
TypeSearch: Type-Directed
API Search For All

Master’s Thesis

Department of Computer Science

Eastern Switzerland University of Applied Sciences

Spring Term 2023 – Fall Term 2023

Author: Marc Etter

Advisor: Prof. Dr. Farhad D. Mehta

Project Partner: IFS (Institute for Software, OST)

External Co-Examiner: Joachim Breitner

Abstract
Software developers spend a lot of their time finding and composing pre-existing

functions from various libraries. Almost all developers today use general-purpose

search engines for this search. Specialized search engines such as Hoogle additionally
use type information to improve this search, and have been successful for some typed

functional programming languages. The options currently available for type-directed

search for mainstream object-oriented languages is limited. Existing approaches for

these languages do not have first-class support for subtyping or parametric poly-

morphism. The splitting and composition of a desired functionality into and from a

number of pre-existing functions is also a task that needs to be done manually. In this

Master’s Thesis we present a proof-search-based approach to type-directed search with

first-class support for subtyping, parametric polymorphism, splitting, and composition.

The approach is language agnostic, and can be specialized to simultaneously support

multiple typed object-oriented languages. Given that most mainstream languages fall

under this category, this approach would extend the benefits of type-directed search

to the majority of programmers. As a proof of concept, we provide a running imple-

mentation of the core language-agnostic approach and extend it to support the Java

programming language. Further extensions would allow the tool to simultaneously

support multiple programming languages using the same query syntax.

i of 56

Contents

Abstract i

Contents ii

1 Introduction 1

2 Modelling API Contents 3
2.1 Type Definitions . 3

2.2 Type References . 5

2.3 Type Parameters . 6

2.4 Type Arguments . 7

2.5 Value Definitions . 7

2.6 Type Mappings . 8

2.7 Subtyping Information . 8

3 Mining API Contents 12
3.1 Plugin API . 12

3.2 Java Plugin . 12

4 Specifying Search Queries 16
4.1 Approximate Type Signature . 16

4.2 Module Filter . 18

5 Type Search as Proof Search 19
5.1 Curry-Howard Correspondence . 19

5.2 Proof Syntax . 19

5.3 Term Translation . 21

5.4 Proof Rules . 21

5.5 Proof Example . 23

6 Searching for Proofs 25
6.1 Goal Normalization . 25

6.2 Goal Candidates . 25

6.3 Universals . 27

6.4 Functions . 27

6.5 Mapped Types . 27

6.6 Subtyping . 28

6.7 Proof Finalization . 28

6.8 Code Synthesis . 29

7 Evaluating TypeSearch 30
7.1 Speed . 30

7.2 Quality . 31

7.3 Metric Collection . 31

ii of 56

TypeSearch Contents

8 Comparing Related Work 33
8.1 Hoogle (2005) . 33

8.2 Jungloid Mining (2005) . 33

8.3 SyPet (2017) . 34

8.4 Others . 35

9 Further Work 37

10 Conclusion 38

References 39

List of Figures 41

Listings 42

List of Tables 43

A Query Syntax Specification 44

B Configuration Parameters 48

C API Specification 50

D Code Metrics 56

iii of 56

1 Introduction
Nowadays, software development consists largely of combining and integrating func-

tionality from third-party libraries and frameworks. As such, expertise in a pro-

gramming language often means having deep knowledge about a wide array of the

language’s ecosystem. To successfully find the appropriate library functions for the

task at hand, developers consult search engines, such as Google1, StackOverflow2
, and

more recently, ChatGPT 3
.

The need for online resources to search for library functions clearly exists. In

certain programming language ecosystems this need has inspired the creation of

dedicated tools.

This Master’s Thesis presents two chief contributions:

1. A proof-search-based approach, using the Curry-Howard correspondence [Pie02,

§9.4], for finding API functions based on a user-supplied approximate type signa-

ture, with full support for parametric polymorphism and subtype polymorphism.

We name this approach TSaPS (Type Search as Proof Search).

2. TypeSearch, a proof-of-concept implementation of TSaPS. TypeSearch is designed

with a modular plugin system so that support for new programming languages

and different storage backends can be added easily. TypeSearch ships with

a plugin implementation for Java, and a simple in-memory storage backend.

TypeSearch is publicly accessible at https://typesearch.dev.

Chapter 2 presents a programming language agnostic data model that is used as

an intermediate representation of API functions. This data model enables the core of

TSaPS and TypeSearch to be implemented independently of the target programming

language. Chapter 3 then shows how TypeSearch parses API functions and extracts

the necessary information into this data model.

Chapter 4 describes the query syntax used by TypeSearch. This query syntax is

designed to be intuitive for developers used to object-oriented programming languages.

It is also designed to be language-agnostic, so that developers can reuse the same query

regardless of the programming language they are searching in.

Chapter 5 first gives a brief introduction into the Curry-Howard correspondence

and proof theory, and then details the theoretical foundations of TSaPS. This chapter
also discusses where TSaPS differs from conventional proof theory to accommodate

the challenges of type-directed API search.

Chapter 6 goes into further detail regarding TypeSearch and how we efficiently

search for valid proofs. In the same chapter we also discuss how proofs are ranked to

provide a useful search engine experience. Performance measurements of TypeSearch,
both in terms of speed and result quality, are shown in chapter 7.

Chapter 8 details notable examples of existing work in this field. This chapter

also describes the various underlying approaches that have been used, with their

respective advantages and disadvantages. All of these tools are dedicated to a specific

programming language, which was part of the motivation behind TSaPS.
Chapter 9 discusses additional ideas to improve the effectiveness of the TypeSearch

implementation, as well as shortcomings of the current implementation. Finally,

chapter 10 summarizes the results of the previous chapters.

1https://google.com/
2https://stackoverflow.com/
3https://chat.openai.com/

1 of 56

https://typesearch.dev
https://google.com/
https://stackoverflow.com/
https://chat.openai.com/

TypeSearch 1 Introduction

This technical report goes into implementation details for every topic. We also

plan to publish a more succinct paper on TSaPS and TypeSearch that explains the key

concepts [EM24].

2 of 56

2 Modelling API Contents
The Abstract Language Data Model (ALDM) is a data model storing information about

the contents of APIs. The ALDM attempts to consolidate various type implementations

across programming languages into a single data model. However, the ALDM is not
a rigorous type system. Rather, it stores information about the types encountered in

a particular language. The goal of the ALDM is not to fully map every language’s

type system into a common type system that fulfills all the rigorous properties that

would be required by a compiler. The goal of the ALDM is to store information about

a language’s types accurately enough, so that an efficient and useful type-directed

search can be performed. The ALDM does not make any assumptions about how this

information is used during search, so the ALDM tries to capture as much information

about the API contents as possible. The ALDM is an important center piece of the

TypeSearch implementation, but not integral to the concepts of TSaPS presented in

chapter 5.

Most type concepts of modern object-oriented programming languages can be

classified as well-known theoretical type constructs from the system of higher-order

bounded quantification, as shown by [Ett20]. This type system is denoted as 𝐹𝜔<:
(“F-omega-sub”) [Pie02]. The ALDM uses the formal names from type theory when

describing type constructs, even if the ALDM does not completely accurately reflect

the theory. These differences are described in later sections.

The ALDM consists of three data structures: type definitions, type references,

and type mappings. There is also subtype information being extracted and stored,

but the subtype storage implementation depends on the particular subtype system

in use. Each of these are described in further detail in the following sections. The

illustrations accompanying the descriptions of the data structures make use of the

Unified Modelling Language (UML) [BRJ05]. An example of Java source code being

mapped into the ALDM is shown in figure 3.2.

2.1 Type Definitions

Figure 2.1: Data model for type definitions

A TypeDef describes the definition (or declaration, depending on source language) of

a type. Type definitions are regarded as unique within a programming language. As

such, there is a bijective mapping of every type in a language to a TypeDef in the ALDM.

Type definitions are further specialized as shown in figure 2.1. These specializations

3 of 56

TypeSearch 2 Modelling API Contents

(subclasses) serve as additional hints during querying and are further described later

on.

2.1.1 PrimitiveTypeDef
A PrimitiveTypeDef represents the type definition of a primitive type. Usually, primitive

types are defined by a programming language specification itself and directly built

into the compiler of that language. Since the list of primitive types is well-defined and

usually finite, it is feasible to simply hard-code the full list of PrimitiveTypeDefs into the

appropriate language plugin (see chapter 3). Any type defined through source code (i.e.

not built into the compiler) is instead a UserDefinedTypeDef, whose further specializations

are described in the following sections.

2.1.2 ProductTypeDef
A ProductTypeDef roughly represents an algebraic product type. In object-oriented pro-

gramming languages this concept most closely resembles classes. However, classes

usually are the combination of three components: a data structure (“member fields”),

methods operating on that data structure (“member functions”), and inheritance in-

formation (parent classes and protocols/interfaces). Strictly speaking, an algebraic

product type only covers the data structure aspect of a class. For the purposes of

type-directed API search, however, it is sufficient to think of OO-classes as product

types. The member functions of a class are indexed as individual FunctionTypeDefs, as

described in section 2.1.5. The inheritance information is tracked in a separate data

structure, detailed in section 2.7.

2.1.3 SumTypeDef
A SumTypeDef represents an algebraic sum type. In languages like Java or C# these are

enumerations. However, for example TypeScript has so-called union types, which are

more general sum types.

2.1.4 ExistentialTypeDef
An ExistentialTypeDef describes existential types. As explained by Pierce in [Pie02],

existential types can be interpreted as packages. This can be further extended to

protocols (commonly also known as “interfaces”) as discussed in [Ett20]. Therefore,

e.g. Java interfaces are stored as ExistentialTypeDefs in the ALDM.

2.1.5 FunctionTypeDef
FunctionTypeDefs express unique definitions of functions. In the ALDM, functions are

uniquely defined by the number of input parameters. Every input parameter type is

modeled as a type parameter which is then substituted with a ConcreteTypeArgument for

actual functions. This concept is illustrated in figure 2.3.

2.1.6 AliasTypeDef
Lastly, AliasTypeDefs represent type aliases. These are typically explicit type aliases, if

a programming language supports such a feature. However, intersection types are

4 of 56

TypeSearch 2 Modelling API Contents

also represented as “anonymous” type aliases. Such anonymous type aliases arise e.g.

in Java or TypeScript when using a construct such as Mammal & Flying to denote a type

that must satisfy both the Mammal and Flying requirements. Since an anonymous type

alias cannot be disambiguated by its name, it is uniquely identified by the set of types

it references. Hence, Flying & Mammal and Mammal & Flying would both reference the same

AliasTypeDef in the ALDM.

2.2 Type References

Figure 2.2: Data model for type references

Type references are the counterpart to type definitions. Whenever a type is used

(“referenced”), this is modelled using a TypeRef. In contrast to type definitions, type

references are not necessarily unique. If a type is used in the same way in multiple

places, multiple identical TypeRefs will exist. Type references therefore capture the

information about how a type is used in a particular context. An example of such a

context is the declaration of a variable like List<String> strings. The variable declaration

of strings references the type definition for List with a concrete type argument String.

The TypeRef data structure is nearly identical to that of the TypeDefs. This is most

obvious when looking at the subtree rooted at ConcreteTypeRef. This subtree exactly

reproduces the structure of the TypeDef data model. Every specialization of TypeDef has a

corresponding TypeRef node, which models a reference to that particular kind of type

definition. The main difference is the addition of nodes at the root of the tree. This

enables the model to differentiate between concrete types being referenced and the

usage of type parameters.

2.2.1 FunctionTypeRef
TypeRefs only store information about the referenced TypeDef, as well as potential type

arguments. However, FunctionTypeRefs are a bit more nuanced in how they are used and

how they differ from FunctionTypeDefs.

FunctionTypeRefs are slightly unintuitive, as the definition of e.g. a member function is

modelled as a function type reference, and not a function type definition as one might

expect at first. This is more obvious in a language like TypeScript, where a function

5 of 56

TypeSearch 2 Modelling API Contents

Figure 2.3: FunctionTypeRef referencing FunctionTypeDef with type arguments

can be viewed as a regular variable where the type happens to be that of a function. In

that regard, such a variable is no different from a non-function variable, in that the

type of such a function variable is simply a reference to a type defined elsewhere (the

FunctionTypeDef).

In particular, the function type definition referenced is decided solely by the

number of input parameters to the function. The concrete types (or possible type

parameters) are then passed as type arguments to the type definition of the function

which accepts that number of input parameters. This concept is inspired by Java’s

functional interfaces and especially Scala, where every function is assigned the type

FunctionN, where N is the number of input parameters. For example, Function2[-T1,-T2,+R]

in Scala has two input parameters, which are denoted with the type parameters T1 and

T2 (each being contravariant). The return type is similarly represented with the type

parameter R (covariant). An example of such a FunctionTypeRef is shown in figure 2.3.

2.3 Type Parameters

Figure 2.4: Data model for type parameters

Type parameters model the free variables of parametric polymorphic types. These

type parameters are often also known as “generics”. Type parameters have upper

and lower bounds, which default to ⊤ (TOP) and ⊥ (BOTTOM), respectively. ⊤ and ⊥ are

artificial types added in the ALDM for the type that is a supertype of all other types (⊤)

6 of 56

TypeSearch 2 Modelling API Contents

and the type that is a subtype of all other types (⊥). In addition to a type parameter’s

bounds, it also has a name and a variance. The name is used to correlate which type

argument is substituting which type parameter. The variance is used for languages

that implement declaration-site variance, such as Scala.

