
3D-Visualization of Utility Lines in the Browser
using Augmented Reality on Tablets

Bachelor Thesis

Department of Computer Science
OST - University of Applied Sciences

Campus Rapperswil-Jona

Spring Term 2024

Authors: Kaj Habegger & Lukas Domeisen
Advisor: Prof. Stefan F. Keller
Project Partner: Reto Senn - Bitforge AG
External Co-Examiner: Claude Eisenhut
Internal Co-Examiner: Dr. Thomas Bocek

12.06.2024

Abstract

Locating underground utility lines, such as water pipes is a complex task because they are usu-
ally hidden underground. The aim of this project is to extend and improve the existing solution
from the preceding term thesis, which represents an innovative, cost-effective alternative to
current solutions. Other solutions are native applications and depend on expensive hardware.

This project is a web-based augmented reality (AR) application for visualizing underground util-
ity lines on Android tablets. It utilizesWebXR andWebGL to integrate Building InformationMod-
eling (BIM) data, specifically Industry Foundation Classes (IFC), into a 3D environment. This in-
volves converting IFC data to a web-optimized 3D format (glTF), using Blender with the Blender-
BIM add-on. The web frameworks used for this application are Vue.js with TypeScript for the
frontend and Flask for the backend. Some other key technologies of this project are Three.js,
Turf.js, IfcOpenShell, Keycloak and PostgreSQL with PostGIS.

The original application has its flaws with accurate positioning of utility line models and has
limited functionality. One source of the imprecise alignment of utility line models with the real
world is the inaccuracy of the compass sensors used in mobile devices. Therefore, various fea-
tures to correct these inaccuracies are introduced with this bachelor thesis. These features
consist of manual position and rotation controls, as well as a guided compass correction. Other
features include colorizing utility lines based on their type, filtering utility lines by their type and
automatic loading of utility lines based on the user’s location. Additionally, it’s now possible to
upload IFC files within the application. After uploading, the IFC files are converted to glTF in
the backend and saved in the database along with the extracted metadata. In order to upload
and view their IFC files, users must first authenticate themselves with either Google or GitHub.
A challenge in this project was the lack of available IFC files to properly test the application.
Nonetheless, the application was developed with the data available and heavy reliance on the
IFC standard, which is publicly available.

1

Management Summary

Initial situation & approach

Locating underground utility lines, such as water pipes, is a complex task due to the fact that
they are usually hidden below the ground. A solution that enables visualizing these lines in
their actual environment could significantly simplify the localization process. Augmented real-
ity (AR) offers a promising approach to display these hidden utility lines in the real world con-
text. There are already a few existing solutions, but all of them are dependent on costly hard-
ware and license fees. A screenshot of an existing solution (vGIS) can be observed in figure 1.

Figure 1: vGIS application [1]

The aim of the preceding term thesis was to
create a similar application for the web which
can be used with off-the-shelf tablets and
relies on a relatively low-cost, high-accuracy
GNSS antenna with an integrated RTK re-
ceiver.

The main purpose of this bachelor thesis is to
extend and improve the existing application.
It uses the latest web-based AR technologies,
WebXR and WebGL, to visualize underground
utility lines. The utility lines are defined by In-
dustry Foundation Classes (IFC) data, which is
a standard for Building InformationModeling
(BIM) data. However, since IFC data is not a
3D format, it can’t be directly visualized in a
browser. Hence, conversion into a 3D format
that is usable by WebGL libraries like Three.js
is required.

Starting this thesis, the team began with the detailed definition of requirements derived from
the term thesis and the evaluation of possible approaches. Afterward, the implementation
process started. This included the primary objectives of user authentication, the possibility to
upload IFC directly in the application and enhancements of the AR viewer. Because the team
wanted to avoid self-implemented user authentication, Keycloak is used as an identity and ac-
cess management solution in combination with external social login providers. In order for
authenticated users to upload their IFC data, the backend had to be adjusted to be able to con-
vert IFC files to a web optimized 3D format (glTF). The conversion process is made possible by
Blender with the BlenderBIM add-on. Moreover, Vue.js with TypeScript was used for the fron-
tend and Python Flask for the backend.

2

Result

In the resulting application, users can log in using their Google or GitHub account. When au-
thenticated, users can upload their IFC data. They have the option to specify the type and ref-
erence coordinates either directly in the IFC file or set custom values in the upload form. The
status of the upload and conversion process is displayed in the application. After a successful
upload, the utility lines can be visualized in the viewer.

Figure 2: Two educational utility line models with different types visualized on the OST campus
in Rapperswil-Jona.

Utility line models can be either loaded manually by choosing them from a dropdown menu or
dynamically based on the user’s position. When loading utility line models dynamically, they
can be filtered by type. Utility line models are colorized based on their type. Although, there is
a legend which shows the color to type mapping, users can also click on model parts to inspect
their details, such as the type. The utility line models are positioned with an accuracy of less
than onemeter under optimal conditions. In order to improve the accuracy, users canmanually
change the position and rotation of themodel. To get themodel correctly rotatedwithout doing
it completely manually, the guided compass correction can be utilized. This instructs the user
to walk in a straight line, which allows the application to calculate the compass direction based
on the precise start and end points. In order to minimize the visual effect that the utility line
models are above the ground, they’re rendered slightly transparent.

3

Figure 3 shows a screenshot from the outdoor test in Stäfa with utility lines correctly aligned
and colorized based on their type.

Figure 3: Stäfa screenshot with overlay descriptions

Outlook

This project comes to an end with the hand-in of this bachelor thesis. Though, there is still room
for extending and improving the application.

One possible improvement is support of other BIM formats beside IFC. Improvements related
to IFC processing could be the support for older IFC versions, such as 2.3. Moreover, supporting
alternativeways of georeferencing in IFC fileswouldmake the application evenmore accessible.

Configurable colors for utility line typeswould also enrich theuser experience. Various enhance-
ments for processing and loading 3D data could be implemented, in order to reduce loading
times. In context of the AR viewer itself, more interactive features, such as distance measure-
ment or data modification, could be added. Allowing users to collaborate with each other by
giving access to their utility line models would further increase efficiency. Finally, the effect
of utility lines being underground could be improved, for example by using color gradients or
displaying a grid on the ground.

4

Acknowledgements

In this chapter we’d like to show our gratitude to people who supported us during this bachelor
thesis.

Starting with our thesis advisor Prof. Stefan Keller, who gave us valuable feedback and shared
helpful ideas with us to further improve our work. We appreciated having him as our thesis
advisor for both the term and the bachelor thesis.

Second, our external partner Reto Senn who was able to help us out when we weren’t sure how
to approach certain aspects. We want to thank him for his support.

Third, we’d like to thank everyone who provided IFC files to us, which allowed us to develop and
test our application. Additionally, we are grateful to those who answered our questions about
IFC with insightful responses.

Last but not least, special thanks to our friends and family for supporting us not only during
this bachelor thesis but also the last three years.

5

Contents

Abstract 1

Management Summary 2

Acknowledgements 5

Task Definition 9

Prior work 11

I Technical report 12

1 Introduction 13
1.1 Problem definition . 13
1.2 Vision . 13
1.3 Goals . 13
1.4 Basic conditions . 14
1.5 Approach . 14

2 State Of The Art 15
2.1 Existing solutions . 15
2.2 Disadvantages . 16
2.3 Benefits of tubAR . 16

3 Implementation concept 17
3.1 Knowledge gathering . 17
3.2 Requirements specification . 17
3.3 Evaluation . 17
3.4 Architecture . 17
3.5 Implementation . 18
3.6 Conclusion . 18

4 Results 19
4.1 Goal achievement . 19
4.2 Comparison . 21

5 Outlook 22

II Project Documentation 23

6 Vision 24

7 Requirements specification 25
7.1 Use case diagram . 25

6

7.2 Functional Requirements . 26
7.3 Non-Functional Requirements . 30

8 Analysis & Evaluation 35
8.1 Domain Analysis . 35
8.2 Object catalog . 35
8.3 Database model . 37
8.4 Evaluation . 37

9 Design 41
9.1 Architecture . 41
9.2 Sequence Diagrams . 51

10 Implementation & Testing 53
10.1 Implementation . 53
10.2 Automated & manual testing . 53
10.3 Browser compatibility . 53
10.4 Challenges . 53

11 Results & further development 55
11.1 Results . 55
11.2 Further development . 56

12 Quality Measures 58
12.1 Quality Assessment Tools . 58
12.2 Environments . 59
12.3 CI/CD . 62
12.4 Test strategy . 63
12.5 Communication Tools . 65

13 Project management 66
13.1 Resources . 66
13.2 Responsibilities . 67
13.3 Processes and meetings . 67
13.4 Risk management . 70
13.5 Long-term Plan . 75

14 Project Monitoring 76
14.1 Time tracking . 76
14.2 Code statistics . 76

15 Software Documentation 78
15.1 Technology-stack . 78
15.2 Tool-stack . 79
15.3 Installation . 79
15.4 Upload of IFC files . 81

III Appendix 82

16 Appendix A: Deliverables 83

17 Appendix B: Glossary and list of abbreviations 84

18 Appendix C: Test protocols 86

7

19 Appendix D: Screenshots 93

20 Appendix E: Bibliography 98

21 Appendix F: List of figures 100

22 Appendix G: List of tables 102

Task Definition

This chapter outlines the task details for the project titled 3D-Visualization of Utility Lines in the
Browser using Augmented Reality on Tablets. Furthermore, it’s focused on the specific objectives
and requirements of the task, conducted as a bachelor thesis during the spring term of 2024 in
the bachelor’s program in computer science.

Description

This project focuses on the application of Augmented Reality (AR) for visualizing utility lines
such as water, electricity etc. on an Android tablet. Moreover, no native application should
be built nor expensive AR glasses should be used. The integration of AR technology aims to
improve the management of underground utility lines, which are often hard to picture in a real-
world context. The goal is to further develop the existing application from the preceding term
thesis and gain experience with the latest technologies in the web (WebXR), data processing
and hardware (GNSS). The primary users of this application will be professionals in architecture
and the construction industry.

Tasks

• Enable interaction with virtual utility lines (such as viewing information about a utility line).
• Implement filtering of utility lines (such as showing water pipes only).
• Show utility lines only within a certain radius.
• Load utility line models dynamically based on the user’s position.
• User Authentication.
• Improve positioning of utility line models in the AR session.
• Improve transformation from IFC to glTF.
• Optional: IFC data can be uploaded in the frontend. This data is automatically transformed
to glTF and saved in the database.

Technologies

Overview of the software and hardware technologies that were used for the project.

Software

• Frontend: TypeScript, Vue.js, WebXR, Three.js
• Backend: Python, Flask, Blender with BlenderBIM, RPyC, IfcOpenShell
• Database: PostgreSQL, PostGIS

9

Hardware

• Samsung Galaxy Tab S9+
• ArduSimple RTK Handheld Surveyor Kit (GNSS antenna)

IFC data sources

• Bachelor thesis Jamie Maier
• Geobox AG
• IBU Institut für Bau und Umwelt
• BIM Lab OST
• Tiefbauamt Zurich

Deliverables

1. Tested software
2. Application demonstration video
3. Documentation including text-abstract, management summary and appendix
4. Brochure abstract
5. Declaration of originality

Participants

• Authors: Kaj Habegger & Lukas Domeisen
• Advisor: Prof. Stefan F. Keller
• External project partner: Reto Senn - Bitforge AG
• External Co-Examiner: Claude Eisenhut
• Internal Co-Examiner: Dr. Thomas Bocek

10

Prior work

This bachelor thesis builds on the preceding term thesis with the same title. The mentioned
term thesis was written in autumn term 2023 at the OST - Eastern Switzerland University of
Applied Sciences by Kaj Habegger and Lukas Domeisen. All developed software and source
code is fully carried over to this bachelor thesis. The following sections should give a better
understanding of what parts and functionality of the application are already given by the term
thesis.

Frontend

The frontend was developed using Vue.js with TypeScript. Furthermore, WebXR device API was
used to enable Augmented Reality (AR) sessions in the browser. The frontend in its term thesis
state features a landing page which informs the user about how to use the application and the
viewer which serves the AR experience to view utility lines.

API / Web server

The frontend gets the utility lines data, including their coordinates and glTF models, by using
an API. This API comes with two endpoints in its term thesis state. While one endpoint delivers
all names of available utility line models, another endpoint delivers one specific utility line with
its respective data. The server, which acts as the API, also provides the application’s frontend.

Database

The API gets its data from a PostgreSQL database which was chosen as the database manage-
ment system in the term thesis [2, sec. 3.5]. The database consists of one table which holds the
utility line’s name, coordinates and glTF data as binary.

IFC to glTF conversion

The data of utility lines are initially given in the IFC data format which isn’t a 3D format but
a descriptive format. To display the utility lines within a WebXR AR session a 3D data format,
such as glTF is needed. Therefore, a simple Python script was written during the term thesis
to transform IFC data to glTF using Blender with the BlenderBIM extension. After conversion,
the data is saved in the previously mentioned database. This script was used manually and
externally, and did not run in the backend throughout the term thesis.

DevOps

For a flawless development experience a CI/CD pipeline was set up during the preceding term
thesis. The pipeline consists of automatic frontend testing, building the application Docker
image and deploying the application to the production server.

11

Part I

Technical report

12

Introduction

This project was initially conducted as part of the term thesis in the autumn term 2023 by Kaj
Habegger& LukasDomeisen. The term thesis canbe foundonhttps://eprints.ost.ch/id/eprint/1188/.
It was continued as part of this bachelor thesis in the spring term 2024 by Kaj Habegger & Lukas
Domeisen. The name of the created web application will be referred to as the chosen name
“tubAR” in this thesis.

1.1 Problem definition

Locating underground utility lines, such as water tubes, is challenging because they are not
visible above ground. Augmented Reality (AR) allows for their visualization and would greatly
ease the process of locating these lines. With the recent advancements in AR technology, par-
ticularly in web-based applications, there is an opportunity to apply these technologies in new
areas. Current solutions available on the market rely on native applications, expensive hard-
ware and come with high licensing fees.

