
Green Networking

Bachelor Thesis FS2024

Visibility, a first step towards sustainable networking

Advisor: Prof. Laurent Metzger
Co-Advisor: Severin Dellsperger
Proofreader: Prof. Dr. Daniel Patrick Politze

Partner: Dr. Alexander Clemm

Authors: Ramon Bister
 Reto Furrer

Submission: 14. June 2024
Version: 1.0

Green Networking v 1.0

1. Abstract

This thesis is a follow-up project to our term paper that proposed green networking metrics aimed
at enhancing the energy efficiency of networking infrastructures. The initial study highlighted the
lack of visibility into network energy efficiency, which hampers efforts to optimize sustainability.

The primary objective of this thesis is to demonstrate a comprehensive use case in a virtualized
environment where the energy efficiency indicators, developed in the earlier study, are exported
and visualized. This aims to provide network operators with the tools necessary to improve
network efficiency.

The research involves setting up a proof of concept within a simulated network environment.
This includes implementing an IPFIX exporter on network switches to gather efficiency data,
establishing collecting servers for persistent storage of this information, and creating dashboards
to visualize the network’s current state. Additionally, an automation solution is implemented to
dynamically configure and update the simulation network.

The project successfully developed a virtualized demo application that simulates an energy
efficiency-enabled network, as proposed in the term paper. The demonstration shows that ex-
porting flow efficiency information using IPFIX is straightforward and feasible.

The study concludes that while the export and visualization of efficiency data are straightfor-
ward, the collection of such data and the implementation of additional data plane functionalities
(such as the IOAM protocol) require support from vendors and must be advocated at the IETF.
The research demonstrates that significant information can be extracted from the network with
a manageable processing overhead, paving the way for more sustainable networking practices.

1. Abstract i

https://eprints.ost.ch/id/eprint/1182/

Green Networking v 1.0

2. Management Summary

2.1. Introduction
In today’s digital age, the vast network infrastructure supporting our internet and communication
systems is a significant consumer of energy. Despite the critical role of networks, there is currently
no effective method for retrieving information about the carbon intensity and energy efficiency
of network paths and devices. This lack of visibility hampers efforts to identify and mitigate
inefficiencies, making it challenging to reduce the overall environmental impact of these systems.
This project addresses this gap by proposing a method to export and visualize network telemetry
data, which will provide insights into the carbon footprint of networks at both the path and
flow levels. The ultimate goal is to lay the groundwork for future improvements in network
sustainability.

2.2. Project Objectives and Solution
The primary objective of this project is to develop a solution that can capture and visualize
network energy efficiency metrics with minimal processing overhead. The project focuses on
implementing a proof of concept within a simulated environment. This proof of concept involves
several key components:

IPFIX Exporting Process The project implements an IPFIX (IP Flow Information Export) Ex-
porting Process on network switches. This process captures and exports data related to
network traffic and energy usage, facilitating the analysis of network efficiency.

Data Collection and Visualization A collection system utilizing the TIG stack (Telegraf, In-
fluxDB, Grafana) is set up to store and visualize the efficiency data. This stack enables
the creation of comprehensive dashboards that provide real-time insights into the network’s
energy performance.

Data Plane Optimization with IOAM The project also includes the optimization of network de-
vices’ data planes through the implementation of the IOAM (In-situ Operations, Adminis-
tration, and Maintenance) Aggregation Option protocol extension. This allows for detailed
tracking and aggregation of performance metrics, including energy efficiency, across differ-
ent network paths. Error handling and dynamic aggregator selection are incorporated to
ensure accurate and reliable statistics.

The successful implementation of these components demonstrates that it is feasible to obtain
detailed energy efficiency insights from network operations with minimal additional overhead.

Figure 2.1 illustrates the solution based on a simple network topology briefly explaining the
related components and metrics.

2. Management Summary ii

Green Networking v 1.0

IPFIX Messages

Queries data from

Writes data to

Observability Platform

Allows users to explore and share

dynamic dashboards that provide

insight into system performance,

metrics, and trends.

Time Series Database

Persistently stores time

series data and makes it

available to third party

systems via a standardized

interface

IPFIX Collector

Collects and processes IPFIX

Data Sets and Template Sets

received as IPFIX Messages.

Monitoring

Network Operators

Access dashboards

displaying network

telemetry data

Network

R1 (Encapsulating Node)

HTCR1 = 5020

R2 (Transit Node)

HTCR2 = 4800

R3 (Transit Node)

HTCR3 = 8800

R5 (Transit Node)

HTCR5 = 6700

R4 (Transit Node)

HTCR4 = 3900

R6 (Decapsulating Node)

HTCR6 = 6000

PE
IG

=
50
20

PEIG = 9820 PEI
G = 13720

PEI
R = 5020

PEIR = 13820
PE
IR
 =
 2
05
20 Client 2Client 1

Legend:
HTC - Hop Traversal Cost

PEI - Path Efficiency Indicator

FEI - Flow Efficiency Indicator

IPFIX - IP Flow Information Export (RFC7011)

IPFIX Cache SUM

FEIG = 19720

FEIR = 26520

IPFIX Cache MIN

HTCG = 3900

HTCR = 5020

IPFIX Cache MAX

HTCG = 6000

HTCR = 8800

Figure 2.1.: Proof of Concept Overview

2.3. Value of the Solution
This project provides significant value by demonstrating a practical method for obtaining and vi-
sualizing energy efficiency data from network infrastructure. Key benefits of the solution include:

Enhanced Visibility The project showcases a method for gaining deep insights into network ef-
ficiency, which is currently not possible with existing systems. This visibility is crucial for
identifying both efficient and inefficient network components and paths.

Feasibility and Low Overhead The proof of concept confirms that retrieving energy efficiency
information from networks is achievable with little processing overhead. This ensures that
the proposed solution can be integrated into existing network operations without significant
performance degradation.

Path to Practical Implementation The next steps involve exploring how the proposed solution
can be adapted for real-world networks. This includes presenting the results at indus-
try conferences, such as those focused on network softwarization, to garner support for
standardizing the IOAM Aggregation Trace Option as a Request for Comments (RFC).
Additionally, increasing interest among network device vendors to implement this standard
is crucial for widespread adoption.

2.4. Conclusion
This project addresses a critical issue in the realm of network sustainability. As computer networks
are substantial energy consumers, the ability to monitor and optimize their efficiency is essential
for reducing their carbon footprint. The study demonstrates that it is possible to retrieve valuable
energy efficiency data from networks in a simulated environment, marking a significant first step
toward making networks more sustainable. The insights gained from this research pave the way
for future developments aimed at creating a more environmentally friendly network infrastructure.
By providing a foundation for better network efficiency management, this work contributes to
the broader goal of minimizing the environmental impact of our digital infrastructure.

The findings from this project not only highlight the potential for immediate improvements
in network efficiency but also emphasize the importance of continuing to explore and develop
sustainable network technologies. As the demand for network connectivity grows, the implemen-
tation of such solutions will become increasingly crucial in our efforts to build a more sustainable
and ecologically responsible future.

2. Management Summary iii

Green Networking v 1.0

3. Acknowledgement

We would like to express our sincere gratitude to the following individuals and organizations who
have supported us throughout the process of completing this bachelor thesis.

First, we are deeply thankful to our thesis advisor, Professor Laurent Metzger, for his support
during this thesis. His commitment, passion and expertise helped and motivated us a lot.

Thanks to Severin Dellsperger, for his support during this thesis. We greatly appreciated the
constructive discussions, the respectful interaction, his expertise and commitment to our bachelor
thesis.

A special thanks goes to our external partner, Dr. Alexander Clemm founder of Sympotech,
for his invaluable guidance, encouragement, and expertise. His insightful feedback and construc-
tive criticism played a pivotal role in shaping the direction of our research. We also greatly
appreciated the fact that we were involved in the standardisation work and were given the op-
portunity to work on the implementation of the IOAM Aggregation Option protocol extension
in our simulated network environment. Additionally, we would like to thank him for introducing
us to IPFIX and providing excellent guidance while writing the paper for the NetSoft 2024 IEEE
conference, which goes beyond the scope of this thesis. His support was instrumental in enhancing
the quality and reach of our work. We were very pleased with the uncomplicated nature of the
collaboration.

We would also like to thank Jan Untersander for his prompt technical support and the pro-
visioning of virtual servers for our simulated environment. His assistance ensured the smooth
progress of our project and was greatly appreciated.

Ramon Bister, Reto Furrer
OST - Eastern Switzerland University of Applied Sciences
14. June 2024

3. Acknowledgement iv

Green Networking v 1.0

4. Important Terms and Abbreviations

The efficiency indicators including FEI, HEI, HTC, LEI and PEI are defined and further described
in chapter 1 in the elaboration part.

Control Plane Is a logical component of a network device and is responsible for the management
and routing decisions that determine how data packets traverse the network

Data Plane Is a logical component of a network device and is responsible for the real-time for-
warding and processing of network packets

FEI Flow Efficiency Indicator

HEI Hop Efficiency Indicator

HTC Hop Traversal Cost

IOAM In situ Operations, Administration, and Maintenance RFC 9197

IPFIX IP Flow Information Export (IPFIX) Protocol RFC 7011

LEI Link Efficiency Indicator

P4 Programming Protocol-independent Packet Processors (P4) is a domain-specific language to
define the forwarding pipeline of the data plane of network devices

PEI Path Efficiency Indicator

4. Important Terms and Abbreviations v

https://tools.ietf.org/html/rfc9197
https://tools.ietf.org/html/rfc7011

Green Networking v 1.0

5. Introduction

The task description written by our external partner Alexander Clemm introduces the project
accomplished in this bachelor thesis very well.

5.1. Background
Alexander Clemm, Sympotech, Los Gatos, California/USA
February 26th, 2024

In the previous project, we developed a system that instruments a network to provide carbon
metrics for networking paths. As part of this, a new protocol was implemented that allows to
aggregate telemetry data along a path. Different types of aggregation are supported, including
(but not limited to) the sum of telemetry data items of nodes that are encountered along the
path. The protocol allows to piggyback on data packets, which ensures path congruency, i.e.
the hops for which data is aggregated are indeed the same hops that are being traversed by the
underlying production traffic. The carbon path metric provided by the PoC is a new metric
referred to as Path carbon Efficiency Indicator (PEI), defined as an aggregate as Hop carbon
Efficiency Indicators (HEIs), another newly introduced metric that applies at the node level.

There are a number of possibilities to build on the original project to provide additional features
and a more comprehensive system. The following are some of the possibilities that we discussed:

Development of IPFIX-based export of PEI data Instead of exporting data in a proprietary
format using simple API calls, exported data would be formatted as IPFIX records for
easier ingestion by existing IPFIX collectors.

Support for additional path metrics These metrics might involve other node data requiring ad-
ditional computation on nodes, hence more suitable to be used in combination with ded-
icated probe traffic instead of production traffic. A corresponding probe implementation
would be included as part of the project.

Development of a more comprehensive demo app One application would involve an applica-
tion that maintains a real-time carbon intensity matrix for paths whose carbon intensity
has been assessed.

Support for flow metrics Extending the system to support not only carbon metrics for paths,
but carbon metrics for flows, e.g. the sum of power consumption that can be attributed to
the set of all packets that constitute a flow. For example, a flow carbon cost indicator could
be introduced that is the sum of PEIs provided by the packets. Support for such metrics
would facilitate, for example, new accounting and pricing schemes that are based on the
degree of pollution caused as opposed to (or in addition to) other metrics such as traffic
volume.

The follow-up project will build on the earlier project, focusing on three main aspects:

5. Introduction vi

Green Networking v 1.0

IPFIX-based export to the demo application from an egress node Data to be exported using
IPFIX formatting. However, in order to avoid that a full IPFIX exporter would need to be
implemented, the exporter will support only a minimal, fixed set of Information Elements,
including source IP, destination IP, PEI ID, and PEI. Optionally a few more Information
Elements could be supported, notably source port and destination port.
PEI ID and PEI are new Information Elements that will require allocation of a new IE ID.
Standardized IEs are registered here: https://www.iana.org/assignments/ipfix/ipfix.xhtml;
in addition, enterprise-specific IEs can be assigned as well (which would require an enterprise
ID registered with IANA, here: https://www.iana.org/assignments/enterprise-numbers/).
For the purposes of this project, we can simply use IE IDs which have not been assigned,
e.g. 5050 for PEI ID and 5051 for PEI.
As HEIs and hence PEIs can be configured and customized by users, there is no single
semantics per PEI. In order to support different PEIs, users can assign a PEI ID to custom
PEI versions by which they can be differentiated.
The export format will be specified using an implied IPFIX template that is assumed to
be preprovisioned at the IPFIX exporter. Note, no IPFIX templates need to be actually
implemented; they only serve to define the format according to which data gets exported.
The following is an example for a candidate IPFIX template that could be used:

Listing 5.1: Example IPFIX Template (ID: 256)
1 0 1 2 3
2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
3 +-+
4 | Set ID = 2 | Length = 24 octets |
5 +-+
6 | Template ID 256 | Field Count = 4 |
7 +-+
8 |0| sourceIPv6Address = 27 | Field Length = 16 |
9 +-+

10 |0| destinationIPv6Address = 28 | Field Length = 16 |
11 +-+
12 |0| PEI ID = 5050 | Field Length = 4 |
13 +-+
14 |0| PEI = 5051 | Field Length = 4 |
15 +-+

Using the above hyptothetical temple, exported data would then be formatted as follows
(containing 2 records):

Listing 5.2: Example Data Set using Template 256
1 0 1 2 3
2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
3 +-+
4 | Set ID = 256 | Length = 84 |
5 +-+
6 | sourceIPv6 |
7 : |
8 +-+
9 | destIPv6 |

10 : |
11 +-+
12 | PEI ID |
13 +-+

5. Introduction vii

https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/enterprise-numbers/

Green Networking v 1.0

14 | PEI |
15 +-+
16 | sourceIPv6 |
17 : |
18 +-+
19 | destIPv6 |
20 : |
21 +-+
22 | PEI ID |
23 +-+
24 | PEI |
25 +-+

Support for configurable HEI/PEI determined by IOAM control plane The current implemen-
tation fundamentally already allows for configurable HEIs and hence PEIs. However, it does
not allow for multiple different HEIs to be supported concurrently. In this extension, a user
(i.e. network administrator) will be able to configure different HEIs to be aggregated by
different PEIs under different PEI IDs. A user might in fact collect different PEIs for the
same path, each aggregated using a separate IOAM packet.

Enhanced demo app One possibility here concerns maintaining a matrix for the network depict-
ing the PEIs for different paths, here: different combinations of sources and destinations.
This will be similar to a traffic matrix, but individual cells will contain PEIs and time
information. An example of an efficiency matrix to be elaborated in this bachelor thesis is
depicted in figure 5.1.

Figure 5.1.: Example Efficiency Matrix

Such a matrix could facilitate sustainability analysis for a network. For example, it could be
used to show a “heat map”. It would also allow to analyze the impact of topology changes
on PEIs.
The demo app will presumably also need to include an orchestrator app to ensure that each
node periodically sends traffic used for probing to different destinations.
To make for a good demo, a sandbox testbed should include enough nodes such that the
impact of topology changes can be shown (e.g. initiated by a link cut or some intermediate
nodes going into or coming out off sleep mode, etc).

Stretch goal: Support for additional components It would be useful to allow additional param-
eters to be incorporated as components into HEIs. One possibility includes data related to
the ingress and egress interfaces of the packet, such as port power consumption. This will
allow PEIs to not only reflect sustainability data concerning traversed nodes as a whole,
but to provide a more differentiated picture. Parameters might include management data
such YANG data nodes or MIB objects. Support for such parameters would presumably

5. Introduction viii

Green Networking v 1.0

involve extern functions and come with the caveat that it should be collected not at line
rate, but e.g. via occasional probing packets without high QoS demands.

5.2. Thesis Composition
The documentation of the bachelor thesis is organized in four main parts based on the RUP
(Rational Unified Process) project method. The goal of the documentation is to give insight
into the most important concepts and challenges of the project. In order to follow along this
documentation, one should be familiar with the fundamental computer networking concepts.
Especially the terms control plane and data plane in the context of network devices should be
clear to the reader. Additionally it is helpful to have read the preceded term paper with the title
Green Networking - Visibility, a first step towards sustainable networking for insights into the
elaborated concepts regarding efficiency indication in computer networks.

5.2.1. Inception
The inception part of the documentation outlines the existing research, project planning with
user stories, requirements analysis, and risk assessment.

5.2.2. Elaboration
In the elaboration part conceptual decisions related to the network virtualization system, the
monitoring system and the configuration update system are described. Furthermore a theoreti-
cal part introduces the efficiency indicators elaborated, highlighting how they could be used in
practice to reduce the carbon footprint of computer networks and the associated challenges for
an in production deployment.

5.2.3. Construction
The construction part contains the most important implementation details about the core compo-
nents such as the BMv2 cache implementation, the IPFIX exporter, the IPFIX collector, the time
series database, the traffic generator and the dashboards of the monitoring system. Furthermore
data plane optimization introduced in the bachelor thesis and the Wireshark extension for the
IOAM Aggregation Option protocol extension are documented.

5.2.4. Transition
The transition part contains a conclusion and discussion. It also outlines possible future work.
Additionally a demo case is worked out that shows the complete system in operation digging into
a sample scenario clarifying important concepts of this thesis.

5.2.5. Appendix
The appendix lists additional documents such as the poster about the bachelor thesis and the
NetSoft 2024 conference paper that emerged from the term paper.

5. Introduction ix

https://eprints.ost.ch/id/eprint/1182/

Green Networking v 1.0

Contents

1. Abstract i

2. Management Summary ii
2.1. Introduction . ii
2.2. Project Objectives and Solution . ii
2.3. Value of the Solution . iii
2.4. Conclusion . iii

3. Acknowledgement iv

4. Important Terms and Abbreviations v

5. Introduction vi
5.1. Background . vi
5.2. Thesis Composition . ix

5.2.1. Inception . ix
5.2.2. Elaboration . ix
5.2.3. Construction . ix
5.2.4. Transition . ix
5.2.5. Appendix . ix

I. Inception 1

1. Initial Situation 2
1.1. The Need for Energy Efficiency Metrics . 2
1.2. Previous Work and Proposed Solutions . 2
1.3. Industry Insights and External Contributions . 3
1.4. Optimizing and Expanding on Previous Work . 3
1.5. Leveraging Modern Technologies for Data Management 3

2. Requirements 4
2.1. Functional Requirements . 4

2.1.1. Epics . 4
2.1.2. User Stories . 5

2.2. Non Functional Requirements . 8

3. Risk Assessment 13
3.1. Technical Risks . 13

II. Elaboration 17

1. Efficiency Indicators 18
1.1. Definitions . 18

Contents x

Green Networking v 1.0

1.2. Efficiency Indicator Processing . 18
1.2.1. Processing in Data Plane . 19
1.2.2. Processing in Control Plane . 19

1.3. Limitations . 19
1.3.1. Data Plane Extensibility (Production Devices) 19
1.3.2. Control Plane Extensibility (Production Devices) 19
1.3.3. PoC Environment . 19

2. System Overview 20

3. Network Virtualization System 22
3.1. Network Topology . 23

3.1.1. Development Network Topology . 23
3.1.2. Simulation Network Topology . 24

3.1.2.1. Links Inside the Autonomous System 24
3.1.2.2. Router Types . 25
3.1.2.3. IP Addressing . 25

3.2. Configuration Generator . 26
3.2.1. Requirements . 26
3.2.2. Configuration Generation Process . 26

3.2.2.1. Network Virtualization System Startup 27
3.2.2.2. Configuration Update . 27

3.2.3. Resource Definition . 27
3.3. Traffic Generator . 28

3.3.1. Requirements . 28
3.3.2. Traffic Generator Startup . 28
3.3.3. Configuration . 29
3.3.4. Logfiles . 29

3.4. Programmable Network Switch . 29
3.5. IP Flow Information Export (IPFIX) Protocol . 30

3.5.1. Templates . 31
3.5.1.1. Aggregated Data Export . 31
3.5.1.2. Raw Data Export . 33

3.5.2. Caches . 35
3.6. Design Decisions . 35

4. Monitoring System 38
4.1. IPFIX Collector . 40
4.2. Time Series Database . 40

4.2.1. Query Language . 40
4.2.2. Buckets . 40

4.3. Monitoring Dashboard . 40
4.3.1. Dashboards . 41

4.4. Design Decisions . 42

5. Configuration Update System 43
5.1. Requirements . 43
5.2. Configuration Update Process . 43
5.3. Design Decisions . 44

Contents xi

Green Networking v 1.0

III. Construction 45

1. Network Virtualization System 46
1.1. Resource Definition . 46

1.1.1. Path Specification . 46
1.1.2. Host Specification . 47
1.1.3. Switch Specification . 47
1.1.4. Tables Specification . 48

1.2. Configuration Generator . 49
1.2.1. Mininet Topology . 49

1.2.1.1. Link Discovery Algorithm . 49
1.2.2. BMv2 Runtime . 50

1.2.2.1. Forwarding Information Translation Algorithm 51
1.2.3. Traffic Generator Configuration . 54

1.3. Traffic Generator . 55
1.3.1. Functionality . 55

1.3.1.1. Command Line Parameters . 55
1.3.2. Start Traffic Generator on Mininet Host . 56
1.3.3. Storage Starvation Issue . 57

1.4. BMv2 IPFIX Extension . 57
1.4.1. Challenges . 57

1.4.1.1. Exposal of Extern Function to Data Plane 57
1.4.1.2. IPFIX Extension as BMv2 Plugin 58
1.4.1.3. Concurrent Access on Cache Data Structures 59
1.4.1.4. Background Task for Regular Export 59
1.4.1.5. IPFIX Message Transmission . 60

1.4.2. Caches . 61
1.4.2.1. Aggregated Data Export . 61
1.4.2.2. Raw Data Export . 63

1.4.3. Export Mechanism . 64
1.4.3.1. Aggregated Data Export . 67
1.4.3.2. Raw Data Export . 68

1.4.4. IPFIX Messages in Wireshark . 69
1.4.4.1. Template Set Message . 69
1.4.4.2. Data Set Message . 70

2. Monitoring System 73
2.1. Getting Started . 73
2.2. IPFIX Collector - Telegraf . 73

2.2.1. Input Plugins . 74
2.2.2. Processor Plugins . 74
2.2.3. Output Plugins . 77

2.3. Time Series Database - InfluxDB . 78
2.3.1. Buckets . 78
2.3.2. Tags and Fields . 79

2.3.2.1. InfluxDB Web-UI . 79
2.3.2.2. InfluxDB Web-UI Query Builder 79

2.3.3. InfluxDB Web-UI Script Editor . 80
2.4. Dashboard - Grafana . 80

2.4.1. Provisioning . 81
2.4.1.1. Datasource . 81

Contents xii

Green Networking v 1.0

2.4.1.2. Dashboard Settings . 81
2.4.2. Flux Query Syntax Elements . 82
2.4.3. Flux Query Examples . 82

2.4.3.1. End to End Flow Efficiency Matrix - Query 82
2.4.3.2. Inefficient Hop Discovery (Relative) - Query 84

2.5. Docker . 87
2.5.1. Docker Compose . 87

2.5.1.1. InfluxDB . 88
2.5.1.2. Telegraf . 88
2.5.1.3. Grafana . 89
2.5.1.4. Volumes . 90
2.5.1.5. Delete Volumes . 90

2.5.2. Environment Variables . 91
2.5.3. Network . 91

3. Configuration Update System 92
3.1. Getting Started . 92

3.1.1. Installation . 92
3.1.2. Configuration . 92

3.1.2.1. Defaults . 93
3.1.2.2. Inventory . 93

3.2. Implementation Details . 94
3.2.1. Update Process . 94
3.2.2. Configuration Validation . 95

4. Data Plane Optimizations 97
4.1. P4 Introduction . 97
4.2. The Modifications at a Glance . 98
4.3. Egress Pipeline Structure . 99

4.3.1. Processor Responsibilities . 99
4.4. Efficiency Indicator Processing . 100

4.4.1. Term Paper Implementation . 100
4.4.2. Bachelor Thesis Implementation . 101

4.4.2.1. Aggregator Selection . 102
4.5. IOAM Aggregation Option Error Handling . 102
4.6. IPFIX Export . 104

4.6.1. Extern Function . 104
4.6.2. Processor . 105

5. Wireshark Dissector 106
5.1. Dissector as Plugin . 108
5.2. Built-in Dissector . 109

5.2.1. Add Option Type . 109
5.2.2. Add Header Fields . 110
5.2.3. Add Subtree Fields . 110
5.2.4. Add Sub-Dissector . 110

5.2.4.1. Function Signature . 111
5.2.4.2. Add Item to Tree . 111
5.2.4.3. Add Bitmask to Tree . 112

5.2.5. Register Dissector . 112
5.2.6. Register Header Fields . 113

Contents xiii

Green Networking v 1.0

5.2.7. Register Subtree Fields . 114

IV. Transition 115

1. Demo 116
1.1. Getting Started . 116

1.1.1. Network Virtualization System . 116
1.1.2. Monitoring System . 117
1.1.3. Configuration Update System . 117

1.1.3.1. Installation . 117
1.1.3.2. Configuration . 118

1.2. Update Scenarios . 118
1.2.1. Change HEI on Switches s03, s13, s16 . 118
1.2.2. Add Invalid Aggregator on Switch s11 . 121
1.2.3. Change Path from h01 to h07 . 123
1.2.4. Route Update to Avoid Switch s03 . 124

2. Conclusion and Discussion 126
2.1. Main Purpose and Context . 126
2.2. Review of Findings . 126
2.3. Implications of the Study . 127
2.4. Limitations of the Study . 127
2.5. Recommendations for Future Research . 127
2.6. Conclusion . 128

Bibliography 130

Contents xiv

Part I.

Inception

Inception v1.0
Green Networking

1. Initial Situation

Sustainability has become a critical concern across various sectors, including computer network-
ing. The substantial energy consumption associated with network infrastructure significantly
contributes to the overall carbon footprint of the digital economy. As networks continue to ex-
pand and evolve, optimizing their energy efficiency has become paramount to achieving sustain-
able growth. However, there is currently a significant lack of visibility into the energy efficiency
of computer networks. This lack of transparency poses a major challenge to efforts aimed at
improving network energy efficiency and, by extension, reducing the carbon footprint of these
networks.

1.1. The Need for Energy Efficiency Metrics
To address this challenge, the Internet Engineering Task Force (IETF) has published a draft titled
Green Networking Metrics. This document underscores the necessity for network instrumentation
capable of assessing power consumption, energy efficiency, and the carbon footprint associated
with networks, their equipment, and the services they support. [4] The draft outlines a variety
of metrics that are essential for evaluating and enhancing the energy efficiency of networking
infrastructures. These metrics serve as critical tools for network operators and researchers seeking
to optimize network performance and sustainability.

1.2. Previous Work and Proposed Solutions
In a previous semester, we developed a term paper titled Green Networking - Visibility, a first
step towards sustainable networking. This paper introduced a framework for enhancing visibility
into network energy efficiency, proposing innovative metrics for assessing and improving network
performance. Our research aimed to provide a foundation for sustainable networking practices
by offering new ways to measure and optimize energy usage across network infrastructures.

Building on the insights and findings of our term paper, we subsequently authored a paper titled
Towards Sustainable Networking: Unveiling Energy Efficiency Through Hop and Path Efficiency
Indicators in Computer Networks. This paper, which presents the results of our earlier research,
was accepted for presentation at the 10th IEEE International Conference on Network Softwariza-
tion in Saint Louis, USA. We will present our findings at the conference in June 2024, showcasing
our innovative approach to measuring and improving network energy efficiency through the use
of hop and path efficiency indicators.

The term paper proposed innovative metrics for indicating network efficiency, designed to be
measured as packets traverse the network. This approach aligns with the metrics outlined in
the IETF’s Green Networking Metrics draft. Specifically, we introduced the concept of the Path
Efficiency Indicator (PEI), categorized in the draft as an Energy Metric related to Paths. The PEI
provides a detailed measure of the energy efficiency of network paths, facilitating the identification
of both efficient and inefficient routes.

Additionally, our term paper suggested a method for discovering the most efficient and ineffi-
cient hops along a network path based on the Hop Efficiency Indicator (HEI), classified under the
draft as Metrics related to Equipment. By identifying these critical points within the network,
we aim to target specific areas for improvement, thereby enhancing overall network efficiency.

1. Initial Situation 2 of 130

https://eprints.ost.ch/id/eprint/1182/
https://eprints.ost.ch/id/eprint/1182/

Inception v1.0
Green Networking

To implement these metrics, we utilized the IOAM (In-situ Operations, Administration, and
Maintenance) Aggregation Option protocol extension. This protocol allows for embedding net-
work telemetry data within the packets themselves, enabling real-time monitoring of network
conditions. The IOAM Aggregation Option is currently in draft status, but it is anticipated that
it will be standardized in the near future. Our external partner, who published the draft on the
IOAM Option, provided the foundational support for our implementation in the term paper.

1.3. Industry Insights and External Contributions
Our exploration into network energy efficiency metrics is complemented by insights from industry
leaders and academic institutions:

• At the MPLS SD & AI Net World Congress in Paris, Bart Janssens from Colt Technology
Services demonstrated a practical solution for carbon-aware routing within their network.
Their approach utilizes a simple efficiency indicator on routers, defined as the ratio of
current power utilization to available bandwidth. This efficiency information is then sent
to a central system via streaming telemetry for further processing. This solution highlights
the practical application of efficiency metrics in achieving carbon-aware routing, a concept
that aligns with the goals of our research.

• The University of Oxford presented a notable study at the RIPE conference, focusing on
the benefits of carbon-aware routing. Their research aimed to quantify the potential ad-
vantages of such an approach, introducing the Carbon-Aware Traffic Engineering (CATE)
methodology. This study analyzed various metrics and traffic patterns to assess the impact
of carbon-aware routing on specific regions in Europe, demonstrating significant potential
for reducing the carbon footprint of network operations.

1.4. Optimizing and Expanding on Previous Work
Building on the foundation laid by our term paper and the subsequent IEEE conference paper, the
current project seeks to further optimize the proof of concept (PoC) for the efficiency indicator and
propose additional Green Metrics related to Flows, as outlined in the Green Networking Metrics
draft. Our goal is to enhance the granularity and accuracy of the metrics, thereby providing
deeper insights into network performance and energy efficiency.

A critical challenge that the project addresses is the accessibility of collected telemetry data.
Until now, this data has not been accessible outside the network, limiting its utility for broader
analysis and optimization. To overcome this limitation, the project proposes exporting the col-
lected telemetry data using IPFIX (IP Flow Information Export). This will enable external
stakeholders to access detailed network efficiency metrics, providing a comprehensive view of
network performance.

1.5. Leveraging Modern Technologies for Data Management
To efficiently retrieve, store, and visualize the exported data, the project will leverage modern
data management technologies such as the TIG Stack. The TIG Stack, which includes Telegraf,
InfluxDB, and Grafana, is well-suited for handling network telemetry data. Telegraf will be
used for data collection, InfluxDB for data storage, and Grafana for data visualization. This
combination of tools will facilitate the creation of detailed dashboards that provide real-time
insights into network efficiency, supporting ongoing efforts to optimize network performance and
reduce energy consumption.

1. Initial Situation 3 of 130

https://ripe88.ripe.net/wp-content/uploads/presentations/27-RIPE_SawsanElZahr.pptx

Inception v1.0
Green Networking

2. Requirements
This chapter contains the functional and non-functional requirements of the project. The re-
quirements are specified based on the FURPS classification method. FURPS is an acronym and
stands for:

Functionality Capability, Reusability, Security

Usability Human Factors, Aesthetics, Consistency

Reliability Availability, Recoverability, Accuracy

Performance Speed, Efficiency, Resource Consumption, Scalability

Supportability Maintainability, Testability, Flexibility

The information above is based on the FURPS Wikipedia entry [7].

2.1. Functional Requirements
In our project, functional requirements are essential and represent the F in the FURPS model,
which stands for functionality. They describe exactly what tasks and functions the system must
fulfill. To organize our development process, we have used Epics to categorize and order these
requirements. Each Epic consolidates a group of related features, which are accompanied by
corresponding User Stories, providing a user-centric way to articulate needs and perspectives.

2.1.1. Epics

ID EP1
Subject Energy Efficiency Insight for Network Paths
Description As a network operator, I need a comprehensive solution to optimize energy

usage across network paths. This epic entails the development of tools and
algorithms to analyze and compare the energy efficiency of different paths
within the network. By achieving this, operators can identify optimal paths to
place in standby mode during low traffic periods, thereby maximizing energy
savings while maintaining network functionality.