2.4 Type Arguments

Figure 2.5: Data model for type arguments

While type parameters describe how a type definition can be parameterized, type

arguments describe how such a parametrizable type is used. Similar to type parameters,

(bounded) type arguments have a variance and upper and lower bounds. These are

used for programming languages implementing use-site variance, such as Java.

Type arguments are split into three main kinds: concrete type arguments, wildcard

type arguments, and “any” type arguments. Concrete type arguments refer to a specific

TypeRef being used. Note that a TypeRef could be a ParameterTypeRef. This means that a type

is parameterized based on a type variable declared elsewhere. Wildcard type arguments

describe the case where a wildcard token is used as the type argument, as opposed

to an actual type (variable). For example in Java, a wildcard type argument (with

upper bound) is used like List<? extends Number>. This construct means “a List where

each element is a subtype of Number”, making the WildcardTypeArgument covariant. Lastly, an

“any” type argument is a placeholder similar to a wildcard type argument, but without

any constraints whatsoever on the type that eventually replaces it. AnyTypeArguments

are only introduced through wildcard characters in a query, not through API source

extraction. See chapter 4 for more details. The distinction between a WildcardTypeArgument

and an AnyTypeArgument becomes important when dealing with subtyping and other type

comparisons.

2.5 Value Definitions

A value definition is similar in concept to a type definition. In the context of the

ALDM and type-directed API search, a “value” is best summarized as “any symbol

that could potentially be a search result”. What exactly this entails depends on the

particular language plugin. However, ValueDefs usually include constructs such as

publicly accessible functions and constants. The most important attributes of a ValueDef

are the ID, the type reference, and the module. The ID is a unique identifier for this

7 of 56

TypeSearch 2 Modelling API Contents

Figure 2.6: Data model for value definitions

ValueDef and is usually built from the fully-qualified name of the symbol and information

about in which module the symbol is defined.

Figure 2.7 shows the data structure tree for a single ValueDef entry. This ValueDef

represents the method java.util.List#size, which returns the number of elements in

a list as a primitive integer. The ValueDef is red, TypeRefs are green, TypeDefs are blue,

the TypeArgument is lavender, and the TypeParameter is yellow. The arrows in this diagram

represent object references, with the variable name as a label.

2.6 Type Mappings

In many programming languages there exist types that should be considered equivalent

for the purposes of searching, even though they are not equivalent or even related

through subtyping. Examples of such types in Java are primitives and their boxed

counterparts, or various functional interfaces.

To support these additional equivalence relations, the ALDM makes use of so-

called type mappings. Type mappings group types into equivalence classes and select

one of the types in this group as the primary representation. Then, when comparing

two types, each type is first mapped to the primary representation of their respective

equivalence class. Thus, if two different types are part of the same equivalence class,

the type comparison will be done using the same representation type, resulting in

a match. This leads to a partitioning of the type space, where each type within a

partition is mapped to a single “key type” within the partition. Types without any

provided type mappings are trivially mapped onto themselves.

For example, both Function<String,Boolean> and Predicate<String> are part of the same

equivalence class and ultimately map onto the generalized function representation

String -> Boolean. This means a query by any of the three expressions would find matches

of either type. Figure 2.8 shows an example of such a type comparison using type

mappings.

The definition of these equivalence classes, as well as which type to use as the

primary representation, is up to the individual language plugins. The specific Type

Mappings for Java are described in section 3.2.3.

2.7 Subtyping Information

Accompanying the ALDM is a subtyping information registry. Depending on the

subtyping scheme used by a programming language, the subtyping information might

be stored in a different representation. TypeSearch provides an interface for all subtype

registries, called SubtypeRegistry. The search implementations in TypeSearch only make

8 of 56

TypeSearch 2 Modelling API Contents

Figure 2.7: Example of a ValueDef data structure

9 of 56

TypeSearch 2 Modelling API Contents

Figure 2.8: Example of type comparison using type mappings

use of this interface, so no assumptions about the underlying implementation are

necessary.

2.7.1 Nominal Subtyping
Nominal subtyping is a system where every type explicitly declares for which types

it is a subtype [Pie02, §19.3]. This is the most common kind of subtyping in object-

oriented programming languages. Nominal subtyping information is most naturally

represented by a directed acyclic graph. Every type encountered during indexing is

added to the subtyping graph as a vertex. Directed edges run from a subtype to a

direct supertype. Following edges from any vertex will always end at ⊤, representing
a fictional type that is the supertype of all known types. TypeSearch uses the JGraphT

1

library to implement the nominal subtyping graph.

Using this representation, calculating the subtype distance between two types

corresponds to calculating the shortest path in the graph between the two respective

vertices. If two types are unrelated (i.e. there exists no subtyping relation between

them), no path exists along the (directed) edges connecting the two vertices. An

example of a subtyping graph is shown in figure 2.9. In that figure Java classes are

green, interfaces blue, and the artificial⊤ type is red. The red arrows show the shortest

path from ArrayList to SequencedCollection. This shortest path traverses two edges, resulting

in a subtype distance of 2. This subtype distance can be used when ranking search

results, for example subtypings with a shorter subtype distance might be ranked more

favorably.

2.7.2 Structural Subtyping
Another common subtyping scheme is structural subtyping. In structural subtyping,

a type is considered to be a subtype of another type, if it contains all fields of the

supertype, and each of those fields are a subtype of the supertype’s field with the

same name [Pie02, §19.3]. TypeScript is an example of a language that makes use of

structural subtyping. TypeSearch does not yet provide a SubtypeRegistry implementation

for handling structural subtyping, nor does it provide a language plugin for any

structurally subtyped language. However, due to the SubtypeRegistry already being

1https://jgrapht.org/

10 of 56

https://jgrapht.org/

TypeSearch 2 Modelling API Contents

⊤

Object

Iterable

Collection

Sequenced

Collection

List

Abstract

Collection

Abstract

List

ArrayList

Figure 2.9: Example of a Subtyping Graph with subtype distance

implementation-independent, adding such an implementation should be possible

without needing to adjust any of the search code.

11 of 56

3 Mining API Contents
APImining refers to the process of scanning the source code or an artifact of a particular

programming language and extracting the type information into the Abstract Language

Data Model. Since this process is highly language-specific, a plugin-based approach

was chosen. TypeSearch offers a plugin API that can be implemented to provide

extraction functionality for a programming language. TypeSearch ships with a plugin

implementation for Java.

3.1 Plugin API

The plugin-api module of TypeSearch offers interfaces to be implemented by a language

plugin, as well as data structures common to all language models. A language plugin

must only provide an implementation of the LanguagePluginDescriptor interface, and one or

more implementations of the DefinitionSource interface. The language plugin descriptor

is used to retrieve metadata about the plugin, such as the plugin name, author, version,

and programming language supported.

A DefinitionSource is an implementation that can mine API contents, optionally

filtered by modules. Depending on the programming language ecosystem, there might

be multiple sources of libraries which each require a distinct implementation to fetch

and possibly parse. For example, the Java plugin, as described below, has two such

definition sources: one for the JDK and one for Maven artifacts.

For a plugin to be picked up by TypeSearch, it is sufficient to register the language

plugin descriptor in the Spring context. This is accomplished most easily by using

SpringBoot’s autoconfiguration mechanism. For developers interested in adding a

new language plugin, we recommend looking at the Java plugin implementation as a

reference.

3.2 Java Plugin

Figure 3.1: Java type construct mappings into the ALDM

Java TypeDef Notes
Class Product

Interface Protocol

Primitive Primitive

Enum Sum

Record Product

Constructor Function name is set to <init>

Method (member) Function this added as first parameter

Method (static) Function

Array Product E[] is represented as Array<E>

Multiple Type Bounds Alias for example A & B

The language plugin for Java adds the capability to extract type information from

the Java Development Kit (JDK), as well as libraries hosted on Maven Central
1
. The

1https://central.sonatype.com

12 of 56

https://central.sonatype.com

TypeSearch 3 Mining API Contents

Java plugin makes heavy use of the javaparser
2
library for parsing and analyzing

Java source code. Table 3.1 lists how various Java type constructs are mapped into

the ALDM. Figure 3.2 shows a simplified example of this. The Java language plugin

currently supports extracting from a JDK up to version 21. However, the javaparser

library does not yet offer support for certain newer language constructs, such as

records
3
and sealed classes

4
. Source files containing such constructs are unfortunately

skipped for now.

Libraries often contain functions and types only meant for internal use within the

libraries. The Java plugin filters API functions and types so that only those functions

and types are extracted which are actually relevant. In general, a type or function is

considered relevant, if it is possible to use that type or function within custom code

that depends on the library. This is the case if the type or function is declared as

public or protected. In the case of protected, an additional check is done to ensure that the

declaring type is not final, meaning a developer could create a custom subtype and

then gain access to the protected member.

Figure 3.2: Java language extraction example

3.2.1 JDK Extraction
Most JDK implementations include Java source files in their distribution. These source

files are usually used by IDEs to show JavaDoc or the actual source code. They are

found in a src.zip archive in the JDK’s installation directory. TypeSearch extracts this

ZIP-archive and indexes the JDK by parsing the source files within.

Although reflection could be used to extract most of the information from the JDK,

Java’s reflection system does not have access to some helpful information. For example,

the reflection system does not retain comments or method parameter names. Since

both of these pieces of information are highly valuable for a user in deciding whether

a particular function is what they are looking for, we opted to use the source-parsing

approach instead.

2https://github.com/javaparser/javaparser
3https://github.com/javaparser/javaparser/issues/2446
4https://github.com/javaparser/javaparser/issues/2888

13 of 56

https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser/issues/2446
https://github.com/javaparser/javaparser/issues/2888

TypeSearch 3 Mining API Contents

3.2.2 Maven Central Extraction
While indexing the JDK provides a solid basis, very few modern Java applications are

based solely on the JDK’s functionality. The most popular dependency management

tools for Java projects are Maven
5
and Gradle

6
. Both of these tools use the same

dependency resolution method under the hood: They download dependencies (by

default) from the so-called “Maven Central” repository. Maven Central can store

various artifacts, but most notably JAR files. However, JAR files which are used as

dependencies in an application usually contain compiled .class files. Similarly to using

reflection, such compiled class files have omitted useful information.

Fortunately, most popular libraries also offer an alternative JAR alongside, a so-

called “sources JAR”. This JAR file contains all the source code of the library, intended

to be consumed by e.g. IDEs and other tooling. This is exactly what TypeSearch makes

use of as well. TypeSearch downloads both the regular JAR and the sources JAR of

libraries. It then uses the sources JAR to parse all the source files within and adds them

to the ALDM. The compiled class-JARs are used by the javaparser tool for symbol

resolution during parsing.

WhichMaven artifacts TypeSearchwill download and extract on application startup
is configured through Spring application properties. TypeSearch does not yet have the

ability to resolve transitive dependencies by itself, so such dependencies must be listed

explicitly for the time being. See appendix B for a list of all configuration properties

for TypeSearch.

3.2.3 Java Type Mappings
Type mappings are highly language-specific and must thus be provided by the corre-

sponding language plugin. For Java there exist two kinds of type mappings: boxed

types and functional interfaces.

Boxed Types

Java has so-called boxed types (also known as wrapper types) [Gos+23, §5.1.7]. These

are fully-fledged classes, each representing a primitive type of the Java language. In

most cases, the Java syntax allows for so-called auto-boxing (or auto-unboxing). This

means the primitive type and the corresponding reference type are automatically

converted into one another for the programmer’s convenience. The list of primitive

types in Java is defined by the Java Language Specification [Gos+23, §4.2] to be boolean,

byte, char, double, float, int, long, and short. All these boxed types do not have any type

parameters. As such, the type mapping between primitive types and boxed types is

a trivial one-to-one mapping. The type mappings for boxed types is biased towards

the reference type, so the reference type is the type that will be used in the candidate

index (see section 6.2.1).

Functional Interfaces

Java 8 introduced lambda expressions together with functional interfaces [Gos+23,

§9.8]. A functional interface is a regular Java interface (with specific limitations)

representing the type of a lambda expression. TSaPS’s function type syntax runs into

5https://maven.apache.org/
6https://gradle.org/

14 of 56

https://maven.apache.org/
https://gradle.org/

TypeSearch 3 Mining API Contents

the problem that the mapping from a function type expression to a functional interface

is ambiguous. For example, the query type A -> A could be resolved to Function<A,A> or

UnaryOperator<A>. To solve this, all functional interfaces are mapped to the TSaPS syntax
representation. This means that two functional interfaces are considered equivalent if

they have a compatible type signature, even if the actual interfaces are unrelated in

terms of subtyping.

15 of 56

4 Specifying Search Queries

Figure 4.1: Example of a TypeSearch query

TypeSearch implements a single language-agnostic query syntax. This is possible

thanks to the pre-processing step of mapping a language’s type information into

the uniform representation of the ALDM. Furthermore, using a single, consistent

query syntax removes the required context-switching when changing which language

ecosystem a user wants to search through. For example, the same query issued for

Java can be used to search through TypeScript libraries.