1.2 Vision

The vision for tubAR is to provide a practical tool that overlays a digital representation of utility
lines accurately onto the real world. This should bemade possible by using relatively low-priced
hardware such as ArduSimple’s RTK Handheld Surveyor Kit [3]. Low-priced additional hardware
makes the application more accessible to everyone. Users should be able to use their existing
data of utility lines infrastructure with tubAR. tubAR could simplify the management and main-
tenance of utility lines by providing a more intuitive and direct way of visualizing their location
and layout.

1.3 Goals

• Extend the existing application, so it allows users to upload their own data of utility lines
infrastructure.

• Implement user authentication so uploaded data is only visible to their owners.
• Introduce quality of life features to the application, such as allowing users to correct the
positioning ofmodelswithin the application’s viewer or loadingmodels based on the user’s
location.

• Colorize utility lines based on their type to make them visually differentiable from each
other and allow filtering by type.

13

https://eprints.ost.ch/id/eprint/1188/

1.4 Basic conditions

The project represents a bachelor thesis, with each teammember dedicating roughly 360 hours
to its completion. This time commitment corresponds to 12 ECTS credits.

1.5 Approach

The approach to this project is a combination of a Scrum-like framework (simplified version of
Scrum) and RUP, as described in chapter 13. The project is broken down to four phases with
each phase focusing on different aspects.

Phase 1: Inception

The inception phase lays the groundwork for the project. It involves setting up essential tools
for issue tracking, time management, and version control. This phase also embraces risk eval-
uation and the establishment of project management protocols, including process definitions
and meeting schedules. However, as this project follows up on the preceding term thesis and
can incorporate some of its parts, it will consume much less time than with a completely new
project.

Phase 2: Elaboration

During the elaboration phase, the team focuses on defining and documenting both functional
and non-functional requirements. Evaluation tasks are the main part of this phase, and they
are focused on user authentication services and the application’s architecture. Also, the IFC
files must be analyzed to gain insight of how and if new requirements can be fulfilled.

Phase 3: Construction

The construction phase is primarily dedicated to the development of the actual application, en-
suring that all specified requirements are met. As a first step, the whole architecture must be
revised. Afterwards, the IFC converter must be moved to the backend and completely over-
hauled. To complete the construction phase, the front- and backend have to be adjusted and
further developed.

Phase 4: Transition

The final phase concentrates on manual testing of the application and addressing remaining
bugs. Finally, the documentation and the other deliverables have to be completed for hand-in.

14

State Of The Art

This chapter examines the current landscape of AR technology for geospatial data visualization,
focusing on existing solutions and the benefits of this project.

2.1 Existing solutions

This section provides a concise overview of the existing solutions, more specifically vGIS, ARU-
tility, ARonLine and V-Labs.

2.1.1 vGIS

vGIS is a platform specialized in visualization of geospatial data through AR. Even though vGIS
requires a native application, they support various devices such as Android devices, iPhones/i-
Pads and Microsoft HoloLens 2. vGIS is versatile in its data format support, notably including
IFC among many others. Additionally, it supports integration with Esri ArcGIS and other GIS
systems. They provide capabilities for real-time interaction and modification of utilities, as well
as tools for measuring distances. [4] The annual licensing fee is $1250, which doesn’t cover the
costs of the devices themselves or optional components like LiDAR or photogrammetry tech-
nology [5].

2.1.2 ARUtility

ARUtility is a mobile application available for Android and iOS. It’s used for locating andmanag-
ing utility lines using AR. The key features are the ability to update and add new assets directly
in the app, distance measurement and easy integration with Esri ArcGIS. [6] Their pricing is
$100/month for amonthly subscription, $80/month for a quarterly subscription and $60/month
for a yearly subscription. No hardware is provided and thereforemust be purchased by the user.
[7]

2.1.3 ARonLine

ARonLine is amobile application developed byGISonLine for Android devices. It’s used to visual-
ize underground utilities and assets using AR. The key features of the application are GIS & CAD
support and geospatial tools for analysis such as viewing attributes or measuring distances.
Their pricing isn’t publicly disclosed. [8]

2.1.4 V-Labs

Based in Switzerland, V-Labs is another service in the field of AR for geospatial data visualization.
They also offer extended capabilities such as distance measurement and modification of GIS
data. V-Labs focuses on mixed reality glasses rather than tablet based solutions. Their custom
designed headset integrates essential hardware like a GNSS antenna withmixed reality glasses,

15

https://www.vgis.io/
https://www.esri.ch/de-ch/arcgis/produkte/uebersicht
https://www.arutility.com/
https://www.esri.ch/de-ch/arcgis/produkte/uebersicht
https://gisonline.co/aronline/
https://v-labs.ch/

providing a comprehensive solution. Although, their pricing isn’t publicly disclosed, the cost of
the mixed reality glasses alone starts at CHF 3,800. [9]

2.2 Disadvantages

Two primary drawbacks are evident in most of the current solutions: pricing and platform de-
pendency.

2.2.1 Pricing

High costs are a significant barrier in the adoption of AR technologies for geospatial data vi-
sualization. This is likely attributed to the costly hardware employed by solutions like vGIS and
V-Labs and high development costs for native applications.

2.2.2 Platform Dependency

The reliance on native applications by these alternative solutions introduces challenges in sup-
porting a diverse range of platforms, limiting their accessibility and adaptability.

2.3 Benefits of tubAR

tubAR could be a promising alternative, leveraging the capabilities of WebXR to offer a cross-
platform, web-based solution. This approach significantly increases the potential user base by
eliminating the need for purchasing specialized hardware, except for the GNSS antenna with
an RTK receiver. Furthermore, the avoidance of expensive hardware like mixed-reality glasses
makes tubAR a more cost-effective solution. This combination of accessibility, affordability and
technological innovation positions tubAR as a remarkable advancement in the field of AR-based
geospatial data visualization.

16

Implementation concept

This project is organized on a modular basis, with each part playing a key role in fulfilling the
project task. This chapter provides an overview of the projectmanagement and implementation
strategy.

3.1 Knowledge gathering

During the term thesis, significant initial knowledge was gathered, particularly regarding the
tools for AR and IFC data processing. For this bachelor thesis, the knowledge gathering phase
primarily includes gaining a deeper understanding of the topics covered in the term thesis.
Additionally, research is conducted to explore solutions that would help achieve the goals set
for this project.

3.2 Requirements specification

To determine the appropriate tools and solutions, the project requirements must be clearly
defined. The requirements are divided into functional and non-functional categories. Detailed
descriptions of these requirements can be found in chapter 7. These requirements serve as
guidelines when building the architecture and the application itself.

3.3 Evaluation

There are several possibilities of tools or libraries that could be used for a certain requirement.
Therefore, an evaluation process is necessary to select the most suitable options. Selection is
based on various criteria to ensure the best tools and libraries are chosen for the implementa-
tion.

3.4 Architecture

Before implementing any new features, architectural decisions must be made. A solid and sta-
ble foundation for the application architecture was established during the term thesis, but ad-
justments are needed to meet the new requirements. To ensure a smooth integration of these
new features, the team must reassess the architecture from the term thesis and make neces-
sary changes. Additionally, the architecture should not become too complex nor inextensible
in case of further developments.

17

3.5 Implementation

Based on the evaluations and the designed architecture, the application can be implemented.
Improving the existing application is the core focus of this project.

3.6 Conclusion

Approaching the end of the project time, an overall conclusion will bemade. This part compares
expectations with effective experience and discusses further development ideas.

18

Results

This chapter outlines the project’s accomplishments and compares it with a competitor.

4.1 Goal achievement

The project’s success is measured by comparing the actual application against its functional
requirements. Below is an analysis of the implemented user stories. The team was able to
implement all defined functional requirements, though US-5 not completely. Details on these
user stories can be found in section 7.2.

4.1.1 US-1: User login

User login has been successfully integrated into the application utilizing Keycloak. Two social
login providers, Google and GitHub, were configured for logging into the application. The web-
site can also be used without login, in which case uploading IFC files isn’t possible, and only
public utility lines can be viewed. Though, public utility lines are limited to the ones the team
uploaded as it’s not possible for user’s to set utility lines as publicly available.

4.1.2 US-2: Upload IFC data

Users are able to upload their own IFC files and view them in the viewer. The status of the upload
and conversion is shown in the frontend.

4.1.3 US-3: Show utility lines only within a certain radius

The camera in theARenvironment is configured to only render objectswithin a 50meters radius.

4.1.4 US-4: Load utility lines dynamically based on location

When uploading an IFC file, a boundary around the entire model is calculated and saved with
the model in the database. When automatic loading is enabled in the viewer, it automatically
shows all utility lines where the user is within the boundary.

4.1.5 US-5: Colorize utility lines based on type

Utility lines are colorized in the viewer based on their type, and a list of all types and their re-
spective colors can be viewed in the overlay. One story point of this requirement, allowing users
to configure the colors themselves, was not implemented due to time constraints.

19

4.1.6 US-6: Filter utility line types

In the viewer overlay, users can select specific utility line types to display.

4.1.7 US-7: Info interaction

Clicking on a segment of a utility line model reveals its details in the overlay. The details include
the location name, utility line type, name of the selected segment and bounding box size.

4.1.8 US-8: Compass correction

By using a slider, users canmanually adjust the rotation of the virtual coordinate system to align
it with the real world.

4.1.9 US-9: Accurate compass direction using GNSS (Guided compass correction)

To address the challenge of manually obtaining the correct compass direction, users can get
an accurate compass direction using the guided compass correction. When active, this feature
instructs the user to walk in a straight line for a short distance. Given the precise start and end
point using the GNSS receiver, the compass direction is calculated, and the coordinate system
is accordingly adjusted.

4.1.10 US-10: Movable utility line model

Despite previous correction methods and accurate location by the GNSS receiver, model posi-
tioning isn’t perfect. Therefore, this additional requirement was defined and implemented. This
feature allows users to move the models manually on each axis.

20

4.2 Comparison

This section compares tubAR to vGIS, which is currently the best and most mature alternative
solution based on information from their website.

tubAR vGIS
App type Web application Native application (Android, iOS,

HoloLens 2) [10]
Technologies WebXR, Three.js, Vue.js, Flask,

PostgreSQL, PostGIS, BlenderBIM,
IfcOpenShell

Undisclosed

Key Features
• AR visualization of IFC data
• Real-time interaction with models
to display details

• Uploading IFC data
• Automatic loading based on loca-
tion

• Colorization based on type

• AR visualization of IFC and many
other formats

• Real-time interaction with models
to display details

• GIS integration with Esri ArcGIS
and other GIS systems

• Colorization based on type
• Data modification and creation di-
rectly in the AR environment

• Distance measurement
[11][12]

Precision Less than a meter and can be man-
ually corrected. The receiver used in
this project is up to one centimeter
accurate. [3]

Horizontal: 1cm,
Vertical: 2cm,
Directional: +/-0.1°[10].

Price Antenna: €399 Annual license fee: $1250 [5]

Table 4.1: tubAR and vGIS comparison

In summary, the comparison between tubAR and vGIS highlights tubAR’s affordability and web-
based functionality, but also its shortcomings in more advanced features and precision.

21

https://www.esri.ch/de-ch/arcgis/produkte/uebersicht

Outlook

This chapter provides a brief overview of potential additional functionalities for improving the
application. These functionalities include:

• Supporting older IFC versions and alternative georeferencing methods of models in IFC
• Extending support for various file formats besides IFC
• More interactive controls, such as distance measurement and data correction directly in
the viewer

• Allowing users to manually configure colors for utility line types
• Enabling users to collaborate with each other by giving access to their utility line models
• Improve performance of loading utility line models
• Visual enhancements of the viewer to further improve the effect of the utility lines being
below the ground

Chapter 11 contains detailed descriptions of these potential features.

22

Part II

Project Documentation

23

Vision

The vision can be found in section 1.2.

24

Requirements specification

The diagram in figure 7.1 shows the main use cases of the system.

7.1 Use case diagram

The following diagram shows the main use cases of the system.

Figure 7.1: Use case diagram

25

Register / Login

Users can register a new account or login with an existing account.

View utility lines

Users can view utility lines in a virtual AR environment. Utility lines should be correctly posi-
tioned based on their reference coordinates.

Filter utility lines

Users can filter utility lines based on their type.

View details of utility line

Users can view more information about specific utility line segments, such as their type.

Correct positioning and rotation of utility lines

Users can adjust the positioning and rotation of utility lines to correct any inaccuracies.

Upload IFC files

Authenticated users can upload their own IFC files and view them in the AR environment.

Manage Users

Administrators can manage registered users.

7.2 Functional Requirements

The functional requirements define the specific features and functionality the software solution
must provide.

7.2.1 Actors

The final product is meant to be used by construction workers, landscape gardeners, telecom-
munication professionals, etc. As the intended usage of the app by all these users is the same,
there will be only one actor referenced in the following user stories: the user.

26

7.2.2 User Stories

Actions that a user wants to perform in the web application are defined by user stories. They
are identified with US-X (X corresponding to the number of the story).

A priority, as well as a rough estimation of required development effort will be assigned to
each user story. The Fibonacci scale is a common estimation method in the Scrum process and
reflects the relative effort of a task in the project. Additionally, theMoSCoWmethodwill be used
to prioritize the user stories.

Entry point

ID US-1
Subject User login
Priority Must have
Time estimation 8
Story points

• The user is able to log in to the application with either Google or
GitHub.

• The user has to authenticate themselves to upload IFC files and gain
access to their data (Uploaded IFC files).

Table 7.1: User login (US-1)

ID US-2
Subject Upload IFC data
Priority Could have
Time estimation 13
Story points

• The user wants to be able to upload their own IFC data.
• The user wants to be able to see their uploaded IFC data in the viewer.
• The user wants to be able to set the type and reference coordinates for
the uploaded IFC file.