Remark Partially achieved in preliminary work (term paper) with the elaboration of
the hop efficiency indicator (HEI) and path efficiency indicator (PEI).

ID EP2
Subject Energy Efficiency Insight for Network Flows
Description This epic aims to empower network operators with insights into the energy

efficiency of network flows. It involves developing tools and features to visu-
alize the efficiency of flows. By providing operators with clear visibility into
the energy consumption patterns of network flows, they can make informed
decisions to optimize energy usage and enhance overall network performance.

2. Requirements 4 of 130

Inception v1.0
Green Networking

ID EP3
Subject Standardized Export and Centralized Management of Energy Efficiency Data
Description This epic focuses on establishing a standardized approach for exporting energy

efficiency data and centralizing its management within a designated system.
It encompasses the development of mechanisms for collecting, processing, and
persisting energy efficiency data from various sources into a centralized repos-
itory. By implementing this epic, network operators can streamline the man-
agement of energy efficiency information, enabling better analysis, reporting,
and decision-making processes.

ID EP4
Subject Proof of Concept Simulation for Energy Efficiency Features
Description This epic is dedicated to creating a proof of concept simulation environment for

the energy efficiency features outlined in previous epics. It involves developing
a virtualized network infrastructure capable of simulating network traffic and
dynamically adjusting the hop efficiency of individual routers. The primary
goal is to demonstrate the feasibility and effectiveness of energy optimization
strategies.

2.1.2. User Stories

ID US1
Epic EP1
Subject Hop Efficiency Indicator (HEI) Processing
Description As a network operator, I need an efficiency indicator on the hop level, so that

path and flow level energy efficiency metrics can be processed.

ID US2
Epic EP1
Subject Link Efficiency Indicator (LEI) Processing
Description As a network operator, I need an indicator which can be added to the HEI

and considers ingress and egress link efficiency, so that the final value stored
in the aggregate makes a better statement about the over all energy efficiency
of the selected path of the data packet. Not all links necessarily have the same
efficiency (WAN/LAN link, number of repeaters, wireless connections, fibre,
copper, etc.).

ID US3
Epic EP1
Subject Simultaneous Collection of Several Different Hop Efficiency Indicators (HEI)
Description As a network operator, I want to have the possibility to collect various Hop

Efficiency Indicators simultaneously, so that the information loss through ag-
gregation can be minimized.

2. Requirements 5 of 130

Inception v1.0
Green Networking

ID US4
Epic EP1
Subject Wireshark Dissector
Description As a network operator, I want to view the network telemetry data stored in

the packet inside the IOAM Aggregation Option in Wireshark, so that there
is better observability and troubleshooting possibilities in efficiency indicator
enabled networks.

ID US5
Epic EP1
Subject View Path Statistics and Identify Inefficient Paths and Nodes
Description As a network operator, I want to view path statistics such as, the hops tra-

versed, the indicator value, the source and destination IP address grouped by
indicator type, so that I can take that information to identify inefficient paths
and nodes to be able to apply targeted improvements to the efficiency of my
network.

ID US6
Epic EP2
Subject Visualize Efficiency of Flows in a Heat Map
Description As a network operator, I want to view the efficiency of flows in a heat map,

so that I can see the efficiency of point to point communications at a glance.

ID US7
Epic EP2
Subject View Flow Statistics and Identify Efficient and Inefficient Flows Between Hosts
Description As a network operator, I want to view flow statistics such as, efficiency in-

dicator values, flow duration, number of packets and flow endpoints so that
I have a more detailed insight into the efficiency of flows as available in the
heat map.

ID US8
Epic EP3
Subject IPFIX Metering and Exporting Process for the Export of Path Specific Effi-

ciency Data
Description As a network operator, I want to use an IPFIX Metering and Exporting

Process to export path specific energy efficiency data, so that the data can be
imported on a remote system with a standard compliant IPFIX Collector.

2. Requirements 6 of 130

Inception v1.0
Green Networking

ID US9
Epic EP3
Subject IPFIX Metering and Exporting Process for the Export of Flow Specific Effi-

ciency Data
Description As a network operator, I want to use an IPFIX Metering and Exporting

Process to export flow specific energy efficiency data, so that the data can be
imported on a remote system with a standard compliant IPFIX Collector.

ID US10
Epic EP3
Subject IPFIX Collecting Process for the Import of Path Specific Efficiency Data
Description As a network operator, I want to use an IPFIX collector to import the path

specific efficiency data in a standardized way, so that the data can be used by
a third party application for further analysis.

ID US11
Epic EP3
Subject IPFIX Collecting Process for the Import of Flow Specific Efficiency Data
Description As a network operator, I want to use an IPFIX collector to import the flow

specific efficiency data in a standardized way, so that the data can be used by
a third party application for further analysis.

ID US12
Epic EP3
Subject Persistent Storage for Energy Efficiency Data
Description As a network operator, I want to persist network energy efficiency data in a

time series database, so that it can be used for history purposes.

ID US13
Epic EP3
Subject Dashboard for Energy Efficiency Data Visualization
Description As a network operator, I want to display the network energy efficiency history

data from the time series database in a customizable dashboard to have all
network energy efficiency data available at a glance.

ID US14
Epic EP4
Subject Automated Deployment of Simulation Network with Custom Topology
Description As a project engineer, I want to be able to simulate an energy efficiency indica-

tor enabled network with an arbitrary topology based on an infrastructure as
code (IaC) approach, so that I can test the system in different environments
without the need to manually create the Mininet topology file and BMv2
control plane definitions.

2. Requirements 7 of 130

Inception v1.0
Green Networking

ID US15
Epic EP4
Subject Network Traffic Simulation
Description As a project engineer, I want to be able to generate network traffic and send it

through the simulated network in order to retrieve network efficiency telemetry
data.

ID US16
Epic EP4
Subject Simulation of Dynamic Hop Efficiency Indicator values
Description As a project engineer, I want to be able to simulate a dynamic environment

by adjusting the HEI values on the routers, so that specific scenarios (e.g.
day/night) can be simulated and more interesting efficiency indicator data
can be obtained from the network.

2.2. Non Functional Requirements
Based on the FURPS classification the non functional requirements are categorized in the follow-
ing categories:

• Usability

• Reliability

• Performance

• Supportability

ID NFR1
Subject Efficiency Indicator Processing Performance
Category Performance
Priority High
System Network Virtualization System
Description Whether the efficiency indicator processing is enabled or disabled in a net-

work should not affect the actual data forwarding. Packets which can not
carry additional metadata in the header because they already reached there
maximum size shall be forwarded without the efficiency indicator processing.

Justification Determining the efficiency of a network is not the core responsibility of a net-
work. The reliability of a network is one of the most important requirements.
This should not be undermined with the determination of the efficiency of the
network.

2. Requirements 8 of 130

Inception v1.0
Green Networking

ID NFR2
Subject Flow Efficiency Indicator Comparability
Category Usability
Priority High
System Network Virutalisation System and Monitoring System
Description The number of packets in a flow is variable and the FEI is an aggregation

of the PEI carried by each packet. To ensure the FEIs of different flows are
comparable the aggregation must consider the variable amount of packets.

Justification To create meaningful statistics the FEIs must be comparable.

ID NFR3
Subject Interruptionless Operation of the Simulation Environment
Category Reliability
Priority High
System Network Virutalisation System and Monitoring System
Description All components within the network virtualization system and the monitoring

system need to run for at least two weeks with no interruption.
Justification The dashboards not only include current data but also historical data. To

be able to show how the network efficiency changed over time a reasonable
amount of history data must be available.

ID NFR4
Subject Dynamic Aggregator Selection
Category Usability
Priority High
System Network Virtualization System
Description The dynamic aggregator selection by the ingress node ensures the availability

of both the overall path statistics and the discovery data of the most efficient
and inefficient hop by path.

Justification The periodic switching of the aggregator would add additional complexity to
operate the system and with the dynamic selection approach there is a high
probability that the efficiency data with every aggregator is available for each
flow, which is a benefit for the statistical insights.

ID NFR5
Subject Efficiency Indicator Type Selection
Category Usability
Priority High
System Network Virtualization System
Description The indicator type of interest should be settable by the network operator and

changeable at any point in time.
Justification The availability of multiple efficiency indicator types each used for a spe-

cific efficiency value solves the issue of the loss of information when multiple
efficiency values are aggregated to one efficiency indicator. The static config-
uration of the IOAM data param in the data plane is not an option.

2. Requirements 9 of 130

Inception v1.0
Green Networking

ID NFR6
Subject Reliable Processing and Export of Efficiency Indicator Metadata
Category Reliability
Priority Medium
System Network Virtualization System
Description The IPFIX implementation called by the data plane through an extern func-

tion shall be able to export the metadata of at least 90% of the packets being
forwarded with the configurations present in our simulation network which
results in approximately 1000 packets / minute being sent by each of the 11
hosts.

Justification To meaningfully represent the current efficiency of the network the metadata
of a certain amount of packets is required but some loss is acceptable.

ID NFR7
Subject Constant Cache Entry Size for Aggregated Flow Record
Category Performance
Priority High
System Network Virtualization System
Description The IPFIX cache implementation should be designed that the size of an indi-

vidual cache entry to store a flow record for the aggregated export is constant
no matter how many packets belong to a specific flow.

Justification The memory resources on a network device are limited.

ID NFR8
Subject Usage of Standardized IPFIX Format
Category Usability, Supportability
Priority High
System Network Virtualization System
Description To ensure interoperability with existing monitoring solutions and follow net-

work telemetry data export best practices the standardized export format
IPFIX shall be used.

Justification The usage of a proprietary export format would be an additional hindrance
for use in production.

ID NFR9
Subject Configuration Update on Switches
Category Usability, Performance
Priority High
System Configuration Update System
Description All switches in a topology can be updated issuing a single command and the

execution takes less than 3 seconds per switch given the updated configuration
files.

Justification During the configuration update the network is in inconsistent (unconverged)
state which should be as short as possible. Additionally configuration updates
are carried out frequently.

2. Requirements 10 of 130

Inception v1.0
Green Networking

ID NFR10
Subject Configuration Update on Arbitrary Topology
Category Supportability
Priority Medium
System Configuration Update System
Description Given the inventory specification of the target topology the configuration of

switches within that topology can be updated.
Justification The configuration update utility is used for at least two topologies. The

development and simulation network.

ID NFR11
Subject Configuration Update at Switch Runtime
Category Usability, Reliability
Priority High
System Configuration Update System
Description The configuration update of the switches must be possible without a reboot.
Justification A reboot of the switches to update the configuration is not acceptable. Other-

wise network efficiency data stored in the caches would be lost and additionally
the network would be completely down until the update is completed.

ID NFR12
Subject Self Explaining Dashboards
Category Usability
Priority Medium
System Monitoring System
Description The dashboards must be well organized and the most of it should be self

explaining.
Justification A new user (network operator) should need less than 30 minutes of introduc-

tion to understand the dashboards.

ID NFR13
Subject Monitoring System Startup
Category Usability
Priority Medium
System Monitoring System
Description All components of the monitoring system should be started by issuing a single

command.
Justification The deployment or restart should be as simple as possible for the network

operators.

2. Requirements 11 of 130

Inception v1.0
Green Networking

ID NFR14
Subject Storage Management to Avoid Starvation
Category Reliability
Priority High
System Monitoring System
Description The time series database must be able to store the telemetry data for at least

two weeks.
Justification A storage starvation on the monitoring system is not acceptable. Otherwise

the system will be temporarily interrupted and unable to accept IPFIX export
messages.

ID NFR15
Subject Robust Collection and Delivery
Category Reliability
Priority High
System Monitoring System
Description The IPFIX collector must be able to process at least 90% of the telemetry

data exported by the network virtualization system with the settings applied
in our simulation network within a 2h measurement period.

Justification The monitoring system must be reliable, especially the IPFIX collector must
be able to handle the load of the IPFIX exporter. Otherwise, the exported
telemetry from the IPFIX exports will be lost.

2. Requirements 12 of 130

Inception v1.0
Green Networking

3. Risk Assessment

In this risk assessment, potential risks to our project are recorded and evaluated according to
their respective degree of severity. If a new risk is identified, it is recorded and classified using
the risk matrix [13], a common tool for risk assessment.

3.1. Technical Risks
The following risks were identified as possibly disruptive to the project.

Li
ke

lih
oo

d

Harm severity

Certain

CatastrophhicMarginal CriticalMinor

Likely

Rare

Possible

Unlikely

R3 / R4 R1 / R2R6 / R7

R5

ID R1
Subject Impossible to extend the BMv2 control plane with a cache management system

to temporarily store flow records before they are exported with IPFIX.
Description The cache stores flow records which are continuously updated during the life-

time of a flow.
Risk Very high (Possible/Catastrophic)
Mitigation During the elaboration phase of the project, a tracer shall be implemented

which demonstrates, that the BMv2 control plane can be extended with the
required caching functionality.

Mitigated Yes

3. Risk Assessment 13 of 130

Inception v1.0
Green Networking

ID R2
Subject Impossible to implement a custom extern function on the BMv2 control plane

which is callable from the P4 data plane.
Description External functions are used to trigger actions on the control plane or return

external properties or values that are outside of the data plane. In our par-
ticular scenario, we plan to use an extern function to pass energy efficiency
indicator metadata of the forwarded packet to the control plane. The call of
that extern function should then trigger an update of the specific flow record
based on the metadata to process.

Risk Very high (Possible/Catastrophic)
Mitigation During the elaboration phase of the project, a tracer shall be implemented

which demonstrates, that the BMv2 control plane can be extended with an
extern function which can be called from the P4 data plane.

Mitigated Yes

ID R3
Subject Unable to send IPFIX messages to the monitoring system from within the

Mininet environment.
Description The collected energy efficiency data must be sent to a monitoring server as

IPFIX messages, which is either internal or external to the Mininet environ-
ment. That monitoring server will persist the collected data within a time
series database.

Risk High (Possible/Critical)
Mitigation There are two possible options on how to transmit IPFIX messages from the

BMv2 targets to the monitoring system.

• Operate the monitoring server on a host within Mininet. In case this
approach is chosen it must be verified that the web interface of the
monitoring server can be exposed to systems outside of Mininet.

• Operate the monitoring server outside of Mininet. In case this approach
is chosen it must be verified that the BMv2 software switches are capable
of sending traffic via interfaces outside of Mininet.

Mitigated Yes. We decided to go for the second approach because the deployment of
the monitoring system is more flexible as it is decoupled from the Mininet
environment.

3. Risk Assessment 14 of 130

Inception v1.0
Green Networking

ID R4
Subject Unable to transmit IPFIX packets on BMv2 targets.
Description On flow expiry the last hop within the flow exports the cached data and sends

it to the IPFIX collector. The BMv2 targets must be capable to craft new
valid IPFIX messages.

Risk High (Possible/Critical)
Mitigation

• Implement a tracer which demonstrates that BMv2 targets are capable
of crafting and sending UDP datagrams containing an IPFIX message
as payload.

• Implement a separate application which acts as an adapter between the
BMv2 targets and the monitoring system. For that purpose Scapy could
be used to translate flow record data received from the BMv2 targets to
valid IPFIX messages.

Mitigated Yes. We decided to go for the first approach and successfully demonstrated
that the BMv2 software switches control plane can be extended to be capable
to transmit IPFIX messages.

ID R5
Subject Unable to simulate realistic patterns in network traffic by traffic generation.
Description It is necessary to create enough network traffic to produce significant results

and statistics about the network’s energy efficiency.
Risk Medium (Unlikely/Marginal)
Mitigation

• Use TRex, Cisco’s traffic generator to simulate network traffic.

• Development of a package generator with Python and Scapy for our
specific use case that fulfills our requirements.

Mitigated Yes. We decided to go for the second approach in order to adapt the func-
tionality of the package generator to our needs.

3. Risk Assessment 15 of 130

Inception v1.0
Green Networking

ID R6
Subject The simulation scenario lacks sufficient significance.
Description In order to achieve significant results, the process of collecting energy efficiency

data on the network must be conducted over an extended period of time with
the possibility to change network paths and adjust efficiency indicator related
values on the control plane.

Risk High (Possible/Marginal)
Mitigation Setup the Mininet environment on a server and define a topology based on a

real service provider network. Run the Mininet simulation over an extended
period of time and periodically update the configuration of the BMv2 control
plane at runtime and periodically update the configuration of the control plane
at runtime.

Mitigated Yes. We designed a simulation network topology based on a real service
provider network topology. Additionally we setup two servers, one server
as Mininet simulation network host and the other as monitoring system host.
Finally a configuration update system was elaborated which can be used to
update the configuration of the BMv2 software switches at runtime.

ID R7
Subject Third party application does not provide the required features to achieve our

visualization goal.
Description Visualize the network’s energy efficiency data in a Grafana dashboard, particu-

larly using a heatmap to compare the efficiency of end to end communications.
Risk Medium (Possible/Marginal)
Mitigation Provide simple dashboards from the beginning of the construction phase and

improve them continuously. Discuss the dashboards and the visualizations
with the stakeholders to achieve continuous improvement.

Mitigated Yes. Furthermore, we discovered a Grafana plugin called ESNET Matrix
Panel that fulfills our need to have a comprehensive end to end flow statistics
heatmap.

3. Risk Assessment 16 of 130

Part II.

Elaboration

Elaboration v1.0
Green Networking

1. Efficiency Indicators

1.1. Definitions
HEI The Hop Efficiency Indicator (HEI) is an arbitrary number indicating the efficiency of a hop.

There can be several HEI values at the same time, which cover different aspects of a hop’s
energy efficiency. Which indicator to use is decided by the ingress hop by setting the HEI
identifier in the data param header field of the IOAM aggregation option. By randomly
selecting the HEI to be used, one statistically obtains an overall view after a certain time,
which covers the various aspects of the different HEIs equally. One HEI may indicate the
current power to current bandwidth ratio, an other HEI may indicate the ratio of energy
retrieved from renewable sources to non-renewable sources. There may be many more HEI
values to consider and implement on network devices.

LEI The Link Efficiency Indicator (LEI) is a dedicated value to indicate the efficiency of an inter-
face. For example a 10GBit/s copper interface via a twisted pair cable could be indicated
to be less expensive in the means of energy efficiency compared to an interface connected
to a 10GBit/s long-haul fiber connection.

HTC The Hop Traversal Cost (HTC) is the result of accumulating the LEI of the ingress link,
the HEI and the LEI of the egress link. This is the value added to the aggregate of the
IOAM protocol.

PEI The Path Efficiency Indicator (PEI) is the accumulation of HTC values in case the SUM
aggregator is used. It indicates the efficiency of the path the packet traversed.

FEI The Flow Efficiency Indicator (FEI) is depending on the aggregator used the average PEI
(SUM aggregator), the minimum HEI (MIN aggregator) or maximum HEI (MAX aggre-
gator) considering the network telemetry data of all packets corresponding to the specific
flow.

1.2. Efficiency Indicator Processing
The processing of efficiency indicators on network devices is critical in regards to performance.
Any additional computation which reduces the overall performance of a device and furthermore
has a negative impact on the device’s energy efficiency must be kept at a minimum. It must be
ensured that the gain out of optimizations is larger than the pain associated with the efficiency
indicator related processing.

It is a strict requirement, that the efficiency indicator processing can run at line rate in a real
world implementation.

 Information

The line rate or physical-layer frame rate is the maximum capacity to send frames of a
specific size at the transmit clock frequency of the device under test. RFC 8238

1. Efficiency Indicators 18 of 130

https://tools.ietf.org/html/rfc8238

Elaboration v1.0
Green Networking

1.2.1. Processing in Data Plane
Due to the requirement to process the efficiency indicators at line rate, the processing overhead
in the data plane should be reduced to a minimum because an inefficient data plane directly
impacts the data forwarding performance. During the term paper we followed the approach to
gather efficiency indicator related information from the control plane and process the HEI based
on that information in the data plane. Doing so results in reprocessing the HEI for every single
packet. This could make sense if the underlying values in the control plane change very frequently,
but else it is a waste of processing power.

1.2.2. Processing in Control Plane
One of the findings when writing the paper for the IEEE NetSoft 2024 conference about the
research results from the term paper, was that it would make more sense to preprocess the HEI
value in the control plane. Like that the data plane only has to query the value from the control
plane and it has to perform the aggregation operations to store the updated value as network
telemetry data in the IP packet. The HEI value recalculation may be triggered in case the
underlying values change only. This approach also provides more flexibility in terms of adding
multiple independent HEI values, with the data plane then querying the HEI value to be used
based on the identifier set in the data param header field of the IOAM aggregation option, or
as specified in the configuration in the case of an ingress node when no IOAM header data is
available.

1.3. Limitations
The collection of efficiency indicator network telemetry data in transit requires modifications to
both the control plane and the data plane of a network device.

1.3.1. Data Plane Extensibility (Production Devices)
As of today only very few programmable network devices are operated in the wild. In a presen-
tation by Arista, the advantages of using P4 in the data plane were mentioned, but it was also
emphasized that the use of the technology in practice is still in its infancy. [6] Most of the network
devices use fixed function chips which means that the data plane is implemented in hardware.
On such devices no modifications to the data plane can be made. This means that it takes a long
time until new protocols are generally supported on production devices.

1.3.2. Control Plane Extensibility (Production Devices)
Furthermore the control plane would need to be adjusted with functionality to calculate and
expose HEI and LEI values to the data plane using dedicated lookup tables. To ensure interop-
erability between vendors standards would need to be defined which define which indicator types
exist and how they are calculated and made available to the data plane.

1.3.3. PoC Environment
To get around these challenging circumstances we use a simulated network environment with
programmable switches. Those switches have a programmable data plane, customizable control
plane tables and control plane functionality can be added using plugins. One limitation of the
PoC environment is, that no real efficiency data is available, which is why we provide the HEI
and LEI values from outside. In other words we mock energy efficiency data. For demonstration
purposes this work around is considered good enough.

1. Efficiency Indicators 19 of 130

Elaboration v1.0
Green Networking

2. System Overview

This chapter gives context about the systems elaborated in this bachelor thesis. According to the
epics defined in section 2.1, the main objective is to collect energy efficiency data of a simulated
network environment and to export this data to a central monitoring system where it is made
available to a network operator. The people, systems and their relationships relevant to achieve
the main objective are visualized in the context diagram in figure 2.1 and the typical system
interactions are described in order in the enumeration below.

1. The network operator declaratively defines the desired state of the network virtual-
ization system.

2. The network operator triggers the provisioning of the network virtualization system.

3. The network virtualization system initializes the topology and starts the traffic simu-
lation process.

4. The network virtualization system starts to export network telemetry data to the
monitoring system using IPFIX messages.

5. The network operator accesses the dashboards on the monitoring system to get insight
into current and history energy efficiency network telemetry data.

6. On demand as the network operator wants to simulate a change of efficiency of routers
or modify network paths he modifies the desired state of the network virtualization system
and triggers the regeneration of the configuration files.

7. The network operator triggers the execution of the configuration update system to
update the configuration of the software switches based on the regenerated configuration
stored in the network virtualization system.

8. The configuration update system reads the configuration files from the network vir-
tualization system.

9. The configuration update system sends the updated configuration to the software
switches by connecting to the specific gRPC endpoint.

10. The network operator observes the changes of the network efficiency in the monitoring
system.

11. The network operator triggers the deprovisioning of the network virtualization sys-
tem once it is not required anymore.

The following chapters describe the concepts behind the individual systems in more detail.

2. System Overview 20 of 130

Elaboration v1.0
Green Networking

Network Operator

Operates the virtual network
and needs insight into

energy efficiency telemetry
data of the network

Monitoring System

Allows network operators to
get detailed insight into

current and history energy
efficiency data of their

network

Network Virtualisation
System

Generates all configuration
files needed to deploy the

virtual network and also runs
the switches and hosts based

on the predefined topology

Configuration Update
System

Updates the configuration
(control plane tables) of the
virtualised routers based on
the specified configuration

files

Accesses network
telemetry data

[http]

Triggers configuration
update

[script execution]

Defines network
resources
[file writer]

Triggers the
provisioning and
deprovisioning
[script execution]

Exports network
telemetry data

[IFPIX]

Sends configuration
updates
[gRPC]

Reads configuration files
[file reader]

Legend
person
system
container
external person
external system
external container

Figure 2.1.: System Context Diagram

2. System Overview 21 of 130

Elaboration v1.0
Green Networking

3. Network Virtualization System

This chapter describes the concept how the network virtualization system has been extended
in order to achieve IPFIX export functionality. The network virtualization system is run with
Mininet, which is a software emulator that creates virtual networks for developing, testing, and
experimenting with network applications and protocols. The base configuration of the Mininet en-
vironment is based on the setup elaborated in the term paper attempted in the previous semester.
More details about Mininet in regards to installation and configuration related to our scenario
can be found in the term paper.

Figure 3.1 is a C4 container diagram which illustrates the composition of the network vir-
tualization system. The virtualization network system is composed of programmable network
switches, and Linux hosts which are interconnected with links. The core responsibilities of the
individual containers are:

Links transmit data between endpoints.

Linux Hosts simulate network traffic.

Programmable Network Switches are used for traffic forwarding in general and specifically for:
• Determination of the energy efficiency indicator value
• Attachment of energy efficiency indicator related data to the packet header as network

telemetry data
• Export of all collected metadata related to the energy efficiency indicator via IPFIX

(on egress switch only)
• Removal of attached energy efficiency indicator network telemetry data (on egress

switch only)

3. Network Virtualization System 22 of 130

Elaboration v1.0
Green Networking

Network Virtualisation System
[System]

Network Provisioner
[Python/Mininet]

Provisions network resources

Programmable Network
Switch
[C++]

Software switch to develop
and test P4 data planes and

control plane software

Linux Host
[Dedicated Process]

Executes a shell which can be
used to execute arbitrary

porgrams available on the
host system

Link
[Linux Virtual Ethernet Link (veth)]

Interconnects switches and
hosts

Configuration Generator
[Python / Jinja2]

Generates and stores the
configuration files for the

BMv2 software switches and
the Mininet topology

Resource Definition
[YAML]

Contains the desired state of
the simulation network

Network Operator

Operates the virtual network
and needs insight into

energy efficiency telemetry
data of the network

Monitoring System

Allows network operators to
get detailed insight into

current and history energy
efficiency data of their

network

Configuration Update
System

Updates the configuration
(control plane tables) of the
virtualised routers based on
the specified configuration

files

Accesses network
telemetry data

[http]

Triggers configuration
update

[script execution]

Defines network
resources
[file writer]

Triggers the
provisioning and
deprovisioning
[script execution]

Triggers configuration
update and retrieves

results
[script execution]

Provisions
[script execution]

Provisions
[script execution]

Provisions
[script execution]

Sends and receives
packets via

[veth]

Exports network
telemetry data

[IFPIX]

Sends and receives
packets via

[veth]

Sends configuration
updates
[gRPC]

Reads configuration files
[file reader]

Reads desired state
[file reader]

Legend
person
system
container
external person
external system
external container

Figure 3.1.: Network Virtualization System Container Diagram

3.1. Network Topology
As specified in the functional requirements in section 2.1 in US14 the deployment of an arbitrary
network topology should be completely automated based on an infrastructure as code (IaC)
approach. To achieve that we use a declarative YAML configuration file, some Python logic and
Jinja2 templating to generate all configurations required to deploy the specified network in the
Mininet environment. The configuration generation is described in more detail in section 3.2. This
approach allows us to define the desired state of our network in a clear, human-readable format.
By using this configuration file, we can quickly and efficiently adjust our network settings, ensuring
immediate updates. Additionally, this solution provides the flexibility to create completely new
network topologies. The declarative format of the files ensures consistency and reduces the risk
of configuration errors, resulting in a more reliable and manageable network environment.

3.1.1. Development Network Topology
The network topology depicted in figure 3.2 was used in the term paper and in the beginning of
the bachelor thesis before we decided to reconstruct a more realistic simulation network topology.

3. Network Virtualization System 23 of 130

Elaboration v1.0
Green Networking

2

10.100.0.0/24
2001:DB8:64::/64

10.200.0.0/24
2001:DB8:C8::/64

10.100.0.10
2001:DB8:64::10

10.200.0.20
2001:DB8:C8::20

S1 S2

S3 S4

1

3 1

2

2
1 3

1

2

H2

H1

H3

10.201.0.30
2001:DB8:C9::30

10.201.0.0/24
2001:DB8:C9::/64

4

Traffic Flow:

path1: H1-S1-S2-S4-H2
path2: H1-S1-S3-S4-H3
path3: H1-S1-S3-S4-S5-S6-H4

S6

S5

5

H4

10.255.0.40
2001:DB8:FF::40

10.255.0.0/24
2001:DB8:FF::/64

1

1

2

2

Figure 3.2.: Development Network Topology

3.1.2. Simulation Network Topology
The extended network topology depicted in figure 3.3 is based on the IP ranges and peerings of
a real service provider network. It is used to simulate a realistic network in order to test the:

• Implementation of the IOAM Aggregation Trace Option for network efficiency indicators

• IPFIX export mechanism on the BMv2 targets

• Collecting process on behalf of the monitoring system

• Telemetry data generation as the base for the data visualization on the monitoring system

 Information

Referring to figure 3.3 we used the website https://bgp.tools/ to reverse engineer the IP
ranges and peerings of AS8758. The underlying physical topology is not representing the
actual topology of the service provider network. We chose the topology to have redundant
links which gives the possibility to flexibly adjust paths to illustrate the impact of the
rerouting of traffic via more efficient paths to the energy efficiency of the network.

3.1.2.1. Links Inside the Autonomous System

The links inside the autonomous system are colored depending on the chosen link efficiency
indicator (LEI). For the sake of simplicity the LEI is set according to the expected geographical
distance of the routers which are interconnected by the specific link.

3. Network Virtualization System 24 of 130

https://bgp.tools/

Elaboration v1.0
Green Networking

Sunrise GmbH
AS6730
IPv4: 31.10.128.0/18
IPv6: 2001:678:7f0::/48

Swisscom (Schweiz) AG
AS3303
IPv4: 46.14.0.0/16
IPv6: 2001:678:e0::/48

COLT
AS8220
IPv4: 37.1.224.0/22
IPv6: 2001:678:274::/48

NTS workspace AG
AS15576
IPv4: 31.132.8.0/22
IPv6: 2a00:c38::/32

RETN Limited
AS9002
IPv4: 23.56.98.0/24
IPv6: 2a02:2d8::/32

AZURE TECHNOLOGY
AS53587
IPv4: 45.61.192.0/21
IPv6: 2607:5d00::/48

H09

H10

H11

H04

H05

H06

Customer Region A
IPv4: 146.185.64.0/19
IPv6: 2a04:f340::/29

H01

Customer Region B
IPv4: 31.24.8.0/21
IPv6: 2a00:10c0::/32

H02

Customer Region C
IPv4: 31.207.52.0/22
IPv6: 2001:67c:470::/48

H03

Customer Region D
IPv4: 31.207.60.0/22
IPv6: 2a0a:de00::/32

H08

Customer Region E
IPv4: 37.46.144.0/22
IPv6: 2a05:ff80::/29

H07

S13

S14

S18

1

23

5

6

7

1 2 1 2

3 3 4

1
2 3

4

5

6
7

1

2

1

2

3

4

3

12

3

4

5

6

7

11 2 2

3 3

1 2

3

4
5

6

7

1

1

2

23

4

3

Iway AG
AS8758

S11 S12

S02

4

S01

S17

S04

S16 S15

S03

Figure 3.3.: Network Simulation Topology

Black Are links between core switches with a low distance. In our simulation scenario, we consider
these links to be the most efficient ones, as the core switches are located in places with a
short geographical distance

Green Are links between core switches and edge switches connecting to customer sites. In our
simulation scenario, we consider these links to be less efficient than the black links, as the
geographical distance is higher and more power is required for the transmission.

Orange Are links between core switches and edge switches connecting to other autonomous
systems. In our simulation scenario, we consider these links to be the least efficient links,
as the geographical distance is the highest and more power is required for transmission.

3.1.2.2. Router Types

Core Switches (s01-s04) Provide connectivity inside the core network.

Edge Switches (s11-s18) Connect customers and other autonomous systems to the provider
core network. These switches run the IPFIX export extension. Efficiency indicator network
telemetry data is being processed and sent as IPFIX messages to the IPFIX collector which
is part of the monitoring system periodically.

3.1.2.3. IP Addressing

Switches Use unnumbered ports which do not have an IP address assigned. The layer 3 networks
inside the AS are limited on the scope of a link between two switches.

Hosts Are configured dual stack which means that they have both an IPv4 and IPv6 address
assigned. There is only one host per network and it always uses the 10th host address of
the specific IPv4 and IPv6 range respectively.

3. Network Virtualization System 25 of 130

Elaboration v1.0
Green Networking

3.2. Configuration Generator
The configuration generator is designed to read the desired state for a virtual network from a
YAML file so that it can generate the configurations that can either be read when the network is
initialized or can be pushed at runtime to update the configuration if required.

