
Bachelor Thesis

Dynamic Pentest Lab Frame-

work

Building an Azure Pentest Deployment Frame-

work

14. June 2024

Authors: Janosch Bühler, Samuel Maissen,

Dante Suwanda

Supervision: Ivan Bütler

Project Partner: Hacking-Lab AG

Abstract

In collaboration with Hacking-Lab AG and under the guidance of Ivan Bütler at
the Department of Computer Science, Ostschweizerische Fachhochschule (OST), this
thesis presents the development of the Dynamic Pentest Lab Deployment Generator,
designed to facilitate the creation and deployment of cybersecurity penetration testing
environments. The project addresses the need for flexible, easily deployable lab en-
vironments tailored to specific scenarios, streamlining the process for cybersecurity
professionals and educators.

The framework elaborated, leverages modern infrastructure-as-code tools and cloud
services to automate the deployment of virtual labs. Key components include Ter-
raform for infrastructure management, Django for backend operations, and Angular
with TailwindCSS and DaisyUI for the frontend interface. A centralized source has
been established via a JavaScript Object Notation (JSON) Model, streamlining ex-
tension and enabling dynamic content hydration for the frontend. This approach
guarantees a scalable and maintainable application.

The fundamental aspects of the framework involve the creation and deployment of labs
to provide snapshots for quicker deployments for end-users, along with the capability
to save and reload pre-designed labs. The lab creation process allows the configuration
of Virtual Machines (VMs) and containers, the establishment of subnets and firewall
rules to control communication, and also supports custom installations using private
repositories or customized Docker images. Additionally, the framework automatically
sets up an OpenVPN Server to facilitate secure access to the penetration testing lab.
These features enable cybersecurity educators to construct complex, customized net-
worked environments for educational use.

While the project effectively establishes a solid foundation, there remains room for
enhancement, particularly in the realms of access technology and user experience.
Additionally, the integration of the existing deployment manager directly into the
generator application should be considered.

In summary, it can be concluded that a robust foundation has been established for the
framework that leverages existing architecture, thereby ensuring a smooth incorpora-
tion into the Hacking-Lab platform.

Keywords: Pentesting, Hacking-Lab, Infrastructure as Code

ii

Acknowledgments

We would like to express our appreciation to the individuals below for their assistance
with this bachelor thesis:

Ivan Bütler for the supervision and guidance during the course of this thesis.

Hannes Badertscher for providing the OSTReport Latex template.

iii

Contents

1 Management Summary 1

1.1 Initial Situation . 1
1.2 Procedure and Technologies . 2
1.3 Results . 3
1.4 Implications . 4
1.5 Conclusion . 4

2 Introduction 5

3 Requirements 8

3.1 Functional Requirements . 8
3.1.1 Roles . 10
3.1.2 Epics . 10
3.1.3 User Stories . 11

3.2 Non-Functional Requirements . 31
3.2.1 Functional Suitability . 31
3.2.2 Reliability . 31
3.2.3 Compatibility . 32
3.2.4 Security . 32
3.2.5 Portability . 33
3.2.6 Maintainability . 34
3.2.7 Costs . 34
3.2.8 Usability . 35
3.2.9 Tracking of the NFRs . 35

4 Design / Architecture 36

4.1 Domain Model . 36
4.2 System Overview . 38
4.3 Azure Lab Architecture . 44

4.3.1 Base Infrastructure . 45
4.3.2 Core Resources . 46
4.3.3 Additional Resources . 46
4.3.4 Resource Naming . 47

4.4 Backend Architecture . 49
4.4.1 Core Components . 49

iv

Contents Contents

4.4.2 Key Interactions and Workflows 50
4.4.3 Scalability and Maintainability . 51

4.5 JavaScript Object Notation (JSON) Model 51
4.6 Frontend Architecture . 53

4.6.1 Conceptual Mockup . 53
4.6.2 Final Architecture . 56

4.7 Architectural Decision Records . 59
4.7.1 ADR: 001 - Web Framework Backend 59
4.7.2 ADR: 002 - Web Framework Frontend 60
4.7.3 ADR: 003 - Frontend Graph Framework 62
4.7.4 ADR: 004 - Frontend CSS Framework 63
4.7.5 ADR: 005 - Repository Structure 65
4.7.6 ADR: 006 - VM Customized Installation 66
4.7.7 ADR: 007 - Public Docker Images 67
4.7.8 ADR: 008 - Private Hacking-Lab (HL) Docker Images 69
4.7.9 ADR: 009 - Restict Communication between Resources 70
4.7.10 ADR: 010 - Container Deployment 72
4.7.11 ADR: 011 - Persistence of Labs . 76
4.7.12 ADR: 012 - Terraform Templating 77
4.7.13 ADR: 013 - Student Access to the Lab 78
4.7.14 ADR: 014 - Authentication Frontend 79
4.7.15 ADR: 015 - Authentication Backend 81
4.7.16 ADR: 016 - DNS Resolution . 82

5 Technologies 84

6 Quality measures 86

6.1 Git Workflow . 86
6.2 Code Quality . 87
6.3 Static Code Analysis . 88
6.4 CI/CD Pipeline . 88

6.4.1 Backend . 88
6.4.2 Frontend . 89

6.5 Testing Strategy . 90
6.5.1 Unit Tests . 90
6.5.2 Integration Testing . 91
6.5.3 End-to-end testing . 93

7 Implementation 94

7.1 Frontend . 94
7.1.1 General . 94
7.1.2 Maintability . 95
7.1.3 Development Setup . 97
7.1.4 Pages . 98

v

Contents Contents

7.1.5 Components . 101
7.1.6 Services . 107
7.1.7 Styling . 110

7.2 Backend . 111
7.2.1 General . 111
7.2.2 Basic Setup and Structure . 111
7.2.3 Software . 111
7.2.4 Django Applications . 112

7.3 Deployment with Terraform . 121
7.3.1 Terraform Structure . 121
7.3.2 Templating Methodologies . 122
7.3.3 Data Management . 125
7.3.4 Resource Information . 126
7.3.5 Baseline Deployment . 127
7.3.6 Virtual Machine Deployment . 132
7.3.7 Virtual Machine Snapshot Technology 133
7.3.8 Virtual Machine Custom Installations 135
7.3.9 Container Deployment . 139
7.3.10 Network Restrictions . 142

7.4 Adjustments Deployment Manager . 145

8 Results 148

9 Conclusion and Outlook 152

10 Personal Reports 156

List of Figures 159

List of Tables 160

List of Listings 162

Bibliography 164

vi

Management Summary 1

1.1 Initial Situation

In today’s digital age, the significance of cybersecurity cannot be overstated, given the
escalating reliance on technology and internet by the society. Traditionally, creating
environments to test the security of computer systems, known as Penetration Testing
(pentest) labs, has been a labor-intensive and time-consuming process. This thesis aims
to address these challenges by developing a Dynamic Pentest Lab (DPL) deployment
generator, streamlining the setup and management of these labs.

The primary objective of this project was to develop a system capable of automatically
creating and managing pentesting labs. This system is designed to be user-friendly
and efficient, reducing the manual effort required and enabling cybersecurity profes-
sionals to focus more on the concept and potential learnings of a lab rather than the
setup process. The setup process should facilitate easy assembly of multi-network
environments through an interface, similar to Visio [1], involving Virtual Machines
(VMs) and containers. Moreover, the system should allow customization of these
resources, including the communication restrictions between them as well as applying
custom installation scripts. By automating the deployment and configuration of pen-
testing environments, the project aims to streamline the workflow for cybersecurity
educators to develop and deploy pentest labs in an automated way. It eliminates
the recurring need for building static deployments and the requirement for cloud
deployment knowledge in every instance. Additionally, the system is intended to
support a wide range of testing scenarios, making it versatile and adaptable to various
cybersecurity training and operational needs.

1

1.2 Procedure and Technologies

One of the first tasks of this thesis was to analyze the fundamental components and
requirements using Architecture Decision Records (ADRs) [2], followed by developing
relevant prototypes. Based on these findings, the following core components were
established:

Backend: Django [3], is a versatile web framework and was used to handle server-side
operations, database interactions, and implementing the core functionalities.

Frontend: Angular [4] was chosen for building the dynamic and interactive user
interface, making the lab configuration and deployment process straightforward for
the end users. In regard to the graphical component, where resources can be created
and integrated in a visio-like manner, the vis-network framework [5] was utilized.

Integration: The product is designed to be seamlessly integrated into Hacking-Lab
(HL) [6]. This integration allows lab-creators to log in with their HL credentials, con-
figure their labs, deploy them with minimal effort, and make them readily accessible
to users.

Infrastructure Automation: Terraform [7], a tool that automates the setup and man-
agement of infrastructure, was chosen to dynamically parse and construct all the
resources configured by the pentest lab-creator and deploy them to Azure [8], which
is Microsoft’s cloud computing platform.

Container Infrastructure: To support container deployment, the comprehensive solu-
tion necessitated the employment of an Azure Kubernetes Cluster [9], which will be
dynamically configured for each deployed lab.

Custom VM Installations: For the facilitation of custom installations, the option to
use Github [10] repositories for further custom installations was established.

Custom Docker Images: To enable the usage of custom images and pre-existing
HL Docker images from private repositories, the ability to define a custom private
repository with authentication tokens was incorporated.

VPN Access to Lab: To provide secure access to the pentest lab via Virtual Private
Network (VPN), the decision has been made to employ an OpenVPN [11] container-
based solution.

DNS Resolution: To faciliate Domain Name System (DNS) resolution for the lab the
decision was made to use Cloudflare [12] for the management of the root domain and
Azure Public DNS Zone for the subdomains associated with individual labs.

Restriction of Communication: Benefiting from Azure’s ability to define precise
security rules within security groups, these capabilities have been leveraged to facilitate
network segmentation and to limit communication between segments, effectively
replicating real-world network conditions.

2

Distribution of Multiflags and Credentials: To ensure the integrity of challenge-
solving and prevent the sharing of flags, a solution was established in the Terraform
deployment to facilitates dynamic flag distribution and credential management. This
integration aids in generating credentials and injecting the multiflags and credentials
into the virtual machines and containers.

In addition to the examination of core components, a domain analysis of the application
was conducted, involving the definition of a domain model and corresponding user
stories. The architecture of the application was formulated using C4 architecture
diagrams [13], and the Azure architecture for the lab cloud deployment was detailed,
incorporating the resources and naming conventions to be utilized. Additionally, the
creation of mockups for the frontend was carried out to visualize and plan the user
interface effectively.

1.3 Results

The result is a fully functional dynamic pentest lab deployment generator that au-
tomates the setup of pentest environments. This system simplifies the process sig-
nificantly, making it accessible and efficient for cybersecurity training. Lab-creators
can now quickly create, customize, and deploy labs tailored to their specific needs,
drastically reducing the time and effort previously required.

Key features of the system include:

■ Resource Creation: Lab-creators can create various resources such as VMs,
subnets, and containers, customizing them to fit specific testing scenarios.

■ Lab Portability: The system allows users to save, load, and export labs, facilitat-
ing the reuse and sharing of lab configurations.

■ Snapshot Capabilities: The state of the lab is snapshot after the initial deploy-
ment, ensuring that further deployments for the students are quick.

■ User-Friendly Interface: The frontend provides a graphical interface that sim-
plifies the configuration and deployment process, making it accessible even to
users with limited technical expertise especially when it comes to Terraform [7].

3

1.4 Implications

The implementation of this generator has significant implications for creating pentest
labs:

■ Efficiency: Automation reduces the time and resources needed for lab setup,
allowing cybersecurity professionals to focus more on testing and analysis.

■ Accessibility: By simplifying the deployment process, the tool makes advanced
cybersecurity testing more accessible to a broader range of users, including
educators and students.

■ Integration: The Generator is integrated into the HL environment and enriches
the existing infrastructure.

1.5 Conclusion

In conclusion, this work has successfully developed a deployment framework that
addresses the inefficiencies of traditional lab setup methods. By integrating modern
technologies and adhering to best practices, the project has produced a valuable
tool for creating and managing pentest labs. This project highlights the importance
of innovation and automation in cybersecurity training, ensuring that experts can
concentrate on developing course content without being hindered by the technical
complexities of lab setup.

Reflecting on the results, the DPL deployment generator meets the initial goals set
out in the project’s objectives. It effectively automates the creation and management
of pentest labs, significantly reducing the time and effort required for setup and
maintenance. This system not only simplifies the process but also provides robust
features such as resource creation, lab portability, snapshot capabilities, and a user-
friendly interface which does not require knowledge about cloud deployments.

However, while this thesis has achieved significant milestones, there are areas that
could benefit from further development. For instance, enhancing the backend to sup-
port more comprehensive error handling and incorporating additional user-experience
features in the frontend would improve overall usability and reliability. The frontend,
although functional, could be polished to offer a more intuitive and visually appealing
interface.

Future developments could also explore integrating Transport Layer Security (TLS) for
containers using automated certificate management solutions like Let’s Encrypt [14].
Additionally, considering alternative access methods like Azure Virtual Desktop could
offer more flexibility, particularly in corporate environments where VPN usage might
be restricted.

4

Introduction 2
Hacking-Lab (HL) is a platform that provides ethical hacking for educational purposes.
The overall goal is to promote awareness in the field of hacking and security. The
corresponding challenges are developed in the format of a Capture The Flag scenario.

As it stands, HL leverages Terraform deployments to establish comprehensive pentest
labs in Azure, enabling students to deploy labs using the HL’s proprietary Deploy-
ment Manager for the corresponding challenge. However, beyond the Deployment
Manager, which executes these static Terraform Deployments, there is an absence of a
standardized procedure for developing these lab deployments.

Each lab, or respective its corresponding Terraform deployment, is static and manually
developed to suit a specific use-case. This approach, however, involves a time-intensive
process that necessitates manual interventions and several procedures, including
the manual creation of snapshots for each lab. It also calls for time dedicated to
debugging the Terraform deployment. Additionally, it expects the lab-creator to
possess knowledge of cloud deployments, adding another layer of complexity to the
process.

For understanding of today’s procedure, reference will made to the Figure 2.1. The
lab designer or challenge developer manually deploys the static lab to Azure, then
individually installs the necessary custom software on each Virtual Machine (VM).
Once the installation is complete, the designer may incorporate static flags into the
components, which remain the same for all students. Subsequently, manual snapshots
of the lab are created. This is followed by the adjustment of the Terraform deployment
to utilize these specific snapshots. The Terraform deployment is then incorporated
into the Deployment and a dockerfiles.tar.gz file is generated for the purpose of
adding the deployment to the challenge. Students can then initiate the deployment
via the challenge and proceed to solve the lab.

5

Figure 2.1 Manual Pentest Creation System-Context

The objective of this thesis is to develop a web application that automates the deploy-
ment and configuration of custom pentest labs, integrating them into the existing
HL infrastructure. The project aims to replace the existing labor-intensive manual
processes with a Visio-like tool that defines the basic infrastructure of a corporate IT
network, generating configurations for deployment via Terraform [7].

The solution outlined in Figure 2.2 should simplify the creation of network setups with
multiple subnets, deployment of VMs (Linux, Windows), and container services using
the Visio-like tool instead of manually developing the Terraform configuration. It also
needs to include Virtual Private Network (VPN) access for students, a firewall-like
component to manage communication between resources, and Domain Name System
(DNS) resolution for these resources. The tool should offer the ability to use existing
HL Docker [15] images and allow VMs to be customized in order to create Capture
The Flag (CTF) challenges. It also has to provide options for distributing dynamic
flags and setting static or dynamic passwords, enhancing the educational value and
uniqueness of the labs. Adjustments to the existing Deployment Manager should

6

facilitate the execution of the generated Terraform scripts and dynamically provide
specific lab information crucial for the pentest scenarios.

Figure 2.2 Dynamic Pentest Generator System-Context

The thesis has an allocation of 1080 hours in total and qualifies for twelve European
Credit Transfer System (ECTS) credits for each participant.

7

Requirements 3
In this chapter, in-depth requirements are defined that provide the foundation for the
development of the application. User stories, epics, and Non-Functional Requirements
(NFRs) are employed to effectively define these requirements.

3.1 Functional Requirements

User stories and epics are utilized to define functional requirements. Epics serve
to group user stories into broader, more comprehensive requirements. Additionally,
developer stories are defined to cater to non-business-related requirements.

The user stories were derived from the initial task description, which can be found in
the appendix. In Figure 3.1 a high-level overview of the stories is provided in the form
of a use-case diagram.

8

Figure 3.1 Use-Case Diagram

9

3.1.1 Roles

In the Generator domain, the role lab-creator refers to the central role within the
application. The Generator application is used by the lab-creator to generate and
configure custom Penetration Testing (pentest) labs.

3.1.2 Epics

The business requirements are defined by the following epics. Additionally, there are
administrative/dev epics for general administration, documentation, deployment, and
infrastructure tasks. These epics are not further described here.

Core
This epic focuses on the fundamental functionalities of the system. It includes the basic
creation of defined resources without customization, forming the core foundation of
the application.

Lab Portability
Lab portability is the primary focus of this epic, allowing users to save, load, and
export labs for future use or sharing. It aims to enhance the flexibility and mobility of
created labs.

Lab Deployment
The objective of lab deployment is to streamline the process of deploying the designed
labs to Azure to test their functionality. It also focuses on the creation of lab snapshots,
which capture the state of a lab after custom installation. It enables students to deploy
the generated lab more quickly in order to reduce deployment time.

Resource Configuration
Resource configuration aims to provide lab-creators with the ability to customize
specific attributes of lab resources. This includes configuring properties such as custom
sizes, credentials, and other parameters. Additionally, it allows for communication
restrictions via the implementation of firewall rules.

Resource customization
Resource customization extends beyond basic configuration by allowing users to utilize
their own installation scripts stored in a own Git [16] repository. This enables the
installation of specific software or the customization of resources through tailored
scripts.

Authentication
This epic focuses on integrating HL Single Sign-On (SSO) to enhance security and
streamline user authentication.

Lab validation
Lab validation is essential for ensuring the correctness and compatibility of created labs.

10

This epic focuses on providing checks to validate the integrity of the user-designed
labs.

3.1.3 User Stories

User Stories are initially drafted in a basic format with minimal details. However,
during sprint planning sessions, each user story is thoroughly elaborated, adding
comprehensive details and specifications for the sprint.

User Story Structure
A user story is defined with following properties:

■ Name

■ User Story: As a role I want to goal

■ Epic

■ Acceptance criteria

■ Technical acceptance criteria

11

Create Subnets Resources

Name Create Subnets Resources
User Story As a lab-creator I want to create network subnets in my lab in order

to model a multi-subnet environment.
Epic Core

Acceptance
Criteria

■ The network resource subnet can be selected.

■ Subnets can be selected and added to the canvas.

■ A custom label can be added to the subnet.

Technical
Acceptance
Criteria

■ Subnet range is dynamically calculated in the backend.

■ A subnet resource is identified by a unique name.

■ The backend provides a prefix for the unique name.

■ The frontend extends the provided name prefix with an unique
number.

■ The subnet class is implemented in the backend.

■ The class can dynamically be mapped to a Subnet resource in
the frontend.

■ The subnet data structure/class is built in a way that allows for
easy extension with additional attributes.

■ The subnet objects can be parsed by the parser service into
valid tfvars variables.

■ The Terraform [7] definition facilitates the dynamic creation of
subnets, based on the provided configuration.

Table 3.1 User Story: Create Subnets Resources

12

Create Virtual Machine Resources

Name Create Virtual Machine Resources
User Story As a lab-creator I want to create VMs in my lab.
Epic Core

Acceptance
Criteria

■ The resource VM can be selected.

■ VMs can be selected and added to the canvas.

Technical
Acceptance
Criteria

■ The VM class is implemented in the backend.

■ The class can dynamically be mapped to a VM resource in the
frontend.

■ A VM resource is identified by an unique name.

■ The backend provides a prefix for the unique name to the
frontend.

■ The frontend extends the provided name prefix with an unique
number.

■ The VM data structure/class is built in a way that allows for
easy extension with additional attributes.

■ The VM objects can be parsed by the parser service into valid
tfvars variables.

■ The Terraform definition facilitates the dynamic creation of
VMs, based on the provided configuration.

Table 3.2 User Story: Create Virtual Machine Resources

13

Create Container Resources

Name Create Container Resources
User Story As a lab-creator I want to create VMs in my lab.
Epic Core

Acceptance
Criteria

■ The resource container can be selected.

■ The container resource can be selected and added to the can-
vas.

Technical
Acceptance
Criteria

■ A container resource is identified by an unique name.

■ The backend provides a prefix for the unique name.

■ The frontend extends the provided name prefix with an unique
number.

■ The container class is implemented in the backend.

■ The class can be mapped to a container resource in the fron-
tend.

■ The container data structure/class is built in a way that allows
for easy extension with additional attributes.

■ The container objects can be parsed by the parser service into
valid tfvars variables.

■ The Terraform definition facilitates the dynamic creation of
containers, based on the provided configuration.

Table 3.3 User Story: Create Container Resources

14

Create Connection between Resources

Name Create Connection between Resources
User Story As a lab-creator I want to create connections between subnets and

virtual machines or containers.
Epic Core

Acceptance
Criteria

■ VMs/containers can be assigned to subnets

■ Connection between subnets and virtual machines/containers
can be drawn.

Technical
Acceptance
Criteria

■ VMs/containers can only be assigned to one a single subnet

■ The logic implemented in the frontend, configures the corre-
sponding subnet to the virtual machine/ container when a
connection is drawn

■ Containers can only be connected to Kubernetes subnets, and
virtual machines can only be connected to VM subnets.

Table 3.4 User Story: Create Connection between Resources

15

Access to the Lab via VPN

Name Access to the Lab via VPN
User Story As a lab-creator, I want to automatically provide access to the lab

through a VPN.
Epic Core

Acceptance
Criteria

■ Deployment of VPN access is automatically set up per lab.

■ Ability to connect to the lab using a VPN.

■ Each lab has a unique VPN profile with unique access keys.

■ The VPN connection provides compatibility with the Kookarai
environment.

Technical
Acceptance
Criteria

■ Core Terraform deployment to dynamically setup VPN.

■ VPN profiles and access keys are generated automatically and
uniquely

■ VPN profile is written to Terraform output

■ VPN profile is downloadable from Deployment Manager

Table 3.5 User Story: Access to the Lab via VPN

Subnet Configuration

Name Subnet Configuration
User Story As a lab-creator I want to be able to configure the subnet with

specific properties.
Epic Resource Configuration

Acceptance
Criteria

■ A custom label can be defined for the subnet

Technical
Acceptance
Criteria

■ A custom label attribute for the subnet class is implemented

Table 3.6 User Story: Subnet Configuration

16

Container Configuration

Name Container Configuration
User Story As a lab-creator I want to be able to configure the container

deployment with specific properties.
Epic Resource Configuration

Acceptance
Criteria

■ Image can be defined

■ Ports to expose can be defined.

■ Environment variables can be defined.

■ CPU and memory requests can be defined.

Technical
Acceptance
Criteria

■ Configuration mask in fronted for image, port, CPU/memory
requests and enviromental variables.

■ The container class is expanded by this properties.

Table 3.7 User Story: Container Configuration

17

Virtual Machine Configuration

Name Virtual Machine Configuration
User Story As a lab-creator I want to be able to configure the VM with specific

properties.
Epic Resource Configuration

Acceptance
Criteria

■ Publisher, offer and SKU can be defined.

■ Disk size can be defined.

■ Admin user and password can be defined.

Technical
Acceptance
Criteria

■ Configuration mask in frontend for publisher, offer and SKU
and disksize.

■ The available publisher, offer and SKU are directly pulled from
Azure API and are displayed as dropdow.

■ The Terraform definition facilitates the dynamic creation of
VMs, based on the provided configuration.

Table 3.8 User Story: Virtual Machine Configuration

18

Firewall Configuration

Name Firewall Configuration
User Story As a lab-creator I want to be able to restrict or allow traffic between

resources.
Epic Resource Configuration

Acceptance
Criteria

■ Central firewall in frontend with table like view to define rule-
set.

■ Ability to restrict/allow traffic from VPN to subnets, VMs and
containers.

■ Ability to restrict/allow traffic between subnets and subnets.

■ Ability to restrict/allow traffic from VMs and containers to
subnets.