Table 7.2: User login (US-2)

27

Viewer

ID US-3
Subject Show utility lines only within a certain radius
Priority Could have
Time estimation 13
Story points

• The user wants to see utility lines within a reasonable radius.

Table 7.3: User login (US-3)

ID US-4
Subject Load utility lines dynamically based on location
Priority Must have
Time estimation 8
Story points

• The user wants to automatically see the utility lines based on their lo-
cation.

Table 7.4: User login (US-4)

ID US-5
Subject Colorize utility lines based on type
Priority Could have
Time estimation 13
Story points

• The user wants to be able to determine the utility line types based on
their color.

• The user wants to see which color belongs to which utility line type.
• The user wants to be able to set the color for each utility line type.

Table 7.5: User login (US-5)

28

Overlay

ID US-6
Subject Filter utility line types
Priority Must have
Time estimation 8
Story points

• The user wants to be able to filter utility lines by type.

Table 7.6: Filter utility line types (US-6)

ID US-7
Subject Info interaction
Priority Should have
Time estimation 13
Story points

• The user wants to be able to access additional information of specific
utility line segments by tapping on them.

Table 7.7: Info interaction (US-7)

ID US-8
Subject Compass correction
Priority Must have
Time estimation 5
Story points

• The user wants to be able to manually correct the orientation of the
model.

Table 7.8: Compass correction (US-8)

29

ID US-9
Subject Accurate compass direction using GNSS
Priority Should have
Time estimation 5
Story points

• The user wants to be able to accurately determine the device’s orien-
tation by using the coordinates from the GNSS antenna.

Table 7.9: Compass correction (US-9)

ID US-10
Subject Movable utility line model
Priority Should have
Time estimation 5
Story points

• The user wants to be able to manually move loaded utility line models
in order to correct their position.

Notes This is an additional feature and was not part of the requirements de-
fined by the task definition.

Table 7.10: Movable utility line model (US-10)

7.3 Non-Functional Requirements

The non-functional requirements outline the characteristics and constraints that the software
solution must satisfy, such as performance, security and scalability.

7.3.1 Categories

The eight categories defined in ISO/IEC 25010 are used to categorize each non-functional re-
quirement.

Figure 7.2: ISO/IEC 25010 quality characteristics [13]

30

7.3.2 Fulfillment-Check Procedure

Each NFR has a “Fulfillment Check” row which describes who has the responsibility to check if
the NFR is fulfilled and how this is checked, if it isn’t already mentioned in “Measures”.

7.3.3 Performance and Efficiency

ID NFR-1
Subject 3D data loading
Requirement Time behavior
Priority Medium
Measures

• Loading and displaying the 3D data should not exceed 3 seconds.

Fulfillment check The team is responsible to check if this NFR is fulfilled during perfor-
mance testing.

Table 7.11: 3D data loading (NFR-1)

ID NFR-2
Subject Frames per second
Requirement Resource utilization
Priority High
Measures

• During runtime of the viewer at least 30 fps should be achieved at av-
erage.

Fulfillment check The team is responsible to check if this NFR is fulfilled during perfor-
mance testing. This can be displayed with Three.js’ developer tools.

Table 7.12: Frames per second (NFR-2)

ID NFR-3
Subject RAM usage
Requirement Resource Utilization
Priority Low
Measures

• During runtime of the application not more than 2 GB of RAM is used.

Fulfillment check The team is responsible to check if this NFR is fulfilled during perfor-
mance testing. This can be checked in the Android settings.

Table 7.13: RAM usage (NFR-3)

31

7.3.4 Compatibility

ID NFR-4
Subject Supported Browser
Requirement Compatibility
Priority High
Measures

• Only Chrome will be supported as browser starting from its major ver-
sion 125.

Fulfillment check The team is responsible to check if this NFR is fulfilled during acceptance
testing.

Table 7.14: Supported Browser (NFR-4)

7.3.5 Usability

ID NFR-5
Subject Vuetify usage
Requirement User Interface Aesthetics
Priority Low
Measures

• To guarantee an easy-to-use and consistent UI, Vuetify will be used.

Fulfillment check To reach Done state for Tasks/Issues the responsible team member has
to check if this NFR is fulfilled.

Table 7.15: Vuetify usage (NFR-5)

7.3.6 Security

ID NFR-6
Subject Don’t allow unauthorized access to data
Requirement Confidentiality / Authenticity
Priority High
Measures

• An OAuth service will be used to achieve this.

Fulfillment check To reach Done state for Tasks/Issues the responsible team member has
to check if this NFR is fulfilled.

Table 7.16: Don’t allow unauthorized access to data (NFR-6)

32

ID NFR-7
Subject Log user actions
Requirement Non-repudiation / Accountability
Priority High
Measures

• User actions are loggedwith their user ID and a timestamp in the back-
end.

Fulfillment check To reach Done state for Tasks/Issues the responsible team member has
to check if this NFR is fulfilled.

Table 7.17: Log user actions (NFR-7)

7.3.7 Maintainability

ID NFR-8
Subject Usage of Vue.js
Requirement Reusability / Modifiability
Priority High
Measures

• To achieve reusability of components, Vue.js is used.

Fulfillment check To reach Done state for tasks / issues the responsible teammember has
to check if this NFR is fulfilled.

Table 7.18: Usage of Vue.js (NFR-8)

ID NFR-9
Subject Unit tests
Requirement Testability
Priority High
Measures

• Test coverage must be at least 80% for frontend, backend server and
backend converter.

• Thiswill be checked in the CI/CDpipeline for the frontend andmanually
for the backend components.

• For each implemented feature unit tests must be implemented by the
responsible developer, if reasonable.

Fulfillment check To reach Done state for Tasks/Issues the responsible team member has
to check if this NFR is fulfilled.

Table 7.19: Unit Tests (NFR-9)

33

ID NFR-10
Subject Logging backend
Requirement Analyzability
Priority Low
Measures

• All errors and warnings in the backend are logged.

Fulfillment check To reach Done state for Tasks/Issues the responsible team member has
to check if this NFR is fulfilled.

Table 7.20: Logging backend (NFR-10)

7.3.8 Portability

ID NFR-11
Subject Dockerization of web application
Requirement Installability
Priority High
Measures

• The application will be deployed using Docker images to ensure device
independence.

Fulfillment check To reach Done state for Tasks/Issues the responsible team member has
to check if this NFR is fulfilled.

Table 7.21: Dockerization of web application (NFR-11)

34

Analysis & Evaluation

This chapter provides an overview of the domain model, including detailed descriptions of the
elements. Furthermore, it contains a summary of the database model and evaluations of po-
tential technologies for the project.

8.1 Domain Analysis

The domain model in figure 8.1 outlines key entities, attributes, and their relationships within
this project’s problem domain.

Figure 8.1: Domain model

8.2 Object catalog

The object catalog provides a detailed description of the various elements in the domain model
and their relationships shown in figure 8.1.

8.2.1 AR visualization

AR visualization refers to the graphical representation of utility lines within the AR environment
of the application. It involves the process of correctly displaying the utility lines in an optimized
3D format.

8.2.2 Boundary

The boundary is calculated from coordinates of utility line segments.

35

8.2.3 Coordinates

Coordinates are defined by latitude, longitude and altitude usingWGS 84. It’s used to accurately
position the utility lines within the application’s AR space, ensuring that the AR visualization
aligns correctly with the real-world coordinate system.

8.2.4 Device

The device, typically a tablet, runs the web application and renders the AR visualization of the
utility lines. It interfaces with the GNSS receiver and other built-in sensors used for accurate
real-time positioning in the AR space.

8.2.5 GNSS Receiver

The GNSS receiver with built-in RTK capabilities is connected to the device and provides high-
precision location data. This real-time positioning with high accuracy is crucial for aligning the
3D representations of utility lines with their physical counterparts in the real world. Further-
more, the receiver ensures that the AR visualization is accurate and responsive to the move-
ments of the device.

8.2.6 IFC File

The IFC file contains detailed information about the utility lines, including their type, reference
coordinates and dimensions. It serves as the blueprint for generating the 3D representations
of the utility lines.

8.2.7 User

The user interacts with the application through the device. They can view and analyze the utility
lines in AR and upload IFC files.

8.2.8 Utility line

Each utility line is a 3D representation of a physical utility line, defined by the IFC file.

36

8.3 Database model

The database consists of only one table. This is adequate for the scope of this project and its
resulting application.

Figure 8.2: Database model

8.4 Evaluation

This section evaluates different solutions for user authentication and data transmission be-
tween the Flask server and the converter, both running in seperate Docker containers. Key-
cloak is chosen for authentication due to its open-source nature and ease of integration. For
data transmission between the Docker containers, an RPC server with RPyC is selected to keep
a clean and simple architecture.

8.4.1 User authentication

Given the new requirement for user authentication, this section evaluates various possible so-
lutions.

Acceptance criteria

• Setup/Integration effort
• Provides needed functionality
• Security
• Cost

37

Keycloak

Keycloak is an open-source and cost-free solution, offering a wide range of features including
support for OAuth 2.0 and many social identity providers [14]. Keycloak is designed to be self-
hosted, which would not create additional costs for the project as the server is provided by the
OST. The deployment of Keycloak can be done with Docker, reducing setup efforts, since Docker
is already set up and in use for other components of this project.

Auth0

Auth0 is a commercial alternative to Keycloak, offering a robust authentication service across
various application types. It operates on a model that provides a limited free tier up to 7’500
active users, after which a paid subscription is necessary [15]. Although, this project may not
exceed the free tier limit, it’s still a factor to consider. Unlike Keycloak, Auth0 hosts its services
themselves, making authentication dependent on their authentication servers.

Own implementation

Considering an own implementation of user authentication, particularly a direct implementa-
tion of the OAuth2/OpenID Connect flow, comes with significant challenges. While it allows for
maximum customization, it introduces considerable security risks and demands a high level of
effort to develop and maintain. Additionally, opting for a self-built system means all user man-
agement aspects, including registrations and session management, would need to be handled
internally. Since user authentication isn’t the main focus of this project, this option is clearly out
of scope.

Conclusion

The team concluded that Keycloak is the most suitable authentication solution for this project.
Keycloak’s open-source nature, combined with its comprehensive features and Docker integra-
tion, provides robust user authentication without significant cost or complexity while keeping
a high level of security.

8.4.2 Data transmission between Flask server and converter

Given the requirement for the user to be able to upload their own IFC data and view them in the
viewer, the IFC convertermust bemoved into the backend. Everything in the backend is running
in Docker containers. Following this principle, the converter which utilizes Blender to convert
IFC files to glTF, should be running in a container too. It was decided not to run the converter in
the same container as the Flask server due to modularity and better error resistance in case of
a failure. Since the Flask server gets the IFC data from the frontend, it must somehow be able
to communicate with the converter container. Hence, two possible solutions for this problem
are evaluated in this section.

Acceptance criteria

• Setup/Integration effort
• Modularity

38

API with Flask

The first possibility would be to run another Flask server but in the same container as the con-
verter. This server exposes an API endpoint, which could be used by the backend to forward
IFC data that was received from the frontend. This approach is easy to implement, and no addi-
tional Docker container would be necessary besides the one already needed for the converter.
However, a major drawback would be that it would run a Flask application besides the converter
and the Blender application. Additionally, running a Flask application in a container which isn’t
directly exposed to the internet is a bit exaggerated.

Message queue with RabbitMQ

The second possibility would be to introduce another container which runs RabbitMQ. Rab-
bitMQ is a reliable and mature messaging and streaming broker. [16] It provides many options
to define how messages go from the publisher to one or many consumers. These messages
can contain a variety of information types such as plain text, complex structures or even data.
In order to work with RabbitMQ, an implementation of one of its supported protocols is needed.
As no additional programming language should be introduced to this project, an implementa-
tion for Python would be pleasant. Hence, Pika, a pure Python implementation of the AMQP
0-9-1 protocol, comes in quite handy [17]. The idea of this approach is that the Flask server,
which communicates with the frontend, sends the received IFC data to RabbitMQ in a queue
and the converter container listens on that queue. If a new message appears in the queue the
converter fetches the message containing the IFC data, further processes it and stores it in the
database. This approach is slightly more difficult than the API with Flask to implement, because
the team has no experience with RabbitMQ. Furthermore, this approach would introduce an ad-
ditional Docker container where the queue runs. Nevertheless, modularity would be kept this
way, because for example, the converter could be changed any time to another implementation
without bothering the Flask server, which communicates with the frontend.

What is AMQP 0-9-1?

AMQP 0-9-1 (Advanced Message Queuing Protocol) is a messaging protocol that enables
conforming client applications to communicate with conforming messaging middleware
brokers. The AMQP 0-9-1 Model has the following view of the world: messages are pub-
lished to exchanges, which are often compared to post offices or mailboxes. Exchanges
then distribute message copies to queues using rules called bindings. Then the broker ei-
ther deliver messages to consumers subscribed to queues, or consumers fetch/pull mes-
sages from queues on demand [18].

RPC Server with RPyC

A third optionwould be to build a simple RPC server which also runs the converter itself. Remote
Python Call (RPyC) is a Python library for symmetrical remote procedure calls [19]. Additionally,
RPyC offers asynchronous remote procedure calls and registering callbacks for completed pro-
cedures. These two features drastically simplify the implementation process, while keeping the
architecture tidy. When the client sends an IFC file to the Flask server it would create a task
for the IFC file and initiate a remote procedure call to the container which runs the converter.
The converter container starts processing the data upon its reception. As soon as the converter
converted the IFC file and stored it in the database, it would invoke the callback function which
was previously handed over by the caller. With this callback function, the task can be set to
completed or failed. The client can check the conversion status of their file via an API endpoint.

39

Because all remote procedure calls are asynchronous, the Flask server completes its task as
soon as the remote procedure call is performed.

Conclusion

Since the team has the goal to develop andmaintain a clean architecture but also seeks for sim-
plicity, the RPC server with RPyC will be implemented. Furthermore, this approach has the least
integration effort and simultaneously keeps a high modularity, as desired by the acceptance
criteria.