The container diagram in figure 3.4 zooms into the configuration generator.

Network Virtualisation System
[System]

Configuration Generator
[System]

Network Provisioner
[Python/Mininet]

Provisions network resources

Programmable Network
Switch
[C++]

Software switch to develop
and test P4 data planes and

control plane software

Linux Host
[Dedicated Process]

Executes a shell which can be
used to execute arbitrary

porgrams available on the
host system

Link
[Linux Virtual Ethernet Link (veth)]

Interconnects switches and
hosts

Resource Definition
[YAML]

Contains the desired state of
the simulation network

Templating Engine
[Python/Jinja2]

Generates the configuration
using algorithms defined in

Python and applies the Jinja2
templates on the resulting

data structures

Mininet Configuration
[JSON]

Defines the resources
present in the virtual network

BMv2 Configuration
[JSON]

Defines the control plane
tables present on the BMv2

target

Network Operator

Operates the virtual network
and needs insight into

energy efficiency telemetry
data of the network

Monitoring System

Allows network operators to
get detailed insight into

current and history energy
efficiency data of their

network

Configuration Update
System

Updates the configuration
(control plane tables) of the
virtualised routers based on
the specified configuration

files

Accesses network
telemetry data

[http]

Triggers configuration
update

[script execution]

Defines network
resources
[file writer]

Triggers the
provisioning and
deprovisioning
[script execution]

Triggers configuration
regeneration
[script execution]

Triggers configuration
update

[script execution]

Reads configuration
[file reader]

Reads configuration
[file reader]

Provisions
[script execution]

Provisions
[script execution]

Provisions
[script execution]

Sends and receives
packets via

[veth]

Exports network
telemetry data

[IFPIX]

Sends and receives
packets via

[veth]

Sends configuration
updates
[gRPC]

Reads configuration files
[file reader]

Reads desired state
[file reader]

Generates configuration
[file writer]

Generates configuration
[file writer]

Legend
person
system
container
external person
external system
external container

Figure 3.4.: Configuration Generator Component Diagram

3.2.1. Requirements
The configuration generator needs to fulfill the following requirements derived from user story 14
associated to epic 4 as described in chapter 2 in the inception phase.

Virtual Network Deployment at Scale The manual definition of the BMv2 runtime (control
plane tables) is tedious work and does not scale for larger topologies. In order to deploy
large virtual network topologies these configurations need to be generated automatically.

Declarative Definition of Desired State There must be an abstraction layer for the specification
of the information relevant to deploy a virtual network. Additionally there shall be a single
source of truth for this information which can be used by the related software components.

3.2.2. Configuration Generation Process
The configuration generation process is run through in two cases. Both descriptions refer to figure
3.4.

3. Network Virtualization System 26 of 130

Elaboration v1.0
Green Networking

3.2.2.1. Network Virtualization System Startup

Each time the network virtualization system is started the configuration is regenerated based on
the information specified in the resource definition YAML file. When the system starts up the
following steps are taken:

1. The network operator defines the required state in the resources yaml file.

2. The network operator triggers the provisioning by executing the make target to start the
network provisioner.

3. The network provisioner triggers the generation of the BMv2 and Mininet configura-
tions by the execution of the templating engine script.

4. The templating engine reads the resources yaml file.

5. The templating engine generates the BMv2 and the Mininet configurations.

6. The network provisioner reads the BMv2 and the Mininet configurations.

7. The network provisioner bootstraps the virtual network including switches, hosts and
links, based on the configurations.

3.2.2.2. Configuration Update

In case the BMv2 switches need to be reconfigured at runtime, the following steps are taken:

1. The network operator redefines the required state in the resources yaml file.

2. The network operator triggers the generation of the BMv2 and Mininet configurations
by the execution of the make target which launches the templating engine script.

3. The templating engine reads the resources yaml file.

4. The templating engine generates the BMv2 and the Mininet configurations.

5. The config updater reads the BMv2 programmable switch configurations.

6. The config updater pushes the updated configurations to the programmable network
switches.

3.2.3. Resource Definition
The resource definition allows the specification of all required information in YAML format to
deploy the virtual network. Part of the yaml definition are:

• File path to P4 data plane program

• Network paths between hosts

• Host details

• Switch details

• Table details

The resource definition format is discussed in chapter TODO: Add reference in the con-
struction part.

3. Network Virtualization System 27 of 130

Elaboration v1.0
Green Networking

3.3. Traffic Generator
The traffic generator is designed to generate network traffic within the simulation network with
unpredictable behavior by the selection of a random destination host, flow label and amount of
packets per flow. The traffic generator is a software component which is part of the Linux host
(see figure 3.1). Each host in the simulation network topology will send different flows with a
various number of packets per flow to all other hosts.

3.3.1. Requirements
The traffic generator needs to fulfill the following requirements derived from user story 15 asso-
ciated to epic 4 as described in chapter 2 in the inception phase to ensure versatile simulation
scenarios.

Declarative Configuration The configuration of the traffic generator must be dynamic and in
a declarative way to ensure that the traffic generator runs in different simulation network
topologies.

Automated Start The traffic generator should start automatically with a delay of a configurable
amount of seconds after the virtualization system is up and running.

Sending Packet Each host can send a random number of packets to all other hosts.

Flow Label A random and unique flow label is selected for each new connection.

Destination Host The sending host selects a random and valid destination host.

Number of Packets A random amount of packets in a predefined range is chosen and sent.

Source Port A random ephemeral source port from a range of well known UDP ports will be
taken.

Transmission Timeout A random number of seconds is selected for the time between flow trans-
mission.

Command Line Parameters The traffic generator is an automated solution but it is necessary
that it can be run manually and all the above requirements options can be specified via
command line parameters. This ensures that the network operator is able to perform
targeted and specific network analysis by sending specific flows without the random factors
that would otherwise interfere. For example, the network operator can specify a flow label,
source host, destination host, and the number of packets, and is now able to trace the path
of the flow and the applied efficiency indicator values.

3.3.2. Traffic Generator Startup
Each time the network virtualization system is started the configuration for the traffic generator
is regenerated based on the information specified in the resource definition YAML file. When the
system starts up the following additional steps are taken compared to the previously described
process in section 3.2.2.1:

1. The templating engine generates the traffic generator configuration.

2. After the bootstrap process is triggered by the network provisioner and the BMv2
switches are up and running the traffic generator is starting up based on the traffic generator
configuration.

3. Network Virtualization System 28 of 130

Elaboration v1.0
Green Networking

After a delay of a configurable amount of seconds all hosts in the simulation network topology
start to generate traffic.

 Information

The further usage as well as the implementation and configuration specific information can
be found in the construction phase in section 1.3 traffic generator.

3.3.3. Configuration
A separate traffic generator configuration file is generated for each host in the simulation network
topology based on the current resource definition YAML file, which is therefore the single source
of truth for all resources inside the simulation network. The resource definition YAML file is
further described in chapter 1 in the construction part.

3.3.4. Logfiles
Each host creates a log file with its name and the current traffic generator start-up timestamp.
The following information is logged for each flow and can be used for further analysis:

• Flow label

• Source host

• Destination host

• Amount of packets

• Delay between sending a new flow

3.4. Programmable Network Switch
The programmable network switch used in this project, is the second version of the reference P4
software switch Behavioral Model (BMv2). It is written in C++ and the forwarding pipeline of
the data plane can be defined using the P4 programming language. The project is open source
and available on GitHub: https://github.com/p4lang/behavioral-model.

The C4 component diagram in figure 3.5 visualizes the relationships of the involved systems
with a detailed view of the programmable network switch system. The programmable network
switch is composed of four components:

Data Plane Component written in P4. The data plane is a forwarding pipeline which takes
network packets as inputs, parses the headers and performs so called match actions where
header fields are updated and metadata information is set. The data plane retrieves for-
warding and energy efficiency indicator information from the control plane by table lookups.

Control Plane Component written in C++ which exposes key value stores called lookup tables
to the data plane. All information required to perform the forwarding operation including
energy efficiency indicator information is stored in the control plane tables.

Configuration Update Interface Exposes a gRPC interface to update the information stored
in the control plane. The configuration update system uses this interface to change the
configuration of the programmable switches at runtime.

3. Network Virtualization System 29 of 130

https://github.com/p4lang/behavioral-model

Elaboration v1.0
Green Networking

IPFIX Extension Implements an extern function to temporarily cache and export energy effi-
ciency indicator metadata with the BMv2 programmable software switch. It collects energy
efficiency indicator information on a per flow basis and stores it in flow records in a local
in memory cache. Once the records expire, they are sent as an IPFIX message to the mon-
itoring system. The implementation of this component is documented in chapter 1 in the
construction part.

Network Virtualisation System
[System]

Programmable Network Switch
[System]

Network Provisioner
[Python/Mininet]

Provisions network resources

Linux Host
[Dedicated Process]

Executes a shell which can be
used to execute arbitrary

porgrams available on the
host system

Link
[Linux Virtual Ethernet Link (veth)]

Interconnects switches and
hosts

Configuration Generator
[Python / Jinja2]

Generates and stores the
configuration files for the

BMv2 software switches and
the Mininet topology

Resource Definition
[YAML]

Contains the desired state of
the simulation network

Data Plane
[P4]

Forwards network packets
and enriches the packets

with network telemetry data

Control Plane
[C++]

Stores information about the
network state and the

configuration in dedicated
lookup tables

Configuration Update
Interface

[gRPC]

Exposes a socket on the host
system which allows the

injection of dynamic
configuration updates

IPFIX Extension
[C++ Shared Library]

Caches and exports flow
records

Network Operator

Operates the virtual network
and needs insight into

energy efficiency telemetry
data of the network

Monitoring System

Allows network operators to
get detailed insight into

current and history energy
efficiency data of their

network

Configuration Update
System

Updates the configuration
(control plane tables) of the
virtualised routers based on
the specified configuration

files

Accesses network
telemetry data

[http]

Triggers configuration
update

[script execution]

Defines network
resources
[file writer]

Triggers the
provisioning and
deprovisioning
[script execution]

Triggers configuration
update and retrieves

results
[script execution]

Provisions
[script execution]

Provisions
[script execution]

Provisions
[script execution]

Performs table lookups
[P4 Table Query]

Transfers network
telemetry data

[P4 Extern Function]

Sends and receives
packets via

[veth]

Updates control plane
tables
[C++]

Exports network
telemetry data

[IFPIX]

Sends and receives
packets via

[veth]

Sends configuration
updates
[gRPC]

Reads configuration files
[file reader]

Reads desired state
[file reader]

Legend
person
system
container
external person
external system
external container

Figure 3.5.: Programmable Network Switch System Component Diagram

3.5. IP Flow Information Export (IPFIX) Protocol
IPFIX (Internet Protocol Flow Information Export) is a standard protocol designed for the collec-
tion and export of network flow information. It operates on a client-server model, where network
devices generate flow records containing information about network traffic, such as source and
destination IP addresses, ports, packet counts, and timestamps. These flow records are then
exported to a collector server using IPFIX messages, enabling centralized monitoring and anal-
ysis of network traffic. The main purpose of IPFIX is to provide a standardized method for

3. Network Virtualization System 30 of 130

Elaboration v1.0
Green Networking

efficiently exporting flow data from various network devices, facilitating network traffic analysis,
troubleshooting, and capacity planning. The IPFIX protocol is standardized in RFC 7011. [2]

 Information

This section exclusively describes the IPFIX Metering and IPFIX Exporting Process which
are in the responsibility of the network virtualisation system. Refer to chapter 4 for elabo-
ration details about the IPFIX Collecting Process.

Metering Process The Metering Process generates Flow Records. Inputs to the process
are packet headers, characteristics, and Packet Treatment observed at one or more
Observation Points. The Metering Process consists of a set of functions that includes
packet header capturing, timestamping, sampling, classifying, and maintaining Flow
Records. The maintenance of Flow Records may include creating new records, up-
dating existing ones, computing Flow statistics, deriving further Flow properties, de-
tecting Flow expiration, passing Flow Records to the Exporting Process, and deleting
Flow Records RFC 7011. [2]

Exporting Process The Exporting Process sends IPFIX Messages to one or more Collecting
Processes. The Flow Records in the Messages are generated by one or more Metering
Processes RFC 7011. [2]

As can be seen in figure 3.1 IPFIX is used to export network telemetry data from the Pro-
grammable Network Switch (Exporting Process) to the Monitoring System (Collecting Process).
To facilitate the exportation of network telemetry data using IPFIX, a standardized format known
as Templates is indispensable, as well as caches which are essential components of the Exporting
Process, serving as temporary storage for Flow Records.

3.5.1. Templates
As specified in RFC 7011 a Template is an ordered sequence of <type, length> pairs used to
completely specify the structure and semantics of a particular set of information that needs to
be communicated from an IPFIX Device to a Collector. Each Template is uniquely identifiable
by means of a Template ID. [2]

 Information

In the two sections below the templates are explained independently from each other. In
the actual implementation though the two Templates are exported in one Template Set.

3.5.1.1. Aggregated Data Export

As specified in the functional requirements in section 2.1 in US7 the flow statistics shall be
made available to a network operator emphasizing the capability of the generation of a heat map
containing endpoint to endpoint network efficiency information. For that purpose the Template
with the ID 256 was elaborated to export and collect the relevant data. The Template structure
is depicted in listing 3.1.

The following two fields are introduced in the context of this bachelor thesis and are directly
related to the collection of network energy efficiency data. They are not registered by IANA by

3. Network Virtualization System 31 of 130

https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc7011

Elaboration v1.0
Green Networking

the time of writing this thesis.

indicatorID Identification number of the energy efficiency indicator being collected. It is needed
in order to distinguish different efficiency indicators and to know how to interpret the
indicatorValue. The value corresponds to the Auxil-data Node-ID field of the Aggregation
Trace Option for IOAM specified in draft-cxx-ippm-ioamaggr-00. [3]

indicatorValue Value of the collected indicator. The value corresponds to the Aggregate field of
the Aggregation Trace Option for IOAM specified in draft-cxx-ippm-ioamaggr-00. [3]

indicatorAggregator Aggregator used to calculate the indicatorValue on transit. The value cor-
responds to the Aggregator field of the Aggregation Trace Option for IOAM specified in
draft-cxx-ippm-ioamaggr-00. [3]

ioamAggrFlag1Count Counts the number of packets of a flow which have the flag1 set in the
IOAM header. The flag is used to indicate that the specified aggregator was unsup-
ported on a node on the path. The flag is part of the Aggregation Trace Option for IOAM
specified in draft-cxx-ippm-ioamaggr-00. [3]

ioamAggrFlag2Count Counts the number of packets of a flow which have the flag2 set in the
IOAM header. The flag is used to indicate that the specified data param was unsup-
ported on a node on the path. The flag is part of the Aggregation Trace Option for IOAM
specified in draft-cxx-ippm-ioamaggr-00. [3]

ioamAggrFlag3Count Counts the number of packets of a flow which have the flag3 set in the
IOAM header. The flag is used to indicate that the specified namespace was unsup-
ported on a node on the path. The flag is part of the Aggregation Trace Option for IOAM
specified in draft-cxx-ippm-ioamaggr-00. [3]

ioamAggrFlag4Count Counts the number of packets of a flow which have the flag4 set in the
IOAM header. The flag is used to indicate that an other error occurred on a node on the
path. The flag is part of the Aggregation Trace Option for IOAM specified in draft-cxx-
ippm-ioamaggr-00. [3]

Listing 3.1: Template Set for Aggregated Data Export
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Set ID = 2 | Length = 68 |
+-+
| Template ID 256 | Field Count = 10 |
+-+
|0| flowLabelIPv6 = 31 | Field Length = 4 |
+-+
|0| sourceIPv6Address = 27 | Field Length = 16 |
+-+
|0| destinationIPv6Address = 28 | Field Length = 16 |
+-+
|0| sourceTransportPort = 7 | Field Length = 2 |
+-+
|0| dest.TransportPort = 11 | Field Length = 2 |
+-+
|0| indicatorID = 5050 | Field Length = 4 |
+-+

3. Network Virtualization System 32 of 130

Elaboration v1.0
Green Networking

|0| indicatorValue = 5051 | Field Length = 8 |
+-+
|0| indicatorAggregator = 5052 | Field Length = 1 |
+-+
|0| ioamAggrFlag1Count = 5053 | Field Length = 8 |
+-+
|0| ioamAggrFlag2Count = 5054 | Field Length = 8 |
+-+
|0| ioamAggrFlag3Count = 5055 | Field Length = 8 |
+-+
|0| ioamAggrFlag4Count = 5056 | Field Length = 8 |
+-+
|0| packetDeltaCount = 2 | Field Length = 8 |
+-+
|0| flowStartMilliseconds = 152 | Field Length = 8 |
+-+
|0| flowEndMilliseconds = 153 | Field Length = 8 |
+-+

For the definition of the following fields refer to RFC 7011. [2]

• Set ID

• Length

• Template ID

• Field Count

• Field Length

For the definition of the following fields refer to IANA IP Flow Information Export (IPFIX)
Entities. [10]

• flowLabelIPv6

• sourceIPv6Address

• destinationIPv6Address

• packetDeltaCount

• flowStartMilliseconds

• FlowEndMilliseconds

3.5.1.2. Raw Data Export

As specified in the functional requirements in section 2.1 in US5 the path statistics shall be made
available to a network operator emphasizing the identification possibilities of inefficient paths
and nodes within a network. The Template used for Aggregated Data Export lacks the ability
to identify the path, the measured indicator value is related to. For that purpose the Template
with the ID 257 was elaborated to perform a raw data export as proposed in draft-spiegel-ippm-
ioam-rawexport-07. [14]

3. Network Virtualization System 33 of 130

https://tools.ietf.org/html/rfc7011

Elaboration v1.0
Green Networking

 Information

The "Raw export of IOAM data" mode enables nodes to export received IOAM data without
interpretation, aggregation, or reformatting, facilitating a decoupled operational model from
the encapsulation, updating, and decapsulation processes (IOAM data-plane operation).
This separation of concerns allows nodes focused on data-plane operations to offload the
interpretation task to specialized IOAM data processing systems, ensuring scalability and
efficient handling of IOAM telemetry. The IOAM node handles data-plane operations, while
the IOAM data processing system interprets, aggregates, and formats the IOAM data for
further analysis, with potential scalability to export data to multiple processing systems.
For more information refer to draft-spiegel-ippm-ioam-rawexport-07. [14]

The structure depicted in listing 3.2 is based on the example Fixed Length IP Packet in draft-
spiegel-ippm-ioam-rawexport-07. [14] IOAM data is part of the ipHeaderPacketSection. The field
ioamReportFlags is introduced by the draft and is not registered by IANA by the time of writing
this thesis.

Listing 3.2: Template Set for Raw Data Export
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Set ID = 2 | Length = 24 |
+-+
| Template ID 257 | Field Count = 4 |
+-+
|0| ioamReportFlags = 5060 | Field Length = 1 |
+-+
|0| forwardingStatus = 89 | Field Length = 1 |
+-+
|0| sectionExportedOctets = 410 | Field Length = 2 |
+-+
|0| ipHeaderPacketSection = 313 | Field Length = 96 |
+-+

For the definition of the following fields refer to RFC 7011. [2]

• Set ID

• Length

• Template ID

• Field Count

• Field Length

For the definition of the following fields refer to IANA IP Flow Information Export (IPFIX)
Entities. [10]

• forwardingStatus

• sectionExportedOctets

• ipHeaderPacketSection

3. Network Virtualization System 34 of 130

https://tools.ietf.org/html/rfc7011

Elaboration v1.0
Green Networking

3.5.2. Caches
In IPFIX, there are different strategies on how to export telemetry data about a network flow.
Some of them are based on a per flow packet sampling followed by a direct export not requiring
a local cache. Others are based on the aggregation of flow data during the lifetime of a flow
followed by an export on flow expiry. In order to perform aggregation on the exporting device, a
cache-like memory must be available.

An other scenario where caches are required in IPFIX is the batch processing of multiple
records at a time. An individual set may contain multiple records and in order to be able to
export multiple records at a time in the same IPFIX message, a local buffer is required.

As introduced earlier in the IPFIX templates description, we introduced the two types of export
which require a different caching approach.

Aggregated Export Caching The cache has one entry for each flow which is identified with the
flow key. During the flow life time the values in the entries are updated (aggregated) with
the corresponding aggregator. The export is triggered on flow expiry which means when
there was no packet received of a particular flow for a predefined amount of time.

Raw Export Caching The raw export caching does not rely on aggregation. Instead the whole
or part of the IP header of a packet is exported directly. The export is triggered based on
a preconfigured sampling rate on a per flow basis. The caching is in this case only required
in case batch processing (export of multiple records in one IPFIX message) should be done.

3.6. Design Decisions
• In the context of the network telemetry data export system, facing the need to transfer

network telemetry data associated to a network flow to a remote system, we decided for the
IP Flow Information Export (IPFIX) Protocol and against the usage of a custom HTTP
API or messaging system, to achieve that the solution is natively supported on network
devices and that already existing IPFIX data collectors can be used, accepting that part of
the IPFIX protocol needs to be implemented on the behavioral model software switches.

• In the context of the network telemetry data export system, facing the need to transport
IPFIX messages, we decided to use the User Datagram Protocol as transport protocol and
against the usage of the Transmission Control Protocol or Stream Control Transmission
Protocol, to achieve that the solution is lightweight and straight forward to implement,
accepting that there is no reliability guarantee that exported IPFIX messages are received
by the IPFIX collector.

• In the context of the network telemetry data export system, facing the need to send IPFIX
messages from the BMv2 software switch (IPFIX exporter) to the monitoring system (IP-
FIX collector), we decided to send the IPFIX messages via a network interface outside of
the isolated Mininet environment and against the transmission of IPFIX messages within
Mininet, to achieve that the monitoring system can be setup and operated completely in-
dependent outside of Mininet, accepting that two independent systems need to be operated
in order to run the infrastructure.

• In the context of the network telemetry data export system, facing the need to add a custom
extern function which is callable from the P4 data plane program, we decided to implement
the IPFIX export functionality in a decoupled software module which is added as a shared
object to the BMv2 software switch, and against the implementation of the new feature
as a part of the current BMv2 software, to achieve as much independence of the existing

3. Network Virtualization System 35 of 130

Elaboration v1.0
Green Networking

software project as possible and to reduce the time required for compilation because there
is no need to recompile the whole project when modifications to the IPFIX extension are
made, accepting that the startup configuration of the BMv2 software switches needs to be
modified so that the IPFIX extension is loaded.

• In the context of the network telemetry data export system, facing the need to implement
the IPFIX extension in C++, we decided to do the implementation in procedural C-like
style, and against an object oriented approach in combination with the usage of advanced
C++ features, to achieve a fast learning curve in writing C++ code, accepting that the
implementation does not comply with C++ best practices, which is acceptable because the
written code is for demo purposes only and will never run in production.

• In the context of the network telemetry data export system, facing the need to export data
which can be used to generate a heatmap showing endpoint to endpoint energy efficiency,
we decided to cache and aggregate all telemetry data associated to a network flow during
the lifetime of a flow locally followed by an export of the aggregated data on flow expiry, and
against a direct export of network telemetry data in combination with a packet sampling,
to achieve the possibility to include the network telemetry data of all packets of a flow and
to be able to do batch processing by exporting multiple flows together which expired during
the same period of time, accepting that more local memory resources and dedicated cache
management are required.

• In the context of the network telemetry data export system, facing the need to export
data which can be used to get energy efficiency information on path level, we decided to
additionally do a sampled raw export of the IPv6 header including all extension headers
on a per flow basis and against the addition of path information to the aggregated flow
export, to achieve the opportunity to retrieve a maximum amount of information out of
the network by combining the data from the raw export and the aggregated export on the
collector, accepting that extra development effort is required to implement an additional
export mechanism.

• In the context of the network telemetry data export system, facing the need to do batch
processing by exporting multiple flow records within a single IPFIX message, we decided to
implement a reactive message splitting algorithm which splits a message into multiple mes-
sages in case it is too large, and against the static configuration of the maximum transmis-
sion unit (MTU), to achieve that too large messages are handled correctly by the exporting
process, accepting that the maximum message size needs to be determined dynamically.

• In the context of the network telemetry data export system, facing the need to discover
expired flow records, trigger the export of the expired flow records and to clean up the
cache by deleting exported flow records, we decided to use a detached background thread
which executes a function that takes care of the discovery, export and deletion of expired flow
in a configurable interval of time, and against handing over this task to the extern function
which is called for every packet being processed, to achieve performant and reliable cache
management, accepting that a detached background thread needs to be executed with no
possibility to join nor to terminate it without the shutdown of the software switch itself.

• In the context of the network telemetry data export system, facing the need to discover
expired flow records, we decided that a flow is considered expired if the reception of the last
packet of a specific flow was longer than a predefined amount of time ago and against the
export when reaching a specific amount of packets, to achieve that flows of arbitrary length
are exported properly, accepting that the timestamp of the reception of the last packet must
be stored in the flow record cache.

3. Network Virtualization System 36 of 130

Elaboration v1.0
Green Networking

• In the context of the network telemetry data export system, facing the need to export
flow records in an efficient manner, we decided to use batch processing for the export of
aggregated flow records which expired during the same period of time and against the
transmission of each flow record in a single IPFIX message, to achieve a more efficient
processing by saving bandwidth and compute overhead overhead on export of import a
huge amount of individual messages, accepting a slightly more complex implementation
due to the necessity of handling message of a dynamic size.

• In the context of the network telemetry data export system, facing the need to export flow
records in an efficient manner, we decided to send one raw flow record per IPFIX message
in the current implementation and against batch processing, to achieve memory savings
because there is no need to cache the huge raw flow records and to get more accurate
results in the collecting process in the means of consensus of the message timestamp and
the time when the network telemetry data was captured, accepting the overhead of the
transmission of a single flow record in a dedicated IPFIX message.

• In the context of the network telemetry data export system, facing the need to have the
ability to transmit multiple raw records in a single IPFIX message for future performance
optimizations through intelligent batch processing, we decided to implement the raw flow
record exporter to take a list of raw records as input, to achieve the readiness to create
IPFIX messages containing multiple raw flow records in a future version, accepting the
slightly more complex implementation.

• In the context of the traffic generator, facing the need to to generate realistic network traffic
within the network virtualization system, we decided to develop our own traffic generator
using Python and Scapy and against using an existing traffic generator such as Cisco’s
traffic generator named TRex, to achieve that the traffic generator is adapted to our needs,
accepting that additional development effort is required to implement the traffic generator.

3. Network Virtualization System 37 of 130

Elaboration v1.0
Green Networking

4. Monitoring System

This chapter explains the concept of the monitoring system. As specified in the functional re-
quirements in chapter 2 in the inception part in US5, US6, and US7, it is necessary to build a
comprehensive monitoring system that shows several visualizations that provide insight into the
network efficiency statistics. It is crucial to have significant network efficiency statistics because
without them, it is difficult to gain insight into the huge amount of network efficiency teleme-
try data. Each component of the monitoring system runs in a separate Docker container for
consistency and isolation. Docker ensures that each application runs the same everywhere, so de-
ployment issues are reduced, what is necessary for the monitoring system because the deployment
has to run on various hosts.

Figure 4.1 is a C4 container diagram which illustrates the composition of the monitoring system.
The monitoring system is composed of the three main components IPFIX collector, time series
database and a monitoring dashboard.

IPFIX Collector receives the IPFIX templates and exported network efficiency data from the
network virtualization system.

Timeseries Database stores the time-stamped network efficiency data.

Monitoring Dashboard provides insights into system performance, metrics and trends.

4. Monitoring System 38 of 130

Elaboration v1.0
Green Networking

Monitoring System
[System]

IPFIX Collector
[Telegraf]

Collects and processes IPFIX
Data Sets and Template Sets
received as IPFIX Messages

Timeseries Database
[InfluxDB2]

Persistently stores time
series data and makes it
available to third party

systems via a standardized
interface

Monitoring Dashboard
[Grafana]

Allows users to explore and
share dynamic dashboards

that provide insight into
system performance, metrics,

and trends

Network Operator

Operates the virtual network
and needs insight into

energy efficiency telemetry
data of the network

Network Virtualisation
System

Generates all configuration
files needed to deploy the

virtual network and also runs
the switches and hosts based

on the predefined topology

Configuration Update
System

Updates the configuration
(control plane tables) of the
virtualised routers based on
the specified configuration

files

Accesses dashboards
displaying network

telemetry data
[http]

Writes collected metrics
[http]

Queries network
telemetry data

[http]

Triggers configuration
update

[script execution]

Defines network
resources
[file writer]

Triggers the
provisioning and
deprovisioning
[script execution]

Exports network
telemetry data

[IFPIX]

Sends configuration
updates
[gRPC]

Reads configuration files
[file reader]

Legend
person
system
container
external person
external system
external container

Figure 4.1.: Monitoring System Container Diagram

4. Monitoring System 39 of 130

Elaboration v1.0
Green Networking

4.1. IPFIX Collector
An IPFIX collector is responsible for receiving flow record packets, acquiring data from the flow
records, preprocessing, and transmit the flow record to a various destination. We decided to use
Telegraf as IPFIX collector. Telegraf is a versatile open-source agent developed and maintained by
InfluxData and integrates seamlessly with InfluxDB for storing time series data. The advantage
of Telegraf is that it has a plugin based configuration setup. That means Telegraf includes input
plugins to collect data from various sources, processing plugins to filter, normalize or transform
the collected metrics and output plugins writes the metrics to various destinations. The Telegraf
agent runs in a dedicated Docker container and loads the customized telegraf.conf file during
start up. The configuration and deployment process is further described in the construction part
in the chapter 2 in the construction part.

4.2. Time Series Database
A time series database (TSDB) is a specialized type of database optimized for storing and querying
time-stamped data points such as the export of network efficiency data from the IPFIX export.
We decided to use InfluxDB as time series database. The InfluxDB runs in a dedicated Docker
container and the data is stored persistently in Docker volumes. InfluxDB allows to add custom
configuration options with environment variables and allows to run a custom script that configures
e.g. InfluxDB via Influx CLI during the startup process. The configuration and deployment
process is further described in the construction part in the chapter 2 in the construction part.

4.2.1. Query Language
Flux Query Language (Flux) is a functional data scripting language designed by InfluxData for
querying data from the InfluxDB time series database.

4.2.2. Buckets
A bucket is a named location where time series data is stored within the InfluxDB. [9] The
network virtualization system performs two types of IPFIX exports, further described in detail
in section 3.5. The two different IPFIX export types are necessary because the aggregated data
export lacks the ability to identify the path, the measured indicator value is related to. For that
purpose the raw data export was elaborated. To differentiate the two types of exported telemetry
data in a simple and structured way, two buckets are created.

Aggregated Data Export stores the efficiency data from the aggregated data export

Raw Data Export stores the efficiency data from the raw data export

4.3. Monitoring Dashboard
As specified in the functional requirements in chapter 2 in US13 in the elaboration part the
exported efficiency data from the network virtualization system should be visualized in several
dashboards. We decided to use Grafana as monitoring software to build comprehensive visual-
izations. Grafana runs in a dedicated Docker container and the data is stored persistently in
Docker volumes. During the start up Grafana will load the configuration, the data sources and
the predefined dashboards. The configuration and deployment process is further described in the
construction part in chapter 2 in the construction part.

4. Monitoring System 40 of 130

Elaboration v1.0
Green Networking

4.3.1. Dashboards
We decided to create four dashboards, which are grouped according to the content of each dash-
board. For each statistic, the most appropriate type of visualization is chosen.

Flow Statistics shows flow relevant statistics (based on aggregated data export).
• Network Flow Efficiency
• End to End Flow Efficiency Matrix
• Flow Efficiency by Receiver
• Flow Efficiency Indicator Distribution
• Most Inefficient Flow by Destination

Hop Statistics shows hop relevant statistics (based on raw data export).
• Efficient Hop Discovery
• Inefficient Hop Discovery
• Minimum Hop Transition Cost per Path
• Maximum Hop Transition Cost per Path

Path Statistics shows path relevant statistics (based on raw data export).
• Network Path Efficiency
• PEI Distribution
• Current Path Statistic from Host to Host
• PEI Statistics
• Path Efficiency over Time

Simulation Network Statistics shows simulation network topology relevant statistics (based on
aggregated and raw data export).