■ Ability to restrict/allow traffic from subnets to VMs and con-
tainers.

■ Ability to restrict on protocol basis UDP/TCP

■ Ability to restrict on port basis.

Technical
Acceptance
Criteria

■ A rule is identified by an unique name.

■ The backend provides a prefix for the unique name.

■ The frontend extends the provided name prefix with an unique
number.

■ The rule class is implemented in the backend.

■ The class can be mapped to a rule resource in the frontend.

■ The rule data structure/class is built in a way that allows for
easy extension with additional attributes.

■ The rule objects can be parsed by the parser service into valid
tfvars variables.

■ The Terraform definition facilitates the dynamic creation of
security groups and security rules, based on the provided con-
figuration to grant or restrict access.

Table 3.9 User Story: Firewall Configuration

19

Custom Installation Repositories

Name Custom Installation Repositories
User Story As a lab-creator I want to be able to have a template custom

configuration repository.
Epic Resource Customization

Acceptance
Criteria

■ A template repository is available which can be cloned.

■ It should include two example scripts for the custom installation
and post installation.

Technical
Acceptance
Criteria

■ A template repository for Windows and Linux is available.

■ It concludes an example install script which has error handling
in place and samples on how to retrieve custom credentials
applied to the virtual machine.

■ It concludes an example of post-install script with samples
about multiflag retrieval.

Table 3.10 User Story: Custom Installation Repositories

20

Customized Installations VM

Name Customized Installations VM
User Story As a lab-creator I want to be able to specify a Github repository for

each VM which contains custom installation scripts.
Epic Resource Customization

Acceptance
Criteria

■ Ability to specify Github repository and credentials to it.

■ Ability to include install scripts which are executed before the
lab is snapshotted as well as post install scripts which are
executed after a student deploys his own instance of the lab.

Technical
Acceptance
Criteria

■ When running Terraform it can access and download the Github
repositories by using a specified access token.

■ The custom configuration needs to run for either Linux or
Windows.

■ Terraform executed the install script depending on the OS.

■ The install script is executed before the creation of snapshots

■ After snapshots are performed or a student deploys the lab, the
post install script gets executed by Terraform.

Table 3.11 User Story: Customized Installations VM

21

Custom/HL Container Images from Private Registry

Name Custom/HL Container Images from Private Registry
User Story As a lab-creator I want to be able to use custom images coming from

a private registry.
Epic Resource Customization

Acceptance
Criteria

■ Custom private container registry with credentials can be de-
fined.

Technical
Acceptance
Criteria

■ The configuration mask allows to define custom repositories
with credentials.

■ Kubernetes secrets are automatically generated through Ter-
raform to allow pull requests on private repositories using the
supplied credentials.

Table 3.12 User Story: Custom/HL Container Images from Private Registry

Selective Resource Exposure

Name Selective Resource Exposure
User Story As a lab-creator, I want to selectively expose certain resources to

students ensuring that only required information is accessible to
enhance learning.

Epic Resource Customization

Acceptance
Criteria

■ Only the defined resources should be exposed to students.

■ An attribute to control exposure for both VMs and containers.

Technical
Acceptance
Criteria

■ Configuration mask in frontend implements a checkbox on
VMs and containers with an expose_to_output flag.

■ A filter should be implemented on the dataset exposed to the
Deployment Manager in Terraform, filtering resources based
on the expose_to_output flag.

Table 3.13 User Story: Selective Resource Exposure

22

Credential Management and Distribution

Name Credential Management and Distribution
User Story As a lab-creator, I want to define custom credentials, which are then

distributed by Terraform to the corresponding virtual machine or
container.

Epic Resource Customization

Acceptance
Criteria

■ Credentials are distributed to the appropriate VMs or contain-
ers.

■ Credentials can be accessed easily when using them in custom
installations.

■ Dynamic credentials can be defined, which are dynamic and
unique for each lab.

■ It can be decided whether credentials should be exposed to the
student in the Deployment Manager.

Technical
Acceptance
Criteria

■ The configuration mask allows to define custom credentials for
VMs and containers

■ The configuration masks allow to define if credential should be
created dynamically.

■ Distribution of credential in VMs by writing them to a file.

■ Credentials are passed as environment variables to containers.

■ Dynamic credentials are created by the Terraform deployment.

■ The dataset is constructed in Terraform deployment with cre-
dentials to expose to student.

Table 3.14 User Story: Credential Management and Distribution

23

Multiflag Integration and Management

Name Multiflag Integration and Management
User Story As a lab-creator, I want to define and inject multiflags into VMs and

containers via Terraform to enhance the uniqueness of the labs.
Epic Resource Customization

Acceptance
Criteria

■ Multiflags are seamlessly integrated and accessible within both
VMs and container environments.

■ The multiflag integration process is automated and aligned
with the HL Framework’s deployment manager.

Technical
Acceptance
Criteria

■ Multiflags are correctly read from the deployment manager’s
environment variables and passed to Terraform.

■ Multiflags are distributed within Terraform to the VMs and
containers.

Table 3.15 User Story: Multiflag Integration and Management

Save labs

Name Save Labs
User Story As a lab-creator I want be able to save my labs.
Epic Lab Portability

Acceptance
Criteria

■ Labs can be stored in the application for future editing capabili-
ties.

Technical
Acceptance
Criteria

■ Connection to MinIO is implemented in Backend.

■ Each lab has a unique ID.

■ Labs created and stored in MinIO.

■ Labs stored in MinIO can be deleted if wanted.

Table 3.16 User Story: Save Labs

24

Load Labs

Name Load Labs
User Story As a lab-creator I want to be able to load existing labs.
Epic Lab Portability

Acceptance
Criteria

■ Labs existing in the generator can be loaded and edited again.

Technical
Acceptance
Criteria

■ Labs can be loaded from MinIO to edit them.

■ Loading a lab and saving it again reuses the unique ID.

Table 3.17 User Story: Load Labs

Export Lab for Deployment Manager

Name Export Lab for Deployment Manager
User Story As a lab-creator I want to export my designed lab, so I can import it

into HL as resource for a challenge.
Epic Lab Portability

Acceptance
Criteria

■ Option, in form of a download button, for the user to download
current state of the created lab.

■ The download automatically includes the Deployment Manager
required for deploying the lab.

Technical
Acceptance
Criteria

■ After clicking on the download button, the graphical input
is passed to the Generator backend where it gets parsed into
Terraform config format.

■ The downloadable file is a .tar.gz format, in which the deploy-
ment is automatically included into the Deployment Manager.

Table 3.18 Export Lab for Deployment Manager

25

Download Designed Lab

Name Download Designed Lab
User Story As a lab-creator I want to download a designed lab.
Epic Lab Portability

Acceptance
Criteria

■ Add an option, in form of a save button, to download the
current state of the graphically created lab.

■ This download only includes the graphical configuration so
that it can be uploaded to a generator running in a different
tenant.

Technical
Acceptance
Criteria

■ The Generator provides the graphically designed lab as a file
download.

■ This file can be interpreted by the Generator and can be re-
opened for editing.

■ Generated file can be imported by generators running in differ-
ent tenants.

Table 3.19 User Story: Download Designed lab

26

Upload Existing Lab

Name Upload Existing Lab
User Story As a lab-creator I want to upload my existing lab and edit it.
Epic Lab Portability

Acceptance
Criteria

■ Allow uploading a lab file that has been previously down-
loaded.

■ If not manipulated, the file opens the designed lab in the same
state as it was downloaded beforehand.

Technical
Acceptance
Criteria

■ On a successful import the earlier the downloaded lab will be
loaded in the same state as it was saved.

■ The data-structure that describes all the nodes, edges, con-
figurations and connections in between, is interpreted by the
Generator and displayed within the editing canvas.

■ The imported lab can then be further edited as if it was created
from scratch by the user.

■ The lab can be imported to a different generator running in
other tenants.

Table 3.20 User Story: Upload existing Lab

27

Lab Validation

Name Lab Validation
User Story As a lab-creator I want to check my current lab for its validity
Epic Lab validation

Acceptance
Criteria

■ The currently opened lab can be checked for its validity.

■ If the current lab is invalid, a feedback dialog will appear
indicating the issues of the configured lab.

Technical
Acceptance
Criteria

■ The lab-creators’s current lab layout is checked for Terraform
compatibility.

■ The input provided by the lab-creator is checked.

■ If the lab was configured with resources that are not available
anymore (i.E. Azure SKUs), the configuration field is marked
red as the lab cannot be deployed anymore.

■ The backend returns the results of the validity check to the
frontend, which can be interpreted by the user.

Table 3.21 User Story: Lab Validation

Deploy Lab

Name Deploy Lab
User Story As a lab-creator I want to be able to deploy the lab.
Epic Lab Deployment

Acceptance
Criteria

■ Function to deploy current designed lab is available

■ Deployment status is displayed and potential deployment errors
can be retrieved.

Technical
Acceptance
Criteria

■ Deployment Service is implemented to deploy Terraform

■ Mechanism to destroy failed or orphaned deployments

Table 3.22 User Story: Deploy Lab

28

Snapshot lab

Name Snapshot Lab
User Story As a lab-creator I want to be able to use snapshot technology to

speed up deployments.
Epic Lab Deployment

Acceptance
Criteria

■ Current deployment is automatically snapshotted and snapshot
version is added to current lab configuration.

■ Snapshots are automatically used if deployed from the students.

Technical
Acceptance
Criteria

■ Lab lab file is enhanced with the snapshot version

■ Snapshot logic is implemented in Terraform

■ Dev mode is implemented in Terraform to define what should
perform the snapshot.

■ Lab mode is implemented in Terraform to define what should
use the snapshots for the creation of VMs.

■ When redeploying the same lab from the generator, old snap-
shots are deleted.

Table 3.23 User Story: Snapshot Lab

29

Authenticate with HL SSO

Name Authenticate with HL SSO
User Story As a user I want to authenticate with my Hacking-Lab account.
Epic Authentication

Acceptance
Criteria

■ The lab-creator is automatically redirected to the HL authenti-
cation service if not logged in.

■ There is a possibility to log off from the application.

■ Only lab-creator with a specific role are allowed to access the
application.

Technical
Acceptance
Criteria

■ When the frontend is accessed, the lab-creator is automatically
redirected to the HL authentication service, where the lab-
creator can log in with their HL credentials.

■ After successful authentication, the lab-creator is redirected
back to the application.

■ Authentication validity is checked for every call to the backend.

■ The authentication details and token are stored in the session
cookie in the frontend.

■ The session cookie is removed when the lab-creator presses the
log-off button.

■ The authentication token is then passed to the backend with
every API call.

■ Access is granted based on whether the lab-creator has a specific
role assigned.

Table 3.24 User Story: Authenticate with HL SSO

30

3.2 Non-Functional Requirements

The International Organization for Standardization (ISO)/International Electrotechni-
cal Commission (IEC) 25010 standard is used to define NFRs for this project, with only
the relevant categories being selected. The goal is to implement all NFRs classified
as high priority and the majority of those rated as medium. Additionally, if resources
permit, the aim is to implement NFRs categorized as low priority as well.

3.2.1 Functional Suitability

ID NFR01
Description Application should be able to perform lab deployments on

Azure.
Requirement Functional Suitability - Functional Completeness
Priority High
Verification
process

Test if lab structure was successfully deployed and is accessible.

Measures Deployments can be accessed via the provided VPN and are
complete

Table 3.25 Non-Functional Requirements: NFR01

3.2.2 Reliability

ID NFR02
Description Multiple users can deploy and use their labs simultaneously.
Requirement Concurrency - Multi user capability
Priority High
Verification
process

Stress test the system with multiple lab-creators designing and
deploying labs at the same time.

Measures The app is usable while multiple lab-creators are creating and
deploying labs.

Table 3.26 Non-Functional Requirements: NFR02

31

3.2.3 Compatibility

ID NFR03
Description The application should be able to work with private image

repositories
Requirement Compatibility - Interoperability
Priority High
Verification
process

Test and verify if private repositories can be used in deployments

Measures The application implements authentication to private
repositories

Table 3.27 Non-Functional Requirements: NFR03

ID NFR04
Description The generated lab has to be deployable from the adjusted HL

Deployment Manager.
Requirement Compatibility - Interoperability
Priority High
Verification
process

Test and verify if the generated lab is deployable and
destroyable through the HL deployment manager.

Measures The deployment is compatible and implements the required
variables which are used in HL Deployment Manager. Specific
lab output is displayed.

Table 3.28 Non-Functional Requirements: NFR04

3.2.4 Security

ID NFR05
Description HL’s intelectual property (created labs) is protected and not

publicly available.
Requirement Security - Confidentiality
Priority High
Verification
process

Test if the Generator is only usable when authenticated with HL
and has been assigned a specific role. Test if the HL Docker
images used are stored on a private DockerHub, accessible only
to authorized users.

Measures Use HL SSO authentication for the Generator application. Use
only private repositories for storing of HL images.

Table 3.29 Non-Functional Requirements: NFR05

32

3.2.5 Portability

ID NFR06
Description The system must provide a RESTful API which concludes all

actions possible defined by the user stories.
Requirement Portability - Adaptability
Priority High
Verification
process

Developer checks if all actions are provided over REST. This is
best effort.

Measures All actions defined can be triggered over REST.

Table 3.30 Non-Functional Requirements: NFR06

ID NFR07
Description Generated data is easy and intuitive to export, import safe and

load.
Requirement Portability - Data handling
Priority Medium
Verification
process

Verified with user tests focusing on usability.

Measures Functionalities are provided that allow user to export/import
and save/load labs.

Table 3.31 Non-Functional Requirements: NFR07

33

3.2.6 Maintainability

ID NFR08
Description The system has to be maintainable for the HL developers after

this thesis is completed.
Requirement Maintainablity
Priority Medium
Verification
process

Regular communication with HL developers to discuss
technology choices and architectural decisions. Additionally,
conduct code reviews, adherence checks to coding standards,
and assess documentation completeness.

Measures Follow the general clean code principles, ensuring readability,
modularity, and consistency throughout the software. Document
the development process comprehensively, including design
choices, architectural decisions, and codebase organization.
Technologies employed should align with HL’s preferences and
standards according to their developers and Ivan Bütler.

Table 3.32 Non-Functional Requirements: NFR08

3.2.7 Costs

ID NFR09
Description The system should optimize resource usage to minimize Azure

costs for the labs.
Requirement Cost Optimization
Priority Medium
Verification
process

Check that chosen solutions were chosen in regard to the costs.
Check that deployments are properly cleaned up.

Measures Utilize Azure cost management tools to identify costs of the
resource configurations. Implement scaling mechanisms to
provision and de-provision Azure instances based on demand,
optimizing resource utilization and reducing costs. Implement a
process that guarantees the deletion of unsuccessful
deployments.

Table 3.33 Non-Functional Requirements: NFR09

34

3.2.8 Usability

ID NFR10
Description The user interface should be intuitive and user-friendly, with

clear instructions and error messages.
Requirement Usability
Priority Medium
Verification
process

Hand a demo version of the application to potential users that
correspond to possible end-users of the product.

Measures Follow usability and accessibility standards in the code and
design of our application. Especially enabling strict rules of
ESlint enforce the accessibility standard that is thesis strives for.

Table 3.34 Non-Functional Requirements: NFR10

3.2.9 Tracking of the NFRs

NFR Nr. Priority Status
NFR1 High OK
NFR2 High OK
NFR3 Medium OK
NFR4 High OK
NFR5 High OK
NFR6 High OK
NFR7 High OK
NFR8 Medium OK
NFR9 Medium OK
NFR10 Medium Partially

Table 3.35 Tracking of the NFRs

35

Design / Architecture 4
This chapter delves into the design aspects of the Dynamic Pentest Lab (DPL) system,
providing a detailed overview of its design and components. The structure of the
system is visualized using C4 architecture diagrams [13]. Additionally, Architecural
Decision Record (ADR) [2] are used to document key architectural decisions regarding
the application.

4.1 Domain Model

The domain model, designed in Figure 4.1, provides a rough visual representation of
the core components of the DPL domain and how they incorporate with each other.
This model serves as a foundational blueprint for understanding the architecture and
functionality of the application.

The DPL system is designed to facilitate the creation and deployment of customized
pentest labs in a cloud environment. The primary components of the domain model
include several key elements:

The lab-creator is responsible for designing and creating penetration testing labs. This
user interacts with the Generator (Frontend), an intuitive interface for configuring
these labs.

The Lab Generator generates a Lab entity. These labs consist of various resources,
which define network resources such as, subnets, security groups, VPN as well as VM
and Containers. The connections define the actual relationship between computing
resources and subnets belonging to a particular lab.

The lab configuration gets translated by the parser into Terrafom deployment variables,
forming the lab deployment together with the Terraform template.

The deployer component uses this lab deployment to create the actual lab environment
in Azure [8]. This includes the creation of snapshots for future use.

36

Figure 4.1 DPL Domain Model

37

4.2 System Overview

The system overview in Figure 4.2 delineates the organisation and core functionalities
of the system, providing insight into both its internal and external components.

Figure 4.2 C4 Context Diagram

38

The context diagram categorizes components into four main resource groups: DPL
resources, HL [6] resources and Azure resources:

DPL resources

■ Generator Application: This is the core system that provides the interface for
creating labs. Lab-creators can configure various lab resources and settings
through this User Interface (UI). Once configured, the Generator application
converts the setup into Terraform [7] configurations and deploys them to Azure.
This involves creating the necessary infrastructure (VMs,containers, networks)
and taking snapshots for future use by the students.

HL resources

■ Hacking-Lab: The main platform where HL Users access and engage with
pentest challenges. The users interact with the labs, which are deployed through
the deployment manager assigned to the particular challenge.

■ Deployment Manager: An application within HL that handles the deployment
of Terraform definitions to Azure. Furthermore it provides output to the students
about the resources deployed, such as DNS, credentials and IP adresses.

■ Authentication Service: This service verifies the identities of users accessing
either the Hacking-Lab platform or the generator application. It issues JWT
tokens to maintain secure communication and control access effectively.

Azure resources

■ Azure Cloud: The primary cloud infrastructure used for deploying the VMs and
containers that constitute the pentest labs.

39

Container diagram

The container diagram, outlined in Figure 4.3, provides a more detailed view of the
system’s components and their interactions. This diagram extends the context diagram
by breaking down the generator application into containers, showing how they interact
with each other and with external systems.

Figure 4.3 C4 Container Diagram

40

The container diagram shows following containers:

Web Frontend

■ Frontend: Provides the user interface for lab-creators to design pentest labs.
Lab-creators use the frontend to create labs via Hypertext Transfer Protocol
(HTTP). The frontend makes authenticated API calls to the backend and interacts
with the authentication service for user verification.

API Backend

■ Backend: The backend is tasked with processing API calls originating from the
frontend. It effectively manages job queues and is responsible for deploying
labs and generating snapshots in Azure. Moreover, it facilitates the export of de-
ployment configurations as Terraform definitions for use in the HL Deployment
Manager.

■ PostgreSQL: Stores the configuration data for Django, which powers the backend
application. The backend reads from and writes to this database using Java
Database Connectivity (JDBC).

■ MinIO: Stores persistent data such as lab configurations.

■ Redis [17]: Acts as a job queue for managing background tasks using Celery
[18]. The backend sends and receives jobs from Redis.

41

Component diagram

In the component diagram in Figure 4.4, the interactions between the high-level
application modules are depicted.

Figure 4.4 C4 Component Diagram

42

This components include:

Backend

■ Resource: Defines the structure of resources used in the labs. Validates input
using models, interacts with MinIO [19] to get Azure information.

■ Azure Information (Celery): Periodically gathers information about Azure
options and objects via the Azure API. Saves the gathered information in MinIO
and periodically refreshes Azure information. Receives jobs from Redis and
interacts with Azure to pull information.

■ Parser: Parses the lab configuration provided by the frontend into Terraform
configurations. Used by the deployment component to convert lab designs into
deployable Terraform definitions.

■ Deployment: Manages the deployment of Terraform lab definitions to Azure.
Receives lab creation jobs from the frontend, uses the parser to convert lab
configurations, interacts with the lab component for reading/writing data, and
updates mappings in MinIO. Creates lab creation jobs in Redis.

■ Deployment (Celery): Runs Celery tasks received from Redis to deploy Ter-
raform configurations to Azure.

■ Lab: Provides authenticated API calls for the frontend, validates input using the
resource models, and interacts with MinIO for data storage. Manages read/write
operations on MinIO object storage and PostgreSQL database.

43

4.3 Azure Lab Architecture

The 4.5 shows the fundamental architecture of the lab deployment, including the
different Azure Resources [20] involved, further explained below, and how they
interact with each other.

Figure 4.5 Azure Lab Architecture

44

4.3.1 Base Infrastructure

This section describes all resources required to provide the base infrastructure of the
lab. These resources are automatically created for each lab.

Resource group
For each deployed lab, a unique resource group is created to encapsulate all resources
used within this lab. Additionally, a resource group for the snapshots exists. This is
created during the creation process through the generator, which is further described
in the implementation chapter.

Virtual Network
The Virtual Network is used to isolate the whole lab. All created subnets reside in this
virtual network.

Azure Kubernetes Service
The Azure Kubernetes Service serves as the Kubernetes platform to deploy the con-
tainers. The Azure Kubernetes Service is deployed by default, since the Dockovpn
OpenVPN container also runs as a container.

Azure Kubernetes Cluster Node Pool
There are separate Node Pools per subnet on which the corresponding containers are
deployed. Scales automatically with the number of Kubernetes subnets required.

Dockovpn Kubernetes deployment
The VPN endpoint that is required to access the lab. This is deployed as Kubernetes
Deployment and runs on the management node.

Blob Storage The blob storage which can be used for persistent data. In this case, it is
used for the persistence of container data.

DNS Zone
The DNS Zone provides DNS Resoultion for the lab. The whole DNS architecture is
described in more detail in the ADR 4.7.16.

45

4.3.2 Core Resources

This section includes all core resources which can be selected in the lab generator to
construct a lab.

Subnet
The subnets provide segmentation within the virtual network, enabling isolation of
resources to build and simulate complex networks.

Security Rule
Security rules are used to restrict traffic between subnets and resources, such as VMs
and containers.

Virtual Machine
Azure Virtual Machines (AVMs) are used to provide Windows as well as Linux
machines.

Kubernetes Deployment (Containers)
Kubernetes Deployments, also called workloads in Azure Kubernetes Service (AKS),
are used to facilitate container deployments.

4.3.3 Additional Resources

This section outlines additional Azure resources required to support the base infras-
tructure and core resources.

Network Security Group
Network Security Groups (NSGs) act as virtual firewalls, regulating network traffic to
and from Azure resources according to specific security rules. An individual NSG will
be deployed for each subnet.

Network Interface
Network interfaces serve as the network connection point for the AVM, facilitating
communication with the virtual network. This essential resource is dependent on the
VM and will be automatically generated along with the VM.

Disk
Disks that provide persistent storage for the VM operating system disk. This resource
is dependent on the VM and will be automatically created along with the VM.

46

4.3.4 Resource Naming

The table in 4.1 illustrates the prescribed naming guidelines and limitations. In
accordance with the constraints outlined in [21] for Azure resources, which include
specifications regarding length and permissible conventions, a suitable naming scheme
has been formulated. Resource groups, with the inclusion of a Universally Unique
Identifier (UUID) and other resources necessitating distinct names, are identified by a
unique alphanumeric Identifier (ID) consisting of seven characters.

Resource Type Naming Restrictions
Resource Group dpl-rg-{ UUID } - Names must be unique within

the subscription.
- Alphanumeric, lowercase, and
may include hyphens (-)

Virtual Network dpl-vn - Names must be unique within
the resource group.
- Alphanumeric, lowercase, and
may include hyphens (-)
- Max length is 64 characters.

Storage Account dplasa{ [a-z0-9]{7} } - Names must be globally unique.
- Alphanumeric, lowercase.
- Max length is 24 characters.

Azure Kubernetes
Service

dpl-aks - Names must be unique within
the subscription.
- Alphanumeric characters and
hyphens (-) only.
- Max length is 63 characters.

Azure Kubernetes
Cluster Node Pool

dplakcnp{ SUBNET
ID }

MAX 12, no hyphens, only
lowercase and numeric.

