
Development of a Scalable and
Distributed Streaming Platform

Technical Report

Manuel Metzler Sascha Häring

Bachelor Thesis
Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Spring 2024

Dr. Thomas Bocek
Advisor

Sven Stucki
Procivis AG
Examiner

Prof. Stefan F. Keller
Reader

Abstract

The increasing demand for video streaming services highlights a gap in the availability
of free and open-source tools that support scalable and distributed streaming with video
conversion capabilities. Existing platforms like YouTube and Vimeo offer scalability and
conversion but are neither open source nor self-hostable. Conversely, open-source solutions
such as Jellyfin and PhotoPrism lack the ability to convert videos upon upload and do
not scale efficiently.

This thesis aims to develop a backend server that facilitates scalable and distributed video
streaming with integrated conversion capabilities. The objective is to create a free and
open-source solution that addresses the limitations of current offerings in the market.

The development process began with an evaluation of streaming technologies, focusing on
factors such as client support, openness of the standard, and streaming requirements. Dy-
namic Adaptive Streaming over HTTP (DASH) was selected due to its open standard, ex-
tensive client support, and compatibility with royalty-free formats such as WebM-DASH.
To achieve scalability, the server was designed to be stateless. Video files are automati-
cally converted and published post-upload utilizing a message queue system for signaling,
ensuring scalable and atomic conversion tasks.

Using DASH as the underlying streaming technology allowed the use of modern video
formats, reducing storage requirements. The stateless design enabled horizontal scaling,
while the message queue ensured efficient handling of video conversion tasks. Each con-
version task is processed exactly once and in the order received, ensuring reliability and
temporal decoupling.

The developed streaming platform successfully meets the needs for a scalable, distributed,
and open-source video streaming service with integrated conversion capabilities. It fills
the existing gap by providing a self-hostable solution that leverages modern streaming
standards and scalable architecture, making it a valuable tool for communities and orga-
nizations seeking an alternative to proprietary platforms.

Acknowledgements

We would like to thank selected members of staff at the Eastern Switzerland University of
Applied Sciences for their involvement in this work. In particular, we thank Dr. Thomas
Bocek for encouraging our interest in distributed systems and providing countless men-
toring sessions over the last three semesters. We also extend our gratitude to Prof. Dr.
Olaf Zimmermann for his guidance during the development of the software architecture,
as well as for his lecture, Application Architecture, which proved very helpful.

Management Summary

Problem

Video streaming is increasingly important for both education and entertainment. Existing
video streaming solutions are often proprietary, lack self-hostability, or miss key features.
Proprietary platforms like YouTube and Vimeo offer scalability and video conversion but
are closed-source and cannot be self-hosted. Open-source alternatives such as Jellyfin and
PhotoPrism do not support on-upload video conversion and lack scalability features. To
bridge this gap, a free and open-source tool is required that provides both scalable video
streaming and integrated video conversion in a self-hostable format.

Purpose

This bachelor thesis aims to develop a backend server that enables scalable and distributed
video streaming with integrated video conversion capabilities. The goal is to create a
system that combines the best aspects of proprietary platforms’ scalability and automatic
conversion functionality with the openness and self-hostability of open-source solutions.

This serves the following purposes:

1. Allow users to have complete control over their streaming infrastructure.

2. Maintain high performance, even under heavy load due to the system’s scalability.

3. Provide the convenience of automatic video conversion upon upload.

Methods

To achieve this goal, the project involved several key steps:

Technology Evaluation Various streaming technologies were evaluated based on open-
ness, client implementation support, and serving requirements. Dynamic Adaptive
Streaming over HTTP (DASH) was selected for its open standard, wide client sup-
port, and use of royalty-free formats.

Architectural Design A stateless server design was adopted to handle numerous simul-
taneous requests without maintaining session information, allowing for horizontal
scalability.

iv

Message Queue Integration A message queue system was integrated for video conver-
sion tasks to decouple upload and conversion processes. This ensured that the
system remained responsive and efficient, with tasks processed independently and
managed atomically.

Implementation and Testing The implementation of DASH allows the use of modern
video formats. Strict testing and iterative improvements were conducted throughout
the development process to ensure DASH compliance and reliability.

Results

The final product is a scalable, distributed, and open-source video streaming service that
supports both efficient streaming and seamless video conversion. The stateless server
design allows for easy scalability, and the integration of a message queue system ensures
efficient processing of video conversion tasks. The use of DASH allows a wide range of
clients to stream videos from our service, enabling adaptation for various purposes. This
solution provides a valuable alternative to existing proprietary and open-source platforms,
offering users complete control over their streaming infrastructure.

v

Contents

References ix

Glossary xii

List of Figures xiv

List of Tables xv

List of Code Listings xvi

I. Technical Report 1

1. Introduction 2
1.1. Assignment . 2
1.2. Motivation . 3
1.3. Conditions . 4
1.4. Project Domain . 4

2. Analysis 6
2.1. Requirements . 6

2.1.1. Functionality . 6
2.1.2. Compliance . 7

2.2. Market Analysis . 7
2.3. Domain Analysis . 8

2.3.1. Video . 8
2.3.2. Bit Rate . 12
2.3.3. Streaming . 13

vi

3. Solution Strategy 17
3.1. Overview . 17

3.1.1. Distributed Service . 18
3.1.2. Streaming Protocol . 19
3.1.3. Automatic Conversion . 20

3.2. Technology Evaluations . 23
3.2.1. Video Streaming . 23
3.2.2. Metadata Storage . 26
3.2.3. Storage . 28
3.2.4. Job Scheduling . 29

4. Implementation 31
4.1. Dynamic Adaptive Streaming over HTTP 31

4.1.1. HTTP Range Request . 31
4.1.2. Overview . 32
4.1.3. Manifest . 34
4.1.4. Usage . 36

4.2. Technology Choices . 39
4.2.1. Programming Language . 39
4.2.2. Messaging System . 40
4.2.3. Database . 41
4.2.4. Storage . 42
4.2.5. Video Conversion . 42

4.3. Design and Architecture . 43
4.3.1. Overview . 44
4.3.2. Functional Requirements . 46
4.3.3. Non-Functional Requirements . 47
4.3.4. Architecture Constraints . 49
4.3.5. Architecturally Significant Decisions 51
4.3.6. Building Block View . 54
4.3.7. Runtime View . 57
4.3.8. Deployment View . 58
4.3.9. Cross-Cutting Concepts . 60

4.4. Application . 61
4.4.1. Features . 62
4.4.2. Compliance . 62

vii

4.4.3. Live Test . 63
4.4.4. The FFmpeg Postmortem . 63

5. Results 67
5.1. Future Work . 68

II. Appendix 69

A. Code Listings 70
A.1. Grafana k6 Configuration . 70
A.2. Scalable Docker Compose Configuration 71

viii

References

[1] AV1 Bitstream & Decoding Process Specification, Specification, version 1.0.0-errata1,
Alliance for Open Media, 2019-01. [Online]. Available: https://aomedia.org/av1/.

[2] A. Beach and A. Owen, Video Compression Handbook. Peachpit Press, 2018.

[3] W. Eddy, Transmission Control Protocol (TCP), RFC 9293, 2022-08. [Online].
Available: https://www.rfc-editor.org/info/rfc9293.

[4] R. T. Fielding, M. Nottingham, and R. Julian, HTTP Semantics, RFC 9110, 2022-
06. [Online]. Available: https://www.rfc-editor.org/info/rfc9110.

[5] V. K. Garg, Principles of Distributed Systems. Kluwer Academic Publishers, 1996.

[6] M. Glinz, “On Non-Functional Requirements,” in 15th IEEE International Require-
ments Engineering Conference (RE 2007), IEEE, 2007, pp. 21–26.

[7] H.264: Advanced Video Coding for Generic Audiovisual Services, Recommendation,
International Telecommunication Union, 2021-08. [Online]. Available: https://www.
itu.int/rec/T-REC-H.264.

[8] H.265: High Efficiency Video Coding, Recommendation, International Telecommu-
nication Union, 2023-09. [Online]. Available: https://www.itu.int/rec/T-REC-
H.265.

[9] HTTP Live Streaming, Specification, Apple Inc. [Online]. Available: https://developer.
apple.com/streaming/ (visited on 2024-03-25).

[10] ISO/IEC 13818-3:1998, Information technology – Generic coding of moving pictures
and associated audio information, Part 3: Audio, 1998-04. [Online]. Available: https:
//www.iso.org/standard/26797.html.

[11] ISO/IEC 14496-14:2020, Information technology – Coding of audio-visual objects,
Part 14: MP4 File Format, 2019-12. [Online]. Available: https : //www. iso .org/
standard/79110.html.

ix

https://aomedia.org/av1/
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9110
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.265
https://www.itu.int/rec/T-REC-H.265
https://developer.apple.com/streaming/
https://developer.apple.com/streaming/
https://www.iso.org/standard/26797.html
https://www.iso.org/standard/26797.html
https://www.iso.org/standard/79110.html
https://www.iso.org/standard/79110.html

[12] ISO/IEC 14496-3:2019, Information technology – Coding of audio-visual objects,
Part 3: Audio, 2019-12. [Online]. Available: https://www.iso.org/standard/76383.
html.

[13] ISO/IEC 23009-1:2022, Information technology – Dynamic adaptive streaming over
HTTP (DASH), Part 1: Media presentation description and segment formats, 2022-
08. [Online]. Available: https://www.iso.org/standard/83314.html.

[14] ISO/IEC 23009-2:2020, Information technology – Dynamic adaptive streaming over
HTTP (DASH), Part 2: Conformance and reference software, International Orga-
nization for Standardization, 2020-09. [Online]. Available: https://www.iso.org/
standard/79107.html.

[15] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “The Limit of Horizontal Scaling in Public
Clouds,” ACM Transactions on Modeling and Performance Evaluation of Computing
Systems, vol. 5, no. 1, 2020.

[16] J. Kalvenes and N. Keon, “The market for video on demand,” Networks and Spatial
Economics, vol. 8, pp. 43–59, 2008.

[17] R. C. Martin, Clean Architecture. Prentice Hall, 2017.

[18] T. Masternak and S. Pobiega, “Exactly-once message delivery,” Exactly Once: On
Distributed Systems, 2020. [Online]. Available: https : //exactly - once .github . io/
posts/exactly-once-delivery/.

[19] Matroska Media Container, Specification, Matroska.org, 2017-06. [Online]. Avail-
able: https://www.matroska.org/index.html.

[20] Microsoft Smooth Streaming, Specification, Microsoft Corporation. [Online]. Avail-
able: https : / / web . archive . org / web / 20100615150921 / http : / / www . iis . net /
download/SmoothStreaming (visited on 2024-03-25).

[21] open(2) Linux User’s Manual, Manual, The Linux man-pages Project, 2024-05. [On-
line]. Available: https://www.kernel.org/doc/man-pages/ (visited on 2024-04-20).

[22] R. Pantos and W. May, HTTP Live Streaming, RFC 8216, 2017-08. [Online]. Avail-
able: https://www.rfc-editor.org/info/rfc8216.

[23] pipe(7) Linux User’s Manual, Manual, The Linux man-pages Project, 2024-05. [On-
line]. Available: https://www.kernel.org/doc/man-pages/ (visited on 2024-04-20).

[24] N. Poulton, The Kubernetes Book. Leanpub, 2024. [Online]. Available: https : / /
leanpub.com/thekubernetesbook.

x

https://www.iso.org/standard/76383.html
https://www.iso.org/standard/76383.html
https://www.iso.org/standard/83314.html
https://www.iso.org/standard/79107.html
https://www.iso.org/standard/79107.html
https://exactly-once.github.io/posts/exactly-once-delivery/
https://exactly-once.github.io/posts/exactly-once-delivery/
https://www.matroska.org/index.html
https://web.archive.org/web/20100615150921/http://www.iis.net/download/SmoothStreaming
https://web.archive.org/web/20100615150921/http://www.iis.net/download/SmoothStreaming
https://www.kernel.org/doc/man-pages/
https://www.rfc-editor.org/info/rfc8216
https://www.kernel.org/doc/man-pages/
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook

[25] Recommended Settings for VOD, Specification, Google LLC. [Online]. Available:
https://developers.google.com/media/vp9/settings/vod (visited on 2024-03-08).

[26] L. Richardson, Justice Will Take Us Millions Of Intricate Moves, 2008. [Online].
Available: https://www.crummy.com/writing/speaking/2008-QCon/ (visited on
2024-03-26).

[27] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia, “A Survey
on Quality of Experience of HTTP Adaptive Streaming,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[28] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-Optimal Bitrate
Adaptation for Online Videos,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1698–1711, 2020.

[29] G. Starke, M. Simons, S. Zörner, and R. D. Müller, arc42 by Example, Software
Architecture Documentation in Practice. Packt Publishing Ltd, 2019.

[30] M. A. Titmus, Cloud Native Go. O’Reilly Media, 2021.

[31] J.-M. Valin, K. Vos, and T. B. Terriberry, Definition of the Opus Audio Codec, RFC
6716, 2012-09. [Online]. Available: https://www.rfc-editor.org/info/rfc6716.

[32] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A Kubernetes Controller
for Managing the Availability of Elastic Microservice Based Stateful Applications,”
Journal of Systems and Software, vol. 175, p. 110 924, 2021.

[33] Vorbis I Specification, Specification, Xiph.Org Foundation, 2020-07. [Online]. Avail-
able: https://xiph.org/vorbis/doc/Vorbis_I_spec.html.

[34] VP9 Bitstream & Decoding Process Specification, Draft, version 0.7, WebM Project,
2017-02. [Online]. Available: https://www.webmproject.org/vp9.

[35] WebM Container Guidelines, Draft, WebM Project, 2023-10. [Online]. Available:
https://www.webmproject.org/docs/container.

[36] WebM Dash Specification, Specification, WebM Project. [Online]. Available: https:
//wiki.webmproject.org/adaptive-streaming/webm-dash-specification (visited on
2024-04-01).

[37] A. Wiggins. “The Twelve-Factor App.” (2012), [Online]. Available: https://12factor.
net (visited on 2024-03-12).