• Aggregator Used for Percentage of Packets
• Number of Packets per Flow Distribution
• Number of Packets by Destination
• Number of Packets with Unsupported Aggregators
• Number of Packets per Flow with Unsupported Aggregators
• Number of Packets with Unsupported Data Parameter
• Number of Packets per Flow with Unsupported Data Parameter
• Number of Packets with Unsupported Namespace
• Number of Packets per Flow with Unsupported Namespace
• Number of Packets with Other Errors
• Number of Packets per Flow with Other Errors
• Flow Error Overview

4. Monitoring System 41 of 130

Elaboration v1.0
Green Networking

4.4. Design Decisions
• In the context of the monitoring system, facing the need to deploy the monitoring system

on various hosts, we decided to use Docker containers and against a native development
for a specific platform, to achieve that the system runs the same everywhere and that
the system is simple to start, stop and clean, accepting the limitations and challenges of
containerization, such as the more complex topic of persistent data storage and data loss
when shutting down the environment.

• In the context of the monitoring system, facing the need to use an IPFIX collector to receive
the exported network efficiency data from the network virtualization system, we decided
to use Telegraf as our IPFIX collector and against another IPFIX collector and analyzer
tools because Telegraf is a server based agent that is written in Go and has no external
dependencies and is a common tool used in combination with the Influx time series database
to achieve an individual and configurable Telegraf agent that uses specific plugins for our use
case to run as an IPFIX collector accepting that the slightly more complex implementation
because we have to evaluate and configure the necessary Telegraf plugins.

• In the context of the monitoring system, facing the need to store the exported network
efficiency data in a time series database, we decided to use InfluxDB and against another
time series database such as Prometheus to achieve a performant and well-working system
in combination with the Telegraf IPFIX collector, that is developed and maintained by the
same company accepting that we have to understand and learn the query language Flux,
that is a functional data scripting language of InfluxDB for querying, analyzing and acting
on data.

• In the context of the monitoring system, facing the need to visualize the collected network
efficiency data, we decided to use Grafana and against any other monitoring dashboard
software to achieve a performant and well-working monitoring dashboard system in combi-
nation with the InfluxDB as data source accepting that Grafana uses substantial resources
in data-rich environments.

4. Monitoring System 42 of 130

Elaboration v1.0
Green Networking

5. Configuration Update System

According to user story 14 there is a need to have the possibility to update the control plane table
definitions of the BMv2 software switches at runtime. The possibility to modify the configuration
at runtime allows to do more sophisticated simulations as network paths and efficiency indicator
related parameters may be changed on demand.

The configuration update system is designed to read the JSON configurations of the BMv2
software switches and to upload the configurations to the specific software switch. In the use case
of this bachelor thesis the configuration update system is used hand in hand with the configuration
generator which is part of the network virtualization system.

 Information

In general the configuration update system is designed to be usable with any other project
using the BMv2 software switches. We consider to publish the configuration update system
on GitHub under an open source license so that it can be used by other P4 developers.

5.1. Requirements
The configuration update system needs to fulfill one specific functional requirement.

Modification of Parameters at Switch Runtime In order to be able to simulate a realistic sce-
nario the energy efficiency values and paths in the network must be changed from time to
time. This update process must be possible without the need to re-initialize the virtual
network.

5.2. Configuration Update Process
The configuration update process is run through when the Network Virtualization System is
already running and the configuration of the BMv2 software switches needs to be modified. The
first two steps are to prepare the updated BMv2 configuration files and are not directly related
to the configuration update system. In order to follow the configuration update refer to figure
3.4.

1. The network operator modifies the resource definition.

2. The network operator manually triggers the configuration generator so that the latest
BMv2 configurations are available.

3. The network operator manually triggers the configuration updater.

4. The configuration updater connects to each individual programmable network switch
and uploads the specific BMv2 configuration.

5. Configuration Update System 43 of 130

Elaboration v1.0
Green Networking

5.3. Design Decisions
• In the context of the configuration update system, facing the need to transfer configurations

stored locally to the software switches, we decided to use the p4 runtime library which
is already in use as part of the initial configuration process at start up, and against the
usage of the p4 runtime shell with a custom configuration update implementation, to
achieve a consistent configuration state on configuration update with a straight forward
implementation strategy, accepting that partial configuration updates are not possible.

• In the context of the configuration update system, facing the need to specify an inventory,
connection parameters, user interface etc., we decided to use the Nornir automation
framework, to achieve the availability of commonly used network automation functionali-
ties out of the box and decrease the development effort, and neglected the implementation
of our own automation solution, accepting the external dependency.

5. Configuration Update System 44 of 130

Part III.

Construction

Construction v1.0
Green Networking

1. Network Virtualization System

This chapter contains implementation details of all related components inside the network virtu-
alization system.

1.1. Resource Definition
One of the requirements for the configuration update system is, that there is a layer of abstraction
between the configuration files and the place where the relevant information is set. Additionally
the information is only specified once in a structured declarative format. We decided to define
the resources in a dedicated file using the YAML format which is then used as the single source
of truth to generate and update the configuration of the virtual network.

At the top of the resource definition the path to the P4 data plane program is specified which
should be loaded on the programmable switches. Afterwards the resource file contains the paths
followed by the hosts and the switches and finally there is some meta information about the tables
to configure. More information about the specific parts are available in the following sections.

1.1.1. Path Specification
One essential part of the resulting configuration on the software switches are the control plane
table entries used for IPv4 and IPv6 forwarding. The setup of these tables by hand is very time
intensive even for a small topology. For each table entry the correct outgoing port and destination
MAC address must be specified.

To be able to dynamically reconfigure the network paths there must be an abstraction to specify
the paths with as little overhead as possible. A path entry takes four values as shown in listing
1.1.

from Is the name of the originating host.

to Is the name of the destination host.

via Is an ordered list of hops a packet traverses when traveling from the source to the destination.

return_route A boolean flag which indicates whether a symmetric path in the opposite direction
shall be created. With this option only half of the paths need to be specified explicitly. The
remaining paths are implicit.

Listing 1.1: Path Specification Example
1 paths:
2 - from: h01
3 to: h02
4 via: [s11, s01, s12]
5 return_route: true

1. Network Virtualization System 46 of 130

Construction v1.0
Green Networking

1.1.2. Host Specification
To automatically add hosts to the virtual network they have to be specified in the format shown
in listing 1.2. The host configuration includes the following information:

ipv4 A dictionary with the information relevant to configure the IPv4 address and routing table
on the host.

ipv6 A dictionary with the information relevant to configure the IPv6 address and routing table
on the host.

mac The MAC address of the host.

commands A list of commands which should be executed on host startup.

Listing 1.2: Host Specification Example
1 hosts:
2 h01:
3 ipv4:
4 ip: 146.185.64.10
5 net: 146.185.64.0
6 prefix_len: 19
7 ipv6:
8 ip: 2a04:f340::a
9 net: "2a04:f340::"

10 prefix_len: 29
11 mac: 08:FF:00:00:00:01
12 commands:
13 - "route add default gw 146.185.64.1 dev eth0"
14 - "arp -i eth0 -s 146.185.64.1 08:EE:00:00:00:11"
15 - "python3 ./dev-network/utils/testing/packet_generator.py --ipv6 --src 'h01'

--infinite --startup-delay 15 --logfile &"

1.1.3. Switch Specification
The switch specification allows to:

1. Set generic switch specific settings
mac The MAC address of the switch

2. Set energy efficiency indicator related parameters
hei List of available indicator types including the identification number and the current

value.
ioam Dictionary with parameters to configure the network telemetry collection based on

the IOAM protocol such as the active efficiency indicator (data param) or the list of
active aggregators.

3. Define the network graph
ports For each port the specific neighbor and the efficiency of the link is set and the node

id.

1. Network Virtualization System 47 of 130

Construction v1.0
Green Networking

Listing 1.3: Switch Specification Example
1 switches:
2 s01:
3 mac: 08:CC:00:00:00:01
4 hei:
5 - data_param: 255
6 value: 1000
7 ioam:
8 node_id: 1
9 aggregators: # 1 = SUM / 2 = MIN / 4 = MAX

10 - 1 # selected if last two bits of payload size are [00]
11 - 2 # selected if last two bits of payload size are [01]
12 - 1 # selected if last two bits of payload size are [10]
13 - 4 # selected if last two bits of payload size are [11]
14 data_param: 255
15 ports:
16 1:
17 neighbor: s02
18 lei: 10
19 2:
20 neighbor: s03
21 lei: 20
22 3:
23 neighbor: s04
24 lei: 30
25 4:
26 neighbor: s17
27 lei: 40
28 5:
29 neighbor: s18
30 lei: 50
31 6:
32 neighbor: s11
33 lei: 60
34 7:
35 neighbor: s12
36 lei: 70

1.1.4. Tables Specification
In the tables specification section metadata about the control plane tables present in the BMv2
runtime are defined. An example is given in listing 1.4 where the table for the IPv4 forwarding
table is defined.

The tables specification includes the following information:

name The name of the table to be defined.

action_name The name of the target action called in case an entry has matched.

default_action (optional) The name of the default action which is called in case there was no
matching table entry. In case there is no default action this field can be omitted.

match_key The name of the field which is used during the match operation.

1. Network Virtualization System 48 of 130

Construction v1.0
Green Networking

Listing 1.4: Tables Specification Example
1 tables:
2 ipv4_forwarding:
3 name: MyIngress.ipv4_lpm
4 action_name: MyIngress.ipv4_forward
5 default_action: MyIngress.drop
6 match_key: hdr.ipv4.dstAddr

1.2. Configuration Generator
The configuration generator is written in Python. It reads the information specified in the resource
definition, applies data structure reformatting based on dedicated logic further described in the
following sections. Once the data structures are ready they are handed over to predefined Jinja2
templates where the custom configuration is brought into the format accepted by Mininet and
the BMv2 software switches respectively.

1.2.1. Mininet Topology
The Jinja2 template used to craft the Mininet Topology is the mininet_topology.j2 file. It defines
the structure of the topology file used to specify the hosts, switches and links present in the
network. It is read by the Network Virtualization System at startup. The switches and hosts,
as defined in the resources file, can be passed to the Jinja2 template without any modifications.
The links though are not explicitly defined in the resources file. They are implicitly defined as
part of the properties of a switch by the specification of the port neighborships. The next section
will go into more detail about the algorithm used for the link discovery.

1.2.1.1. Link Discovery Algorithm

The link discovery algorithm has to transform the port neighborship specification into a specifi-
cation of links. Listing 1.5 contains some of the port specifications of s01, s02 and s03 which is
the input for the link discovery algorithm.

Listing 1.5: Ports Specification (Algorithm Input)
1 s01:
2 <-- details omitted -->
3 ports:
4 1:
5 neighbor: s02
6 lei: 10
7 2:
8 neighbor: s03
9 lei: 20

10 3:
11 neighbor: s04
12 lei: 30
13 <-- details omitted -->
14 s02:
15 <-- details omitted -->
16 ports:
17 1:
18 neighbor: s01
19 lei: 10
20 2:

1. Network Virtualization System 49 of 130

Construction v1.0
Green Networking

21 neighbor: s04
22 lei: 20
23 3:
24 neighbor: s03
25 lei: 30
26 <-- details omitted -->
27 s03:
28 <-- details omitted -->
29 ports:
30 1:
31 neighbor: s02
32 lei: 10
33 2:
34 neighbor: s01
35 lei: 20
36 <-- details omitted -->

Listing 1.6 contains the resulting link specification of s01, s02 and s03 which is the output of
the link discovery algorithm. The link specification is in JSON format and part of the Mininet
topology definition.

Listing 1.6: Links Specification (Algorithm Output)
1 <-- details omitted -->
2 "links": [
3 [
4 "s01-p1",
5 "s02-p1"
6],
7 [
8 "s01-p2",
9 "s03-p2"

10],
11 <-- details omitted -->

The algorithm iterates over all switches in the given input. For each switch it iterates over
all ports. If the neighbor of the current port is a switch and the switch number of the neighbor
is greater than the local switch number, the port on the neighbor switch is discovered which
connects to the local switch. Once the port has been discovered on the neighbor switch a new
link is added with the local port of the local switch and the discovered port on the neighbor
switch. In case a host is connected to the port of the local switch, the specific link is added right
away as no port discovery is required on the remote host.

1.2.2. BMv2 Runtime
The Jinja2 template used to craft the BMv2 runtime is the bmv2_runtime.j2 file. It defines the
structure of the BMv2 control plane table specification. It is read by the Network Virtualization
System at startup. The tables specification explained in 1.1.4 as well as configuration parameters
for the switches, can be passed to the Jinja2 template without any modifications. The forwarding
information though is specified in an abstracted format using paths described in section 1.1.1.
Before the Jinja2 template can be applied the abstract forwarding information specified as paths
must be translated into concrete forwarding entries containing MAC addresses and egress ports
for each individual switch on the path. The next section will go into more detail about the
algorithm used for the forwarding information translation algorithm.

1. Network Virtualization System 50 of 130

Construction v1.0
Green Networking

1.2.2.1. Forwarding Information Translation Algorithm

To clarify the operation of the forwarding information translation algorithm we look at how the
abstract path definition in listing 1.7 is translated into forwarding information which can be
uploaded to configure the control plane of the BMv2 software switches. Refer to figure 3.3 in the
elaboration part.

Listing 1.7: Example Abstract Path Definition
1 paths:
2 - from: h01
3 to: h02
4 via: [s11, s01, s12]
5 return_route: true

As with the algorithm described in section 1.2.1.1 the algorithm’s job is to transform the
abstract data specified in the resource yaml file in an extended data structure which can be used
by the Jinja2 templating engine to generate the configuration file.

 Information

The listings 1.8, 1.9 and 1.10 only contain the information relevant to explain the algorithm.
The only forwarding table entry contained, is the one for h02. Also other switch specific
information is omitted.

The elements present in the extended data structure as the output of the translation algorithm
are:

ip The destination IPv4 or IPv6 address prefix. Used as part of the key in the control plane
table.

mac The MAC address of the next hop. Used as a value in the control plane table. This value
is used by the data plane to update the destination MAC address header field.

port The outgoing port for the forwarding operation. Used as a value in the control plane table.
This value is used by the data plane to update egress port as part of the standard metadata.

prefix_len The length of the prefix defined in the ip field. Used as part of the key in the control
plane table.

route_type Specifies the type of route. Used as a value in the control plane table. This value is
used by the data plane to determine whether the switch is an egress switch or not. In case
it is an egress switch the network telemetry data is passed to IPFIX exporter. Additionally
IOAM header fields could be stripped off which is currently not implemented as it is not
required for demo purposes and it would reduce troubleshooting capabilities. The possible
route types are:
0 Directly connected route (identifies the switch to be an egress)
1 Static route

Listing 1.8: s01 Extended Datastructure
1 's01': {
2 'ipv4_forwarding': {
3 'h02': {

1. Network Virtualization System 51 of 130

Construction v1.0
Green Networking

4 'ip': '31.24.8.0',
5 'mac': '08:EE:00:00:00:12',
6 'port': 7,
7 'prefix_len': 21,
8 'route_type': 1}
9 },

10 'ipv6_forwarding': {
11 'h02': {
12 'ip': '2a00:10c0::',
13 'mac': '08:EE:00:00:00:12',
14 'port': 7,
15 'prefix_len': 32,
16 'route_type': 1}
17 }
18 }

Listing 1.9: s11 Extended Datastructure
1 's11': {
2 'ipv4_forwarding': {
3 'h02': {
4 'ip': '31.24.8.0',
5 'mac': '08:CC:00:00:00:01',
6 'port': 1,
7 'prefix_len': 21,
8 'route_type': 1}
9 }

10 'ipv6_forwarding': {
11 'h02': {
12 'ip': '2a00:10c0::',
13 'mac': '08:CC:00:00:00:01',
14 'port': 1,
15 'prefix_len': 32,
16 'route_type': 1}
17 }
18 }

Listing 1.10: s12 Extended Datastructure
1 's12': {
2 'ipv4_forwarding': {
3 'h02': {
4 'ip': '31.24.8.10',
5 'mac': '08:FF:00:00:00:02',
6 'port': 3,
7 'prefix_len': 32,
8 'route_type': 0}
9 },

10 'ipv6_forwarding': {
11 'h02': {
12 'ip': '2a00:10c0::a',
13 'mac': '08:FF:00:00:00:02',
14 'port': 3,
15 'prefix_len': 128,
16 'route_type': 0}
17 }
18 }

1. Network Virtualization System 52 of 130

Construction v1.0
Green Networking

In order to get from the abstract path definition to the extended data structures the algorithm
iterates over all switches and for each switch it iterates over all paths for each path it performs
the following steps:

1. Verifies if the switch is part of the current path. If not it continues with the next path.

2. If the switch is part of the path it attempts to generate an IPv4 and IPv6 forwarding entry.

3. Loads the information of the destination host and the current switch from the resources
yaml file.

4. Verifies if the switch is the last hop.

5. It initializes the following fields:
ip Sets the destination ip prefix of the specified host. In case of a directly connected route

the actual IP of the host is set else the network prefix is set.
mac If the switch is the last hop the MAC address of the host is set. Else the MAC address

of the next hop is set based on the next entry in the hop list in the abstract path
definition.

port Determined by looping over the local ports and finding the port where the neighbor
matches the next hop.

prefix_len Set according to the specification in the resources yaml file. In case of a directly
connected route the prefix is set to /32 in the case of IPv4 and to /128 for IPv6.

route_type If the switch is the last hop the table entry is initialized with a route type of
0 else with a route type of 1.

 Information

Be aware that information in the extended datastructures not present in the abstract path
definition, are taken from the resource definition yaml file.

Once the data structures are initialized as in listings 1.8, 1.9 and 1.10 the Jinja2 template is
applied to produce the following output. Listing 1.11 shows how the final IPv4 and IPv6 table
entries will look like given the example input specified in listing 1.7

Listing 1.11: s01 IPv4 and IPv6 Table Entries
1 <-- details omitted -->
2 {
3 "table": "MyIngress.ipv4_lpm",
4 "match": {
5 "hdr.ipv4.dstAddr": [
6 "31.24.8.0",
7 21
8]
9 },

10 "action_name": "MyIngress.ipv4_forward",
11 "action_params": {
12 "mac": "08:EE:00:00:00:12",
13 "port": 7,
14 "route_type": 1
15 }

1. Network Virtualization System 53 of 130

Construction v1.0
Green Networking

16 },
17 <-- details omitted -->
18 {
19 "table": "MyIngress.ipv6_lpm",
20 "match": {
21 "hdr.ipv6.dstAddr": [
22 "2a00:10c0::",
23 32
24]
25 },
26 "action_name": "MyIngress.ipv6_forward",
27 "action_params": {
28 "mac": "08:EE:00:00:00:12",
29 "port": 7,
30 "route_type": 1
31 }
32 },
33 <-- details omitted -->

1.2.3. Traffic Generator Configuration
As described in section 3.3 in the elaboration part the traffic generator uses a config file that
is generated based on the current resource yaml file. The config file is regenerated each time
the network virtualization system is started to support a variety of simulation topologies. The
following two elements are created within the packet-generator-config.json file for each host that
is specified in the topology resource yaml file of the simulation network that is loaded. As can
be seen in listing 1.12 a mapping from source host to all possible destination hosts is created and
in listing 1.13 for each host, the relevant forwarding information such as source mac, destination
mac (of the next hop), ipv4 and ipv6 addresses are specified.

Listing 1.12: Mapping Source host to possbile destination hosts
1 <-- details omitted -->
2 "dst_hosts": {
3 "h01": [
4 "h02",
5 "h03",
6 "h04",
7 "h05",
8 "h06",
9 "h07",

10 "h08",
11 "h09",
12 "h10",
13 "h11"
14],
15 <-- details omitted -->

Listing 1.13: Source Host Information
1 <-- details omitted -->
2 "hosts": {
3 "h01": {
4 "src_mac": "08:FF:00:00:00:01",
5 "dst_mac": "08:EE:00:00:00:11",
6 "ipv4": "146.185.64.10",

1. Network Virtualization System 54 of 130

Construction v1.0
Green Networking

7 "ipv6": "2a04:f340::a"
8 },
9 <-- details omitted -->

1.3. Traffic Generator
The traffic generator is written in Python and uses Scapy to craft and send network packets. The
traffic generator runs on each Mininet host and generates simulated network traffic in the network
virtualization system. The configuration is derived from the resource definition yaml file. In case
the resource definition is modified the traffic generator will automatically reconfigure itself after
a restart.

It depends on the following library:

Scapy Scapy is a powerful Python library used for packet manipulation, network scanning and
network analysis. It allows users to create, send, receive and dissect network packets. Scapy
is further described in the official Scapy documentation.

1.3.1. Functionality
The traffic generator sends a flow with a random number of packets to various hosts, whereby the
flow label is always unique. The traffic generator runs for an infinite amount of time depending
on the parameters given. The process of sending a new flow is always the same:

1. A random and valid destination host is chosen

2. Select a random number of packets to be sent in the flow (range 1 - 100 packets)

3. Generate a valid and unique flow label

4. Select a random source port from the ephemeral port range (49152 - 65535)

5. Send the flow to the destination host

6. Sleep a few seconds before sending a new flow (random selected sleep time, up to 30 seconds)

 Information - Flow Label

To ensure that a flow label is unique, it will be added to a flow label set to avoid using it
more than once within a short period of time. Since our traffic generator is running infinite,
the problem arises that we run out of flow labels because a flow label is a 20-bit number.
To solve this problem, we have implemented a logic that randomly selects and checks if
we have already used the flow identifier up to 10 times. If the random selection of a flow
identifier has not worked after 10 times, the flow label set is cleared.

1.3.1.1. Command Line Parameters

The traffic generator is an automated solution to simulate realistic traffic in the simulation net-
work. But its also necessary that the network operator can use the traffic generator manually
with specific parameter options. To allow and support the specific use of the traffic generator the
following command line parameters are implemented to ensure that targeted and specific traffic
can be sent.

1. Network Virtualization System 55 of 130

https://scapy.readthedocs.io/en/latest/

Construction v1.0
Green Networking

–ipv6 Send only IPv6 traffic

–src specifies the source host

–dst specifies the destination host

–flow-label set a specific flow label

–flow-count define number of flows to be sent

–packet-count define number of packets to be sent

–infinite specifies that the traffic generator will run for an infinite amount of time

–config path to json configuration file, default="./dev-network/traffic-generator-config.json"

–log-dir specifies the log file directory, default_logs = os.path.join(cwd, "logs")

–logfile writes a log file (log level: warning)

–startup-delay defines a startup delay before sending traffic

1.3.2. Start Traffic Generator on Mininet Host
As specified in the functional requirements in chapter 2 in the inception part in US15 the traffic
generator should generate traffic in the simulation network. The traffic generator starts with a
delay of a configurable amount of seconds on all Mininet hosts in the simulation network topology
and sends packets for an infinite amount of time to the other hosts. The host specification below
from the resource.yaml file, further described in section 1.1 shows that in the commands option
the traffic generator is started. The traffic generator needs the following parameters to start
correctly on a Mininet host to send random flows to other host in the network for an infinite
amount of time:

–ipv6 Send only IPv6 traffic

–src It’s necessary to specify the hostname on which host the traffic generator is started to choose
the correct and valid destination hosts

–infinite Specifies that the traffic generator runs for an infinite amount of time

–startup-delay The host starts sending packets after a delay of 15 seconds

–logfile A log file that logs warnings and errors is created

Listing 1.14: h01 specification in resource file
1 <-- details omitted -->
2 h01:
3 ipv4:
4 ip: 146.185.64.10
5 net: 146.185.64.0
6 prefix_len: 19
7 ipv6:
8 ip: 2a04:f340::a
9 net: "2a04:f340::"

10 prefix_len: 29
11 mac: 08:FF:00:00:00:01

1. Network Virtualization System 56 of 130

Construction v1.0
Green Networking

12 commands:
13 - "route add default gw 146.185.64.1 dev eth0"
14 - "arp -i eth0 -s 146.185.64.1 08:EE:00:00:00:11"
15 - "python3 ./dev-network/utils/testing/traffic_generator.py --ipv6 --src 'h01'

--infinite --startup-delay 15 --logfile &"
16 <-- details omitted -->

 Information

The ampersand (&) at the end of the command is needed to start the traffic generator in
the background. If this option is not set, Mininet will stop at this point of startup process
and will not continue because the command never terminates.

1.3.3. Storage Starvation Issue
We were facing the issue that we ran out of storage on the local development VM and also on the
server. After disabling the logging and packet capture (creation of pcap files) of each interface on
all Mininet hosts the problem with the lack of storage was better but after a few days nevertheless
we run again out of storage. In the end, we found the problem. The root cause of the problem
was the traffic generator, more precisely the library, Scapy that we use to craft and send packets.
The problem was that each eth0 interface on all Mininet hosts was permanently changing its
interface state by entering and leaving promiscuous mode for each packet being sent. Each time
an interface changes its state a log entry is written by syslog. We added this line of code to the
traffic generator to set the interface promiscuous mode to false and the problem was fixed.

Listing 1.15: Disable Scapy Promiscious Mode
1 conf.sniff_promisc = 0

1.4. BMv2 IPFIX Extension
1.4.1. Challenges
As already mentioned in the project planning chapter and within the risk assessment, many
challenges have been identified at the beginning of the project regarding the implementation of
the BMv2 IPFIX extension. The most crucial ones are described in the following sections.

1.4.1.1. Exposal of Extern Function to Data Plane

To make the functionality implemented in the IPFIX extension available to the data plane it
must be exposed using a P4 extern function. The setup of an extern function requires actions on
both the data plane and the control plane.

In the BMv2 environment an extern function can be registered using the macro shown in listing
1.16. The macro takes an arbitrary number of positional arguments, whereas the first one is the
name of the function to be exposed to the data plane and the following arguments, are the types
and names of the arguments of the function to be exposed.

In the file behavioral-model/externs/src/ipfix/cache.cpp one finds the following code block which
registers the extern function.

Listing 1.16: Extern Function Registration Control Plane

1. Network Virtualization System 57 of 130

Construction v1.0
Green Networking

1 BM_REGISTER_EXTERN_FUNCTION(ProcessEfficiencyIndicatorMetadata,
2 const bm::Data &, const bm::Data &,
3 const bm::Data &, const bm::Data &,
4 const bm::Data &, const bm::Data &,
5 const bm::Data &, const bm::Data &,
6 const bm::Data &, const bm::Data &,
7 const bm::Data &, const bm::Data &);

On the data plane the extern function must be declared similarly it would be done in C or
C++ header file to let the compiler know about the existence of concrete implementations of that
function. In the file externs.p4 which is included into the file main.p4 one finds the following
code block which declares the extern function.

Listing 1.17: Extern Function Registration Data Plane
1 extern void ProcessEfficiencyIndicatorMetadata(
2 in ioamNodeID_t nodeID,
3 in flowKey_t flowKey,
4 in flowLabel_t flowLabel,
5 in ip6Addr_t srcIPv6,
6 in ip6Addr_t dstIPv6,
7 in bit<16> sourceTransportPort,
8 in bit<16> destinationTransportPort,
9 in bit<24> indicatorID,

10 in ioamAggregate_t indicatorValue,
11 in bit<8> indicatorAggregator,
12 in bit<768> raw_ipv6_header
13);

1.4.1.2. IPFIX Extension as BMv2 Plugin

In both Windows and Linux there is the possibility to dynamically load and link libraries into a
statically compiled and linked project. In Windows this is achieved using dynamic linked libraries
(DLL) files and in Linux with shared object (so) files. As we are working on Linux we compiled
the IPFIX extension to an so file to add the functionality implemented in the IPFIX extension
to the BMv2 project without the need to recompile the whole project.

The command used to compile the BMv2 IPFIX extension to a shared object is:
g++ -Wall -Wextra -g -O2 -fPIC -shared -o obj/ipfix.so <source files> -ltins

Especially important is the flag -shared provided to the linker which compiles the application
to a shared object instead of a stand alone binary. To compile the extension please use the Makefile
located in the externs directory. After compilation the generated shared object file can be loaded
into the BMv2 software switches with the argument –load-modules <path/to/so/file>.

Each BMv2 software switch is started as a separate process based on the simple_switch_grpc
binary. The following command is used on startup of the network virtualization system to start
a new BMv2 switch.
simple_switch_grpc \

-i 1@s01-eth1 \
-i 2@s01-eth2 \
-i 3@s01-eth3 \
-i 6@s01-eth6 \
-i 7@s01-eth7 \
-i 4@s01-eth4 \
-i 5@s01-eth5 \

1. Network Virtualization System 58 of 130

Construction v1.0
Green Networking

--pcap /home/boss/git/ba/efficiency-indicator-p4/pcaps \
--nanolog ipc:///tmp/bm-0-log.ipc \
--device-id 0 \
build/main.json \
--log-console \
--thrift-port 9090 \
-- \
--grpc-server-addr 0.0.0.0:50051 \
--load-modules /home/boss/git/ba/behavioral-model/externs/obj/ipfix.so

The double dash before grpc-server-addr indicates that the two arguments grpc-server-addr and
load-modules are positional arguments rather than options for the simple_switch_grpc command.
This is a way to ensure that these arguments are passed as intended without being parsed as
options by the command-line parser. This is especially useful when the positional arguments
might be mistaken for options or when arguments need to be passed to another command or
script called by the main command.

1.4.1.3. Concurrent Access on Cache Data Structures

The cache data structures described in section 1.4.2 are accessed concurrently by multiple different
threads. There are dedicated threads used for the export via IPFIX and one dedicated thread
for each call of the extern function which update the cache with the values provided by the data
plane.

To ensure data consistency in the IPFIX caches only one thread at a time is allowed to update
the data structure. This constraint is implemented using a mutex to lock and unlock the cache
data structures used in IPFIX. We used the mutex library which is part of the C++ standard
library documented here: https://en.cppreference.com/w/cpp/thread/mutex.

Fortunately the data plane does not wait until the execution of the extern function is termi-
nated. This means that the data forwarding is not impacted by potentially delayed executions of
cache updates caused by the locked data structure.

1.4.1.4. Background Task for Regular Export

Aggregated flow records stored inside the cache and template records shall be exported on a
regular basis. The discovery of expired flow records and the execution of the export task is
handled by a thread which needs to run continuously.

This challenge is solved by the setup of a detached thread which executes a function which
discovers expired records in a specified interval.

The background threads are started on the first execution of the extern function ProcessEffi-
ciencyIndicatorMetadata. Listing 1.18 contains a code snippet out of the extern function which
is responsible to start the background threads if not already started.

bg_threads_started Is a boolean variable which indicates whether the background threads have
already been started.

flow_export_cache_manager Is a thread which executes the function to regularly discover and
export expired aggregated flow records. The thread is being detached on line 11 to ensure
it remains running after the termination of the current thread.

template_exporter Is a thread which executes the function to regularly export the template
records. The thread is being detached on line 12 to ensure it remains running after the
termination of the current thread.

1. Network Virtualization System 59 of 130

https://en.cppreference.com/w/cpp/thread/mutex

Construction v1.0
Green Networking

Listing 1.18: Background Thread Start Snippet
1 void ProcessEfficiencyIndicatorMetadata(
2 const bm::Data &node_id,
3 <-- details omitted -->) {
4
5 // start background threads
6 if (!bg_threads_started) {
7 observation_domain_id = node_id.get_int();
8 bg_threads_started = true;
9 std::thread flow_export_cache_manager(ManageFlowRecordCache);

10 std::thread template_exporter(ExportTemplates);
11 flow_export_cache_manager.detach();
12 template_exporter.detach();
13 }
14 <-- details omitted -->
15 }

1.4.1.5. IPFIX Message Transmission

As already identified as the technical risk (R3), the transmission of IPFIX messages using the
BMv2 software switch harbours major challenges. There are two aspects which had to be clarified.

1. Craft and transmit new network packets using the BMv2 software switch.

2. Send packets to a system outside of Mininet.

3. Transmission of variable sized IPFIX message data which may exceed the maximum trans-
mission unit MTU.

The first aspect could be clarified with the usage of an external library. The BMv2 software
switch and so also the IPFIX extension are written in C++. After some research we found the
C++ library libtins which is capable of crafting arbitrary network packets comparable to scapy in
Python. More information about libtins is available here: https://github.com/mfontanini/libtins

The second aspect is supported by the Linux operating system out of the box. Mininet runs each
of the switches as a separate process and interconnects them with virtual links. As each process
has access to all network interfaces within the the same network namespace on the operating
system an arbitrary network interface can be selected for the transmission of IPFIX messages.

Listing 1.19 contains a code snippet which shows how the IP packet is crafted and sent using
the libtins library.

Line 4 The default interface is selected based on the routing table entries. If the default interface
is selected, the interface that has configured the default route is used.

Line 5 The address configuration of the selected interface is retrieved.