Azure Kubernetes
Deployment

dpl-kd-{ [a-z0-9]{7} } - Alphanumeric characters and
hyphens (-) only.
- Max length is 63 characters.

Subnet dpl-s- { [a-z0-9]{7} } - Names must be unique within
the virtual network.
- Alphanumeric, lowercase, and
may include hyphens (-).
- Max length is 80 characters.

Virtual Machine dpl-vm-{ [a-z0-9]{7} } - Names must be unique within
the resource group.
- Alphanumeric, lowercase, and
may include hyphens (-).
- Max length is 15 characters.

47

Network Interface dpl-ni-{ VM ID } - Names must be unique within
the resource group.
- Alphanumeric, lowercase, and
may include hyphens (-).
- Max length is 80 characters.

Disk dpl-d-{ VM ID } - Names must be unique within
the resource group.
- Alphanumeric, lowercase, and
may include hyphens (-).
- Max length is 80 characters.

Network Security
Rule

dpl-nsr-{ [a-z0-9]{7} } - Names must be unique within
the resource group.
- Alphanumeric, lowercase, and
may include hyphens (-).
- Max length is 80 characters.

Network Security
Group

dpl-nsg-{
RESOURCE ID }

- Names must be unique within
the resource group.
- Alphanumeric, lowercase, and
may include hyphens (-).
- Max length is 80 characters.

Table 4.1 Azure Resource Naming

48

4.4 Backend Architecture

The backend architecture of the DPL generator is designed to support the creation,
deployment, and management of penetration testing labs in a cloud environment. It
leverages modern technologies and frameworks to ensure scalability, maintainability,
and ease of use. The backend is primarily built using Django, a robust web framework
known for its "batteries-included" approach, providing a comprehensive suite of
features necessary for web development.

4.4.1 Core Components

The backend architecture is composed of several core components, each responsible
for specific aspects of the system’s functionality. These components interact with each
other to provide a seamless and efficient user experience.

4.4.1.1 API Backend

The API backend serves as the central point of interaction between the frontend and
the backend services. It handles all API requests from the frontend, processes the
data, and communicates with the other backend components to perform the required
operations. Key responsibilities include:

■ Rendering lab configurations into Terraform scripts for deployment.

■ Managing user authentication and authorization through JSON Web Token (JWT)
tokens.

■ Handling Create, Read, Update and Delete (CRUD) operations for lab configura-
tions and user data.

4.4.1.2 Object Storage

MinIO is used for object storage within the backend architecture. MinIO provides
high-performance, S3-compatible object storage, which is essential for storing large
files such as lab configurations. This component ensures that all persistent data is
securely stored and easily retrievable when needed.

49

4.4.1.3 Task Queue

Redis is utilized as a task queue manager in the backend architecture. With Celery as
the task queue, Redis handles asynchronous task management, enabling the system
to process tasks in the background, such as deploying labs, creating snapshots, and
fetching Azure resource information. This ensures that the main application remains
responsive and can handle multiple requests concurrently.

4.4.2 Key Interactions and Workflows

The backend architecture supports several key interactions and workflows essential
for the operation of the DPL.

4.4.2.1 Lab Creation and Configuration

The process of creating and configuring a lab involves several steps:

1. The lab-creator uses the frontend to design and configure a pentest lab.

2. The frontend sends authenticated API requests to the backend, which are pro-
cessed by the API backend.

3. The API backend interacts with the database to store the lab configuration and
with MinIO for storing any large files.

4. The configuration data is then rendered into Terraform variable definition.

4.4.2.2 Deployment and Snapshot Management

Deployment and snapshot management are critical functionalities of the DPL system:

■ The backend uses Terraform to deploy the configured labs to Azure. This involves
creating the necessary infrastructure, such as VMs and containers, based on the
rendered Terraform variable definition.

■ The task queue, managed by Redis and Celery, handles the execution of these
deployment and snapshot tasks in the background, ensuring efficient resource
utilization and responsiveness.

50

4.4.3 Scalability and Maintainability

The backend architecture is designed to be scalable and maintainable:

■ The use of Django provides a solid foundation for building scalable web applica-
tions, with support for modular design and reusable components.

■ MinIO are chosen for their ability to handle large volumes of data and high
throughput, ensuring the system can scale as the number of users and labs
grows.

■ Redis and Celery provide robust task management, enabling the system to
process multiple tasks concurrently and efficiently. The Celery workers can be
scaled by simply increasing the amount or resources of the docker container
enabling vertical and horizontal scaling.

4.5 JavaScript Object Notation (JSON) Model

The JSON model plays a crucial role in hydrating the frontend with necessary infor-
mation from the backend, ensuring seamless interaction and data flow between the
two. This model is not only fundamental for data exchange but also serves as the
backbone for initializing and configuring the frontend interface. Given its compre-
hensive structure, the JSON model is inherently complex, designed to accommodate
various configurations and user interactions. The following code snippet illustrates the
simplest component, kubernetessubnet, which has only one user-configurable field,
custom_label:

1 {

2 "kubernetessubnet": {

3 "config": {

4 "type": "subnet",

5 "label_prefix": "dpl-s-",

6 "position_layer": 2,

7 "automatic_connection": [

8 "firewall"

9],

10 "can_connect_to": [

11 "firewall",

12 "dockercontainer"

13],

14 "exactly_one_instance": false,

15 "icon": "REMOVED FOR READABILITY",

16 "regex": {

17 "custom_label": "^.{0,20}$"

18 },

19 "tooltip": {

51

20 "custom_label": "Custom Azure label of the subnet",

21 "label": "Azure name to be of the subnet"

22 }

23 },

24 "type": "str",

25 "custom_label": "str",

26 "label": "str"

27 },

28 ...

Listing 4.1 Model Data Structure

In the architecture of each resource, a "config" object is incorporated. This object is
primarily utilized to initialize the frontend interface and does not need to be sent
back to the backend during the saving or deploying processes of a lab. The config
object contains important data, such as regular expressions for validating each user
input field on the frontend, base64-encoded icons, and tooltips for the user. It also
specifies configurations like whether there should be exactly one instance of a resource,
the types of resources it can connect to, and whether it should automatically create
connections with a specific resource type.

The full JSON Model can be found in the appendix.

52

4.6 Frontend Architecture

4.6.1 Conceptual Mockup

To provide a clear vision of the frontend’s appearance, functionality, and structure, it
was essential to establish a point of orientation before starting with any implementation.
In order to capture and discuss the potential architecture and appearance, the design
tool Figma[22] was utilized to create a mockup, as outlined in Figure 4.6, of the
frontend. This mockup served as the foundation for the subsequent development of
the frontend and was continuously expanded, adapted and finalized until there was a
realistic and usable blueprint of an application that fulfills all the requirements.

Figure 4.6 Frontend Figma Overview

53

The mockup, displayed in Figure 4.7, designs all required pages and the varied states
that could transpire. In future project development stages, this mockup will function
as a central single source of truth for the implementation of the frontend.

Figure 4.7 Frontend Figma Flow

54

To enhance understanding of the application’s functionality and user interaction,
Figma facilitated the embedding of elementary logic and the establishment of dynamic
links between interface elements, animating the static mockups. This interactive
approach allowed more detailed discussions around the application’s design, paving
the way for a refined and definitive product. The mockup includes all the essential
components featured in the application, positioned at the approximate coordinates
where they will be in the final product.

The main components that were defined in this process included:

■ Authentication

■ Global Navbar

■ Lab Editor Canvas

■ Resource Editor Sidebar

■ Labs Overview

These components were initially conceptualized to provide a basic framework and
subsequently refined throughout the project. This preliminary design phase was
crucial for maintaining clear and consistent communication and ensuring a unified
vision for both the visual and functional aspects of the application.

55

4.6.2 Final Architecture

The diagram outlined in Figure 4.8 displays the architectural structure of the frontend
component of the Generator and how the different parts work together. In general,
the frontend is divided into four distinct parts: pages, components, services, and
styling.

Figure 4.8 Frontend Architecture Diagram

56

The outermost layer of the architecture consists of pages, which include and utilize the
other three component types: services, template components, and stylesheets. Each of
these pages contain static elements and dynamic template components that construct
the content relevant to the user. For every page there is a distinct Uniform Resource
Locator (URL) used for the routing:

■ /: The default route displays general information in markdown for the end user
about the application and how it is intended to be used.

■ /lab-editor: Opens an empty instance of the lab editor where the user can create
a new lab environment.

■ /lab-editor/<lab-id>: Opens the lab editor and renders an existing lab using the
lab ID and the corresponding JSON lab structure received from the backend.

■ /labs: Displays the labs page with a table containing all the currently saved labs
in the backend’s MinIO, allowing the user to interact with each lab through
various functions.

To make the HTML content functional and render the information correctly, there
is a script for every page and component. Also for every major functionality that
reaches across single components there is a service, that holds the required logic
and manages in- and outgoing data. With the capabilities of HTML templates, the
frontend is dynamically built based on the backend-provided JSON model information
as described in Section 4.5.

The styling is implemented in a relatively simple manner by generating a general
output.css file, which defines the base styling guidelines of DaisyUI [23]. The styling
of the different components occurs in the component-specific Cascading Style Sheets
(CSS) files. This setup allows a uniform styling of the whole application while also
being configurable within each component.

4.6.2.1 Dynamic Rendering

The idea behind the dynamic rendering of the frontend, is to be able to easily expand
the whole Generator framework with new environment resources without having to
make any changes in the frontend codebase. The two main elements impacted by this
dynamic rendering process are the resource editor sidebar, which is utilized during
lab creation, and the labs overview table. These components adjust their display in
response to the data received from the JSON Structure Model, as elaborated in Section
4.5, as well as the lab’s JSON file.

With this approach, the integration of new resource types, such as Virtual Machines
(VM) or containers, in forthcoming labs becomes fairly straightforward. In such a
scenario, the New Resource Template, as demonstrated in Listing 4.2, can be duplicated,

57

modified accordingly to the requirements, and incorporated into the backend model
structure JSON file.

1 {

2 "exampleResource": {

3 "config": {

4 "type": "exampleResource",

5 "label_prefix": "dpl-ex-",

6 "position_layer": 3,

7 "automatic_connection": [],

8 "can_connect_to": [

9 "dockercontainer"

10],

11 "exactly_one_instance": false,

12 "icon": "REMOVED FOR READABILITY",

13 "regex": {

14 "custom_label": "^.{0,20}$"

15 },

16 "tooltip": {

17 "custom_label": "Custom Azure label of the subnet",

18 "label": "Azure name to be of the subnet"

19 }

20 },

21 "type": "str",

22 "custom_label": "str",

23 "label": "str",

24 "some_number_prop": "int",

25 "some_bool_prop": "bool",

26 "some_encapsulated_props":[

27 {

28 "some_sub_text_prop": "str",

29 "some_sub_bool_prop": "bool"

30 }

31 },

32 ...

33 }

Listing 4.2 Model Data Structure for a new Resource

The actual and detailed implementation of this frontend architecture is described in
the frontend’s implementation part, in Section 7.1.

58

4.7 Architectural Decision Records

Essential architectural decisions are recorded using ADRs, according to the ADR
template, defined by Olaf Zimmermann (AppArch)[2]. ADRs, primarily, record the
results of design and decision-making processes. In this documentation, attributes
such as status, date and deciders for each ADR have been omitted because they are
typically more relevant for larger projects with multiple participants and are not
essential in this context.

4.7.1 ADR: 001 - Web Framework Backend

4.7.1.1 Context and Problem Statement

The web framework for the backend is an extremely important part of the DPL.
It serves as the backbone for creating, managing, and interacting with virtualized
environments. The chosen web framework needs to be robust, flexible, and secure
allowing to adapt authentication providers.

4.7.1.2 Decision Drivers

■ Scalability to support a growing number of users and lab environments.

■ Security features to protect sensitive data and lab integrity.

■ Flexibility to integrate with the HL and other tools.

■ Ease of development and maintenance to allow for quick iteration and deploy-
ment of new features.

4.7.1.3 Considered Options

■ Django

■ Flask

■ Spring Boot

59

4.7.1.4 Decision Outcome

After careful consideration, it was decided to adopt Django as the web framework for
the DPL. Django’s extensive standard library and built-in features for user authentica-
tion, session management, and security mechanisms address the critical needs for a
secure and scalable web application. This decision aligns with our goals of creating
a robust, secure, and user-friendly platform creating, managing and starting labs.
By choosing Django, a comprehensive framework is leveraged, that supports rapid
development, strong security, and scalability, which are essential for the success of the
DPL.

4.7.1.5 Consequences

■ Good, because Django’s "batteries-included" approach accelerates development
by providing ready-to-use components.

■ Good, because Django’s built-in security features help protect against common
threats like SQL injection and cross-site scripting, crucial for the security of our
application.

■ Good, because Django’s scalability ensures that the platform can grow to accom-
modate more users.

■ Good, because Django’s vibrant community and wealth of plugins extend the
framework’s capabilities and provide resources for troubleshooting and develop-
ment.

■ Neutral, because Django’s monolithic structure might limit flexibility in some
cases compared to more modular frameworks like Flask.

■ Bad, because Django’s learning curve can be steep for developers unfamiliar with
the framework or its design patterns, potentially slowing initial development
efforts.

4.7.2 ADR: 002 - Web Framework Frontend

4.7.2.1 Context and Problem Statement

4.7.2.2 Decision Drivers

■ Guidelines set by the HL development team suggest that, for optimal future
maintainability, it is preferable to construct the code base using the same tech-
nology stack as the existing HL platform. This approach ensures continuity
in software maintenance, as the responsibility for managing this software will
transition to the HL development team beyond the scope of this thesis.

60

■ Scalability: The framework should offer scalability features to accommodate
increased user loads and additional functionalities seamlessly.

■ Well documented: The chosen web framework should have a large community
and good documentation quality. A framework with an active and supportive
community results in better resources, timely updates, and a robust knowledge
base, improving the learning curve of the development team.

■ Performance: The selected framework should provide efficient rendering and
loading times, contributing to a responsive and smooth user experience.

4.7.2.3 Considered Options

■ React [24].

■ Angular [4].

■ Vuejs [25].

4.7.2.4 Decision Outcome

The selection for the web frontend framework led to the choice of Angular. Following
multiple meetings and with Ivan Bütler and the developers of the HL platform,
the development team opted for Angular, primarily driven by the consideration of
ensuring the long-term maintainability of the software by the HL developers.

4.7.2.5 Consequences

■ Good, because the software can be maintained and used in long-term perspective
by HL without the extra cost of learning and implementing new technologies
into their stack.

■ Good, because Angular’s comprehensive documentation and active community
support contribute to a well-documented and supported development environ-
ment. This facilitates a smoother learning curve for the development team,
enabling them to leverage resources and updates effectively.

■ Good, because Angular’s scalability features address the potential growth and
evolving requirements of the web application. This ensures that the selected
framework can seamlessly accommodate increased user loads and additional
functionalities, supporting the scalability needs of the HL project.

■ Good, because Angular’s performance optimizations lead to efficient rendering
and loading times. This positively contributes to a responsive and smooth user
experience, enhancing overall satisfaction with the web application.

61

■ Neutral, because while Angular meets the maintainability and scalability criteria,
it may have a steeper learning curve compared to some other frameworks.
However, the decision considers the long-term benefits and aligns with the HL
development team’s expertise.

■ Bad, because the decision to choose Angular might result in a more rigid
development structure compared to some other frameworks. However, this
potential drawback is outweighed by the benefits in terms of maintainability and
scalability, as well as the alignment with existing HL practices.

4.7.3 ADR: 003 - Frontend Graph Framework

4.7.3.1 Context and Problem Statement

A central part of the project is the Generator Graphical User Interface (GUI) which
needs to be a intuitive and simple to use application that one can use without detailed
introduction. It would be highly unnecessary to build such an application from scratch
and put a lot of resources into building a such a framework. Matter of fact, there are
already a few frameworks that provide pre-built logic to create such an application.

4.7.3.2 Decision Drivers

■ Scalability: The frontend needs to be expandable with additional objects without
touching the code of the frontend. So it has to be generically designed.

■ Maintainability: This tool should be easy to maintain and future follow-up
projects should be able to expand our tool with new objects that can be drag and
dropped into the graph canvas. In terms of the frontend this means that it needs
to be implemented generically, so it can handle new objects coming from the
backend without touching the code in the frontend itself.

■ The framework should be easy to learn and apply for the developer team of this
thesis. Therefore it is sensible to use a framework that is well documented and
known by people that work on this thesis.

4.7.3.3 Considered Options

■ Vis-network [5].

■ React DnD [26].

■ JointJS [27].

■ Cytoscape.js [28]

62

4.7.3.4 Decision Outcome

The final graph framewok used for this thesis is the vis-network [5].

4.7.3.5 Consequences

■ Good, because it is well maintained and is updated on a regular basis.

■ Good, because it is supported and compatible with all other technologies and
frameworks used in the frontend.

■ Good, because it is not very complex but still allows full customization and
expansion for the requirements of this thesis.

■ Bad, because it does not implement all the functionalities that are required
for the full implementation of this thesis and therefore have to be manually
implemented.

4.7.4 ADR: 004 - Frontend CSS Framework

4.7.4.1 Context and Problem Statement

One of the most important elements of an application with a GUI is a visually
appealing and user friendly design and layout. In modern web applications this is
implemented with a CSS framework that comes with its own styling and predefined
components. It is responsible for a good user experience and a generally good optical
appearance.

4.7.4.2 Decision Drivers

■ Boundaries by the HL development team: for future maintainability reasons,
the code base ideally should be built on the same tech stack as the current HL
platform, because the HL development team will be responsible to maintain this
software after the time of this thesis.

■ Ease of Use: CSS framework should prioritize ease of use, ensuring that develop-
ers can quickly and efficiently implement styling without steep learning curves.
This will contribute to faster development cycles, reducing the time and effort
required for styling tasks.

63

■ Another key criterion is the ability of the CSS framework to enhance the overall
visual appeal of the application. The chosen framework should offer a range
of modern design elements, components, and layout options to make the user
interface visually engaging. Additionally, it should facilitate a seamless and
intuitive user experience, enhancing the overall usability of the application.

■ An essential factor is the framework’s commitment to accessibility standards.
The chosen CSS framework should provide features and practices that support
the development of accessible interfaces, ensuring that the application is usable
by individuals with diverse abilities.

4.7.4.3 Considered Options

■ Tailwind [29] + DaisyUI [30].

■ React Bootstrap [31].

■ Material UI [32].

4.7.4.4 Decision Outcome

After evaluating as a team, discussing the topic with the supervisor and the HL
development team, the decision became clear that this project’s frontend has to be
based on the same tech stack as the current HL platform. Therefore the decision was
made that the frontend will be built with the Tailwind framework in combination with
the DaisyUI component library.

4.7.4.5 Consequences

■ Good, to keep consistency within our project together with the HL platform.
This is highly in favor for the maintainability by the HL development team and
the user experience within the whole HL platform, so the user has a similar
visual appearance of the different components.

■ Good, Tailwind in combination with DaisyUI aligns with the ease of use criterion,
providing a comprehensive set of utility-first styles and pre-designed components
within the Angular ecosystem, facilitating a straightforward implementation
process for developers.

■ Good, the utilization of Tailwind with DaisyUI enhances visual appeal and
usability, offering a wide array of customizable utility classes and components.
This combination ensures a modern and polished appearance for the application,
leading to improved user satisfaction.

64

■ Good, Tailwind with DaisyUI follows a utility-first design approach, providing
responsive utility classes that seamlessly adapt to various screen sizes. This
promotes a positive user experience, aligning with the project’s goal of creating
an accessible and user-centric application.

■ Good, Tailwind with DaisyUI places emphasis on accessibility, adhering to best
practices and guidelines. This ensures that the application will be inclusive
and usable by a diverse audience, aligning with the project’s commitment to
accessibility standards.

■ Neutral, while Tailwind with DaisyUI allows for extensive customization through
utility classes, it may have a different design approach compared to component-
oriented frameworks like React Bootstrap. However, the team believes that the
provided customization options are sufficient for meeting the project’s design
requirements.

■ Bad, the decision to use Tailwind with DaisyUI may introduce a slight learning
curve for team members unfamiliar with the utility-first approach. However,
the overall benefits in terms of development speed and design consistency are
deemed to outweigh this potential drawback.

4.7.5 ADR: 005 - Repository Structure

4.7.5.1 Context and Problem Statement

In defining the project setup, a decision arose regarding the choice between a mono-
and multi-repository structure. This decision significantly influences the development
process and the overall organization of the project.

4.7.5.2 Decision Drivers

■ Maintainability: Ensuring the maintainability of the project is crucial, not only
for the completion of this thesis but also for potential future follow-up projects.

■ Scalability: Evaluating whether the project’s size and complexity warrant the
additional effort required for implementing a multi-repository structure.

4.7.5.3 Considered Options

■ Multi-Repository: Opting for a distributed approach where the different compo-
nents, like frontend, backend and the deployment, reside in separate repositories.

■ Mono-Repository: Choosing a unified repository for the entire project, housing
all components under a single version control system.

65

4.7.5.4 Decision Outcome

After careful consideration and deliberation, the project team has decided to adopt a
Multi-Repository structure for the following reasons.

4.7.5.5 Consequences

■ Good, because Improved Isolation: Segregating components into separate repos-
itories allows for better isolation, enhancing code modularity and maintainability.

■ Good, because Enhanced Scalability: The multi-repository approach provides
flexibility in scaling the project as it grows, minimizing the impact of increasing
complexity.

■ Good, because Clear Module Boundaries: Clearly defining module boundaries
in individual repositories contributes to a more organized and comprehensible
project structure.

■ Good, because Neutral Versioning: Each repository can have its versioning strat-
egy, avoiding potential versioning conflicts that may arise in a mono-repository
setup.

■ Bad, because Potential Overhead: However, managing multiple repositories
introduces administrative overhead, necessitating effective coordination and
synchronization between teams.

4.7.6 ADR: 006 - VM Customized Installation

4.7.6.1 Context and Problem Statement

For further customize the the VMs deployed through the generator, the the lab-creator
should be able to perform custom installations.

4.7.6.2 Decision Drivers

■ Maintainability: The custom installation options of the VMs should remain easy
to update without significant time and effort.

■ Ease of Use: The custom installation options should be user-friendly for lab-
creators and managers.

■ Extendability: Adding new packages or scripts should be straightforward with
minimal complexity.

66

4.7.6.3 Considered Options

■ Allow package installations via default Linux package manager and Chocolatey
[33] for Windows.

■ Permit custom install scripts in individual Github repositories for each VM.

■ Install all packages and services using the Nix [34] package manager.

■ Utilize Snap [35] for installing packages and services.

■ Run all packages and services in Docker on the VM.

4.7.6.4 Decision Outcome

The decision was made to implement custom installations via Github repositories.
This approach serves to decrease the complexity of the Generator, thereby reducing
its maintenance requirements. Additionally, it offers the beneficial consequence of
facilitating developers in testing their scripts with ease and providing them the liberty
to implement any installation via the custom repository.

4.7.6.5 Consequences

■ Good, because it introduces minimal complexity to the Generator.

■ Good, because it shifts the responsibility of correct package installation and
configuration to the lab-creator.

■ Good, because lab-creators can more easily debug package installation and
configuration.

■ Good, because lab-creators have flexibility in configuring and installing pack-
ages/services.

■ Good, because lab-creators can reuse repositories if the VM has the same use-
case.

■ Neutral, custom installation scripts have to be surrounded with adequate error
handling.

4.7.7 ADR: 007 - Public Docker Images

4.7.7.1 Context and Problem Statement

To enable lab customization, the lab-creator should have the ability to deploy public
docker images.

67

4.7.7.2 Decision Drivers

■ Maintainability: The addition of custom Docker images should not require
excessive time and effort to keep up to date. Options should be designed to
remain available in the future.

■ Ease of Use: Docker containers should be easily integratable into a new lab for
someone creating and managing labs.

■ Extendability: Adding new Docker images should be a straightforward and
accessible process.

4.7.7.3 Considered Options

■ Use Docker Hub Registry.

■ Use Azure Docker Registry.

■ Create Docker images from source code.

4.7.7.4 Decision Outcome

The Docker Hub Registry is selected as the preferred option due to its public accessi-
bility, providing a user-friendly, self-service-oriented solution for lab-creators to use
their own images.