Designing a language-agnostic query syntax comes with its own challenges. On

the one hand, we aim to make the query syntax as intuitive as possible, such that the

barrier of entry is as low as possible. On the other hand, a general query syntax is

bound to have elements that are unusual for the particular programming language

being queried. For example, Java uses a “dash-arrow” (->) to denote lambdas, whereas

TypeScript uses an “equals-arrow” (=>). This particular example was solved by treating

both kinds of arrows synonymously. However, there are other areas where we decided

in favor of a stricter, simpler syntax instead. In an effort to make TypeSearch more

accessible to developers used to OOP syntax, we designed the query syntax with

common OOP syntax constructs in mind. For example, we decided to use a tuple

syntax for function parameters similar to Java lambda expressions, as opposed to

arrow syntax that is more common in functional programming languages.

The query syntax is made up of three parts: the module filters, keyword hints,

and an approximate type signature. Module filters are optional, but inclusions and

exclusions may not be mixed. Keyword hints and approximate type signature may be

combined, but at least one of the two is required. Keyword hints are used in a simple

text-search manner. The approximate type signature is the main focus of TypeSearch
and the basis of the type-directed API search approach. Details regarding the type-

directed search concept, and our implementation of it, are described in chapters 5 and

6. The formal EBNF specification of the query syntax can be found in appendix A.

4.1 Approximate Type Signature

The approximate type signature is the most important part of the query, at least in

terms of type-directed API search. This is where a user specifies the type signature of

the function they are looking for. This type signature need only be approximate, as

the search implementation attempts to also find results that are close matches.

An approximate type signature consists of a comma-separated list of parameter

16 of 56

TypeSearch 4 Specifying Search Queries

types, an arrow, and a return type. If a type is itself a function type, the entire type

must be enclosed with parentheses, as shown in figure 4.1.

4.1.1 Type Resolution
When parsing a type query, all type names are resolved into known types. Type

names can be fully-qualified (e.g. java.util.List) or use the simple type name (e.g List).

Ambiguous simple type names will lead to an error when parsing the query. Certain

namespaces are treated as “favorites” and will take precedence automatically in case of

type name ambiguities. Which namespaces these are, is language-specific. TypeSearch
treats the packages java.lang.* and java.util.* as favorites for Java. This means that List

will resolve to java.util.List instead of java.awt.List, which would need to be qualified

explicitly.

4.1.2 Universal Quantifiers
Single-letter type names are considered to be (unbounded) universally quantified type

variables. Multiple occurrences of the same type variable in the query restrict search

results to functions that also use a single type variable in each of those locations. For

example, the query A -> A would not be matched by String#toUppercase (type signature

String → String), but matched by Function#identity (type signature ∀𝑇 . 𝑇 → 𝑇). There is

currently no way to specify bounds on a query type variable. In such a case it is often

simpler to directly use the intended bound as the type of that parameter. So instead of

the (hypothetical) query A <: Number -> A, the query Number -> Number would likely produce

similar results.

4.1.3 Wildcards
Any unparameterized type name can be replaced with a wildcard character (_, *, or

?). A wildcard character represents the concept of “any type is allowed here”. All

wildcard characters can be used interchangeably. Wildcard types are notably different

from single-letter type names. Single-letter type variables can only be matched by

another type variable, while wildcard types can be matched by any type, including

type variables and concrete types.

The example query _ -> String would match all following function signatures:

• String → String

• int → String

• ∀𝑇 . 𝑇 → String

• ∀𝑇 <: Number. List 𝑇 → String

4.1.4 Type Parameters
Type parameters are supplied with angular brackets and separated by commas. Type

parameters are optional. Not supplying any type parameters is considered equivalent

to supplying a wildcard expression for every type parameter of the type. E.g. Map is

equivalent to Map<?,?>. If type parameters are specified, a value for every type parameter

must be supplied.

17 of 56

TypeSearch 4 Specifying Search Queries

4.2 Module Filter

In TypeSearch, all indexed library functions belong to a module. A module describes

the location of a function. Although the exact location-description of a function might

differ from language to language, modules in TypeSearch are designed to hide this detail.
Module filters can either include or exclude one or more modules. If inclusions are

specified, only functions from included modules are shown in the results. If exclusions

are specified, no functions from the excluded modules are shown. Inclusion and

exclusion filters are mutually exclusive. If no module filter is specified, all known

functions are included in the search.

A module consists of three components: a group, a name, and a version. How

these values are determined, depends on the particular language and might even differ

between different extraction sources for the same language. The filter expression

syntax is inspired by Maven artifact specifiers: <group>:<name>:<version>, where the group

and version are optional. Filter expressions have a ‘+’ prefix for inclusion, or ‘-’ prefix

for exclusion. While a query may contain multiple module filters, all of them must be

placed at either the beginning or the end of the query.

18 of 56

5 Type Search as Proof Search
The TSaPS approach is based on the Curry-Howard correspondence [Pie02, §9.4]

between the world of programs and the world of proofs. Using the Curry-Howard

correspondence, the problem of type-directed API search can be translated into a

problem of proof search. Once a valid proof has been found, that proof can be translated

back into a search result of an API function. The Curry-Howard correspondence can

even give us synthesized code snippets showing how to use the function or function

composition, as described in section 6.8.

We first give a brief introduction to aspects of the Curry-Howard correspondence

most relevant to our approach. Then, we introduce the constructs we need to build

valid proofs. Chapter 6 deals with the implementation of these concepts and how

TypeSearch efficiently searches for such valid proofs.

5.1 Curry-Howard Correspondence

The Curry-Howard correspondence is integral to understanding TSaPS. We begin

by highlighting the key concepts of the correspondence. Please refer to Types &

Programming Languages by Pierce [Pie02] for a more thorough description of the

Curry-Howard correspondence.

The key insight of the Curry-Howard correspondence is that programs (or functions

/ terms) can be viewed as proofs. The types of those programs can be viewed as the

logical propositions proven by said proof. This correspondence is bidirectional and is

preserved through transformations on either side. Such a correspondence allows taking

a problem in one domain and solving it in another domain, where the established

techniques and frame of mind might be more suitable for the job.

The Curry-Howard correspondence is usually introduced using a form of the 𝜆-

calculus on the program side. TSaPS is also based on the 𝜆-calculus. This means that

functions collected from APIs must first be translated into the 𝜆-calculus form before

further processing by TSaPS. Section 5.3 goes into more detail on how this translation

is accomplished.

To get an intuition for howwe use the Curry-Howard correspondence, let’s consider

the following example: We are looking for a function with type signature String ->

Int. There exists an API function parse : CharSequence -> Int, which can be viewed as a

hypothesis CharSequence -> Int with the label parse. Furthermore, we have the subtype

relation CharSequence <: String. We now want to build a proof, where the hypothesis parse

is used to prove our query statement String -> Int. Finding such a proof corresponds

to parse being returned as a search result of TSaPS. The following sections introduce
the necessary syntax and proof rules to formally build this proof. A full proof of an

extended example is shown in figure 5.1.

5.2 Proof Syntax

The syntax presented here is heavily inspired by the syntax of Pierce’s treatment

of 𝜆-calculus with higher-order bounded quantification (𝐹𝜔<:) [Pie02, §31]. The main

omission in TSaPS’s syntax is the lack of syntax constructs for values, and kindedness

of types. Both of these are not required by TSaPS, since we can assume that APIs only

contain type correct functions.

19 of 56

TypeSearch 5 Type Search as Proof Search

5.2.1 Types / Propositions
⟨type⟩ ::= ⟨universaltype⟩
| ⟨monotype⟩

⟨universaltype⟩ ::= ∀⟨typevar⟩ <: ⟨monotype⟩. ⟨type⟩

⟨monotype⟩ ::= ⊤ (maximum type)

| ⟨typeid⟩ (concrete type)

| ⟨typevar⟩ (type variable)

| ⟨monotype⟩ → ⟨monotype⟩ (function type)

| ⟨monotype⟩ ⟨monotype⟩ (type construction)

⟨𝑡𝑦𝑝𝑒𝑖𝑑⟩ refers to the name or identifier of a type, which must be unique. This

usually refers to a fully-qualified name in a programming language. ⟨𝑡𝑦𝑝𝑒𝑣𝑎𝑟 ⟩ is a
type variable introduced by a quantified type. A type variable may only occur within

a quantified type that introduces the type variable. Type variables are usually denoted

by a single uppercase letter.

Universally quantified types are defined separately to enforce that they may only

occur on the outermost layers of a type. Additionally, if a quantified type has a bound

of <: ⊤, the bound is omitted for brevity. Table 5.1 shows examples for the various

forms a type can take.

Table 5.1: Type examples

⟨type⟩ Example
concrete type String
type variable 𝑋

function type String → Int
type construction Optional Int
universal type ∀𝑋 <: Enum. EnumSet 𝑋

5.2.2 Terms / Proofs
⟨term⟩ ::= ⟨termid⟩ (term name)

| ⟨term⟩ ⟨term⟩ (term application)

| ⟨term⟩ ⟨type⟩ (type application)

Only the signature of an API function is translated. The actual function body

remains abstracted and is referenced by a ⟨𝑡𝑒𝑟𝑚𝑖𝑑⟩. Additionally, there are term and

type applications, where the first term is a function and the input argument is either

a term or a type, depending on the function term. Table 5.2 shows examples for the

different forms a term can take.

Table 5.2: Term examples

⟨term⟩ Example
term name 𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔

term application 𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔 𝑠

type application 𝑛𝑒𝑤𝐸𝑛𝑢𝑚𝑆𝑒𝑡 Month

20 of 56

TypeSearch 5 Type Search as Proof Search

Notably, function terms themselves are missing from the term syntax. The way

TSaPS translates API functions and the input query into proof sequents, such terms

never arise (or rather are not necessary). To more easily differentiate between type-

level and term-level notation, the convention will be used that type identifiers begin

with uppercase letters, and term identifiers begin with lowercase letters.

5.2.3 Type Environment / Proof Context
Γ = {𝛾 | 𝛾 = ⟨𝑡𝑒𝑟𝑚⟩ : ⟨𝑡𝑦𝑝𝑒⟩} ∪ {𝛿 | 𝛿 = ⟨𝑡𝑦𝑝𝑒⟩ <: ⟨𝑡𝑦𝑝𝑒⟩}

The type environment (or proof context) is a set consisting of all hypotheses that

may be used during a proof. A hypothesis is a tuple of a term and an associated type,

denoted as ⟨𝑡𝑒𝑟𝑚⟩ : ⟨𝑡𝑦𝑝𝑒⟩.
Additionally, the type environment contains all the subtype relations as tuples

in the form “SubType <: SuperType”. Subtype relations are transitive and impose a

partial order on all types in the type environment. All types are a subtype of the top

type ⊤.
During type search, the proof context contains a hypothesis for every API function

that should be considered, as well as additional hypotheses that are introduced by

proof rules during proof search. In the example shown in figure 5.1, the contents of

the proof context are shown explicitly for every step of the proof.

5.3 Term Translation

After mining API contents is complete, the information about the API contents is stored

in the Abstract Language Data Model. For proof search, we require this information in

𝜆-calculus form. This means we need to apply another translation from the ALDM into

the proof syntax. API mining could of course directly extract the information in proof

syntax form. Due to legacy reasons, the ALDM is still used as an intermediate data

model. This also carries the benefit that other search implementations (for example

the Hoogle5 fingerprint approach) can be implemented in a modular fashion, similar

to the language plugin model.

To translate a ValueDef from the ALDM into a term of the proof syntax, we begin by

constructing a function term that has the same type signature as the ValueDef’s TypeRef

(usually a FunctionTypeRef). Any UserDefinedTypeRefs are translated into type constructions.

We then collect all type variable occurrences in that term and wrap the term with a

universal quantifier for each type variable, adding bounds as required.

Type mappings (section 2.6) and subtyping information (section 2.7) can be used

as is, without the need to be translated.

5.4 Proof Rules

The following sections describe the various proof rules that TSaPS uses.

5.4.1 Axioms
hyp𝑚

Γ,
{
𝑚 : G

}
⊢ 𝑔 : G

21 of 56

TypeSearch 5 Type Search as Proof Search

The hyp rule states that if a hypothesis𝑚 has the exact same type as the goal 𝑔,

then the proof is finished. The hypothesis𝑚 that matches the desired goal is then

included as a search result.

5.4.2 Function Simplification

Γ,
{
𝑔1 : G1

}
⊢ 𝑔 𝑔1 : G2

→goal

𝑔1Γ ⊢ 𝑔 : G1 → G2

The→goal
rule allows simplifying goals with a function type. Since the goal term 𝑔

has a functional type, we know that 𝑔 must be of the form 𝜆𝑔1 : G1. 𝑔 𝑔1. By applying

→goal
, we transfer this input parameter 𝑔1 from the goal into the set of hypotheses,

and thus eliminate one → from the goal type. This is repeated until the goal only

consists of the return type. The new hypothesis created by→goal
is assigned a fresh

name, i.e. a term identifier that does not appear in Γ.