40

Design

This chapter describes the architecture of tubAR, providing an overview of the various parts,
such as the front- and backend. It also includes sequence diagrams to visually represent some
key processes within the application.

9.1 Architecture

This section outlines the architectural framework and structural elements of tubAR. It includes
a detailed explanation of the system’s architecture using C4 diagrams and an analysis of the
source code structure for both the front- and backend components.

9.1.1 C4 diagrams

C4modeling leads to a model which is easy to understand, but still provides all important infor-
mation about an architecture. Not all existing C4 diagrams are used to describe this application.
The system context diagram and the container diagram are sufficient to describe tubAR. More
about C4 modeling can be read on https://c4model.com/.

Figure 9.1: System context diagram

41

https://c4model.com/

Figure 9.2: Container diagram

42

9.1.2 Source code structure

The top-level directory structure of the frontend, backend server and backend converter is de-
picted in figure 9.3.

Figure 9.3: Source code structure

• backend/ifc_converter:
• rpc_server.py: Contains the RPC server code, such as the configuration and the only
exposed remote function, which is utilized by the backend server.

• cli.py: Contains the CLI code, such as the available commands.
• converter: Contains Python files for all converter related things, such as the meta-
data extractor and the code which is executed through the Blender Python API.

• db: Contains Python files which are needed for database operations, such as creating
utility line location entries.

• helpers: Contains the Python files which provide several helping functions for the
other components.

• log: Contains the logger.
• tests: Contains Pytest unit tests.

• backend/server:
• app.py: Contains the code and configuration of the Flask application.
• alembic: Contains the code for database migrations. If any database modification is
needed, this can be done here.

• api: Contains the Python files which define the API endpoints. The Flask application
loads these files on startup.

• db: Contains Python files which are needed for database operations, such as getting
utility line location entries.

• helpers: Contains the Python files which provide several helping functions for the
other components.

• routes: Contains the Python file which defines the only routes besides the API end-
point which returns the frontend. The Flask application loads the file on startup.

• services: Contains the Python files which provide several helping functions for the
other components.

43

• tests: Contains Pytest unit tests.
• frontend:

• main.ts: Serves as the entry point for the Vue.js frontend application.
• assets: Contains the base CSS file, which is empty for this application.
• components: Contains Vue.js components which define parts of the application.
• interfaces: Contains interfaces to abstract objects such as coordinates.
• lib: Contains TypeScript files which define general frontend logic, such communica-
tion with the API or the authentication service. Also, the logic for the viewer is defined
here.

• router: Contains the Vue.js router to enable navigation between the different views.
• stores: Contains the TypeScript file which defines a store object for the correction
used by the viewer.

• views: Contains Vue.js components defining the different views of the website.

44

9.1.3 Frontend

The frontend employs theModel-View-ViewModel (MVVM) pattern. Vue.js primarily implements
the ViewModel, connecting JavaScript objects (Model) with the DOM (View) through two-way
bindings. The Model and View are mainly defined by the developer.

Components hierarchy

Figure 9.4 illustrates the hierarchy of the Vue.js components within the application.

Figure 9.4: Components hierarchy diagram

• App.vue: Root component which defines the entry point for Vue.js.
• HomeView.vue: Contains the description of the application and is basically the main view
of the web application.

• ViewerView.vue: Contains the overlay and a button to start a WebXR session. Utilizes the
UtilityLineViewer class (described in figure 9.5) for visualizing utility lines.

• ViewerOverlay.vue: Acts as the WebXR session overlay. Includes various UI elements,
such as controls to correct positioning of utility line models or the current GNSS accuracy.

• FileUpload.vue: Contains a form for uploading IFC data. Additionally, it contains a status
view, which shows the status of the current upload.

• DeleteLocations.vue: Contains the view where users can delete their utility line models.
• RTKTutorial.vue: Contains a tutorial for the RTK setup.
• Login.vue: Contains the login view where users can choose which service they want to
use to log in.

• Fallback.vue: Defines a fallback view in case a route does not exist. Contains a link to the
home view.

45

Dependency diagram

Besides the Vue.js components, additional TypeScript files have been implemented for handling
parts of the application logic. Most relevant files and their relationship are illustrated in figure
9.5.

Figure 9.5: Frontend dependency diagram

• lib:
• auth: Contains the keycloak.ts file which is used to handle operations related to au-
thentication.

• backend-api: The TypeScript file in this folder contains the code to communicate with
the API.

• helpers:
• axes-helper.ts: Generates colored arrows for each axis, which is mainly used for
debugging purposes.

• coords-helper.ts: Calculates the relative distance between two WGS 84 coordi-
nates.

• glb-helper.ts: Handles GLB file loading, so they can be used in Three.js.
• viewer:

• utility-line-manager.ts: Defines the UtilityLineManager class. Used for loading
utility lines as GLB and adding it to the scene.

• utility-line-viewer.ts: Defines the UtilityLineViewer class. Uses the UtilityLineM-
anager and XRSessionManager to correctly update and place utility line models.

46

• xr-session-manager.ts: Defines the XRSessionManager class. Handles parts re-
lated to the WebXR session such as starting the session, rendering the scene,
object selection, etc.

• views: All views are already explained in figure 9.4.
• components: All components are already explained in figure 9.4.

47

9.1.4 Backend

The backend server (Flask application) and the backend converter do not follow any specific
patterns, but common structures for similar projects. Though, the factory pattern is utilized
for creating the Flask application instance. This allows to have multiple instances with different
configurations, which is very useful for testing.

Dependency diagram - Backend server

The files of the backend server and their relationship are illustrated in figure 9.6.

Figure 9.6: Backend server dependency diagram

• app.py: This is the entry point of the Flask application.
• routes: The frontend.py file in this module contains the only non API route, which returns
the frontend. This is a catch-all route which is invoked when a request matches no other
endpoint.

• api: Both Python files in this module define API endpoints used by the frontend.
• services: The converter_rpc_client.py file contains the code to communicate with the RPC
server and sanitizer.py provides methods to sanitize user input.

• db: The Pythonfiles in thismodule provide functions towrite to and read from thedatabase.
The functionality is implemented with the ORM-Framework SQLAlchemy.

• helpers: The Python files in this module provide helper functions.

48

Dependency diagram - Backend converter

The backend converter runs in a separate container than the backend server.

Figure 9.7: IFC converter dependency diagram

• rpc_server.py: This Python file contains the RPC server code which uses the converter.
• cli.py: This Python file contains the CLI code which uses the converter.
• converter: The Python files in this module contain the logic related to the whole process
of converting IFC files to GLB files up to writing everything to the database.

• helpers: The Python files in this module provide helper functions. For example bound-
ary.py is used to calculate the boundaries of utility line models.

• db: The Python files in this module provide functions to write to the database. The func-
tionality is implemented with the ORM-Framework SQLAlchemy.

9.1.5 Keycloak

Asmentioned before, Keycloak was integrated into the application for managing user authenti-
cation. Since the architecture is already based on Docker, the Keycloak Docker image was used
to achieve this [20].

Configuration

Setting up Keycloak required multiple configurations in the admin interface. By default, Key-
cloak comes with a “Master” realm which should only be used internally and not for external
applications. For the application, a new realm named “tubar” was created, and within this realm
a new client with the same name was created. The client configuration includes essential pa-
rameters such as the website’s home URL and the URLs permitted for redirecting users after

49

logging in.

Identity providers

The application is configured to support user authentication via Google and GitHub. To achieve
this, newOAuth applicationswere createdwith bothGoogle andGitHub, obtaining unique client
IDs and client secrets to register in Keycloak. Additionally, attribute mappings were configured
to automaticallymap the attributes from the external providers to the attributes of the Keycloak
user.

Authentication flow

Figure 9.8 visually represents the authentication process, showing the sequence of interactions
between the user, the application, the identity providers and Keycloak.

Figure 9.8: Keycloak identity provider flow [21]

50

9.2 Sequence Diagrams

Sequence diagrams illustrate the interactions between different parts of a system in a specific
order. This section shows two of the most important processes in the application where both
the front- and backend are involved.

9.2.1 Visualizing and filtering utility lines

The process of dynamically loading utility lines based the device’s location and filtering a specific
type is illustrated in figure 9.9.

Figure 9.9: Visualizing utility lines sequence diagram

51

9.2.2 IFC file upload

Figure 9.10 shows the process of uploading an IFC file as an authenticated user.

Figure 9.10: IFC file upload sequence diagram

52

Implementation & Testing

10.1 Implementation

This section usually contains some source code with according explanation. But it is not al-
lowed to have source code in the documentation for the e-prints portal. Therefore, this section
remains empty.

10.2 Automated & manual testing

Information about testing can be found in section 12.4.

10.3 Browser compatibility

According to the WebXR documentation, the primary mobile browsers that support WebXR are
Chrome, Opera and Samsung Internet. However, testing WebXR on these browsers revealed
that AR sessions only work on Chrome. Chrome utilizes ARCore to provide the AR functionality
on supported Android devices. [22] [23] [24]

10.4 Challenges

This chapter summarizes noteworthy challenges the team encountered during this project.

10.4.1 Accurate model placement

Assuming the reference coordinates of the model are correct, accurate model placement de-
pends on the geolocation accuracy of the device and the correct alignment of the virtual coordi-
nate space with the real world. Using a GNSS antenna with integrated RTK receiver, geolocation
accuracy can reach up to 1 cm under optimal conditions. Aligning the virtual space to the real
world basically means aligning the Z-axis to true north. To achieve precise alignment, the team
implementedmanual rotation controls and a guided compass correction, which allows formore
accurate alignment adjustments than using the device’s compass. Despite these improvements,
field-tests with the application revealed that model placement was still not perfect. To address
this, the team came up with an additional feature defined by US-10, which allows users to man-
ually correct the model’s position on each axis.

10.4.2 Utility lines underground visualization

Another challenge was the visualization of utility lines, which often appeared to be above the
ground rather than below it. To mitigate this effect, the utility lines are rendered slightly trans-
parent, and the lighting was adjusted to use a directional light from above. A direct comparison

53

https://developers.google.com/ar/develop

is shown in figures 10.1 and 10.2 from the term thesis and the bachelor thesis, respectively.
Although, the new visualization is an improvement, the lines still appear somewhat above the
ground. This issue comes from the limitations of AR technology itself, which overlays virtual
objects onto the camera’s view.

Figure 10.1: Old visualization Figure 10.2: New visualization

54

Results & further development

In addition to chapter 4, this chapter should give a deeper insight into the results as well as the
further development of the application.

11.1 Results

The user login feature was integrated into the application using Keycloak. This feature allows
users to authenticate themselves using one of the social login providers Google or GitHub. In
order to integrate Keycloak into the application, the frontend uses keycloak-js and the backend
python-keycloak. The application also supports anonymous usage, though with limited func-
tionality where IFC file uploads are disabled, and only public utility lines can be viewed.

Another key aspect was the ability for users to upload and visualize their own IFC data. The IFC
upload feature is a 2-step process consisting of the upload itself and the conversion of IFC to
GLB. The frontend indicates the status of the upload and conversion process, providing imme-
diate feedback.

The application is able to dynamically load utility lines based on the user’s location. This is made
possible by the boundary which is stored in the database with every location entry. When the
user is inside this boundary, the utility lines get visualized. By default, utility lines of all types
are displayed. By using the filter in the overlay, users can show only specific types which they’re
interested in.

Another goal of the project was to allow users to configure colors for different utility line types,
this aspect was not realized due to time constraints. However, the application does automat-
ically colorize utility lines based on their type and users can view a list of all types and their
corresponding colors in the overlay. These colors are currently hard-coded in the backend.

To ensure that users only see relevant parts of the utility lines, the visibility range of the camera
is limited to 50 meters. Objects outside this radius are not rendered.

Individual parts of the utility line models are interactive, allowing users to click on them and
display detailed information. This includes the location name, the type, the nameof the selected
object and the bounding box size.

Manual compass correction was implemented using a slider, enabling users to manually adjust
the rotation of the virtual coordinate system to align it accurately with the real world. To further
enhance the correct alignment of the virtual coordinate system, a guided compass correction
using GNSS was implemented. This feature can be activated in the overlay. After starting the
guided correction process, the user is instructed to walk in a straight line while also holding
the tablet as straight as possible. When the user decides to finish the process, the compass
direction is calculated based on the start and end position and the virtual coordinate system is
adjusted accordingly. The further the user walks the more accurate this will get.

The team noticed during outdoor testing that even with these mentioned correction methods,
the positioning ofmodels isn’t perfect. Therefore, an additional featurewas implementedwhich
allows users tomanually move utility linemodels on each axis. This flexibility ensures that users
can achieve precise alignment of the models. As part of this feature, a switch was also imple-

55

https://www.npmjs.com/package/keycloak-js
https://pypi.org/project/python-keycloak/

mented which can enable or disable the automatic position correction of utility line models.
This is useful to stop the model from jumping around while trying to align it to some anchor
point such as a manhole.

While the application lacks someprecision in displayingutility linemodels, it establishes a robust
foundation for future enhancements and development. The backend API provides a swagger
API documentation, making it easier to understand the usage of the API.

11.2 Further development

In this section, the potential features already discussed in the outlook of the technical report
are explained in more detail.

11.2.1 Support for older IFC versions & alternative georeferencing methods

One possible area for improvement is the support for older IFC versions such as 2.3. This is im-
portant because these versions are still quite common, as multiple individuals which the team
contacted for IFC 4.3 files mentioned they only have files of version 2.3. This improvement also
includes integrating alternative georeferencingmethods for themodels, as the currently imple-
mentedmethod in the application uses IFC fieldswhich got introduced in version 4. Additionally,
the team learned during this thesis that even in version 4, georeferencing is done in different
ways.

11.2.2 Support for other file formats

Another significant enhancement would be the support of other formats than just IFC. This
expansion would make the application more accessible to various industry standards.