[38] O. Zimmermann and M. Stocker, Design Practice Reference, Activities and Tem-
plates to Craft Quality Software in Style. Leanpub, 2023. [Online]. Available: https:
//leanpub.com/dpr.

xi

https://developers.google.com/media/vp9/settings/vod
https://www.crummy.com/writing/speaking/2008-QCon/
https://www.rfc-editor.org/info/rfc6716
https://xiph.org/vorbis/doc/Vorbis_I_spec.html
https://www.webmproject.org/vp9
https://www.webmproject.org/docs/container
https://wiki.webmproject.org/adaptive-streaming/webm-dash-specification
https://wiki.webmproject.org/adaptive-streaming/webm-dash-specification
https://12factor.net
https://12factor.net
https://leanpub.com/dpr
https://leanpub.com/dpr

Glossary

Adaptive Bit Rate Streaming (ABR) Data that a client wants to receive is provided
in different bit rates and qualities, allowing the client to adapt its streaming to
different network conditions. 15, 16, 20, 24, 31, 34, 38, 43, 67

Availability The ability of a system to continue operating and serving requests despite
failures or issues. “Every request receives a (non-error) response, without the guar-
antee that it contains the most recent write.” 3, 16, 18

Cloud Native Cloud native is an approach to software development that utilizes cloud
computing to build and run scalable applications in modern and dynamic environ-
ments. Container technology, microservice architecture and deployment via declar-
ative code are common elements of this architectural style.1 5, 18, 30, 39, 40, 41,
42, 45, 49, 61

Consistency The property of a system in which the state across all participants is the
same at the same time. “Every read receives the most recent write or an error.” 18,
22, 26, 27, 29, 40

Distributed System A system consisting of multiple computers which do not share a
clock or memory, connected by a communications network. 2

Dynamic Adaptive Streaming over HTTP (DASH) A streaming technique that ad-
justs video quality in real-time based on network conditions to ensure smooth play-
back. 26, 31, 32, 36, 37, 38, 42, 43, 44, 45, 54, 57, 62, 63, 67

Frames per Second (fps) A measure of how many individual images are displayed per
second in a video. 8, 43

GNU Affero General Public License (AGPL) A strong copyleft license that permits any-
one to use the software licensed under it commercially or privately, and to distribute

1https://github.com/cncf/toc/blob/main/DEFINITION.md

xii

https://github.com/cncf/toc/blob/main/DEFINITION.md

and modify it freely. When a modified version is released or provides a service over a
network, the complete source code of that modified version must be made available
under the same license.2 61, 67

Open-Source Software that gives users the freedom to run, study, change, and distribute
it. It is often referred to as free software, a term that emphasizes the additional
freedoms that it grants. 3, 4, 26, 37, 53, 61, 62, 67, 68

Parallel System A multiprocessor (computer) system in which individual processors com-
municate via a shared memory. 2

Source-Available A term used to describe software for which the source code is made
available to users, but the terms of distribution do not necessarily comply with the
criteria for free software. Source-available software allows users to view the code
and sometimes modify it, but it may come with restrictions to other freedoms. 4

State The data or condition of a system at a particular point in time. 2, 18, 22, 45, 62

Transmission Control Protocol (TCP) TCP provides reliable data transfer over an un-
reliable network (e.g. IP) by sending it in small parts and waiting for acknowledge-
ment by the recipient. 14, 30

Video on Demand (VoD) Distributing video media without relying on a traditional
video playback device (e.g. DVD Player) or conformance to a broadcasting schedule
on the consumer side. 3, 4, 6, 7, 16, 25, 43

2https://www.gnu.org/licenses/agpl-3.0.txt

xiii

https://www.gnu.org/licenses/agpl-3.0.txt

List of Figures

2.1. The different types of intra- and inter-frames, showing I-, P- and B-frames. 10
2.2. The effects of VBR encoding on bit rate and quality of a video with visually

complex and simple section. 12
2.3. The effects of CBR encoding on bit rate and quality for video sections with

more or less detail. 13
2.4. The quality and bit rate implications of encoding with a constrained bit

rate. 13
2.5. Comparison of file copying and streaming, showing when playback is ready. 15

3.1. Comparison of a stateful service’s instances with their state and a stateless
service and its replicas. 19

3.2. The emerging connectivity pattern as the number of replicas of a service
increases. 21

3.3. A Venn diagram showing the nature of exactly-once semantics. 22

4.1. A sequence diagram illustrating the DASH workflow in order to achieve a
video stream. 33

4.2. DASH manifest hierarchy structure. 35
4.3. The benchmark setup used to evaluate different Go web frameworks. . . . 53
4.4. C4 Container diagram of the GoReeltime platform. 55
4.5. C4 Component diagram of the Reeltime container. 56
4.6. C4 Component diagram of the Reelconvert container. 56
4.7. Workflow of the automatic conversion process upon a video upload. 57
4.8. High-level overview of GoReeltime in a scalable deployment. 61

xiv

List of Tables

2.1. Evaluation of similar products that already exist in the market. 7
2.2. An overview comparing common modern video codecs. 10
2.3. An overview comparing common modern audio codecs. 11

4.1. Results of the Grafana k6 benchmark for Fiber, Gin and Chi. 53

xv

List of Code Listings

4.1. Representation block in an XML-encoded DASH manifest. 36
4.2. Command line starting a single, perishable container. 59
4.3. docker-compose example of a single-container deployment. 59
4.4. Difference between running an FFmpeg command with file names and file

descriptors. 65

A.1. Grafana k6 configuration. 70
A.2. Scalable deployment of the GoReeltime platform using Docker compose. . 71

xvi

Part I.

Technical Report

1

Chapter 1.

Introduction

This report details the development process of the GoReeltime software, a bachelor thesis
project at the Eastern Switzerland University of Applied Sciences (OST).

The aim of this chapter is to introduce the task assignment and explain the motivations
and reasons for the inception of this project. Additionally, it provides an initial assessment
of the project domain and outlines the established core values.

1.1. Assignment

The main goal of this project is the implementation of a media streaming platform as a
distributed system, a single service provided by many different computers.

A key advantage of building a distributed system instead of a parallel system is the pos-
sibility of horizontal scalability to accommodate increased demand for a service. Unlike
vertical scalability, where the resources of a single compute unit providing the service
are increased (e.g., adding more memory to a system), horizontal scalability distributes
requests across multiple compute units participating in the system [5]. This approach to
software system design has gained popularity with the advent of virtualization technolo-
gies and has become a de facto standard for most applications in the ecosystem around
container technologies [15].

While designing software as a distributed system offers many opportunities, such as in-
creased fault tolerance and more flexible cost control, it also presents certain challenges
that have to be overcome. The most notable ones are the absence of a shared state and
temporal decoupling, as one system might not respond immediately to a request made by
another [5].

2

A secondary goal of this project is the utilization and implementation of a streaming
protocol to allow access to media provided by the system. In contrast to a computer
that serves complete units of data (e.g., a file server), a streaming server allows for the
gradual retrieval of certain parts of a file for direct consumption, commonly used in
video streaming. The service developed during this project follows the Video on Demand
(VoD) approach, prioritizing client compatibility over the reduction of storage needed on
the server side [16].

The final goal is to implement the media distribution service in a manner that allows
for the automatic conversion of uploaded media to the format required by the streaming
protocol. This ensures high compatibility with the chosen protocol on the server side and
optimizes performance by streamlining the data for consumption on the client side.

1.2. Motivation

At the time of writing, there is no VoD software available that fulfills all the following
requirements:

Open-source The service qualifies as open-source software, promoting adoption, security
by transparency, and community collaboration. Open-source software empowers
developers to inspect, modify, and enhance the code, ensuring continuous improve-
ment and customization to specific needs.

Self-hosted Users can deploy the service on their own infrastructure, providing data pri-
vacy and customization to exact needs. This approach mitigates the risks associated
with third-party data breaches and ensures full control over content management
and delivery.

Scalable The software can adapt to varying numbers of requests without compromising
performance, making it suitable for large deployments. Scalability ensures that as
the user base grows, the system can maintain high availability and responsiveness,
essential for providing a seamless viewing experience.

The development of such a platform would enable the broad distribution of knowledge and
other video media without relying on third parties or compromising one’s freedoms, ad-
dressing a gap in the current landscape of VoD solutions. By eliminating the dependency
on proprietary platforms, organizations and individuals can maintain autonomy over their
content. Additionally, this solution would foster innovation through community-driven

3

development and collaborative problem-solving, creating a robust and versatile VoD plat-
form that meets diverse needs and use cases.

1.3. Conditions

The following is a list of conditions and constraints that apply during this project, includ-
ing reasoning about why they should be in effect.

Open-source release The software developed during this project is to be released as
open-source software. This not only supports educational purposes but also aims
to attract additional contributors to the project in the future, as it is planned to
be further maintained as an open-source project beyond the scope of this bachelor
thesis.

Dependencies can be studied Any additional components required to run and operate
the developed software need to be licensed under at least a source-available license.
Since this project is conducted in an academic environment and will itself be licensed
as open-source software, it is important that all its dependencies can also be studied.

1.4. Project Domain

Even though the implementation of this media streaming platform takes place in an
educational environment, it does so with the goal of producing usable software. In order
to work towards providing usability to a specific stakeholder, the Distributed Systems and
Ledgers Lab (DSL) at the Eastern Switzerland University of Applied Sciences (OST) has
agreed to act as a customer. They are looking for a solution to distribute video lectures
to students enrolled in their various courses.

To further specify the environment this project is taking place in, a project domain can
be described by combining these stakeholder requirements with the general goals and
motivation of the project. Doing so, the following qualities emerge:

Self-Hosted The DSL at OST wishes to control their published content by providing
their own video streaming service. This means the developed software needs to be
easily installable and come pre-configured with reasonable defaults. It should also
be able to run in larger environments and support gradual growth in environment

4

size in accordance with the current demands regarding system load. In such larger
environments, it should provide qualities like fault tolerance and load balancing
across multiple machines.

The Twelve-Factor App With the growing popularity of the cloud native software archi-
tecture style, a popular methodology for software projects titled “The Twelve-Factor
App” has also risen to fame, promoting technologies and techniques well-suited to
such environments. Initially written by Adam Wiggins with contributions from
many other engineers working on the Heroku application platform, it lays down
twelve important factors that software written for cloud native environments should
fulfill [37]. While some of these qualities may take some effort to implement and
adhere to (e.g., dependency injection principle, stateless services), they have proven
to enhance both maintainability and failure resiliency in software systems [17].

5

Chapter 2.

Analysis

During this chapter, further details of the previously introduced task are worked out. This
encompasses a brief overview of the required functionality of the service, as well as insights
from similar products in the market. The final section provides a technical introduction
to video streaming, forming a foundational understanding for the core functionality of the
service.

2.1. Requirements

The goal of this project is to produce a functional media streaming software, as presented
in the assignment introduction. To further refine this definition, the general requirements
for fulfilling the task are separated into two parts: functionality and compliance.

2.1.1. Functionality

The main functionality of the developed service is to provide a platform for video media
streaming. Considering this, special care has to be taken when deciding on the video
streaming protocol, as this will affect the types of clients that can consume media from
the service. It should be possible to use either a third-party media player or an embedded
built-in client.

The implementation values client compatibility over lower server resource consumption.
For example, this could mean that more data is stored on the server side if this enables
more clients to stream more optimally. This approach aligns with the VoD methodology,
emphasizing content delivery above all else.

6

Table 2.1.: Evaluation of similar products that already exist in the market.

Product OSS SH SC Verdict
YouTube 7 7 3 Reliable and stable service, but operated by a third

party.
Plex 7 31 7 Good for managing a personal media collection, but

neither open-source nor fully manageable internally.
Jellyfin 3 3 7 A personal media collection manager not suitable for

VoD use cases, does not scale.
PhotoPrism 3 3 3 Only support short video media and is not built for VoD

use cases.
1 Plex only works with an external authentication service.

However, it is not a priority of the project to put extended effort into the user-facing
frontend of the platform. Depending on the deployment environment, a user interface
(e.g., website, lecture index) may already be present, in which case it would primarily
rely on a robust backend implementation of the video streaming service.

2.1.2. Compliance

Given the top priority of client compatibility, the developed software should fully and
optimally comply with the specifications of the chosen video streaming protocol. If there is
a repeatable verification test for the chosen protocol, the software should pass it flawlessly,
ensuring that no compatibility issues arise.

2.2. Market Analysis

Several software projects published on the internet fulfill at least one of the requirements
mentioned in section 1.2, such as being open-source (OSS), self-hosted (SH), and scalable
(SC). Table 2.1 shows an overview of existing projects, their compatibility with the re-
quirements in the motivation section, and why they do not yet achieve what the software
developed during this project aims to accomplish.

While all products listed in Table 2.1 fulfill their intended use case very well, they do not
meet every aspect of the outlined schema.

Thus, developing a new solution that meets the defined requirements is warranted.

7

2.3. Domain Analysis

Having confirmed that the inception of a software project is justified, the process of gather-
ing domain knowledge can begin. When building a video streaming service, understanding
the underlying components and their interactions is crucial. This involves a deep dive
into several key areas, including video encoding, bit rate management, and the mechanics
of streaming itself. Each of these elements plays a vital role in ensuring the seamless and
efficient delivery of video content to users.

2.3.1. Video

The key component of a video streaming service is the concept of digital video itself. At
its core, a video is a sequence of images displayed in rapid succession in order to create the
illusion of motion. However, storing an image for every single frame (unit in which visual
updates are measured) the video is made up of would be highly inefficient, requiring (1)
an excessively large amount of storage, and (2) making playback more resource-intensive,
as a full image would need to be loaded multiple times per second. To address this issue,
a video only contains full images at so-called key frames, with other visual changes only
being recorded as per-frame changes.

To enable efficient digital video functionality, various specialized methods are employed:

Key Frames Key frames, also known as intra-frames or I-Frames, are frames in a video
that are encoded without reference to any other frames. They save storage by serv-
ing as reference points for subsequent or previous frames, which are encoded based
on the differences from these key frames rather than being encoded independently
[2].

The placement of key frames can have an effect to the compatibility of video stream-
ing technologies with the encoded video data. How and when these key frames are
created can be approached in three different ways:

• Fixed Interval:

In this approach, the interval between key frames is fixed by specifying either
a time interval or a set number of frames between key frames. When choosing
a time interval (∆t), the Frames per Second (fps) measure of the video (fpsv)
is used to determine how many frames lay between key frames:

8

∆t · fpsv = number of frames per key frame

This method ensures that key frames are placed at regular intervals, which can
be beneficial for certain types of streaming due to its predictability. However,
it does not leverage the optimizations that certain algorithms could apply.

• Algorithmic/Content-Based:

Depending on the encoder used to compress the video, certain algorithms can
be used to detect scene changes or significant differences between frames to
decide when to insert a key frame.

This method is more efficient in terms of compression, as it places key frames
only when necessary, based on content changes, leading to potentially smaller
file sizes. It is primarily used when the smallest possible file sizes are re-
quired, such as when sharing full files across a network. However, due to less
predictable in key frame spacing, this method is not optimal for streaming
applications.

• Hybrid:

It is also possible to limit the maximum interval between key frames while
allowing an algorithm to decide if smaller intervals are needed during more
complex sections of the video. This method aims to balance the predictability
of fixed intervals with the efficiency of content-based placement.

Predicted Frames Predicted frames, also known as inter-frames, are video frames that
reference other frames, be that past or future frames. There are two types of
predicted frames:

• P-Frames: These are forward predicted frames which reference a previous frame
of any type, not just key frames. By only storing the changes to the previous
frame, using predicted frames can significantly reduce storage requirements for
digital video.