5.4.3 Bounded Universal Quantification

Γ,

{
𝑚 : ∀𝑋 <: T. M X

𝑚 S : M S

}
,
{
S <: T

}
⊢ 𝑔 : G

∀hyp
𝑚 S

Γ,
{
𝑚 : ∀𝑋 <: T. M X

}
,
{
S <: T

}
⊢ 𝑔 : G

This rule allows creating a new hypothesis 𝑚 S from a universally quantified

hypothesis𝑚 by instantiating the type variable 𝑋 with a concrete type S. This instan-
tiation is then added to the set of hypotheses. Such an instantiation is only permitted

if S satisfies the bound of 𝑋 , namely S <: T.
If the goal contains universally quantified types, we want to eliminate them to

bring the goal closer to normal form (see section 6.1). The following rule accomplishes

this by eliminating one universal quantifier at a time:

Γ,
{
F <: T

}
⊢ 𝑔 F : G F

∀goal
𝑋 ↦→FΓ ⊢ 𝑔 : ∀𝑋 <: T. G X

Similar to →goal
, we know that 𝑔 must have the form 𝜆𝑋 <: T. 𝑔 𝑋 based on its

type. Same as in ∀hyp, the universal type variable 𝑋 is instantiated with a concrete

type. However, this time F is a fresh type, following the same idea of →goal
, i.e. a type

that does not exist in Γ. Additionally, this fresh type F is bounded by the same bound

present on 𝑋 .

5.4.4 Resolution

Γ,


𝑛 : T
𝑚 : T → M

𝑚 𝑛 : M

 ⊢ 𝑔 : G

resolution𝑚 𝑛

Γ,

{
𝑛 : T
𝑚 : T → M

}
⊢ 𝑔 : G

The resolution rule performs incremental simplification by proving one parameter

of a function𝑚 at a time. This resolution is analogous to function application: applying

resolution introduces a new hypothesis where the function𝑚 is applied to the term

22 of 56

TypeSearch 5 Type Search as Proof Search

𝑛. Using the resolution rule allows complex hypotheses to be deconstructed into a

composition of simpler hypotheses.

5.4.5 Subtyping

Γ,

{
𝑚 : S

𝑚<:
: T

}
,
{
S <: T

}
⊢ 𝑔 : G

sub𝑚,S<:T
Γ,
{
𝑚 : S

}
,
{
S <: T

}
⊢ 𝑔 : G

The final proof rule is a rule for dealing with subtyping. The rule states that the

type of a term𝑚 can be replaced with any of its supertypes.

The question might arise, why subtyping is not simply handled through “upcast”

functions, converting a subtype to a supertype. Assume we have the function 𝑎𝑏𝑠 :

∀𝑋 <: Number. 𝑋 → 𝑋 . Here, 𝑋 may only be instantiated with a subtype of Number,
for example Int. The knowledge that Int is a subtype ofNumberwould only be encoded
by the fact that an upcast function with type signature Int → Number exists. If we
were to treat this upcast function the same as any other function, we would run into

problems. Assume a function 𝑝𝑎𝑟𝑠𝑒𝑁𝑢𝑚𝑏𝑒𝑟 : String → Number exists. The presence
of this function suggests that we might be able to instantiate 𝑋 in 𝑎𝑏𝑠 with String,
which would be incorrect. Rather than carefully differentiating upcast functions from

regular functions, we decided to keep these concepts separate in TSaPS.

5.5 Proof Example

Let’s take a look at a complete example of a proof, shown in figure 5.1. Such a proof

construction is best understood by reading the proof tree from bottom-to-top.

We start by creating the proof context by adding all known API functions and

subtype relations. For this example we limit ourselves to only the single API function

𝑔𝑒𝑡 and the subtype relation ∀𝑋 . ArrayList 𝑋 <: List 𝑋 . On the right-hand side we add

the query expression ArrayList X, Int -> X, translated into 𝜆-syntax.

The first three proof rules perform goal normalization (see section 6.1). First, the

type variable 𝑋 is instantiated with the fresh type 𝐹 . Then, both input parameters (𝑔1
and 𝑔2) of 𝑔 are transfered into the proof context with the →goal

rule. The goal is now

in normal form and has type 𝐹 .

Looking through all hypotheses in the proof context, we find that 𝑔𝑒𝑡 is a goal

candidate and apply transforming proof rules to arrive at an exact match. See chapter

6 for a detailed description of how we determine which proof rule to apply when. The

next rule we need to apply is ∀hyp to instantiate 𝑋 on 𝑔𝑒𝑡 with F. This yields the new
hypothesis 𝑔𝑒𝑡 F.

The new hypothesis is now a function with two input parameters. For each one of

these we want to apply the resolution rule. Before we can do so, however, we need to

remediate the type mismatch between the first parameter of 𝑔𝑒𝑡 F of type List F and

𝑔2 of type ArrayList F. Fortunately, we have a subtyping relation for exactly this. We

apply the sub rule to obtain the hypothesis 𝑔<:
1

with type List F.
Now we can apply the resolution rule once for each parameter, ultimately arriving

at the hypothesis 𝑔𝑒𝑡 F 𝑔<:
1
𝑔2 of type F. Having obtained a hypothesis with the exact

same type as the goal type, we have found a valid proof and top off the proof with the

hyp rule.

23 of 56

TypeSearch 5 Type Search as Proof Search

hyp𝑔𝑒𝑡 F 𝑔<:
1

𝑔2

𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

. . .

𝑔𝑒𝑡 F 𝑔<:
1

: Int → F
𝑔𝑒𝑡 F 𝑔<:

1
𝑔2 : F

∀𝑋 . ArrayList 𝑋 <: List 𝑋


⊢ 𝑔 F 𝑔1 𝑔2 : F

resolution𝑔𝑒𝑡 F 𝑔<:
1

𝑔2

𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

𝑔1 : ArrayList F
𝑔2 : Int

𝑔𝑒𝑡 F : List F → Int → F
𝑔<:
1

: List F
𝑔𝑒𝑡 F 𝑔<:

1
: Int → F

∀𝑋 . ArrayList 𝑋 <: List 𝑋


⊢ 𝑔 F 𝑔1 𝑔2 : F

resolution𝑔𝑒𝑡 F 𝑔<:
1

𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

𝑔1 : ArrayList F
𝑔2 : Int

𝑔𝑒𝑡 F : List F → Int → F
𝑔<:
1

: List F

∀𝑋 . ArrayList 𝑋 <: List 𝑋


⊢ 𝑔 F 𝑔1 𝑔2 : F

sub𝑔1,ArrayList<:List

𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

𝑔1 : ArrayList F
𝑔2 : Int

𝑔𝑒𝑡 F : List F → Int → F

∀𝑋 . ArrayList 𝑋 <: List 𝑋


⊢ 𝑔 F 𝑔1 𝑔2 : F

∀hyp
𝑔𝑒𝑡 F

𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

𝑔1 : ArrayList F
𝑔2 : Int

∀𝑋 . ArrayList 𝑋 <: List 𝑋


⊢ 𝑔 F 𝑔1 𝑔2 : F

→goal

𝑔2
𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

𝑔1 : ArrayList F

∀𝑋 . ArrayList 𝑋 <: List 𝑋

 ⊢ 𝑔 F 𝑔1 : Int → F

→goal

𝑔1
𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

∀𝑋 . ArrayList 𝑋 <: List 𝑋

 ⊢ 𝑔 F : ArrayList F → Int → F

∀goal
𝑋 ↦→F

𝑔𝑒𝑡 : ∀𝑋 . List 𝑋 → Int → 𝑋

∀𝑋 . ArrayList 𝑋 <: List 𝑋

 ⊢ 𝑔 : ∀𝑋 . ArrayList 𝑋 → Int → 𝑋

Figure 5.1: Proof tree of “∀𝑋 . ArrayList 𝑋 → Int → 𝑋 ” with subtyping

24 of 56

6 Searching for Proofs
In this chapter we discuss how TypeSearch implements search for valid proofs within

TSaPS. Figure 6.1 shows an overview of the entire search procedure. It assumes that

any query parsing and translation into the TSaPS data model has already been done.

Figure 6.1: Search method procedure

This proof search rarely leads to a single valid proof. Usually, there are multiple

possible choices for any proof step. Thus, the output of this search procedure is a

proof search tree, where every leaf corresponds to a valid proof. Branches represent

different choices to get to a valid proof.

6.1 Goal Normalization

Before we can start searching for proofs, it is convenient to transform the goal (i.e. the

“query”) into a normal form. A goal is considered to be in normal form, if (1) the goal

contains no type parameters, and (2) the goal contains no arrows.

To achieve this, we first apply the proof rule ∀goal for every type parameter the

goal has. Once the goal no longer contains any type parameters, we apply →goal
until

the goal no longer has any arrows. The goal is now in normal form. The restriction

that universally quantified types may only occur on the outermost layers guarantees

that this order of operations is sufficient to arrive at the normal form. Furthermore,

this goal normalization automatically uncurries any functional return types in the

query. For example, the queries A, B -> (C -> D) and A, B, C -> D are treated identically.

6.2 Goal Candidates

After goal normalization has completed, the goal term now has a single concrete type.

We call this type the “goal type”. The proof search in general is performed “backwards”,

starting with this goal type. To start, we collect all goal candidates — terms (proof

hypotheses) that could eventually return a type compatible with our goal type. This

includes terms that return:

• the same type as the goal type

25 of 56

TypeSearch 6 Searching for Proofs

• a subtype of the goal type

• a type equal to the goal type after applying a type mapping (see section 2.6)

• a subtype of the goal type after applying a type mapping

• a type parameter where the goal type is a subtype of the parameter’s bound

• a type parameter where the parameter’s bound is a subtype of the goal type

6.2.1 Candidate Index
To efficiently retrieve these goal candidates, a reverse index is built ahead of time during

application start up. This data structure indexes every hypothesis by its return type,

and all of its supertypes. The types used in the index are always types after applying

any type mappings. For parameterized types, only the “raw” type is considered for

the index, so the type without any applied type arguments. If the return type of a

hypothesis is a type variable, the hypothesis is indexed by the type variable’s bound, all

subtypes of the bound, and all supertypes of the bound. If a type variable is unbounded

(∀𝑋 <: ⊤), it is added to a list of unbounded universals rather than added to the list

of every possible type. This means we can fetch all goal candidates with only two

lookups in the index: one for the goal type and one to get all unbounded return types.

Figure 6.2 illustrates this concept.

Number

Integer

Iterable

Collection

List

Set

𝑣𝑎𝑙𝑢𝑒𝑂 𝑓 : String → Integer

𝑠𝑖𝑧𝑒 : ∀𝑋 . List 𝑋 → Int

𝑎𝑠𝐿𝑖𝑠𝑡 : ∀𝑋 . Array 𝑋 → List 𝑋

𝑒𝑚𝑝𝑡𝑦 : ∀𝑋 <: Collection. () → 𝑋

Figure 6.2: Goal Candidate Index

The reverse index uses an over-approximation of the return type. This means that

the returned hypotheses are a superset of the actual goal candidates. To narrow down

these “index candidates” to the real goal candidates, every returned hypothesis must

now be compared in more detail against the goal type of the query. This comparison

mainly includes checking for the precise type arguments, which have been omitted

from the reverse index. For example, a goal type of List String will find the index

candidate with return type List Integer, which is not actually compatible. Thus, this

index candidate will be discarded.

26 of 56

TypeSearch 6 Searching for Proofs

6.3 Universals

Once all goal candidates have been determined, we continue to process each candidate

individually down the chain depicted in figure 6.1. As the first step, we check whether

the hypothesis has any type parameters. If so, we look for an instantiation.

If the candidate’s return type is or contains a type parameter, the instantiation

is found by instantiating the type parameter so that the return type equals (or is a

subtype of) the goal type. This is similar to unification, but considers subtyping as

well.

Finding an instantiation is more complicated if the type parameter does not occur

in the candidate’s return type. Due to function composition, such type parameters

could potentially be instantiated with any possible type (within the type parameter’s

bounds). At this point, TypeSearch implements a heuristic to limit the search space

for possible instantiations: only types mentioned in the query are considered. Then,

an exhaustive search is performed by instantiating the type parameter with all types

mentioned in the query. This limitation does not exclude any valid proofs that do not

use function composition.

6.4 Functions

This step deals with resolving function parameters and can be considered the most

central part of the proof search. Resolution happens one function parameter at a time

and then repeats. However, instead of fetching goal candidates, we fetch resolution

candidates based on the type of the parameter being resolved. Each resolution candidate

is then recursively processed as if it were a goal candidate with the parameter type

being treated as the goal type.

Such a recursive resolution quickly leads to exponential explosion of the search

space. For this reason, TypeSearch has a configurable maximum search depth and

maximum function composition depth. Appendix B shows all configuration parameters

of TypeSearch.
If no resolution candidates can be found for a function parameter, the candidate is

rejected. Otherwise, a resolution proof rule is recorded in the proof tree.

6.5 Mapped Types

If a candidate has made it successfully through resolution, we have found a valid

proof. We merely need to (potentially) add some proof rules on top of the result

to formally finish the proof. The first adjustment that needs to be done is to check

for type mappings. For example, the fully resolved hypothesis might have the type

“Function Int Bool” for the goal type “Predicate Int”. They are related through the

common representation “Int → Bool”. To achieve equality between the type of the

hypothesis and the goal, we need to convert the Function type to a Predicate. Note
that there exists no type mapping for this direct relationship. Instead, we can obtain

such a type mapping by composing the type mappings “Function → fn1” and the

inverse of “Predicate → fn1”, as shown in figure 6.3.