4.7.7.5 Consequences

■ Good, since Docker Hub Registry is available to everybody without access
considerations.

■ Good, as the Docker image environment is isolated from the actual application,
requiring minimal maintenance.

4.7.7.6 More Information

Considering that the HL registry is adapted as described in 4.7.8, the internal HL de-
velopment of the image, and consequently, the intellectual property, remains private.

68

4.7.8 ADR: 008 - Private HL Docker Images

4.7.8.1 Context and Problem Statement

The HL has a collection of docker images which should be accessible to the lab-creator.
This approach is necessary because hosting vulnerable Docker images on the public
Docker registry, where they could be accessed by anyone, would enable students to
easily bypass challenges by inspecting the images.

4.7.8.2 Decision Drivers

■ Integration: Should be simple to integrate and coexist with the current HL
infrastructure.

■ Complexity: Should not introduce a high level of complexity and dependencies.

■ Costs: The solution should not incur significant additional costs.

■ Security: The intellectual property of HL should be securely maintained.

4.7.8.3 Considered Options

■ Push all HL images to Docker Hub into a private repository.

■ Expose the HL registry to the internet and connect using credentials.

■ Build own Docker Registry in Azure and allow access using S2S VPN tunnel

■ Mirror HL registry to Azure Docker Registry.

4.7.8.4 Decision Outcome

Togheter with Ivan Bütler, the supervisor, it was decided that pushing the private
images from the HL to Docker Hub as private registry, is the optimal solution as this
solution is the least complex and integrates the best into the current workflow.

69

4.7.8.5 Consequences

■ Good, because it provides easy accessibility to HL images for lab-creators.

■ Good, because it allows for a straightforward integration with the existing HL
infrastructure.

■ Good, because there are no significant additional costs associated with this
solution.

■ Good, because the intellectual property of HL is secured through the authentica-
tion on the private registry.

4.7.9 ADR: 009 - Restict Communication between Resources

4.7.9.1 Context and Problem Statement

Within a pentest lab, network segmentation and limited communication between
segments are essential for imitating real-world networks. Given Azure’s capabilities of
defining precise security rules within security groups to limit interaction, a decision
must be made regarding the extent and complexity of these restrictions.

4.7.9.2 Decision Drivers

■ Real-world based: The solution should reflect current communication restric-
tions encountered in actual corporate networks.

■ Simplicity: While providing advanced functionalities, the solution should not
introduce unnecessary complexity or overhead in setting up the restrictions.

■ Adoption: The feature should be straightforward to implement within the
generator.

4.7.9.3 Considered Options

■ Restricting communication through security groups and rules between subnets
exclusively.

■ Implementing communication constraints through security groups and rules on
individual resources, thereby deploying a Host-based firewall.

■ Enforcing communication limitations through security groups and rules on a
per-port and source/destination basis via the parent subnet, hence establishing a
conventional network firewall.

70

4.7.9.4 Decision Result

The choice to limit communication based on per-port and source/destination pa-
rameters provides a substantial level of control, enabling the emulation of complex
real-world networks using network firewalls. Rules can be established to permit
communication between resources, as well as between resources and subnets, or
the reverse. The security rules are then applied at the subnet level, accommodating
both containers and VMs, as there is no feasibility to apply security groups directly
to containers. This restriction concerning the application to containers, invalidates
the approach of applying security groups and rules directly to individual resources.
Restricting solely between subnets would not have replicated a state-of-the-art network
adequately.

4.7.9.5 Consequences

■ Good, because it allows for a fine-grained control of communication.

■ Good, as it ensures user-friendliness within the generator, facilitating the creation
of rules akin to a firewall.

■ Good, because sophisticated real-world networks can be emulated.

■ Good, because the solution supports containers as well as VMs.

4.7.9.6 More Information

By default, each subnet should be isolated, and only outbound connectivity to the
internet should be possible in order to install software. The security groups should
be applied at the end of the deployment to ensure that custom installations can
communicate freely between the resources for installation purposes.

71

4.7.10 ADR: 010 - Container Deployment

4.7.10.1 Context and Problem Statement

The lab generator requires support for container deployment. Considering the decision-
making factors, the objective is to discern an optimal deployment solution that strikes
a balance among cost, deployment duration, compatibility, and manageability.

4.7.10.2 Decision Drivers

■ Inter-compatibility with HL

■ Network isolation

■ Costs for deployment

■ Deployment time

■ Stability, Manageability error handling of deployments

4.7.10.3 Considered Options

■ Azure Container Instances (ACIs) [36]

■ AKS [9]

■ Dedicated AVM with Docker installed

4.7.10.4 Decision Outcome

After evaluating the available options, the decision was made to utilize AKS for
deploying containers. This decision is further outlined in the comprehensive evaluation
in section 4.7.10.6.

4.7.10.5 Consequences

■ Good, because existing HL images can be reused.

■ Good, because costs are in the average range.

■ Good, because deployments can easily be managed with Terraform.

■ Neutral, because separate subnets have to be used for containers.

72

4.7.10.6 More Information

In order to evaluate the best possible solution to run containers in the lab, each of
the following requirements is assigned a weight. Furthermore, the key points of the
evaluated solutions are explained.

Intercompatibility
It is vital that existing HL images of vulnerable services can be reused and deployed
in pentest labs. This includes, for example, support for the S6 layer [37], which is
utilized in all HL images, as well as the usage of private repositories. Given that this
is a high requirement, it is weighted with a priority of 5 out of 5. All of the options
support the usage of private repositories such as Docker Hub. The only considered
options supporting the S6 overlay are AKS and the self-installed Docker host on an
AVM. However, ACI unfortunately does not support the S6 Overlay since it utilizes
Shared Process Namespace. [38].

Isolation
The deployed containers must be capable of being placed in separate networks to
simulate segmented networks with multiple subnets. In ACI, this can be achieved by
placing a node of the cluster in the corresponding subnet. In ACI, the container can be
assigned to the corresponding subnet. However, it is important to note that placing the
containers together with other AVM is not supported, as subnets cannot be used for
normal AVMs if delegated to a service such as AKS or ACI. Placing containers together
with other AVMs would only be possible with the option of self-installing Docker on
an AVM. Considering that containers in real-world scenarios typically run apart from
VMs in separate subnets managed by, for example, Kubernetes utilizing networks with
different network policies, this requirement is not of significant importance. Therefore,
the requirement is weighted with a priority of 2 out of 5.

Costs
The solution should be cost-optimized to avoid significant expenses since multiple
students will utilize and deploy multiple instances of the lab, cost optimization is
a significant factor, weighted with a priority of 4 out of 5. For this calculation, a
deployment with 6 containers over 3 subnets for 24 hours was assumed. In AKS, it
is necessary to have a dedicated node for each separate subnet. In this example, it
results in 3 regular nodes plus 1 management node. The nodes were calculated with 2
cores and 4 GB RAM each. For ACI, 6 containers were calculated with resources of 1
GB RAM and 1 CPU each, which is the minimum for the calculator and thus results in
a higher price. For the option of an AVM with Docker installed for each container, a
separate AVM is required, resulting in 6 AVMs. These AVMs are also calculated with
2 cores and 4 GB RAM each, considering the overhead for running the Docker host
itself. The Figure 4.9 shows the estimated price for each evaluated solution.

73

Figure 4.9 Pricing Azure Container Deployment

Deployment Time
Deployment time must be as low as possible since this is the time the students have to
wait till they can use their lab. Therefore, the requirement is weighted with a priority
of 4 out of 5. AKS deployments, including containers, generally take around 6.5
minutes. Similarly, AVM Docker hosts could see faster deployment times by utilizing
a predefined image and snapshots. However, ACIs offer the fastest option, as they
eliminate the need for deploying infrastructure altogether, directly spinning up the
container.

Stability, Manageability Error Handling of Deployments
The deployment of infrastructure along with the containers running on it demands
an efficient and manageable solution. Terraform definitions present a robust solution
for AKS and ACI deployments, ensuring consistency and ease of management. While
extending this approach to Docker hosts is conceivable, it would entail exposing each
VM to the internet for manageability, potentially compromising security and introduc-
ing complexity into the deployment process. Although installation is necessary for the
AVM to act as Docker host, creating a deployment image could streamline the process
and improve manageability. However, this approach also requires maintenance. Such
complexity may impede error handling and overall manageability when compared to
cloud-native solutions like AKS and ACI. Therefore, the requirement is weighted with
a priority of 4 out of 5.

74

In following Table 4.2 the rating is concluded based on the categories above. The
rating and the weight are numbers from 1 to 5.

Azure
Container
Instances

Azure
Kubernetes
Service

Azure Vm
with docker
installed

Intercompatibility (weight: 5) 2 5 5
Costs (weight: 4) 5 4 3
Isolation (weight: 2) 4 4 5
Deployment Time (weight: 4) 5 3 3
Stability and Manageability (weight:
4)

2 4 3

Score 66 77 71

Table 4.2 Container Deployment Evaulation

75

4.7.11 ADR: 011 - Persistence of Labs

4.7.11.1 Context and Problem Statement

The lab-creator will have the capability to export and save the labs they’ve created to
their device. This enables them to reupload the file and modify the lab’s configuration.
While this method is functional, it’s not not allow efficient sharing among all lab-
creators, as each would need to individually distribute their files. Therefore, a solution
that facilitates easy use and sharing of existing lab creations must be identified.

4.7.11.2 Decision Drivers

■ Shareability: The ease with which files can be shared among lab-creators.

■ Maintainability: The effort required to manage and update lab configurations
and content.

■ Ease of Use: The simplicity of the process for lab-creators to share and utilize
labs

4.7.11.3 Considered Options

■ MinIO: An object storage server that provides high performance and easy access
to stored labs.

■ Cloud Storage Services: Could include services like Amazon S3 or Google Cloud
Storage, known for their scalability and global accessibility.

■ Peer-to-Peer Sharing Networks: Technologies that allow direct sharing among
users, bypassing centralized storage.

4.7.11.4 Decision Outcome

The choice to employ MinIO was made in conjunction with Ivan Bütler, primarily due
to the presence of an existing instance that Hacking-Lab AG is already utilizing.

76

4.7.11.5 Consequences

■ Good, because MinIO’s use can be integrated in the existing HL infrastructure.

■ Good, because it offers high performance, ensuring that lab files are accessible
with minimal delay, enhancing the user experience.

■ Good, because MinIO supports scalability, accommodating the growing number
of labs and users without significant modifications.

■ Neutral, because reliance on a single storage solution could pose risks in terms
of data sovereignty, vendor lock-in, or potential downtime impacting access to
lab files.

4.7.12 ADR: 012 - Terraform Templating

4.7.12.1 Context and Problem Statement

To dynamically generate Terraform lab definitions, it is crucial to establish an appro-
priate templating solution.

4.7.12.2 Decision Drivers

Key factors influencing the decision include:

■ Ability to create complex deployments with dependencies

■ Error handling capabilities

■ Ensuring consistent and reproducible deployments

4.7.12.3 Considered Options

Several options were considered:

■ Terraform

■ JINJA2

■ Django

77

4.7.12.4 Decision Outcome

The decision was made to leverage internal Terraform expressions for dynamically
generating resources. This approach requires only the provision of Terraform variables.
With Terraform variables, which may also include arrays or lists, Terraform expressions
and evaluations can be utilized to define the generation logic.

4.7.12.5 Consequences

■ Good, Terraform can handle dependencies directly.

■ Good, all logic can be implemented directly within Terraform.

■ Neutral, there may be a learning curve associated with mastering Terraform’s
syntax and best practices.

4.7.13 ADR: 013 - Student Access to the Lab

4.7.13.1 Context and Problem Statement

To grant students access to the lab, an appropriate access method needs to be selected.
The task assignment states that this should be facilitated through a VPN connection.

4.7.13.2 Decision Drivers

■ The access method should be user-friendly.

■ The access method should be compatible with the Kookarai environment.

■ The access method should require unique authentication for each lab.

■ The access method should be deployable automatically via Terraform definition.

■ The access method should be deployable in a short period of time.

4.7.13.3 Considered Options

■ Azure Virtual Network Gateway (AZNG) utilizing a Point-to-Site (P2S) connec-
tion [39].

■ Self-Managed OpenVPN instance using the Dockovpn container to establish a
P2S VPN [40].

■ Wireguard as container instance [41]

78

4.7.13.4 Decision Outcome

The choice was made for a self-managed OpenVPN instance due to its widespread
and established use, adaptability, cost efficiency, and quick deployment capabilities.

4.7.13.5 Consequences

■ Good, OpenVPN profiles can be automatically generated and distributed to
students.

■ Good, access is authenticated via generated OpenVPN profiles, ensuring unique
credentials per lab.

■ Good, the self-managed Docker instance deploys in under 5 minutes.

■ Neutral, maintenance of the Dockovpn container is handled by a private devel-
opers.

4.7.13.6 More Information

For evaluation, two Proof of Concept (PoC) were developed. While the AZNG could
have been suitable due to its Azure-based nature and Infrastructure as a Service (IaaS)
availability, it suffers from lengthy deployment times (15-20 minutes) and inability to
retrieve OpenVPN profiles directly from the API. Therefore, the Dockovpn container
was chosen, offering rapid deployment and direct retrieval of OpenVPN profiles
through Azure Storage Containers, making it the most user-friendly choice for lab
users.
The option to use Wireguard was considered, however, the choice ultimately fell on
OpenVPN due to its wider integration and longer-standing presence in the field.

4.7.14 ADR: 014 - Authentication Frontend

4.7.14.1 Context and Problem Statement

Provide Authentication in every state of the generator application from front- to
backend via the HL Authentication service KeyCloak [42].

79

4.7.14.2 Decision Drivers

■ Library has to be compatible with the existing HL Authentication service via
KeyCloak and Angular.

■ The library has to be well maintained with regular commits for bug fixes and
improvements.

■ There should be sufficient documentation and community support.

■ It’s preferable when the library is used in various larger projects as a proof of
concept and as a template.

4.7.14.3 Considered Options

■ angular-oauth2-oidc (frontend side) [43].

■ Auth0 [44].

4.7.14.4 Decision Outcome

Within the development team of this thesis in collaboration with the HL developer
Samuel Phillip a final solution for the authentication has been worked out. Con-
sequently, the decision was taken to utilize the angular-oauth2-oidc library for the
front-end, as it offers optimal compatibility with the KeyCloak service.

4.7.14.5 Consequences

■ Good, because angular-oauth2-oidc is well supported and maintained with
regular contributions.

■ Good, because angular-oauth2-oidc is used in various other projects and kept
up-to-date by the community.

■ Good, because the learning curve is not too steep and therefore does not increase
the work-load of the developers by a large amount.

■ Good, because it supports and provides all the functionalities and features that
are required for our application.

80

4.7.14.6 More Information

Since all HL sub-applications utilize the HL KeyCloak service, it was evident that
this application would also authenticate through the same KeyCloak. It would use a
distinct realm, designated as "generator" (https://auth.demo-dc.hacking-lab.com/).

4.7.15 ADR: 015 - Authentication Backend

4.7.15.1 Context and Problem Statement

The primary focus is to verify the authenticity of the JWT tokens transmitted from
the frontend to the backend. These JWT tokens are subsequently received by the HL
KeyCloak service.

4.7.15.2 Decision Drivers

■ The used library should be well maintained

■ The implementation should not need more than a JSON Web Keys (JWKs)
Uniform Resource Identifier (URI)

■ The implementation should be fast and efficient

4.7.15.3 Considered Options

■ PyJWT [45].

■ Authlib [46].

■ Django-OAuth [47].

4.7.15.4 Decision Outcome

Authlib was chosen because is the easiest to implement, maintain and is well supported
and developed by the community.

81

4.7.15.5 Consequences

■ Good, because Authlib is well supported and maintained with regular contribu-
tions.

■ Good, because Authlib is used in various other projects and kept up-to-date by
the community.

■ Good, because Authlib integrates well into the django workflow.

■ Good, because the implementation is only dependant on the JWKs URI.

■ Neutral, because Authlib is a rather big package which means it uses more space
but also has features which could be used in other places.

4.7.16 ADR: 016 - DNS Resolution

4.7.16.1 Context and Problem Statement

In order to access resources using DNS rather than just IP addresses, a strategy must
be developed to ensure proper DNS resolution for the labs. This solution needs to be
scalable to accommodate the continuous deployment of additional labs.

4.7.16.2 Decision Drivers

■ Scalability: Support for an increasing number of labs, each necessitating a unique
subdomain.

■ Cost-effectiveness: Utilization of free service tiers to minimize expenditure.

■ Maintainability: Simplification of DNS record management and removal through
Terraform.

■ Security: Avoidance of unnecessary disclosure of the internal network structure.

■ Complexity: Avoid introducing excessive complexity when configuring DNS
resolution for end-users.

4.7.16.3 Considered Options

■ DNS management using a Azure private DNS Zone [48]

■ Using an Azure public DNS Zone [49]

■ Use Cloudflare [12] DNS for the root domain and Azure public DNS zone for
the specific subdomains related to the lab.

82

4.7.16.4 Decision Outcome

The decision to employ Cloudflare for the management of the root domain and Azure
Public DNS Zone for the subdomains associated with individual labs is made. This
choice is strategically advantageous due to Cloudflare’s offering of free services for
up to 1000 DNS entries, enabling the simultaneous deployment of 250 labs, with
each lab utilizing four nameserver entries in the root domain. This setup suffices
for current scaling requirements. Additionally, opting against deploying the DNS
root zone in Azure mitigates unnecessary costs, as Azure would require continuous
operation, thereby incurring ongoing expenses. The use of Terraform for DNS record
management and removal further simplifies the administrative process and enhances
maintainability with automatic provisioning and deprovisioning of DNS entries using
the Cloudflare [50] and Azure [51] Terraform providers. To simplify the configuration
of DNS resolution for end-users, the DNS records directly resolve to the internal IP
addresses of resources. However, this poses a risk of potential DNS zone enumeration
[52], which could inadvertently reveal the internal structure of the lab and assist
participants in identifying available resources. To mitigate this risk, the introduction of
randomized alphanumeric strings for resource names (format ‘dpl-vm-7 alphanumeric
chars‘) was adopted in the naming concept as defined in Table 4.1 to reduce the
feasibility of DNS zone enumeration.

4.7.16.5 Consequences

■ Good, cost efficiency by utilizing the free tier of Cloudflare, avoiding additional
costs associated DNS management of the root zone.

■ Good, scalability is enhanced with the capability to adjust the number of name-
servers per lab or increase the number of labs, as long as the total does not
exceed the 1000 DNS entry limit provided by Cloudflare.

■ Good, Maintainability through the automation of DNS record management and
removal with Terraform, enabling systematic updates and configurations across
multiple labs with no manual intervention.

■ Neutral, the dual-provider setup introduces slightly more complexity in DNS
management because Cloudflare is used additionally.

83

Technologies 5
This chapter provides an overview of the various technologies and tools employed in
this project.

Frontend

■ TypeScript: Superset of JavaScript which adds static typing. [53].

■ Angular: Web application framework by Google [4].

■ Tailwind CSS: An open-source CSS framework [29]

■ DaisyUI: Tailwind CSS component library [30].

■ Typescript-eslint: TypeScript support for ESLint linting tool [54].

Backend

■ Cookiecutter Django: Framework for jumpstarting production-ready Django
projects quickly. [3].

■ Celery: A distributed task queue system used for handling asynchronous tasks
and scheduling. [18].

■ Redis: An in-memory data structure store used as a message broker for Celery.
[17].

■ Ruff: Extremely fast Python linter and code formatter [55].

Database

■ MinIO: S3 object storage [19].

■ PostgreSQL: Open-source relational database system [56].

84

Deployment Infrastructure

■ Kubernetes: Container orchestration platform [57].

■ Cloudflare: Content delivery network and internet security services [12].

■ Azure: Cloud computing service [8].

■ Terraform: Infrastructure as code tool [7].

■ TFlint: A Pluggable Terraform Linter [58].

■ OpenVPN: Secure open-source software for VPN [11].

Tools

■ Docker: Platform for delivering software in containers [15].

■ Git: Distributed version control system [16].

■ Visual Studio Code: Source-code editor [59].

■ PyCharm: Python Integrated Development Environment (IDE) for software
development [60].

■ WebStorm: Frontend Javascript and Typescript IDE for web application develop-
ment [61]

■ Postman: API platform [62].

■ Insomnia: API platform [63].

■ LaTeX: Document preparation system [64].

■ Overleaf: Collaboration tool for LaTeX [65].

■ Qodana: Static Code Analysis Tool [66].

■ Zotero: Reference management software [67].

■ Pre-commit: Package manager for pre-commit hooks [68].

Collaborative Tools

■ Jira: Bug tracking and project management [69].

■ Confluence: Collaboration software [70].

■ Miro: Collaborative online whiteboarding platform [71].

■ Teams: Virtual meetings and chatting tool [72].

85

Quality measures 6
This chapter outlines the quality measures in place, including topics such as static
code analysis, dependency monitoring, testing strategy, and Git workflow.

6.1 Git Workflow

In this section, the branching and merge request policies are described.

Branching

Branches should be created from develop, and changes should be pushed to them. The
main and develop branches should only be altered through merge requests, as shown in
Figure 6.1. Branches should follow these naming conventions: feature/NEW-FEATURE-NAME
for features, and bugfix/BUGFIX-NAME for bug fixes.

Figure 6.1 Git Branching Workflow

Merge requests

When it comes to merge requests, larger changes require review by another developer,
while small configuration changes can be merged into develop without the need for
a reviewer. Additionally, merging from develop to main should only occur when the
develop branch is stable and manually tested by multiple developers.

86

Four Eyes Principle

A four-eyes principle is also implemented, necessitating code reviews before each
merge into the main branch. These code reviews are conducted within GitLab. This
ensures that no slip-ups or major logical flaws make it to the main branch, which
should always be in a functional and stable state.

6.2 Code Quality

Pre-Commit

To ensure code quality and consistency throughout the development process, pre-
commit hooks were utilized to implement automated checks on both the backend and
frontend repositories. Pre-commit hooks are scripts that run syntax, style validation,
and custom tests before a commit is completed in a version control system like Git.
The package pre-commit was used to manage and maintain these hooks, thereby
enforcing coding standards and identifying potential issues early on.

Linters

The linting engine djLint played a crucial role in managing the Django templates in
this project. Its powerful linting and formatting capabilities ensured that templates
were not only error-free but also adhered to a consistent style and structure. This was
particularly beneficial in a collaborative environment, as it minimized the cognitive
load on developers when navigating and understanding the project’s template code.

On the other hand, Ruff was employed as the primary linting tool for the Python
codebase. As a fast and extensible linter, Ruff offered comprehensive coverage of
common Python coding errors and stylistic issues, making it an invaluable asset for
maintaining code quality.
The backend repository has pre-commit hooks for both linters to ensure only suffi-
ciently linted code was committed and pushed.

For the development of the frontend, TypeScript was utilized in conjunction with
ESLint (typescript-eslint) for code linting and static analysis, ensuring clean and
maintainable code throughout the development process.

Additionally, Tflint was utilized for the deployment alongside Terraform. Tflint not
only offers linting for Terraform itself but also for specific providers, including the
provider from Azure.

87

6.3 Static Code Analysis

JetBrains Qodana [66], a static code analysis tool, was used to ensure high code quality
and maintainability. Furthermore, Qodana has been integrated into our Continuous
Integration (CI)/Continuous Delivery (CD) pipeline. This integration facilitates on-
going monitoring and enhancement of our codebase, guaranteeing compliance with
coding standards and prompt identification of prospective concerns.

6.4 CI/CD Pipeline

The CI/CD pipelines automate the process of integrating code changes, running tests,
and deploying the application. These pipelines ensure that both the backend and
frontend components of the application are consistently tested and built, providing a
reliable and efficient development workflow.

6.4.1 Backend

The backend pipeline is defined in the .gitlab-ci.yml file and consists of three main
stages: lint, test, and build. The pipeline is configured with specific variables to
facilitate the setup of the PostgreSQL database and Docker environment.

6.4.1.1 Stages and Jobs

Lint Stage:

■ precommit: Uses a Python 3.11 image to run pre-commit hooks, ensuring code
quality and style are maintained before further stages. The hooks are installed
and executed, showing diffs on failure to provide immediate feedback.