• B-Frames: Being bi-directionally predicted frames, these inter-frames reference
not only previous frames, but also subsequent ones. Doing so, they can save
even more storage, allowing for data to be referenced in multiple directions.

This difference-based encoding (used in inter-frames like P-frames and B-frames)

9

I-FrameB-FrameP-FrameI-Frame

The arrows point from the used location to the referenced object.

Figure 2.1.: The different types of intra- and inter-frames, showing I-, P- and B-frames.

Table 2.2.: An overview comparing common modern video codecs.
Name Creator Notes
H.264 ISO/IEC (MPEG) Advanced Video Codec (AVC), widely used [7].
H.265 ISO/IEC (MPEG) High Efficiency Video Coding (HEVC), improve-

ment to H.264 [8].
VP9 Google / WebM Project Open standard, direct competition with H.265 [34].
AV1 Alliance for Open Media Open standard, most efficient as of 2024 [1].

reduces the amount of data needed, as only the changes from the key frames are
stored, leading to significant storage savings [2]. Figure 2.1 provides an overview
of how predicted frames use references to other frames to minimize overhead in a
video file.

Video Format The video format refers to the codec used to encode and decode video
data. It provides the algorithms used to determine inter-frame types, what other
frames they reference and how visual changes are reflected on them. The format
also defines how video data is compressed and decompressed, impacting quality,
compression efficiency, and computational requirements.

Some example codecs are shown in Table 2.2.

Streaming technologies often rely on specific codecs, making the choice of the codec
a valuable decision when it comes to selecting a streaming technology.

Audio Format Digital video media often also includes audio. Similar to video, streaming
technologies frequently depend on specific audio codecs, linking the choice of audio
codec to the overall decision-making process. Likewise, the audio format (or audio
codec) determines how audio data is sampled, quantized, and processed.

Some example codecs are shown in Table 2.3.

10

Table 2.3.: An overview comparing common modern audio codecs.
Name Creator Notes
MP3 Fraunhofer Society MPEG-1 Audio Layer III, most common format for

digital audio [10].
AAC ISO/IEC (MPEG) Advanced Audio Codec, successor to MP3, widely

used [12].
Vorbis Xiph.Org Foundation Open standard [33].
Opus IETF Open standard to replace all others [31].

Container Formats Container formats, also called wrappers, are file formats that bundle
video, audio, and sometimes other data (like subtitles and metadata) into a single
file. While the video format dictates how the video data itself is encoded, the
container format determines how different types of data streams (video, audio, etc.)
are packaged together and synchronized within the file [2]. Common containers are:

• AVI: The default Microsoft Windows media container.

• QuickTime (MOV): The default video container by Apple Inc.

• MP4: Video and audio container for the MPEG codecs [7], based on QuickTime.

• Matroska (MKV): An open standard not limited to video and audio; it can hold
virtually anything [19].

• WebM: A subset of Matroska, commonly used in web-based media distribution
with open audio (Vorbis, Opus) and video formats (VP9, AV1) [35].

Header Information Header information in video files contains metadata about the video
and audio streams, such as codec types, frame rates, resolution, and timing informa-
tion. The location of this header information is crucial for video streaming because
it allows a streaming client to understand and correctly interpret the incoming data
before playing it. The container format of a file determines where header informa-
tion is placed. Depending on the streaming technology used, it may be required to
place the header at the start of the file, allowing the client to begin streaming as
soon as the header is read [2].

In this project, header information is also relevant for the conversion of uploaded
media. Some file types (e.g., QuickTime [2]) write header information at the end
instead of the beginning of the file, which must be handled accordingly.

11

Complex Simple

Quality

Bit Rate

High

Low Time

Figure 2.2.: The effects of VBR encoding on bit rate and quality of a video with visually
complex and simple section.

2.3.2. Bit Rate

In order to fully understand video streaming and the opportunities it brings, bit rate
needs to be covered first. Bit rate is the core concept that allows video streaming to
adapt to the current network conditions, such as low or unstable bandwidth.

Generally the term bit rate refers to the number of bits processed over a given amount of
time. In video streaming, this involves transmitting bits over a communications network.
Additionally, bit rate is significant in video compression. During encoding, the amount of
information stored per unit of time is also referred to as bit rate. This means that bit rate
is in a constant trade-off with the quality of the encoded video. Using more bits yields
higher quality video with more detail, while fewer bits reduce quality.

There are different methods to handle the bit rate to quality balance, each with their
benefits and disadvantages [2]:

Variable Bit Rate (VBR)

In VBR encoding, the bit rate varies throughout the encoding process, based on
the complexity of the content, maintaining constant quality. This allows for high
quality in detailed scenes and lower bit rates in simpler scenes, resulting in more
efficient compression. The effect this has is shown in Figure 2.2.

While VBR encoding results in close to optimal file compression, the varying size
of processed data poses a problem for video streaming applications, where a more
predictable bit rate is required.

Constant Bit Rate (CBR)

CBR encoding maintains a constant bit rate throughout the entire video. While this
provides predictable file sizes and thus data transfer rate, it may not always be the

12

Complex Simple

Quality

Bit Rate

TimeLow

High

Figure 2.3.: The effects of CBR encoding on bit rate and quality for video sections with
more or less detail.

Complex Simple

Bit Rate

Quality

Lower BR Limit

Upper BR Limit

TimeLow

High

Figure 2.4.: The quality and bit rate implications of encoding with a constrained bit rate.

most efficient in terms of quality or minimizing file size. All content is encoded with
the same bit rate, regardless to how much information is actually needed, resulting
in poor visual quality for detail-rich sections, shown in Figure 2.3.

Constrained Bit Rate In constrained bit rate encoding, complex sections of the video
may suffer a small quality loss, while simpler sections may use more information
than necessary. It adds an upper and lower bit rate boundary, ensuring that the bit
rate stays within a predictable range. This balance is shown in Figure 2.4.

Constrained bit rate is a good compromise between visual quality and keeping the
amount of data to transfer predictable, making it an excellent choice for video
encoding.

2.3.3. Streaming

After an introduction to digital video formats and the effect that bit rate has on their
contents, the process of the actual video streaming can be explained properly.

13

Data distribution over a communications network aims to make content available on
another computer as fast as possible, while keeping the process reliable. This was initially
solved by using the Transmission Control Protocol (TCP) [3]. Without utilizing video
streaming technologies, the process to download and play a video file from a server is as
follows:

1. The client requests the file from a server.

2. The server begins transferring small increments of the file to the client, waiting for
acknowledgment before transferring more.

3. The client reassembles the file as increments are received.

4. Once reassembled, the file can be played on the client.

Depending on how fast the network connection speed was, as well as how large the video
file was, this transfer may have taken arbitrarily long. The recipient of the content also
needs to plan ahead, as the file can only be played after being completely downloaded.
From a technical perspective, this is equal to copying a file over a network to a remote
machine before playback.

On the other hand, video streaming is the process of starting the playback as soon as
content begins to arrive at the client, even though the rest of the data is still being
transferred [13].

Header Information Before the client can start to interpret received data, it needs to
know how to interpret it. This requires header information to be transferred first,
so the client can be configured correctly.

Frame Consistency In order to interpret the received data, the client must ensure that
all referenced key frames have been downloaded. If video data contains frames
referencing other frames not yet received, playback will not function properly. TCP
does not know anything about the layer it is providing a service to, so it does not
know about key frames. This mechanism therefore needs to be handled on the
application layer [3].

If these conditions are met, playback of a stream can start as soon as the first parts of
content arrive at the target machine, unlike file copying which requires the entire file first.
See Figure 2.5 for reference.

When incorporating bit rate concepts with streaming, it becomes possible to serve content
under unpredictable network conditions. For example, a client is streaming content from

14

Full File Copy

Streaming

Client

Playback can
start when file is
complete.

Playback can start
as soon as header
and first block are
present.

Server

Header

Header

Header

Figure 2.5.: Comparison of file copying and streaming, showing when playback is ready.

a server while experiencing changes in network quality. When the server offers the stream
in different sizes, the client can select which stream to consume depending on the current
state of the network. If the bandwidth is low, the client could select a stream with a low
bit rate, and the opposite if the bandwidth were to increase again.

This is referred to as Adaptive Bit Rate Streaming (ABR), a streaming technique that
allows the stream to adapt to varying network conditions by adjusting the quality of
the video in real-time. Unlike traditional streaming methods that use a single bit rate
throughout the playback, ABR dynamically switches between different bit rates based
on the current network bandwidth and device capabilities. This ensures a smoother and
more reliable viewing experience, even when network conditions fluctuate.

The following describes how ABR works:

1. Encoding Multiple Versions: The video content is encoded at multiple bit rates,
resulting in several versions of the same video with different quality levels. These
versions are then segmented into small chunks, typically a few seconds each.

2. Manifest File: A manifest file (sometimes also referred to as playlist) is created,
listing all the different bit rate versions and their respective chunks. This file is used
by the client to manage the streaming process.

3. Initial Request: When a user begins to play a video, the client initially requests
the video to start streaming. The process of choosing which representation is used
for the initialization depends on the actual client implementation.

4. Continuous Monitoring: The client continuously monitors relevant metrics, such
as the available bandwidth, network conditions, and device performance.

5. Dynamic Switching: Based on the monitoring data, the client dynamically switches

15

to higher bit rate chunks if the network conditions are good, or to lower bit rate
chunks if the bandwidth decreases. This switching occurs seamlessly, typically be-
tween video chunks, to avoid interruptions in playback.

This approach offers several benefits:

• Improved User Experience: Users experience fewer interruptions and buffering,
as the video quality is adjusted in real-time to match the available bandwidth.

• Optimal Use of Bandwidth: By delivering the highest possible quality that the
network can support at any given moment, ABR maximizes the use of available
bandwidth without overwhelming the network.

• Compatibility Across Devices: ABR ensures that video playback is optimized
for a wide range of devices with varying capabilities, from smartphones to high-
definition TVs.

ABR is commonly used by popular streaming services to deliver high-quality video content
globally, regardless of network conditions [13]. By adapting to changing conditions, ABR
provides a resilient and flexible approach to video streaming that puts availability for the
client first, optimal for VoD.

16

Chapter 3.

Solution Strategy

After establishing more familiarity in the domain of video streaming, as well as identifying
certain challenges to be solved, it is now time to start developing solutions. This chapter
will be separated into two parts: The first section reviews the current project goals and
what problems need to be solved, based on the inputs of the previous chapters. The
second section consists of an evaluation of concrete strategies on how to achieve these
goals.

3.1. Overview

This project has three main goals, as initially introduced in chapter 1:

1. Distributed Service: The final product operates as a distributed system with the
ability to scale according to the current demand.

2. Streaming Protocol Implementation: The developed software implements a
streaming protocol.

3. Automatic Conversion to Required Format: In order to support the streaming
protocol, uploaded media is automatically converted to the required format on the
server side.

Each of these goals involves different problems and decisions that need to be addressed
and solved in order to successfully begin the software development process. As some of
these decisions will significantly influence the software architecture, it is important to
come to conclusions early and document these choices in order to retrace the decision at
a later point [38].

17

3.1.1. Distributed Service

Cloud native applications usually fall into one of two categories: Stateful or stateless.
These terms refer to how the application handles state and whether it prioritizes consis-
tency or availability [5].

Stateful A stateful application maintains an individual state per instance of the service
itself. This is typical for applications like databases and shared caches, where each
instance of the service has meaningful state that needs to be consistent across the
system.

Another property of a stateful application is identity. Since only the specific instance
itself can provide its state to the other system participants, it also needs to be
addressable in a consistent manner (e.g., consistent IP address or DNS name). This
is also the origin of the term instance, highlighting the association of an identity.

A stateful application prioritizes consistency over availability. While multiple in-
stances can increase resilience to failure, there is only every one instance that holds
a specific state [24].

Stateless A stateless service on the other hand does not maintain a state by itself. If
there is a state, it is either managed by a backend service (e.g., a shared database)
or is provided with the request to that service (e.g., JSON Web Tokens (JWT)), or
a combination of both.

An instance of a stateless service does not have an identity, it does therefore not
matter which instance replies to a request. This is not only a property, but a highly
important condition when building a stateless service. Thus, the term replica is
used to refer to a copy of a stateless service, to highlight the lack of an identity.
While this condition may enforce some restrictions, it is a very powerful property
to have during the operational phase of a service, allowing replicas to be added and
removed without regard to consistency [15], [32].

Stateless applications prioritize availability above all. If a replica is not deemed
healthy, it can be replaced. If more or fewer replicas are needed, their number can
simply be adjusted without concern [24].

By detaching state management to either the backend or the request itself, a stateless
service can add and remove replicas without regard to consistency or identity (See Fig-
ure 3.1). With seamless scalability of the service as a primary objective for the software

18

Service

Instance nInstance 1

State 1 State n

Service

Replica Replica

State

Figure 3.1.: Comparison of a stateful service’s instances with their state and a stateless
service and its replicas.

developed during this project, a stateless application has to be achieved.

3.1.2. Streaming Protocol

With video streaming being the main functionality of the software developed during this
project, it is crucial to reason about the opportunities and risks of various approaches to
video streaming. These factors will significantly influence decisions regarding what core
values the streaming capability of the software should represent. The key objectives to
be accomplished are as follows:

Client Independence Ensuring client independence is crucial for the flexibility and adapt-
ability of the streaming software. Playback of content provided should not be re-
stricted to a single client software, but should instead be available to all clients
implementing the chosen streaming standard. This not only provides much more
freedom of choice regarding the deployment pattern to the user of the software,
but also promotes innovation and product diversity by allowing third-party client
implementations. By adhering to this principle, the software can cater to a broader
audience and support a wide range of devices and platforms [13].

Quick Loading Times A frustratingly slow start to video playback can deter users and
negatively impact their overall experience. Seufert et al. [27] suggest that loading
times greater than a few seconds can lead to increased abandonment rates, empha-
sizing the need for efficient and rapid content delivery. While there are many other
factors that influence Quality of Experience (QoE), stalling (waiting for playback
to start or interruptions of active playback) is considered the worst degradation of

19

QoE [27]. Optimizing the initial load time is therefore a priority to ensure user
satisfaction and retention.

Client Driven Decisions In addition to promoting client software independence, clients
should decide the quality of the stream if multiple qualities are available. Empow-
ering clients to make these decisions based on their current network conditions and
device capabilities enhances the overall user experience and ensures optimal perfor-
mance. This approach aligns with user-centric design principles, where the needs
and preferences of the end-user are prioritized in the software’s functionality [27].

Adaptive Bit Rate Streaming Bringing together the best of both variable and constant
bit rates, adaptive bit rate streaming offers both high-quality encoding for complex
video sections and predictable bandwidth requirements. It is the foundation upon
which reliable ABR can be built, allowing for dynamic, client-decided adjustments
to the video quality based on the viewer’s current network conditions, providing a
seamless viewing experience.