27 of 56

TypeSearch 6 Searching for Proofs

fn1 := ∀𝑃0 . ∀𝑅. 𝑃0 → 𝑅

∀𝑇 . ∀𝑅. Function 𝑇 𝑅 ∀𝑇 . Predicate 𝑇

𝑃0 ↦→ 𝑇

𝑅 ↦→ 𝑅
𝑃0 ↦→ 𝑇

𝑅 ↦→ Bool

𝑇 ↦→ 𝑃0

Figure 6.3: Type Mapping Composition

6.6 Subtyping

If the type of the (fully resolved) candidate is a subtype of the goal type, we need

to apply a sub rule. This step should never lead to rejection of a candidate, as this

subtype compatibility has already been checked during goal candidate retrieval. The

application of the sub proof rule is merely a formality. However, the addition of this

proof rule can be an important factor when ranking proofs amongst each other.

6.7 Proof Finalization

As the final step, the hyp rule is added to the proof, completing it. Now that all valid

proofs have been found, the proofs are ranked according to a relevance metric, such

that “better” proofs appear higher up in the search result list.

TypeSearch trivially sorts proofs by proof length, with shorter proofs being con-

sidered more relevant. This can be interpreted as shorter proofs needing fewer trans-

formations of the corresponding term(s) to conform to the query. However, this runs

into a different problem: the TSaPS proof grammar, and proof search in general, does

not require that the hypotheses introduced from goal normalization are actually used

in the proof. This means the result will include valid proofs using terms with fewer

arguments than the query. From a proof-theoretical point of view this is absolutely

correct. For our purposes, however, we desire that as many of the parameters specified

in the query as possible are actually used in the proof. TypeSearch achieves this by

applying a configurable penalty to all proofs based on how many query parameters re-

main unused in the proof. These two simple ranking rules already turn out to produce

very useful relevance rankings as shown in chapter 7.

After proof ranking has completed, we are still left with an ordered list of proofs

rather than actual search results that could be shown to the user. For the moment,

TypeSearch simply uses the goal candidate of the proof and selects the corresponding

ValueDef as the search result. This is a shortcut that does not work properly if a proof

contains function composition — the composed functions would be lost. To correctly

handle function composition, a more intelligent transformation from proof to search

result would be required, such as code synthesis, described in the next section.

28 of 56

TypeSearch 6 Searching for Proofs

6.8 Code Synthesis

Whenever a proof rule is applied, any transformations apply equally to types and

terms. This means not only does a valid proof give us an API function (term) that

satisfies the given query, the proof also tells us exactly which parameter of that API

function should be provided with which value.

The hyp rule references a single term that has the exact same type as the goal

type. Often, this referenced term contains function applications in the form of e.g.

𝑚 𝑛. Such applications can be translated back into (pseudo-)code snippets. The result

of the example in figure 5.1 of “𝑔𝑒𝑡 F 𝑔<:
1

𝑔2 : F” can be translated back into the

following compact psuedo code: X g = get<X>(g1, g2). Here, g1 and g2 are the first and

second parameters of the query, respectively, and X is the type variable of the query,

which was instantiated to F during proof search. A more verbose example is given

in listing 6.1. In the verbose example, the query is reflected in the signature of the

function g. The implementation of g corresponds to the proof result.

1 forall X. X g(ArrayList <X> g1, Int g2) {
2 return get <X>(g1, g2);
3 }

Listing 6.1: Verbose synthesis for the proof in figure 5.1.

If a proof contains function composition, the synthesized code snippet would reflect

this by containing additional function calls.

29 of 56

7 Evaluating TypeSearch
This chapter shows performance measurement results of TypeSearch, the proof of

concept implementation of TSaPS. Due to the absence of a real user-base, performance

measurements were done by selecting a random sample population of JDK 21 API

functions. For each API function, a query is generated with a type signature equal to

that of the function. Then, these queries are executed, and the desired metrics collected

in order to give an initial estimate of the feasibility of using this approach in practice.

7.1 Speed

Table 7.1: Response time statistics

Mean 1 212ms

Sample Std. Dev. 4 027ms

50% (Median) 239ms

90% 2 078ms

99% 24 127ms

Speed measurements are measured from the point in time a query is issued to

the moment the list of search results is returned. Figure 7.1 shows a histogram of

response times across a sample population of 1 000 against an index size of 40 000 API

functions. The entirety of JDK 21 contains 41 208 “relevant” functions (see section 3.2).

The histogram is limited to a range of 0 to 5 seconds response time for legibility. Any

response times exceeding 5 seconds are included in the last bar, leading to the visible

peak. Table 7.1 shows some key statistics about this distribution.

0 1 2 3 4 5

0

50

100

150

200

Response time [s]

C
o
u
n
t

Histogram of query response times

Figure 7.1: Response time histogram

30 of 56

TypeSearch 7 Evaluating TypeSearch

Figure 7.1 shows the distribution of response times for queries against a fixed index

of 40 000 API functions. To get a feeling of how well TSaPS and TypeSearch scale with

index size, figure 7.2 shows the mean and median response times in relation to index

size. Each of these means and medians were calculated from the same random sample

population of 1 000 queries.

0 1 2 3 4

·104

0

200

400

600

800

1,000

1,200

Index size

R
e
s
p
o
n
s
e
t
i
m
e
[
m
s
]

Response time scaling by index size

Median

Mean

Figure 7.2: Response times by index size

7.2 Quality

The quality of search results is harder to measure meaningfully. We measured the

quality of TypeSearch using the same approach of taking random samples and generat-

ing queries from them. We then record the position of the sample in the search result

list. The results of this measurement are shown in figure 7.3.

The small increase in the histogram at the value 100 is due to the fact that we

assigned a result position of 100 to every sample where the sample was not found

within the first 100 search results.

7.3 Metric Collection

To eventually get real feedback about the usage of TypeSearch and the user’s satisfac-

tions with the results, TypeSearch collects certain metrics about the application’s usage.

Firstly, all issued queries are logged, together with the response time. Importantly, this

also stores syntactically invalid queries. This gives us information about how users

think a query should be formulated. We do not store any information about the client

that issued the query for data privacy reasons.

Additionally, users have the possibility to give feedback about concrete search

results. After issuing a query, every returned search result has buttons to “like” or

“dislike” a search result. Figure 7.4 shows a screenshot of the TypeSearch user interface

31 of 56

TypeSearch 7 Evaluating TypeSearch

20 40 60 80 100

0

200

400

600

Search result position

C
o
u
n
t

Histogram of search result positions

Figure 7.3: Quality histogram

with the feedback buttons on the right side. The user may then supply additional,

optional written feedback. This feedback is stored together with the corresponding

query. We do not yet have any significant amount of feedback, but we hope that this

user-supplied feedback feature will allow us to optimize the rankings moving forward.

Figure 7.4: TypeSearch User Interface

32 of 56

8 Comparing Related Work
The idea of building specialized software to search for functions based on an approx-

imate type signature is not new. Type-directed search has been used both as the

objective and as an intermediate step for code synthesis in various approaches. This

chapter goes over some related work in this field, with some notable mentions at the

end.

8.1 Hoogle (2005)

Hoogle [Mit05][Mit08] for Haskell is likely one of the best known and most successful

type-directed search engines in the world of typed functional programming languages.

Hoogle being specifically a search engine for Haskell was also the main motivation

behind this thesis: building a type-directed search engine with a language-agnostic

core. Hoogle has undergone multiple iterations, most of them being a complete rewrite

with a fundamentally different concept at its center. The newest iteration, Hoogle 5,
is based on fingerprinting functions based on certain indicators, such as arity and

type frequency [Mit20]. This same principle is implemented in a previous version of

TypeSearch1. However, a desire for a more systematic approach with fewer heuristics

led us to develop TSaPS.
Guo et al. published an improvement they calledHoogle+ in 2020 [Guo+19][Jam+20].

Their main improvement over Hoogle is that Hoogle+ can synthesize entire terms by

composing multiple functions, similar to the jungloid mining approach. However,

it pays for the added functionality with a significant performance loss and added

complexity regarding the required user input. Hoogle+ not only uses a type-signature

query string, but also properties, as known from property-based testing techniques.

These properties are evaluated during the search to discard undesired compositions,

improving accuracy, but slowing down the process.

In 2023, Guerra et al. published Hoogle★. They improved upon Hoogle+ by adding

the ability to synthesize constants and 𝜆-abstractions. Both Hoogle+ and Hoogle★
base their implementation on TyGAR [Guo+19]. TyGAR is a search method extending

SyPet’s [Fen+17] Petri nets with the support for parametric polymorphism, but still

without any support for subtyping. SyPet’s use of Petri nets is discussed in more detail

in section 8.3.

8.2 Jungloid Mining (2005)

The tool Prospector created by Mandelin et al. was a code assistance feature for the

Eclipse IDE released in 2005 [Man+05]. It was one of the first search engines for Java

functions capable of returning composite results. It focused on synthesizing code

fragments which transformed an input type into an output type, possibly by calling

multiple intermediate methods. The authors named such a fragment a “jungloid”. Espe-

cially for complex tasks (i.e. tasks requiring intermediate steps), Prospector performed

respectably. The main limitation of their approach, however, is that “jungloids” can

only transform a single input type into a desired output type. Oftentimes, a developer

requires combining multiple values/types into a single type, which is why TSaPS allows
for multiple input types.

1https://legacy.typesearch.dev

33 of 56

https://legacy.typesearch.dev

TypeSearch 8 Comparing Related Work

8.3 SyPet (2017)

SyPet [Fen+17] is a more recent contribution, offering type-directed search for Java.

Feng et al.’s main insight is that modeling the search space as a Petri net instead

of hypergraphs improves performance significantly. While SyPet claims to support

parametric polymorphism, they do so by creating monomorphic instantiations of

functions for every possible instantiation type. For a large search space with many

types this quickly becomes unfeasible - especially for functions with multiple type

parameters. Additionally, SyPet has no support for subtyping and specifically targets

Java.

8.3.1 Petri Nets
Feng et al. use Petri nets to model types as resources that are “consumed” by functions

when used as an input, and “produced” when returned by a function. This represen-

tation creates a structure similar to a hypergraph, but with certain advantages (and

disadvantages) to a pure hypergraph. One of the main benefits of Petri nets listed

by Feng et al. is that Petri nets can account for functions with side effects, while

hypergraphs only really work for pure functions.

TypeSearch, as will be discussed in section 8.3.2, uses an approach that is very

similar to hypergraphs. As the SyPet paper mentions, this allows us to directly obtain

synthesized code snippets from a valid proof, rather than separating the approach into

a sketch and synthesis phase, as SyPet does. We acknowledge that this representation

does not support functions with side effects. However, we decided to prioritize speed

and ease-of-use of our tool. For example, TypeSearch does not make use of test cases

to verify synthesized code snippets. We believe it is more important for the user to

get quick results. If a user must first write one or more test cases, this introduces

a significant effort for the user before they get any search results. Furthermore, we

believe that users are able to quickly judge the majority of synthesized code snippets

on whether they fulfill their needs or whether they are nonsense.

We believe a search engine should inherently be designed to deal with inaccuracies,

as the user by definition has incomplete information over what they need (otherwise

they would not need the search engine in the first place). Therefore, certain restrictions

of SyPet, such as every input parameter must be used in the synthesized code, are

overly limiting. It is perfectly imaginable that a user might think that they need a

certain parameter for the function they want, but the function actually does not need

that parameter — or vice-versa.

8.3.2 Hypergraphs
For TSaPS and TypeSearch we decided to use proof search as the primary mechanism.

Unsurprisingly, this approach can be translated into other representations. One such

representation uses hypergraphs. In such a hypergraph, nodes correspond to types,

and (hyper-)edges correspond to functions.

TSaPS and TypeSearch also consider subtyping relations and quantified types, which
are not easily added to a hypergraph representation where every node corresponds to a

concrete type. Support for these type constructs is done similarly to TyGAR [Guo+19],

in that each node in the hypergraph analogy corresponds to an abstract type (e.g. a

type variable with specific bounds, or a type including all of its subtypes), rather than

a concrete type.

34 of 56

TypeSearch 8 Comparing Related Work

To model TSaPS in terms of hypergraphs, we proceed as follows: each time a

query is executed, we insert two artificial nodes 𝑆 and 𝑇 into the hypergraph. Edges

are then added from 𝑆 to every node (type) that occurs in the query’s parameter list.

Similarly, an edge is inserted from the query’s return type to 𝑇 . Proof search now

corresponds to finding a “complete“ subgraph that contains the artificial node 𝑇 . A

subgraph is considered “complete” if every node other than 𝑆 in that subgraph has

either an incoming edge from a different node in the same subgraph, or at least one

incoming edge without any source vertices. This condition corresponds to resolution

having terminated, meaning there are no “left-over” input parameters to be substituted.

Starting at𝑇 , we traverse the hypergraph along one incoming edge at a time. After

the first step, we arrive at Bool. In the example depicted, the next step selected the

incoming edge “contains”, which leads us to the String and Char nodes. If a different

incoming edge had been selected (not shown in the example), we might find a different

valid search result, or the search might not lead to a valid subgraph.