■ qodana: Executes Qodana, a JetBrains tool, to perform static code analysis. This
job allows failures and stores the results as artifacts for later review.

Test Stage:

■ pytest: Utilizes a Docker-in-Docker (DinD) setup to run the application’s test
suite. The environment is prepared by building and starting necessary services
(Django, Celery, PostgreSQL, Redis, MinIO) defined in the ‘local.yml‘ Docker
Compose file. Tests are run with coverage reports generated and stored as
artifacts.

Build Stage:

88

■ build_django_image: This job logs into the Docker registry and builds the
production Django Docker image. The image is tagged and pushed to the
registry, making it available for deployment.

6.4.1.2 Variables

■ PostgreSQL and Docker-related variables are set to configure the environment
for testing and building the backend application.

6.4.2 Frontend

The frontend pipeline, also defined in a .gitlab-ci.yml file, similarly includes stages
for linting, testing, and building. It uses Node.js and Docker to manage the build and
deployment processes.

6.4.2.1 Stages and Jobs

Lint Stage:

■ precommit: Runs pre-commit hooks using a Python 3.11 image, similar to the
backend. Additionally, it installs Node.js and its dependencies, ensuring code
style and quality before proceeding.

■ qodana: Performs static code analysis using Qodana, with results stored as
artifacts for later review.

■ code_quality: Uses a Node.js image to run linting scripts, ensuring the frontend
code adheres to defined quality standards.

Test Stage:

■ test: Uses a Cypress image for running frontend tests. This job installs dependen-
cies and executes the test suite, generating coverage reports stored as artifacts. It
captures any failures to provide feedback for developers.

Build Stage:

■ build: This job builds the frontend Docker image using a Docker-in-Docker
setup. The image is tagged and restricted to run only on the main branch,
ensuring that only stable code is built and deployed.

6.4.2.2 Variables

■ Environment variables for Docker image names and Node.js version are set to
ensure consistent builds across different stages.

89

6.5 Testing Strategy

To ensure the robustness of the application, various testing techniques were employed,
including unit testing, integration testing and end-to-end testing. Each technique
was applied to different parts of the framework, such as the backend, frontend, and
deployment.

6.5.1 Unit Tests

Unit testing is a fundamental practice in software development that ensures individual
components function correctly. In this project, unit tests were essential for maintaining
the reliability and integrity of both the backend and frontend.

6.5.1.1 Backend

Pytest was chosen as the testing framework for the backend due to its simplicity and
powerful features, including its ease of use, which is characterized by simple syntax
and easy setup. It also provides fixtures that allow for reusable test setup, has an
extensive plugin ecosystem to extend functionality, and offers great compatibility as it
integrates well with Django.

Test objects
Comprehensive tests were written for each Django application, ensuring the function-
ality of related features. Tests were executed locally and automated via the CI/CD
pipeline, as detailed in Section 6.4. An overview of the executed tests is provided in
the appendix.

Test Coverage
Achieving over 80% test coverage with more than 110 tests for a codebase exceeding
5000 lines of source code was a significant milestone. This high coverage indicates that
a substantial portion of the codebase is tested, increasing confidence in the application’s
stability and reliability. Tools such as coverage.py were used to measure and report
on test coverage, identifying untested parts of the codebase for improvement. The
results of coverage.py for the main branch are displayed in the repository using a
badge.

While a higher code coverage could have been achieved the results for more testing
diminish at high levels when compared to the effort. The test-report can be found in
the appendix.

90

6.5.1.2 Frontend

Karma was chosen as the testing framework for the frontend due to its effective
integration with Angular and its robust features, including ease of use with simple
setup and configuration, the ability to run tests in real browsers, seamless integration
with CI tools, and support for various plugins and frameworks.

Test objects
Tests were developed for each Angular component to verify the corresponding fea-
tures. These tests were carried out locally and automated via the CI/CD pipeline, as
elaborated in Section 6.4. A comprehensive summary of the conducted tests can be
found in the appendix.

Test Coverage
Achieving 36% test coverage with 34 tests indicates that there is room for improvement.
Tools such as Istanbul were used to measure and report on test coverage, helping to
identify untested parts of the codebase. The results of Istanbul for the main branch
are displayed in the repository using a badge. The test-report can be found in the
appendix.

6.5.1.3 Terraform Deployment

For the Terraform Deployment, a semi-automated approach was taken. This approach
involves testing the individual parts of the deployment through actual deployment of
the configuration and subsequent verification of the generated output and success of
the deployment.

The unit testing phase focuses on verifying individual Terraform resources in isolation
before full deployment. This is achieved by applying configurations in isolation,
where each resource is applied to validate its correctness. This step ensures that
individual components are configured correctly and function as expected. Additionally,
output verification is performed to check that the outputs generated by the applied
configurations match the expected values. For certain core components the according
test-reports can be found in the appendix. Implementing unit testing in such a manner
guarantees the reliability of the fundamental building blocks of the infrastructure.
This step is crucial because it provides a robust foundation for subsequent phases of
integration and end-to-end testing, where the deployment undergoes a more thorough
examination.

6.5.2 Integration Testing

Integration testing ensures that different modules and services of the application,
including the frontend, backend, and deployment, work together correctly. This type
of testing verifies that interactions between these components function as expected in a

91

combined environment. The primary objective of integration testing is to identify issues
that may arise when integrating various parts of the application. This process helps
verify that modules and services communicate correctly, data flows accurately work
between components, and combined functionalities meet the specified requirements.

Big-Bang Integration Testing:
Big-bang integration testing was performed to some extent. This approach involves
integrating all components or modules simultaneously, after which everything is tested
as a whole. While this method can quickly show how all components work together, it
can be challenging to isolate the source of any detected issues.

For the setup, all modules of the application, including backend services such as
Django, Celery, and PostgreSQL, as well as the frontend, were integrated into a
single environment. A complete system setup was deployed using Docker Compose,
ensuring that all services were running and able to interact with each other.

During test execution, comprehensive test scenarios were carried out to verify the
interactions between different components. These scenarios included tests for user
authentication, data retrieval and submission, and GUI interactions for creating,
uploading, downloading, and deploying labs.

The results indicated several were logged and assigned to the relevant developers for
debugging and resolution.

Despite the challenges, Big-Bang integration testing provided a quick overview of
the overall system integration. The process highlighted critical integration points
that required more focused testing in subsequent iterations. By performing Big-Bang
integration testing, key integration issues were identified early in the development
cycle.

92

6.5.3 End-to-end testing

End-to-end tests were manually performed together with the supervisor, Ivan Bütler,
in the demo tenant of HL. These tests aimed to validate the complete workflow of the
DPL generator framework from the user interface to the final deployment of labs in
the Azure environment. The following key scenarios were tested:

■ User Authentication: Verified that users could successfully log in using their HL
credentials and access the lab creation interface.

■ Lab Creation: Ensured that users could create labs by adding and configuring
various resources such as VMs, containers, and subnets.

■ Resource Configuration: Checked that custom configurations for resources (e.g.,
custom installation scripts for VMs, multiflags and credentials) were correctly
applied.

■ Terraform Deployment: Confirmed that the generated Terraform configurations
were valid and successfully deployed the labs in Azure.

■ VM Access: Verified that the OpenVPN container provided secure access to the
deployed labs.

■ VPN Resolution: Ensured that VPN settings for the labs were correctly config-
ured using Cloudflare and Azure VPN zones.

■ Snapshot: Tested the snapshot functionality by starting the Deployment Manager
in HL and then restoring the snapshot

Any issues encountered during testing were promptly addressed and resolved, ensur-
ing a final product of good quality.

93

Implementation 7

7.1 Frontend

7.1.1 General

The frontend of the application was developed using Angular [4], TypeScript [53], and
DaisyUI [30]. The focus lied on establishing general best practices and workflows
tailored to this specific tech stack. This stack was selected by the HL developers to
ensure maintainability beyond the duration of this thesis.

The overall concept and design of the frontend was evaluated and defined using the
mockup created in Figma according to Section 4.6.1. This mockup served as a tool
to present and discuss various design approaches with both the developer team and
the supervisor, ensuring a unified vision for the frontend development. It provided
a single source of truth for building components according to a plan. Additionally,
the mockup served as a reference for tracking workflows and workload, allowing the
team to compare the current state of the application to the envisioned final product.

7.1.1.1 Model-View-Control Pattern

For the clarity and maintainability of the code base, it was decided to enforce a
separation of purpose and divide the code into components and services, according
to their function. The folder structure represents the architecture of the application,
which helps future developers to understand the code and work on it.

This application implements the MVC pattern, which is a design pattern used to
separate concerns and improve the modularity of the application. The components of
the MVC pattern in the application are as follows:

■ Model: The Model is responsible for managing the data and business logic of the
application. In this implementation, the Model is represented by services that
implement data fetching, state management, and business logic. These services
are utilized across multiple components, ensuring a centralized and consistent

94

data handling mechanism. The model is realized through most of the services
within the file structure of the frontend, which handle communication with the
backend, format data that is received and sent, and manage the overall state of
the page and its content.

■ View: The View is the visual representation of the data. In this application, the
view consists of the HyperText Markup Language (HTML) page and templating
component files in the folder structure. These files define how data is presented
to the user and ensure a clear, dynamic and user friendly interface.

■ Controller: The Controller acts as an intermediary between the model and the
view. It processes user inputs, manipulates the Domain Object Model (DOM),
and coordinates interactions between the model and the view. In the Generator
frontend, the controller role is fulfilled by TypeScript files associated with each
component and HTML page. These files handle user interactions and ensure
that the view is updated in response to changes in the model.

By applying the Model View Control (MVC) pattern, a well-structured and maintain-
able codebase was achieved. This separation of concerns not only makes the code
easier to understand and manage, but also simplify the testing and future extension of
the application.

7.1.1.2 Vis-Network Library

Integrating the central JSON structure for resource data with the vis-network library
posed a significant challenge in frontend development. This process required a thor-
ough understanding of the vis-network library, particularly its primary components:
nodes and edges.

The vis-network library takes a dataset of nodes and edges to render a graph on the
canvas. For the implementation of this work, the dataset was extended to include
all properties necessary for the corresponding resources. The network disregards
any unknown properties that are only relevant for deployment, using the remaining
properties to render the nodes and edges.

7.1.2 Maintability

A main focus of the frontend was set to the maintainability and modularity of the
application. The goal was to make extending the application, with further resources
that can be added, as simple and intuitive as possible.
As for the implementation of that mentioned goal, an architecture was worked out re-
volving around JSON files. Generally, these JSON files contain fundamental structures
of the data about deployments and the lab setting. These JSON files act as a centralized
and single source of truth for the deployment and especially for the frontend. More

95

information about the exact structure and content of those JSON files can be found in
the Section 7.2.
For the frontend specifically, these JSON files function as a source of hydration to
dynamically provide the content that should be displayed for the user.

7.1.2.1 Model Data Structure JSON

This centralized JSON file, mentioned above, is utilized in various parts of the frontend,
primarily on the Lab Editor Page outlined in Section 7.1.4.2. This file is essential
for hydrating nodes, also known as resources, with the correct data structure and
information. More specifically, the model structure JSON provides ordered and
encapsulated key-value pairs for all properties associated with each resource.

This architectural design has a significant advantage: the lab resource editor page
contains minimal static logic, allowing the component to be built dynamically. Con-
sequently, if any changes are required or new resources are to be added, this can
be easily achieved by simply updating the JSON file in the backend with the new
resource and its properties. As a result, maintaining the application requires minimal
effort and only a basic understanding of the frontend implementation.

The only requirement for a new resource is that it must be deployable in Azure and
compatible with the deployment logic in Terraform. Otherwise future developers are
completely free with adding new resources and additional logic to the frontend.

Implementing this dynamic hydration in the frontend required significant initial
development time and resources due to the complexity of rendering data dynamically
based on the resource structure and input types. However, this investment has paid
off, as once the base case for a resource was implemented, it became functional for all
defined resources and any future additions. Future developers can now easily add
new resources to the existing JSON file and utilize all available input field types.

Therefore, the frontend is not only a static graphical editor but rather a versatile toolbox
that enables developers to easily create their own version of this cloud network-defining
application.

96

7.1.3 Development Setup

For the local development of the frontend it was required to set up multiple compo-
nents for the whole application, early in the project.

7.1.3.1 Backend

For the hydration in the frontend to properly work, it is required to have the complete
backend running. As part of the workflow it is therefore required to start all the
Docker containers that the backend builds including: django, the Celery worker with
redis and the MinIO database. This components are further described in the backend
implemenation Section 7.2.

7.1.3.2 Frontend

To efficiently develop the frontend a traditional local web server is hosted and allows
instant recompiling after any changes have been made.

7.1.3.3 Nginx

After implementing Hacking-Lab authentication via KeyCloak, it became necessary
to route traffic over Hypertext Transfer Protocol Secure (HTTPS) instead of HTTP.
This change was required to mitigate Cross-Origin Resource Sharing (CORS) errors
when redirecting between the Hacking-Lab authentication page and our application.
This was achieved with an Nginx[73] that can be run locally or with a Docker[15]
container

Additionally, a local DNS entry was created to map the localhost address to the URL
https://generator.demo.hacking-lab.com/.

97

https://generator.demo.hacking-lab.com/

7.1.4 Pages

The Dynamic Pentest Lab Generator consists of three main pages, which form the core
of this thesis from the end user’s perspective. The lab-creator primarily interacts with
the content displayed on these pages to create a new lab structure.

7.1.4.1 Info Page

The info page, displayed in Figure 7.1, is the main and default route for this web
application. It contains a rendered markdown file that provides a brief introduction,
clarifications, and explanations about the application. This page aims to inform the
user about the general workflow and offers a short explanation with examples of the
various functionalities of the application.

The info page simply renders a markdown file that is filed in the assets folder within
the project folder structure. To enable the rendering of markdown within HTML the
ngx-markdown[74] library was used.

Figure 7.1 Info Page

98

7.1.4.2 Lab Editor Page

The editor page, outlined in Figure 7.2, forms the core page in the frontend of this
thesis. It contains the core frontend logic and allows the end user to create labs.

It contains the following components which then together build the lab editor:

■ Network Canvas: This component lays directly within the lab editor page and
consists of components form the vis-network library.

■ Lab File Import Component

■ Resource Creation Dialog Component

■ Resource Editor Component

Figure 7.2 Lab Editor Page

99

7.1.4.3 Labs Page

The labs page, shown in Figure 7.3, is the other important half of the Generator
application. This page serves as an overview of all the saved, which are provided
through the GET /lab API call to the backend. The labs page mainly consists of a
dynamically generated table, which reads the received data about the existing labs.
The HTML loops over the objects within the labs JSON and creates a row for ever
object and with a second loop iterates over every key value pair property of that object.
With every property a column is created and filled with the value of that property.
Additionally to each row, the standard function buttons get appended which concludes
edit, download as JSON, download dockerfiles.tar.gz, deploy and delete.

Figure 7.3 Labs Page

100

7.1.5 Components

To organize the code into components, the code is grouped based on functionality and
location within the codebase. The components in this project form a template that can
be inserted anywhere within the existing codebase. This approach helps mitigate code
duplication, enhances readability, and improves the maintainability of the application.
The following criteria are used to determine whether a piece of code should be used
as a component:

■ The code can run independently, thus forming a valid component.

■ The component is utilized multiple times in different parts of the application.

7.1.5.1 Navbar

This is a traditional navigation bar at the top of the page which contains all the
different sub-routes of the application. It is used and displayed on every page. The
nav-bar is rendered globally through the parent component of the application, the
app.component. With that the nav-bar is a static element available on every page.

7.1.5.2 Notification Component

Similar to the nav-bar component in Section 7.1.5.1, the notification component is
globally rendered in the app-component but is not always visible to the user. It
provides feedback through success messages, error alerts or informational messages.

The visibility of the notification is controlled by the isVisible input property. When
set to true, so for example when calling the showNotification function in an error,
the notification appears on the screen. The component also accepts title, message,
and type as input properties:

■ title: The title of the notification.

■ message: The main content of the notification.

■ type: Defines the notification type (e.g., success or error), which determines
the background color of the notification.

The notification component uses the Notification Service, further described in 7.1.6.2,
to manage its state.

Users can manually dismiss the notification using a close button, enhancing user
control and accessibility. The component is styled with Tailwind CSS to ensure a
consistent and responsive design across different devices. DaisyUI on the other hand
did not provide a component that was suiting this use-case as intended.

101

In summary, the notification component is essential for providing user feedback within
the application, utilizing Angular’s input properties and services for flexible and
maintainable notifications.

7.1.5.3 Lab Title

The lab-title component is only used in the lab-editor page and is not used in multiple
parts of the application, but for better code readability it was also separated into a
separate component. It represents the title of a lab which can be edited and is sent to
the backend with the rest of the lab structure. This component reacts on changes of its
value and updates the value via the NetworkData Service, outlined in Section 7.1.6.5,
where the rest of the current lab structure information is saved.

7.1.5.4 Resource Creation Dialog

The resource creation dialog component is used in the lab editor page and is a crucial
element for the creation and designing a lab environment.

This is the first component that dynamically gets built depending on the resources
information provided by the backend, outlined in Section 7.2.4.1, which is received via
an API call in the API Service, outlined in Section 7.1.6.7.

After successfully receiving the model data from the backend-call the HTML then
creates a button by iterating through every resource object in the model JSON and
reads its key. These keys then represent the options that the user has, to add different
resources to his lab environment.

1 <button

2 *ngFor="let resourceType of Object.keys(modelStructureJson)"

3 (click)="selectResourceType(resourceType)"

4 class="btn m-1"

5 >

6 {{ resourceType }}

7 </button>

Listing 7.1 Dynamic Button Creation through JSON File

7.1.5.5 Resource Editor

The resource editor is a core component of the dynamically built frontend and is
visually represented as a sidebar within the Lab Editor Page. It implements complex
logic to build an editor form capable of representing various resource types with each
having different properties and types of input fields that can be configured.

102

The primary concept of this editor is to utilize specific input fields, or building blocks,
defined by the model structure JSON file provided by the backend. Users can then
add multiple resources of different or identical types to their lab structure.

For instance, considering the basic case of a text input field for some property that
should be configurable with text inputl:

1 <app-text-input

2 *ngIf="shouldDisplayInputField(node, property, 'text')"

3 [name]=property

4 [value]="node[property]"

5 (valueChange)="editNode(node, property, $event)"

6 >

7 </app-text-input>

Listing 7.2 Resource Editor Text Input Example

In this context, two nested for-loops render the resource editor dynamically:

■ The outer loop iterates over all nodes (or resources) currently in the lab structure
dataset, which contains all added resources.

■ The inner loop iterates through each property of the current node (resource)
from the outer loop.

During each inner loop iteration, the properties mapped to the model structure from
the backend, determine which Input Field Component should be rendered for each
property. The Input Field Component is further explained in Section 7.1.5.6.

Examining the HTML instance of the Text Tnput Component Example in Listing 7.2,
the following directives and properties are present:

■ Structural Directive: Used for each input type to check if the current property
should be rendered with this component. It takes the current resource or node
to provide the necessary information for rendering the specific component. The
property and the string text are used in the function to determine if the property
type matches text.

■ Name Input Value: Provides the component with the name of the current
property and is used for edge cases to identify properties in the model structure
that are necessary elsewhere but do not need rendering in the resource editor.

■ Value Input: Crucial for loading existing labs, this input takes any value already
set on the current property in the dataset and sets it as the property’s value when
the component is rendered.

■ Value Change Output: This output serves as an event handler. When a change
is detected in an input field, it bubbles up from the input component to the
resource editor component. Information about the resource (node), the current
property, and the edited property value are passed as arguments to the editNode

103

function, which then uses the Network Data Service to update the dataset. Saving
this information updates the network graph, which is essential for saving or
deploying the current lab structure.

Taking a look at a more complex input component featuring an Azure Dropdown
Component outlined in Listing 7.3, which is a special case that requires a backend-call
to receive information about the currently available Azure resources, which again
come in via the API service. The dropdown component is built so it can be be
reused normally for future resources as all the other components, but it catches the
special case of an Azure dropdown, that functions slightly differently. For more
detailed information about the Azure information JSON, refer to the implementation
documentation of the backend in Section 7.2.4.1.

1 <ng-container

2 *ngIf="shouldDisplayInputField(node, property, 'azure_offer_dropdown')"

3 >

4 <app-dropdown

5 [disabled]="!getChosenVmDropdownValue(node, 'publisher')"

6 [items]="getChosenVmDropdownValue(node, 'publisher') ?

azureData[getVmType(node.type)]['publisher']

7 [getChosenVmDropdownValue(node, 'publisher')][property] : ''"

8 [(value)]="azureDropdownTypes.includes(node[property]) ? '' :

node[property]"

9 (valueChange)="editNode(node, property, $event)"

10 >

11 </app-dropdown>

12 </ng-container>

Listing 7.3 Azure Offer Dropdown Component

Going into the Listing 7.3 above more in detail, one can see that current property
of the iteration step through all the properties of a resource gets checked with the
shouldDisplayInputField function, if it meets the condition to render the dropdown
component, same as for every other property. If this check succeeds the dropdown
component gets rendered with the following input and output values:

■ Input [disabled]: The used function checks a different value, in this case the
publisher dropdown value, for the current node (resource) and returns if it is set.
If this function returns false the current dropdown gets disabled. This allows
the developer to enforce serial selection of Azure dropdowns, depending on the
previous dropdowns to have a value selected.

■ Input [items]: The items input value serves the dropdown to provide it with the
options for the user to select. The conditial only serves the purpose to prevent
the code from trying to load the items when the previous dropdown, or some
other value, is not set yet. If the items are to be loaded, the code looks at the
Azure data JSON and returns a list of all matching values, in this case all the
offers.

104

■ input [value]: This input value is necessary for the loading of existing labs and
setting the value of the property that is defined by the loaded lab structure.

■ output (valueChange): This final output value is required to register the event
of the user changing anything in the currently checked property and writing it
into the lab structure that is currently active.

7.1.5.6 Resource Editor Input Fields

The user input fields are a core component of the resource editor, these are dynamically
filled into the resource editor template depending on the previously mentioned JSON
structure. There are different types of input fields that are called by the value of the
according property key that are looped through.

■ Text Input: This is the base case of the input fields called by the value str by the
JSON model structure.

■ Numeric Input: The numeric input is a classic numeric only user input that is
called with the value int in the JSON model structure.

■ Boolean Input: This input field type is represented as a classic checkbox that
sets the values true and false. It is inserted in the input template when the value
boolean is called.

■ Dropdown The dropdown input field is a simple dropdown component that
takes a list of elements that can be display as a scrollable list of items. It allows
the user to chose one of the listed elements and select this as the chosen value
for the resource property configuration.

There are several special cases for the dropdown, that can be triggered with
special keywords in the value that represents the input type of the Lab Structure
JSON file. These edge cases of the dropdown component are implemented for
the Azure dropdowns for the different VMs and do not take a direct item list but
instead pull the newest available Azure information from the backend directly
and use these as their items.

Additionally there is a search function implemented for the dropdown item
list, which is especially important for the Azure dropdowns, because the list of
certain properties can be quite long.

■ Encapsulated Input: The encapsulated input component is one of the more
special and interesting components of the frontend part of the DPL. It is used for
resources like the firewall or the docker container resource that have properties
within a property. An example being the credentials property that allows the
user to add multiple users with credentials that get stored within the credentials
property and therefore had to be implemented as a one-step recursion of the

105

classic input fields. Each encapsulated input field takes the arguments of classic
input fields like mentioned above.

7.1.5.7 Lab Import

The lab import component is a simple button that allows the user to upload a JSON
file, which is used in the Lab Editor Page directly, to import an existing lab structure
via file.

106

7.1.6 Services

As for the services, they are created for central functionalities that are required for
multiple components and contain functions shared by those components. The services
are thematically separated and give the code more structure, so not all the central
functions and helper function are clustered in one single file. This makes maintaining
and understanding the application easier when searching for a specific function.

7.1.6.1 Authentication Service

Like the name tells, this service covers all the functionalities regarding the authentica-
tion for every API-call, the initial login, logout and for the validity check of the session
token gained by the HL KeyCloak.