11.2.3 Advanced interactive controls

Introducing more interactive controls in the viewer, such as distance measurement and data
correction could considerably improve the workflow of managing utility line data. Distance
measurement tools would enable users to quickly get distances and use them for planning
and analysis. Data correction features would allow users to make real-time adjustments to the
models, ensuring greater accuracy.

11.2.4 Utility line types color configuration

Allowing users to manually configure colors for utility line types is another potential improve-
ment. This feature would enable users to set the colorization based on their specific standards.

11.2.5 Collaboration

Currently, users can only see their uploaded utility lines and public utility lines. Enabling col-
laboration by allowing users to share access to their utility line models would enable teams to
work together much easier. This could greatly improve efficiency in team-based projects.

56

11.2.6 Improve performance

Improving the performance of loading utility line models is another important area for devel-
opment. Optimizing the loading process would enhance the application’s responsiveness and
speed, providing a smoother and more efficient user experience. This improvement is particu-
larly crucial for handling large files with complex models, ensuring that the application remains
stable.

11.2.7 Improve underground visual effect of utility lines

As mentioned in section 10.4.2, the utility lines appear to be somewhat above the ground. Con-
crete ideas to minimize this visual effect would have to be evaluated. Possible approaches in-
clude using color gradients, displaying a grid on the ground or experimenting with highlights
and shadows.

57

Quality Measures

This chapter defines the qualitymeasures usedduring this bachelor thesis to ensure a high stan-
dard of the application. It encompasses guidelines, tools, and workflows designed to maintain
and enhance the quality of the application.

12.1 Quality Assessment Tools

The section begins by introducing the tools used for quality assessment, such as a LATEX For-
matter for maintaining consistency in documentation and linters for ensuring code quality in
TypeScript and Python. Furthermore, various guidelines regarding the documentation, code
and Git are described.

12.1.1 LATEX Formatter

Latexindent.pl is a Perl script designed to enhance the appearance and organization of LATEX
code by adding horizontal leading spaces for improved readability. Source can be found on
https://github.com/cmhughes/latexindent.pl. This formatting tool makes it easier to maintain
and understand the LATEX code structure. To keep the documentation consistent, all teammem-
bers use latexindent.pl as a tool to format the source code.

12.1.2 Linter

For automatically checking that the application’s code conforms with the respective coding
guidelines of the language we will use linters for our TypeScript and Python code.

ESLint

ESLint will be used for TypeScript code. For integration into VS Code, the extension “ESLint” has
to be installed.

Pylint

Pylint will be used for Python code. For integration into VS Code, the extensions “Python” and
“Pylint” must be installed.

12.1.3 Guidelines

This section outlines the documentation and coding guidelines adopted by the team for main-
taining consistent quality in both writing and programming practices.

58

https://github.com/cmhughes/latexindent.pl

Documentation guidelines

The guidelines for the documentation are already given by this LATEX template. No additional
guidelines have been defined.

Code guidelines

Our team complies with the guidelines given by ESLint and Pylint. All warningsmust be resolved
before pushing code to production.

Definition of Done

Since Jira is used and all tasks are defined via issues, the following Definition of Done for issues
are defined.

• Acceptance criteria
• Complies with functional- and non-functional requirements
• All defined sub-tasks of the issue have been solved
• The feature is ready to demonstrate
• Peer code review by the other team member

• Quality
• Unit test coverage is over 80% over all TypeScript and Python files
• Complies with defined coding standards
• No Bugs or Code Smells
• Build Pipeline passed

• Documentation
• All necessary items have been documented

12.1.4 Git-Branching & Merges

To avoid mistakes, it’s forbidden to push anything directly to the main branch. When working
on an issue, a new branch starting with the respective Jira issue ID must be created. After a
team member has implemented their feature and the definition of done is fulfilled (except the
peer code review criterion), they can create a merge request on GitLab and assign a reviewer.
The reviewer has to review the changes and check if it complies with the definition of done. If
everything is OK, the merge request will be approved by the reviewer.

12.2 Environments

Two Docker compose files were created, one for development and a second one for production.
These files define two almost identical compositions of Docker containers. This setup ensures
that the application can bedeveloped in a production-like environment. Furthermore, the usage
of Docker allows device independent development as always the same setup is given.

59

12.2.1 Development

Figure 12.1: Development environment described as C4 deployment diagram

60

12.2.2 Production

Figure 12.2: Production environment described as C4 deployment diagram

61

12.3 CI/CD

This section should give a better understanding of how CI/CD was integrated into this project.

12.3.1 Workflow

The team uses the workflow described below to achieve continuous integration and deploy-
ment. it’s also important to note that the pipeline acts different on development branches and
themain branch. On themain branch, the pipeline additionally includes buildingDocker images
and deploying the application to the project server. This means, only commits (stable versions)
directly on the main branch will be deployed.

Figure 12.3: Workflow

12.3.2 Gitlab Pipeline

The pipeline only includes testing the frontend, because the backend is tested locally before
merging due to database dependency. How the production environment is constructed after
deployment can be found in figure 12.2.

Figure 12.4: Gitlab pipeline

62

12.4 Test strategy

Testing is an important part of every software project, requiring a well-defined test strategy.
This section describes the types of testing and how they are executed in the project.

12.4.1 Types of Testing

Overview over the different types of testing:

• Unit Testing
• UI Testing
• Performance Testing
• Acceptance Testing

Each category has a type of execution, when the tests are executed and a definition of who is
responsible to create the kind of tests.

Unit Testing

Testing of individual units of code, such as methods, to ensure they are working as expected.

• Execution: Automated
• Time of Execution: With every build
• Responsibility: Each developer for his units of code

F.I.R.S.T principles: Each unit test has to conform with these principles:

• Fast: Unit tests should be fast, meaning they should execute quickly so that they can be
run frequently during development.

• Independent: Unit tests should be independent of one another, meaning that the out-
come of one test should not affect the outcome of another. This helps ensure that each
test is testing a specific and isolated unit of code.

• Repeatable: Unit tests should be repeatable, meaning that they should produce the same
result every time they are run. This helps to detect faulty changes in the code.

• Self-validating: Unit tests should be self-validating, meaning that they should be able to
automatically determine if they have passed or failed without human intervention. This
helps ensure that tests can be run as part of a continuous integration process.

• Timely: Unit tests should be written in a timely manner, meaning that they should be
written before or directly after the code they are testing is implemented. This helps ensure
that the code is written with testability in mind and can help catch bugs earlier in the
development process.

AAA pattern: Each unit test will follow a three-step process:

• Arrange: During the Arrange phase, the test prepares the necessary prerequisites for the
test. This involves creating any required objects, initializing variables, and configuring any
dependencies that the code under test relies on.

• Act: During the Act phase, the test executes the action being tested. This could involve
calling a specific method or interacting with an object.

63

• Assert: In this phase, the test verifies that the action performed in the Act phase has
produced the expected result. This involves comparing the actual result of the action with
the expected result and failing the test if the two do not match.

UI Testing

These tests make sure that the user interface is working properly and all components function
as expected.

• Execution: Manual
• Time of Execution: At the end of each sprint during the Construction phase

While it’s usually possible to automate UI testing, we have decided to domanual testing for this
project since it would be very hard to check if 3D objects are correctly displayed. This was also
mentioned multiple times at the event “Frontend Best Practices 23 – 3D-Web”, which the team
attended. Information about the event can be found on https://www.meetup.com/rapperswil-
frontend-best-practices-meetup-group/events/292300468/.

Performance Testing

These tests make sure that the application behaves correctly under different circumstances.

• Execution: Manual
• Time of Execution: At the end of each sprint during the Construction phase

Google Chrome includes various development tools for testing the performance of websites.

Acceptance Testing

These tests ensure that the defined functional and non-functional requirements are met.

• Execution: Manual & Automated
• Time of Execution: Before the final release

To ensure that all defined requirements are met, a combination of manual and automated test-
ing is used. While non-automatable requirements will be verified manually, automatable re-
quirements will be integrated into unit tests and checked automatically.

12.4.2 Test Coverage

The GitLab CI/CD pipeline will run tests and create a coverage report for the TypeScript code-
base. In order for the pipeline to succeed, no test can fail. Not every line of code is part of the
coverage report. The team excluded files that only use parts of external libraries such as Vuetify
due to the fact that this logic already tested by their respective developers. Furthermore, source
code which deals with complex WebXR or Three.js logic is also not included into the coverage
reports, because such code units are barely testable. For the backend tests, the coverage report
must be generated locally, as it requires a testing database and the effort of integrating this into
the CI/CD pipeline isn’t worth it at the moment.

64

https://www.meetup.com/rapperswil-frontend-best-practices-meetup-group/events/292300468/
https://www.meetup.com/rapperswil-frontend-best-practices-meetup-group/events/292300468/

12.4.3 Tooling

For testing the Python code, Pytest will be used. Vitest and Vue Test Utils will be used for the
TypeScript code.

12.5 Communication Tools

Microsoft Teams serves as the primary communication platform for online meetings and mes-
saging. Additionally, files which are not required to be part of a Git repository are shared via
Teams.

65

https://docs.pytest.org/en/7.4.x/
https://vitest.dev/
https://test-utils.vuejs.org/

Project management

This chapter provides an overview of the methodologies, tools and practices used to effectively
manage and coordinate the project. It outlines the team structure and responsibilities, as well
as the risk management.

13.1 Resources

This section details the resources available for the project, including team, time, cost and the
software tools utilized for specific tasks.

13.1.1 Team

• Kaj Habegger
• Lukas Domeisen

The team consists of two students at the OST - Eastern Switzerland University of Applied Sci-
ences. Lukas has extended knowledge in web development, while Kaj has experience in back-
end development. Both of us have already gathered a great theoretical and practical under-
standing of project management.

13.1.2 Time

The project started with the kickoff meeting on February 20th 2024 and will end on June 14th
2024, 5:00PM with the final project submission. Each of us is required to spend approximately
24 hours per week working on this project, which makes 48 hours a week and 720 hours for the
whole project. Besides the time consumed by the implementation and documentation, meet-
ings also count as work time. All work time is tracked in the respective issues in Jira.

13.1.3 Cost

As this is a university project, there is no budget which can be expressed in terms of money.
However, the costs can be expressed as the earlier mentioned 720 hours, that the team is al-
lowed to use project.

13.1.4 Tooling

• Code editor: Visual Studio Code
• Version control: Git (GitLab hosted by the OST)
• Issue tracking: Jira
• Documentation: LATEX
• File sharing: Teams

66

• Communication: Teams and Jira

13.1.5 Hosting of the application

Throughout the bachelor thesis, the backend of the application was running on a server pro-
vided by OST. The provided server was a virtual machine running Ubuntu 20.04 LTS. It had a 2
core CPU assigned to it and came with 4 GB of RAM and 50 GB of disk space configured. There
was no dedicated GPU available. tubAR is at the time of this bacherlor thesis’ hand-in available
on https://srbsci-26.ost.ch/.

13.2 Responsibilities

Usually roles would be assigned in a Scrum project. The team found this to be unnecessary,
because it only consists of two people. Nevertheless, both team members carry the responsi-
bilities below:

• Check that the project plan is being followed and that the status of work is on track.
• Track work time in Jira.
• All documents are handed in before according deadlines.
• Adhere to the defined quality measures.
• Maintain the product backlog and reevaluate time estimations.
• Keep the risks up-to-date.
• Implement software / infrastructure according to project plan and product backlog.
• Define and maintain the CI/CD processes.
• Define overall structure of the system.

13.3 Processes and meetings

To achieve agile project management, a Scrum-like framework combined with RUP is used to
define processes in this project.

13.3.1 Product and sprint backlogs

Both the product and sprint backlogs are maintained in Jira. Items from the product backlog
are refined into issues during sprint planning.

13.3.2 Sprint

Sprint information:

• Sprint duration: 2 weeks
• Sprint start: Monday
• Total amount of sprints: 8 (first sprint is only one week)

67

https://srbsci-26.ost.ch/

Planning

Each sprint is started by planning.

Planning procedure:

1. Discuss what should be achieved during this sprint.
2. Evaluate which product backlog items should be put into the spring backlog.
3. Discuss which team member takes care of which sprint backlog items and define time

estimations.

Further information about planning:

• Frequency: Once every two weeks
• Location: Teams
• Day/Time: Monday 2:00 PM
• Duration: 1h

Weekly (meetings)

The team does weekly meetings, so called weeklys, to catch up with each other’s progress. Of
course, urgent matters should be communicated immediately through the defined communi-
cation channels.

Further information about weeklys:

• Frequency: Once per week
• Location: Teams
• Day/Time: Monday 2:00 PM
• Duration: 30m

Review

Each sprint ends with a review.

Review procedure:

1. Each developer presents what they worked on during the sprint.
2. Progress evaluation of the project.
3. Evaluate and apply environment changes (risk analysis, product backlog adjustments, etc.)

Further information about review:

• Frequency: Once every two weeks
• Location: Teams
• Day/Time: Monday 1:00 PM
• Duration: 30m

68

Retrospective

Each sprint ends with a retrospective.

Retrospective procedure: The team defined a quality measure checklist, which needs to be in-
spected during the sprint retrospective. If any item isn’t to the team’s satisfaction, the team will
define measures for improving the quality in the next sprint.

The quality measures checklist includes following items:

• Documentation quality:
• Is the documentation correctly formatted?
• Are there any known grammatical errors?
• Is anything missing or in need of improvement?

• Time tracking evaluation:
• Has everyone tracked their time correctly?
• How good are the estimates for tasks?
• Did both team members spend about the same amount of time on the work?

• Code quality:
• Is the code quality to the team’s satisfaction?
• Are there bugs, vulnerabilities of code smells that need to be taken care of?

• Git / Branches cleanup:
• Are there any leftover branches that need to be deleted?
• Did the team encounter any problems with Git?