Providing users with multiple qualities of the same content also enables endpoints
in less performant or unreliable network environments to stream content. This
adaptability ensures that all users, regardless of their connection speed, receive the
best possible viewing experience without unnecessary buffering or interruptions [27].

High Compliance Finally, the bedrock for a client-first approach is the highest possible
compliance level with the chosen video streaming standard.

Achieving high compliance guarantees that the software will work seamlessly with a
wide range of client applications, ensuring broad compatibility and reducing the risk
of playback issues. This commitment to compliance reflects a dedication to quality
and reliability, reinforcing the software’s reputation as a robust and user-friendly
solution [14].

These qualities will be the primary influences on the decision-making process regarding
video streaming going forward.

3.1.3. Automatic Conversion

In order to ensure that media uploaded to the developed service is in the correct format
required by the chosen streaming protocol, an automatic conversion task should be initi-
ated whenever media is uploaded. This approach mitigates the problem of expecting the

20

Planner 2

Planner m

Worker 2

Planner 1 Worker 1

Worker n

Figure 3.2.: The emerging connectivity pattern as the number of replicas of a service
increases.

user to convert the media properly before uploading, which would be highly error-prone.

The read and write workloads of the service are expected to be asymmetric, as users will
either be uploading media or streaming it [15]. Also considering that video conversion is
a resource-intensive process, the decision was reached that a secondary service that can
be scaled individually will be responsible for converting uploaded files [2].

This pattern is referred to as a Distributed Job Scheduler by the community, describing an
architecture where tasks planned by one system (planner) are executed by other systems
(worker) [18]. By adopting this architecture, three additional challenges need to be solved:

m-to-n Distributed Job Scheduler The expected workflow of a distributed job scheduler
looks as follows:

1. A planner dispatches a job to the worker.

2. The worker executes the job. After completing the job, the worker informs the
planner of the completion, including whether it was successful.

3. The planner processes that result.

In the current scenario, both planner and worker are made up of an arbitrary number
of replicas, meaning m planners need to talk to n workers. Thus, their coordination
becomes more difficult:

• Any planner must be able to schedule a task.

• Every worker must be able to handle it.

• All planner replicas must be able to process the result.

Figure 3.2 illustrates the emerging problem when there is an unknown number of

21

at least once
consistency

exactly once

at most once
consistency

Figure 3.3.: A Venn diagram showing the nature of exactly-once semantics.

replicas, as m · n connections are needed in order to ensure that any replica of the
planner group can communicate with any replica in the worker group [5]. It can
therefore be concluded that an additional service must be responsible for handling
the state of the tasks exchanged between planner and worker.

Temporal Decoupling It also needs to be considered that either group (planner or worker)
may be unavailable during this exchange of state. A worker might not be available
right away when a video needs to be converted, and similarly, a planner might not
be present to receive a result.

This asynchronous behavior would also need to be handled by a mediator between
the two groups or replicas, as there is state which has to be preserved.

The Exactly-Once Problem In the context of job scheduling, losing a job is costly, as this
would mean that a video that a user has uploaded is not converted. Consistency is
therefore a desired property. Similarly, performing a job more often than required is
also expensive, as video conversion is a process that requires significant computing
resources. This uniqueness can also be categorized under consistency, although
stemming from the opposite end.

In combining both the at least once and at most once properties of this conversion
job delivery, their intersection results in a third property: Exactly once (See Fig-
ure 3.3). This is the feature that has to be achieved in order to provide a consistent
scheduling of video conversion jobs. Exactly once semantics are a common problem
in distributed systems, which means that many solutions already exist [5], [18]. This
is usually done by an intermediary service or system between planner and worker,
as also discovered in the other two problems.

22

3.2. Technology Evaluations

Having created a detailed overview of goals to achieve and challenges to solve, more spe-
cific, architecturally relevant decisions can now be made, which will be difficult to change
later. It is important to note that these decisions should encompass generic concepts, not
concrete implementations and specific products or vendors. Switching between different
products that serve the same function is easier than having to change the whole paradigm
itself [38].

The primary decision drivers will be features and familiarity with the general paradigm.
However, it is also crucial to consider the maturity and community support of the tech-
nologies being evaluated. Technologies with active development and a strong user base are
more likely to be reliable and to offer a wealth of resources available for troubleshooting
and optimization. Evaluating the compatibility of these technologies with other compo-
nents in the system is also a vital step, as seamless integration can significantly reduce
implementation time and effort.

3.2.1. Video Streaming

There are different video streaming technologies, each with their own strengths and weak-
nesses. This subsection will introduce some common video streaming standards and review
their compatibility with the core values of this project, introduced in the previous section.
Then, an informed decision can be made, in a process that includes requirements, possible
shortcomings, and opportunities. While this decision is less general than the others in this
section, having to change it later on will be equally hard as switching between paradigms
in the other cases.

The video streaming standards reviewed for this project are:

DASH (Dynamic Adaptive Streaming over HTTP)

DASH is an international standard developed by the Moving Picture Experts Group
(MPEG). It is designed to enable high-quality streaming of media content over the
internet delivered by conventional HTTP web servers. DASH adapts the video
quality based on the current network conditions, ensuring smooth playback even in
fluctuating network environments [13].

Key features of DASH include:

23

• Adaptive Bit Rate Streaming: DASH is a prime example of using ABR.
By providing different formats in multiple sizes and bit rates on the server
side, it allows the client to switch between different quality streams based on
network conditions.

• Wide Support: Compatible with a variety of devices and browsers, as it is
codec-agnostic and supports different audio and video formats.

• Segmented Media: Media is divided into segments, making buffer control
more granular and ensuring smooth playback. Unlike other standards, DASH
does not split its streams into many small files but relies on HTTP Range
Requests to request specific parts of a full file. This approach simplifies file
handling, as there is a single file per stream, not thousands of small blocks
that need to be managed.

• Open Standard: Being an open standard, DASH encourages widespread
adoption and compatibility. There are many community projects and knowl-
edge bases surrounding DASH, as well as numerous client implementations.

A notable subset of DASH developed by the WebM Project is called WebM-DASH.
It focuses on using the WebM container format in combination with other open stan-
dards like the VP8 and VP9 video codecs and Vorbis and Opus audio codecs. This
subset is most notably used by YouTube in their video streaming platform [36].

HLS (HTTP Live Streaming)

HLS is an ABR streaming protocol developed by Apple. It is widely used to stream
media on Apple devices, though it is also supported on other platforms and is
implemented by a diverse set of clients. HLS splits the overall stream into a sequence
of small HTTP-based file downloads, each segment representing a short interval of
playback time.

Key features of HLS include:

• Chunked Streaming: Video is divided into small chunks, allowing for adap-
tive bit rate streaming without the need to support additional request types
on the server side.

• Reliability: HLS has built-in support for encryption and secure streaming,
making it a robust choice for content protection. It is used extensively in
the Apple ecosystem and is a key building block in many of their successful

24

technologies, such as AirPlay [9].

• Live and On-Demand Streaming: HLS is suitable for both live-streaming
and VoD applications and is used in many internet video streaming services.

While there is less implementation work required on the server side with HLS,
its approach involves managing numerous small files. This can lead to increased
overhead and complexity in handling, as each segment is a separate file that must
be managed individually [22].

MSS (Microsoft Smooth Streaming)

MSS is a protocol developed by Microsoft for adaptive streaming of multimedia
content. It is designed to work with Internet Information Services (IIS) servers and
Silverlight, a Microsoft framework for building internet applications. MSS provides
a seamless streaming experience by adapting to changing network conditions in
real-time.

Key features of MSS include:

• Adaptive Bit Rate Streaming: Automatically adjusts the quality of the
video stream based on the viewer’s network conditions. Client implementations
communicate their capabilities as and current network condition to the server
in order to receive a suitable stream.

• Fragmented Media: Media is divided into small fragments, allowing for
smoother transitions between different quality levels. This is similar to the
case of HLS, but the files are managed by IIS.

• Integration with the Microsoft Ecosystem: MSS is designed to work well
with Microsoft products and services, such as IIS and Silverlight. In self-hosted
environments it uses an existing IIS installation as its underlying web server
and can be installed as a plugin. In cloud offerings, Microsoft used MSS in its
Azure Media Service, which has, however, been retired1.

• Dynamic Manifest: It uses a manifest file that is generated ad-hoc by the
server according to client capabilities to deliver video segments dynamically.
This enhances the streaming experience and reduces latency.

MSS is a powerful technology supported by many modern video players. However, it

1https://azure.microsoft.com/en-us/updates/retirement-notice-azure-media-services-is-being-retired-o
n-30-june-2024/

25

https://azure.microsoft.com/en-us/updates/retirement-notice-azure-media-services-is-being-retired-on-30-june-2024/
https://azure.microsoft.com/en-us/updates/retirement-notice-azure-media-services-is-being-retired-on-30-june-2024/

heavily relies on Microsoft technologies that are not available under an open-source
software license, and can thus not be fully studied. With the retirement of their
cloud offering, it is also unclear how the technology itself will progress [20].

Considering these standards, it was decided that Dynamic Adaptive Streaming over HTTP
(DASH) will be used for the implementation of the video streaming platform. Specifi-
cally, the WebM-DASH subset will be implemented due to its proven reliability and large
community support [36]. HLS requires storing each small video part of every quality in
separate files, which would drastically increase file management overhead. MSS is also
unsuitable due to its strong integration with other Microsoft products and the retirement
of the Azure Media Service.

3.2.2. Metadata Storage

While video data will be the main content served by the developed platform, it will also
provide a way of discovering said content. For this purpose, metadata further describing
the available content must also be stored. This could be details ranging from a unique
identification marker to more general information like a description provided by the up-
loader.

During the design phase, two potential solutions were evaluated for storing metadata:

Relational Database One approach is to store uploaded video details in a Relational
Database Management System (RDBMS) such as PostgreSQL. The team has pre-
vious experience with relational databases, making it a familiar choice.

PostgreSQL: https://www.postgresql.org/

Advantages:

• Easier to implement and lower maintenance: Setup and operation of an RDBMS
is relatively simple, especially considering existing experience.

• Use of common SQL features: Consistent IDs, indexing, and search features
are already present.

• High consistency and good indexing capabilities: Relational databases ensure
data consistency and integrity and provide robust indexing mechanisms to
optimize query performance.

Disadvantages:

26

https://www.postgresql.org/

• Scalability may be limited due to the transactional nature of RDBMS: While re-
lational databases excel at handling structured data and ensuring consistency,
they might struggle with scalability issues as the volume of data grows.

However, PostgreSQL-compatible installations like CockroachDB can mitigate
this issue to some extend.

CockroachDB: https://www.cockroachlabs.com/docs/

Metadata Indexing Another approach is to index existing videos on the platform using
a search engine like Elasticsearch or ZincSearch. These systems are designed to
handle large volumes of data and offer fast search capabilities.

Elasticsearch: https://www.elastic.co/elasticsearch

ZincSearch: https://github.com/zincsearch/zincsearch

Advantages:

• Optimized for search: Search engines are specifically designed to perform fast
and efficient searches over large datasets, making it easier for users to discover
content quickly.

• Built for scalability: Designed for horizontal scaling, search engines can handle
increasing amounts of data and queries by adding more nodes to the cluster,
thus accommodating platform growth [30].

Disadvantages:

• Requires running an additional service: Integrating a search engine requires
additional infrastructure and maintenance, increasing the complexity of the
system.

• More overhead, less pragmatic: Setting up and managing a search engine in-
volves more overhead compared to using a relational database. As the primary
focus of the project is not on enhancing search capabilities, this approach may
seem impractical.

Both solutions have their advantages and drawbacks. However, it was decided to pro-
ceed with a relational database for this project, as the primary objective of this project
is to achieve a working video streaming platform. Nonetheless, the implementation of
metadata storage will be abstracted using a clean architecture approach, allowing it to
be implemented using another method [17].

27

https://www.cockroachlabs.com/docs/
https://www.elastic.co/elasticsearch
https://github.com/zincsearch/zincsearch

3.2.3. Storage

As streaming requires access to the video data, it must be stored in a fast and easily
accessible manner. To achieve this, the following two storage options were evaluated:

File Level API Regardless of the platform on which the software runs, file system control
is achieved through standard operating system calls. The specific file system can
vary depending on the platform: If the streaming platform is running in a container,
the file system may be provided by a shared volume mount. If it is running on bare-
metal hardware, it may be provided by a file system stored on a built-in hard drive.
Nevertheless, it can be accessed via simple OS-level calls.

• Simple but efficient: Issuing file system calls to the operating system may the
simplest solution. However, considering the versatility that modern operating
systems offer in terms of what can be used as a file system, it is by no means
limiting. The possibilities range from shared network folders to a ReadWrite-
Many shared volume in Kubernetes [24].

• Performance dependent on platform: While this approach involves less over-
head compared to complex remote calls, it relies on the file system provided
by the platform. This could potentially lead to performance issues or conflicts
with other concurrent services running on the same platform.

Object Storage A modern approach to file storage is to use object storage, where files
or parts of files can be quickly retrieved over a communications network (e.g., using
HTTP requests). While there are many pure cloud offerings for this like Amazon
S3, there are also API-compatible, self-hosted solutions available, such as MinIO
[24].

Amazon S3: https://aws.amazon.com/s3/

MinIO: https://min.io/

• Feature-rich and modern: Object storage solutions are widely adopted in mod-
ern infrastructures for their scalability and comprehensive feature sets, includ-
ing robust access management and seamless integration with cloud providers.

• File access via network: Accessing files over a network enhances scalability
by enabling resource distribution across multiple locations. However, this ap-
proach may introduce latency and requires intricate setup, potentially render-
ing it less resilient to network issues.

28

https://aws.amazon.com/s3/
https://min.io/

Based on these considerations, the decision was made to adopt file level APIs for their
rapid stability and sufficient flexibility. This choice also simplifies local deployments by
avoiding additional dependencies for bare-metal setups. Furthermore, the storage imple-
mentation will be abstracted to allow for alternative implementations to be developed
and integrated [17].

3.2.4. Job Scheduling

Finally, there is the matter of solving the scalability of the distributed job scheduler for the
automatic conversion of uploaded video files. To recap the challenges for the scheduler: A
conversion job should be delivered and completed exactly once to ensure that (1) no jobs
are lost leading to unstreamable videos and (2) computing resources are used efficiently
without redundant conversions.

The following possibilities were evaluated further:

Transactional Database The first option utilizes a database with strong consistency,
typically ensured through transactions [18]. The workflow (using the terminology
from subsection 3.1.3) is as follows:

1. The planner adds a job to a table using a consistent transaction to guarantee
the job is added exactly once.

2. Each worker continually checks the table for new jobs. Upon finding a new
job, it attempts to transition its state to in process using another transaction.
If successful, the conversion process can be started on this worker.