7.1.6.2 Notification Service

This service provides methods to show and hide notifications and uses BehaviorSubject
to track the state of the notification’s visibility, title, message, and type. When
showNotification() is called, the service updates the relevant subjects, and the com-
ponent subscribes to these changes to update its display accordingly. Due to the
component’s global implementation, this service can be called from everywhere in the
application and is displayed wherever an error or success message is required.

1 <div class="w-full">

2 <app-notification

3 class="notification"

4 [isVisible]="(notificationVisible | async) || false"

5 [title]="(notificationTitle | async) || 'default error'"

6 [message]="(notificationMessage | async) || 'default error message'">

7 </app-notification>

8 <app-nav-bar></app-nav-bar>

9 <router-outlet></router-outlet>

10 </div>

Listing 7.4 Notification Component

Examining the HTML code above it is visible that the notification component is
always present and can just be enabled and disabled whenever it is necessary in the
application with the mentioned showNotification() function.

107

7.1.6.3 Deployment Service

This service outsources helper-functions that would clutter the code which trigger
deployments and it mitigates unnecessary code duplication, improving code quality
and readability.

These helper functions simply format the, by the user created, lab structure and serve
it in a data structure which is usable for the backend. The most important function
being the formatJsonForDeployment() that merges the set Lab Title and the dataset
with all the resources into a final JSON that then gets sent to the backend via the API
Service.

7.1.6.4 Network Service

The network service mainly contains the configuration and options of the canvas and
graph that is given as a function to render the vis-network[5] graph.

7.1.6.5 Network Data Service

This service contains all the functions that handle the central data logic concerning
the vis-network[5] library in combination with our lab data structure. This service
maps the received data from the backend into a dataset that can be viszualized with
vis-network[5].

7.1.6.6 Network Init Service

The network init service functions as a primary initialization of a vis-network graph
and renders an empty graph with an empty node and edge dataset.

7.1.6.7 API Service

The API Service is the core service that functions as a bridge between the frontend and
backend. It contains all the API calls required to hydrate the frontend with necessary
data and to post updates to the backend. This service ensures seamless communication
and data exchange between the two layers of the application.

The API Service includes the following key functionalities that also represent the core
operations of the application that can be used by the lab editor:

108

■ Fetch Model Structure: Retrieves the model structure from the backend to
ensure the frontend has the correct data structure and information needed for
rendering resources dynamically.

■ Fetch Azure Data: Obtains specific data related to Azure resources, ensuring that
the frontend can properly display and interact with Azure-related components.

■ Deploy Lab Structure: Sends the current lab structure data to the backend for
deployment. This method supports both POST and PUT requests, depending on
whether an existing lab ID is provided.

■ Save Lab Structure: Saves the lab structure data to the backend. Similar to
deployment, this can involve creating a new lab (POST) or updating an existing
one (PUT).

■ Get Labs Data: Fetches a list of all labs from the backend, allowing the frontend
to display available labs to the user. This API call receives all the data that is
required to build the content of the Labs page.

■ Download Lab JSON: Downloads the JSON representation of a specific lab,
allowing users to save or review the lab configuration offline.

■ Download Lab Tar GZ: Downloads a tar.gz archive of the lab’s Dockerfiles,
useful for deployments and backups.

■ Download Lab Status Log: Retrieves and downloads the deployment status log
for a specific lab, providing insights into the deployment process and any issues
that occurred.

■ Load Existing Lab: Loads the data of an existing lab from the backend, facilitat-
ing the editing or redeployment of an existing lab configuration.

■ Deploy From Minio: Deploys a lab directly from Minio storage, leveraging the
existing lab data fetched from the backend.

■ Delete Lab: Deletes an existing lab from the backend, removing its configuration
and associated data.

7.1.6.8 URL Service

The URL Service is primarily used for handling operations related to an existing lab
that already has an ID. Its core functionality is to extract the lab ID from the URL and
return it to any function within the application that requires it.

Additionally, the URL Service includes functionality for managing the lab ID in the
URL for a related use-case. When a lab has previously been opened either through
the "edit" button on the labs page or directly via a URL containing the lab ID, there is
a function to remove the lab ID from the current URL. This prevents the previously

109

opened lab from being reloaded when the user tries to import a lab structure directly
from a JSON file, in the current state of the page.

7.1.6.9 Deployment Service

This service contains all functionalities related to deploying or saving labs within the
frontend. The core component of this service is the formatting function for labs. This
function takes the dataset of resources and connections (nodes and edges) temporarily
stored in the frontend while the user is editing the current lab. It then merges this
data with the lab name to create a correctly formatted JSON, which the backend can
further process.

7.1.7 Styling

As for the styling the authors of this thesis were asked to use the same framework as
the HL developers used in their products. So like the Angular[4] framework it was a
requirement by the HL to use Tailwind[29] and DaisyUI[23].

For the implementation, Tailwind[29] with the defined theme is introduced to the
application via the angular.json file and within the tailwind.config.js the more
specific DaisyUI theme is defined. The developers then generate an output.css, based
on the mentioned tailwind.config.js file, that sets a base styling over all HTML files
in the application.

For more specific styling of the different components and pages of the application,
each component and page comes with its own CSS file, which overwrites the base CSS
if there are any conflicts.

110

7.2 Backend

7.2.1 General

The backend serves as a crucial intermediary between the user-facing frontend and
the underlying infrastructure management performed by Terraform. Its primary re-
sponsibilities include providing API endpoints for the frontend, initiating Terraform
deployments, and generating the Deployment Manager in the form of a docker-
files.tar.gz. This tarball can be utilized by lab-creators within the HL environment.

To enhance development efficiency and maintainability, the backend architecture
follows a clear separation of concerns. The frontend is designed to handle minimal
logic, relying extensively on API calls to the backend for complex operations and data
manipulations. This approach ensures that changes in the backend data structure
or logic do not necessitate significant modifications to the frontend, unless a major,
breaking change occurs. Consequently, this design facilitates easier updates and
scalability, as the backend can evolve independently of the frontend.

7.2.2 Basic Setup and Structure

The backend is built using Python, Django, and Celery, interfacing with MinIO,
PostgreSQL, and Redis for data and job management. This technology stack was
chosen in collaboration with the developers at HL to ensure easy maintainability
beyond the duration of this thesis.

Key components of the backend include:

■ Python and Django: Provide the core framework for the backend application.

■ Celery: Manages asynchronous task execution and scheduling.

■ MinIO: Handles object storage for lab configurations and related data.

■ PostgreSQL: Manages relational database operations.

■ Redis: Acts as a message broker for Celery and provides fast data access.

7.2.3 Software

This section lists the external software needed for the backend to function effectively.

111

7.2.3.1 MinIO

MinIO is an open-source, high-performance object storage system that is fully compat-
ible with Amazon S3 APIs. It excels in large-scale data storage. MinIO is known for
its simplicity and scalability and supports essential features to ensure data integrity
and durability.

In this project, MinIO is used to store lab configurations, snapshots, information
gathered from Azure, and other smaller datasets in JSON format.

7.2.3.2 Celery & Redis

Celery is an asynchronous task queue/job queue based on distributed message passing.
It is focused on real-time operation but supports scheduling as well. The execution
units, called tasks, are executed concurrently on one or more worker nodes using
multiprocessing, eventlet, or gevent. Celery requires a message broker to handle
messages between the main application and Celery workers. Redis is commonly used
for this purpose due to its high performance and low latency. For this reason and
good integration with Celery it was decided to use Redis for this project as well.

For this project, Celery tasks are used to run Terraform deployments asynchronously.
Celery beat is used to run certain functions periodically, similar to cron jobs. Celery is
the only component of the backend that needs to initiate communication with external
connections, and therefore, it is configured to communicate over a proxy set by the
environment variable HTTPS_PROXY.

7.2.3.3 Postgres

PostgreSQL is a powerful, open-source object-relational database system. It has a
strong reputation for reliability, feature robustness, and performance. PostgreSQL
supports advanced data types and performance optimization features, making it the
standard choice for handling various internal tasks within Django.

In this project, PostgreSQL is used to manage relational data, providing robust and
efficient data storage and retrieval capabilities that are essential for the backend’s
operations. Its advanced features ensure that the backend can handle complex queries
and large datasets efficiently.

7.2.4 Django Applications

A Django project is essentially a collection of various configurations and apps that
together make a complete web application. In Django, an "app" is a self-contained

112

package that encapsulates a specific functionality or a set of related features. These
apps are designed to be reusable, potentially in different projects, which promotes
modularity and reduces code duplication. In the following sections the apps of our
project will be described.

7.2.4.1 Resources

This app ensures that the backend offers two distinct types of resources through its
API: the model data structure and the information about various OS versions sup-
ported by Azure that is periodically retrieved.

Model Data Structure
One of the most important and time-intensive parts of the project was the definition
and creation of a model which is both easily maintainable, can be easily extended
and has the necessary logic to deliver the needed information to the frontend. It
was decided not to use JSON Schema to structure JSON that is sent over API as our
implementation of it couldn’t be both clean and tailored to this very specific use case.
It is already described in the JSON model section 4.5 in the architecture.

Azure Resources
To display the supported types of VMs on the frontend, the backend uses Celery’s

scheduling capabilities to periodically fetch this information from Azure.

The implementation collects all available offers, their corresponding SKUs, and all
existing versions of each SKU from specified publishers. The publishers are catego-
rized into Windows and Linux types. By default, the Windows publishers include
MicrosoftWindowsServer and MicrosoftWindowsDesktop, while the Linux publishers
are Canonical, RedHat, and SUSE. These defaults can be customized by setting the
environment variables LINUX_PUBLISHERS and WINDOWS_PUBLISHERS.

The gathered information is formatted into a JSON structure and saved in MinIO. This
setup ensures that any function requiring information about Azure VM types can
access it quickly and efficiently from MinIO.

Implementation Details

The Celery task is scheduled to run periodically to fetch the latest VM information
from Azure. Additionally, it is triggered when there is no existing Azure information
in MinIO and a request is received. Here’s a high-level overview of the process:

1. Fetch Offers: The task fetches all current offers available from the specified
publishers.

113

2. Retrieve SKUs and Versions: For each offer, it retrieves the corresponding SKUs
and all available versions of each SKU.

3. Categorize by Publisher Type: The offers are categorized into Windows and
Linux based on the publisher.

4. Save to MinIO: The collected data is serialized into JSON and stored in MinIO,
making it accessible for other backend functions that need this information.

This periodic update ensures that the frontend always has access to the most current
information about Azure VM offerings, facilitating accurate and up-to-date resource
selection.

7.2.4.2 Lab

The Lab module manages the configurations and statuses of various labs within the
system. This module interacts with MinIO to store, retrieve, and update lab data,
ensuring that all lab configurations are persistently stored and accessible as needed.

Functionalities

1. Saving New Labs When a new lab configuration is created, it is stored in MinIO.
This ensures that the configuration is saved persistently and can be accessed or
modified later. The new lab is initially given a status of "saved".

2. Overwriting Existing Labs The module allows for the updating of existing lab
configurations. When an update is made, the existing configuration in MinIO is
overwritten with the new data. This functionality ensures that lab configurations
can be modified and kept up to date.

3. Retrieving Lab Configurations Users can retrieve the configuration of a specific
lab. This functionality fetches the lab data from MinIO and returns it to the user,
allowing them to view the current settings and details of the lab.

4. Listing All Labs The module can list all lab configurations stored in MinIO,
along with their statuses. This provides a comprehensive overview of all the labs
in the system, including their current states.

5. Lab Status Management Each lab has a status that indicates its current state.
The possible statuses are:

■ Saved: The lab configuration is saved but not yet deployed.

■ Deploying: The lab is in the process of being deployed.

■ Deployed: The lab has been successfully deployed and is operational.

114

■ Failed: The deployment of the lab has failed.

Detailed Process Flow

1. Creating a New Lab

■ A new lab configuration is submitted and validated.

■ The validated configuration is saved to MinIO with a status of "saved".

■ The lab configuration can include various details such as resources, settings,
and deployment parameters.

2. Updating a Lab

■ An existing lab configuration is fetched from MinIO.

■ The configuration is updated with new data.

■ The updated configuration is saved back to MinIO, overwriting the previous
version.

3. Fetching a Lab Configuration

■ The lab’s UUID is used to locate and retrieve the configuration from MinIO.

■ The retrieved configuration is returned to the user, providing all the details
of the lab.

4. Listing Labs

■ The system queries MinIO to retrieve a list of all stored lab configurations.

■ Each lab’s status is also fetched and included in the list.

■ The list of labs, along with their statuses, is returned to the user.

5. Checking Lab Status

■ The system checks the current status of a lab using its UUID.

■ The status is determined based on the deployment process and any updates
made to the lab.

■ The status is returned to the user, indicating whether the lab is saved,
deploying, deployed, or failed.

By providing these core functionalities, the Lab module ensures efficient management
of lab configurations and statuses, supporting the overall operation and maintenance
of labs within the system.

115

7.2.4.3 Parser

The parser module is a critical component of the backend, responsible for transforming
the JSON data structures shared between the frontend and backend into the format
required by Terraform. This transformation is necessary because a single data structure
cannot be used directly by both the frontend and Terraform due to their differing
requirements.

Functionalities

1. JSON Transformation The parser module converts JSON data received from the
frontend into a structure that Terraform can use. This involves mapping and
transforming the data to ensure compatibility with Terraform’s configuration
requirements.

2. Handling Complex Configurations Some Terraform configurations require fixed
structures that are challenging to represent dynamically in the frontend. The
parser module addresses this by handling these complex configurations and
ensuring they are correctly formatted for Terraform.

3. Validation and Error Handling During the transformation process, the parser
module validates the data to ensure it meets the required specifications for
Terraform. If any errors are encountered, they are logged and appropriate error
messages are returned to guide users in correcting the issues.

4. Integration with Terraform The transformed JSON data is used to generate
the necessary Terraform configuration files. These files are then utilized in the
deployment process to provision the required infrastructure.

Detailed Process Flow

1. Receiving JSON from Frontend The parser module receives JSON data from
the frontend, which contains the configuration details for the lab or deployment.

2. Transforming Data Structure The received JSON data is parsed and transformed
into a format that Terraform can understand. This involves:

■ Mapping frontend data fields to corresponding Terraform configuration
fields.

■ Converting dynamic structures into the fixed formats required by Terraform.

■ Ensuring all necessary configuration parameters are included and correctly
formatted.

3. Validating Transformed Data The transformed data is validated to ensure it
adheres to Terraform’s configuration requirements. This step checks for:

116

■ Missing or incorrect fields.

■ Data types and value ranges.

■ Structural integrity and consistency.

4. Handling Errors If any validation errors are detected, the parser module logs
the errors and returns detailed error messages to the frontend. This allows users
to understand what went wrong and make the necessary corrections.

5. Generating Terraform Configuration Files Once the data is successfully trans-
formed and validated, the parser module generates the required Terraform
configuration files. These files include:

■ Main configuration files defining the infrastructure.

■ Variable files specifying the parameters and values.

■ Any additional configuration files needed for specific resources.

6. Storing and Using Configuration Files The generated Terraform configuration
files are stored and made available for the deployment process. These files
are then used by Terraform to provision the infrastructure as specified in the
configurations.

By handling the complex task of transforming and validating JSON data, the parser
module ensures that the backend can effectively use the configurations provided by the
frontend. This seamless integration between the frontend and Terraform is essential
for accurate and efficient infrastructure provisioning.

7.2.4.4 Deployment

The deployment module is responsible for handling the entire lifecycle of lab de-
ployments. It manages tasks such as setting up necessary files and configurations,
executing Terraform commands to deploy resources, and cleaning up resources once
the deployment is completed. This module ensures that the deployment process is
efficient, reliable, and maintains the integrity of the deployed resources.

This module utilizes Celery for asynchronous task management, enabling it to handle
multiple deployment tasks concurrently. This setup ensures that the deployment
process does not block other operations in the backend and can scale with demand.
Temporary directories are created for each deployment to isolate the environment and
avoid conflicts between different deployments. It also enables the user to download
the dockerfiles.tar.gz and to check the deployment status.

117

Task Chain Overview

The task chain is designed to manage the deployment lifecycle of a lab, ensuring
that resources are provisioned, managed, and cleaned up correctly. It includes tasks
for renaming the lab status in MinIO, running Terraform commands, and handling
cleanup operations. Additionally, it includes error handling to manage failures grace-
fully.

1 task_chain = chain(

2 rename_lab_in_bucket.si(AWS_STORAGE_BUCKET_NAME, lab_uuid, "deploying"),

3 cleanup_task,

4 init_task,

5 apply_task,

6 remove_resources_task,

7 destroy_task,

8 rename_lab_in_bucket.si(AWS_STORAGE_BUCKET_NAME, lab_uuid, "deployed"),

9).on_error(

10 chain(

11 rename_lab_in_bucket.si(AWS_STORAGE_BUCKET_NAME, lab_uuid, "failed"),

12 force_destroy_task,

13),

14)

Listing 7.5 Celery Task Chain

Detailed Explanation of the Task Chain

The task chain is constructed using Celery’s chain and on_error methods to se-
quence tasks and define error handling procedures. Here is a step-by-step breakdown
of the task chain:

1. Rename Lab to "deploying": The first task renames the lab status in MinIO
to "deploying". This indicates that the deployment process has started and
resources are being provisioned.

2. Cleanup Task: This task runs a cleanup operation to ensure that any residual
resources from previous deployments with the same lab ID are removed. This
helps to avoid conflicts and ensures a clean environment for the new deployment.

3. Terraform Initialization: The task chain runs terraform init to initialize the
Terraform configuration. This step sets up the necessary Terraform files and
prepares the environment for applying the configuration.

4. Terraform Apply: The next task in the chain is terraform apply, which provi-
sions the cloud resources as defined in the Terraform configuration. This step
creates the infrastructure required for the lab.

118

5. Resource Cleanup: After the resources are successfully provisioned, the task
chain runs a cleanup task to remove unnecessary Terraform state files. This
ensures that the subsequent terraform destroy command does not remove
essential snapshots but cleans up other resources.

6. Terraform Destruction: The task chain includes a terraform destroy command
to clean up the resources that are no longer needed. This step helps in managing
resource lifecycle and cost.

7. Rename Lab to "deployed": If all the previous tasks are successful, the final task
renames the lab status in MinIO to "deployed". This indicates that the lab has
been successfully provisioned and is ready for use.

Error Handling

In case any task fails during the deployment process, the task chain defines an
error handling procedure using on_error:

1. Rename Lab to "failed": If an error occurs, the lab status in MinIO is renamed
to "failed". This indicates that the deployment process encountered an issue and
was not completed successfully.

2. Force Destroy Task: The error handling chain includes a force destroy task that
uses the Azure command-line tool to delete all resources associated with the
lab. This ensures that no residual resources are left behind, which could incur
unnecessary costs or cause conflicts in future deployments.

By structuring the deployment process in this way, the task chain ensures a robust and
reliable deployment process that handles both success and failure scenarios effectively.

Deployment Status
The deployment status can be checked during the deployment process and for a
specified period after deployment, defined by the environment variable
REMOVE_DEPLOYMENTS_OLDER_THAN_HOURS, which defaults to 168 hours. This status
check helps in monitoring the progress and outcome of the deployment. With this
real-time logs can be queried to provide insights into the deployment process.

Deployment Download
During the deployment process and for a defined period afterwards (set by the en-
vironment variable REMOVE_DEPLOYMENTS_OLDER_THAN_HOURS), the deployment can be
downloaded as a dockerfiles.tar.gz file. This tarball contains all necessary files and
configurations, which can be easily imported into the HL resource editor without any
modifications.

119

7.2.4.5 Authentication

The authentication module secures access to the backend services by validating JWT
and ensuring that users possess the required roles to access specific functionalities. It
acts as a middleware in Django, intercepting requests to verify tokens and user roles
before allowing access to protected resources.

The authentication mechanism is implemented using a custom Django authentication
class that extends BaseAuthentication from the Django REST framework. It leverages
the authlib library to handle JWT validation and role checking.

Detailed Explanation

The authentication process involves several key steps:

1. Token Extraction: The authentication middleware extracts the JWT from the
Authorization header of the incoming request. If the header is missing or the
token is improperly formatted, an AuthenticationFailed exception is raised
with an appropriate message.

2. JWT Validation: The extracted token is validated against a set of JWK fetched
from a specified URI (JWKS_URI). which can be defined using environment
variables. The token’s claims are decoded and validated to ensure the token’s
integrity and authenticity. If the validation fails, an AuthenticationFailed

exception is raised.

3. Role Verification: Once the token is validated, the claims are checked to verify
that the user has the required role (EDITOR_ROLE). This ensures that only users
with the appropriate permissions can access the requested resources. If the user
does not possess the required role, an AuthenticationFailed exception is raised.

4. User Authentication: If the token is valid and the user has the required role,
the user is authenticated, and the claims are attached to the request object. This
allows subsequent middleware and view functions to access user information
and proceed with the request.

120

7.3 Deployment with Terraform

This section covers the deployment of resources requried for the lab. It encompasses a
general part which includes the structure and development configuration, along with
parsing techniques. Further more the specific deployments are further described. The
deployment is realized based on the defined lab architecture in 4.3 as well as on the
corresponding ADRs 4.7. Corresponding prototypes were implemented to evaluate
and define the ADRs. All Files referenced in the following sections can be found in
the deployment repository Dynamic Pentest Lab Framework/deployment attached in
the appendix.

7.3.1 Terraform Structure

The structure of the Terraform deployment can be observed in Listing 7.6. In addition
to the default file structure recommended by Terraform-Best-Practises [75], it has been
further organized into four parts. This four parts are grouped as following:

Part 00: This section encompasses all the essential resources needed for the founda-
tional infrastructure, including setting up basic elements like virtual networks, DNS
resolution, and deploying VPN access to the lab environment.

Part 01: This segment covers the setup of network and traffic restrictions established
by the lab-creator within the generator tool.

Part 02: This part entails the configuration of containers and VM as specified by the
lab-creator in the generator. Additionally, it manages the creation of snapshots for the
VM.

Part 03: This section involves any special customizations implemented by the lab-
creator, such as unique installations through repositories or post-deployment scripts.

1 00_infra.tf

2 00_infra_aks.tf

3 00_infra_container_dockovpn.tf

4 00_infra_dns.tf

5 00_infra_networking_subnet.tf

6 00_infra_security_networkRestriction.tf

7

8 01_networking_subnet.tf

9 01_security_networkRestriction.tf

10

11 02_service_container.tf

12 02_service_vm.tf

13 02_service_vm_snapshot.tf

14

15 03_service_customization_vm_customInstall.tf

16 03_service_customization_vm_postInstall.tf

121

17

18 data.tf

19 outputs.tf

20 provider.tf

21 tags.tf

22 terraform.tfvars.json

23 vars.tf

Listing 7.6 Terraform Structure

7.3.2 Templating Methodologies

Terraform manages the entire parsing and templating process. Various expressions
like loops, conditionals, and dynamic blocks are employed to create a comprehensive
templating structure with the capability to incorporate specific logic. The part coming
from the generator is the variable definition in the terraform.tfvars.json file. This is
the central where all resources are listed and as well provides configuration of the lab
itself.

Deployment Mode
It is important to distinguish whether the lab is deployed from the generator through
a lab-creator or deployed with the deployment manager from a student. This dif-
ferentiation is crucial because certain resources, such as Snapshots, may not need to
be deployed in both scenarios. To address this, the variable deployment_mode was
introduced, which is either set to dev when deploying through the generator or lab
when deployed from the deployment manager.

Variable Definition
The associated lab is solely deployed according to the variable definition provided in
terraform.tfvars.json by the backend, a process that necessitates the formulation
of suitable data structures. An exemplary instance is the definition of the VM, as
indicated in Listing 7.7. This definition is comprised of a map of objects, allowing
iteration and therefore dynamic generation of resources.

1 variable "vm" {

2 type = map(object({

3 custom_label = string

4 expose_to_output = bool

5 os_type = string

6 size = string

7 admin_username = string

8 admin_password = string

9 admin_is_visible = bool

10 publisher = string

11 offer = string

12 sku = string

13 version = string

122

14 os_disk_size_gb = number

15 subnet = string

16 dpl_install_settings = object({

17 repository_name = string

18 repository_url = string

19 repository_branch = string

20 authorization_token = string

21 })

22 credentials = list(object({

23 username = string

24 password = string

25 is_visible = bool

26 type = string

27 }))

28 }))

29 default = {}

30 }

Listing 7.7 Virtual machine definition

In addition to defining resources, configurations for other components are also pro-
vided, such as the base settings, which include elements like the deployment_mode,
or DNS-related configurations. These are organized and grouped by corresponding
properties.