Further information about retrospective:

• Frequency: Once every two weeks
• Location: Teams
• Day/Time: Monday 1:30 PM
• Duration: 30m

13.3.3 Advisor meetings

• Frequency: Once every two weeks
• Location: Room 8.261
• Day/Time: Tuesday 3:00 PM
• Duration: 1h
• Additional attendants: Prof. Stefan F. Keller

69

13.4 Risk management

Risk management is a critical process that involves identifying potential risks and developing
strategies to mitigate or eliminate them.

13.4.1 Risk categorization method

Risks in the projectwere categorized and assigned values using the riskmatrix below to facilitate
their rating. The respective values can be found right next to the title of the risk.

Figure 13.1: Risk Matrix

13.4.2 Lack of experience with AR | 6 (Likelihood: 2, Consequence: 3)

Description

All team members have gained some experience in development of AR applications during the
term project which took place in the previous semester. Still, it’s quite a new field to all team
members. Therefore, it’s possible that some features aren’t implemented optimally.

Mitigation

Every implementation of an AR feature must be planned in the best way possible in advance to
balance out the lack of experience.

70

13.4.3 Working as a Team | 2 (Likelihood: 1, Consequence: 2)

Description

Since the teammembers have already worked on multiple projects together, including the pre-
ceding term thesis, the risk of bad team work is small but existent.

Mitigation

Respect the opinions of each other. Try the best to meet deadlines of the tasks, and if not
possible let the other team member know as soon as possible.

13.4.4 Specificationof requirements/features is inaccurate | 4 (Likelihood: 2, Con-
sequence: 2)

Description

it’s difficult to perfectly define all requirements in a software project right from the start, espe-
cially when the team has little experience with the technology.

Mitigation

Usage of agile (Scrum-like) methodology for the project. This assures that the requirements will
be regularly adjusted in the sprint planning and sprint review meetings.

13.4.5 Jira limitations | 2 (Likelihood: 1, Consequence: 2)

Description

Jira is used for the project tracking and the team has noticed some limitations, such as creating
reports for spent time.

Mitigation

There are many Jira plugins to resolve such limitations.

13.4.6 Time-Management (not enough time) | 8 (Likelihood: 2, Consequence: 4)

Description

A lot of features and improvements are planned to be implemented within this bachelor thesis.
It’s possible that the available time is not enough to complete all requirements. Furthermore,
it’s possible that not every team member has the amount of time available which should be
used to work on the project (24 hours per week).

71

Mitigation

All team members should try to estimate their available time for each sprint. If the recom-
mended amount of time per week cannot be met, it should be discussed with the team. Also,
when a feature or improvement takes a lot more time to implement than planned, it should be
communicated as early as possible so that the time plan can be adjusted accordingly.

13.4.7 Testing taking up too much time | 6 (Likelihood: 2, Consequence: 3)

Description

Testing can be a very time-consuming task and is often overlooked when estimating effort of
features. Especially for this project, in order to manually test the application with real data, it’s
required to physically go to the respective coordinates.

Mitigation

Make sure to always include enough time for testing when estimating an issue. To make sure
that not too much time is needed for testing, at first only unit tests will be implemented for the
respective issue. At a later stage in the project, if the time allows it, more tests will be added
such as: integration tests, functional tests, system tests.

13.4.8 Absences / Illness | 10 (Likelihood: 5, Consequence: 2)

Description

Absences and illness could affect the project, due to someonemissing in ameeting or not being
able to meet the deadline for a task.

Mitigation

Absences and illness should be communicated with the team as early as possible.

13.4.9 IFC data processing complexity | 6 (Likelihood: 2, Consequence: 3)

Description

The given data is in IFC format, which cannot be directly displayed as 3D objects using a 3D web
library. Hence, it’s necessary that the IFC data is converted into a 3D format first.

Mitigation

Blender with the BlenderBIM add-on is used to convert the IFC files to glTF files. Furthermore,
Blender offers an API which can be used through Python scripts. This helps simplifying the task
by automating the conversion of the IFC files. Though, it’s still time consuming and not our
primary task of this bachelor thesis.

72

13.4.10 Inconsistent IFC data structure | 8 (Likelihood: 4, Consequence: 2)

Description

Inconsistencies in IFC files, such as varying fields for utility lines and missing reference coordi-
nates. It’s also not clear which fields in an IFC file are usually used for the type of utility line, due
to little IFC files at disposal.

Mitigation

More IFC data will be gathered to get an idea of the various inconsistencies and adapt our
application accordingly.

13.4.11 Too few IFC test data | 12 (Likelihood: 4, Consequence: 3)

Description

The team has only access to a handful of IFC test files. This leads to potential problems develop-
ing the application because edge cases or other things related to IFC files could be overlooked.
Additionally, with such a small amount of IFC test files manual application tests are difficult to
conduct properly.

Mitigation

More IFC data should be gathered to be able to check whether the application can handle most
files correctly.

73

13.4.12 Changes History

Risk Value
change

Reason for change Date

Inconsistent IFC data
structure

12! 20 After analyzing the currently available
IFC files, it turned out that only two files
can be used to develop and test the
application effectively. That’s too little,
hence the likelihood rises.

18.03.2024

Inconsistent IFC data
structure

20! 16 By sticking to the standards the present
IFC inconsistencies can be handled.
Hence, if an IFC file doesn’t comply
to the standards tubAR can’t smoothly
process the data.

01.04.2023

Inconsistent IFC data
structure

16! 8 There are a lot of inconsistent or miss-
ing parts within IFC files, but tubAR will
just work with what’s defined in the
standard for IFC 4.3. Therefore, the
consequence can be lowered.

16.04.2023

Testing taking up too
much time

9! 6 Most of the defined user stories are
now fulfilled which means there is
more time to test the application than
expected.

29.04.2023

Table 13.1: Risk changes history

74

SW
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual
Estimate
Actual

SW 14 15

Sprint 14

Sprint 14

14 158 139 10 11 12
Timeplan

Sprint Sprint 7 Sprint 8 Sprint 9 Sprint 10

1 2 3 4 5 6 7

Sprint 12 Sprint 13Sprint 11

Co
ns
tr
uc
tio
n

In
ce
pt
io
n

Prepare basic documentation structure

Define roles, processes, resources and
meetings

Risk-Management

Evaluate user authentication services

Reevaluate architecture and design

IFC converter (Improve conversion, run on
backend server)
Backend (user authentication, database
adjustments, file upload)
Frontend (user authentication, UI
adjustments)

Reconfigure SA infrastructure to BA
requirements

El
ab
or
at
io
n

Requirement-Analysis

Analyze IFC data for new requirements

Tr
an
sit
io
n

Define and execute manual tests

Project reflection

Sprint Sprint 7 Sprint 8 Sprint 9

10 111 2 3 4 5 9

Sprint 12 Sprint 13

12 136 7

Sprint 11

8

Sprint 10

Create long term plan

Setup issue tracking / time tracking (Jira)

Le
ge
nd ● Estimate

● Actual

Fix bugs and re-test

Finalize documentation

13.5 Long-term Plan

Project Monitoring

This chapter includes a diagram that illustrates the hours spent by the team as well as code
statistics.

14.1 Time tracking

14.2 Code statistics

This section offers an analysis of the project’s codebase, serving as an indicator of code quality.
The analysis utilizes the designated linters for each programming language, namely Pylint for
Python and ESLint for TypeScript.

14.2.1 Backend

Asmentioned in qualitymeasures, Pylint is used to ensure the quality of the code, which can also
be used to analyze the code and create a report. Pylint evaluates the code and calculates a score
out of 10, which reflects the quantity and severity of the issues found. The following result was
calculated for the Python code: Your code has been rated at 7.94/10. It’s important to note
that some linter warnings, which were identified as false positives, have been ignored. Most
of the linting issues that remain in the code are too long lines, which come from the swagger
API models and the converter CLI arguments definitions. The team decided to leave these lines
unchanged, as they’re easier to read in their current format.

76

14.2.2 Frontend

Eslint has been configured specifically to adhere to the recommended rules for TypeScript and
Vue.js 3. The frontend codebase does not contain any linting issues.

77

Software Documentation

This chapter summarizes relevant technologies and tools that where used to build the applica-
tion. Furthermore, it describes some preconditions which have to be met to be able to run and
use the application.

15.1 Technology-stack

Technology Version
Axios 1.6.8
Keycloak JS 24.0.2
Pinia 2.1.7
three.js 0.158.0
Turf.js 6.5.0
TypeScript 5.2.2
Vite 4.5.0
Vitest 0.34.6
Vue.js 3.4.26
Vuetify 3.3.23
WebXR API N/A

Table 15.1: Technologies frontend

Technology Version
Python 3.10
Alembic 1.12.1
Certbot 2.10.0
Click 8.1.7
Flask 3.0.0
Flask-SQLAlchemy 3.1.1
Flask-restx 1.3.0
GeoAlchemy2 0.14.2
Gunicorn 21.2.0
Keycloak 24.0.1
nginx 1.25.4
Pytest 7.4.3
SQLAlchemy 2.0.29
RPyC 6.0.0
PostgreSQL 16.2
PostGIS 3.4.2
Shapely 2.0.4

Table 15.2: Technologies backend

78

15.2 Tool-stack

Tool Usage Version
Blender + BlenderBIM add-
on

IFC visualization and visualizing / editing glTF 4.0.2

Open IFC Viewer IFC visualization 24.9.0
BIMvision IFC visualization 2.75.5
gltf editor glTF visualization and editing online
glTF Viewer glTF visualization online
Visual Studio Code Code Editor 1.90.0
pgAdmin 4 Database management 7.0

15.3 Installation

15.3.1 Real-Time Kinematic positioning (RTK) receiver

Utility lines need to be displayed precisely in the AR environment. Therefore, it’s necessary
that the device which is running the AR application can access precise localization. As common
mobile devices can only deliver a location accuracy of approximately fivemeters, it’s mandatory
to use an external RTK capable receiver.

RTK is a technique used to improve the accuracy of a standalone GNSS receiver. In its simplest
form, an RTK solutionmakes use of a single reference station in proximity to the user receiver. As
the reference station is in a surveyed position, it can estimate the errors for each received GNSS
signal. After error corrections have been communicated to the user receiver, Integer Ambiguity
Resolution (IAR) takes place. This principle works best if the distance between the user and the
reference station is reasonably short. When the distance between the user and the reference
station grows too large, the atmospheric conditions at the two positions can differ. This may
cause from unsuccessful IAR. A typical guideline for max distance can be 25 km [25].

With both the satellites and the base station combined it’s possible to get a location with a
preciseness of up to less than a centimeter. The RTK receiver used for this project is ArduSimple’s
RTK Handheld Surveyor Kit [3].

RTK Handheld Surveyor Kit setup process / test process

There are other ways to set up the kit, but our recommendation is as follows, because we tested
it that way. First check if the receiver works fine by following the steps provided below:

1. Set Android language to English.
2. Download and install SW Maps from the Google Play Store.
3. Open SW Maps, click on the SW Maps icon and tap on USB Serial GPS.
4. Under Devices, you should see FT232R USB UART.
5. Set Baud Rate to 115’200 and Instrument Model to u-blox RTK.
6. Click CONNECT button and grant permission if asked.
7. Go back to the menu and tap NTRIP Connection.

79

https://www.blender.org/
https://blenderbim.org/
https://blenderbim.org/
https://openifcviewer.com/
https://bimvision.eu/
https://www.gltfeditor.com/
https://gltf-viewer.donmccurdy.com/
https://code.visualstudio.com/
https://www.pgadmin.org/
https://play.google.com/store/apps/details?id=np.com.softwel.swmaps

8. Enter the following details:
• Address: rtk2go.com
• Port: 2101
• Mount Point: NEAR-Swiss (See below for alternative Mount Points)
• User Name: your email (you will be informed via this e-mail if you got banned by the
service for some reason)

• Password: none
9. Click CONNECT button and a live data stream will be displayed.

10. Ensure that the kit’s placed in a location with good view of the sky.
11. It usually takes around 10 seconds until the receiver reaches a low precision error.

To set the receiver up for other applications including tubAR, please follow the instructions be-
low:

1. Download and install the GNSS Master application.
2. Set the GNSS Master application as the mock location application in Android developer

settings.
3. Configure GNSS Receiver in GNSS Master application as follows:

• Mode: USB Serial
• Baud Rate: 115’200
• Choose receiver as USB device.

4. Configure NTRIP in GNSS Master application as follows:
• Address: rtk2go.com
• Port: 2101
• Mount Point: NEAR-Swiss (See below for alternative Mount Points)
• User Name: your email (you will be informed via this e-mail if you got banned by the
service for some reason)

• Password: none

Alternative Mount Points

For all available Mount Points hosted by rtk2go, a list can be found on:
http://www.rtk2go.com:2101/SNIP::STATUS
Especially useful if a Mount Point outside of Switzerland is needed.

80

https://play.google.com/store/apps/details?id=com.gnssmaster
http://www.rtk2go.com:2101/SNIP::STATUS

15.4 Upload of IFC files

To upload IFC files via tubAR, the following requirements have to be met:

• User is logged in.
• IFC file is of version 4 or higher.
• IFC file size is less than 20 MB.
• Reference coordinates either defined through the form or within the IFC file.
• A name for the uploaded data.

The utility line type is optional. Though, when the utility line type is neither given by the form
nor by the IFC file, it will be stored as undefined and therefore displayed black in the viewer.

After the upload, one of the following messages is displayed:

• Converter run was successful
• tubAR only supports IFC files using version 4 or above
• Conversion from IFC to GLB failed
• Reference coordinates were neither given by user nor by IFC file
• Saving the utility line data in database failed

81

Part III

Appendix

82

Appendix A: Deliverables

Documentation

There exists a printed and a digital version (PDF) of this document. The printed version and the
digital version are handed in to Prof. Stefan Keller. The digital version is also submitted to the
AVT tool of the OST. All versions were handed in on time by the team.

Brochure abstract

Thebrochure abstract is an additional abstractwhichmust be enteredonhttps://abstract.rj.ost.ch/.
This abstract is demanded by the OST and was handed in on time by the team.