3. Once the conversion process is finished, the worker attempts to mark the job
as finished using a transaction.

4. Each planner also continually checks the table but for finished jobs. When a
finished job is found, the video is published by the planner.

While this approach is viable, it introduces significant overhead. Both sides must
continually monitor the job table, potentially straining the database. This could be
especially problematic when scheduling numerous jobs in rapid succession or when
service replicas increase.

Message Queue The most widely adopted and generally recommended solution to the
exactly once problem is to use a messaging queue that supports this type of delivery

29

(also called exactly once semantics) [18]. While this resembles the transactional
database method, it uses acknowledgments similar to TCP in order to distribute
jobs across a fleet of waiting workers.

The workflow looks as follows:

1. The planner publishes a job to the message queue.

2. A worker subscribed to the queue receives the job, acknowledging it. It then
starts the conversion to processes the job.

3. Upon completion, the worker sends a result to the message queue, including
the success status of the job.

4. The planner, also subscribed to the queue, receives the result to perform final
steps, such as publishing the video. As only one planner can acknowledge a
result, this prevents redundant work.

Based on that, the decision was made to go with a message queue to handle job scheduling.
Not only is it the recommended approach, but there are many existing solutions in the
cloud native ecosystem that solve this exact problem. Additionally, this still allows for
temporal decoupling as the queue will only discard the jobs once they are acknowledged.

Given that it is an additional system, two additional requirements apply to this decision:

1. The use of a message queue must be optional to maintain the possibility of a mini-
malistic deployment, as desired by the main stakeholder (see chapter 1).

2. The implementation of video conversion job scheduling will be abstracted, allowing
for future replacement with alternative implementations [17].

30

Chapter 4.

Implementation

Having established the project goals and decided on strategies in the preceding chap-
ter, we now transition into the practical implementation phase. This chapter provides
a comprehensive overview of the key technologies, architectural decisions, and design
methodologies employed in the software development process.

The first section offers a detailed explanation of DASH, the selected ABR streaming pro-
tocol, which is integral to the platform’s functionality. Next, specific technology choices
are addressed, providing detailed reasoning to justify each selection and ensure an optimal
implementation. The third section documents the architectural design and decisions, high-
lighting the considerations for scalability and efficiency. Finally, a retrospective evaluation
of the thought process and solutions identified during the implementation is presented.

4.1. Dynamic Adaptive Streaming over HTTP

In the previous chapter, DASH was selected as the chosen ABR streaming protocol.
As the primary technology used for developing the streaming platform, this section is
dedicated solely to the explanation of how DASH works in detail, since the goal of the
other components is to facilitate its operation.

4.1.1. HTTP Range Request

The Hypertext Transfer Protocol (HTTP) is used to transport data between web servers
and clients, with a request being initiated by the client to retrieve the requested resources
from the server.

31

In order to understand DASH, HTTP range requests are an important prerequisite. Range
requests allow clients to request only a portion of a resource. This can be particularly
useful for fetching only parts of a large file. In the case of DASH, this is what is used to
stream video files by transferring small parts, not the entire file.

The client specifies the desired range using the Range header in the HTTP request, a
possible syntax being [4]:

Range: bytes=start -end

In this example,

• start indicates the starting byte position.

• end indicates the ending byte position (inclusive).

For example, to request the first 500 bytes of a resource, the client would send:

GET /path/to/resource HTTP/1.1
Host: example.com
Range: bytes=0-499

The server responds with a 206 Partial Content status code and includes the Content
-Range header to specify the exact range being returned:

HTTP/1.1 206 Partial Content
Content -Range: bytes 0-499/12345

Here, 12345 is the total size of the resource [4]. By enabling a client request a portion
of a resource, HTTP Range Requests are a key building block of DASH, allowing for the
copying of segments.

4.1.2. Overview

Using HTTP range requests, it is possible to stream files in a controlled manner. In
order to achieve successful video streaming, DASH employs the following sequence (see
Figure 4.1 for reference):

1. Content Preparation (Server)

32

Video

Client Server

Content
Preparation

Manifest Request

Manifest

Change in Network Conditions

Manifest
Parsing

Initialization Segment Request

Initialization Segment

Media Segment Request(s) - High Quality

Media Segment(s) - High Quality
Adaption

Logic

Media Segment Request - Low QualityError
Handling Media Segment(s) - Low Quality

Continuous
Playback

High Quality
Representation

Low Quality
Representation

Figure 4.1.: A sequence diagram illustrating the DASH workflow in order to achieve a
video stream.

• Encoding: The video content is encoded at multiple bit rates and resolutions,
generating different representations. Segments corresponding to key frames
and a segment index containing this information are also added to the video
file.

• Manifest Generation: An MPD (Media Presentation Description) file is cre-
ated, which describes the different files and representations.

2. Initialization (Client)

• Manifest Request: The client requests the MPD file from the server.

• Manifest Parsing: The client parses the received MPD file to understand the
available streams and representations.

3. Adaptive Streaming (Client)

• Initialization Segment Request: The client sends an HTTP request to retrieve
the initialization segment for the selected representation. This special segment
informs the client how to play the video.

• Media Segment Request(s): The client requests subsequent media segments

33

based on the current network conditions and buffer status. The client uses
HTTP range requests to only request a specific segment of the representation.

• Playback: The client decodes and plays back the media segments as they are
received.

4. Adaptation Logic & Error Handling (Client)

• Monitoring: The client continuously monitors metrics such as the buffer status,
playback smoothness, and network conditions. If a file transaction fails or
network conditions change, it can trigger necessary actions.

• Bit Rate Adaptation: The client dynamically switches between different repre-
sentations (bit rates and resolutions) to ensure smooth playback and optimal
quality.

• Retry Mechanism: If a segment download fails, the client may retry the request
or switch to a different representation. It may also implement fallback strate-
gies to handle network errors or disruptions, ensuring continuous playback.

Initially, the server must invest compute resources in order to prepare the video files for
streaming. Afterward, it needs to serve the files in a way that supports HTTP range
requests, with the client managing ABR streaming and error mitigation.

4.1.3. Manifest

The video stream manifest, also called MPD (Media Presentation Description), is an XML
file that describes the media content, including available qualities, codecs, and segment
information. To stream a video, a client application first retrieves the manifest, which it
uses to determine where to obtain the actual video data.

The XML schema in the MPD follows a predefined hierarchy. Each element can occur
multiple times and can itself have multiple children (noted using “>”):

MPD > Period(s) > AdaptionSet(s) > Representation(s) > Segment(s)

Periods and segments come after each other, describing differences in time. Adaption sets
and representations run in parallel, describing differences in content (either in adaption
or quality) that is played (see Figure 4.2 for reference) [13].

34

MPD

Time

S
el

ec
tio

n
Period Period

Representation

(I) Segment (M) Segment (M) Segment

Representation

AdaptionSet

AdaptionSet

Figure 4.2.: DASH manifest hierarchy structure.

Period A Period is a time segment of content that can contain multiple adaptation sets.
Periods allow for changes in content, such as advertisements or different episodes
and parts of a series.

Adaptation Sets An adaption set groups a set of media content component representa-
tions. A common split is to have one adaptation set for audio streams and another
for video streams. Different languages of content are also separated using adaption
sets.

Representations Specific versions of media content within an adaptation set, character-
ized by bit rate, resolution, and codec. A client may switch automatically between
different representations, as there should be no difference between them except
quality, unlike with adaption sets where language might change.

Segments Segments are the actual blocks of data that are requested by the client. There
are two types of segments:

• Initialization Segments, which contain initialization data for the media stream,
allowing the client to interpret the following segments properly.

• Media Segments, smaller chunks containing the actual video or audio data.
They are served individually, enabling for adaptive streaming.

In the XML-encoded form of a manifest, periods, adaption sets and representations are
shown. The actual video segments are not shown, as they are the binary data which
can be requested. Instead, a representation contains information on where the client can
request video segments in a specific quality from (see Listing 4.1) [13]:

35

BaseURL Specifies the part of a URL where segments are stored, such as a file name.

SegmentBase Provides additional information about where the client can request seg-
ments. The field indexRange defines the bytes where the segment index is located,
in the format that can be used directly in an HTTP range request. This segment
index contains the location of all media segments in the representation. The Ini-
tialization range defines the bytes where the initialization segment lies, containing
the metadata necessary to play the media segments.

...
<Representation id="0" ...>

<BaseURL>file_eng144p15.webm</BaseURL>
<SegmentBase indexRange="359103-359625">

<Initialization range="0-499"></Initialization>
</SegmentBase>

</Representation>
...

Listing 4.1: Representation block in an XML-encoded DASH manifest.

4.1.4. Usage

With a theoretical understanding of the key components in DASH, it is now time for
the practical usage of it in the software developed during this project. Since most of the
logic in DASH is controlled by the client, the choice of a robust client implementation is
important for numerous reasons [14]:

1. Development: To develop a backend implementation that supports as many DASH
clients as possible, having a client software that reports mistakes in the backend
implementation is highly useful. This helps to avoid mistakes when programming
thus aid software correctness during development.

2. Compliance: To ensure that the created software meets the qualities set by the
DASH standard, a client that represents these values is required. While there are
many production-grade clients available that focus on speed, the one used during
development should prioritize correctness.

36

Video Player

On the client side, two options for the video streaming client have been evaluated for this
project:

dash.js JavaScript Reference Client Developed by the DASH Industry Forum is the
reference client implementation for DASH in the browser. Its main focus is on com-
pliance with ISO/IEC 23009 (Dynamic adaptive streaming over HTTP (DASH)),
the international standard [14].

Project: https://reference.dashif.org/dash.js/

It is licensed under the BSD License, making it open-source software.

Shaka Player This production-ready player, initially developed at Google, is now man-
aged by the community under the Shaka Project. A key goal of the Shaka Project
is to evolve the project and integrate modern web browser technologies as fast as
possible.

Project: https://github.com/shaka-project/shaka-player

It is licensed under the Apache License, Version 2.0, also being open-source
software maintained by the community.

Given these two choices, the dash.js JavaScript Reference Client was chosen for its focus
on developer experience and implementation correctness, which aligns with the values of
this project.

The dash.js ecosystem also offers various development tools and compliance checkers to
verify whether the backend implementation meets the required standards:

• DASH-IF Reference Player: A hosted version of the dash.js reference client. This
version has a graphical user interface for all possible options the client offers, which
otherwise would need to be configured manually by loading the library and using
JavaScript. It includes a built-in Conformance Violations report, showing warnings
and errors if the backend implementation does not fully comply with the standard.
By running completely in the browser, it can also be used to play streams running on
the local computer, demonstrating the commitment of the DASH Industry Forum
to providing valuable development tools.

• DASH-IF Conformance Tool: This tool checks the XML-encoded manifest for com-
pliance with the standard. It validates the schema and reports on incorrect values

37

https://reference.dashif.org/dash.js/
https://github.com/shaka-project/shaka-player

and violations of the standard. While it validates the manifest for MPEG-DASH,
it has not yet been updated for the WebM-DASH subset used in this project.

Player Configuration

The dash.js reference player offers numerous configuration options covering the client’s
logical behavior and visual presentation.

An important decision regarding video streaming performance is the choice of algorithm
the client uses to decide what quality a video segment should be requested in. The dash.js
reference player offers three different modes for ABR streaming [14]:

Throughput The bit rate chosen by the client is based on the recent throughput speed
(bandwidth) of the connection to the server. This method prioritizes reacting to
changes in network quality.

BOLA The bit rate choice is based on the consistency of segments that have already been
successfully downloaded (buffer). BOLA prioritizes video quality and performs the
best at delivering high definition streams over low bandwidth [28].

Dynamic This mode combines the Throughput and BOLA modes and tries to achieve the
best video quality while still being able to react to changing network conditions.

For this software, the Dynamic operation mode has been chosen. It provides a good
balance between quality and reliability, and is also the default configuration for the dash.js
reference player.

Problems

DASH-IF Conformance Tool does not include WebM-DASH The conformance vali-
dation tool that can be used to check if a DASH manifest is valid does not yet
support the WebM-DASH specification. While the WebM-DASH Specification de-
fines the XML name space

urn:mpeg:dash:profile:webm-on-demand:2012,

the conformance tool does not recognize this as valid [36]. Since WebM-DASH is a
subset of the standard, it should be included as well.

There is an open issue on the conformance tool source code repository:

38

Issue: https://github.com/Dash-Industry-Forum/DASH-IF-Conformance/issues/
90

4.2. Technology Choices

Having made conceptual choices regarding general technologies in the previous chapter, it
is now time to decide on specific implementations of those technologies. Reasoning about
these choices is also an important part of the development process in order to guarantee
a justified course of action.

4.2.1. Programming Language

As the decision of the programming language for a project also influences other choices
based on the available libraries and ecosystem, it should be made early. A key factor is
also any previous experience the development teams has with the specific language.

Java Widely adopted by many enterprises and online communities alike, Java is a strong
choice. It is also the primary programming language taught at the Eastern Switzer-
land University of Applied Sciences (OST), so there is a large knowledge pool avail-
able in the case of difficulties.

Execution Model: Hybrid (JVM) / Package Manager: 3

C++ Another popular and widespread language, in which the team has some experience.

Execution Model: Compiled / Package Manager: 7

Rust Currently the most desired1 language that many developers want to work with, in
which the team also has previous experience.

Execution Model: Compiled / Package Manager: 3

Go When looking at the cloud native landscape by the CNCF2, Go is the language that
is most represented. Ease of use, a strong standard library and fast development
iteration speeds make it perfect for the creation of scalable web applications.

Execution Model: Compiled / Package Manager: 3

1https://survey.stackoverflow.co/2023/
2Cloud Native Computing Foundation Landscape: https://landscape.cncf.io/

39

https://github.com/Dash-Industry-Forum/DASH-IF-Conformance/issues/90
https://github.com/Dash-Industry-Forum/DASH-IF-Conformance/issues/90
https://survey.stackoverflow.co/2023/
https://landscape.cncf.io/

Go is a modern programming language that offers a clean and efficient syntax. Its robust
standard library and strong performance make it ideal for developing high-performance
server-side applications. Being specifically designed for the development of cloud native
applications, and with the team having substantial experience with it, Go the best choice
[30].

4.2.2. Messaging System

The message queue used to schedule video conversion jobs across a fleet of different service
replicas will have a large impact on how the system will perform at scale.

NSQ Initially developed at Bitly, the new simple queue has grown into one of the most
liked projects on GitHub. It focuses on being a very performant event store that
supports the publish-subscribe model. It also has first-class support for Go, providing
official libraries.

Project: https://nsq.io/

Apache Kafka An event store adopted by many enterprises. There are no official Go
libraries available, but there are some by third parties.