1 variable "generator_settings" {

2 type = object({

3 deployment_mode = string

4 snapshot_version = string

5 lab_id = string

6 })

7 }

8

9 variable "dns_settings" {

10 type = object({

11 domain = string

12 cloudflare_api_token = string

13 })

14 }

Listing 7.8 Configuration Definition

123

Loops
Loops were employed to dynamically generate resources based on variable definitions.
This technique is exemplified in the dynamic creation of VMs, as shown in Listing 7.9.
It makes use of the variable definition data structure introduced in Listing 7.7.

1 resource "azurerm_virtual_machine" "dpl_vm" {

2 for_each = var.vm

3

4 name = each.key

5 resource_group_name = azurerm_resource_group.dpl_rg.name

6 location = var.base_settings.location

7 ...

8 }

Listing 7.9 Dynamic Generation utilizing Loops

Conditionals
The variable definition supplied, along with additional configuration parameters, set
the foundation for a sophisticated and dynamic deployment logic to be implemented.
For this different conditional where introduced.

In Listing 7.10, a conditional statement is used, as an example, to initiate snapshots
solely in lab mode. This condition ensures the iteration and subsequent creation of the
azurerm_snapshot resource only when operating in lab mode.

1

2 resource "azurerm_snapshot" "dpl_ss_osdisk" {

3 for_each = {

4 for key, value in var.vm :

5 key => value if var.generator_settings.deployment_mode == "dev"

6 }

7 ...

8 }

Listing 7.10 Conditional for each

Listing 7.11 illustrates another type of conditional, utilizing a dynamic block configura-
tion. The full block is applied based on the conditional var.generator_settings.deployment_mode == "lab" ? [1] : [].
This is particularly used to ensure the disk is created from the snapshot when in lab
mode.

1 resource "azurerm_virtual_machine" "dpl_vm" {

2 ...

3 dynamic "storage_os_disk" {

4 for_each = var.generator_settings.deployment_mode == "lab" ? [1] : []

5

6 content {

7 name = "dpl-d-os-${each.key}"

8 caching = "ReadWrite"

9 create_option = "Attach"

124

10 managed_disk_type = "Standard_LRS"

11 managed_disk_id = azurerm_managed_disk.dpl_md[each.key].id

12 os_type = each.value["os_type"]

13 disk_size_gb = each.value["os_disk_size_gb"]

14 }

15 }

16 ...

17 }

Listing 7.11 Dynamic Block

7.3.3 Data Management

The file data.tf establishes multiple datasets and data manipulation structures
through the utilization of Terraform terraform_data resources. These data resources
are integral to our infrastructure as code practices, as they allow us to fetch and
compute data dynamically during the Terraform run. This approach is particularly
beneficial in our deployment processes, providing necessary support structures to
achieve our objectives alongside templating methodologies. The definition highlights
the principal components without encompassing all the supporting data structures
employed during deployment. These are subsequently detailed in the sections where
they are used.

7.3.3.1 Dynamic Credentials

The dataset of credentials, illustrated in Listing 7.12, incorporates crucial functionalities
for the generation of dynamic passwords. It retrieves all the credentials defined in
any VM or container deployment and produces random passwords using the uuid()
function if the type is set to dynamic. The reason for executing the randomization
process within the Terraform framework is crucial to understand. The deployment
manager solely runs this terraform with the terraform.tfvars definition that the gener-
ator creates. Given that these dynamic passwords must be unique for each lab user,
they need to be generated at the deployment’s runtime and cannot be predefined;
otherwise, they would be identical for all users.

1 resource "terraform_data" "dataset_credentials" {

2 input = { for key, resource in merge(var.vm, var.aks_deployments) :

3 key => [for credential in resource.credentials :

4 {

5 username = credential.username

6 password = credential.type == "static" ? credential.password : uuid()

7 is_visible = credential.is_visible

8 type = credential.type

9 }

10]

125

11 }

12 }

Listing 7.12 Creation of dynamic Credentials

7.3.4 Resource Information

The importance of the resource dataset outlined in Listing 7.13 lies in providing
essential information to the deployment manager, and consequently, to the lab user.
Upon deployment of the VMs and containers, the Internet Protocol (IP) address
information is retrieved. Consequently, this dataset is formulated, which, along with
the IP address, constructs the DNS name based on the naming convention, and
retrieves the dynamic credential dataset, previously discussed, for the specific resource.
It is important to understand that only resources with the expose_to_output property
set to true are incorporated into this dataset. Furthermore also only the credentials are
included which have the is_visible property set to true. This approach ensures that
only the information about the resources, as defined by the lab-creator, is provided to
the student.

1 resource "terraform_data" "dataset_resources_connection_information" {

2 input = { for resource in concat(terraform_data.vms.output, terraform_data.pods.

↪→ output) :

3 resource.name => {

4 ip = resource.ip

5 subnet = resource.subnet

6 user = can(resource.user) ? resource.user : "-"

7 password = can(resource.password) ? resource.password : "-"

8 custom_label = can(resource.custom_label) ? resource.custom_label : "-"

9 dns_name = "${resource.name}.${random_uuid.resource_group_uuid.result}.${var

↪→ .dns_settings.domain}"

10 credentials = can(terraform_data.dataset_credentials_to_expose.output["${

↪→ resource.name}"]) ? terraform_data.dataset_credentials_to_expose.

↪→ output["${resource.name}"] : null

11 } if resource.expose_to_output == true

12 }

13 }

Listing 7.13 Resource Information Dataset

126

7.3.5 Baseline Deployment

7.3.5.1 Provider Configuration

For the deployment, three providers are utilized: the azurerm for the Azure deploy-
ments, the kubernetes provider for managing AKS resource deployments, and the
cloudflare provider for managing the root domain DNS. These are outlined in the
File provider.tf. A dynamic configuration of these providers is achieved based
on the variables defined in the terraform.tfvars.json File, thereby allowing for a
dynamic customization of the provider configuration. The kubernetes provider, as
shown in Listing 7.14, retrieves information directly from the deployed AKS Cluster
for self-configuration.

1 provider "kubernetes" {

2 host = azurerm_kubernetes_cluster.dpl_aks.kube_config[0].host

3 username = azurerm_kubernetes_cluster.dpl_aks.kube_config[0].

↪→ username

4 password = azurerm_kubernetes_cluster.dpl_aks.kube_config[0].

↪→ password

5 client_certificate = base64decode(azurerm_kubernetes_cluster.dpl_aks.

↪→ kube_config[0].client_certificate)

6 client_key = base64decode(azurerm_kubernetes_cluster.dpl_aks.

↪→ kube_config[0].client_key)

7 cluster_ca_certificate = base64decode(azurerm_kubernetes_cluster.dpl_aks.

↪→ kube_config[0].cluster_ca_certificate)

8 }

Listing 7.14 Kubernetes Provider

7.3.5.2 Base Infrastructure Deployment

The deployment of the basic infrastructure resources required for the foundation of the
lab, defined in the file 00_infra.tf, includes the deployment of a Virtual Network and
a Resource Group where all resources are grouped into. The Virtual Network enables
Azure resources to communicate with each over and provides an unique isolated
network for the lab. The resource group name includes is randomly generated UUID
since it needs to be unique within the Azure Subscription. This is achieved through
utilizing the random_uuid Terraform resource. As seen in Listing 7.15, when deploying
in dev mode, the resource group gets named by the provided UUID generated from
the generator in order to map the deployment into the specific lab in the generator.

1 resource "azurerm_resource_group" "dpl_rg" {

2 name = var.generator_settings.deployment_mode == "dev" ? "dpl-rg-

↪→ ${var.generator_settings.lab_id}-${var.generator_settings.

↪→ snapshot_version}" : "dpl-rg-${random_uuid.resource_group_uuid.result}"

3 location = var.base_settings.location

127

4

5 tags = local.tags

6 }

Listing 7.15 Resource Group Name

7.3.5.3 Kubernetes Cluster Deployment

Following the deployment of the base infrastructure, a AKS, as outlined in the file
00_infra_aks.tf, is deployed to facilitate the deployment of containers. A detailed
evaluation of this container deployment solution is provided in ADR 4.7.10. The
AKS cluster plays a crucial role in the foundational infrastructure as it also hosts the
container for VPN access.
A fundamental aspect of the cluster configuration is the employed network plugin.
The primary requirement for this plugin is to ensure bidirectional communication
between the VM and the pod. Therefore, the Azure network plugin was selected [76].
Additionally, the Azure network plugin offers compatibility with Windows-based
nodes, facilitating potential future implementations without any major issues.

As indicated in the architectural design, a separate Node is deployed for each container
network. This setup is achieved through the dynamic definition of the node pools,
as illustrated in Listing 7.16. As observed in the conditional statement within the
for_each definition, a node pool is deployed for each subnet identified as a Kubernetes
subnet. The naming convention corresponds to the subnet identifier. Additionally,
the pod_subnet_id dynamically gets assigned to the specific subnet, indicating that
the containers operate within this subnet. A subnet label is also appended to the
node_labels. This is required for the deployment and assignment of containers,
designed to run in that specific subnet, to this particular node pool. This operation
is facilitated by node selectors [77], a concept further expounded in the container
deployment Section 7.3.9. Moreover, the enable_auto_scaling feature was activated,
offering automatic scaling and hence ensuring scalability for the dynamic workload
in terms of quantity and load of the containers to be run in a lab. The scaling was
capped at three nodes per subnet, which appeared to be an appropriate initial value
to handle the average load and prevent excessive costs. This value can be modified
according to requirements.

1

2 resource "azurerm_kubernetes_cluster_node_pool" "dpl_akcnp" {

3 for_each = {

4 for key, value in var.subnets :

5 key => value if value.kubernetes == true

6 }

7

8 name = "akcnp${split("-", "${each.key}")[2]}"

9 ...

128

10 pod_subnet_id = azurerm_subnet.dpl_s[each.key].id

11 node_labels = { subnet = "${each.key}"}

12 enable_auto_scaling = true

13 min_count = 1

14 max_count = 3

15

16 tags = local.tags

17 }

Listing 7.16 Dynamic Creation of Node Pools

7.3.5.4 Networking and Security Restriction

To provide connectivity for the base infrastructure, mainly the AKS Cluster, infras-
tructure subnets for the AKS nodes and infrastructure pods are deployed. These
are defined in the file 00_infra_networking_subnet.tf. To enhance the security and
limit the accessibility to these infrastructure subnets within the lab, customized secu-
rity rules have been outlined in the file 00_infra_security_networkRestriction.tf.
These rules minimize communication to the bare essentials and only permit interac-
tions that are crucial for the lab’s operation. The allowed rules specify communication
from the internet to the dockovpn container to enable the VPN connection for the
students and DNS resolution to the internal DNS service of Kubernetes. Any other
connections to the node subnet and infra pod subnet are strictly forbidden. Through
this approach, potential manipulation or attempts to do so are prevented.

7.3.5.5 VPN Access

During the development and evaluation of prototypes, the VPN access technology was
defined, as outlined in ADR 4.7.13. As a result, the decision was made to implement
the dockovpn container to enable VPN access for the students.
The deployment of the VPN access is outlined in File 00_infra_container_dockovpn.tf.
It encompasses a service definition for the dockovpn pod, which is defined as type
load balancer and therefore automatically gets exposed to the internet via the AKS
managed load balancer. Further more persistent storage was established through the
use of a Azure Storage Share. The deployment of persistent storage involves multiple
parts, including setting up a Storage Account where an Azure Storage Share is created,
defining a Kubernetes persistent volume that references this specific Storage Share,
and ultimately, establishing a Volume Claim that supplies the container with storage.
Although persistent storage would not have been strictly necessary for the lab under
normal circumstances, as the container is not typically removed, it is crucial for the
dynamic retrieval of the generated OpenVPN profile, which gets created during start
of the container. Utilizing the storage share to access the generated profile via Azure
storage API, was deemed the most effective approach. However, other strategies were

129

also considered. One such approach involved opening and exposing the SSH port dur-
ing the deployment process to retrieve the generated profile. But this approach would
have introduced additional complexity, such as needing to manage exposure solely
during the deployment phase, making adjustments to the container image to support
the ssh access, and addressing potential security concerns when exposing the port.
An alternative approach considered was employing the container’s built-in option to
expose the profile on port 8080. However, this method also raised security issues and
necessitated additional restrictions to ensure only the deployment could retrieve the
profile on the port. Moreover, the design only allowed for a single download of the
profile, which posed a problem as the load balancer’s health checks on that endpoint
would prevent further downloads. Once again, modifications to the container image
would have been required to resolve this issue.

The deployment of Dockovpn was set up in accordance with the available configuration
options described in the Dockovpn documentation [78]. The required options for the
project’s use-case, was the defintion of the environmental variable HOST_ADDR. This
variable defines the VPNs external address, which is configured in the OpenVPN
profile. The address is equivalent to the public IP of dockovpn’s service definition, and
is dynamically retrieved as demonstrated in Listing 7.17. Subsequently the depends_on

was defined to ensure the load balancer service is established and the external IP
address is known before deploying the Dockovpn container.

1 resource "kubernetes_deployment" "dpl_kd_dockovpn" {

2 ...

3 env {

4 name = "HOST_ADDR"

5 value = data.kubernetes_resource.data_dpl_ks_dockovpn_ip.object.status.

↪→ loadBalancer.ingress[0].ip

6 }

7 ...

8 depends_on = [data.kubernetes_resource.data_dpl_ks_dockovpn_ip]

9 }

Listing 7.17 Dockovpn Deployment ENV

Moreover, the container is required to function within a security context that holds
NET_ADMIN capabilities. Although this prerequisite is not detailed in Dockovpn’s doc-
umentation, it’s inferred that, due to the inherent characteristics of a VPN server, it
must be able to perform routing adjustments in the routing table to work properly.
Upon examination of Dockovpn’s startup script scripts/start.sh, it becomes ap-
parent that the iptables are configured to permit forwarding traffic from the VPN.
Also, a post_start command was defined, which executes the openvpn generation
script ./genclient.sh n ovpnprofile. The script generates a VPN profile named
ovpnprofile. While an OpenVPN profile is also created by default, it is assigned
a random name, making it impractical for later dynamic retrieval of the OpenVPN
profile due to the unpredictability of the name.

130

The basic server configuration is limited to a few environmental variables by default.
Given that the standard setup of the OpenVPN server initiates a Full Tunnel, thus
directing all client traffic through this tunnel, a solution has been implemented using
kubernetes_config_map to inject a custom configuration to the dockovpn container.
With the config map, it’s possible to override the default server.conf and client.ovpn,
thereby allowing settings for routing behavior to be configured. The route installed is
dynamically configured, depending on the vnet_address_space selected for the lab.
This modification permits the customization of the OpenVPN server configuration to
facilitate split tunneling, which results in only the traffic intended for the lab being
routed through the tunnel. This also provides flexibility for customization in the
future.

7.3.5.6 DNS Resolution

To faciliate DNS resoultion for the lab the decision was made in ADR 4.7.16 to use
Cloudflare for the management of the root domain and Azure Public VPN Zone
for the subdomains associated with individual labs. For this project the domain
dynpentestlab.ch was registered with Cloudflare. The deployment of the VPN in-
frastructure is outlined in File 00_infra_dns.tf. This deployment includes the estab-
lishment of nameserver records for the root domain, outlined in Listing 7.18, which
are directed towards the nameservers of the Azure subdomain zone. The resource
definition has been designed to dynamically configure all four nameservers. However,
this can be tailored as per requirements should scalability become an issue due to the
limitation of the 1000 free records at Cloudflare, as further elaborated in ADR 4.7.16.

1 resource "cloudflare_record" "dpl_dns_entry_ns" {

2 ...

3 count = 4 #add 4 NS servers

4 value = element(tolist(azurerm_dns_zone.dpl_dns.name_servers), count.index)

5 type = "NS"

6 depends_on = [azurerm_dns_zone.dpl_dns]

7 }

Listing 7.18 Root DNS Zone NS Records

Furthermore, it includes the generation of the lab’s subdomain, along with the es-
tablishment of VPN records for all resources associated with the lab, as delineated
in Listing 7.19. The IP address information for each resource is obtained from the
central dataset dataset_resource_information_internal, offering a straightforward
method to access the necessary information. The dataset is further described in
This procedure guarantees that all resources receive a VPN record dynamically.

1 resource "azurerm_dns_a_record" "dpl_dns_record" {

2 for_each = merge(var.vm, var.aks_deployments)

3 ...

131

4 records = ["${terraform_data.dataset_resource_information_internal.

↪→ output["${each.key}"].ip}"]

5 depends_on = [terraform_data.dataset_resource_information_internal]

6 }

Listing 7.19 Creation of DNS A-Records

Through the implemented design, which encompasses the core dataset and its appli-
cation in generating DNS records, the replacement of DNS providers can be easily
facilitated, should the need or desire for alternative providers arise.

7.3.6 Virtual Machine Deployment

The deployment for VMs is outlined in File 02_service_vm.tf. It handles the creation
of Windows as well as Linux based VMs. To achieve this, dynamic block configurations
and conditional expressions as described in the section template methodologies 7.3.2
were utilized.

For the deployment of VMs the Terraform resource azurerm_virtual_machine was
used. The Terraform resource azurerm_virtual_machine was selected for the deploy-
ment of the VM. This selection was made over azurerm_linux_virtual_machine and
azurerm_windows_virtual_machine resources, despite the impending deprecation of
azurerm_virtual_machine in the 3.x releases.
The key reason for this choice was the need to incorporate the snapshot technology as
detailed in Section 7.3.7. A significant issue arises because the new resource definitions
do not permit the attachment of existing OS disks, an essential aspect of the snapshot
technology. This issue, already reported, remains unresolved [79].
According to the official azurerm resource documentation [80], a note suggests us-
ing the older resource definition azurerm_virtual_machine or to use images instead.
However, the image approach presents a challenge.
It only supports creating the OS disk from generalized images, which would result
in the loss of computer-specific information such as the computer name and Client
Machine ID (CMID) [81]. This becomes problematic in custom installations, for in-
stance, an Active Directory installation. This issue is also reported [82] and remains
unresolved.

Generally speaking, conflicts often emerge between the old and new resource def-
initions, primarily because the newer version lacks certain features present in the
older one. Conversely, the old resource no longer receives updates or and also lacks
certain features. The root cause of these issues appears to be inherent limitations in
the existing Terraform protocol itself, as noted in [83]. It is hoped that these problems
will can be solved with the integration of Terraform Protocol v6.

An additional issue arose requiring the implementation of a workaround, which
utilized a local-exec provisioner as illustrated in Listing 7.20. This was to solve a bug

132

encountered when applying the azurerm_virtual_machine_run_command immediately
after the deployment of the VM. This particular command, used in section 7.3.8 for
custom installations, tends to cause complications when applying directly following the
VM’s deployment. This provisioner pauses for 20 seconds prior to proceeding, which
effectively resolves the issue. This well-documented bug [84] remains unresolved but
seems to only occur with specific agent installations on Linux based distributions.
The goal was to ensure seamless support for a broad spectrum of images without
needing to create multiple fixes for different images. Despite its unconventional
nature, this approach appeared to be the most viable solution under the circumstances.
Had it been possible to utilize the azurerm_linux_virtual_machine resource, which
allows the definition of the provision_vm_agent property, not only for provisioning
but also for checking and ensuring the agent’s active status, this issue could have
been addressed without resorting to the workaround. This pertains to the problem
that the existing resource azurerm_virtual_machine lacks the inclusion of more recent
features.

1 resource "azurerm_virtual_machine" "dpl_vm" {

2 ...

3 provisioner "local-exec" {

4 command = "sleep 20"

5 }

6 ...

7 }

Listing 7.20 Virtual Machine Sleep Provisioner

7.3.7 Virtual Machine Snapshot Technology

For the creation and utilization of snapshots the Deployment Mode detailed in Section
7.3.2 is integral. When deployment occurs in dev mode, a snapshot is generated
as detailed in Listing 7.21. Each snapshot, including the VM’s name, is appended
with a timestamp, referred to as the snapshot_version. These snapshots are stored
in a distinct snapshot resource group. The creation of a separate resource group is
necessitated by the need to identify and maintain these snapshots, as they are used by
other labs during their deployment processes. The create_option indicates that the
disk specified in source_uri is being snapshotted. Additionally, the creation of the
snapshot depends_on the successful completion of the custom installation, as it should
be encapsulated in the snapshot.

1 resource "azurerm_snapshot" "dpl_ss_osdisk" {

2 for_each = {

3 for key, value in var.vm :

4 key => value if var.generator_settings.deployment_mode == "dev"

5 }

6

133

7 name = "dpl-ss-osdisk-${each.key}-${terraform_data.

↪→ snapshot_version[0].output}"

8 location = var.base_settings.location

9 resource_group_name = azurerm_resource_group.dpl_rg_snapshots[0].name

10

11 create_option = "Copy"

12 source_uri = data.azurerm_managed_disk.dpl_md_data[each.key].id

13

14 depends_on = [azurerm_virtual_machine_run_command.dpl_vme_repo_install]

15 }

Listing 7.21 Creation of virtual Machine Snapshot

During the deployment in lab mode, no snapshot is generated. Instead, OS disks
are created based on the azurerm_managed_disk definition presented in Listing 7.22
that enables the usage of snapshots. The create_option specifies the copy instruc-
tion, indicating that the disk should be created or duplicated from that given snap-
shot. To provide the source_resource_id to the azurerm_managed_disk definition,
the dpl_ss_osdisk_data definition is used, which contains all pertinent snapshot
information.

1 "azurerm_snapshot" "dpl_ss_osdisk_data" {

2 for_each = {

3 for key, value in var.vm :

4 key => value if var.generator_settings.deployment_mode == "lab"

5 }

6

7 name = "dpl-ss-osdisk-${each.key}-${var.generator_settings.

↪→ snapshot_version}"

8 resource_group_name = "dpl-rg-snapshots-${var.generator_settings.lab_id}-${var.

↪→ generator_settings.snapshot_version}"

9 }

10

11 resource "azurerm_managed_disk" "dpl_md" {

12 for_each = {

13 for key, value in var.vm :

14 key => value if var.generator_settings.deployment_mode == "lab"

15 }

16

17 name = "dpl-d-os-${each.key}"

18 resource_group_name = azurerm_resource_group.dpl_rg.name

19 location = var.base_settings.location

20 storage_account_type = "Standard_LRS"

21 create_option = "Copy"

22 source_resource_id = data.azurerm_snapshot.dpl_ss_osdisk_data[each.key].id

23 os_type = each.value["os_type"]

24 }

Listing 7.22 Usage of virtual Machine Snapshots

134

7.3.8 Virtual Machine Custom Installations

7.3.8.1 Installation Repositories

As established in ADR 4.7.6, Github repositories are to be employed to facilitate custom
installations for VMs. For this purpose, the example repositories install-template-linux
and install-template-windows have been created for Linux and Windows. These
provide a fundamental structural guide for custom installation repositories, along with
examples of credential access, the use of multi flags, and appropriate error handling
in line with the procedures laid out in Section 7.3.8.3.

Custom installation repositories consist of two essential scripts that serve as entry
points. Although these two scripts are mandatory, the lab-creator has the liberty to
define additional scripts and subsequently invoke them from the primary scripts.

Install script: This script facilitates the custom installation designed by the lab-
creator. The example repository delineates a method to retrieve custom credentials,
leveraging only built-in tools to ensure maximum compatibility without necessitating
the installation of JSON parsers like jq on Linux. These credentials can then be
potentially employed in the creator’s custom installation to set up a login or include a
user in the OS.

Post-install script: This script manages the custom logic to be executed after the VM
snapshot is created or when lab is deployed by the student. The post-install script could
potentially be used to distribute dynamic credentials or multi-flags. These elements
are unique to each lab and should not be incorporated in the custom installation
routine, as they would be captured in the snapshot.

7.3.8.2 Custom Installations

This section describes the resources defined in the Terraform deployment, which make
use of the custom repositories and initiate the installation and post installation scripts,
as described in the previous section. Furthermore some additional logic to distribute
multi-flags and custom credentials is implemented.