Line 6-7 The IP packet carrying the IPFIX message is crafted with the following arguments:
IPFIX_COLLECTOR_IP Destination IP address
info.ip_addr Source IP address
4739 Destination UDP port
43700 Source UDP port
payload Pointer to the IPFIX message raw data
size Size of the IPFIX message raw data

1. Network Virtualization System 60 of 130

Construction v1.0
Green Networking

Line 10 Transmission of packet

Listing 1.19: Send Function Snippet
1 int SendMessage(uint8_t *payload, size_t size) {
2 int result = ERR_OK;
3 BMLOG_DEBUG("IPFIX EXPORT: Sending IPFIX message");
4 NetworkInterface iface = NetworkInterface::default_interface();
5 NetworkInterface::Info info = iface.addresses();
6 IP packet = IP(IPFIX_COLLECTOR_IP, info.ip_addr) / UDP(4739, 43700) /
7 RawPDU(payload, size);
8 PacketSender sender;
9 try {

10 sender.send(packet, iface);
11 } catch (const Tins::socket_write_error &e) {
12 if (std::string(e.what()) == "Message too long") {
13 result = ERR_MESSAGE_TOO_LONG;
14 } else {
15 delete[] payload;
16 throw;
17 }
18 }
19 return result;
20 }

Regarding the third aspect mentioned above about the transmission of IPFIX messages which
potentially exceed the MTU the following solution was found. As can be seen in listing 1.19 on
line 11 a socket write error is intercepted. In case the error message corresponds to Message too
long the error is set as the result on line 13. At the place where the SendMessage function is
called the result is validated. In case the result indicates a Message too long error the IPFIX
messages are split and stored in two separate payloads. Afterwards the SendMessage function is
called twice, once with each payload. This is a recursive process. In case a message would still be
too large the same process would happen and instead of two, four payloads would be generated.

1.4.2. Caches
In IPFIX, there are different strategies on how to export telemetry data about a network flow.
Some of them are based on a per flow packet sampling followed by a direct export not requiring
a local cache. Others are based on the aggregation of flow data during the lifetime of a flow
followed by an export on flow expiry. In order to perform aggregation on the exporting device, a
cache-like memory must be available.

An other scenario where caches are required in IPFIX is the batch processing of multiple
records at a time. An individual set may contain multiple records and in order to be able to
export multiple records at a time in the same IPFIX message, a local buffer is required.

1.4.2.1. Aggregated Data Export

The aggregated data export strategy is based on aggregation of flow data during the lifetime of
a flow. It solves the following problems:

• Aggregation of flow data drastically decreases the demand of local caching capacity by
storing the aggregated values only instead of the whole data series. It implies that the
storage requirements for a single flow is constant independent from the number of packets
the flow consists of.

1. Network Virtualization System 61 of 130

Construction v1.0
Green Networking

• There is no need to implement sampling because the sampling rate is given implicitly by
exporting the aggregated values on flow expiry.

• The batch processing of multiple flow records in a single export is done by design by ex-
porting the flow records which expired within the same period of time simultaneously.

In order to be able to perform the aggregation, a local cache is needed which fulfills the following
requirements:

• The collection of multiple different indicator types must be possible simultaneously without
interference.

• Create, update and delete operations on flow records must be possible, given the indicator
ID, aggregator and flow key.

• The data structure must be resistant against concurrent read and write operations by in-
dependent threads.

• On demand growing and shrinking of the data structure must be possible with very little
overhead in regards to the reorganization of the data structure.

The data structure of the cache for the aggregated data export is depicted in figure 1.1. The
data structure consists of two maps which are nested into each. The inner map stores a pointer
to the specific flow record as a value. The flow record is stored on the heap so that it is accessible
by different threads.

FlowRecordCacheIndex (outer map) Is allocated as a global variable on the stack. It stores
the references to multiple FlowRecordCache data structures. It maps a given indicator ID
(IOAM data param) concatenated with the aggregator to the FlowRecordCache containing
the FlowRecords of that particular indicator ID and aggregator combination. With this
outer map the simultaneous collection of multiple different indicator types and aggregators
without interference is made possible.

FlowRecordCache (inner map) Is allocated as a global variable on the stack. It stores the ref-
erences to FlowRecords. It maps a given flow label on a pointer to the FlowRecord data
structure. The FlowRecord data structure complies to the definition of the Template Set
for Aggregated Data Export specified in listing 3.1 in the elaboration part. The small empty
gray boxes are place holders for other FlowRecordCaches which where omitted to simplify
the illustration.

FlowRecord Is allocated on the HEAP and so made accessible to all threads of the current
program.

HEAP The heap is made of reserved memory which can be used for dynamic memory allocation
in a process. It is accessible by all threads of the specific process. It stores the actual flow
records.

 Information

A flow key uniquely identifies a flow and is the concatenation of the IPv6 source address
and the flow label. The exact specification can be found in RFC 2460.

1. Network Virtualization System 62 of 130

https://tools.ietf.org/html/rfc2460

Construction v1.0
Green Networking

FlowRecordCacheIndex

IndicatorID+Aggregator: 0xFF01

IndicatorID+Aggregator: 0xFE01

IndicatorID+Aggregator: 0xFE02

IndicatorID+Aggregator: 0xFE04

IndicatorID+Aggregator: 0xFF02

IndicatorID+Aggregator: 0xFF04

FlowRecordCache 0xFF01

flow label: 0x8B0BC

flow label: 0xE9977

flow label: 0x264A4

FlowRecord 0x8B0BC

<pointer to FlowRecord>

FlowRecord 0xE9977

<pointer to FlowRecord>

FlowRecord 0x264A4

<pointer to FlowRecord>

FlowRecordCache 0xFE01

flow label: 0xE32FC

flow label: 0xDAB41

flow label: 0xD7FA4

FlowRecord 0xE32FC

<pointer to FlowRecord>

FlowRecord 0xDAB41

<pointer to FlowRecord>

FlowRecord 0xD7FA4

<pointer to FlowRecord>

0xE32FC

0xDAB41

0xD7FA4

0x8B0BC

0xE9977

0x264A4

HEAP

HEAP

HEAP

HEAP

HEAP

HEAP

HEAP

Figure 1.1.: Aggregated Export Cache Overview

1.4.2.2. Raw Data Export

The raw data export strategy is based on the direct export of flow data in combination with a
user defined sampling rate per flow. It solves the following problem:

• Lack of information about a path a packet traversed. The raw export contains all infor-
mation collected on behalf of the IOAM protocol which not only includes energy efficiency
indicator data, but also a node list identifying the traversed path.

As mentioned in the introduction to the section about caching, the direct export does not
require a local cache because the flow data is exported instantly as the data is related to a single
packet. In order to be able to implement a flow based sampling to ensure there is at least one
export of each flow, a mechanism is required to keep track of when the last export of a specific
flow took place. As mentioned in the section about the aggregated export the FlowRecord data
structure contains an additional field only used in the raw export strategy. The field stores the
value of the packet delta count of the last export. That way it can be determined algorithmically
whether the raw data of a given packet needs to be exported.

In order to have the possibility to batch process the export of multiple RawRecords a linked
list like data structure is used to temporarily store the RawRecords pending for export. With this

1. Network Virtualization System 63 of 130

Construction v1.0
Green Networking

approach the export of both multiple RawRecords and a single RawRecord per IPFIX message
is possible.

In the current exporter implementation only one RawRecord is exported at a time, because
otherwise multiple exported RawRecords of probably the same flow are stored with the same
timestamp inside the time series database.

1.4.3. Export Mechanism
This section contains a brief description on how the export mechanism and the related cache
management is implemented for both the aggregated and raw data export of flow records. In
general the export of flow records includes the following steps:

1. Determine the records to export (e.g. expiry due to flow inactivity).

2. Retrieve the list of flow records to export from the cache manager.

3. Determine the total message size based on the number of flow records to export.

4. Generate the raw payload containing the IPFIX message representation in binary format
in network byte order.

5. Try to send a UDP datagram with the crafted raw payload.

6. In case the message could not be transmitted because its size exceeded the maximum
transmission unit, split the message and retry the send operation. This process is repeated
recursively until the send operation succeeded.

Figure 1.2 is a simplified view of the network virtualization system and only contains the IPFIX
Extension system in full detail. For a more detailed insight into the structure of the network
virtualization system and to see the relations to all other involved systems, refer to figure 3.5 in
the elaboration part.

To get a better understanding about how the network virtualization system is implemented the
following enumeration contains a step by step description on how it works referring to figure 1.2.

1. The data plane is responsible to forward network packets and update header fields. On an
egress node the data plane has the additional responsibility to pass the aggregated network
telemetry data to the IPFIX extension in the control plane. For that purpose the efficiency
indicator metadata processor is called which is exposed to the data plane as an extern
function.

2. Assuming the efficiency indicator metadata processor is called the first time it starts the
aggregated export cache manager and the IPFIX template exporter as detached threads
which continue to run in the background.

3. After that or if the background threads where already started the efficiency indicator meta-
data processor will handle the aggregated export use case by initializing a new flow record
data structure with the obtained data from the data plane. The generated flow record will
be inserted into the aggregated export cache. In case there is already a cache entry for
the specific data param, aggregator and flow label the existing cache entry will be updated
considering the selected aggregator on efficiency indicator value aggregation.

4. Once the aggregated export use case is handled the efficiency indicator metadata processor
handles the raw export use case. The raw export is done based on a per flow sampling. More
information about the raw export sampling is available in section 1.4.3.2. If an export is
required the raw data provided by the data plane is written as a record into the raw export
cache and the content of this cache is passed right away to the IPFIX data set exporter.

1. Network Virtualization System 64 of 130

Construction v1.0
Green Networking

5. Once the raw record is expired the efficiency indicator metadata processor cleans up the
raw export cache by deleting exported records.

6. The aggregated export cache manager periodically executes and algorithm to discover ex-
pired records inside the aggregated export cache.

7. The aggregated export cache manager hands expired records over to the IPFIX data set
exporter.

8. Once the records where exported successfully, the aggregated export cache manager deletes
exported records from the aggregated export cache.

9. The IPFIX data set exporter crafts raw IPFIX message payloads from the given records. Us-
ing those payloads including message headers etc. the IPFIX data set exporter crafts UDP
datagrams which contains an IPFIX data set. This UDP datagram is then encapsulated in
an IP packet and sent to the monitoring system.

10. The IPFIX template set exporter initially generates the UDP datagrams containing the
IPFIX template sets based on the provided configuration. It then sends these template sets
in a regular and configurable interval to the monitoring system.

1. Network Virtualization System 65 of 130

Construction v1.0
Green Networking

Network Virtualisation System
[System]

Programmable Network Switch
[System]

IPFIX Extension
[System]

Data Plane
[P4]

Forwards network packets
and enriches the packets

with network telemetry data

Efficiency Indicator
Metadata Processor

[Extern Function (C++)]

Retrieves and processes
energy efficiency indicator

metadata and starts
background threads

Aggregated Export
Cache

[In-memory map dastructure]

Stores aggregated flow
records

Raw Export Cache
[In-memory linked list datastructure]

Stores raw flow records

Aggregated Export
Cache Manager

[Background Thread (C++)]

Discovers expired flow
records

IPFIX Data Set Exporter
[C++ Function]

Exports flow records on
demand

IPFIX Template Set
Exporter

[Background Thread (C++)]

Exports templates in a
regular interval

Monitoring System

Allows network operators to
get detailed insight into

current and history energy
efficiency data of their

network

Transfers network
telemetry data

[P4 Extern Function]

Starts as detached
background thread

[C++]

Starts as detached
background thread

[C++]

Updates flow records
[C++]

Updates flow records
[C++]

Deletes exported records
[C++]

Transfers raw flow
recrods
[C++]

Discovers expired
records
[C++]

Deletes exported records
[C++]

Transfers expired
aggregated flow records

[C++]

Exports IPFIX data sets
[IFPIX]

Exports IPFIX template
sets
[IFPIX]

Legend
person
system
container
external person
external system
external container

Figure 1.2.: IPFIX Extension Component Diagram

1. Network Virtualization System 66 of 130

Construction v1.0
Green Networking

1.4.3.1. Aggregated Data Export

The centerpiece of the aggregated data export mechanism is the aggregated export cache manager.
As already mentioned the aggregated export cache manager is executed as a detached background
thread. The thread executes the function depicted in listing 1.20.

Line 3 Ensures that the function runs forever (until the BMv2 software switch is turned off).

Line 4 Causes the execution of the cache manager to stop for the specified amount of time. The
constant definition to adjust the discovery interval can be found in the ipfix.h file.

Line 5 Acquires a lock on the cache index mutex.

Line 6 Declares a new set which will hold 32 bit unsigned integer values. The set will be used to
store the keys of the empty flow record caches.

Line 8 Iterates over all caches present in the cache index.

Line 9 Declares a temporary flow record cache to store the expired records.

Line 10 Calls the function DiscoverExpiredFlowRecords and provides the current cache and the
temporary flow record cache as arguments. The function will iterate over all records present
in the cache and stores the expired records in the temporary cache previously allocated on
line 9.

Line 11 Calls the function ExportFlowRecords to export the expired records found during the
discovery now stored in the temporary cache.

Line 12 Calls the function DeleteFlowRecords to delete the expired and exported flow records
from the cache. The flow records are deallocated which frees memory.

Line 13 Checks if the current cache is now empty.

Line 14 If the cache is empty the key of the cache is added to the empty cache keys set declared
on line 6.

Line 17 Calls the function RemoveEmptyCaches and provides the empty cache keys set as argu-
ment. The empty caches are deallocated which frees memory.

Listing 1.20: Aggregated Export Cache Manager
1 void ManageFlowRecordCache() {
2 BMLOG_DEBUG("IPFIX EXPORT: Starting flow record cache manager");
3 while (true) {
4 sleep(IPFIX_CACHE_MANAGER_DISCOVERY_INTERVAL);
5 std::lock_guard<std::mutex> guard(cache_index_mutex);
6 std::set<uint32_t> empty_cache_keys;
7 // Iterate over all keys and corresponding values
8 for (auto i = cache_index.begin(); i != cache_index.end(); i++) {
9 FlowRecordCache expired_records;

10 DiscoverExpiredFlowRecords(i->second, expired_records);
11 ExportFlowRecords(expired_records);
12 DeleteFlowRecords(i->second, expired_records);
13 if (i->second->empty()) {
14 empty_cache_keys.insert(i->first);
15 }
16 }

1. Network Virtualization System 67 of 130

Construction v1.0
Green Networking

17 RemoveEmptyCaches(empty_cache_keys);
18 }
19 }

The explanation of the code snippet in listing 1.20 is taken from the file cache.cpp.

 Information

All functions present in listing 1.20 except for the function ExportFlowRecords are imple-
mented in the file cache.cpp. The ExportFlowRecords function is implemented in the file
export.cpp. Subsequent calls are made to the functions to generate the payload and to send
the packet. Those functions are implemented in export_utils.cpp for your reference.

1.4.3.2. Raw Data Export

This section contains details specifically relevant for the export of raw data. As already mentioned
in the general description of the export mechanism raw data is exported based on a per flow
sampling rate. In the file ipfix.h the constant IPFIX_RAW_EXPORT_SAMPLE_RATE can be used to
specify the sample rate. By default the value of the constant is set to 50 which means that every
50th packet of a flow will be exported.

The code snippet shown in listing 1.21 is used to decide whether a raw export is required or
not and is taken from the file cache.cpp.

Line 2 Acquires a lock on the cache index mutex.

Line 3-6 Determine if the flow record exists.

Line 7-8 Determine the number of packets sent in the current flow since the last raw export.
The condition is met if the number of packets since the last export is greater or equal the
specified sample rate or if there was no raw export before.

Line 9-10 Check if the condition is fulfilled to attempt a raw export.

Line 11-12 Set the last raw export field of the current flow record to the value of the packet
count field.

Listing 1.21: Raw Export Required Snippet
1 bool IsRawExportRequired(FlowRecordCache *cache, const bm::Data &flow_key) {
2 std::lock_guard<std::mutex> guard(cache_index_mutex);
3 auto i = cache->find(flow_key);
4 if (i == cache->end()) {
5 return false;
6 }
7 uint64_t last_export_delta = cache->at(flow_key).packet_delta_count -
8 cache->at(flow_key).last_raw_export;
9 if (last_export_delta >= IPFIX_RAW_EXPORT_SAMPLE_RATE ||

10 cache->at(flow_key).last_raw_export == 0) {
11 cache->at(flow_key).last_raw_export =
12 cache->at(flow_key).packet_delta_count;
13 return true;
14 }
15 return false;
16 }

1. Network Virtualization System 68 of 130

Construction v1.0
Green Networking

If the function depicted in listing 1.21 returns true, the following lines are executed resulting
in a transfer of the raw record to the exporter followed by the deletion of the raw record from
the cache.

Listing 1.22: Raw Export Control Snippet
1 if (IsRawExportRequired(cache, flow_key)) {
2 std::lock_guard<std::mutex> guard(raw_record_cache_mutex);
3 RawRecord *record = GetRawRecord(raw_ipv6_header);
4 InsertRawRecord(record);
5 ExportRawRecords(raw_record_cache);
6 DeleteRawRecords();
7 }

 Information

The ExportRawRecords function is implemented in the file export.cpp. Subsequent calls are
made to the functions to generate the payload and to send the packet. Those functions are
implemented in export_utils.cpp for your reference.

1.4.4. IPFIX Messages in Wireshark
IPFIX messages are sent via the network from the BMv2 targets to the monitoring system. On
their way they can be captured using Wireshark which is an open source tool to analyze network
traffic. The display filter to filter for IPFIX messages is called cflow. The reason for this strange
name is that the IPFIX protocol evolved from the proprietary protocol called Cisco NetFlow
through an IETF standardization process. Figure 1.3 contains an IPFIX packet list. One can see
that the observation domain ID, which corresponds to the node ID of the exporting node, varies,
which means that the exported packets originate from different BMv2 software switches.

Figure 1.3.: List of IPFIX Packets

1.4.4.1. Template Set Message

In IPFIX template sets are periodically exported to configure the collecting nodes. As specified in
RFC 7011 a template set is a collection of one or more template records that have been grouped
together in an IPFIX Message. In the template set shown in figure 1.4 two template records are
exported. The template record with the ID 256 is the template for the aggregated export and
the template record with ID 257 is for the raw export. The format and content of both templates
was introduced in section 3.5.1 in the elaboration part.

1. Network Virtualization System 69 of 130

https://tools.ietf.org/html/rfc7011

Construction v1.0
Green Networking

Figure 1.4.: IPFIX Template Set Message

1.4.4.2. Data Set Message

Figure 1.5 is an example for an aggregated data export based on the template with the ID 256.
The IPFIX data set contains three data records which illustrates that the export of multiple
records within one IPFIX message are supported by our implementation. For more details about
the specific fields refer to section 3.5.1 in the elaboration part.

1. Network Virtualization System 70 of 130

Construction v1.0
Green Networking

Figure 1.5.: IPFIX Data Set with ID 256

Figure 1.6 is an example for a raw data export based on the template with the ID 257. It
contains the fields as specified in draft-spiegel-ippm-ioam-rawexport-07. [14] The most important
field is the SectionHeader field which contains the raw binary data of the complete IPv6 header
including all extension headers. For more details about the specific fields refer to the draft and
section 3.5.1 in the elaboration part.

1. Network Virtualization System 71 of 130

Construction v1.0
Green Networking

Figure 1.6.: IPFIX Data Set with ID 257

1. Network Virtualization System 72 of 130

Construction v1.0
Green Networking

2. Monitoring System

This chapter describes the most important information about the construction of the monitoring
system. For detailed information about the implementation or configuration, please visit the
individual repositories. The C4 container diagram of the monitoring system is shown in chapter
4 in the elaboration part and the design decision of the monitoring system are also recorded in
the previously mentioned chapter in the elaboration part.

2.1. Getting Started
The monitoring system is deployed by using Docker Compose, so the prerequisite is that Docker
must be installed on the host where it will be launched. To use the monitoring system clone the
repository and change the working directory into the desired deployment folder, local or server.

local The local directory is used to deploy the monitoring system on the same computer as the
network virtualization (Mininet) is running.

server The server directory is used to deploy the monitoring system on a dedicated server.

In the particular directory there is a Docker Compose file, you can run it with the following
command:

Listing 2.1: Getting Started - Monitoring System
1 docker compose up

After the docker compose up command was entered the following three services are up and
running:

Telegraf acts as IFPIX collector and listens on udp://<IP-ADDRESS>:4739

InfluxDB acts as time series database and is available on http://<IP-ADDRESS>:8086

Grafana acts as the monitoring dashboard and is available on http://<IP-ADDRESS>:3000

2.2. IPFIX Collector - Telegraf
As described in the elaboration chapter 4, Telegraf is used as IPFIX collector. The main advantage
of Telegraf is that it is plugin based. That doesn’t make it any easier, on the contrary, the
configuration was quite complex because we had to evaluate our needs precisely and then look
for the most suitable plugins to achieve the goal. But in the end a specific telegraf.conf file exists
that suits for our specific use case.

The following four types of plugins exists in Telegraf: [15]

Input Plugins The input plugins are used to collect metrics from system, services or third-party
APIs.

Processor Plugins The processor plugins transform, decorate and filter metrics.

2. Monitoring System 73 of 130

Construction v1.0
Green Networking

Aggregator Plugins The aggregator plugins create aggregated metrics (mean, max, min, etc.)

Output Plugins The output plugins send metrics to various destinations.

 Information

Further information about all the available plugins for Telegraf can be found in the official
documentation.

The following subsections describe the plugins that are used in the Telegraf configuration to
provide all the functionality required for Telegraf to act as an IPFIX collector. All code snippets
shown in the following subsections are from the Telegraf’s config file telegraf.conf.

2.2.1. Input Plugins
The input plugins are mainly used to collect metrics from systems and services. We used the
following Telegraf input plugins for the IPFIX collector:

inputs.netflow The Netflow input plugin gathers metrics from Netflow v5, Netflow v9 and IPFIX
collectors.

The configuration file snippet 2.2 shows that with the plugin inputs.netflow Telegraf is con-
figured to listen for Netflow, IPFIX or sFlow packets and explicitly set to ipfix with the option
protocol = "ipfix". The service listening port is set to udp://4739. The option inputs.netflow.tags
adds to each received metric the additional tag export_type with the value bucket which is in the
beginning just a placeholder. This placeholder is later used to distinct if the collected metric is
of type aggregated_data_export or raw_data_export.

Listing 2.2: Input plugins
1 # Netflow v5, Netflow v9 and IPFIX collector
2 [[inputs.netflow]]
3 ## Address to listen for netflow,ipfix or sflow packets.
4 service_address = "udp://:4739"
5
6 ## Set the size of the operating system's receive buffer.
7 ## example: read_buffer_size = "64KiB"
8 ## Uses the system's default if not set.
9 read_buffer_size = "64KiB"

10
11 ## Protocol version to use for decoding.
12 ## "ipfix" -- IPFIX / Netflow v10 protocol (also works for Netflow v9)
13 protocol = "ipfix"
14
15 [inputs.netflow.tags]
16 export_type = "bucket"

2.2.2. Processor Plugins
The processor plugins are used to transform and filter the data within the IPFIX metrics. We
used the following Telegraf processor plugins for the IPFIX collector:

processor.strings The strings converter plugin maps certain Go string functions onto tag and
field values.

2. Monitoring System 74 of 130

https://docs.influxdata.com/telegraf/v1/plugins/

Construction v1.0
Green Networking

processor.converter The converter plugin is used to transform field types, change the type of tag
or field and it can convert between fields and tags.

processor.regex The regex plugin transform tag and fields using a regular expression (regex)
pattern.

processor.starlark Starlark (formerly known as Skylark) is a dialect of Python with limited func-
tionality which is intended for use as configuration language.

The code snippet 2.3, shows how we used the processor.strings.trim_left plugin. The field
ip_header_packet_section is selected and the two characters 0x at the beginning of the string
are removed.

Listing 2.3: Processor Plugin - Strings
1 [[processors.strings]]
2 [[processors.strings.trim_left]]
3 field = "ip_header_packet_section"
4 cutset = "0x"

The config file snippet 2.4 shows how the field type of type_5053, type_5054, type_5055
and type_5056 is changed (from hexadecimal) to unsigned integer. In the next steps all the
fields flow_label, type_5053, type_5054, type_5055, type_5056, src, dst, src_port, dst_port and
type_5060 are changed from type field to type tag. This type conversion is necessary because
we need those fields as tags for the Flux query. Last but not least the field type of type_5051
is changed (from hexadecimal) to integer. The specific fields from the IFPIX template are intro-
duced and further described in section 3.5.1 in the elaboration part.

Listing 2.4: Processor Plugin - Converter
1 [[processors.converter]]
2 [processors.converter.fields]
3 unsigned = ["type_5053", "type_5054", "type_5055", "type_5056"]
4
5 # Conversion of specified IPFIX packet fields into tags
6 [[processors.converter]]
7 [processors.converter.fields]
8 tag = ["flow_label", "type_5050", "type_5052", "type_5053", "type_5054",

"type_5055", "type_5056", "src", "dst", "src_port", "dst_port", "type_5060"]
9 integer = ["type_5051"]

The regex processor plugin is used to transform tag and field values using regular expression
(regex), further described in the GitHub README. We use this plugin to distinguish if the
received metric is from the aggregated data export or the raw data export. In the code snip-
pet 2.5 its shown how we check if its a aggregated or raw data export. We check whether the
type_5050 or the type_5060 exists in the metric. The tag type_5050 exists only in the aggre-
gated data export so if this tag exists we replace the value of the previously created placeholder
tag named export_type to aggregated_data_export. The same is done with the tag type_5060
which only exists in the raw data export, so there the value of the tag export_type is set to
raw_data_export. The output plugin that writes the metrics to the InfluxDB buckets will use
the tag export_type to distinguish if the metric belongs to the bucket aggregated_data_export or
to the bucket raw_data_export.

Listing 2.5: Processor Plugin - Regex
1 # Determine the export type of the metric and set the corresponding tag
2 [[processors.regex]]

2. Monitoring System 75 of 130

https://github.com/influxdata/telegraf/blob/release-1.30/plugins/processors/regex/README.md

Construction v1.0
Green Networking

3 namepass = ["netflow"]
4
5 [[processors.regex.tags]]
6 key = "type_5050"
7 pattern = '.*'
8 result_key = "export_type"
9 replacement = "aggregated_data_export"

10 append = false
11
12 [[processors.regex.tags]]
13 key = "type_5060"
14 pattern = '.*'
15 result_key = "export_type"
16 replacement = "raw_data_export"
17 append = false

The Starlark processor plugin calls a Starlark function for each matched metric, the plugin is
further described in the official GitHub README. This allows us to define a custom function to
parse the data from the raw data export. Starlark is a dialect of Python but there are important
differences to note: [16]

• Starlark has limited support for error handling. If an error occurs the script will immediately
end and the metric will be dropped.

• Import other packages is not possible and the Python standard library is not available.

• Starlark has no access to the filesystem or sockets.

The code snippet in listing 2.6 shows the Starlark processing plugin with the custom function
that is used to parse the data field ip_header_packet_section from the IPFIX raw data export.
The IPFIX raw data export is further described in section 1.4.

The function apply(metric) gets the metric as input and checks first if the metric is not type
of raw data export the function is aborted. The content of the field ip_header_packet_section
is mapped to the variable data and the input metric is dropped. The relevant information from
the raw data is then parsed into new tags and fields. After the parsing process is complete, the
new metric is returned.

Figure 2.1 shows a received IPFIX raw data export from Telegraf before the raw data parser
was implemented. As can be seen in the figure, the field ip_header_packet_section is a raw
binary blob which is unreadable without the knowledge of the underlying structure.

Figure 2.1.: Telegraf - Raw Data Export Before Parsing

Figure 2.2 below shows a received IFPIX raw data export from Telegraf where the raw data
parser is implemented. The yellow marked values from the field ip_header_packet_section in the
picture above are now parsed into multiple tags and fields.

Figure 2.2.: Telegraf - Raw Data Export After Parsing

2. Monitoring System 76 of 130

https://github.com/influxdata/telegraf/blob/release-1.30/plugins/processors/starlark/README.md

Construction v1.0
Green Networking

The function reformat_ipv6_address(string) takes a hex string as input and reformats
the string to match the ipv6 address format.

Input 2001067800e00000000000000000000a

Output 2001:0678:00e0:0000:0000:0000:0000:000a

Listing 2.6: Processor Plugin - Starlark
1 # Parsing raw_data_export field ip_header_packet_section
2 [[processors.starlark]]
3 source = '''
4 def apply(metric):
5 if metric.tags["export_type"] == "raw_data_export":
6 data = metric.fields.pop("ip_header_packet_section")
7
8 metric.tags["ip_version"] = str(int(data[0:1], 16))
9 metric.fields["traffic_class"] = int(data[1:3], 16)

10 metric.tags["flow_label"] = "0x" + str(data[3:9])
11 metric.tags["source_ipv6"] = reformat_ipv6_address(str(data[16:48]))
12 metric.tags["destination_ipv6"] = reformat_ipv6_address(str(data[48:80]))
13 metric.tags["node_01"] = str(int(data[110:116], 16))
14 metric.tags["node_02"] = str(int(data[118:124], 16))
15 metric.tags["node_03"] = str(int(data[126:132], 16))
16 metric.tags["node_04"] = str(int(data[134:140], 16))
17 metric.fields["hop_limit_node_01"] = int(data[108:110], 16)
18 metric.fields["hop_limit_node_02"] = int(data[116:118], 16)
19 metric.fields["hop_limit_node_03"] = int(data[124:126], 16)
20 metric.fields["hop_limit_node_04"] = int(data[132:134], 16)
21 metric.tags["namespace_id"] = str(int(data[148:152], 16))
22 metric.tags["flags"] = str(int(data[152:153], 16))
23 metric.fields["ioam_data_param"] = int(data[156:162], 16)
24 metric.tags["aggregator"] = str(int(data[162:164], 16))
25 metric.fields["aggregate"] = int(data[164:172], 16)
26 metric.tags["auxil_data_node_id"] = str(int(data[172:178], 16))
27 metric.fields["hop_count"] = int(data[178:180], 16)
28
29 return metric
30
31 def reformat_ipv6_address(string):
32 chunks = [string[i:i+4] for i in range(0, len(string), 4)]
33 formatted_string = ':'.join(chunks)
34 return formatted_string
35 '''

2.2.3. Output Plugins
The output plugins are used to send metrics to various destinations. We used the following
Telegraf output plugins for the IPFIX collector:

outputs.influxdb_v2 The influxdb v2 output plugin writes metrics to the InfluxDB2.

outputs.file The file output plugin writes metrics to files.

The following code snippet shows the configuration of the output plugins. The influxdb_v2
writes the metrics to the Influx database and distinguishes in which bucket the metrics belong

2. Monitoring System 77 of 130

Construction v1.0
Green Networking

(aggregated data export or raw data export) based on the previous set export_type. Additionally,
the output is written to standard output in json format for debugging and development purposes.

For that it is necessary to specify the following parameters:

urls specifies the url (ip address and port) of the InfluxDB instance

organization specifies the organization which is used in the InfluxDB

token is the InfluxDB authorization token

bucket specifies the name of the bucket in which the metric is to be written

Listing 2.7: Output Plugins
1 # InfluxDB Bucket for the aggregated data export
2 [[outputs.influxdb_v2]]
3 urls = ["http://<INFLUX_HOST_IP>:8086"]
4 organization = "<ORGANIZATION>"
5 token = "<TOKEN>"
6 bucket = "aggregated_data_export"
7 [outputs.influxdb_v2.tagpass]
8 export_type = ["aggregated_data_export"]
9

10 # InfluxDB Bucket for the raw data export
11 [[outputs.influxdb_v2]]
12 urls = ["http://<INFLUX_HOST_IP>:8086"]
13 organization = "<ORGANIZATION>"
14 token = "<TOKEN>"
15 bucket = "raw_data_export"
16 [outputs.influxdb_v2.tagpass]
17 export_type = ["raw_data_export"]
18
19 [[outputs.file]]
20 files = ["stdout"]
21 rotation_interval = "1h"
22 rotation_max_size = "20MB"
23 rotation_max_archives = 3
24 data_format = "json"

2.3. Time Series Database - InfluxDB
The InfluxDB does not need a lot of configuration. We use for the deployment as described in
section 2.5.1.1 the latest Docker image of influxdb and configure the InfluxDB with predefined
environment variables as described in section 2.5.2 during the initial startup process. In the
following subsection it’s described how the two additional buckets for the aggregated_data_export
and the raw_data_export will be created.

2.3.1. Buckets
A script with the name create_bucket.sh is located in the folder influx_scripts to create the two
necessary buckets. This script will be executed right after the initial startup of the influxdb
service. For the additional bucket creation the influx cli is used to connect to the influx instance.
A bucket with the name aggregated_data_export is created for the IPFIX Aggregated Export
and another bucket with the name raw_data_export for the IPFIX Raw Export. For both of

2. Monitoring System 78 of 130

Construction v1.0
Green Networking

these buckets, the retention time is set to 10 days in order to avoid storing too much telemetry
data and avoid running out of disk space. The set -e option aborts the execution of the script
immediately if any command returns a non-zero exit status.