Project: https://kafka.apache.org/

NATS A project endorsed by the CNCF that implements both event store (PubSub) and
message queue (JetStream) modes. It also has an official library for Go and is itself
written in that language.

Project: https://nats.io/

Apache ActiveMQ A message queue focused on correct order of delivery. The team has
previous experience with this product, although while using Java as the program-
ming language. There are no official Go libraries available.

Project: https://activemq.apache.org/

To maintain consistency in the technologies used throughout this project, NATS was
chosen as the messaging system for conversion job scheduling. It is a modern and well-
established software project and offers high consistency with exactly-once delivery, as
defined as required in the previous chapter.

In a deployment where no external video conversion instances are running, conversion
jobs will run on the replicas locally, without the need for a messaging system.

40

https://nsq.io/
https://kafka.apache.org/
https://nats.io/
https://activemq.apache.org/

4.2.3. Database

To maintain a record of available videos on the platform, a robust database is necessary.

Similar to the messaging queue, there should be the possibility of running the software
without depending on an external database, although this is feasible only for single-replica
deployments.

MariaDB A solid database with which the team has previous experience. If the need for
greater scalability arises, Vitess can be used, which allows for large-scale deploy-
ments.

Projects: https://mariadb.org/ and https://vitess.io/

SQLite A very popular lightweight, single-file database with a powerful set of SQL fea-
tures. There are also pure Go client implementations available, allowing for a
dependency-free, statically compiled binary.

Project: https://sqlite.org/

DuckDB A new but very promising project introduced to the team during the develop-
ment process. It is a lightweight, single-file database similar to SQLite, although it
currently lacks a CGO-free implementation of the Go client.

Project: https://duckdb.org/

PostgreSQL The team has a lot of experience with this database, as its very powerful
SQL dialect is the primary one taught at the Eastern Switzerland University of Ap-
plied Sciences. In the case an even more scalable solution is required, CockroachDB
is a wire-compatible replacement designed for cloud native deployments.

Projects: https://postgresql.org/ and https://cockroach.io/

Due to familiarity with the technology, PostgreSQL was chosen for the large-scale deploy-
ment, while SQLite will be used for single-replica setups. The two also offer a very similar
feature set in their SQL dialect, minimizing development overhead. DuckDB would have
been the preferred choice for single-replica setups if a dependency-free implementation
were available.

41

https://mariadb.org/
https://vitess.io/
https://sqlite.org/
https://duckdb.org/
https://postgresql.org/
https://cockroach.io/

4.2.4. Storage

Since the decision was made to use a file-level API instead of an external storage provider,
the underlying implementation of the storage does not matter. This evaluation is therefore
mostly for completeness, as any solution could be used. The decision is left to the user of
the software.

Local Storage The straight-forward way to provide storage is to simply let the software
access it locally. When running in an environment where containers are preferred,
other abstractions like Volumes can be used to persist storage [24].

Ceph A failure-resistant, highly scalable and distributed storage system that monitors
its own state and repairs itself in case a replica of data is lost. In a cloud native
environment, Rook is a well-established operator that manages Ceph.

Projects: https://ceph.io/ and https://rook.io/

iSCSI Another option is to create a deployment in which every participating computer
provides storage to a large pool available to the running resources. In a cloud native
setting, this could be achieved using software like Longhorn.

Projects: https://longhorn.io/

4.2.5. Video Conversion

Various options can be used to convert uploaded video files to the format required by
DASH. This decision impacts both development effort and compatibility.

From Scratch Writing a video conversion program without using any prerequisite would
be possible. However, due to the limited scope of this project, this is not a feasible
choice. Additionally, this approach would shift the focus from building a distributed
video streaming platform to building a video conversion software.

GStreamer Library Bindings GStreamer is a powerful multimedia framework, that pro-
vides libraries for many platforms. Using its libraries, a video conversion component
could be implemented, although this would also require a high development effort,
as the team lacks experience with GStreamer.

Project: https://gstreamer.freedesktop.org/

FFmpeg Binary FFmpeg is a popular, cross-platform tool with support for most me-

42

https://ceph.io/
https://rook.io/
https://longhorn.io/
https://gstreamer.freedesktop.org/

dia containers, codecs and technologies. It is highly configurable and also able to
generate DASH manifests.

By building a wrapper around the command line program, a video conversion com-
ponent could be implemented. The team has a previous experience with FFmpeg.

Project: https://ffmpeg.org/

FFmpeg Library Bindings Another possibility is the use of the FFmpeg libraries instead
of the GStreamer libraries for an implementation. There are projects within the Go
ecosystem that offer this functionality, but their feature set does not currently meet
the minimum requirements for this project.

Creating an FFmpeg command line program wrapper is the most viable solution, as it
clearly separates concerns (e.g., argument parsing and conversion handled by FFmpeg)
and lets the team apply previous experiences due to the similar interaction.

Encoder Settings for VoD

In order to achieve ABR streaming capabilities, the platform has to provide video streams
at different bit rates. There are many different variants in which video resolution, fps,
bit rate, conversion speed and other factors could be combined to come up with a set of
streams to provide as a platform.

For this project, we will use Google’s Recommended Settings for VOD. To achieve a good
balance between quality and encoding speed, these recommendations aim to accommodate
a wide range of content types while minimizing the bit rate required to achieve a visually
good quality. This approach ensures that the encoding process is efficient while still
producing high-quality output that can handle diverse types of content [25].

These values align well with the goals of the project and can be adjusted later if necessary.

4.3. Design and Architecture

This section documents the architectural design decisions made while building a highly
scalable video platform. Some of the parts are adopted from the arc42 documentation tem-
plate, a well-established template for software documentation in the software engineering
community [29].

43

https://ffmpeg.org/

The project team has settled on the name GoReeltime for the software developed over
the course of this project. It is the goal of this name to reflect the key values of the
software, being a fast, almost real-time streaming service, with the reel-part of the name
in reference to old film reels used in early cinema.

4.3.1. Overview

GoReeltime delivers a video streaming platform with a high performance and flexibility
to the operators. The most important quality goals can be summarized as follows:

Horizontal Scalability With the evolution of cloud computing and distributed systems
architecture, the importance of scaling out by adding more computers instead of
scaling up a single computer has become increasingly pronounced [15]. Therefore,
GoReeltime is build as a stateless service that can be easily scaled up according to
the current needs of the platform.

Ease of Adoption Many software projects struggle to achieve a high degree of adoption,
as their operation can require complex setup procedures and additional supporting
systems. It is possible to run GoReeltime in different sized deployments, from a
large cloud landscape to a single, resource-constrained machine.

Streaming Performance Waiting for video playback to start or the interruption of a
running video playback (referred to as stalling) is considered the worst degradation
of quality in the context of user experience [27]. GoReeltime will provide a high
degree of video streaming performance as well as quick response times, ensuring a
pleasant user experience.

Smart use of Resources Despite the abundance and low cost of compute resources due
to cloud computing, GoReeltime uses these resources efficiently [15]:

• A release version is shipped as a single distributable with minimal dependencies
(e.g., no heavy underlying runtimes, statically compiled code).

• Loading large amounts of data into memory is to be avoided whenever possible.

• Resource-intensive jobs can be processed remotely by more suitable machines.

Client First GoReeltime provides a built-in video player, but any client supporting DASH
can be used to play content on the platform. It serves as a backend providing video
content, making it suitable for embedding on other websites.

44

The Twelve-Factor App As a cloud native service, GoReeltime follows the Twelve-Factor
App methodology, a set of established practices when building web services that run
in cloud environments [37].

Stakeholders

While the development of GoReeltime takes place in the context of a bachelor thesis, the
following stakeholder is considered:

1. Distributed Systems and Ledgers Lab: The DSL at the Eastern Switzerland
University of Applied Sciences (OST) seeks a new solution to publish their lec-
ture recordings. This stakeholder is the primary source of the Ease of Adoption,
Streaming Performance, and Client First goals for the project.

Development Process

The development of GoReeltime is divided into two different stages: Core Functionality
and the Proof-of-Concept stage, with features related to core functionality taking the
highest priority.

Core Functionality :

1. Streaming: A video can be streamed from server to client using DASH. Streamed
refers to incrementally downloading small portions of the video and reassem-
bling them on the client, not downloading the full file. The video files need to
be present on the server in the streamable format.

2. Scaling: The server component can be scaled horizontally, resulting in a service
consisting of multiple statless replicas. For this, state needs to be moved into
database and file storage respectively.

3. Uploading: A video file can be uploaded to the server component from a client.

4. Conversion: Uploaded videos are automatically converted into the streamable
format by the server. The scalability must not be lost in this step.

Proof-of-Concept :

1. Frontend: A simple frontend to manage uploaded videos is available. Since
GoReeltime primarily provides a video streaming backend, a complex frontend
application is out of scope.

45

2. Authentication: A system is in place that allows for the disabling of content
modification.

4.3.2. Functional Requirements

This section documents functionality the platform needs to provide. These features are
documented in the form of user stories in order to emphasize a user-centric approach to
the development process [38].

FR-01 – Content Overview
As a user, I want to have an overview of available content so that I can easily navigate
and find videos of interest.

FR-02 – Basic Search
As a user, I want to perform basic searches so that I can quickly find specific videos or
content categories.

FR-03 – Video Streaming
As a user, I want to stream available videos seamlessly so that I can enjoy uninterrupted
entertainment.

FR-04 – View Metadata
As a user, I want to view detailed metadata for each video so that I can understand its
context, such as the title and description.

FR-05 – View Thumbnail
As a user, I want to see a thumbnail for each video so that I can get a quick visual
preview of its content before deciding to watch it.

FR-06 – Upload Video
As a content provider, I want to upload new videos easily so that I can share my content
with the audience.

46

FR-07 – Uploaded Video Conversion
As a content provider, I want the platform to handle various video formats upon upload
so that I do not need to worry about compatibility issues.

FR-08 – Video Metadata Upload
As a content provider, I want to add metadata to my uploaded videos so that viewers
can have detailed information and context about the content.

FR-09 – Automatic Thumbnail Generation
As a content provider, I want the platform to automatically generate thumbnails for
my videos so that I have a default preview available without additional effort.

FR-10 – Video Metadata Update
As a content provider, I want to be able to update the metadata of my videos so that
I can correct any mistakes or make improvements over time.

4.3.3. Non-Functional Requirements

Non-functional requirements focus on broader product attributes, like relating to perfor-
mance or specific qualities [6]. They are usually harder to measure as they are not just
present or absent like functional requirements.

NFR-01 – Minimal Setup
The platform should be deployable in a simple setup without relying on object storage,
specific container APIs or heavy supporting services.

NFR-02 – Maximal Setup
The platform should be deployable in a highly scalable environment utilizing container
orchestration.

NFR-03 – Horizontal Scalability
The software architecture of the platform should rely on statelessness where possible in
order to enable horizontal scalability.

47

NFR-04 – The Twelve-Factor App
To promote modern deployment methodologies and maximum portability, the devel-
oped application should adhere to the Twelve-Factor App methodology wherever pos-
sible [37].

NFR-05 – API Usability
The HTTP API should be designed in a way that uses proper resource names and
HTTP verbs. This is often referred to as Level 2 of the Richardson Maturity Model for
RESTful HTTP [26].
Example: PUT /api/video/1337 updates the video with ID 1337 with the content
contained in the request.

NFR-06 – Quality Attribute Scenario [38]: Handling of High User Load

Synopsis Performance of video streaming API in response to high user load. When
considering the stakeholder Distributed Systems and Ledgers Lab the expected
number of users for this requirement is around 100 simultaneous streams.

Business Goals Keeping the platform attractive to users by ensuring quick loading
times for video streams.

Relevant Quality Attributes Performance (Response Time)
Scenario Components Stimulus A user requests a video segment of by sending an

HTTP range request.
Stimulus Source The user’s web browser sends the request.
Environment At runtime, high workload (100 active users), not under stress

(external attack, system outages).
Artifact Gateway, Network, Compute and Storage Resources, Orchestration Sys-

tem, System Architecture
Response The backend is built for high performance in order to quickly respond

even to non-cached requests.
Response Measure The start of a video stream still conforms to NFR-07.
Questions System is distributed, are there issues that occur at a very large scale?
Issues How is the impact underlying hardware will have on system performance

addressed during solution strategy?

48

NFR-07 – Streaming Performance
The action of starting a video stream manually conforms to the following agile landing
zone [38]:
Minimal: 2s / Target: 0.75s / Outstanding: 0.3s

NFR-08 – Testability
Every software unit should employ the dependency injection pattern, promoting testa-
bility by mocking more complex or irrelevant components.

NFR-09 – Persistence
Content uploaded to the platform should be persisted in such a manner that a reboot
of the system does not cause data loss except for caches.

NFR-10 – Search Performance
Searching for content happens in an indexed manner and does not rely on scanning
every available video artifact on the platform.

4.3.4. Architecture Constraints

The following constraints apply to the design and development of GoReeltime:

Versioning GoReeltime is versioned using semantic versioning (SemVer), because it gives
relevant meaning to version numbers, has a high degree of adoption and is easy to
understand.

Reference: https://semver.org/

Programming Language GoReeltime is written in the Go programming language due of
its first-class support for cloud native web applications [30].

The Go ecosystem includes a set of useful tools that are used during development.
While the following decisions could be considered as constraining, they promote a
streamlined and goal-focused development experience. These tools also integrate
well with each other:

Code Documentation: Godoc Godoc-style comments are used in the source code
where additional information is needed. This allows for automatic generation

49

https://semver.org/

of documentation.

Reference: https://go.dev/blog/godoc

Test Framework: go test Go comes with a powerful, built-in test suite which is
used for unit tests. Wherever possible, the concept of table-driven tests3 is
employed to achieve easy extensibility without additional logic.

Code Formatting: gofmt Go’s built-in formatter is used for code formatting across
the project to ensure a consistent style.

Code Linting: golangci-lint A bundler and runner or a very large list of sup-
ported linters in the Go ecosystem. It also produces code quality reports in
many standardized formats, which can be used in other tooling, such as con-
tinuous integration pipelines.

Project: https://golangci-lint.run/usage/linters/

The project is checked using different categories of linters, ranging from typos
to deep analysis using Go’s powerful type system. See the project repository
for more information.

Naming Convention: It is common best practice when writing Go to used single-
word names for packages, which will be adhered to.

Examples: config; enrichlet

Small and Large Deployments GoReeltime is developed to switch between two types of
database backend:

SQLite is used for single-replica deployments in resource-constrained environments.

PostgreSQL is used for deployments that require more than a single replica of the
service.

Optional Remote Jobs For large-scale deployments, GoReeltime can use a messaging
system to exchange jobs and results. However, this must be optional in a single-
replica-deployment to avoid requiring additional, unnecessary resources.