Poster for bachelor exhibition

The poster for the bachelor exhibition must be ready at the time of the exhibition build up. This
poster is demanded by the OST and was handed in two days before exhibition for printing.

Signed documents

OST requires a declaration of independence, a declaration of consent for publication on e-prints
and an agreement on copyrights and rights of use for each thesis. These signed documents
were submitted to the relevant entities on time.

Source code repositories

• Application: https://gitlab.ost.ch/ba-ar-werkleitungen/ba-application
• Documentation: https://gitlab.ost.ch/ba-ar-werkleitungen/ba-documentation

Only Kaj Habegger, Lukas Domeisen, Prof. Stefan Keller, Thomas Bocek, Claude Eisenhut and
Reto Senn can currently access the repositories.

Exclamation-Triangle
The application’s backend is only tested to run on macOS and Ubuntu. Further-
more, it only runs seamlessly on x86 64-bit based systems.

Application

At the time of hand-in, the application is publicly accessible via https://srbsci-26.ost.ch/.

83

https://abstract.rj.ost.ch/
https://gitlab.ost.ch/ba-ar-werkleitungen/ba-application
https://gitlab.ost.ch/ba-ar-werkleitungen/ba-documentation
https://srbsci-26.ost.ch/

Appendix B: Glossary and list of abbre-
viations

Term Description
BIM Abbreviation for Building Information Modeling. it’s the

process of modeling physical places in a digital manner.
BIM data is a file or multiple files that consist of such
data.

Esri ArcGIS ArcGIS is a family of client, server and online geographic
information system (GIS) software developed and main-
tained by Esri [26].

FR Abbreviation for Functional Requirement. Specifies a
specific feature or functionality a software solutionmust
provide.

GLB Abbreviation for binary file format of glTF data.
glTF Graphics Library Transmission Format is a 3D scene and

model file format.
GIS Abbreviation for Geographic Information System. Fur-

ther information about the definition can be found on
https://www.esri.com/en-us/what-is-gis/overview.

GNSS Abbreviation for Global Navigation Satellite System.
Refers to globally available systems that use satellites
for positioning. The most prominent is probably GPS.

IAR Abbreviation for Integer Ambiguity Resolution. The
openrtk documentation gives further information about
this [27].

IFC Abbreviation for Industry Foundation Classes. it’s a data
schema to exchange CAD data, or more specifically BIM
data. it’s descriptive only and does not contain 3D data
directly. The Wikipedia entry gives further information
about the schema [28].

KasmVNC KasmVNC provides remote web-based access to a Desk-
top or application [29].

MoSCoW method Is a prioritizationmethod. M stands for Must-have, S for
Should-have, C for Could-have, and W for will not have.
TheWikipedia entry gives further information about the
technique [30].

MVC Model-View-Controller is a pattern used for software ar-
chitecture.

84

https://www.esri.com/en-us/what-is-gis/overview

MVVM Model-View-View Model is a pattern used for software
architecture.

NFR Abbreviation for Non-Functional Requirement. Specifies
a characteristic or constraint that a software solution
must satisfy.

OAuth OAuth, also known as OAuth 2.0 and stands for ”Open
Authorization”, is a standard designed to allow a web-
site or application to access resources hosted by other
web apps on behalf of a user [31]. It basically allows log-
ging in to tubAR with social logins, such as Google and
GitHub.

RPC Remote Procedure Call (RPC) is a protocol that enables
a program to execute a procedure or subroutine on a
remote server as if it were a local call, abstracting the
complexities of the network communication.

RTK Abbreviation for Real-Time Kinematic positioning. The
article from u-blox gives a clear understanding of this
technology [3].

RUP Abbreviation for Rational Unified Process. it’s a software
development framework using iterations as its base con-
cept. The Wikipedia entry gives further information
about the framework [32].

Scrum Scrum is a framework for team collaboration. At its core
is agility, which represents the aim of it. For further in-
formation, the official Scrum website can be consulted
which can be found on https://www.scrum.org/.

tubAR This is the name of the application which was further de-
veloped within this thesis.

UTM Universal TransverseMercator (UTM) is amapprojection
system for assigning coordinates to locations on the sur-
face of the earth [33]. Due to its grid-based system, it
allows calculating differences of two coordinates in me-
ters with relatively small distortions.

Vuetify A component framework for Vue.js, which simplifies
building user interfaces.

WebXR WebXR, also known as WebXR device API, is part of the
web standard. It provides access to input and output ca-
pabilities commonly associated with AR devices. Hence,
WebXR enables AR applications on the web by allowing
pages to detect if AR capabilities are available, querying
these capabilities and much more. [34]

WGS 84 World Geodetic System, whereas version 84 is the cur-
rent version.

Table 17.1: Glossary

85

https://www.scrum.org/

Appendix C: Test protocols

In this appendix all application testing protocols are shown.

86

Test-Nr. FR Preconditions Description Steps Expected Result Actual Result Status

AT-1 US-1 User can register using his Google account 1. Open login page: https://srbsci-26.ost.ch/login
2. Login with Google account

Correct name is displayed on the home
page

Correct name is displayed on the
home page Succeeded

AT-2 US-1 User can register using his GitHub account 1. Open login page: https://srbsci-26.ost.ch/login
2. Login with GitHub account

Correct name is displayed on the home
page

Correct name is displayed on the
home page Succeeded

AT-3 US-1
- User has registered using his Google
account
- User has already uploaded an IFC file

The user has to authenticate themself to gain access
to their data (Uploaded IFC files).

1. Open login page: https://srbsci-26.ost.ch/login
2. Login with Google account
3. Start viewer, change to manual location selection
4. Open location selection

Location selection contains location
uploaded by the user

Location selection contains location
uploaded by the user Succeeded

AT-4 US-1
- User has registered using his GitHub
account
- User has already uploaded an IFC file

The user has to authenticate themself to gain access
to their data (Uploaded IFC files).

1. Open login page: https://srbsci-26.ost.ch/login
2. Login with GitHub account
3. Start viewer, change to manual location selection
4. Open location selection

Location selection contains location
uploaded by the user

Location selection contains location
uploaded by the user Succeeded

AT-5 US-1
- User has registered using his Google
or GitHub account
- User has already uploaded an IFC file

The user has to authenticate themself to gain access
to their data (Uploaded IFC files).

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer, change to manual location selection
3. Open location selection

Location selection doesn't contain
location uploaded by the user

Location selection doesn't contain
location uploaded by the user Succeeded

AT-6 US-2 User has to be authenticated to upload IFC data 1. Open home page: https://srbsci-26.ost.ch "Upload IFC" button is not visible "Upload IFC" button is not visible Succeeded

AT-7 US-2 Authenticated user can upload IFC data

1. Open home page: https://srbsci-26.ost.ch
2. Click "Upload IFC" button
3. Fill out the form including all optional fields and
upload a IFC 4.3 file
4. Submit form

The status page show that the IFC file
was uploaded and processed
successfully

The status page show that the IFC file
was uploaded and processed
successfully

Succeeded

AT-8 US-2 Can't upload IFC file with version below 4

1. Open home page: https://srbsci-26.ost.ch
2. Click "Upload IFC" button
3. Fill out the form including all optional fields and
upload a IFC file below version 4
4. Submit form

The status page shows an error
message that only IFC version 4+ is
supported

The status page shows an error
message that only IFC version 4+ is
supported

Succeeded

AT-9 US-2 Reference coordinates of model must be defined in
the file itself or in the upload form

1. Open home page: https://srbsci-26.ost.ch
2. Click "Upload IFC" button
3. Fill out the form without custom reference
coordinates and upload a IFC file that doesn't contain
reference coordinates
4. Submit form

The status page shows an error
message that no reference coordinates
are given

The status page shows an error
message that no reference
coordinates are given

Succeeded

AT-10 US-3 - User has already uploaded an IFC file
which contains utility lines

User can only see utility lines within a radius 50
meters

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Change to manual location selection
4. Select location
5. Stand directly on a utility line
6. Walk away in a straight line

After walking about 50 meters away
from the utility line, it's not visible
anymore

After walking about 50 meters away
from the utility line, it's not visible
anymore

Succeeded

AT-11 US-4

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

Utility lines are automatically loaded and displayed
based on the user's position

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Stay within the utility lines boundary

The utility lines are visible in the
viewer

The utility lines are visible in the
viewer Succeeded

AT-12 US-4

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

Utility lines are automatically loaded and displayed
based on the user's position

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Stay outside the utility lines boundary

The utility lines are not visible in the
viewer

The utility lines are not visible in the
viewer Succeeded

Acceptance tests
Functional requirements

AT-13 US-5

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines
- The utility line type is set to gas

Utility lines are colorized based on their type 1. Open home page: https://srbsci-26.ost.ch
2. Start viewer The utility lines are yellow The utility lines are yellow Succeeded

AT-14 US-5 User can set cusotm colors for utility line types Not implemented

AT-15 US-6

- User has already uploaded two IFC
files which contains utility lines
- The user is located at the utility
lines
- One utility line type is set to gas and
the other to water

User can filter utility lines based on their type
1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Change the type filter to gas only

The water utility line types are not
visible anymore

The water utility line types are not
visible anymore Succeeded

AT-16 US-7

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

User can click on utility lines to see their details
1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Click on a part of the utility lines

The overlay displays details of the
selected part

The overlay displays details of the
selected part Succeeded

AT-17 US-8

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

User can manually correct the rotation of the utility
lines

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Click on corrections in the bottom left of the overlay
4. Use the slider and the buttons for the rotation

The model is rotated The model is rotated Succeeded

AT-18 US-9

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

User can automatically calibrate the rotation to the
correct compass direction using GNSS

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Click on the "Guided compass correction" button
4. Follow the instructions

The model is correctly aligned to north The model is correctly aligned to
north Succeeded

AT-19 US-10

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

User can manually correct the position of the utility
lines

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Click on corrections in the bottom left of the overlay
4. Use the sliders to change the position of the utility
lines

The position of the utility lines is
adjusted

The position of the utility lines is
adjusted Succeeded

AT-20 US-10

- User has already uploaded an IFC file
which contains utility lines
- The user is located at the utility
lines

User can disable automatic positioning of the utility
lines

1. Open home page: https://srbsci-26.ost.ch
2. Start viewer
3. Click on corrections in the bottom left of the overlay
4. Disable the switch "Automatic correction"

The utility lines position does not get
corrected when the user moves
around

The utility lines position does not get
corrected when the user moves
around

Succeeded

Test-Nr. NFR Description Steps Expected Result Actual Result Status

AT-21 NFR-4 Google Chrome major version 125 and
newer is supported

Install Google Chrome with major version
125, go trough acceptance tests and check
the results

The results of the acceptance tests
are the same

The results of the acceptance tests
are the same Succeeded

AT-22 NFR-5 Vuetify is used for the UI Check Vue components in the Frontend Vuetify components are used where
it makes sense

Various vuetify components are
used by the Vue components Succeeded

AT-23 NFR-6 OAuth is used for authentication Check Keycloak configuration OAuth services are configured OAuth services are configured Succeeded
AT-24 NFR-7 User actions in the backend are logged Check code for user actions (file upload) Actions are logged with user id Actions are logged with user id Succeeded

AT-25 NFR-8 Vue.js is used for the frontend Check Frontend code Vue app is initialized and Vue
components are used

Vue app is initialized and Vue
components are used Succeeded

AT-26 NFR-9 Test coverage for frontend is at least 80% Run frontend tests and generate coverage
report

Frontend tests have a coverage of
80% or more

Coverage is 0% because no
automated frontend tests were
written

Succeeded

AT-27 NFR-9 Test coverage for backend server is at
least 80%

Run backend server tests and generate
coverage report

Backend server tests have a coverage
of 80% or more Coverage is 88% Succeeded

AT-28 NFR-9 Test coverage for backend converter is at
least 80%

Run backend converter tests and generate
coverage report

Backend converter tests have a
coverage of 80% or more Coverage is 90% Succeeded

AT-29 NFR-10 All errors and warnings in the backend
are logged Make an invalid request to the backend Warning/Error is logged in backend Error is visible in the backend

server logs Succeeded

AT-30 NFR-11 Device independency by using Docker Check application CI/CD pipeline and code

Pipeline runs Docker commands and
the repository contains required
files such as: .gitlab-ci.yml, docker-
compose files, Dockerfile

Application contains all required
files for the CI/CD Pipeline and the
Pipeline runs the respective
Docker commands

Succeeded

Non-functional requirements

Test-Nr. NFR Description Steps Expected Result Actual Result Status

PT-1 NFR-1 Loading time for 3D data Select location and measure how much
time it takes until it's loaded Loading takes less than 3 seconds

Loading different locations, the
longest loading time was roughly
1.5 seconds

Succeeded

PT-2 NFR-2 Framerate in augmented reality session Use chrome debugging tools to display FPS Average FPS is 30 or more FPS is around 60 on average Succeeded

PT-3 NFR-3 RAM usage Check RAM usage in Android settings RAM usage is under 2GB Average RAM usage is 500MB and
maximum RAM usage is 1.5GB Succeeded

Performance tests

Unit tests

Backend - server

Figure 18.1: Backend server coverage report

Backend - IFC converter

Figure 18.2: Backend IFC converter coverage report

91

Frontend

Figure 18.3: Frontend coverage report

92

Appendix D: Screenshots

Figure 19.1: Screenshot showing the home view of tubAR

Figure 19.2: Screenshot showing the login view of tubAR

93

Figure 19.3: Screenshot showing the upload form of tubAR

Figure 19.4: Screenshot showing the upload and conversion status of tubAR

94

Figure 19.5: Screenshot showing the viewer with utility lines from Stäfa in tubAR

Figure 19.6: Screenshot showing the guided compass correction of tubAR

95

Figure 19.7: Screenshot showing the correction controls in the viewer overlay of tubAR

Figure 19.8: Screenshot showing the color to type legend in the viewer overlay of tubAR

96

Figure 19.9: Screenshot showing the viewer with two different types of utility lines in tubAR

97

Appendix E: Bibliography

[1] vGIS. vGIS marketing illustration. June 12, 2024. url: https://www.vgis.io/wp-content/
uploads/2022/01/vGIS-augmented-reality-ar-for-GIS-utilities-sue-esri-arcgis-
high-accuracy-engineering-grade-home.jpg.