Listing 2.8: Create InfluxDB Buckets
1 #!/bin/bash
2 set -e
3
4 # Create a new bucket using influx CLI
5 influx bucket create --name aggregated_data_export --org OST --retention 10d
6 influx bucket create --name raw_data_export --org OST --retention 10d

2.3.2. Tags and Fields
In InfluxDB tags and fields are crucial components used to store and query data efficiently.

Tags Tags are key-value pairs that are indexed and intended for metadata, such as the flow label
or source ip address. Tags allow efficient filtering and grouping of the time-series network
efficiency data. Since the tags are indexed, queries involving tags are faster.

Fields Fields are also key-value pairs, but they are not indexed. They store the actual data
values, such as the aggregate representing for example the flow efficiency indicator (FEI).

 Information

In InfluxDB, tags must be of type string. Tags in InfluxDB are used for metadata and
are indexed to provide efficient querying. Since tags are indexed and used for filtering and
grouping queries, they are stored as strings to facilitate these operations.

2.3.2.1. InfluxDB Web-UI

The Web UI of the InfluxDB is available on http://<IP_ADDRESS>:8086. In the side navigation
you can click on Buckets and the following buckets should be listed:

Figure 2.3.: InfluxDB Web UI - Buckets

2.3.2.2. InfluxDB Web-UI Query Builder

The query builder on the Web-UI of the InfluxDB is very helpful and easy to use for data analysis.
We used the query builder quite often during the development process as data inspection tool.

2. Monitoring System 79 of 130

Construction v1.0
Green Networking

Figure 2.4.: InfluxDB Web UI - Query Builder

2.3.3. InfluxDB Web-UI Script Editor
The script editor is the pendant to the query builder, in the script editor the Flux query language is
used. The script editor was also very helpful to write queries for the different Grafana dashboards
because one gets instant feedback if the query works and the raw data is shown in the table above.
So the development process of writing the queries for the different dashboards was very interactive
with instant response of the Data Explorer in the InfluxDB Web-UI.

Figure 2.5.: InfluxDB Web UI - Script Editor

2.4. Dashboard - Grafana
We use for the deployment as described in section 2.5.1.3 the latest Docker image of grafana
and configure Grafana with predefined environment variables as described in section 2.5.2 during
the initial startup process. In the following subsection it’s described how the provisioning of the
datasources and the predefined dashboards work. It also describes two sample queries, how they
are built, and what the end result as dashboard looks like.

2. Monitoring System 80 of 130

Construction v1.0
Green Networking

2.4.1. Provisioning
The following two subsection describes the provisioning of Grafana’s datasource and the dash-
boards.

 Information

Further information and configuration options for the provisioning are described on the
official Grafana documentation.

2.4.1.1. Datasource

A YAML file with the name datasource.yaml is located in the folder grafana/provisioning/data-
sources. The parent folder grafana/provisioning will be mapped to the grafana container’s path
/etc/grafana/provisioning. The datasource config file below, shows that the influxdb container is
set as data source. All the required parameters that are necessary for correct provisioning of the
data source are shown in the following data source config file. The deleteDatasources option will
delete the existing datasource with the name influxdb if it exists, before configuring the new one
to make sure it always takes the correct influxdb as datasource.

Listing 2.9: Grafana - Provisioning Datasources Settings
1 deleteDatasources:
2 - name: influxdb
3 orgId: 1
4
5 datasources:
6 - name: influxdb
7 type: influxdb
8 access: proxy
9 orgId: 1

10 url: http://<IP_ADDRESS>:8086
11 jsonData:
12 version: Flux
13 organization: <ORGANIZATION>
14 defaultBucket: default
15 tlsSkipVerify: true
16 secureJsonData:
17 token: <TOKEN>

2.4.1.2. Dashboard Settings

A YAML file with the name dashboard_settings.yaml is located in the folder grafana/provi-
sioning/dashboards. The parent folder, the same folder as before for the datasource config file
grafana/provisioning will be mapped to the Grafana container’s path /etc/grafana/provisioning.
As shown in the config file below the path /var/lib/grafana/dashboards is specified, where the
predefined Grafana dashboards can be saved to be loaded the next time Grafana starts.

Listing 2.10: Grafana - Provisioning Dashboard Settings
1 providers:
2 - name: dashboards
3 type: file
4 updateIntervalSeconds: 5
5 options:

2. Monitoring System 81 of 130

https://grafana.com/docs/grafana/latest/administration/provisioning/

Construction v1.0
Green Networking

6 path: /var/lib/grafana/dashboards
7 foldersFromFilesStructure: true

2.4.2. Flux Query Syntax Elements
Flux is a powerful and flexible data scripting and query language designed specifically for querying,
analyzing, and acting on the Influx time-series database developed by InfluxData.

The following query functions were frequently used and further described in the official documentation

range() filters rows based on time bounds

filter() filters data based on conditions defined in a predicate function (fn)

group() regroups input data by modifying group key of input tables

map() iterates over and applies a function to the input rows

drop() removes specified columns from a table

keep() opposite of drop, it returns a stream of tables containing only the specified columns

aggregateWindow() down samples data by grouping data into fixed windows of time and apply-
ing an aggregate or selector function to each window

sort() orders rows in each input table based on values in specified columns

join() is used to join streams that have different schemas or the streams come from different data
sources

union() is used to join data from the same data source and the same schema

2.4.3. Flux Query Examples
The following two subsections shows each a Flux query that was used to create the corresponding
Grafana dashboard. The first query discovers the average flow efficiency index (FEI) over the
last 5 minutes per end-to-end connection. The second query determines the probability of the
most inefficient hop in the topology of the network simulation. In these two queries and all other
developed queries, there is always a filter function to check that no error flag is set.

2.4.3.1. End to End Flow Efficiency Matrix - Query

The End to End Flow Efficiency Matrix or in short Flow Efficiency Heatmap shows per field
the average flow efficiency indicator over the last 5 minutes for all flows in that time range from
one host to another host. The following Flux query is used to query the relevant data from the
InfluxDB to create the Flow Efficiency Heatmap, which is shown in figure 2.7. The following
description refers to listing 2.11.

Line 1-3 The bucket, time range and the measurement type is specified.

Line 4 Only valid entries with no errors are selected (flag counters = 0).

Line 5 Only entires with the aggregator type SUM (0x01) are selected.

Line 6-7 Only the fields type_5051 and in_packets are kept and the tables are grouped by src
and dst.

2. Monitoring System 82 of 130

https://docs.influxdata.com/flux/v0/

Construction v1.0
Green Networking

Line 8-9 The _value is specified as new pivot and the result of the normalization (line 9) is
written to it. The normalization process is necessary because not every flow contains the
same amount of packets and if we don’t do this step, the flows will not be comparable.

Line 10 The tables are aggregated over 5 minutes and the average will be calculated of the field
_value

Line 11 Entries with values equal to 0 are removed

Line 12 Only the latest entry of the table is kept, so the latest average over the last 5 minutes
will be displayed in the Grafana dashboard.

Line 13 All of the tables are grouped together so that a single series results from the query.
(necessary for some Grafana dashboards)

Line 14-15 The corresponding host name is mapped to each ipv6 address which is done for every
host present in the simulation network.

Listing 2.11: Flux Query - End to End Flow Efficiency Matrix
1 from(bucket: "aggregated_data_export")
2 |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
3 |> filter(fn: (r) => r["_measurement"] == "netflow")
4 |> filter(fn: (r) => r["type_5053"] == "0" and r["type_5054"] == "0" and

r["type_5055"] == "0" and r["type_5056"] == "0")
5 |> filter(fn: (r) => r["type_5052"] == "0x01")
6 |> filter(fn: (r) => r["_field"] == "type_5051" or r["_field"] == "in_packets")
7 |> group(columns: ["src", "dst"])
8 |> pivot(rowKey: ["_time"], columnKey: ["_field"], valueColumn: "_value")
9 |> map(fn: (r) => ({ r with _value: r.type_5051 / r.in_packets }))

10 |> aggregateWindow(every: 5m, fn: mean)
11 |> filter(fn: (r) => r["_value"] != 0)
12 |> last()
13 |> group()
14 |> map(fn: (r) => ({ r with src: if r.src == "2a04:f340::a" then "h01" else r.src }))
15 |> map(fn: (r) => ({ r with dst: if r.dst == "2a04:f340::a" then "h01" else r.dst }))
16 <-- details omitted -->

Figure 2.6 shows some of the raw data that resulted from the query above.

Figure 2.6.: Raw Data Output of the End to End Flow Efficiency Matrix Query

Figure 2.7 shows the Flow Efficiency Heatmap. That’s the final result from the query above
combined with the Grafana esnet-matrix-panel plugin, that is further described in official documentation.

2. Monitoring System 83 of 130

https://grafana.com/grafana/plugins/esnet-matrix-panel/?tab=overview

Construction v1.0
Green Networking

Figure 2.7.: Grafana - End to End Flow Efficiency Matrix (Last 5min Average)

2.4.3.2. Inefficient Hop Discovery (Relative) - Query

The following query identifies the most inefficient node in the simulation network topology. The
node with the minimum or maximum hop traversal cost (HTC) is determined during MIN/MAX
aggregation. The HTC is the result of accumulating the ingress link LEI, the HEI and the egress
link LEI, and this accumulated value is stored in the aggregate field of the IPFIX export. In the
simulation network topology, it is possible that multiple paths traverse a switch, but via different
ingress and egress ports, resulting in a different HTC value because the LEI of the ingress and
egress ports can be different. So we decided to use a query based on a normalized voting strategy
to determine the worst or best node. The query is quite complex but necessary because we
have to consider how many paths go through the different switches to perform a normalization,
otherwise switches that occur in many paths would be weighted more heavily than switches that
occur in very few paths, which would almost be neglected in the statistics and thus not detected.
Therefore, this large query with subqueries is necessary to get the most accurate result. In the
end, we have a statistic, shown in figure 2.9 that shows how likely it is that each node is the least
efficient in the simulation topology. The following description refers to listing 2.12.

Line 3 A new stream is assigned to the variable number_of_paths_via_s01 and the data source
bucket is specified.

Line 4-6 The time range and the measurement type is specified and only valid entries are selected
(flags = 0).

Line 7-8 Only the field aggregate is kept and and the tables are group by the columns node_01,
node_02, node_03, node_04

Line 9 Only the first (newest) table entry is kept which results of a list of all possible paths (node
combinations).

2. Monitoring System 84 of 130

Construction v1.0
Green Networking

Line 10-11 Its checked if the path (grouped nodes identifies a path) goes via a particular switch.

line 12-13 The tables are grouped to on table and all values will be summarized (count()).

Line 14-15 The field _value is renamed and an additional tag is added to identify what this
value corresponds to.

Line 19-34 All previously created substreams (number_of_paths_via_sXX) are united into a
single stream.

Line 36-38 A new stream is assigned to the variable main and the data source bucket, the time
range and the measurement type is specified.

Line 39-40 Only tables with the aggregator type MAX (0x04) are selected and only valid entries
are selected (flags = 0).

Line 41-43 Only the field aggregate is kept and and the tables are grouped by the columns
node_01, node_02, node_03, node_04. An additional field path is created based on the
information of the node information.

Line 44 Only the specified columns are kept.

Line 45-46 The time is truncated to 1 second and a new field named timestamp and the value is
set to the value of _time because the timestamp will be lost after using the aggregateWin-
dow() function.

Line 47 The tables are grouped by the column path.

Line 48-50 Only the latest value per table will be kept, then the tables are grouped by the
columns auxil_data_node_id and the values will be summarized (count()).

Line 51 The specified columns are dropped.

Line 52 Tables with values equal to 0 are removed.

Line 53-55 The field _value is renamed, the tables are grouped to one sorted table.

Line 57-62 The previously created stream number_of_paths_per_switch (Line 19) is joined on
auxil_data_node_id == switch_id with the previously created stream main (Line 36).

Listing 2.12: Flux Query - Inefficient Hop Discovery (Relative)
1 import "join"
2
3 number_of_paths_via_s01 = from(bucket: "raw_data_export")
4 |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
5 |> filter(fn: (r) => r["_measurement"] == "netflow")
6 |> filter(fn: (r) => r["flags"] == "0")
7 |> filter(fn: (r) => r["_field"] == "aggregate")
8 |> group(columns: ["node_01", "node_02", "node_03", "node_04"])
9 |> limit(n: 1)

10 |> map(fn: (r) => ({ r with is_via_switch: if r.node_01 == "1" or r.node_02 == "1"
or r.node_03 == "1" or r.node_04 == "1" then true else false}))

11 |> filter(fn: (r) => r["is_via_switch"] == true)
12 |> group()
13 |> count()
14 |> rename(columns: {_value: "switch_total_path_count"})

2. Monitoring System 85 of 130

Construction v1.0
Green Networking

15 |> map(fn: (r) => ({ r with switch_id: "1"}))
16
17 <-- details omitted -->
18
19 number_of_paths_per_switch = union(
20 tables: [
21 number_of_paths_via_s01,
22 number_of_paths_via_s02,
23 number_of_paths_via_s03,
24 number_of_paths_via_s04,
25 number_of_paths_via_s11,
26 number_of_paths_via_s12,
27 number_of_paths_via_s13,
28 number_of_paths_via_s14,
29 number_of_paths_via_s15,
30 number_of_paths_via_s16,
31 number_of_paths_via_s17,
32 number_of_paths_via_s18,
33]
34)
35
36 main = from(bucket: "raw_data_export")
37 |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
38 |> filter(fn: (r) => r["_measurement"] == "netflow")
39 |> filter(fn: (r) => r["aggregator"] == "4")
40 |> filter(fn: (r) => r["flags"] == "0")
41 |> filter(fn: (r) => r["_field"] == "aggregate")
42 |> group(columns: ["node_01", "node_02", "node_03", "node_04"])
43 |> map(fn: (r) => ({ r with path: r.node_01 + "-" + r.node_02 + "-" + r.node_03 +

"-" + r.node_04}))
44 |> keep(columns: ["_time", "path", "_value", "auxil_data_node_id"])
45 |> truncateTimeColumn(unit: 1s)
46 |> map(fn: (r) => ({ r with timestamp: r._time }))
47 |> group(columns: ["path"])
48 |> aggregateWindow(every: inf, fn: last)
49 |> group(columns: ["auxil_data_node_id"])
50 |> aggregateWindow(every: inf, fn: count)
51 |> drop(columns: ["_time", "_start", "_stop"])
52 |> filter(fn: (r) => r["_value"] != 0 and r["auxil_data_node_id"] != "0")
53 |> rename(columns: {_value: "switch_discovered_path_count"})
54 |> group()
55 |> sort(desc: true)
56
57 join.inner(
58 left: main,
59 right: number_of_paths_per_switch,
60 on: (l, r) => l.auxil_data_node_id == r.switch_id,
61 as: (l, r) => ({l with switch_total_path_count: r.switch_total_path_count}),
62)

Figure 2.8 shows some of the raw data that resulted from the query above.

2. Monitoring System 86 of 130

Construction v1.0
Green Networking

Figure 2.8.: Raw Data Output of the Inefficient Hop Discovery (Relative) Query

Figure 2.9 shows the Grafana Dashboard - Inefficient Hop Discovery (Relative). This graph
shows the percentage of paths for which a particular hop was determined to be the most inefficient.
To calculate the percentage of paths, only the paths that traverse through the specific hop are
considered as described in the query description in section 2.4.3.2.

Figure 2.9.: Grafana - Inefficient Hop Discovery (Relative)

2.5. Docker
2.5.1. Docker Compose
Docker Compose is a tool to define and run multi-container applications and it simplifies the
control of the application stacks and making it easy to manage services and volumes in a single
YAML config file. [5] For the development and evaluation process of the bachelor thesis, we used
two different deployment options

local deployment the local deployment was mainly used in the beginning of the bachelor thesis
for local development and testing. Each team member had their own virtual machine with
the development tools.

server deployment the server deployment is used for long-term monitoring and the execution
of network simulations over several days. Additionally the server deployment is used for
demonstration purposes and larger network topology can be tested over several days without
interruption.

2. Monitoring System 87 of 130

Construction v1.0
Green Networking

2.5.1.1. InfluxDB

The specification of the influxdb service includes the following information:

image Specifies what image is used, for the influxdb service the latest image of influxdb will be
taken

container_name The container name is set to influxdb

ports The host_port is 8086 and this port is mapped to the container_port 8086

environment The environment tag contains the possible environment variables, those are speci-
fied in the .env file, further described in section 2.5.2 The different environment variables
and the automated setup options are further described in the description of the influxdb
image on DockerHub.

volumes The first volume tag entry maps the persistent storage of the influx database to the in-
fluxdb_data volume, further specified in section 2.5.1.4. The second volume tag entry maps
the host folder ./influx_scripts with bash scripts to the container path docker-entrypoint-
initdb.d. All bash scripts that are located within this folder are executed by the startup of
the influxdb container. We use this feature to create additional buckets in the InfluxDB,
further described in section 2.3.1

restart The option unless-stopped specifies that the container will always restart except when the
container was stopped (manually or otherwise)

Listing 2.13: Docker Compose - InfluxDB Service
1 influxdb:
2 image: influxdb:latest
3 container_name: influxdb
4 ports:
5 - "8086:8086"
6 environment:
7 - TZ=Europe/Zurich
8 - DOCKER_INFLUXDB_INIT_MODE=setup
9 - DOCKER_INFLUXDB_INIT_USERNAME=${INFLUXDB_USERNAME}

10 - DOCKER_INFLUXDB_INIT_PASSWORD=${INFLUXDB_PASSWORD}
11 - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=${INFLUXDB_TOKEN}
12 - DOCKER_INFLUXDB_INIT_ORG=${INFLUXDB_ORG}
13 - DOCKER_INFLUXDB_INIT_BUCKET=${INFLUXDB_BUCKET}
14 volumes:
15 - influxdb_data:/var/lib/influxdb
16 - ./influx_scripts:/docker-entrypoint-initdb.d
17 restart: unless-stopped

2.5.1.2. Telegraf

The specification of the telegraf service includes the following information:

image Specifies what image is used, for the telegraf service the latest image of telegraf will be
taken.

container_name The container name is set to telegraf.

2. Monitoring System 88 of 130

Docker Hub

Construction v1.0
Green Networking

environment The environment tag contains the possible environment variables, those are speci-
fied in the .env file, further described in section 2.5.2.

volumes The telegraf.conf file will be mapped from the host system path ./telegraf/telegraf.conf
to the container path /etc/telegraf/telegraf.conf with read-only mode.

ports The host_port is 4739 and this port is mapped to the container_port 4739, the /udp
specifies that the port should listen to UDP traffic, which is necessary because the IPFIX
export uses the UDP protocol.

depends on This option controls the order of service startup, restart or shutdown. In our scenario
Telegraf is started as soon as the InfluxDB container is available.

restart The option unless-stopped specifies that the container will always restart except when the
container was stopped (manually or otherwise).

Listing 2.14: Docker Compose - Telegraf Service
1 telegraf:
2 image: telegraf:latest
3 container_name: telegraf
4 environment:
5 - DOCKER_INFLUXDB_INIT_ORG=${INFLUXDB_ORG}
6 - DOCKER_INFLUXDB_INIT_BUCKET=${INFLUXDB_BUCKET}
7 - DOCKER_INFLUXDB_INIT_ADMIN_ENABLE=${DOCKER_INFLUXDB_ADMIN_ENABLE:-true}
8 - DOCKER_INFLUXDB_INIT_URL=${INFLUXDB_INIT_URL}
9 - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=${INFLUXDB_TOKEN}

10 volumes:
11 - ./telegraf/telegraf.conf:/etc/telegraf/telegraf.conf:ro
12 ports:
13 - "4739:4739/udp"
14 depends_on:
15 - influxdb
16 restart: unless-stopped

2.5.1.3. Grafana

The specification of the grafana service includes the following information:

image Specifies what image is used, for the grafana service the latest image of grafana-oss will
be taken.

container_name The container name is set to grafana.

ports The host_port is 300 and this port is mapped to the container_port 3000.

environment The environment tag contains the possible environment variables, those are speci-
fied in the .env file, further described in section 2.5.2. Furthermore the environment variable
GF_INSTALL_PLUGINS is used to install the additional Grafana plugin esnet-matrix-
panel that is used to create the End to End Flow Efficiency Matrix, which is shown in
figure 2.7.

volumes The first volume tag entry maps the persistent storage of grafana to the grafana_data
volume, further specified in section 2.5.1.4. The second and third volume tag entry maps
the two YAML provisioning configuration file into the container, further described in section
2.4.1.

2. Monitoring System 89 of 130

Construction v1.0
Green Networking

restart The option unless-stopped specifies that the container will always restart except when the
container was stopped (manually or otherwise).

depends on This option controls the order of service startup, restart or shutdown. In our scenario
Grafana is started as soon as the InfluxDB container is available.

Listing 2.15: Docker Compose - Grafana Service
1 grafana:
2 image: grafana/grafana-oss:latest
3 container_name: grafana
4 ports:
5 - "3000:3000"
6 environment:
7 - GF_SECURITY_ADMIN_USER=${GRAFANA_USERNAME}
8 - GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
9 - GF_INSTALL_PLUGINS=esnet-matrix-panel

10 volumes:
11 - grafana_data:/var/lib/grafana
12 - ../global/grafana/dashboards:/var/lib/grafana/dashboards
13 - ./grafana/provisioning:/etc/grafana/provisioning
14 restart: unless-stopped
15 depends_on:
16 - influxdb

2.5.1.4. Volumes

For the influxdb and the grafana service, a separate volume will be created for the persistence of
its data.

Listing 2.16: Docker Compose - Volumes
1 volumes:
2 influxdb_data:
3 grafana_data:

 Information

Unless the Docker volumes are deleted, the above configuration of InfluxDB and Grafana
is persistent. (Hint: With docker volume ls all the existing Docker volumes will be listed)

2.5.1.5. Delete Volumes

If the intention is to delete the data to start from scratch, the following commands must be
executed:

Listing 2.17: Delete Docker Volumes
1 docker volume prune
2 docker volume rm influxdb_data
3 docker volume rm grafana_data

2. Monitoring System 90 of 130

Construction v1.0
Green Networking

2.5.2. Environment Variables
The following .env file with the specified environment variables is defined in the same directory
as the Docker Compose file. The environment variables are loaded and set the first time the three
services (influxdb, telegraf and grafana) are started.

Listing 2.18: env file
1 INFLUXDB_USERNAME=<USERNAME>
2 INFLUXDB_PASSWORD=<PASSWORD>
3 INFLUXDB_ORG=<ORGANIZATION>
4 INFLUXDB_BUCKET=default
5 INFLUXDB_INIT_URL=http://<INFLUX_HOST_IP>:8086
6 INFLUXDB_TOKEN=<TOKEN>
7 GRAFANA_USERNAME=<USERNAME>
8 GRAFANA_PASSWORD=<PASSWORD>

2.5.3. Network
The Docker Compose file for the local deployment contains the following addition compared to the
"standard" server deployment. A network named efficientNetwork will be defined in the Docker
Compose file.

Listing 2.19: Docker - Network
1 networks:
2 efficientNetwork:
3 driver: bridge
4 ipam:
5 driver: default
6 config:
7 - subnet: <SUBNET_IP_RANGE>
8 gateway: <GATEWAY_IP_ADDRESS>

All services influxdb, telegraf and grafana will be attached to this network and a static ip
address will be assigned to each service.

Listing 2.20: Docker - Additional Network for each Service
1 networks:
2 efficientNetwork:
3 ipv4_address: <IP_ADDRESS>

2. Monitoring System 91 of 130

Construction v1.0
Green Networking

3. Configuration Update System

As already specified in the design decisions in section 5 in the elaboration part, the Nornir network
automation framework is used to implement the configuration update system. The configuration
update system is written in Python.

It depends on the following libraries:

typer Typer is a library for building intuitive and easy-to-use CLI applications based on Python
type hints, offering features like automatic help, completion, and minimal code duplication.
It also includes a command line tool to run scripts, converting them into CLI applications
automatically. Refer to: https://pypi.org/project/typer/

nornir Nornir is a pure Python automation framework intended to be used directly from Python.
While most automation frameworks use their own Domain Specific Language (DSL) which
you use to describe what you want to have done, Nornir lets you control everything from
Python. Refer to: https://pypi.org/project/nornir/

nornir_rich Nonir rich is a plugin for Nornir which enhances the user experience by the addition
of fancy terminal user interface (TUI) elements such as a progress bar and pretty print
functions for results, failed hosts and the inventory. Refer to: https://pypi.org/project/
nornir-rich/

The dependencies are listed inside the requirements.txt file.

3.1. Getting Started
To use the configuration update system clone the repository and change the working directory
into the root of the git repository.

3.1.1. Installation
The first step is to setup the project by the creation of a virtual environment and the installation
of the required dependencies. To do so follow the setup instructions in listing 3.1.

Listing 3.1: Setup Instructions
1 # Create a new virtual environment in the hidden folder .venv
2 python3 -m venv .venv
3
4 # Activate the virtual environment
5 source .venv/bin/activate
6
7 # Install dependencies
8 pip install -r requirements.txt

3.1.2. Configuration
The configuration of the Nornir BMv2 configuration update solution is the next pre-requisite to
fulfill before the application can be run.

3. Configuration Update System 92 of 130

https://pypi.org/project/typer/
https://pypi.org/project/nornir/
https://pypi.org/project/nornir-rich/
https://pypi.org/project/nornir-rich/

Construction v1.0
Green Networking

3.1.2.1. Defaults

Please specify the default values further described below, which apply to your circumstances in
the inventory/defaults.yaml file.

p4_repo_path The absolute path to the repository containing the p4 source code and the JSON
BMv2 runtime configuration files.

runtime_path The relative path starting from the p4_repo_path to the BMv2 runtime directory.

mininet_host The IP address or hostname of the host running the virtual network with the
BMv2 software switches.

checksum_file The relative path to the file which will hold the checksums of the deployed con-
figurations.

 Information

The checksums of the deployed configuration files are used to check whether the same
configurations previously pushed are pushed again. This avoids confusion of the developer
in case the resource definition was updated but the execution of the configuration generator
was forgotten.
The runtime configurations were not modified since the previous run at 2024-05-18

14:56:27.393337 on 127.0.0.1. Do you want to push the configurations anyway? [Y/n]:

3.1.2.2. Inventory

Please specify the connection parameters to the BMv2 software switches. To do so use the format
shown in listing 3.2.

 Information

The inventory file to be used can be specified in the file config.yaml by setting the option
host_file as part of the SimpleInventory configuration. The path to the inventory file
must be relative to the project root directory.

Listing 3.2: Example Nornir Inventory
1 ---
2 s01:
3 port: 50051
4 data:
5 device_id: 0
6 runtime_file_name: "s01-runtime.json"
7 s02:
8 port: 50052
9 data:

10 device_id: 1
11 runtime_file_name: "s02-runtime.json"
12 <-- further specifications omitted -->

3. Configuration Update System 93 of 130

Construction v1.0
Green Networking

 Warning

Make sure that the device ID and port are specified correctly. Otherwise the connection
attempt will be rejected or the connection will be made to a wrong switch. In case the
Mininet setup provided by p4lang is used the device IDs are specified ascending starting
by 0 and the port numbers starting by 5051 in the order the switches are defined in the
topology file.

3.2. Implementation Details
This chapter will go into some more detail about the components of the configuration update
system and how they interact with each other. The explanations present in this chapter refer to
figure 3.1.

3.2.1. Update Process
The configuration update process is an optional process. It is triggered by the network operator
in case the person wants to modify the configuration of the BMv2 software switches while they
are up and running.

 Warning

It is very important to first change the network resource definition and then regenerate the
configurations inside the network virtualisation system before the configuration update
process is triggered.

1. The network operator triggers the configuration update executing the task manager.

2. The task manager reads the configuration.

3. The task manager reads the inventory.

4. The task manager calculates the SHA-256 signatures of the configuration files to provision
and verifies if the files where changed since the last run. To do that the signatures from the
previous run are loaded from the configuration file signatures and compared with the
current signatures.

5. The task manager starts the task to update the BMv2 configuration for each BMv2
software switch specified in the inventory.

6. The task loads the pre-generated BMv2 runtime configuration for the specified host from
the network virtualization system.

7. The task calls the gRPC client application and hands the information about the target
BMv2 software switch and the corresponding configuration over.

8. The gRPC client application establishes a connection to the configuration endpoint of
the BMv2 software switch inside the network virtualization system.

9. The gRPC client application uploads the updated configuration to the BMv2 software
switch inside the network virtualization system.

3. Configuration Update System 94 of 130

Construction v1.0
Green Networking

3.2.2. Configuration Validation
The configuration validation is based on the SHA-256 signature algorithm. It ensures that the
network operator is notified in case the BMv2 configuration files did not change. If the network
operator tries to push the same configuration twice he will receive the message The runtime
configurations were not modified since the previous run at 2024-05-18 14:56:27.393337 on
127.0.0.1. Do you want to push the configurations anyway? [Y/n]:

The signature file is formatted in json and follows the structure shown in listing 3.3 and an
entry is identified with the tuple made of the the Mininet host and the target inventory file. In
case an entry exists the signatures are loaded and compared and after the successful execution
the signatures in that specific entry are overwritten. In case no entry was found a new entry is
added after the successful execution of the configuration update task.

Listing 3.3: Signature File Structure
1 {
2 "127.0.0.1": {
3 "inventory/hosts_simulation.yaml": {
4 "timestamp": "2024-05-18 14:56:27.393337",
5 "checksums": {
6 "/[...]/s01-runtime.json": "259db53[...]d1",
7 "/[...]/s02-runtime.json": "d1eaf16[...]fd",
8 <-- entries omitted -->
9 "/[...]/s18-runtime.json": "770e01b[...]b1"

10 }
11 }
12 },
13 "ba-rb-rf-0.network.garden": {
14 "inventory/hosts_simulation.yaml": {
15 "timestamp": "2024-05-17 10:50:26.236140",
16 "checksums": {
17 "/[...]/s01-runtime.json": "259db53[...]d1",
18 "/[...]/s02-runtime.json": "d1eaf16[...]fd",
19 <-- entries omitted -->
20 "/[...]/s18-runtime.json": "770e01b[...]b1"
21 }
22 }
23 }
24 }

3. Configuration Update System 95 of 130

Construction v1.0
Green Networking

Configuration Update System
[System]

Task Manager
[Nornir (Python)]

Manages the application
state

Inventory
[Nornir (YAML)]

Stores information about the
target devices

Task
[Nornir (Python)]

Executes actions on target
devices

Configuration
[Nornir (YAML)]

Stores Nornir specifc
configurations

gRPC Client
[P4 Runtime Library (Python)]

Connects to the BMv2
software switches and

transfers the corresponding
BMv2 configuration

Configuration File
Signatures

[JSON]

Stores the signatures of the
previously deployed

configuration files on a per
Mininet host and per

inventory basis.

Network Operator

Operates the virtual network
and needs insight into

energy efficiency telemetry
data of the network

Monitoring System

Allows network operators to
get detailed insight into

current and history energy
efficiency data of their

network

Network Virtualisation
System

Generates all configuration
files needed to deploy the

virtual network and also runs
the switches and hosts based

on the predefined topology

Accesses network
telemetry data

[http]

Triggers configuration
update

[script execution]

Defines network
resources
[file writer]

Triggers the
provisioning and
deprovisioning
[script execution]

Exports network
telemetry data

[IFPIX]

Starts task for each host
in inventory

[Python function]

Returns task results
[Python function]

Imports target hosts
[file reader]

Reads configuration
[file reader]

Compares configuration
file signatures of current

with previous run and
stores current
[file reader]

Reads BMv2
configuration files

[file reader]

Calls and provides
connection info and

config
[Python function]

Sends configuration
updates
[gRPC]

Legend
person
system
container
external person
external system
external container

Figure 3.1.: Component Diagram Configuration Update System

3. Configuration Update System 96 of 130

Construction v1.0
Green Networking

4. Data Plane Optimizations

The P4 data plane is based on the implementation elaborated during the term paper in the
previous semester. During the bachelor thesis we applied optimizations regarding the structure
and the reduction of processing overhead. Furthermore we implemented proper error handling
for the IOAM aggregation trace option to ensure that there is a possibility to ignore error prone
data in the energy efficiency statistics of the network. Finally the data plane was extended with
an additional processor which prepares the network telemetry data to be exported with IPFIX.
As a key component the processor is responsible for the export and contains an extern function
which passes the prepared data to the control plane.

