the content. But the overall experience also includes balance and
alignment, contrast and proportionality as well as scaling in relation to the layout.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

2. Usability
This includes balance and alignment, contrast and proportionality as well as scaling in re-
lation to the layout. Usability also includes aspects such as touchscreen friendliness, fast
loading time and the interactivity of the elements in terms of responsiveness.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

3. Dynamic-Content
Responsiveness also includes aspects such as fast loading times, touchscreen friendliness
and interactivity. Criteria such as meta content, images and relevance, which fall under the
content category, are also part of content which, like responsiveness, is a sub-category of
dynamic content.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[ ] 10[X] (1 - Very Poor, 10 - Excellent)

4. Look and feel
The look and feel should evaluate the color harmony as well as the contrast and the interplay
of background and texture.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[X] 9[ ] 10[ ] (1 - Very Poor, 10 - Excellent)

5. Features and Functionality
Are there any features or functionalities that you particularly liked or found useful?

• Opening the PDF without having to leave the app.
• The display of when and at what time the document was delivered by whom was good
and clearly presented.

Are there any features or functionalities that you think need improvement?
• The preview of the PDF looked a bit strange during one test

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 113 of 117



Digitaler Briefversand

6. Problems or Issues
Did you encounter any problems or issues while using our product/service?

No, i faced no problems

7. Recommendations
Based on your experience, what improvements or additional features would you recom-
mend for our product/service?

Swipe functionality to change the view

8. Additional Comments
Please provide any other comments or suggestions you may have.

- - -

Negative Feedback:

• unattractive icon

Positive Feedback:

• fast reaction time

• good overview of the letters

• nice scroll-functionality

Conclusion:
Finally an application in the administration environment that has a very fast response time.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 114 of 117



Digitaler Briefversand

Test Person 4

User Description:
The test participant is a 53-year-old woman employed in the marketing sector, residing in a rural
area. As a mother of two adult children, she brings a unique perspective to her work, balancing
professional responsibilities with the insights gained from raising a family. Her rural living envi-
ronment and experience as a parent significantly influence her approach to marketing, especially
in understanding and connecting with diverse consumer demographics. Her insights are partic-
ularly valuable in campaigns targeting family-oriented audiences or those living outside urban
centers.

1. Overall Experience
The overall experience includes thematic areas such asmeta content, images and relevance,
which are all sub-themes of the content. But the overall experience also includes balance and
alignment, contrast and proportionality as well as scaling in relation to the layout.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

2. Usability
This includes balance and alignment, contrast and proportionality as well as scaling in re-
lation to the layout. Usability also includes aspects such as touchscreen friendliness, fast
loading time and the interactivity of the elements in terms of responsiveness.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[X] 9[ ] 10[ ] (1 - Very Poor, 10 - Excellent)

3. Dynamic-Content
Responsiveness also includes aspects such as fast loading times, touchscreen friendliness
and interactivity. Criteria such as meta content, images and relevance, which fall under the
content category, are also part of content which, like responsiveness, is a sub-category of
dynamic content.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[ ] 9[X] 10[ ] (1 - Very Poor, 10 - Excellent)

4. Look and feel
The look and feel should evaluate the color harmony as well as the contrast and the interplay
of background and texture.
1[ ] 2[ ] 3[ ] 4[ ] 5[ ] 6[ ] 7[ ] 8[X] 9[ ] 10[ ] (1 - Very Poor, 10 - Excellent)

5. Features and Functionality
Are there any features or functionalities that you particularly liked or found useful?

• All of them
Are there any features or functionalities that you think need improvement?

• The registration page

6. Problems or Issues
Did you encounter any problems or issues while using our product/service?

When registering, I could not see some fields while I was filling them in. And the button
is a bit narrow at the bottom of the screen.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 115 of 117



Digitaler Briefversand

7. Recommendations
Based on your experience, what improvements or additional features would you recom-
mend for our product/service?

• A download function would be good
• An archiving function that saves the documents on the PC

8. Additional Comments
Please provide any other comments or suggestions you may have.

It’s a nice application and it works well, but I don’t quite understand what the added value
is compared to e-mail. But the application contains everything I need for the use case.

Negative Feedback:

• missing download function

Positive Feedback:

• good overview

• nice idea

• good implementation fo filter new documents

Conclusion:
Finally an application in the administration environment that has a very fast response time.

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 116 of 117



Digitaler Briefversand

User-Test Evaluation

10.6 Testing Backend

10.6.1 Test code snippet

The following code snippet demonstrates the implementation of an integration test. The test is
divided into three parts. First, it initializes the application with mocked services in the beforeAll
statement. Then, the necessary data for the test is created in the database. After that, the actual
test is executed. Finally, after all tests in the file are executed, the database is cleared in the
afterAll statement.

describe('Letter sending tests (E2E)', () => {
let app: INestApplication;
let prisma: PrismaClient;
let user: User;
let organisation: Organisation;

beforeAll(async () => {
const moduleFixture: TestingModule = await Test.createTestingModule({

imports: [AppModule],
})

.overrideProvider(PostalService)

.useValue(postalService)

.compile();

app = moduleFixture.createNestApplication();
await app.init();
prisma = new PrismaClient();
user = await addUserToDb(prisma, userData);
organisation = await addOrganisationToDb(prisma, organisationData);
await prisma.$disconnect();

});

afterAll(async () => {
await clearDb(prisma);
await app.close()

});

it('It should not be able to send letter because organisation is not
verified', async() => {

...
});
...

});

Listing 10.11: Test code sniped

Gian-Luca Vogel & Marc Kissling & Andrew Willi Page 117 of 117


	Starting Position
	Conceptual Formulation
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Optional Requirements

	Architecture and Design
	Visualizing the Architecture
	Architecture in Detail
	Desktop Application
	Mobile Application
	Backend


	Implementation
	Technology
	Test Concept
	Frontend
	Backend

	Deployment
	Production Environment Backend
	Function Implementation
	Setup Development Environment
	Sending and Receiving Letters
	Viewing Letters
	Register
	Login
	Verification
	Authentication
	Settings

	Documentation
	REST-API Documentation
	Code Documentation


	Result
	Conclusion
	Needs to be addressed
	Future Vision

	Project and Time Management
	Project Plan
	Project organization
	Roles
	GitHub Project Board
	Code Repository
	Issue Managment
	Branching Strategy
	Git-Workflow
	Risk Management

	Time Management

	Acknowledgement
	Appendix
	API Documentation
	Screenshots
	Task definition
	Testing Desktop Application
	UX Testing
	Usablity Test

	Testing Mobile Application
	UX-Testing
	Usablity Test

	Testing Backend
	Test code snippet