3https://go.dev/wiki/TableDrivenTests

50

https://go.dev/blog/godoc
https://golangci-lint.run/usage/linters/
https://go.dev/wiki/TableDrivenTests

4.3.5. Architecturally Significant Decisions

In this section summarizes the decision made in section 4.2 and evaluates further and more
fine-grained decisions that are hard to change later on. This includes choices of frameworks
and paradigms that will have a significant impact on the development process.

Architectural Decision Records (ADRs) are captured in the form of Y-Statements in order
to capture context, decisions and consequences concisely [38].

ADR-01 – Video Streaming Standard
In the context of choosing a video streaming standard, facing the need for client-driven
adaptive streaming, we decided to use DASH and neglected HLS to use an open stan-
dard with individually playable video files, accepting that it has less community adop-
tion.

ADR-02 – RESTful HTTP
In the context of web-based interaction, facing the need for ease of implementation
and maintainability, we decided to use RESTful HTTP. This decision was made in
order to achieve a standardized, resource-based interaction model that enable simple
and flexible communication between client and server. We acknowledge that RESTful
HTTP requires careful design and proper management of HTTP status codes.

ADR-03 – Statelessness
In the context of session state management, facing the need horizontal scalability, we
decided to relocate application state to backend services, accepting that implementation
complexity is higher.

ADR-04 – Containers
Containers will be used as the unit of distribution for the software, facing the need
for different sizes of deployment. Using containers allows for different environment
configurations while keeping the distribution unit the same.

51

ADR-05 – Server-Side Rendering
SSR (Server-Side Rendering) will be used for the web frontend implementation of the
service, being that it is not part of the core components and can be disabled if not
needed. This decision was made to keep interaction logic on the server side.

Web Server Performance Benchmarks

To make an informed decision on the web framework for the project, the performance of
various options was evaluated while considering additional factors. The key objectives
were:

1. The ability to handle HTTP range requests…

2. …and to do so effectively under high load.

3. High compatibility with the Go standard library to ensure ease of use.

The following Go libraries were evaluated:

Fiber Fiber was chosen because of its popularity and the possibility to use preforking
(allowing multiple sockets to listen on the same address, enabling kernel-level load
balancing).

Project: https://gofiber.io/

Gin Another popular framework that the team has previous experience with.

Project: https://gin-gonic.com/

Chi A newer, lightweight solution with full compatibility with the Go standard library
(net/http). It does not use any custom types, unlike the other frameworks.

Project: https://go-chi.io/

The performance of these different options was evaluated using empirical measurements:

Each library was used to implement a minimal working example that supports HTTP
range requests. Measurements were collected by continuously running a high number of
randomly calculated (and therefore non-cacheable) requests against the example. A bare-
metal, high-performance environment was used to gather meaningful performance data,
shown in Figure 4.3.

The goal was to simulate a high number of clients requesting different parts of a file using

52

https://gofiber.io/
https://gin-gonic.com/
https://go-chi.io/

Client (Grafana k6)

VU

VU

(100 Virtual Users)

Server (Go)

40 Gb/s

12 CPUs / 16 GiB RAM 20 CPUs / 32 GiB RAM

(Thunderbolt 4)

Fiber (+prefork),
Gin or Chi

[serving HTTP

range requests]

Figure 4.3.: The benchmark setup used to evaluate different Go web frameworks.

Option Avg. Request Duration (ms) Duration (s) Data Received (MiB)
Fiber 11.77 30 190
Fiber (prefork) 9.7 30 230
Gin 33.53 30 60
Chi 4.31 30 828

Table 4.1.: Results of the Grafana k6 benchmark for Fiber, Gin and Chi.

HTTP range requests. To do this, Grafana k6 (https://k6.io/), an open-source load-
testing tool, was used. It can be configured as needed to simulate specific experiments.

Considering NFR-06, the tested scenario will consist of 100 concurrent users consistently
performing random HTTP range requests over a time period of 30 seconds. The Range
header is randomized, in order to prevent the server from simply caching previous requests,
which could potentially falsify the results. The configuration used to achieve the results
displayed in Table 4.1 is shown in Listing A.1.

Based on these experiments, Chi was chosen as the Go web framework for this project.

ADR-06 – Web Router Library
In the context of selecting a Go web router library, facing the need for high performance
while keeping code maintainable, we decided to use Chi, in order to achieve standard
library compatibility at a high performance rating, accepting that it does not employ
preforking.

53

https://k6.io/

4.3.6. Building Block View

This section describes the interaction between the different components that make up the
GoReeltime platform. This is done using the C4 model (https://c4model.com/) by Simon
Brown to show these relationships on different levels of abstraction.

System Context

In the system context, the C4 model was not applied, as there are no explicit interactions
with external entities except for the user. However, the system relies on some external
dependencies:

User A user may be an operator of the platform, a content provider or a content con-
sumer. Most of the computing performance required will be consumed by the con-
tent providers and consumers.

dash.js Reference Player The chosen DASH video player is embedded on the HTML
frontend of the platform, meaning the user will need internet connectivity in order
to download the player library.

FFmpeg The platform uses FFmpeg for automatic video conversion. Should the com-
mand line API of FFmpeg introduces breaking changes, the functionality of GoReel-
time could be affected, potentially requiring additional software engineering efforts.

Container View

Inside the actual platform, different containers interact with each other. The term con-
tainer is somewhat overloaded, as it refers to unique pieces of software communicate
together in this context. But due to the distribution unit of GoReeltime being OCI-
compatible containers (run by a container runtime), the terms describe the same units in
this case [24].

Reeltime This is the main service, responsible for letting the user interact with the plat-
form. It is responsible for presentation, business logic, job scheduling and content
provisioning.

Reelconvert This service is responsible for the conversion of content on the platform
(e.g., video encoding to other formats).

54

https://c4model.com/

GoReeltime Platform
[Software System]

User
[Person]

Reeltime
[Container: Go]

User interaction, business logic

Metadata Storage
[Container: PostgreSQL or compatible]

Stores metadata for content

Result Queue
[Container: NATS]

Stores the results of executed jobs

Job Queue
[Container: NATS]

Stores jobs to be executed

Reelconvert
[Container: Go]

Conversion, enrichment of content

Media Storage
[Container: Block Storage]

Stores media

[Containers] GoReeltime
C4 Container Diagram of the Reeltime
Platform

interacts with platform
[JSON/HTTP]

gets metadata from
[SQL]

provides job results to
[HTTP]

adds jobs to
[HTTP]

provides jobs to
[HTTP]

adds job results to
[HTTP]

stores content on
[File-Level API]

gets media from
[File-Level API]

Figure 4.4.: C4 Container diagram of the GoReeltime platform.

Queue(s) In order to properly schedule jobs across multiple replicas of both Reeltime
and Reelconvert, the messaging pattern using queues is used [38].

Media Storage This file-level API compatible storage allows the persistence of binary
media files (video data).

Metadata Storage A database that satisfies the need for structured metadata that can
be indexed in order to provide a fast overview of consumable content as well as
responsive search functionality.

Figure 4.4 shows the relationship between the containers in a scalable setup.

Component View

In the C4 model, each container consists of components, different parts of the software
that interact on separate concerns. Over the development period of GoReeltime, two
different containers were built: Figure 4.5 shows the component interaction of the Reeltime
container, while Figure 4.6 shows the interactions for Reelconvert.

55

User
[Person]

Reeltime
[Container]

Job Queue
[Container: NATS]

Stores jobs to be executed

Result Queue
[Container: NATS]

Stores the results of executed jobs

Metadata Storage
[Container: PostgreSQL or compatible]

Stores metadata for content

Media Storage
[Container: Block Storage]

Stores media

Web Muxer
[Component: go-chi]

Decode and encode requests

Artifact Service
[Component: Go]

Load and serve binary artifacts

Catalog Service
[Component: Go]

List and filter available videos

Metadata Service
[Component: Go]

Aggregate video metadata

Modify Service
[Component: Go]

Add, edit, or modify videos

Metadata Storage
[Component: pgx]

Load and store metadata

Artifact Storage
[Component: Go]

Load and store binary artifacts

interacts with platform
[JSON/HTTP]

uses usesuses uses

reads from and writes to
[File-Level API]

reads from and writes to
[SQL/TCP]

NATS Enricher
[Component: nats.go]

Enqueue conversion jobs, process result
messages

enqueues conversion jobs to
[NATS Client Protocol/TCP]

receives conversion results from results
[NATS Client Protocol/TCP]

loads metadata using
edits metadata using

loads results from

edits artifacts using

invokes enrichment tasks using

streams/sends artifacts using

B
usiness Logic

D
ata A

ccess
P

resentation

[Components] Reeltime
C4 Components Diagram of the Reeltime
container

Figure 4.5.: C4 Component diagram of the Reeltime container.

Reelconvert
[Container]

Job Queue
[Container: NATS]

Stores jobs to be executed

Result Queue
[Container: NATS]

Stores the results of executed jobs

Media Storage
[Container: Block Storage]

Stores media

NATS worker
[Component: nats.go]

Listen to jobs, send results

Artifact Storage
[Component: Go]

Load and store binary artifacts

receives conversion jobs
[NATS Client Protocol/TCP]

reads from and writes to
[File-Level API]

FFmpeg Converter
[Component: Go, FFmpeg]

Convert video, create thumbnails and manifest

sends conversion results to
[NATS Client Protocol/TCP]

[Components] Reelconvert
C4 Components Diagram of the Reelconvert
container

access videos using converts videos using

Figure 4.6.: C4 Component diagram of the Reelconvert container.

56

Video
Upload

Metadata Storage

Message
Broker

Streaming
Replica 1

Converter
Replica 1

Streaming
Replica 2

Converter
Replica 2

Streaming
Replica m

Converter
Replica n

Video File

Conversion Job

Conversion Result

Load
Balancer

Figure 4.7.: Workflow of the automatic conversion process upon a video upload.

4.3.7. Runtime View

As some use cases of the system involve rather complex processes, this section aims to
give a step-by-step explanation of the most prominent interactions and their effects inside
the system.

Automatic Conversion

This use case addresses FR-07.

After a video file has been uploaded to the platform, it will most likely not be in the
format required for DASH streaming. Consequently, it will not appear on the platform,
as videos are not marked as available until they have been correctly encoded.

When a video is uploaded via HTTP, the following process takes place (see Figure 4.7 for
reference):

1. Depending on the setup, a load balancer will decide which replica of the streaming
service the video file will be uploaded to. Besides handling the upload request, the
replica is responsible for claiming a unique video ID from the metadata store, which
it will assign to the uploaded file.

57

2. After the upload request has been successfully completed, the same replica also
dispatches a job to the messaging system (broker). This message will have the
format

job.<Video ID>

, indicating that the file with this ID still needs to be converted.

3. As soon as a replica of the converter service detects that job, it will open a trans-
action to claim it. If it successfully claims and removes the job from the messaging
system, a local video encoding job will be started on that converter replica. This
can be done instantly, since the conversion service has access to the same storage
the streaming service.

4. When the video encoding process is finished successfully, the replica sends a result
message with the format

result.<Video ID>.success

to the message broker, indicating the conversion was completed without failure.

5. Similarly, if a replica of the streaming service detects a result on the messaging
system, it will open a transaction to claim it. If it was able to claim and remove
the result, it marks the video as available in the metadata storage, publishing it on
the platform.

After this process has completed, a newly uploaded video is ready to be streamed on the
platform.

4.3.8. Deployment View

GoReeltime is software that can be freely shared and distributed. It will not be running in
just one single environment hosted by a Software as a Service (SaaS) provider, but many
different types of environments, with individual requirements by the user. The goal of
this section is to show two different configurations, each suited to its specific environment.

58

Single Container

GoReeltime uses OCI containers as its distribution unit, which can be run by any com-
pliant runtime [24]. This basic single-container setup of GoReeltime has the following
features:

• The web frontend is enabled.

• The upload feature is enabled, and conversion jobs are run inside the container.

• Files and the metadata database are stored on the host file system.

It can be started using the docker runtime as follows:

Create a folder for the media and database
mkdir media
Run the container
docker run --rm \

--volume ./media:/media \
--publish 8437:8437 \
registry.gitlab.com/goreeltime/goreeltime/reeltime:0.1.0 \
--web

Listing 4.2: Command line starting a single, perishable container.

The web interface of this local instance of GoReeltime can be accessed at http://localhost:
8437/.

A more permanent installation of this deployment can be created using docker-compose,
a declarative way of defining one or more containers [24]. In a file named compose.yaml,
the container can be defined as shown in Listing 4.3.

compose.yaml

services:

reeltime:
restart: unless -stopped
image: registry.gitlab.com/goreeltime/goreeltime/reeltime
:0.1.0

59

http://localhost:8437/
http://localhost:8437/

command:
- --web
ports:
- 8437:8437
volumes:
- ./media:/media

Listing 4.3: docker-compose example of a single-container deployment.

This configuration can then be launched and stopped using the following commands in
the same directory as the newly created file:

Start the configured container (and detatch from its output)
docker compose up -d
Stop the configured container
docker compose down

Scalable Deployment

To run the platform as a scalable service across multiple replicas, a different configuration
is required. The environment would need to have a database that can be accessed in
parallel, as well as a messaging system in place that can schedule conversion jobs externally
(see Figure 4.8).

A possible way of deploying this configuration is shown in the appendix in Listing A.2.
It can also be replicated in other container orchestration solutions, like Kubernetes [24].

4.3.9. Cross-Cutting Concepts

Crosscutting concepts cover a range of key considerations that, by their nature, impact
multiple aspects of the system. These concepts are fundamental to the development pro-
cess and operation of GoReeltime, ensuring robustness and maintainability while meeting
the demands of modern software engineering practices.

Twelve-Factor App We adhere to the principles of the Twelve-Factor App methodology,
which guides the design of modern software-as-a-service applications. This approach

60

Replica 1

Streaming Service Conversion Service

DASH
Compatible

Clients

PG-Compatible
Database

Storage

Replica 2

Replica N

Replica 1

Replica 2

Replica M

Figure 4.8.: High-level overview of GoReeltime in a scalable deployment.

promotes best practices for building scalable and maintainable cloud native appli-
cations. Key factors are declarative formats, isolation and portability [37].

Development Foundations Our development process follows industry best practices, en-
compassing build automation, continuous testing and deployment (CI/CD) and
version control. These practices ensure code quality, rapid iteration, and reliable
delivery of features.

Clean Architecture Wherever applicable and compatible with the ecosystem, we adopt
Clean Architecture principles, emphasizing separation of concerns and dependency
injection in order to promote testability and maintainability of the codebase [17].

4.4. Application

The product of the implementation phase was released on the 11th of June 2024, achieving
one of the key motivations behind this project: creating an open-source solution. The
release was licensed under the GNU Affero General Public License (AGPL), ensuring that
it remains open and accessible for community contributions.