[2] Kaj Habegger and Lukas Domeisen. 3D-Visualization of Utility Lines in the Browser Using
Augmented Reality on Tablets. May 16, 2024. url: https://eprints.ost.ch/id/eprint/
1188/.

[3] Ardusimple. RTK Handheld Surveyor Kit. url: https://www.ardusimple.com/product/rtk-
handheld-surveyor-kit/.

[4] vGIS. vGIS website. May 28, 2024. url: https://www.vgis.io/.
[5] vGIS. vGIS pricing. May 28, 2024. url: https://www.vgis.io/ar-mr-vr-gis-vgis-pricing/.
[6] ARUtility. ARUtility website. May 28, 2024. url: https://www.arutility.com/.
[7] ARUtility. ARUtility pricing. May 28, 2024. url: https://www.arutility.com/pricing.
[8] ARonLine. ARonLine website. May 28, 2024. url: https://gisonline.co/aronline/.
[9] V-Labs. V-Labs website. May 28, 2024. url: https://www.v-labs.ch/.

[10] vGIS. vGIS technical details. June 2, 2024. url: https://www.vgis.io/technical-specification-
vgis-high-accuracy-survey-grade-augmented-reality-ar-for-bim-gis-arcgis-esri/.

[11] vGIS. vGIS Features. June 2, 2024. url: https://www.vgis.io/vgis-utilities-features-
high-accuracy-survey-grade-augmented-reality-ar-bim-gis/.

[12] vGIS. Why vGIS? June 2, 2024. url: https://www.vgis.io/why-vgis-utilities-high-
accuracy-survey-grade-augmented-reality-ar-bim-gis-2/.

[13] ISO/IEC 25000. ISO/IEC 25010. Oct. 1, 2023. url: https://iso25000.com/index.php/en/
iso-25000-standards/iso-25010.

[14] Keycloak. Keycloak homepage. Mar. 17, 2024. url: https://www.keycloak.org/.
[15] Okta. Auth0 homepage. Mar. 17, 2024. url: https://auth0.com/.
[16] Broadcom. RabbitMQ homepage. Mar. 27, 2024. url: https://www.rabbitmq.com/.
[17] TonyGarnock-Jones et al. Introduction to Pika.Mar. 27, 2024. url: https://pika.readthedocs.

io/en/stable/.
[18] Broadcom. AMQP 0-9-1 Model Explained. Mar. 27, 2024. url: https://www.rabbitmq.com/

tutorials/amqp-concepts.
[19] Tomer Filiba. RPyC - Transparent, Symmetric Distributed Computing.Mar. 27, 2024. url: https:

//rpyc.readthedocs.io/en/latest/#.
[20] Red Hat Inc. Keycloak Container image. June 12, 2024. url: https://quay.io/repository/

keycloak/keycloak?tab=info.
[21] Keycloak. Keycloak identity provider flow. Apr. 10, 2024. url: https://www.keycloak.org/

docs/latest/server_admin/#_identity_broker_overview.
[22] MDN. WebXR browser compatibility. May 26, 2024. url: https://developer.mozilla.org/

en-US/docs/Web/API/WebXR_Device_API#browser_compatibility.
[23] W3C ImmersiveWebWorking andCommunityGroups.WebXRbrowser compatibility.May 26,

2024. url: https://immersiveweb.dev/#supporttable.

98

https://www.vgis.io/wp-content/uploads/2022/01/vGIS-augmented-reality-ar-for-GIS-utilities-sue-esri-arcgis-high-accuracy-engineering-grade-home.jpg
https://www.vgis.io/wp-content/uploads/2022/01/vGIS-augmented-reality-ar-for-GIS-utilities-sue-esri-arcgis-high-accuracy-engineering-grade-home.jpg
https://www.vgis.io/wp-content/uploads/2022/01/vGIS-augmented-reality-ar-for-GIS-utilities-sue-esri-arcgis-high-accuracy-engineering-grade-home.jpg
https://eprints.ost.ch/id/eprint/1188/
https://eprints.ost.ch/id/eprint/1188/
https://www.ardusimple.com/product/rtk-handheld-surveyor-kit/
https://www.ardusimple.com/product/rtk-handheld-surveyor-kit/
https://www.vgis.io/
https://www.vgis.io/ar-mr-vr-gis-vgis-pricing/
https://www.arutility.com/
https://www.arutility.com/pricing
https://gisonline.co/aronline/
https://www.v-labs.ch/
https://www.vgis.io/technical-specification-vgis-high-accuracy-survey-grade-augmented-reality-ar-for-bim-gis-arcgis-esri/
https://www.vgis.io/technical-specification-vgis-high-accuracy-survey-grade-augmented-reality-ar-for-bim-gis-arcgis-esri/
https://www.vgis.io/vgis-utilities-features-high-accuracy-survey-grade-augmented-reality-ar-bim-gis/
https://www.vgis.io/vgis-utilities-features-high-accuracy-survey-grade-augmented-reality-ar-bim-gis/
https://www.vgis.io/why-vgis-utilities-high-accuracy-survey-grade-augmented-reality-ar-bim-gis-2/
https://www.vgis.io/why-vgis-utilities-high-accuracy-survey-grade-augmented-reality-ar-bim-gis-2/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.keycloak.org/
https://auth0.com/
https://www.rabbitmq.com/
https://pika.readthedocs.io/en/stable/
https://pika.readthedocs.io/en/stable/
https://www.rabbitmq.com/tutorials/amqp-concepts
https://www.rabbitmq.com/tutorials/amqp-concepts
https://rpyc.readthedocs.io/en/latest/#
https://rpyc.readthedocs.io/en/latest/#
https://quay.io/repository/keycloak/keycloak?tab=info
https://quay.io/repository/keycloak/keycloak?tab=info
https://www.keycloak.org/docs/latest/server_admin/#_identity_broker_overview
https://www.keycloak.org/docs/latest/server_admin/#_identity_broker_overview
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API#browser_compatibility
https://immersiveweb.dev/#supporttable

[24] Google. ARCore supported devices. May 26, 2024. url: https://developers.google.com/
ar/devices.

[25] u-blox AG. Real-Time Kinematic (RTK). Nov. 24, 2022. url: https://www.u-blox.com/en/
technologies/rtk-real-time-kinematic.

[26] Wikipedia contributors. ArcGIS. June 10, 2024. url: https://en.wikipedia.org/wiki/
ArcGIS.

[27] Aceinna Inc. Integer Ambiguity Resolution. June 10, 2024. url: https://openrtk.readthedocs.
io/en/latest/algorithms/ambiguityfix.html.

[28] Wikipedia contributors. Industry Foundation Classes. June 10, 2024. url: https : / / en .
wikipedia.org/wiki/Industry_Foundation_Classes.

[29] Kasm Technologies. KasmVNC - Linux Web Remote Desktop. June 9, 2024. url: https://
github.com/kasmtech/KasmVNC.

[30] Wikipedia contributors. MoSCoW method. June 10, 2024. url: https://en.wikipedia.org/
wiki/MoSCoW_method.

[31] Okta inc. What is OAuth 2.0? June 9, 2024. url: https://auth0.com/intro-to-iam/what-
is-oauth-2.

[32] Wikipedia contributors. Rational unified process. June 10, 2024. url: https://en.wikipedia.
org/wiki/Rational_unified_process.

[33] Wikipedia contributors. Universal Transverse Mercator coordinate system. June 9, 2024. url:
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.

[34] toji et al. WebXR Device API Explained. June 9, 2024. url: https://github.com/immersive-
web/webxr/blob/master/explainer.md#what-is-webxr.

99

https://developers.google.com/ar/devices
https://developers.google.com/ar/devices
https://www.u-blox.com/en/technologies/rtk-real-time-kinematic
https://www.u-blox.com/en/technologies/rtk-real-time-kinematic
https://en.wikipedia.org/wiki/ArcGIS
https://en.wikipedia.org/wiki/ArcGIS
https://openrtk.readthedocs.io/en/latest/algorithms/ambiguityfix.html
https://openrtk.readthedocs.io/en/latest/algorithms/ambiguityfix.html
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://en.wikipedia.org/wiki/Industry_Foundation_Classes
https://github.com/kasmtech/KasmVNC
https://github.com/kasmtech/KasmVNC
https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/MoSCoW_method
https://auth0.com/intro-to-iam/what-is-oauth-2
https://auth0.com/intro-to-iam/what-is-oauth-2
https://en.wikipedia.org/wiki/Rational_unified_process
https://en.wikipedia.org/wiki/Rational_unified_process
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://github.com/immersive-web/webxr/blob/master/explainer.md#what-is-webxr
https://github.com/immersive-web/webxr/blob/master/explainer.md#what-is-webxr

Appendix F: List of figures

Figure 1. vGIS application 2

Figure 2. Two educational utility linemodels with different types visualized on theOST
campus in Rapperswil-Jona. 3

Figure 3. Stäfa screenshot with overlay descriptions 4

Figure 7.1. Use case diagram 25

Figure 7.2. ISO/IEC 25010 quality characteristics [13] 30

Figure 8.1. Domain model 35

Figure 8.2. Database model 37

Figure 9.1. System context diagram 41

Figure 9.2. Container diagram 42

Figure 9.3. Source code structure 43

Figure 9.4. Components hierarchy diagram 45

Figure 9.5. Frontend dependency diagram 46

Figure 9.6. Backend server dependency diagram 48

Figure 9.7. IFC converter dependency diagram 49

Figure 9.8. Keycloak identity provider flow [21] 50

Figure 9.9. Visualizing utility lines sequence diagram 51

Figure 9.10. IFC file upload sequence diagram 52

Figure 10.1. Old visualization 54

Figure 10.2. New visualization 54

Figure 12.1. Development environment described as C4 deployment diagram 60

Figure 12.2. Production environment described as C4 deployment diagram 61

Figure 12.3. Workflow 62

Figure 12.4. Gitlab pipeline 62

100

Figure 13.1. Risk Matrix 70

Figure 18.1. Backend server coverage report 91

Figure 18.2. Backend IFC converter coverage report 91

Figure 18.3. Frontend coverage report 92

Figure 19.1. Screenshot showing the home view of tubAR 93

Figure 19.2. Screenshot showing the login view of tubAR 93

Figure 19.3. Screenshot showing the upload form of tubAR 94

Figure 19.4. Screenshot showing the upload and conversion status of tubAR 94

Figure 19.5. Screenshot showing the viewer with utility lines from Stäfa in tubAR 95

Figure 19.6. Screenshot showing the guided compass correction of tubAR 95

Figure 19.7. Screenshot showing the correction controls in the viewer overlay of tubAR 96

Figure 19.8. Screenshot showing the color to type legend in the viewer overlay of tubAR 96

Figure 19.9. Screenshot showing the viewer with two different types of utility lines in tubAR 97

101

Appendix G: List of tables

Table 4.1. tubAR and vGIS comparison 21

Table 7.1. User login (US-1) 27

Table 7.2. User login (US-2) 27

Table 7.3. User login (US-3) 28

Table 7.4. User login (US-4) 28

Table 7.5. User login (US-5) 28

Table 7.6. Filter utility line types (US-6) 29

Table 7.7. Info interaction (US-7) 29

Table 7.8. Compass correction (US-8) 29

Table 7.9. Compass correction (US-9) 30

Table 7.10. Movable utility line model (US-10) 30

Table 7.11. 3D data loading (NFR-1) 31

Table 7.12. Frames per second (NFR-2) 31

Table 7.13. RAM usage (NFR-3) 31

Table 7.14. Supported Browser (NFR-4) 32

Table 7.15. Vuetify usage (NFR-5) 32

Table 7.16. Don’t allow unauthorized access to data (NFR-6) 32

Table 7.17. Log user actions (NFR-7) 33

Table 7.18. Usage of Vue.js (NFR-8) 33

Table 7.19. Unit Tests (NFR-9) 33

Table 7.20. Logging backend (NFR-10) 34

Table 7.21. Dockerization of web application (NFR-11) 34

Table 13.1. Risk changes history 74

Table 15.1. Technologies frontend 78

Table 15.2. Technologies backend 78

102

Table 17.1. Glossary 85

103

	Abstract
	Management Summary
	Acknowledgements
	Task Definition
	Prior work
	I Technical report
	Introduction
	Problem definition
	Vision
	Goals
	Basic conditions
	Approach

	State Of The Art
	Existing solutions
	Disadvantages
	Benefits of tubAR

	Implementation concept
	Knowledge gathering
	Requirements specification
	Evaluation
	Architecture
	Implementation
	Conclusion

	Results
	Goal achievement
	Comparison

	Outlook

	II Project Documentation
	Vision
	Requirements specification
	Use case diagram
	Functional Requirements
	Non-Functional Requirements

	Analysis & Evaluation
	Domain Analysis
	Object catalog
	Database model
	Evaluation

	Design
	Architecture
	Sequence Diagrams

	Implementation & Testing
	Implementation
	Automated & manual testing
	Browser compatibility
	Challenges

	Results & further development
	Results
	Further development

	Quality Measures
	Quality Assessment Tools
	Environments
	CI/CD
	Test strategy
	Communication Tools

	Project management
	Resources
	Responsibilities
	Processes and meetings
	Risk management
	Long-term Plan

	Project Monitoring
	Time tracking
	Code statistics

	Software Documentation
	Technology-stack
	Tool-stack
	Installation
	Upload of IFC files

	III Appendix
	Appendix A: Deliverables
	Appendix B: Glossary and list of abbreviations
	Appendix C: Test protocols
	Appendix D: Screenshots
	Appendix E: Bibliography
	Appendix F: List of figures
	Appendix G: List of tables