 Information

In order to be able to follow the explanations of the following sections it is advantageous
that you have read the P4 related chapters of the term paper. In case you didn’t, you
should still get a high level idea of how the data plane operates.

4.1. P4 Introduction
Before going into details about the data plane implementation it is important to review some
important concepts related to P4 and data plane programming in general.

It is the data plane’s responsibility to forward data packets which arrive at a specific ingress
port to specific egress port(s) and perform corresponding header field updates (e.g. decrement
the TTL IP header field). The information about where to send a specific packet is stored in
control plane tables which can be queried by the data plane. The data plane uses information
inside the header field to query the control plane tables. The process of getting information from
the control plane tables using queries is called match action. The result of a match action is
always the execution of an action inside the data plane using the values retrieved by the specific
match from the control plane. Actions are similar to functions in other programming languages
with the limitation that only sequential code is allowed which means that neither calls to other
actions nor loops can be present inside an action.

One can think of control plane tables as being the link between the data plane and the control
plane. It is the way how the control plane exposes its information to the data plane.

The concept described above is part of the Protocol Independent Switch Architecture (PISA)
depicted in figure 4.1. As shown, the PISA architecture is composed of a programmable parser
which is responsible to map the header fields of an incoming packet to local struct-like data
structures, an ingress pipeline, a buffer and an egress pipeline. Pipelines are units composed of
one or more sequential match actions. Once the packet leaves the egress pipeline it enters the
deparser (not shown on figure 4.1) which emits the internal header data structures back into the
packet being sent out of the determined egress port.

4. Data Plane Optimizations 97 of 130

Construction v1.0
Green Networking

Figure 4.1.: PISA Architecture [11]

In our P4 data plane implementation we put the IPv4 and IPv6 forwarding logic into the ingress
pipeline. The logic to trace the path, determine and aggregate efficiency values and finally the
IPFIX export are part of the egress pipeline further described in the next section.

4.2. The Modifications at a Glance
This section quickly summarizes the main modifications which were made to the data plane in
the course of this bachelor thesis compared to the preceding term paper.

Extension Header Initialization The initialization process of the extension header which carries
the network telemetry data inside the IOAM options has been modified to not only set the
corresponding header fields but also save the data which remains constant as metadata so
that it reusable by subsequent processors. This reduces the overall amount of table lookups
and increases the overall performance of the data plane implementation.

HEI Processing The concept how the HEI is being processed was fundamentally changed in the
bachelor thesis. In the term paper the HEI was computed in the data plane based on raw
efficiency values retrieved from the control plane. The main processing load is now handled
by the control plane and the data plane retrieves the value from a dedicated control plane
table. More details are available in section 4.4.

IOAM Aggregation Option Error Handling The specification of the IOAM Aggregation Option
in draft-cxx-ippm-ioamaggr-00 defines four error flags. [3] These flags are now being set
as part of the data plane operation in case an error occurs. More details are available in
section 4.5.

IPFIX Export The data plane has been extended with an extern function to trigger the export
of network telemetry data using IPFIX. It is documented in section 4.6.

4. Data Plane Optimizations 98 of 130

Construction v1.0
Green Networking

4.3. Egress Pipeline Structure
The egress pipeline elaborated as part of this bachelor thesis includes five processors with dedi-
cated responsibilities. The egress pipeline definition inside the main.p4 file is depicted in listing
4.1. As can be seen the egress pipeline’s processors are only executed in case the IPv6 header
is valid. The reason for that is, because the IPv6 Hop-by-Hop Options extension header is used
to store IOAM network telemetry data which is obviously only available in IPv6. It would be
possible to carry IOAM data with IPv4 inside the Options field defined in RFC 791 but this was
defined to be out of scope for this thesis.

Listing 4.1: Data Plane Egress Pipeline
1 control MyEgress(inout headers hdr,
2 inout metadata meta,
3 inout standard_metadata_t standard_metadata) {
4
5 apply {
6 if (hdr.ipv6.isValid()) {
7 // Initialize IOAM protocol related header in IPv6 extension header
8 process_ioam_init.apply(hdr, meta, standard_metadata);
9

10 // IOAM Tracing
11 process_ioam_tracing.apply(hdr, meta, standard_metadata);
12
13 // Efficiency Indicator
14 process_efficiency_indicator.apply(hdr, meta, standard_metadata);
15
16 // IOAM Aggregation
17 process_ioam_aggregation.apply(hdr, meta, standard_metadata);
18
19 // IPFIX Export
20 process_ipfix_export.apply(hdr, meta);
21 }
22 }
23 }

Before going into more detail about each individual processor the following elements need to
be clarified referring to listing 4.1.

hdr Is a reference to the internal header data structures which where initialized by the pro-
grammable parser.

meta Is a reference to custom metadata used to store information which needs to be accessible
by multiple processors.

standard_metadata Is a reference to metadata specific to the BMv2 v1 switch model.

4.3.1. Processor Responsibilities
The following description highlights the key functionalities and responsibilities of each individual
processor. The processor implementations are located in includes/<processor_name>.p4.

ioam_init This is the first processor being called. It is only executed if the IPv6 Hop-by-Hop
Options header is not yet initialized. This is typically the case on an ingress node. It has
the following responsibilities:

• Initialize the IPv6 Hop-by-Hop Options extension header.

4. Data Plane Optimizations 99 of 130

https://tools.ietf.org/html/rfc791

Construction v1.0
Green Networking

• Initialize the IOAM Pre-allocated Trace Option header carried by the Hop-by-Hop
Options extension header.

• Initialize the IOAM Aggregation Trace Option header carried by the Hop-by-Hop
Options extension header. As part of the initialization the aggregator to use is selected
dynamically further described in section 4.4.2.1.

• Initialize the PadN Option to ensure that the IPv6 Hop-by-Hop Options extension
header is aligned to a multiple of 8 octets as specified in RFC 2460.

• Initialize all IOAM related custom metadata fields which can then be used by subse-
quent processors. This reduces the number of control plane table lookups because the
required information is already available.

ioam_tracing This processor is responsible to trace a node by adding the ID of the node to the
pre-allocated node list and updating related header fields. In case there is no more space
left in the pre-allocated node list the overflow bit is set instead.

efficiency_indicator In this processor the HEI and LEI are queried from the control plane. The
resulting value is stored in the aggregate metadata field. More details about this processor
is available in section 4.4.

ioam_aggregation This processor retrieves from the metadata and performs the corresponding
aggregations. Results are stored in the IOAM Aggregation Option header fields. More
details about this processor is available in section 4.4.

ipfix_export This processor extracts and reformats the relevant information. It then calls the
extern function to pass the relevant data to the control plane which then takes care to export
the network telemetry data using IPFIX. More details about this processor is available in
section 4.6.

4.4. Efficiency Indicator Processing
The efficiency indicator processing overhead for the data plane has been reduced significantly with
the chosen approach in the bachelor thesis. The following sections will compare the efficiency
indicator processing implemented in the term paper with the implementation elaborated in the
follow-up bachelor thesis.

4.4.1. Term Paper Implementation
In the approach chosen in the term paper the calculation of the HEI is in the responsibility of
the data plane. Without going into mathematical details the HEI calculation process depicted in
figure 4.2 is a five step approach repeated for every single packet further described below.

1. The values of the energy efficiency parameters are retrieved from the control plane. Those
energy efficiency parameters might be the current power usage, bandwidth and amount
of renewable energy available on the current hop. Each retrieval requires a lookup in the
control plane.

2. The energy efficiency values might be out of an arbitrary range and in order to be able to
map multiple values to a single efficiency indicator the values need to be normalized to a
common range so that they are directly comparable.

4. Data Plane Optimizations 100 of 130

https://tools.ietf.org/html/rfc2460

Construction v1.0
Green Networking

3. Some of the values may behave inverse and need to be inverted inside the common range.
This is the case for values which are better in regards to the efficiency if the value is
higher. An example inverse value is the amount of renewable energy available where a higher
number indicates that more energy is consumed from renewable sources which influences
the efficiency of the hop in a positive way.

4. Some values may be more important than others and weights must be applied.

5. The steps above are repeated for each parameter value. Finally each result needs to be
summed up to get the HEI value of the current hop.

Calculation steps for the Hop Efficiency Indicator

Get parameter value Normalize the value Invert the value
(if needed)

Repeat these steps for each parameter

Apply the weight Add all components to
get the HEI value.

Figure 4.2.: Term Paper HEI Calculation Process

The HEI value is then passed to the IOAM Aggregation Option implementation to update the
aggregate field accordingly.

 Information

The mathematical operations used to calculate the HEI value are limited to addition, sub-
traction and bit shifting to avoid significant performance losses during the HEI processing.

4.4.2. Bachelor Thesis Implementation
In the approach chosen in the bachelor thesis the calculation of the HEI is in the responsibility
of the control plane. This has mainly two advantages.

• The efficiency indicator processing is decoupled from the forwarding pipeline. The value can
be reprocessed by the control plane from time to time to consider the current environmental
conditions. This increases the performance of the forwarding pipeline because the processing
overhead for each individual data packet is reduced.

• Multiple efficiency indicators can be made available to the data plane simultaneously. This
avoids the information loss caused by the combination of multiple component values to one
indicator value in the solution proposed in the term paper. In a multi efficiency indicator
scenario the ingress node would randomly select which indicator to use for this specific data
packet.

 Information

Regarding the second advantage, the dynamic selection of efficiency indicators is currently
not implemented in the data plane, but the simultaneous collection of different indicator
types within the same flow is supported by the IPFIX cache implementation in the control

4. Data Plane Optimizations 101 of 130

Construction v1.0
Green Networking

plane.

The apply block of the efficiency indicator processor in listing 4.2 has been simplified to three
statements. The first one queries the current hop efficiency indicator value using the IOAM data
param as key and adds the value to the aggregate metadata field. The second statement queries
the efficiency of the ingress link using the number of the ingress port as key and adds the value to
the aggregate metadata field. Finally the third statement does the same thing as the second one
but of the egress interface. The resulting value is the so called Hop Traversal (HTC) Cost which is
added to the IOAM Aggregation Option aggregate field in the ioam aggregation processor which
is the next element of the egress pipeline.

Listing 4.2: Apply Block Efficiency Indicator Processor
1 // Efficiency Indicator Processing
2 get_hop_efficiency_indicator.apply();
3 get_ingress_link_efficiency_indicator.apply();
4 get_egress_link_efficiency_indicator.apply();

4.4.2.1. Aggregator Selection

The dynamic aggregator selection on the ingress node is implemented as part of the ioam_init
processor. The reason why the indicator is selected randomly is to make the data in the statistics
more meaningful, as information on the most and least efficient routers and path statistics are
available at all times.

To decide which aggregator to use the last two bits of the IPv6 payload length are taken into
consideration. The mapping from bit combination to the aggregator can be configured in the
resource definition yaml file. In our simulation network the following mapping is deployed on all
routers.

Listing 4.3: Aggregator Mapping
1 aggregators: # 1 = SUM / 2 = MIN / 4 = MAX
2 - 1 # selected if last two bits of payload size are [00]
3 - 2 # selected if last two bits of payload size are [01]
4 - 1 # selected if last two bits of payload size are [10]
5 - 4 # selected if last two bits of payload size are [11]

In the ioam_init processor the key to query the resulting control plane table defined in listing
4.3 is initialized with the action in listing 4.4.

Listing 4.4: Initialization IOAM Aggregator Selector
1 action init_ioam_aggregator_selector() {
2 meta.ioamAggrMeta.aggregator_selector = (bit<2>) hdr.ipv6.payloadLen & 0b11;
3 }

4.5. IOAM Aggregation Option Error Handling
The IOAM Aggregation Option specification in draft-cxx-ippm-ioamaggr-00 specifies four header
fields. [3]

Flag 1 Aggregator not supported

4. Data Plane Optimizations 102 of 130

Construction v1.0
Green Networking

• Set on all nodes if the aggregator specified in the ioamAggr metadata is not imple-
mented.

Flag 2 Unsupported IOAM data parameter
• Set on the ingress node if the specified data param in the configuration is not available

in the lookup table.
• Set on the intermediary nodes if the specified data param in the ioam header is not

available in the lookup table.

Flag 3 Unsupported Namespace
• Set on intermediary nodes if the namespace specified in the metadata differs from the

namespace defined in the header.

Flag 4 Any other error
• Set on all nodes in case the Link Efficiency Indicator (LEI) is undefined for the ingress

or egress interface.
• Set on all nodes in case of an overflow of the aggregator representing the Path Efficiency

Indicator (PEI).

In the ioam_init and the efficiency_indicator processors, boolean fields in the custom metadata
are set in case errors listed above occur.

The apply block of the ioam_aggregation processor in listing 4.5 has been adjusted to check for
the specified error conditions. As can be seen the processor is only executed in case the IOAM
Aggregation Option header is valid and the flags field is set to 0. Like this the IOAM Aggregation
Option header fields are not touched anymore after an error has occurred.

Listing 4.5: Apply Block IOAM Aggregation Processor
1 if (hdr.ioam_a_ioam_aggregation.isValid() && hdr.ioam_a_ioam_aggregation.flags == 0) {
2 if (hdr.ioam_a_ioam_aggregation.namespaceID != meta.ioamMeta.namespaceID) {
3 set_flag(IOAM_FLAG_UNSUPPORTED_NAMESPACE);
4 }
5 if (meta.ioamAggrMeta.dataParamError == 1) {
6 set_flag(IOAM_FLAG_UNSUPPORTED_DATA_PARAM);
7 }
8 if (meta.ioamAggrMeta.otherError == 1) {
9 set_flag(IOAM_FLAG_OTHER_ERROR);

10 }
11 if (hdr.ioam_a_ioam_aggregation.flags == 0) {
12 switch (hdr.ioam_a_ioam_aggregation.aggregator) {
13 IOAM_AGGREGATOR_SUM: {ioam_aggr_sum();}
14 IOAM_AGGREGATOR_MIN: {ioam_aggr_min();}
15 IOAM_AGGREGATOR_MAX: {ioam_aggr_max();}
16 default: {set_flag(IOAM_FLAG_UNSUPPORTED_AGGREGATOR);}
17 }
18 }
19 }

Additionally the action set_flag was defined shown in listing 4.6. It sets the flag according the
given bitmask and updates the node id in the IOAM Aggregation Option header to indicate the
node where the error has occurred.

Listing 4.6: Set Flag Action
1 action set_flag(ioamFlag_t flag) {

4. Data Plane Optimizations 103 of 130

Construction v1.0
Green Networking

2 hdr.ioam_a_ioam_aggregation.flags = hdr.ioam_a_ioam_aggregation.flags | flag;
3 hdr.ioam_a_ioam_aggregation.auxilDataNodeID = meta.ioamMeta.nodeID;
4 }

4.6. IPFIX Export
One of the main goals in this bachelor thesis is the extension of the programmable switches with
IPFIX export capabilities. The actual IPFIX implementation is done in the control plane and is
documented in chapter 1. But somehow the data of interest, in this case the network telemetry
data carried in the data packet in the IOAM Aggregation Option header, must be passed by the
data plane to the IPFIX implementation in the control plane. We already covered the use case
that the data plane retrieves data from the control plane by table lookups. But in this scenario
data must be transferred in the opposite direction. For this use case extern functions come into
play.

4.6.1. Extern Function
An extern function is used to expose control plane functionality to the data plane. Data available
in the data plane (e.g. values of specific header fields) can be passed to the control plane as
arguments to function parameters of the extern function.

In order to use an extern function in P4 it must be declared at the beginning of the program.
In case the function name and number of arguments does not match the function definition in the
control plane the BMv2 programmable switch throws an error on startup. Listing 4.7 contains
the declaration of the extern function to call the IPFIX extension in the control plane. The
declaration can be found in the file includes/externs.p4.

Listing 4.7: Extern Function Declaration
1 extern void ProcessEfficiencyIndicatorMetadata(
2 in ioamNodeID_t nodeID,
3 in flowKey_t flowKey,
4 in flowLabel_t flowLabel,
5 in ip6Addr_t srcIPv6,
6 in ip6Addr_t dstIPv6,
7 in bit<16> sourceTransportPort,
8 in bit<16> destinationTransportPort,
9 in bit<24> indicatorID,

10 in ioamAggregate_t indicatorValue,
11 in bit<8> indicatorAggregator,
12 in bit<768> raw_ipv6_header
13);

return type The function has the return type of void which means that nothing is returned.
This characteristic is advantageous because after the data plane called the extern function
it can carry on directly and there is no need that it needs to wait for the termination of the
function in order to retrieve the result.

parameters The parameters specified are the header fields of interest to identify the flow, end
hosts and to export efficiency indicator data carried by the IOAM Aggregation Option
header fields. The last parameter is used for the raw export only and transfers the whole
IPv6 header including all extension headers to the control plane.

4. Data Plane Optimizations 104 of 130

Construction v1.0
Green Networking

 Information

The in keyword is part of the parameter type definition and defines the direction of the
parameter. The direction in indicates that this parameter is an input that cannot be
modified. [12] The direction out indicates that this parameter is an output whose value is
undefined initially but can be modified. [12] The direction out for parameters is not allowed
for extern functions.

4.6.2. Processor
The implementation of the ipfix_export processor is in the file includes/ipfix_export.p4 The
IPFIX export is triggered in case the IOAM Aggregation Option header is valid and the route
type is set to 0 which means that it is a directly connected route. A route type of 0 indicates
that the router is the egress node of the current path. Listing 4.8 shows the apply block of the
IPFIX processor which calls the perform ipfix export action given the mentioned conditions.

Listing 4.8: IPFIX Export Processor Apply Block
1 apply {
2 // Perform IPFIX export on last hop only
3 if (hdr.ioam_a_ioam_aggregation.isValid() && meta.forwardingMeta.routeType == 0) {
4 perform_ipfix_export();
5 }
6 }

The perform IPFIX export action prepares the raw export binary blob with the use of the
binary concatenation operator. Once the 768 bit binary blob is ready the extern function is
called passing the corresponding header fields and the raw export binary blob as arguments. The
two different IPFIX export mechanism for the aggregated data and raw data export are further
described in detail in section 1.4.2. Listing 4.9 show the call of the extern function.

Listing 4.9: Call of Extern Function
1 // Pass all values to control plane by calling the extern function
2 ProcessEfficiencyIndicatorMetadata(
3 meta.ioamMeta.nodeID,
4 flowKey,
5 hdr.ipv6.flowLabel,
6 hdr.ipv6.srcAddr,
7 hdr.ipv6.dstAddr,
8 hdr.udp.srcPort,
9 hdr.udp.dstPort,

10 hdr.ioam_a_ioam_aggregation.dataParam,
11 hdr.ioam_a_ioam_aggregation.aggregate,
12 hdr.ioam_a_ioam_aggregation.aggregator,
13 hdr.ioam_a_ioam_aggregation.flags,
14 raw_full_ipv6_header);

4. Data Plane Optimizations 105 of 130

Construction v1.0
Green Networking

5. Wireshark Dissector

As specified in the requirements specifications in US4 in section 2 in the inception phase a
Wireshark dissector for the IOAM aggregation option shall be developed in the scope of this
bachelor thesis.

A Wireshark dissector is a component or plugin used in Wireshark, to interpret and display
the details of network protocol data. Wireshark captures packets traveling across a network and
a dissector’s role is to analyze the captured data according to a specific protocol’s format.

Capture Wireshark captures network packets in real time or from a saved file.

Identification The dissector identifies the protocol of each packet.

Dissection The dissector breaks down the packet into its constituent parts based on the protocol’s
structure.

Presentation It then presents this information in a human-readable format, showing fields and
values, which helps users analyze the packet’s contents and troubleshoot network issues.

Figure 5.1 is a screenshot of a packet dissected with a version of Wireshark which contains our
IOAM aggregation option dissector. One can easily identify the header fields according to draft-
cxx-ippm-ioamaggr-00. [3] Figure 5.2 shows exactly the same packet in a version of Wireshark
which does not support the dissection of the IOAM aggregation option. It is much harder to
identify the relevant information out of the raw byte-stream than it is in the dissected version.

5. Wireshark Dissector 106 of 130

Construction v1.0
Green Networking

Figure 5.1.: Wireshark with IOAM Aggregation Option Dissector

5. Wireshark Dissector 107 of 130

Construction v1.0
Green Networking

Figure 5.2.: Wireshark without IOAM Aggregation Option Dissector

5.1. Dissector as Plugin
Wireshark is designed with extensibility in mind. Plugins can be written in C and compiled to a
shared object (so) on Linux or to a dynamically linked library (DLL) on Windows. Alternatively
plugins can be written in Lua. The advantage of writing a plugin is that Wireshark itself does not
need to be recompiled. Adding dissectors for custom proprietary protocols as plugins is a good
choice because the custom extensions can be added to the program more easily. To profit from
the lightweight extension possibilities using plugins we initially decided to follow the structure
and implement the IOAM aggregation option dissector as a plugin. We managed to add a custom
dissector for a simple example protocol which sets up on top of UDP, following the Wireshark
documentation about the addition of a custom dissector. [1] Unfortunately the use case of adding
a dissector for a protocol on top of UDP is different from the implementation of a dissector for the
IOAM aggregation option because the header data is located in the Hop-by-Hop Options IPv6
extension header which is dissected by the built-in IPv6 dissector. We struggled at the point
where we needed to register the dissector handle which is responsible to call our dissector for
traffic which is associated with our protocol. The code snippet in listing 5.1 illustrates how the
handler foo_handle is registered in the dissector table udp.port for traffic with the destination
UDP port FOO_PORT which is a constant defined elsewhere.

5. Wireshark Dissector 108 of 130

Construction v1.0
Green Networking

Listing 5.1: Registering Dissector Handle for Example Protocol [1]
1 void
2 proto_reg_handoff_foo(void)
3 {
4 static dissector_handle_t foo_handle;
5
6 foo_handle = create_dissector_handle(dissect_foo, proto_foo);
7 dissector_add_uint("udp.port", FOO_PORT, foo_handle);
8 }

The registration of the IOAM aggregation option dissector would require a dissector table,
comparable to udp.port, specifically for IOAM options. If that table would be available the
IOAM aggregation option handler could be registered with the code snippet in listing 5.2

Listing 5.2: Registering Dissector Handle for IOAM Aggregation Option
1 void
2 proto_reg_handoff_ioam_aggr(void)
3 {
4 static dissector_handle_t ioam_aggr_handle;
5
6 ioam_aggr_handle = create_dissector_handle(dissect_ioam_aggr, proto_ioam_aggr);
7 dissector_add_uint("ioam.options", IOAM_AGGR_OPT, ioam_aggr_handle);
8 }

Unfortunately that didn’t work and we couldn’t figure out if there is an appropriate table
somewhere. To avoid spending too much time on this we then decided to go for the implementation
of a built-in dissector.

5.2. Built-in Dissector
To implement the built-in dissector for the IOAM aggregation option we followed the structure
of the IOAM Pre-allocated Trace Option implementation which was added to Wireshark as a
built-in dissector in November 2021 in merge request !4962. To do the implementation of the
IOAM aggregation option dissector we decided to fork the Wireshark GitHub repository to a
repository in our private namespace. Our changes to the Wireshark codebase are summarized in
the pull request #1 in the mentioned GitHub repository.

In the following sections it is explained step by step how to extend the IPv6 dissector with an
additional IOAM option type. The only file to update is epan/dissectors/packet-ipv6.c. Some
important abbreviations to know when implementing a dissector for Wireshark are:

hf Header Field

ett Epan Tree Type

epan Enhanced Packet ANalyzer

tvb Testy, Virtual(-izable) Buffers

5.2.1. Add Option Type
The first set is to define a constant which defines the identification number of the IOAM option.
The identification numbers are allocated by IANA. [8] As there is currently no allocation for the
IOAM aggregation option we decided to use the number 32 which is currently unassigned.

5. Wireshark Dissector 109 of 130

https://gitlab.com/wireshark/wireshark/-/merge_requests/4962
https://github.com/ramobis/wireshark/pull/1/

Construction v1.0
Green Networking

Listing 5.3: Add IOAM Aggregation Option Type
1 #define IP6IOAM_AGGR 32 /* Aggregation */
2
3 <-- lines omitted -->
4
5 static const value_string ipv6_ioam_opt_types[] = {
6 { IP6IOAM_PRE_TRACE, "Pre-allocated Trace" },
7 { IP6IOAM_INC_TRACE, "Incremental Trace" },
8 { IP6IOAM_POT, "Proof of Transit" },
9 { IP6IOAM_E2E, "Edge to Edge" },

10 { IP6IOAM_AGGR, "Aggregation" },
11 { 0, NULL}
12 };

5.2.2. Add Header Fields
Next indices for all header fields are added as static global variables. The header fields defined
conform to the definition in draft-cxx-ippm-ioamaggr-00. [3]

Listing 5.4: Add IOAM Aggregation Header Fields
1 static int hf_ipv6_opt_ioam_aggr_ns;
2 static int hf_ipv6_opt_ioam_aggr_flags;
3 static int hf_ipv6_opt_ioam_aggr_flag_1;
4 static int hf_ipv6_opt_ioam_aggr_flag_2;
5 static int hf_ipv6_opt_ioam_aggr_flag_3;
6 static int hf_ipv6_opt_ioam_aggr_flag_4;
7 static int hf_ipv6_opt_ioam_aggr_reserved;
8 static int hf_ipv6_opt_ioam_aggr_data_param;
9 static int hf_ipv6_opt_ioam_aggr_aggregator;

10 static int hf_ipv6_opt_ioam_aggr_aggregator_sum;
11 static int hf_ipv6_opt_ioam_aggr_aggregator_min;
12 static int hf_ipv6_opt_ioam_aggr_aggregator_max;
13 static int hf_ipv6_opt_ioam_aggr_aggregator_avg;
14 static int hf_ipv6_opt_ioam_aggr_aggregate;
15 static int hf_ipv6_opt_ioam_aggr_node_id;
16 static int hf_ipv6_opt_ioam_aggr_hop_count;

5.2.3. Add Subtree Fields
The last preparation step is the addition of the indices for the subtree. As visible in 5.1 both the
Flags and the Aggregator have a subtree which can be expanded on demand. Indices to those
two subtrees need to be defined beforehand similar to the header field indices definition.

Listing 5.5: Add IOAM Aggregation Subtree Fields
1 static gint ett_ipv6_opt_ioam_aggr_flags;
2 static gint ett_ipv6_opt_ioam_aggr_aggregators;

5.2.4. Add Sub-Dissector
The sub-dissector for the IOAM aggregation option is implemented in the function with the
signature depicted in listing 5.6. Before going into any details about this specific dissector it is
important to understand the concept behind dissecting and to know the role of the tvbuff_t data
structure.

5. Wireshark Dissector 110 of 130

Construction v1.0
Green Networking

In the Wireshark documentation the importance of tvb data structure is described as follows:
When dissecting a frame: The top-level dissector (packet.c) pushes the initial tvb (containing the
complete frame) onto the stack (starts the chain) and then calls a sub-dissector which in turn
calls the next sub-dissector and so on. Each sub-dissector may chain additional tvbs to the tvb
handed to that dissector. [17] In other words the tvb contains the raw data of the captured frame
and dissectors can read data from that frame given the current offset (index) and interpret the
data accordingly.

5.2.4.1. Function Signature

The function dissect_opt_ioam_aggr takes the following arguments.

tvbuff_t *tvb Pointer to the buffer which contains the packet data. For more information refer
to tvbuff_t in the Wireshark documentation.

gint offset Points to the data inside the tvb which has to be interpreted (dissected) next. Each
time a field is dissected the offset gets increased by the amount of bytes read. At the end
the updated offset is returned to the caller.

packet_info *pinfo Pointer to the packet metadata such as timestamps, the name of the protocol
which is currently dissected and much more. For more information refer to packet_info in
the Wireshark documentation.

proto_tree *opt_tree Pointer to the protocol tree element. Referring again to figure 5.1 this
would be the tree called Aggregation.

struct opt_proto_item *opt_ti Pointer to an IPv6 dissector specific protocol item. It stores
the type and length of the Hop-by-Hop Option extension header.

guint8 opt_len Stores the length of an option inside the Hop-by-Hop Option extension header.

The return value is an integer representing the offset in the tvb data structure after the dissec-
tion process.

Listing 5.6: Add IOAM Aggregation Dissector Logic
1 static gint
2 dissect_opt_ioam_aggr(
3 tvbuff_t *tvb,
4 gint offset,
5 packet_info *pinfo,
6 proto_tree *opt_tree,
7 struct opt_proto_item *opt_ti,
8 guint8 opt_len
9);

5.2.4.2. Add Item to Tree

Adding an item to a protocol tree is straight forward. Dissectors use proto_tree_add_* to add
items to the protocol tree. In most cases proto_tree_add_item() is used.

The code snippet in listing 5.7 adds the IOAM aggregation option Namespace-ID header field.
According to draft-cxx-ippm-ioamaggr-00 is a 16-bit identifier of an IOAM-Namespace. [3] The
function is called providing the protocol tree, the target header field, the tvb buffer containing
the frame data, the current offset in tvb, the length of the field in bytes and the encoding. Add
the end the offset is increased by the number of bytes read from the tvb buffer.

5. Wireshark Dissector 111 of 130

https://www.wireshark.org/docs/wsar_html/structtvbuff.html
https://www.wireshark.org/docs/wsar_html/struct__packet__info.html

Construction v1.0
Green Networking

Listing 5.7: Add IOAM Aggregation Add Tree Item
1 // Namespace
2 proto_tree_add_item(opt_tree, hf_ipv6_opt_ioam_aggr_ns, tvb, offset, 2,

ENC_BIG_ENDIAN);
3 offset += 2;

This step is repeated for each generic header field. In case the field is not aligned to one octet,
the function proto_tree_add_bits_item() is used instead. When adding a bits item one must take
extra care to increment the offset correctly. Most likely multiple bit items are added one after an
other and as soon as the offset is again aligned to an octet it should be increased accordingly.

5.2.4.3. Add Bitmask to Tree

To add a field which contains multiple flags and which should be expandable to a subtree a
bitmask item should be added instead. In the case of the IOAM aggregation option this was done
for the two fields flags and aggregator.

To add the aggregator field as a bitmask for example the first thing to do is to create a local
null terminated array as the subtree index. It contains pointers the header fields in the order of
occurrence.

Listing 5.8: Add IOAM Aggregation Flags Index
1 static int * const ioam_aggr_aggregators[] = {
2 &hf_ipv6_opt_ioam_aggr_aggregator_sum,
3 &hf_ipv6_opt_ioam_aggr_aggregator_min,
4 &hf_ipv6_opt_ioam_aggr_aggregator_max,
5 &hf_ipv6_opt_ioam_aggr_aggregator_avg,
6 NULL
7 };

Next the proto_tree_add_bits_item() is called providing the protocol tree, the tvb buffer
containing the frame data, the current offset in tvb, the target header field, the target field in the
epan tree, the array initialized before and the encoding.

Listing 5.9: Add IOAM Aggregation Flags Index
1 // Aggregator
2 proto_tree_add_bitmask(
3 opt_tree,
4 tvb,
5 offset,
6 hf_ipv6_opt_ioam_aggr_aggregator,
7 ett_ipv6_opt_ioam_aggr_aggregators,
8 ioam_aggr_aggregators,
9 ENC_NA);

10 offset += 1;

5.2.5. Register Dissector
The function for the sub-dissector is now implemented and needs to be called at a certain con-
dition. As already mentioned the IOAM aggregation option dissector shall be called in case the
IOAM option is equal to 32.

The registration of the sub-dissector function is straight forward and illustrated in listing 5.10.
It is only the definition of a the new case IP6IOAM_AGGR, which is a constant an equal to 32,
in the function dissect_opt_ioam.

5. Wireshark Dissector 112 of 130

Construction v1.0
Green Networking

Listing 5.10: Add IOAM Aggregation Register Dissector
1 switch (opt_type) {
2 case IP6IOAM_PRE_TRACE:
3 case IP6IOAM_INC_TRACE:
4 offset = dissect_opt_ioam_trace(tvb, offset, pinfo, opt_type_tree, opt_ti,

opt_len);
5 break;
6 case IP6IOAM_POT:
7 break;
8 case IP6IOAM_E2E:
9 break;

10 case IP6IOAM_AGGR:
11 offset = dissect_opt_ioam_aggr(tvb, offset, pinfo, opt_type_tree, opt_ti,

opt_len);
12 break;
13 }

5.2.6. Register Header Fields
As part of the IPv6 protocol registration, all header fields and the corresponding information needs
to be declared. The header field information is of particular importance to the user interface. For
example the user readable name and the filter name, the base, bitmasks and more is defined.

The registration of the Namespace ID header field is shown in listing 5.11.