This procedure repeats, until there are no further incoming edges (or incoming

edges have no source vertices) to follow. This usually means we arrived at 𝑆 (no

further incoming edges), or there exists a function that produces the required type

without needing any inputs (an edge without any source vertices). In other words, the

backwards traversal always either ends up at 𝑆 or at a “dead end”, an edge without

source vertices. Traversal is also aborted, if the maximum search depth or maximum

function composition depth has been reached.

Query: String, Int→ Bool

S String

Int Char

Bool T

𝑔1

𝑔2 contains

toChar

Figure 8.1: Hypergraph backwards traversal analogy

In the example shown in figure 8.1, the query String, Int -> Bool is depicted as

backwards traversal of a hypergraph. The subgraph found through this backwards

traversal can then be synthesized back into the search result Bool g = contains(g1, toChar(

g2)).

8.4 Others

There exist multiple different type-directed search engines for various programming

languages. Scaps [Weg+16] is a search engine for the Scala programming language and

makes use of “variance fingerprinting”. The approach is similar to the fingerprinting

idea of Hoogle 5, but focuses on the variance polarity of parameters. elm-search2

2https://klaftertief.github.io/elm-search/

35 of 56

https://klaftertief.github.io/elm-search/

TypeSearch 8 Comparing Related Work

and Moogle [OL20] are search engines for Elm. The former is built on top of custom

type-distance heuristics. The latter uses a unification algorithm and AST-based graph

models. Loogle3 is a tool for Lean and Mathlib.

3https://loogle.lean-lang.org/

36 of 56

https://loogle.lean-lang.org/

9 Further Work
There are still many improvements to TypeSearch in its future: For one, code synthesis

is not yet implemented, and function composition is not yet viable with the current

eager enumeration of all possible proofs. An important performance improvement

would be to refactor proof search to work lazily and prioritize the proof search based

on which branches are most promising. In a similar vein, instantiation of type variables

that do not occur in the return type of a function could be improved by deferring

instantiation through the use of unification placeholder variables.

The ranking of search results works well in most cases, but could be improved.

For example, some API functions use a type variable for the return type but that type

variable does not occur anywhere in the parameter list. Such API functions are highly

unlikely to be the desired search result and should be ranked lower, because such

a function can return any type. One example of such a function is org.junit.jupiter

.api.Assertions#fail(String) with the type signature ∀𝑇 . String → 𝑇 . Given the query

String -> String, a function ∀𝑇 . 𝑇 → 𝑇 should be considered a better match than the fail

function. Currently, they would be assigned the same ranking.

While TypeSearch handles extraneous query parameters well (there is no hard

requirement that all query parameters must be used in a proof), it cannot yet find

proofs using parameters that were forgotten in the query. One approach to extend

proof search with the ability to use missing hypotheses during resolution, is to add a

∀𝑋 . 𝑋 hypothesis to the index. Such a hypothesis will be able to resolve any parameter.

Of course, this hypothesis must be assigned a large penalty, so that it is only used as a

fallback if no other resolutions can be found.

Lastly, how well the language-agnostic core truly performs for additional program-

ming languages will only be proven when one or more additional language plugins are

added. Especially the addition of a plugin for a programming language with a structural

type system, such as TypeScript, would be useful to validate the language-independent

aspects of both proof search itself and the subtyping registry.

37 of 56

10 Conclusion
Type-directed API search engines are a useful tool for many programming languages.

Various approaches have been explored and all of them have focused on a specific

programming language. Recent work seems to prefer Petri nets for type-directed

search and code synthesis. In this Master’s Thesis we introduced TSaPS, a type-directed
search approach based on the Curry-Howard correspondence and proof search. We

demonstrated that such a proof-based search can also perform well, even for large

indexes with tens of thousands of functions. TSaPS supports parametric polymorphism

and subtype polymorphism as first-class citizens, which many existing tools do not.

TypeSearch successfully offers a proof-of-concept implementation of TSaPS that
developers can use immediately. TypeSearch ships with a language plugin for Java.

Due to being built on top of a programming language-independent core, extending

TypeSearch with support for additional languages only requires developing a plugin

for parsing the language.

All in all, we conclude that a type-directed API search and code synthesis approach

based on the Curry-Howard correspondence and proof search is certainly viable and

flexible enough to be used for typed mainstream programming languages. With our

proof-of-concept implementation, TypeSearch, we show that the approach performs

well for medium to large sized libraries. We are looking forward to further development

of TypeSearch and are eager for feedback, which can be given on https://typesearch.
dev.

38 of 56

https://typesearch.dev
https://typesearch.dev

References
[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Model-

ing Language User Guide. 2nd. Addison-Wesley Professional, 2005. isbn:

0321267974.

[EM24] Marc Etter and Farhad Mehta. TypeSearch: Type-Directed API Search For
All. Planned publication. 2024.

[Ett20] Marc Etter. Type Systems for the OO Programmer. https://eprints.ost.ch/
id/eprint/1110/. 2020.

[Fen+17] Yu Feng et al. “Component-Based Synthesis for Complex APIs”. In: SIG-
PLAN Not. 52.1 (Jan. 2017), pp. 599–612. issn: 0362-1340. doi: 10.1145/
3093333.3009851. url: https://doi.org/10.1145/3093333.3009851.

[Fou21] Linux Foundation. OpenAPI Specification v3.1.0. https://spec.openapis.org/
oas/latest.html. Feb. 2021.

[Gos+23] James Gosling et al. The Java® Language Specification — Java SE 21 Edition.
https://docs.oracle.com/javase/specs/jls/se21/html/index.html. Aug. 2023.

[Guo+19] Zheng Guo et al. “Program Synthesis by Type-Guided Abstraction Refine-

ment”. In: Proc. ACM Program. Lang. 4.POPL (Dec. 2019). doi: 10.1145/
3371080. url: https://doi.org/10.1145/3371080.

[Jam+20] Michael B. James et al. “Digging for Fold: Synthesis-Aided API Discovery

for Haskell”. In: Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi:

10.1145/3428273. url: https://doi.org/10.1145/3428273.

[Man+05] David Mandelin et al. “Jungloid Mining: Helping to Navigate the API

Jungle”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’05. Chicago, IL, USA:
Association for Computing Machinery, 2005, pp. 48–61. isbn: 1595930566.

doi: 10.1145/1065010.1065018. url: https://doi.org/10.1145/
1065010.1065018.

[Mit05] Neil Mitchell. Hoogle. Presentation from PLASMA. Dec. 2005. url: https:
//ndmitchell.com/downloads/slides-hoogle-08_dec_2005.pdf.

[Mit08] Neil Mitchell. “Hoogle Overview”. In: The Monad.Reader 12 (Nov. 2008),
pp. 27–35. url: https://ndmitchell.com/downloads/paper-hoogle_
overview-19_nov_2008.pdf.

[Mit20] Neil Mitchell. Hoogle Searching Overview. https://neilmitchell.blogspot.
com/2020/06/hoogle-searching-overview.html. 2020.

[OL20] Junpeng Ouyang and Yan Liu. “A Novel Type-Based API Search Engine

for Open Source Elm Packages”. In: Proceedings of the 2019 3rd Interna-
tional Conference on Computer Science and Artificial Intelligence. CSAI ’19.
Normal, IL, USA: Association for Computing Machinery, 2020, pp. 294–

298. isbn: 9781450376273. doi: 10.1145/3374587.3374633. url: https:
//doi.org/10.1145/3374587.3374633.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press.

Cambridge, MA, USA: MIT Press, 2002. isbn: 9780262162098.

39 of 56

https://eprints.ost.ch/id/eprint/1110/
https://eprints.ost.ch/id/eprint/1110/
https://doi.org/10.1145/3093333.3009851
https://doi.org/10.1145/3093333.3009851
https://doi.org/10.1145/3093333.3009851
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3428273
https://doi.org/10.1145/3428273
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/1065010.1065018
https://ndmitchell.com/downloads/slides-hoogle-08_dec_2005.pdf
https://ndmitchell.com/downloads/slides-hoogle-08_dec_2005.pdf
https://ndmitchell.com/downloads/paper-hoogle_overview-19_nov_2008.pdf
https://ndmitchell.com/downloads/paper-hoogle_overview-19_nov_2008.pdf
https://neilmitchell.blogspot.com/2020/06/hoogle-searching-overview.html
https://neilmitchell.blogspot.com/2020/06/hoogle-searching-overview.html
https://doi.org/10.1145/3374587.3374633
https://doi.org/10.1145/3374587.3374633
https://doi.org/10.1145/3374587.3374633

TypeSearch References

[Weg+16] Lukas Wegmann et al. “Scaps: Type-Directed API Search for Scala”. In:

Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala. SCALA
2016. Amsterdam, Netherlands: Association for Computing Machinery,

2016, pp. 95–104. isbn: 9781450346481. doi: 10.1145/2998392.2998405.
url: https://doi.org/10.1145/2998392.2998405.

40 of 56

https://doi.org/10.1145/2998392.2998405
https://doi.org/10.1145/2998392.2998405

List of Figures

2.1 Data model for type definitions . 3

2.2 Data model for type references . 5

2.3 FunctionTypeRef referencing FunctionTypeDef with type arguments 6

2.4 Data model for type parameters . 6

2.5 Data model for type arguments . 7

2.6 Data model for value definitions . 8

2.7 Example of a ValueDef data structure 9

2.8 Example of type comparison using type mappings 10

2.9 Example of a Subtyping Graph with subtype distance 11

3.1 Java type construct mappings into the ALDM 12

3.2 Java language extraction example . 13

4.1 Example of a TypeSearch query . 16

5.1 Proof tree of “∀𝑋 . ArrayList 𝑋 → Int → 𝑋 ” with subtyping 24

6.1 Search method procedure . 25

6.2 Goal Candidate Index . 26

6.3 Type Mapping Composition . 28

7.1 Response time histogram . 30

7.2 Response times by index size . 31

7.3 Quality histogram . 32

7.4 TypeSearch User Interface . 32

8.1 Hypergraph backwards traversal analogy 35

41 of 56

Listings
6.1 Verbose synthesis for the proof in figure 5.1. 29

A.1 Query Syntax ANTLRv4 Grammar . 44

A.2 Query Syntax ANTLRv4 Lexer Grammar 45

C.1 TypeSearch REST API Specification 50

C.2 API Problem Object Specification . 54

42 of 56

List of Tables

5.1 Type examples . 20

5.2 Term examples . 20

7.1 Response time statistics . 30

B.1 TypeSearch Configuration Properties 48

D.1 TypeSearch Code Metrics . 56

43 of 56

A Query Syntax Specification
Listings A.1 and A.2 show the formal query specification using ANTLRv4

1
grammar.

This specification is used to generate the parser and Java data model for queries.

1 parser grammar QueryGrammar;
2
3 options {
4 tokenVocab=QueryLexerGrammar;
5 }
6
7 // starting rule
8 query: queryString EOF;
9

10 queryString
11 : modules queryExpr
12 | queryExpr modules
13 | queryExpr
14 ;
15
16 queryExpr
17 : combinedQuery
18 | typeQuery
19 | keywordQuery
20 ;
21
22 // module filters
23 modules
24 : moduleInclusion+
25 | moduleExclusion+
26 ;
27
28 moduleInclusion: ADD module;
29 moduleExclusion: SUB module;
30
31 module: (moduleGroup? MODULE_SEPARATOR)? moduleName (MODULE_SEPARATOR

moduleVersion)?;
32 moduleGroup: MODULE_IDENTIFIER;
33 moduleName: MODULE_IDENTIFIER;
34 moduleVersion: MODULE_IDENTIFIER;
35
36 // queries
37 keywordQuery: ~(COLON | ARROW | MODULE_IDENTIFIER)*;
38 typeQuery: parameters ARROW typeExpr;
39 combinedQuery: keywordQuery COLON typeQuery;
40
41 // parameters
42 parameters
43 : noParameters
44 | atLeastOneParameter
45 ;
46
47 noParameters: LPAREN RPAREN;
48
49 atLeastOneParameter
50 : typeExprList
51 | LPAREN typeExprList RPAREN
52 ;
53
54 // type expressions
55 typeExprList: typeExpr (COMMA typeExpr)*;
56
57 typeExpr
58 : simpleType
59 | parameterizedType
60 | functionType
61 ;
62
63 simpleType
64 : IDENTIFIER

1https://www.antlr.org/

44 of 56

https://www.antlr.org/

TypeSearch A Query Syntax Specification

65 | WILDCARD
66 ;
67
68 parameterizedType: IDENTIFIER LT typeExprList GT;
69
70 functionType: LPAREN parameters ARROW typeExpr RPAREN;

Listing A.1: Query Syntax ANTLRv4 Grammar

1 lexer grammar QueryLexerGrammar;
2
3 fragment IDENTIFIER_CHAR: [a-zA-Z0 -9.$#_];
4
5 // DEFAULT_MODE: if the first character is a + or -, switch to

PRE_MODULE_MODE
6 // otherwise , switch to UNDECIDED_QUERY_MODE
7 SUB: ’-’ -> mode(PRE_MODULE_MODE);
8 ADD: ’+’ -> mode(PRE_MODULE_MODE);
9