Repository: https://gitlab.com/goreeltime/goreeltime

61

https://gitlab.com/goreeltime/goreeltime

This section highlights the key features and goals that were achieved, and reflects on some
of the difficulties experienced with FFmpeg.

4.4.1. Features

Horizontally Scalable Thanks to its stateless design, GoReeltime can easily scale out by
adding more replicas of the service. By moving state to an external metadata and
video storage, the need for identifiable instances is eliminated.

Distributed Architecture With its ability to outsource resource-intensive video conver-
sion tasks to another service, the streaming part of GoReeltime can continue to
deliver video streams at high speeds. If the need for more parallel video conversion
capability is required, the number of replicas performing this task can simply be
increased.

Minimalistic Container Build with Ko Containers were chosen as the distribution unit
for GoReeltime. To allow for fast deployment and minimal overhead, the container
images are built using Ko (https://ko.build), a fast and lightweight build tool. By
adding only a single layer containing the output of a Go compiler to the base image,
it does not require unnecessary privileges and enhances the continuous integration
experience.

Extensible Codebase By using a clean architecture methodology during software de-
velopment, every component in GoReeltime can easily be exchanged by another
implementation [17]. This approach allows the adaption of the software to spe-
cific needs and may attract additional developers to the open-source project in the
future.

4.4.2. Compliance

Conformance to the DASH standard in order to support many different client implemen-
tations was noted as one of the key goals of this project.

The DASH-IF Conformance Tool by the DASH Industry Forum was used to validate both
a generated manifest and the active playback of a video generated by GoReeltime. Except
for the incompatibility of the validator with WebM-DASH, described in subsection 4.1.4,
the implementation fully complies with the standard. The reference player also does not
throw any errors.

62

https://ko.build

Through empirical testing, it was also validated that various other software supports video
playback from GoReeltime:

• Celluloid, a GTK+ frontend for the mpv media player, plays remote video flawlessly
(https://celluloid-player.github.io).

• yt-dlp, a command-line video downloader application is able to find and parse
manifests from GoReeltime and can successfully download videos hosted on the
platform (https://github.com/yt-dlp/yt-dlp).

This concludes that the goal of being compatible with as many video player client imple-
mentations as possible was achieved.

4.4.3. Live Test

Our main stakeholder, the Distributed Systems and Ledgers Lab (DSL) at the Eastern
Switzerland University of Applied Sciences (OST), gave us the opportunity to test the
streaming of a converted video on their website. The last news segment of the lecture
Distributed Systems can be viewed using DASH.

This test was performed to verify the possibility of embedding a video on another website.
The following steps were taken:

1. We uploaded the video to our instance of GoReeltime, triggering a conversion pro-
cess.

2. The output of the conversion (being the encoded video and manifest) was copied
from the platform’s storage to the web server of the DSL. Instructions on how to
embed and configure the dash.js reference player on the website was also provided.

3. The news segment of lecture 14 can now be streamed at https://dsl.i.ost.ch/lect/fs
24/.

4.4.4. The FFmpeg Postmortem

FFmpeg is a key building block of GoReeltime, responsible for video encoding tasks. It
has proven to be an incredibly powerful tool but is not without issues. This is a summary
of features in FFmpeg that were valuable over the course of this projectand the challenges
encountered during implementation, along with the strategies employed to overcome them.
For reference regarding video formats and encodings, see subsection 2.3.1.

63

https://celluloid-player.github.io
https://github.com/yt-dlp/yt-dlp
https://dsl.i.ost.ch/lect/fs24/
https://dsl.i.ost.ch/lect/fs24/

File Descriptors instead of Named Pipes

It was the initial plan to use named pipes (also known as FIFOs) to pass video data
directly to FFmpeg, in order to avoid the creation of intermediary files and be more
memory efficient. Additionally, this would also allow complete independence from the
storage implementation. However, named pipes are not seekable, they represent a simple
stream of data [23].

Using named pipes proved unviable because video containers, particularly MP4, store
required header information at the end of the file. This requires a file to be seekable
during the conversion process in order to read metadata first. Although the MP4 container
format option faststart allows metadata to be positioned at the start of the file, this is
not the default [11].

Processing MP4 files with FFmpeg would therefore not be possible without the faststart
option enabled, making most MP4 files incompatible with our system.

Instead, file descriptors were used. Unlike named pipes, a file descriptor represents a
specific open file, thus making it seekable. This approach unfortunately reduces the
possible storage backends, as it must return a valid file descriptor for FFmpeg to work
with [21].

This is possible since FFmpeg supports file descriptors to be used as both input and
output. However, being a relatively new feature, the available documentation is limited:
https://ffmpeg.org/ffmpeg-protocols.html#fd. Listing 4.4 shows a proper usage example.
The change was applied with commit 6e7c006 in January 2023 and released with FFmpeg
6.0.1 “Von Neumann” in September of the same year.

Bugs Encountered

The following are issues which were encountered while working on the command line
wrapper for FFmpeg.

Audio Channel Format Needs to Be Named Explicitly This is a reported issue regard-
ing the libopus encoder not automatically remapping some audio source channel
layouts to destination channels, causing encoding failures. Previously, FFmpeg au-
tomatically handled this remapping, but a change to the software removed this
functionality, requiring manual channel mapping specifications.

GoReeltime uses FFmpeg to encode uploaded video containing audio, so all possible

64

https://ffmpeg.org/ffmpeg-protocols.html#fd
https://github.com/FFmpeg/FFmpeg/commit/6e7c006e4047c319e9330106c16f29a9b81e22e6

channel layouts need to be specified for every audio format job.

Issue: https://trac.ffmpeg.org/ticket/5718

Analysis Timeout for Some Video Formats To calculate the required output quality
formats for a video, GoReeltime uses FFmpeg to analyze the video and audio streams
of uploaded files. As some video container formats store the header information at
the end of the file, FFmpeg needs to process the entire file to find it. Depending on
the size of the file, a timeout can be reached, in which case the process fails.

GoReeltime solves this problem by increasing the values of the analyzeduration
and probesize arguments, leaving FFmpeg more time to analyze the uploaded file
and determine the output.

Issue: https://trac.ffmpeg.org/ticket/10678

Manifest Generation Fails for Single-Key-Frame Videos For very short input files, there
is not enough play time to allow for more than one key frame to be generated. FFm-
peg does not generate MPD manifests for video files with a single key frame, causing
the manifest generation process to fail.

The impact of this issue is reduced by reducing the key frame interval of shorter
videos, this can however not be mitigated completely.

Issue: https://trac.ffmpeg.org/ticket/9999

Manifest Generation Uses File Descriptor Names GoReeltime uses file descriptors to
the data of uploaded video files via the file descriptor protocol in FFmpeg (see
Listing 4.4).

There is a currently unreported bug in FFmpeg in which the manifest generated
from a command that uses the file descriptor protocol does not include the actual file
names, but instead just puts fd: as the BaseURL (see subsection 4.1.3 for reference).
This generates a valid but incorrect manifest, as all file names need to be adjusted
in it.

Generating a manifest using file names
Results in <BaseURL >input.webm </BaseURL >
ffmpeg \
-f webm_dash_manifest -i input.webm \
-c copy -map 0 \

65

https://trac.ffmpeg.org/ticket/5718
https://trac.ffmpeg.org/ticket/10678
https://trac.ffmpeg.org/ticket/9999

-f webm_dash_manifest -adaptation_sets "id=0,streams=0" \
manifest.mpd

Generating a manifest using file descriptors
Results in <BaseURL >fd:</BaseURL > instead of file name
ffmpeg \
-f webm_dash_manifest -fd 0 -i fd: \
-c copy -map 0 \
-f webm_dash_manifest -adaptation_sets "id=0,streams=0" \
-fd 1 fd:

Listing 4.4: Difference between running an FFmpeg command with file names and file
descriptors.

66

Chapter 5.

Results

The primary goals of this thesis were to develop a horizontally scalable, standard-compliant
video streaming server. It should implement automatic conversion upon upload and ad-
here to the Twelve-Factor Methodology. As an additional goal, the server should be
released as an open-source project.

The results show that the developed platform achieves horizontal scalability through its
stateless server design and the integration of a message queue system for handling video
conversion tasks. This design ensures that the platform can efficiently manage increasing
loads without degradation in performance. Compliance with the DASH standard was
successfully validated through the DASH-IF Conformance Tool and empirical testing,
confirming that the platform can deliver ABR streaming to a wide range of clients.

Regarding the development process, it adhered to the Twelve-Factor Methodology. Special
care was taken to ensure that the platform logs to stdout, scales via the process model, and
communicates with backing services through APIs, specifically using NATS for messaging.
This methodology aided in creating a resilient and maintainable system architecture. The
software has been released as free software under the GNU Affero General Public License
(AGPL), ensuring that it remains open and accessible for community contributions and
enhancements.

Moreover, through a test in a production environment, the platform’s ability to manage
video conversion processes while maintaining DASH compliance was confirmed. Users
can seamlessly stream videos on various devices and clients while maintaining efficient
handling of system resources, as requests are resolved immediately, resulting in a reduction
of latency compared to streaming entire video files.

In conclusion, the developed streaming platform successfully meets the outlined objec-

67

tives, providing a scalable, distributed, and open-source solution with integrated video
conversion capabilities. It offers a viable alternative to proprietary platforms, empower-
ing users with complete control over their streaming infrastructure. However, the system
must still be further developed to ensure that it can be used standalone in a production
setting.

5.1. Future Work

Moving forward, there are several areas for future research that can build on the devel-
oped systems and findings. First, this includes the evaluation and implementation of an
authentication and authorization model that maintains the backend’s stateless nature,
potentially using JWT (JSON Web Tokens) with OpenID Connect and OAuth. This
would enable more fine-grained access control over uploaded video files. Additionally,
implementing a cancel function for conversion tasks would allow the graceful cancellation
of conversions if a video is deleted before its completion, possibly by using a broadcast
queue.

Further research into optimal parameters for the video format should continue, aiming
to balance quality and file size. The platform could also benefit from user-configurable
quality settings, such as high and standard quality options for different kinds of content.
Finally, developing a robust frontend or client applications using the system’s API would
enhance usability and accessibility.

These future enhancements present opportunities for further student research projects
and bachelor theses. Contributions from the community are encouraged to extend the
software’s capabilities to address the need for video streaming platforms.

68

Part II.

Appendix

69

Appendix A.

Code Listings

A.1. Grafana k6 Configuration

In order to configure Grafana k6 to perform continuous HTTP range requests for 100
users over a period of 30 seconds, the following configuration was used.

Execution: k6 run k6-script.js

import http from "k6/http";
import { check } from "k6";

export const options = {
vus: 100,
duration: "30s",
thresholds: {

// 95% of requests must complete within 500ms
http_req_duration: ["p(95) <500"],

},
};

function getRandomRange() {
// Video is 12 MiB, request one MiB
const ONE_MEBIBYTE = 2 ** 20;
let startByte = Math.floor(Math.random() * 10 *
ONE_MEBIBYTE);
let endByte = startByte + ONE_MEBIBYTE;

70

// Return byte range in 'Range '-header format
return `bytes=${startByte}-${endByte}`;

}

export default function () {
let rangeHeader = getRandomRange();
let headers = { Range: rangeHeader };
// Request a random byte range of the sample video
let response = http.get(

"http://192.168.69.2:8437/video/catvideo/
catvideo_3840x2160_3000k.webm",
{ headers: headers },

);
// HTTP 206: Partial Content (range request successful)
check(response , {

"status is 206": (r) => r.status === 206,
});

}

Listing A.1: Grafana k6 configuration.

A.2. Scalable Docker Compose Configuration

This configuration uses Traefik (https://traefik.io/traefik) for load balancing and stores
data in Docker volumes.

• Execution: docker-compose up

• Add converter replicas: docker-compose scale reelconvert=10

• Reset converter replicas: docker-compose scale reelconvert=1

services:

traefik:
restart: unless -stopped

71

https://traefik.io/traefik

image: traefik:v3.0
command:
- --providers.docker
- --providers.docker.exposedbydefault=false
- --entrypoints.web.address=:8437
volumes:
- /var/run/docker.sock:/var/run/docker.sock
ports:
- 8437:8437
networks:
- default
- frontend

reeltime:
restart: unless -stopped
image: registry.gitlab.com/goreeltime/goreeltime/reeltime
:0.1.0
command:
- --web
- --postgres -host=database
- --postgres -user=postgres
- --postgres -password=postgres
- --nats -host=nats
ports:
- 8437:8437
volumes:
- media:/media
networks:
- frontend
- backend
labels:

traefik.enable: true
traefik.docker.network: frontend
traefik.http.routers.reeltime.rule: PathPrefix(`/`)
traefik.http.routers.reeltime.entrypoints: web
traefik.http.services.reeltime.loadbalancer.server.port:

72

8437
reelconvert:

restart: unless -stopped
image: registry.gitlab.com/goreeltime/goreeltime/
reelconvert:0.1.0
command:
- --nats -host=nats
volumes:
- media:/media
networks:
- backend

database:
restart: unless -stopped
image: postgres:16.2
environment:

POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
POSTGRES_DB: reeltime

ports:
- 5432:5432
volumes:
- postgres:/var/lib/postgresql/data
networks:
- backend

nats:
restart: unless -stopped
image: nats:2.10.14-alpine3.19
command:
- --jetstream
ports:
- 4222:4222
networks:
- backend

volumes:
media:

73

postgres:
networks:

frontend:
name: frontend
driver: bridge
internal: true
ipam:

config:
- subnet: 10.43.0.0/16

backend:
name: backend
driver: bridge
internal: true
ipam:

config:
- subnet: 10.44.0.0/16

Listing A.2: Scalable deployment of the GoReeltime platform using Docker compose.

74

	References
	Glossary
	List of Figures
	List of Tables
	List of Code Listings
	Technical Report
	Introduction
	Assignment
	Motivation
	Conditions
	Project Domain

	Analysis
	Requirements
	Functionality
	Compliance

	Market Analysis
	Domain Analysis
	Video
	Bit Rate
	Streaming

	Solution Strategy
	Overview
	Distributed Service
	Streaming Protocol
	Automatic Conversion

	Technology Evaluations
	Video Streaming
	Metadata Storage
	Storage
	Job Scheduling

	Implementation
	Dynamic Adaptive Streaming over HTTP
	HTTP Range Request
	Overview
	Manifest
	Usage

	Technology Choices
	Programming Language
	Messaging System
	Database
	Storage
	Video Conversion

	Design and Architecture
	Overview
	Functional Requirements
	Non-Functional Requirements
	Architecture Constraints
	Architecturally Significant Decisions
	Building Block View
	Runtime View
	Deployment View
	Cross-Cutting Concepts

	Application
	Features
	Compliance
	Live Test
	The FFmpeg Postmortem

	Results
	Future Work

	Appendix
	Code Listings
	Grafana k6 Configuration
	Scalable Docker Compose Configuration