Listing 5.11: Add IOAM Aggregation Register Field Namespace ID
1 { &hf_ipv6_opt_ioam_aggr_ns,
2 { "Namespace ID", "ipv6.opt.ioam.aggr.ns",
3 FT_UINT16, BASE_DEC, NULL, 0x0,
4 NULL, HFILL }
5 },

The registration of the Aggregator header field is shown in listing 5.12.

Listing 5.12: Add IOAM Aggregation Register Field Aggregator
1 { &hf_ipv6_opt_ioam_aggr_aggregator,
2 { "Aggregator", "ipv6.opt.ioam.aggr.aggregator",
3 FT_UINT8, BASE_DEC, NULL, 0xFF,
4 NULL, HFILL }
5 },
6 { &hf_ipv6_opt_ioam_aggr_aggregator_sum,
7 { "SUM", "ipv6.opt.ioam.aggr.aggregator.sum",
8 FT_BOOLEAN, 8, NULL, 0x1,
9 NULL, HFILL }

10 },
11 { &hf_ipv6_opt_ioam_aggr_aggregator_min,
12 { "MIN", "ipv6.opt.ioam.aggr.aggregator.min",
13 the \emph{proto{_}tree{_}add{_}bits{_}item()} is called providing the protocol

tree, the tvb buffer containing the frame data, the current offset in tvb, the
target header field, the target field in the epan tree, the array initialized
before and the encoding.

14
15 FT_BOOLEAN, 8, NULL, 0x2,
16 NULL, HFILL }
17 },
18 { &hf_ipv6_opt_ioam_aggr_aggregator_max,

5. Wireshark Dissector 113 of 130

Construction v1.0
Green Networking

19 { "MAX", "ipv6.opt.ioam.aggr.aggregator.max",
20 FT_BOOLEAN, 8, NULL, 0x4,
21 NULL, HFILL }
22 },
23 { &hf_ipv6_opt_ioam_aggr_aggregator_avg,
24 { "AVG", "ipv6.opt.ioam.aggr.aggregator.avg",
25 FT_BOOLEAN, 8, NULL, 0x8,
26 NULL, HFILL }
27 },

Each header field element is associated to a header_field_info struct. The struct fields are
described below in the order of occurrence.

name Is the full name of this field.

abbrev Is the filter name of this field.

type Is the field type, one of FT_ (from ftypes.h).

display Defines how to display a field. For example whether the field value shall be displayed as
hexadecimal or decimal number. One of BASE_, or field bit-width if FT_BOOLEAN and
non-zero bitmask.

strings In case the type of the field is is an FT_PROTOCOL or BASE_PROTOCOL_INFO
then it points to the associated protocol_t structure

bitmask Marks bits of interest.

blurp Brief description of field.

HFILL Initializes all the set by proto routines fields in header field info.

5.2.7. Register Subtree Fields
Finally the two subtree fields used to display the flag’s and the aggregator’s bitmasks need to be
registered. This is achieved by the addition of the lines 15 and 16 in listing 5.13.

Listing 5.13: Add IOAM Aggregation Register Subtree Fields
1 static gint *ett_ipv6[] = {
2 &ett_ipv6_proto,
3 &ett_ipv6_detail,
4 &ett_ipv6_detail_special_purpose,
5 &ett_ipv6_multicast_flags,
6 &ett_ipv6_traffic_class,
7 &ett_geoip_info,
8 &ett_ipv6_opt,
9 &ett_ipv6_opt_type,

10 &ett_ipv6_opt_rpl,
11 &ett_ipv6_opt_mpl,
12 &ett_ipv6_opt_dff_flags,
13 &ett_ipv6_opt_ioam_trace_flags,
14 &ett_ipv6_opt_ioam_trace_types,
15 &ett_ipv6_opt_ioam_aggr_flags,
16 &ett_ipv6_opt_ioam_aggr_aggregators,
17 &ett_ipv6_fragment,
18 &ett_ipv6_fragments
19 };

5. Wireshark Dissector 114 of 130

https://www.wireshark.org/docs/wsar_html/struct__header__field__info.html

Part IV.

Transition

Transition v1.0
Green Networking

1. Demo
This demonstration provides an overview of the system’s startup and configuration processes.
It begins with an explanation of how to start up all system components. Once all systems are
up and running, three scenarios are presented in which an efficiency or network parameter is
changed. Each scenario includes a description of how the parameter update can be performed
and a comparison of a dashboard state before and after the update is provided to illustrate the
impact of the changes.

In the demonstration the network depicted in figure 1.1 is used as topology in the network
virtualization system. The topology is further described in section 3.1 in the elaboration part.

Sunrise GmbH
AS6730
IPv4: 31.10.128.0/18
IPv6: 2001:678:7f0::/48

Swisscom (Schweiz) AG
AS3303
IPv4: 46.14.0.0/16
IPv6: 2001:678:e0::/48

COLT
AS8220
IPv4: 37.1.224.0/22
IPv6: 2001:678:274::/48

NTS workspace AG
AS15576
IPv4: 31.132.8.0/22
IPv6: 2a00:c38::/32

RETN Limited
AS9002
IPv4: 23.56.98.0/24
IPv6: 2a02:2d8::/32

AZURE TECHNOLOGY
AS53587
IPv4: 45.61.192.0/21
IPv6: 2607:5d00::/48

H09

H10

H11

H04

H05

H06

Customer Region A
IPv4: 146.185.64.0/19
IPv6: 2a04:f340::/29

H01

Customer Region B
IPv4: 31.24.8.0/21
IPv6: 2a00:10c0::/32

H02

Customer Region C
IPv4: 31.207.52.0/22
IPv6: 2001:67c:470::/48

H03

Customer Region D
IPv4: 31.207.60.0/22
IPv6: 2a0a:de00::/32

H08

Customer Region E
IPv4: 37.46.144.0/22
IPv6: 2a05:ff80::/29

H07

S13

S14

S18

1

23

5

6

7

1 2 1 2

3 3 4

1
2 3

4

5

6
7

1

2

1

2

3

4

3

12

3

4

5

6

7

11 2 2

3 3

1 2

3

4
5

6

7

1

1

2

23

4

3

Iway AG
AS8758

S11 S12

S02

4

S01

S17

S04

S16 S15

S03

Figure 1.1.: Network Simulation Topology

1.1. Getting Started
In the following sections, it is explained how each service is started and used. After the network
virtualization system (Mininet) is started, the traffic generator will automatically start sending
packets without further interaction. For ease of use, dedicate a separate terminal instance to each
service.

1.1.1. Network Virtualization System
To use the network virtualization system (Mininet) clone the repository Efficiency Indicator P4
and change the working directory into the root of the git repository. With the following command
the Mininet environment is started:

1. Demo 116 of 130

Transition v1.0
Green Networking

Listing 1.1: Startup - Network Virtualization System
1 make run

1.1.2. Monitoring System
To use the monitoring system clone the repository Efficiency Indicator Monitoring and change
the working directory into the desired deployment folder, local or server.

local The local directory is used to deploy the monitoring system on the same computer as the
network virtualization (Mininet) is running.

server The server directory is used to deploy the monitoring system on a dedicated server.

There is a Docker Compose file in each folder, and the following command is used to start the
monitoring system deployment:

Listing 1.2: Startup - Monitoring System
1 docker compose up

After the startup command was executed the following three services are up and running:

Grafana http://<IP-ADDRESS>:3000

InfluxDB http://<IP-ADDRESS>:8086

Telegraf udp://<IP-ADDRESS>:4739

 Information

The IP addresses of the three services are specified in the telegraf.conf file in the Efficiency
Indicator Monitoring repository.

1.1.3. Configuration Update System
To use the configuration update system clone the repository and change the working directory
into the root of the git repository.

1.1.3.1. Installation

The first step is to setup the project by the creation of a virtual environment and the installation
of the required dependencies. To do so follow the setup instructions in listing 1.3

Listing 1.3: Setup Instructions
1 # Create a new virtual environment in the hidden folder .venv
2 python3 -m venv .venv
3
4 # Activate the virtual environment
5 source .venv/bin/activate
6
7 # Install dependencies
8 pip install -r requirements.txt

1. Demo 117 of 130

Transition v1.0
Green Networking

1.1.3.2. Configuration

Check if the correct mininet_host is specified in the configuration update system repository
efficiency-indicator-configuration-update/inventory/defaults.yaml, it must be the ip address or
the hostname of the system where the network virtualization system is running.

Listing 1.4: Setup Instructions
1 data: {
2 p4_repo_path: "/home/boss/git/ba/efficiency-indicator-p4/",
3 runtime_path: "dev-network/", # relative to p4_repo_path
4 mininet_host: <IP-ADDRESS>,
5 checksum_file: "tmp/checksums.json"
6 }

1.2. Update Scenarios
1.2.1. Change HEI on Switches s03, s13, s16
In the first scenario, we will change the HEI value of three switches in the simulation network
topology to improve the flows that traverse the switches s03, s13, and s16. As can be seen in the
Flow Efficiency Matrix (part of the Flow Statistics dashboard) in table 1.1, the flow efficiency
e.g. from and to the hosts h04 and h05 are red, that means they are not that good. What do
we expect, if we decrease the HEI on switch s03 from 30000 to 5000, on s13 from 13000 to 1000
and on s16 from 16000 to 5000? We expect a significant improvement in flow efficiency e.g. from
and to the hosts h04 and h05. We also expect to see an improvement in the PEI statistics (part
of the Path Statistics dashboard) for those paths that traverse via the switch s03.

1. Demo 118 of 130

Transition v1.0
Green Networking

Before HEI Update After HEI Update

Table 1.1.: HEI Update Comparison

The network flow efficiency statistic in figure 1.2 shows the average flow efficiency over the last
5 minutes. In the graph, you can see that the average flow efficiency (FEI) decreases after the
changes of reducing the HEI on the switches.

Figure 1.2.: Network Flow Efficiency (Last 5min Average)

As can be seen in figure 1.3 all paths of the simulation network topology are visualized in the
time series statistic with its corresponding path efficiency (PEI). It is clearly visible that after
reducing the HEI values on switches s03, s13 and s16, the paths that traverse the previously
mentioned switches shows a significantly better PEI (drop in the time series).

1. Demo 119 of 130

Transition v1.0
Green Networking

Figure 1.3.: Path Efficiency over Time

To trigger the changes of the network efficiency in this demo case, the following steps were
taken.

1. Change on switch s03 the HEI value from 30000 to 5000 in the resource.yaml file

Listing 1.5: Change HEI value
1 s03:
2 mac: 08:CC:00:00:00:03
3 hei:
4 - data_param: 255
5 value: 5000

2. Change on switch s13 the HEI value from 13000 to 1000 in the resource.yaml file

Listing 1.6: Change HEI value
1 s13:
2 mac: 08:EE:00:00:00:13
3 hei:
4 - data_param: 255
5 value: 1000

3. Change on switch s16 the HEI value from 16000 to 5000 in the resource.yaml file

Listing 1.7: Change HEI value
1 s16:
2 mac: 08:EE:00:00:00:16
3 hei:
4 - data_param: 255
5 value: 5000

4. Open a terminal, change the working directory into the root of the Efficiency Indicator P4
repository and enter the following command to generate the new config files

Listing 1.8: Generate New Configuration Files
1 make config

1. Demo 120 of 130

Transition v1.0
Green Networking

5. Open a terminal, change the working directory into the root of the Efficiency Indicator
Configuration Update repository and push the new config files to the BMv2 software switches

Listing 1.9: Config Update
1 python3 bmv2_updater/main.py

As can be seen in figure 1.4, the configuration is successfully updated on all switches. The
configuration update system is further described in chapter 3 in the construction part.

Figure 1.4.: Config Updater - Console Output

1.2.2. Add Invalid Aggregator on Switch s11
In this scenario, we will change an aggregator type of switch s11 in the simulation network
topology. Before we update the configuration we can see in the Unsupported Aggregator statistic
in table 1.2, that no unsupported aggregator error occurred. What do we expect, if we change
an aggregator on s11 from type 1 (SUM) to type 3 (Unsupported Aggregator)? Certainly we
expect, that errors will appear in the Unsupported Aggregator statistic.

 Information

IOAM Aggregation Option error statistics are in the Simulation Network Statistics dash-
board.

1. Demo 121 of 130

Transition v1.0
Green Networking

Before (s11, aggregator = 1) After (s11, aggregator = 3)

Table 1.2.: Aggregator Error Comparison

The Flow Error Overview statistic shown in figure 1.5 is based on the IPFIX raw data export,
which is further described in section 3.5 in the elaboration part. The raw data export not only
exports the path information of a specific flow, but also the error information, which means you
can associate the error with a specific flow or even a specific node, making debugging easier and
faster. As can be seen in figure 1.5, the unsupported aggregator set on switch s11 is also detected
by the raw data export, and it shows that an error of type Unsupported Aggregator has occurred
at the s11 error node.

Figure 1.5.: Flow Error Overview

To trigger the occurrence of unsupported aggregator errors in this demo case, the following
steps were taken.

1. Change on switch s11 the aggregator from 1 to 3 in the resource.yaml file

Listing 1.10: Set Invalid Aggregator
1 s11:
2 mac: 08:EE:00:00:00:11
3 hei:
4 - data_param: 255
5 value: 11000
6 ioam:
7 namespace_id: 10
8 node_id: 11
9 aggregators: # 1 = SUM / 2 = MIN / 4 = MAX

10 - 3 # selected if last two bits of payload size are [00]
11 - 2 # selected if last two bits of payload size are [01]
12 - 1 # selected if last two bits of payload size are [10]
13 - 4 # selected if last two bits of payload size are [11]

2. Open a terminal, change the working directory into the root of the Efficiency Indicator P4
repository.

Listing 1.11: Generate New Configuration Files
1 make config

3. Open a terminal, change the working directory into the root of the Efficiency Indicator
Configuration Update repository and push the new config files to the BMv2 software switches

Listing 1.12: Config Update
1 python3 bmv2_updater/main.py

1. Demo 122 of 130

Transition v1.0
Green Networking

If no errors occurred while updating the configuration, the console output from the config-
uration update system should look as shown in figure 1.4.

1.2.3. Change Path from h01 to h07
In this scenario, we will change the path between host h01 to host h07 in the simulation network
topology. The path update is visible in table 1.3. The paths will be adjusted that the network
traffic will traverse via the core switch s04 instead of s03. What do we expect when we change
the paths between these hosts? We expect the flow efficiency (FEI) between these hosts and the
path efficiency (PEI) will be improved because the HEI value of s04 is 26000 less than that of
s03.

Before (Path via s03) After (Path via s04)

Table 1.3.: Path Statistic Comparison

As can be seen in figure 1.6 the PEI of path s11 - s02 - s03 - s15 is much higher than the PEI
of path s11 - s02 - s04 - s15. So this optimization was good, we could almost halve PEI on the
path from host h01 to host h07.

Figure 1.6.: PEI Statistics

The following steps were performed to get the similar result from above.

1. Change the path from h01 to h07 to go via s11 - s02 - s04, s15 instead of s11 - s02 - s03
- s15 in the resource.yaml file

Listing 1.13: Change Path
1 paths:

1. Demo 123 of 130

Transition v1.0
Green Networking

2 # route from h01
3 - from: h01
4 to: h07
5 via: [s11, s02, s04, s15]
6 return_route: true

2. Open a terminal, change the working directory into the root of the Efficiency Indicator P4
repository.

Listing 1.14: Generate New Configuration Files
1 make config

3. Open a terminal, change the working directory into the root of the Efficiency Indicator
Configuration Update repository and push the new config files to the BMv2 software switches

Listing 1.15: Config Update
1 python3 bmv2_updater/main.py

If no errors occurred while updating the configuration, the console output from the config-
uration update system should look as shown in figure 1.4.

1.2.4. Route Update to Avoid Switch s03
In the current topology of the simulation network, the core switch s03 is the most inefficient
switch with an HEI value of 30000. Now we want to improve the efficiency of the entire simulation
network. How can we do this? We will change all paths that traverse the s03 switch to alternative
paths. To do this, we will change all affected paths in the resource.yaml file.

As can be seen in figure 1.7, the overall network path efficiency has improved significantly since
path optimization was pushed to the BMv2 switches, after all paths are changed to alternative
paths that were previously traversed via switch s03.

Figure 1.7.: Network Path Efficiency

The following steps were performed to get the similar result from above.

1. Change all affected paths to alternative paths in the resource.yaml file, see figure 1.1 to find
alternative paths.

2. Open a terminal, change the working directory into the root of the Efficiency Indicator P4
repository.

Listing 1.16: Generate New Configuration Files
1 make config

1. Demo 124 of 130

Transition v1.0
Green Networking

3. Open a terminal, change the working directory into the root of the Efficiency Indicator
Configuration Update repository and push the new config files to the BMv2 software switches

Listing 1.17: Config Update
1 python3 bmv2_updater/main.py

If no errors occurred while updating the configuration, the console output from the config-
uration update system should look as shown in figure 1.4.

1. Demo 125 of 130

Transition v1.0
Green Networking

2. Conclusion and Discussion

2.1. Main Purpose and Context
The primary aim of this study was to implement a fully functional use case for retrieving network
efficiency data from a computer network within a simulated environment. This was executed as a
proof of concept (PoC) to build on the green networking metrics developed in our preceding term
paper. The study focused on implementing an IPFIX (IP Flow Information Export) exporter
within the control plane of BMv2 software switches and modifying the data plane to accommodate
these changes. A key aspect was the setup of a monitoring system designed to collect and visualize
network telemetry data. This initiative was driven by the need to address sustainability concerns
within computer networking by establishing a method to make energy efficiency data visible,
thereby laying the groundwork for future reductions in the carbon footprint of global networking
infrastructure.

2.2. Review of Findings
The study yielded several significant findings:

IPFIX Export and Control Plane Impact The IPFIX export process for network telemetry data,
collected via the IOAM (In-situ Operations, Administration, and Maintenance) Aggregation
Option, demonstrated an acceptable level of overhead in the control plane. Importantly,
this overhead did not affect the data plane, ensuring that data forwarding performance
remained unimpacted. This is a notable advantage as it means that the efficiency data
can be gathered without compromising the speed and reliability of data traffic through the
network.

Improved Efficiency Indicator Processing The approach chosen in this bachelor thesis improved
the performance of efficiency indicator processing by shifting the responsibility for indicator
calculations from the data plane to the control plane. Unlike the method proposed in the
term paper, where the data plane recalculated the indicator value for every data packet, this
study’s approach involves periodic recomputation of indicator values by the control plane.
This reduces the computational burden on the data plane and enhances overall processing
efficiency, ensuring that network performance is not compromised while maintaining up-to-
date efficiency metrics.

Aggregator Selection for Path Efficiency The study implemented a mechanism for random se-
lection of aggregators at the ingress node. This approach provided a comprehensive view
of network path efficiency as well as the identification of both the most and least efficient
hops on paths. This method enhances the network’s ability to pinpoint inefficiencies and
optimize routing.

Multiple Efficiency Indicators Collection Unlike the approach suggested in the term paper, which
aggregated multiple independent efficiency values into a single indicator, this study allowed
for the collection of different efficiency indicators for different packets simultaneously. This
prevents the loss of valuable information, as each efficiency metric can now be measured
independently, offering a more granular and accurate view of network performance.

2. Conclusion and Discussion 126 of 130

Transition v1.0
Green Networking

Visualization and Routing Insights The developed visualizations offered profound insights into
network efficiency. The gathered information could be integrated into routing algorithms
as custom weights, promoting the routing of traffic through the most efficient paths. This
capability is crucial for optimizing network performance and energy usage, and ultimately
contributes to more sustainable network operations.

2.3. Implications of the Study
The implications of this study are far-reaching, particularly for the optimization of network
energy efficiency. The ability to dynamically incorporate efficiency indicators into data forwarding
processes allows for the adaptation of network operations to reduce energy consumption. For
example, network traffic can be routed through the most energy-efficient paths, while less efficient
routes can remain deactivated until required, minimizing unnecessary energy use. This approach
not only enhances the sustainability of network operations but also provides a foundation for
further advancements in energy-efficient networking practices. The study’s results underscore the
potential for increased visibility into the energy efficiency of network paths, representing a pivotal
step towards more sustainable networking infrastructure.

2.4. Limitations of the Study
Several limitations were identified in this study:

Simulated Environment Constraints The findings are currently applicable only within a simu-
lated environment. The transition from a simulated setup to real-world application poses
challenges that need to be addressed in future research.

Lack of Standardization The protocol extension used, the IOAM Aggregation Option, is not
yet standardized and therefore is not available on current network devices. This limits the
immediate applicability of the study’s findings in practical network environments.

Data Availability and Device Constraints The efficiency information available on local devices
is currently limited. There is a need for this data to be accessible through control plane
table lookups during data forwarding, a capability not yet widely implemented.

Practical Design of Efficiency Indicators The study did not explore how the efficiency indicators
need to be designed to be practically usable. This is an important aspect for the future
application of these metrics in real-world network optimization.

Scalability and ISP Network Analysis The study did not investigate the scalability of ISP net-
works or whether each individual link within these networks is always necessary. Under-
standing these factors is crucial for the broader application of the study’s findings.

2.5. Recommendations for Future Research
Design of Practical Efficiency Metrics Future research should focus on designing efficiency met-

rics that can be effectively used to reduce the carbon footprint of ISP networks. This in-
cludes understanding how these metrics can be integrated into existing network management
practices.

2. Conclusion and Discussion 127 of 130

Transition v1.0
Green Networking

Standardization Efforts Efforts should be made to push for the standardization of the IOAM
Aggregation Option at the IETF. This will make the protocol extension usable on net-
work devices in the foreseeable future, facilitating broader adoption of the study’s proposed
solutions.

Collaboration with Device Vendors Initiating collaborations with network device vendors is cru-
cial for translating the concepts tested in a simulated environment to physical production
switches. Such partnerships will help in understanding the practical challenges and require-
ments for implementing the proposed solutions in real-world networks.

2.6. Conclusion
This study has made significant contributions to the field of sustainable networking by demon-
strating that it is feasible to retrieve detailed energy efficiency data from computer networks in
a simulated environment. The findings highlight the potential for significant improvements in
network efficiency without impacting performance, paving the way for more sustainable network-
ing practices. Despite the limitations and the need for further research, the study establishes a
strong foundation for future work aimed at reducing the carbon footprint of global networking
infrastructure. The insights gained from this research mark an important step towards building
a more energy-efficient and environmentally responsible network infrastructure.

2. Conclusion and Discussion 128 of 130

Transition v1.0
Green Networking

Bibliography

[1] 9.2. Adding a basic dissector. url: https://www.wireshark.org/docs/wsdg_html_chunked/
ChDissectAdd.html (visited on 06/02/2024).

[2] Paul Aitken, Benoît Claise, and Brian Trammell. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. Request for Comments
RFC 7011. Num Pages: 76. Internet Engineering Task Force, Sept. 2013. doi: 10.17487/
RFC7011. url: https://datatracker.ietf.org/doc/rfc7011 (visited on 03/23/2024).

[3] Alexander Clemm and Laurent Metzger. Aggregation Trace Option for In-situ Operations,
Administration, and Maintenance (IOAM). Internet Draft draft-cxx-ippm-ioamaggr-00. Num
Pages: 9. Internet Engineering Task Force, Oct. 2023. url: https://datatracker.ietf.org/
doc/draft-cxx-ippm-ioamaggr (visited on 03/23/2024).

[4] Alexander Clemm et al. Green Networking Metrics. Internet-Draft draft-cx-opsawg-green-
metrics-02. Work in Progress. Internet Engineering Task Force, Mar. 2024. 26 pp. url:
https://datatracker.ietf.org/doc/draft-cx-opsawg-green-metrics/02/.

[5] Docker Compose overview. en. 100. url: https://docs.docker.com/compose/ (visited on
06/03/2024).

[6] Kenneth Duda and Arista Networks. “Programmable Network Devices: One Vendor’s Per-
spective”. In: (May 2022). url: https://opennetworking.org/wp-content/uploads/2022/
05/Programmable-Network-Devices_-One-Companys-View-2022.pdf.

[7] FURPS. In: Wikipedia. Page Version ID: 1110147882. Sept. 13, 2022. url: https ://en.
wikipedia.org/w/index.php?title=FURPS&oldid=1110147882 (visited on 11/01/2023).

[8] In Situ OAM (IOAM). url: https://www.iana.org/assignments/ioam/ioam.xhtml (visited
on 12/10/2023).

[9] InfluxDB Buckets. url: https://docs.influxdata.com/influxdb/v2/admin/buckets/ (visited
on 05/20/2024).

[10] IP Flow Information Export (IPFIX) Entities. url: https://www.iana.org/assignments/
ipfix/ipfix.xhtml (visited on 03/23/2024).

[11] P4 architecture. P4 Programming Language. Feb. 23, 2022. url: https://forum.p4.org/t/p4-
architecture/246 (visited on 06/05/2024).

[12] P4~16~ Language Specification. url: https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
(visited on 06/06/2024).

[13] Risk Matrix. url: https://en.wikipedia.org/wiki/Risk_matrix (visited on 03/24/2024).
[14] Mickey Spiegel et al. IOAM raw data export with IPFIX. Internet Draft draft-spiegel-ippm-

ioam-rawexport-07. Num Pages: 22. Internet Engineering Task Force, Feb. 2024. url: https:
//datatracker.ietf.org/doc/draft-spiegel-ippm-ioam-rawexport-07 (visited on 03/23/2024).

[15] telegraf/plugins/inputs/netflow/README.md at release-1.30 · influxdata/telegraf. en. url:
https : / / github . com / influxdata / telegraf / blob / release - 1 . 30 / plugins / inputs / netflow /
README.md (visited on 05/30/2024).

Bibliography 129 of 130

https://www.wireshark.org/docs/wsdg_html_chunked/ChDissectAdd.html
https://www.wireshark.org/docs/wsdg_html_chunked/ChDissectAdd.html
https://doi.org/10.17487/RFC7011
https://doi.org/10.17487/RFC7011
https://datatracker.ietf.org/doc/rfc7011
https://datatracker.ietf.org/doc/draft-cxx-ippm-ioamaggr
https://datatracker.ietf.org/doc/draft-cxx-ippm-ioamaggr
https://datatracker.ietf.org/doc/draft-cx-opsawg-green-metrics/02/
https://docs.docker.com/compose/
https://opennetworking.org/wp-content/uploads/2022/05/Programmable-Network-Devices_-One-Companys-View-2022.pdf
https://opennetworking.org/wp-content/uploads/2022/05/Programmable-Network-Devices_-One-Companys-View-2022.pdf
https://en.wikipedia.org/w/index.php?title=FURPS&oldid=1110147882
https://en.wikipedia.org/w/index.php?title=FURPS&oldid=1110147882
https://www.iana.org/assignments/ioam/ioam.xhtml
https://docs.influxdata.com/influxdb/v2/admin/buckets/
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://forum.p4.org/t/p4-architecture/246
https://forum.p4.org/t/p4-architecture/246
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://en.wikipedia.org/wiki/Risk_matrix
https://datatracker.ietf.org/doc/draft-spiegel-ippm-ioam-rawexport-07
https://datatracker.ietf.org/doc/draft-spiegel-ippm-ioam-rawexport-07
https://github.com/influxdata/telegraf/blob/release-1.30/plugins/inputs/netflow/README.md
https://github.com/influxdata/telegraf/blob/release-1.30/plugins/inputs/netflow/README.md

Green Networking v 1.0

[16] telegraf/plugins/processors/starlark/README.md at release-1.30 · influxdata/telegraf. en.
url: https : //github . com/ influxdata/telegraf/blob/release - 1 . 30/plugins/processors/
starlark/README.md (visited on 06/05/2024).

[17] Wireshark: Testy, Virtual(-izable) Buffers. url: https://www.wireshark.org/docs/wsar_
html/group__tvbuff.html (visited on 06/02/2024).

Bibliography 130

https://github.com/influxdata/telegraf/blob/release-1.30/plugins/processors/starlark/README.md
https://github.com/influxdata/telegraf/blob/release-1.30/plugins/processors/starlark/README.md
https://www.wireshark.org/docs/wsar_html/group__tvbuff.html
https://www.wireshark.org/docs/wsar_html/group__tvbuff.html

	Abstract
	Management Summary
	Introduction
	Project Objectives and Solution
	Value of the Solution
	Conclusion

	Acknowledgement
	Important Terms and Abbreviations
	Introduction
	Background
	Thesis Composition
	Inception
	Elaboration
	Construction
	Transition
	Appendix

	Inception
	Initial Situation
	The Need for Energy Efficiency Metrics
	Previous Work and Proposed Solutions
	Industry Insights and External Contributions
	Optimizing and Expanding on Previous Work
	Leveraging Modern Technologies for Data Management

	Requirements
	Functional Requirements
	Epics
	User Stories

	Non Functional Requirements

	Risk Assessment
	Technical Risks

	Elaboration
	Efficiency Indicators
	Definitions
	Efficiency Indicator Processing
	Processing in Data Plane
	Processing in Control Plane

	Limitations
	Data Plane Extensibility (Production Devices)
	Control Plane Extensibility (Production Devices)
	PoC Environment

	System Overview
	Network Virtualization System
	Network Topology
	Development Network Topology
	Simulation Network Topology
	Links Inside the Autonomous System
	Router Types
	IP Addressing

	Configuration Generator
	Requirements
	Configuration Generation Process
	Network Virtualization System Startup
	Configuration Update

	Resource Definition

	Traffic Generator
	Requirements
	Traffic Generator Startup
	Configuration
	Logfiles

	Programmable Network Switch
	IP Flow Information Export (IPFIX) Protocol
	Templates
	Aggregated Data Export
	Raw Data Export

	Caches

	Design Decisions

	Monitoring System
	IPFIX Collector
	Time Series Database
	Query Language
	Buckets

	Monitoring Dashboard
	Dashboards

	Design Decisions

	Configuration Update System
	Requirements
	Configuration Update Process
	Design Decisions

	Construction
	Network Virtualization System
	Resource Definition
	Path Specification
	Host Specification
	Switch Specification
	Tables Specification

	Configuration Generator
	Mininet Topology
	Link Discovery Algorithm

	BMv2 Runtime
	Forwarding Information Translation Algorithm

	Traffic Generator Configuration

	Traffic Generator
	Functionality
	Command Line Parameters

	Start Traffic Generator on Mininet Host
	Storage Starvation Issue

	BMv2 IPFIX Extension
	Challenges
	Exposal of Extern Function to Data Plane
	IPFIX Extension as BMv2 Plugin
	Concurrent Access on Cache Data Structures
	Background Task for Regular Export
	IPFIX Message Transmission

	Caches
	Aggregated Data Export
	Raw Data Export

	Export Mechanism
	Aggregated Data Export
	Raw Data Export

	IPFIX Messages in Wireshark
	Template Set Message
	Data Set Message

	Monitoring System
	Getting Started
	IPFIX Collector - Telegraf
	Input Plugins
	Processor Plugins
	Output Plugins

	Time Series Database - InfluxDB
	Buckets
	Tags and Fields
	InfluxDB Web-UI
	InfluxDB Web-UI Query Builder

	InfluxDB Web-UI Script Editor

	Dashboard - Grafana
	Provisioning
	Datasource
	Dashboard Settings

	Flux Query Syntax Elements
	Flux Query Examples
	End to End Flow Efficiency Matrix - Query
	Inefficient Hop Discovery (Relative) - Query

	Docker
	Docker Compose
	InfluxDB
	Telegraf
	Grafana
	Volumes
	Delete Volumes

	Environment Variables
	Network

	Configuration Update System
	Getting Started
	Installation
	Configuration
	Defaults
	Inventory

	Implementation Details
	Update Process
	Configuration Validation

	Data Plane Optimizations
	P4 Introduction
	The Modifications at a Glance
	Egress Pipeline Structure
	Processor Responsibilities

	Efficiency Indicator Processing
	Term Paper Implementation
	Bachelor Thesis Implementation
	Aggregator Selection

	IOAM Aggregation Option Error Handling
	IPFIX Export
	Extern Function
	Processor

	Wireshark Dissector
	Dissector as Plugin
	Built-in Dissector
	Add Option Type
	Add Header Fields
	Add Subtree Fields
	Add Sub-Dissector
	Function Signature
	Add Item to Tree
	Add Bitmask to Tree

	Register Dissector
	Register Header Fields
	Register Subtree Fields

	Transition
	Demo
	Getting Started
	Network Virtualization System
	Monitoring System
	Configuration Update System
	Installation
	Configuration

	Update Scenarios
	Change HEI on Switches s03, s13, s16
	Add Invalid Aggregator on Switch s11
	Change Path from h01 to h07
	Route Update to Avoid Switch s03

	Conclusion and Discussion
	Main Purpose and Context
	Review of Findings
	Implications of the Study
	Limitations of the Study
	Recommendations for Future Research
	Conclusion

	Bibliography