10 COLON: ’:’ -> mode(KEYWORD_QUERY_MODE);
11 ARROW: (’->’ | ’=>’) -> mode(KEYWORD_QUERY_MODE);
12
13 LPAREN: ’(’ -> mode(UNDECIDED_QUERY_WORD_MODE);
14 RPAREN: ’)’ -> mode(KEYWORD_QUERY_MODE);
15 COMMA: ’,’ -> mode(KEYWORD_QUERY_MODE);
16 LT: ’<’ -> mode(KEYWORD_QUERY_MODE);
17 GT: ’>’ -> mode(KEYWORD_QUERY_MODE);
18
19 WILDCARD: [?_*] -> mode(UNDECIDED_QUERY_WORD_MODE); // appears before

IDENTIFIER to have higher priority in parsing
20 IDENTIFIER: IDENTIFIER_CHAR+ -> mode(UNDECIDED_QUERY_WORD_MODE);
21 WORD: ~[\t\r\n]+? -> mode(KEYWORD_QUERY_MODE);
22
23 WS: [\t\r\n]+ -> skip;
24
25
26 // MODULE_MODE: is not actually used as a lexer mode , but used for common

token types
27 mode MODULE_MODE;
28 MODULE_IDENTIFIER: ~[\t\r\n:]+;
29 MODULE_SEPARATOR: COLON;
30
31
32 // PRE_MODULE_MODE: used when lexing modules at the beginning of the query

input
33 // As soon as we encounter whitespace (i.e. module spec is finished), switch

to
34 // QUERY_OR_MODULE_MODE.
35 mode PRE_MODULE_MODE;
36 PRE_MODULE_IDENTIFIER: MODULE_IDENTIFIER -> type(MODULE_IDENTIFIER);
37 PRE_MODULE_SEPARATOR: MODULE_SEPARATOR -> type(MODULE_SEPARATOR);
38 PRE_MODULE_TERMINATOR: WS -> skip , mode(QUERY_OR_MODULE_MODE);
39
40
41 // QUERY_OR_MODULE_MODE: We don ’t know whether to expect another module spec
42 // or a query element next. Depending on the next character , switch to the
43 // corresponding mode.
44 mode QUERY_OR_MODULE_MODE;
45 QUERY_OR_MODULE_SUB: SUB -> type(SUB), mode(PRE_MODULE_MODE);
46 QUERY_OR_MODULE_ADD: ADD -> type(ADD), mode(PRE_MODULE_MODE);
47
48 QUERY_OR_MODULE_LPAREN: ’(’ -> type(LPAREN), mode(UNDECIDED_QUERY_WORD_MODE);
49
50 QUERY_OR_MODULE_IDENTIFIER: IDENTIFIER_CHAR+ -> type(IDENTIFIER), mode(

UNDECIDED_QUERY_WORD_MODE);
51 QUERY_OR_MODULE_WORD: WORD -> type(WORD), mode(UNDECIDED_QUERY_MODE);
52
53 QUERY_OR_MODULE_WS: WS -> skip;
54
55
56 // UNDECIDED_QUERY_MODE: We are lexing the actual query tokens.
57 // We do not know yet which query type we are lexing for.
58 // If we encounter a + or -, we switch to POST_MODULE_MODE.

45 of 56

TypeSearch A Query Syntax Specification

59 mode UNDECIDED_QUERY_MODE;
60 UNDECIDED_QUERY_COLON: ’:’ -> type(COLON), mode(TYPE_QUERY_MODE);
61 UNDECIDED_QUERY_ARROW: (’->’ | ’=>’) -> type(ARROW), mode(TYPE_QUERY_MODE);
62
63 UNDECIDED_QUERY_SUB: SUB -> type(SUB), mode(POST_MODULE_MODE);
64 UNDECIDED_QUERY_ADD: ADD -> type(ADD), mode(POST_MODULE_MODE);
65
66 UNDECIDED_QUERY_LPAREN: ’(’ -> type(LPAREN);
67 UNDECIDED_QUERY_RPAREN: ’)’ -> type(RPAREN), mode(KEYWORD_QUERY_MODE);
68 UNDECIDED_QUERY_COMMA: ’,’ -> type(COMMA), mode(KEYWORD_QUERY_MODE);
69 UNDECIDED_QUERY_LT: ’<’ -> type(LT), mode(KEYWORD_QUERY_MODE);
70 UNDECIDED_QUERY_GT: ’>’ -> type(GT), mode(KEYWORD_QUERY_MODE);
71
72 UNDECIDED_QUERY_WILDCARD: WILDCARD -> type(WILDCARD), mode(

UNDECIDED_QUERY_WORD_MODE);
73 UNDECIDED_QUERY_IDENTIFIER: IDENTIFIER_CHAR+ -> type(IDENTIFIER), mode(

UNDECIDED_QUERY_WORD_MODE);
74 UNDECIDED_QUERY_WORD: WORD -> type(WORD), mode(UNDECIDED_QUERY_WORD_MODE);
75
76
77 // UNDECIDED_QUERY_WORD_MODE: We are in the middle of lexing a word of a

query.
78 // We do not know yet which query type we are lexing for.
79 mode UNDECIDED_QUERY_WORD_MODE;
80 UNDECIDED_QUERY_WORD_LPAREN: ’(’ -> type(LPAREN);
81 UNDECIDED_QUERY_WORD_RPAREN: ’)’ -> type(RPAREN);
82 UNDECIDED_QUERY_WORD_COMMA: ’,’ -> type(COMMA);
83 UNDECIDED_QUERY_WORD_LT: ’<’ -> type(LT);
84 UNDECIDED_QUERY_WORD_GT: ’>’ -> type(GT);
85
86 UNDECIDED_QUERY_WORD_WILDCARD: WILDCARD -> type(WILDCARD);
87 UNDECIDED_QUERY_WORD_IDENTIFIER: IDENTIFIER_CHAR+ -> type(IDENTIFIER);
88 UNDECIDED_QUERY_WORD_WORD: WORD -> type(WORD);
89
90 UNDECIDED_QUERY_WORD_WS: WS -> skip , mode(UNDECIDED_QUERY_MODE);
91
92
93 // KEYWORD_QUERY_MODE: We are lexing keywords.
94 // If we encounter a :, we switch to TYPE_QUERY_MODE.
95 // If we encounter a + or - at the beginning of a word ,
96 // we switch to POST_MODULE_MODE.
97 mode KEYWORD_QUERY_MODE;
98 KEYWORD_QUERY_COLON: WS ’:’ -> type(COLON), mode(TYPE_QUERY_MODE);
99

100 KEYWORD_QUERY_SUB: WS SUB -> type(SUB), mode(POST_MODULE_MODE);
101 KEYWORD_QUERY_ADD: WS ADD -> type(ADD), mode(POST_MODULE_MODE);
102
103 KEYWORD_QUERY_WORD: WORD -> type(WORD);
104
105 KEYWORD_QUERY_WS: WS -> skip;
106
107
108 // TYPE_QUERY_MODE: We are lexing type expressions.
109 // If we encounter a + or -, we switch to POST_MODULE_MODE.
110 mode TYPE_QUERY_MODE;
111 TYPE_QUERY_SUB: SUB -> type(SUB), mode(POST_MODULE_MODE);
112 TYPE_QUERY_ADD: ADD -> type(ADD), mode(POST_MODULE_MODE);
113
114 TYPE_QUERY_ARROW: (’->’ | ’=>’) -> type(ARROW);
115
116 TYPE_QUERY_LPAREN: ’(’ -> type(LPAREN);
117 TYPE_QUERY_RPAREN: ’)’ -> type(RPAREN);
118 TYPE_QUERY_COMMA: ’,’ -> type(COMMA);
119 TYPE_QUERY_LT: ’<’ -> type(LT);
120 TYPE_QUERY_GT: ’>’ -> type(GT);
121
122 TYPE_QUERY_WILDCARD: WILDCARD -> type(WILDCARD);
123 TYPE_QUERY_IDENTIFIER: IDENTIFIER_CHAR+ -> type(IDENTIFIER);
124
125 TYPE_QUERY_WS: WS -> skip;
126
127
128 // POST_MODULE_MODE: Used when lexing modules at the end of the query.
129 // At this point we only expect modules and cycle between this mode and

46 of 56

TypeSearch A Query Syntax Specification

130 // POST_MODULE_MORE_MODE.
131 mode POST_MODULE_MODE;
132 POST_MODULE_IDENTIFIER: MODULE_IDENTIFIER -> type(MODULE_IDENTIFIER);
133 POST_MODULE_SEPARATOR: MODULE_SEPARATOR -> type(MODULE_SEPARATOR);
134 POST_MODULE_TERMINATOR: WS -> skip , mode(POST_MODULE_MORE_MODE);
135
136
137 // POST_MODULE_MORE_MODE: We have finished lexing a module at the end of the

query.
138 // The only thing that may occur now is another module spec.
139 mode POST_MODULE_MORE_MODE;
140 POST_MODULE_MORE_SUB: SUB -> type(SUB), mode(POST_MODULE_MODE);
141 POST_MODULE_MORE_ADD: ADD -> type(ADD), mode(POST_MODULE_MODE);
142 POST_MODULE_MORE_WS: WS -> skip;

Listing A.2: Query Syntax ANTLRv4 Lexer Grammar

47 of 56

B Configuration Parameters
TypeSearch has various configuration properties to customize the behavior of the appli-

cation. These configuration properties are provided through SpringBoot’s externalized

configuration
1
. Table B.1 shows all available configuration properties, as well as their

default values if not specified.

Table B.1: TypeSearch Configuration Properties

Property Description

typesearch.plugins.java:

parallel Whether Java language extraction should make use of

multi-threaded parallel processing. Defaults to false.

typesearch.plugins.java.jdk:

source-zip Location of the ZIP archive containing the JDK source code.

Defaults to <java.home>/lib/src.zip.

typesearch.plugins.java.maven:

artifacts List of Maven artifacts to download and add to the ALDM

/ proof context.

dependencies List of Maven artifacts used only as dependencies for the

indexed artifacts. Will not be added to the index.

typesearch.search:

keyword-search-

implementation

Currently, only the value keyword is supported.

type-search-

implementation

proof (default) for the TSaPS search implementation, or

fingerprint for the legacy search implementation.

unused-query-

parameter-penalty

Penalty added to a proof for every query parameter that is

not used in the proof. Defaults to 15.0.

typesearch.search.proof:

max-search-depth Base for calculating the maximum number of proof rules

a proof may have. The final maximum search depth is

calculated based on this number and the number of type

variables and input parameters of the query. Defaults to 3.

max-search-penalty Maximum penalty a proof may accrue before the proof

search branch is abandoned. Defaults to 30.0

max-function-

composition-depth

Maximumdepth of function composition allowed in a proof.

Defaults to 0.

1https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#
features.external-config

48 of 56

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config

TypeSearch B Configuration Parameters

Table B.1: TypeSearch Configuration Properties (Continued)

Property Description

universal-parameter-

instantiation-mode

Defines how instantiations for type variables that only

occur as function parameter types are searched. NONE: Skip

such hypotheses. GOAL (default): Only try types that occur

in the goal. UNIFICATION: Defer instantiation until a later

unification step. Not yet supported. ONE: Same as ALL, but

terminate search as soon as an instantiation has led to a

successful proof. ALL: Attempt instantiation with all valid

types.

resolution-

candidate-search-

mode

Defines how resolution candidates are searched. ONE: Termi-

nate search after a resolution has led to a successful proof.

ALL (default): Consider all resolution candidates.

typesearch.search.proof.rules:

forall-hyp Penalty for adding a ∀hyp proof rule. Defaults to 1.0

hyp Penalty for adding a hyp proof rule. Defaults to 1.0

replace-hyp Penalty for applying a type mapping. Defaults to 1.0

resolution Penalty for adding a resolution proof rule. Defaults to 1.0

sub Penalty for adding a sub proof rule. Defaults to 1.0

49 of 56

C API Specification
The REST-API of the TypeSearch web server is specified using the OpenAPI 3 standard

[Fou21]. The REST-API specification can also be found at https://api.typesearch.
dev. This specification is used to generate Java server code and TypeScript client code

using the OpenAPI-Generator
1
tool.

1 openap i : ’3.0.3’
2

3 i n f o :

4 t i t l e : TypeSearch REST API

5 v e r s i o n : 1 . 0 . 0

6

7 pa th s :

8 / ap i / v1 / l anguage s :

9 ge t :

10 o p e r a t i o n I d : getLanguagesV1

11 d e s c r i p t i o n : Re tu rns a l i s t o f a l l programming l anguage s t h i s s e r v e r

s uppo r t s q u e r i e s f o r .

12 t a g s :

13 - TypeSearch

14 r e s pon s e s :

15 ’200’:
16 d e s c r i p t i o n : Su c c e s s

17 con t en t :

18 a p p l i c a t i o n / j s on :

19 schema:

20 type : a r r ay

21 i t ems :

22 type : s t r i n g

23

24 / ap i / v1 / modules:

25 ge t :

26 o p e r a t i o n I d : getModulesV1

27 d e s c r i p t i o n : Re tu rns a l l indexed modules f o r a l l suppor t ed programming

l anguage s .

28 t a g s :

29 - TypeSearch

30 r e s pon s e s :

31 200:

32 d e s c r i p t i o n : Su c c e s s

33 con t en t :

34 a p p l i c a t i o n / j s on :

35 schema:

36 $ r e f : ’#/ components/schemas/ModulesResponseDtoV1 ’
37

38 / ap i / v1 / search − r e s u l t s :

39 ge t :

40 o p e r a t i o n I d : g e t S e a r c hRe s u l t sV1

41 d e s c r i p t i o n : R e t r i e v e s s e a r ch r e s u l t s based on the g iven query .

42 t a g s :

43 - TypeSearch

44 pa rame te r s :

45 - name: l anguage

46 in : query

47 d e s c r i p t i o n : The programming language p l ug i n to s e a r ch through .

48 schema:

49 type : s t r i n g

50 example: J ava

51 r e q u i r e d : true
52 - name: query

53 in : query

54 schema:

55 type : s t r i n g

56 r e q u i r e d : true
57 - name: l i m i t

58 in : query

59 d e s c r i p t i o n : The maximum number o f r e s u l t s to be i n c l u d e d in the

r e sponse .

1https://github.com/OpenAPITools/openapi-generator

50 of 56

https://api.typesearch.dev
https://api.typesearch.dev
https://github.com/OpenAPITools/openapi-generator

TypeSearch C API Specification

60 schema:

61 type : i n t e g e r

62 format : i n t 3 2

63 minimum: 1

64 r e s pon s e s :

65 ’200’:
66 d e s c r i p t i o n : L i s t o f s e a r ch r e s u l t s

67 con t en t :

68 a p p l i c a t i o n / j s on :

69 schema:

70 $ r e f : ’#/ components/schemas/SearchResultResponseDtoV1 ’
71 ’400’:
72 d e s c r i p t i o n : Unsupported l anguage or i n v a l i d query .

73 con t en t :

74 a p p l i c a t i o n / problem+ j s on :

75 schema:

76 type : o b j e c t

77 ’422’:
78 d e s c r i p t i o n :

79 The prov ided query was s y n t a c t i c a l l y v a l i d , but cou ld not be

p ro c e s s e d .

80 Th i s can occur e . g . when a type r e f e r e n c e d in the query cannot be

r e s o l v e d .

81 con t en t :

82 a p p l i c a t i o n / problem+ j s on :

83 schema:

84 $ r e f : ’./ apiProblem.yaml’
85

86

87 / ap i / v1 / r e s u l t − f e edback :

88 po s t :

89 o p e r a t i o n I d : s endRe su l t F e edba ck

90 d e s c r i p t i o n : Sends f e edback i n f o rma t i on about a s e a r ch r e s u l t .

91 t a g s :

92 - TypeSearch

93 reques tBody :

94 r e q u i r e d : true
95 con t en t :

96 a p p l i c a t i o n / j s on :

97 schema:

98 $ r e f : ’#/ components/schemas/ResultFeedbackDtoV1 ’
99 r e s pon s e s :

100 ’204’:
101 d e s c r i p t i o n : Feedback was s en t s u c c e s s f u l l y .

102

103

104 components:

105 schemas:

106 ModuleDtoV1:

107 p r o p e r t i e s :

108 group:

109 type : s t r i n g

110 n u l l a b l e : true
111 name:

112 type : s t r i n g

113 v e r s i o n :

114 type : s t r i n g

115 n u l l a b l e : true
116 r e q u i r e d :

117 - name

118 example:

119 group: ch . o s t . t y p e s e a r ch

120 name: web− r e s t − ap i

121 v e r s i o n : 1 . 4 . 2

122

123 ModulesResponseDtoV1:

124 a d d i t i o n a l P r o p e r t i e s :

125 type : a r r ay

126 i t ems :

127 $ r e f : ’#/ components/schemas/ModuleDtoV1 ’
128 example:

129 J ava :

130 - group: JDK

131 name: j a v a . base

51 of 56

TypeSearch C API Specification

132 v e r s i o n : 17

133 - group: ch . o s t . t y p e s e a r ch

134 name: web− r e s t − ap i

135 v e r s i o n : 1 . 4 . 2

136

137 QueryDtoV1:

138 p r o p e r t i e s :

139 type :

140 type : s t r i n g

141 enum: [KEYWORD, TYPE , COMBINED]

142 va lue :

143 type : s t r i n g

144 r e q u i r e d :

145 - type

146 - va l u e

147 example:

148 type : COMBINED

149 va lue : "map : Stream <A>, (A -> B) -> Stream "
150

151 QueryOptionsDtoV1:

152 p r o p e r t i e s :

153 l anguage :

154 type : s t r i n g

155 inc ludedModu le s :

156 type : a r r ay

157 i t ems :

158 $ r e f : ’#/ components/schemas/ModuleDtoV1 ’
159 exc ludedModules :

160 type : a r r ay

161 i t ems :

162 $ r e f : ’#/ components/schemas/ModuleDtoV1 ’
163 r e q u i r e d :

164 - l anguage

165 - inc ludedModu le s

166 - exc ludedModules

167 example:

168 l anguage : J ava

169 inc ludedModu le s :

170 - name: j a v a . base

171 - group: org . spr ing f ramework

172 name: sp r ing − co re

173 v e r s i o n : 6 . 0 . 1 0

174 exc ludedModules : []

175

176 QueryWithOptionsDtoV1:

177 p r o p e r t i e s :

178 query :

179 $ r e f : ’#/ components/schemas/QueryDtoV1 ’
180 queryOpt ions :

181 $ r e f : ’#/ components/schemas/QueryOptionsDtoV1 ’
182 r e q u i r e d :

183 - query

184 - queryOpt ions

185

186 Resu l tFeedbackDtoV1 :

187 p r o p e r t i e s :

188 query :

189 $ r e f : ’#/ components/schemas/QueryWithOptionsDtoV1 ’
190 r e s u l t I d :

191 type : s t r i n g

192 rank:

193 type : i n t e g e r

194 format : i n t 3 2

195 minimum: 1

196 f e edback :

197 type : s t r i n g

198 enum:

199 - WHAT_I_LOOKED_FOR

200 - SHOULD_BE_HIGHER

201 - SHOULD_BE_LOWER

202 - SHOULD_NOT_APPEAR

203 - OTHER

204 comment:

205 type : s t r i n g

52 of 56

TypeSearch C API Specification

206 minLength: 10

207 maxLength: 200

208 r e q u i r e d :

209 - query

210 - r e s u l t I d

211 - rank

212 - f e edback

213

214 Sea rchResu l tResponseDtoV1 :

215 p r o p e r t i e s :

216 numResul t s :

217 type : i n t e g e r

218 format : i n t 3 2

219 minimum: 0

220 example: 1

221 query :

222 $ r e f : ’#/ components/schemas/QueryWithOptionsDtoV1 ’
223 r e s u l t s :

224 type : a r r ay

225 i t ems :

226 $ r e f : ’#/ components/schemas/SearchResultDtoV1 ’
227 r e q u i r e d :

228 - numResul t s

229 - query

230 - r e s u l t s

231

232 Sea r chResu l tD toV1 :

233 p r o p e r t i e s :

234 va lueDe f :

235 $ r e f : ’#/ components/schemas/ValueDefDtoV1 ’
236 s c o r e :

237 type : number

238 format : doub le

239 e x p l a n a t i o n :

240 type : s t r i n g

241 d e s c r i p t i o n :

242 "A string containing an explanation of how this result ’s score
was calculated.

243 The format of the string depends on the language and storage
plugins used."

244 r e q u i r e d :

245 - va lueDe f

246 - s c o r e

247

248 ValueDefDtoV1:

249 p r o p e r t i e s :

250 i d :

251 type : s t r i n g

252 d e s c r i p t i o n :

253 Usua l l y a f u l l y − q u a l i f i e d − qua l i f i edName i n c l u d i n g a type

s i g n a t u r e to d i s amb i gua t e ove r l o aded f u n c t i o n s .

254 Note t h a t t h i s ID i s on ly r e q u i r e d to be unique wi th in the module

t h a t d e c l a r e s t h i s ValueDef .

255 I . e . the combina t ion o f module+ i d i s gua ran t eed to be unique

a c r o s s a l l p o s s i b l e Va lueDefs .

256 qua l i f i e dName :

257 type : s t r i n g

258 d e s c r i p t i o n :

259 The q u a l i f i e d qua l i f i e dName o f t h i s ValueDef . Th i s qua l i f i e dName

i s unique wi th in the same module , e x c ep t f o r

260 p o s s i b l e o v e r l o a d s o f a f u n c t i o n .

261 shortName:

262 type : s t r i n g

263 d e s c r i p t i o n :

264 The qua l i f i e dName o f t h i s ValueDef , w i thout any q u a l i f y i n g

in fo rma t i on , such as the d e c l a r i n g pa r en t .

265 parentName:

266 type : s t r i n g

267 d e s c r i p t i o n :

268 The qua l i f i e dName o f the "parent" t h a t d e c l a r e s t h i s ValueDef .

The "parent" i s u s u a l l y a type , such as

269 the c l a s s d e c l a r i n g a member f u n c t i o n .

270 sou r c e :

271 type : s t r i n g

53 of 56

TypeSearch C API Specification

272 d e s c r i p t i o n :

273 An approx imate r e p r e s e n t a t i o n o f how t h i s ValueDef was d e c l a r e d

in the sou r c e code .

274 module:

275 $ r e f : ’#/ components/schemas/ModuleDtoV1 ’
276 documenta t ion :

277 type : s t r i n g

278 n u l l a b l e : true
279 r e q u i r e d :

280 - i d

281 - qua l i f i e dName

282 - shortName

283 - parentName

284 - sou r c e

285 - module

286 example:

287 i d : j a v a . u t i l . s t ream . Stream #map(java.util.Function)
288 qua l i f i e dName : j a v a . u t i l . s t ream . Stream #map
289 shortName: map

290 parentName: j a v a . u t i l . s t ream . Stream

291 sou r c e : <R> Stream <R> map (Funct ion <? super T , ? ex t ends R> mapper)

292 module:

293 o r g a n i z a t i o n : ch . o s t . t y p e s e a r ch

294 name: web− r e s t − ap i

295 v e r s i o n : 1 . 4 . 2

296 documenta t ion :

297 /**
298 * Returns a stream consisting of the results of applying the given
299 * function to the elements of this stream.
300 *
301 * <p>This is an

intermediate
302 * operation .
303 *
304 * @param <R> The element type of the new stream
305 * @param mapper a

non -interfering ,
306 *

stateless
307 * function to apply to each element
308 * @return the new stream
309 */

Listing C.1: TypeSearch REST API Specification

1 t i t l e : "API Problem"
2 d e s c r i p t i o n : "API problem response , as per [RFC 7807 application/problem+json

](https :// tools.ietf.org/html/rfc7807)."
3 type : "object"
4 p r o p e r t i e s :

5 type :

6 d e s c r i p t i o n : "A URI reference [RFC3986] that identifies the problem type."
7 type : "string"
8 format : "uri -reference"
9 maxLength: 128

10 t i t l e :

11 d e s c r i p t i o n : "A short , human -readable summary of the problem type."
12 type : "string"
13 maxLength: 120

14 s t a t u s :

15 d e s c r i p t i o n : "The [HTTP status code](https ://www.rfc -editor.org/rfc/
rfc9110#name -status -codes)\

16 \ g ene r a t ed by the o r i g i n s e r v e r f o r t h i s o c cu r r enc e o f the problem . "
17 type: " i n t e g e r "
18 format: " i n t 3 2 "
19 minimum: 100
20 maximum: 599
21 instance:
22 description: "A URI r e f e r e n c e t h a t i d e n t i f i e s the s p e c i f i c o c cu r r enc e o f

the problem . "
23 type: " s t r i n g "
24 format: " ur i − r e f e r e n c e "
25 maxLength: 128

54 of 56

TypeSearch C API Specification

26 detail:
27 description: "A human− r e a d a b l e e x p l a n a t i o n s p e c i f i c t o t h i s o c cu r r en c e o f

the \

28 \ problem . "
29 type: " s t r i n g "
30 maxLength: 2048

Listing C.2: API Problem Object Specification

55 of 56

D Code Metrics
Table D.1 shows various metrics of the TypeSearch implementation.

Table D.1: TypeSearch Code Metrics

Metric Value

Lines of Code 26 948

Average Cyclomatic Complexity 1,74

Test Cases 898

Instruction Coverage 90 %

Branch Coverage 83 %

Method Coverage 95 %

Class Coverage 98 %

56 of 56

	Abstract
	Contents
	Introduction
	Modelling API Contents
	Type Definitions
	Type References
	Type Parameters
	Type Arguments
	Value Definitions
	Type Mappings
	Subtyping Information

	Mining API Contents
	Plugin API
	Java Plugin

	Specifying Search Queries
	Approximate Type Signature
	Module Filter

	Type Search as Proof Search
	Curry-Howard Correspondence
	Proof Syntax
	Term Translation
	Proof Rules
	Proof Example

	Searching for Proofs
	Goal Normalization
	Goal Candidates
	Universals
	Functions
	Mapped Types
	Subtyping
	Proof Finalization
	Code Synthesis

	Evaluating TypeSearch
	Speed
	Quality
	Metric Collection

	Comparing Related Work
	Hoogle (2005)
	Jungloid Mining (2005)
	SyPet (2017)
	Others

	Further Work
	Conclusion
	References
	List of Figures
	Listings
	List of Tables
	Query Syntax Specification
	Configuration Parameters
	API Specification
	Code Metrics