The Terraform resource, azurerm_virtual_machine_run_command was utilized to ex-
ecute the logic of using these repositories and trigger the custom installation. This
resource the execution of commands on a specific VM. For every VM, a resource
is dynamically created to manage the custom installation exclusive to that machine.
Dynamic block configurations and conditional expressions are used to manage the
commands for both Windows and Linux.

Conversely, an assessment was made of the azurerm_virtual_machine_extension,
which similarly allows the execution of customScripts. However, the constraint of
this resource is its restriction to a single assignment of a machine extension of the

135

customScript type per VM. Given the necessity of using two resources per VM to
trigger both custom and post-installation scripts, this was not a feasible option.

The custom installation is facilitated through the definition detailed within File
03_service_customization_vm_customInstall.tf, in which following commands are
executed:

Distribution of Credentials: To distribute the credentials defined for the particular
VM, the corresponding credential definition for the VM is retrieved and written to a
Textfile text file on the operating system. This can then can be used by the lab-creator
to further use this these credentials in his custom installation script , as mentioned
before.

Download of installation repository: Based on the repository information provided
for the VM, curl is used together with the provided authorization token to download
the repository. Curl was chosen over git clone since not each distribution comes with
git preinstalled. With the aim to have a generalized approach which works for the
most distributions this was the best solution.

Extraction and Execution: Following the download the repository archive gets ex-
tracted and the custom installation script install-script gets executed.

An example of the custom Installation procedure for Linux is outlined in Listing
7.23.

1 resource "azurerm_virtual_machine_run_command" "dpl_vme_repo_install" {

2 ...

3 dynamic "source" {

4 for_each = each.value["os_type"] == "Linux" ? [1] : []

5 content {

6 script = <<-EOT

7 sudo mkdir /dpl_tmp

8 echo '${base64encode(jsonencode(terraform_data.dataset_credentials.output[

↪→ each.key]))}' | base64 -d > '/dpl_tmp/credentials.txt'

9 curl -L -o '/dpl_tmp/${each.value.dpl_install_settings.repository_name}.

↪→ tar.gz' '${each.value.dpl_install_settings.repository_url}' -H '

↪→ Authorization: Bearer ${each.value.dpl_install_settings.

↪→ authorization_token}' -sS

10 tar -xzf '/dpl_tmp/${each.value.dpl_install_settings.repository_name}.tar.

↪→ gz' -C '/dpl_tmp/'

11 chmod +x '/dpl_tmp/${each.value.dpl_install_settings.repository_name}-${

↪→ each.value.dpl_install_settings.repository_branch}/install-script.

↪→ sh'

12 sudo '/dpl_tmp/${each.value.dpl_install_settings.repository_name}-${each.

↪→ value.dpl_install_settings.repository_branch}/install-script.sh'

13 EOT

14 }

15 }

16 ...

17 }

136

Listing 7.23 Custom installation Linux

The post-install script also gets triggered through the same Terraform resource and is
further outlined in File 03_service_customization_vm_postInstall.tf. The resource
is handled in the same way as the custom installation resource. The resource definition
executes the following commands:

Distribution of Multiflags: Analogous to the distribution of the credentials, the
multiflags are written to a text file on the operating system. This flags can subsequently
be employed as part of a post-snapshot routine to disseminate unique user flags,
thereby finalizing the design for the CTF challenge.

Execution of post installs script: The post-install-script gets executed.

7.3.8.3 Output and Debugging for Lab-Creator

In addition to the ability to test and develop the custom installation script on an
identical distribution in advance, command execution provides installation feedback.
This feedback is made available through the output, which can be easily accessed from
the generator log. To facilitate this, a terraform_data resource, defined in the data.tf

file, is employed to retrieve and parse the azurerm_virtual_machine_run_command

output from all VMs.

As shown in Listing 7.24, the installation output contains two components: the output

itself and the error_message. The output comprises all content written to the console,
in this instance, the output originates from the example repository code, which prints
various credentials. Conversely, the error_message captures any error messages
generated by the script.

1 vm_custom_install_output = {

2 ...

3 "dpl-vm-abcd444" = {

4 "end_time" = "2024-06-02T17:08:03+00:00"

5 "error_message" = <<-EOT

6 /dpl_tmp/dpl-test-install-linux-main/install-script.sh: line 29: get-foo:

↪→ command not found

7

8 EOT

9 "output" = <<-EOT

10 Starting with installation script

11 b8ff5566-862b-b047-58c1-8159f8da2ef5

12 custompassword2

13 customuser1

14 customuser2

15 custompassword2

16 Finished with installation script

137

17

18 EOT

19 "start_time" = "2024-06-02T17:08:01+00:00"

20 }

21 }

22 ...

23 }

Listing 7.24 Example Install Output

Outputting the error_message is crucial because even if some commands in the script
are unsuccessful, as long as the final command is successful with an exit code of 0, the
entire azurerm_virtual_machine_run_command is deemed successful. This necessitates
knowing the actual error_message output to ascertain if the operations were executed
as intended.

For instance, the error_message in listing 7.24 reveals that a specific command is
nonexistent. However, it still culminates successfully because the final command
(echoing "Finished with installation script") is successful and exits with code 0. This
behavior applies for Windows as well.

In contrast, in Listing 7.25, an unsupported parameter causes curl to fail. Subsequent
commands, which are reliant on the file archive that curl should download, also fail,
resulting in the final command exiting with code 2. In such instances, the execution
of the azurerm_virtual_machine_run_command is unsuccessful, causing the entire lab
deployment to fail.

1 ...

2 Error: running the command: polling failed: the Azure API returned the following

3 Status: "VMExtensionProvisioningError"

4 Code: ""

5 Message: "VM has reported a failure when processing extension 'dpl-mrc-repo-

↪→ install-dpl-vm-abcd222' (publisher 'Microsoft.CPlat.Core' and type '

↪→ RunCommandHandlerLinux'). Error message: '{\"executionState\":\"Failed

↪→ \",\"executionMessage\":\"Execution failed: failed to execute command:

↪→ command terminated with exit status=2\",\"output\":\"\",\"error\":\"curl:

↪→ option --no-progress-meter: is unknown\\ncurl: try 'curl --help' or 'curl

↪→ --manual' for more information\\n\",\"exitCode\":2,\"startTime

↪→ \":\"2024-06-02T13:49:44Z\",\"endTime\":\"2024-06-02T13:49:44Z\"}'."

6 Activity Id: ""

7 ...

8

9 }

Listing 7.25 Example failing Install Output

To ensure the entire deployment fails when an error arises, the utilization of try-catch
should be considered for Windows deployments. As illustrated in Listing 7.26, the

138

execution of an unrecognized command is captured, and an exit code 1 is produced
from the catch block, consequently causing the whole deployment to fail.

1 ...

2 try {

3 $foo = get-foo

4 }

5 catch{

6 write-error "An error occurred"

7 exit 1

8 }

9 ...

10 }

Listing 7.26 Error handling Powershell

To ensure robust error handling in Linux Bash scripts, a similar approach to Windows
PowerShell is implemented. The example in Listing 7.27 illustrates a Bash script
configured to terminate on any error. The trap command specifies a function to
execute when an error is detected. The catch function then logs an error message
and exits with a status of 1, thereby ensuring the entire deployment process halts
immediately upon encountering an issue.

1 ...

2 trap 'catch' ERR

3

4 catch() {

5 echo "An error occurred"

6 exit 1

7 }

8 ...

9 }

Listing 7.27 Error handling Bash

Both of the error handling strategies are outlined in the example repositories install-template-linux
and install-template-windows.

7.3.9 Container Deployment

This section describes container deployment utilizing AKS. Additionally, it explains
how to use custom Images from private repositories, along with the distribution of
flags and credentials.

139

7.3.9.1 Base Definition

The deployment of containers involves the creation of a deployment through the Ter-
raform resource kubernetes_deployment, as detailed in File 02_service_container.tf.
For improved Resource Management and Organization, each deployment initiates the
creation of a separate namespace. This approach enables Scoped Configurations such
as configMaps and secrets, which are assigned to this namespace and only available
within it. Network Policies could potentially be applied on a namespace scope, how-
ever, this is not utilized due to the adoption of a different strategy as described in
Section 7.3.10.

Moreover, ports and environmental variables are dynamically populated and set based
on the configuration set in the terraform.tfvars using dynamic block configurations.
To ensure the minimum necessary resources (Random-Access Memory (RAM), CPU)
for the containers, resource requests were employed to ascertain the corresponding
values defined by the lab-creator.

In order to ensure that containers operate on the designated nodepool residing within
the specified container subnet, a node_selector is assigned to the container, as illus-
trated in Listing 7.28. This node selector guarantees that the container only operates
on the specified node, which is crucial for facilitating the network architecture in
assigning the container to particular subnets.

1 resource "kubernetes_deployment" "dpl_kd" {

2 ...

3 spec {

4 node_selector = {

5 "kubernetes.io/os" = "linux"

6 "subnet" = each.value.subnet

7 }

8 ...

9 }

Listing 7.28 Deployment Node Selector

Furthermore a delay when spinning up the containers had to be introduced, using
the min_ready_seconds parameter, which was set to 15 seconds. This adjustment
was essential as occasionally, the data resource referred to in Section 7.3.4 would
attempt to retrieve the container’s IP Address as soon as they were deployed. In a few
instances, despite the completion of the deployment, the pod IP for some containers
remained unavailable. As a result, to enhance the stability of the lab deployment, this
modification was instituted.

An alternative approach to avoid the min_ready_seconds configuration was assessed
using the Terraform resource kubernetes_manifest. This resource allows the definition
of deployments as Kubernetes YAML Ain’t Markup Language (YAML) manifest
and provides the configuration of wait blocks, as illustrated in Listing 7.29, which

140

necessitates the availability of certain fields in the correct format, utilising regex.
However, due to a previously reported limitation [85], the kubernetes_manifest

resource mandates API access during the Terraform plan operation. As the Kubernetes
cluster and its API configuration are dynamically created during runtime, facilitating
API access is currently unviable. This would necessitate two separate deployments:
the initial deployment to establish the Kubernetes infrastructure, followed by a second
deployment to launch the resources.

1 resource "kubernetes_manifest" "dpl_kd" {

2 for_each = var.aks_deployments

3 ...

4 wait {

5 fields = {

6 "status.podIP" = "^(\\d+(\\.|$)){4}"

7 }

8 }

9 ...

10 }

Listing 7.29 Kubernetes Manifest wait Configuration

7.3.9.2 Distribution of Flags and Credentials

The method of distributing flags and credentials for containers is accomplished by
setting them as environmental variables. For this to occur, custom data resources are
defined to extract the multi-flag or credential data and convert it into a valid ENV
variable. This process is illustrated by the example of the Multi-flags in Listing 7.30.

1 resource "terraform_data" "multiflags_as_env" {

2 input = { "MULTIFLAGS" : jsonencode(var.multiflags)}

3 }

Listing 7.30 Multiflag env Parsing for Container

The custom data definitions are subsequently utilized in conjunction with standard
environment variables during assignment to the container, as demonstrated in Listing
7.31.

1 resource "kubernetes_deployment" "dpl_kd" {

2 ...

3 dynamic "env" {

4 for_each = merge(each.value.env, terraform_data.multiflags_as_env.

↪→ output, terraform_data.credentials_as_env.output[each.key])

5 content {

6 name = env.key

7 value = env.value

8 }

9 }

141

10 ...

11 }

Listing 7.31 Env Assignment Container

7.3.9.3 Custom Docker Images

To provide the possibility for custom images and pre-existing HL images from private
repositories, the lab-creator has the capability to define its custom repository along
with suitable authentication tokens. These enables the pulling of the corresponding
images from either public or private repositories. If a custom repository is defined for
a container deployment, a secret of the dockerconfigjson type is dynamically created
to facilitate the authentication process for pulling from the corresponding repository,
as detailed in Listing 7.32.

1 resource "kubernetes_secret" "dpl_ksec_dockerpull" {

2 ...

3 type = "kubernetes.io/dockerconfigjson"

4 data = {

5 ".dockerconfigjson" = jsonencode({

6 auths = {

7 "${each.value.image_pull_secrets.registry_url}" = {

8 username = "${each.value.image_pull_secrets.username}"

9 password = "${each.value.image_pull_secrets.authorization_token}"

10 auth = base64encode("${each.value.image_pull_secrets.username}:${each.

↪→ value.image_pull_secrets.authorization_token}")

11 }

12 }

13 })

14 }

15 ...

16 }

Listing 7.32 Docker Pull Secrets

7.3.10 Network Restrictions

The emulation of intricate real-world networks via network firewalls, as delineated
in ADR 4.7.9, has been implemented. This implementation is outlined in File
01_security_networkRestriction.tf.

Since the application of these restrictions happens to the parent subnet, a unique
security group for each defined subnet is dynamically generated. This group forms
the foundation for the subsequent application of security rules.

142

Given that traffic within the same v-net is permitted by default, it is necessary to
establish a rule for each subnet’s security group to allow all inter-subnet traffic. This
has been accomplished by constructing a rule that blocks all inbound communication
and applying it to the security group of the subnets. As this rule also blocks all
intra-subnet traffic, another rule is enforced to permit this. This forms the basis for
the implementation of custom rules that allow certain forms of communication, an
essential element presented in Listing 7.33.

1 resource "azurerm_network_security_rule" "dpl_nsr" {

2 for_each = var.network_security_rules

3

4 name = "${each.key}"

5 priority = each.value.priority

6 direction = "Inbound"

7 access = each.value.access

8 protocol = each.value.protocol

9

10 source_port_range = length(each.value.source_ports) <= 1 ? each.value.

↪→ source_ports[0] : null

11 source_port_ranges = length(each.value.source_ports) > 1 ? each.value.

↪→ source_ports : null

12 source_address_prefix = terraform_data.

↪→ dataset_resource_information_internal.output[each.value.source].ip

13

14 destination_port_range = length(each.value.destination_ports) <= 1 ?

↪→ each.value.destination_ports[0] : null

15 destination_port_ranges = length(each.value.destination_ports) > 1 ?

↪→ each.value.destination_ports : null

16 destination_address_prefix = terraform_data.

↪→ dataset_resource_information_internal.output[each.value.destination].ip

17

18

19 resource_group_name = azurerm_resource_group.dpl_rg.name

20 network_security_group_name = azurerm_network_security_group.dpl_nsg[

↪→ terraform_data.dataset_resource_information_internal.output[each.value.

↪→ destination].subnet].name

21

22 }

Listing 7.33 Network Security Rules

The rule is always applied to the security group of the destination resource’s subnet, as
demonstrated by the dynamic assignment of the property network_security_group_name.
This is reasoned by the necessity to manage the inbound traffic to the specific resource,
as the default block is also processed in an inbound manner.

To facilitate the dynamic generation of rules, a Terraform data resource was used to es-
tablish the dataset_resource_information_internal dataset outlined in the data.tf

file. It encompasses information about the parent subnet and IP addresses of all

143

resources, including subnets, as they can also be defined as sources or destinations.
The scenario where subnets serve as their own parent subnet was also handled.

The necessity of supporting not just single ports, but multiple ports and port ranges,
which cannot be configured via the same resource property, necessitated a solution.
This was achieved through the utilization of a conditional expression, illustrated by
the property source_port_ranges. The conditional expression evaluates whether the
source ports definition, composed of a list, contains more than one object. If this is not
the case, the property source_port_range is utilized accordingly.

144

7.4 Adjustments Deployment Manager

The task assignment specified the use of an existing Deployment Manager, developed
by HL, for the deployment by the students of the generated labs by our application.
This Deployment Manager incorporates the ability to implement Terraform deploy-
ments and present Terraform output concerning resource information to students.

However, since the existing Deployment Manager was tailored for static labs and spe-
cific scenarios, utilizing Guacamole for access to the resources, it required adaptation
to fit our use case.

Owing to the Non-Disclosure Agreement (NDA) signed, it is not permitted to share
the complete code of the Deployment Manager in the appendix or delve into extensive
details about its implementation. Therefore, only the core modifications necessary
for its compatibility with our product are documented in the subsequent sections, as
agreed upon and authorized by the supervisor.

Displaying Resource Information

To display the user-defined resource information as per the Terraform output outlined
in Section 7.3.4, adjustments were made to the getTerraformOutput function in the
backend part of the application, as outlined in Listing 7.34. Additionally, the OpenVPN
profile was incorporated into the output to facilitate user access. Any not necessary
information relating to specific HL deployments was removed.

1

2 const getTerraformOutput = async () => {

3 try {

4 const { stdout, _ } = await exec(`terraform output -json

-state=${TERRAFORM_STATE_FILE}`)
5 const output = JSON.parse(stdout)

6 return {

7 clientProfile: output?.dockovpn_client_profile,

8 resourcesConnectionInformation:

output?.resources_connection_information,

9 ...

10 }

11 } catch (e) {

12 return { error: "No output available" }

13 }

14 }

Listing 7.34 Deployment Manager Output Function

In the application’s frontend part, modifications were made to incorporate a ta-
ble containing all resource information. This was achieved by looping over the
resource_connection_information received from the backend to construct the table.
Additionally, a download button was integrated to provide the OpenVPN profile

145

received from the dockovpn_client_profile output. Instructions to import and con-
figure the OpenVPN profile on the HL Kookarai image were also appended.

The result of the view can be seen in Figure 7.4

Figure 7.4 Deployment Manager View

Support for Multiflags

To enable support for multiflags, it became necessary to ensure that the MULTIFLAGS
environment variable, which is set automatically in the future by the HL Framework
to the deployment manager, is injected into the terraform deployment within the
multiflags variable definition. This required an adjustment to the deployCommand to
read the environment and introduce it to terraform as seen in Listing 7.35.

1 const deployCommand = `cd ${TERRAFORM_FOLDER} \

2 && terraform apply -auto-approve \

3 ...

4 -var multiflags='${process.env?.MULTIFLAGS}' \

5 ...

Listing 7.35 Deployment Manager Deploy Function

Unused features All unused features, such as the implemented specific scenarios
where only select resources from a lab are deployed or the access with Guacamole,
have been removed. This cleanup required thorough analysis of the application
architecture and its construction. It was crucial to ensure that no checks depended on

146

the eliminated functionality and that it was entirely removed from all sections of the
application without breaking other functionality.

147

Results 8
This chapter provides a reflection on the achievements made and references them to
the functional and non-functional requirements of this project.

Framework for Pentest Lab Generation

The project successfully established a solid framework for generating pentest labs. This
was achieved using Django [3] for backend operations offering REST-API endpoints
and Angular [4] for the frontend, ensuring a scalable and maintainable solution. For
the deployment part Terraform [7] was used, which dynamically configures and
deploys the necessary resources based on the configuration applied in the frontend.
This further fulfills the NFR requirements in Table 3.25, 3.30 and 3.32.

Integration/Authentication The integration and authentication within the pentest lab
framework implemented using HL’s KeyCloak service. The Generator application
authenticates users through this service, ensuring secure access and management
of the labs. The integration facilitates SSO and identity management across the HL
platform, including the Generator Application.

Lab Portability Lab portability was a key feature implemented to ensure that labs
can be easily saved, loaded, and shared. The persistence of labs on a tenant basis
was facilitated through the use of a separate MinIO instance per tenant. Furthermore,
the system supports the download of lab configurations as JSON files, which can be
re-imported to recreate the lab environment. This allows the reuse of lab deployments
across different tenants. This completes the NFR requirement in Table 3.31.

Resource configuration Resource creation in the framework is highly customizable.
Lab-creators can specify various resources such as VMs, containers, subnets and firwall
configurations. These resources are defined through a user-friendly interface, which
then get translated into Terraform definitions for deployment.

Resource customization Beyond basic configuration, resource customization enables
lab-creators to apply custom scripts and configurations to the resources. This includes
using custom installation scripts from GitHub repositories and configuring Docker

148

containers with private and customized images. This level of customization ensures
that labs can be highly specialized and aligned with the educational objectives.

Lab Deployment The Generator application can facilitate deployments directly to
Azure in order to test the deployment and capture snapshots of the VMs. The
snapshots capture the state of the VMs, including their custom installations. This
feature significantly reduces the deployment time for students, allowing them to start
using the lab environment much faster than going through the entire installation
process. Furthermore, it can be assured that the installation on the deployment is
complete and working for all students because it was tested and captured in the
snapshot beforehand.

Lab Validation While fundamental validation is conducted in the backend, such
as verifying the model’s required fields and the proper configuration of resources,
additional validation processes like input verification or validation of previously
configured labs with outdated SKUs were not implemented in the frontend due to
lack of time and prioritization of other features. The groundwork for input validation,
via regex definition in the model structure, was nonetheless laid down. Generic errors
stemming from the backend are displayed as notifications on the frontend, mirroring
the outcomes of the basic backend validation.

Network with Multiple Subnets

The framework supports the creation of labs with multiple subnets, enabling complex
network segmentation and the simulation of real-world networks.

Firewall to Restrict Communication Between Resources

A firewall-like solution was implemented using Azure security groups, which define
and enforce network restrictions based on specified rules. Based on the specific needs
for the lab, the lab-creator can define these rules through the frontend, specifying the
actions to be granted or denied, the source/destination, as well as the relevant ports
or port ranges and the protocol

DNS Resolution for Resources

DNS resolution was set up using Cloudflare for the root domain, while Azure DNS
managed subdomains for individual lab environments. These subdomains are auto-
matically configured with a unique UUID for each lab deployment. This setup ensures
that resources can be easily accessed using DNS.

149

Virtual Machines (Linux, Windows)

The framework supports the deployment of VMs operating on both Linux and Win-
dows. It allows the lab-creator to specify parameters including OSs, disk capacities,
and VM size in terms of CPU and RAM. To ensure broad compatibility, various distri-
butions including Windows Server, Windows Desktop, Ubuntu, Red Hat Enterprise
Linux (RHEL), and Suse were tested and confirmed to function without issues.

Possibility to perform Custom Installations on Virtual Machines

Custom installations for VMs were implemented via Github repositories. This enables
users to specify a specific repository for each VM. These repositories are subsequently
then used during the VM deployment process to install the required software and
configurations. The repositories can be set up with two scripts: one for handling
the installation and another for defining post-install routines that can be leveraged
to distribute multiflags and credentials. Sample repositories have been created to
demonstrate fundamental components such as access to multiflags or credentials,
along with appropriate error handling. Additionally, a mechanism was implemented
to supply the lab-creator with adequate script output information for debugging,
facilitated through the Terraform output.

Container Services

Support for container services was integrated, utilizing an Azure Kubernetes Cluster
(AKC). This adoption demonstrates a state-of-the-art deployment strategy for con-
tainerized applications, satisfying the demands for interoperability for the current
Hacking-lab images and isolation through dynamically deploying the corresponding
Nodepools for the subnets within the lab architecture framework. It also enables
the use of Terraform definitions for deployment, thereby facilitating advanced cloud
deployments.

Possibility to Deploy Existing HL Container Images

The framework supports deploying existing HL container images, ensuring compatibil-
ity with current already developed images. This is achieved by allowing the definition
of custom repositories, along with the necessary credentials, especially if the repository
is private. This fulfills the NFR requirements in Table 3.27 and 3.29.

150

VPN Access for Students

A secure VPN access method was implemented using OpenVPN. This ensures that
students can securely connect to the lab environments. The OpenVPN server was
deployed as a containerized application within the Kubernetes cluster, providing
robust and secure remote access. Furthermore the OpenVPN Server has been made
configurable to accommodate potential future modifications.

Adjustments to Existing Deployment Manager

Enhancements were made to the existing deployment manager to adapt to the dy-
namically generated Terraform deployments, particularly regarding the output to be
displayed, which is dynamically generated from them. Furthermore, it was adjusted
to be able to inject multiflags into the Terraform deployment, which are then used
by the deployment to distribute to the VMs and containers. This completes the NFR
requirement in Table 3.28.

Dynamic Flag Distribution

The framework incorporates features for dynamic flag distribution, a critical compo-
nent for ensuring that the student has genuinely resolved the challenge rather than
receiving and using the flags from other students. This was accomplished through
the adjustments made to the Deployment Manager and the distribution process to the
VMs and containers through the Terraform deployment, followed by the exemplary
installation of repositories on how to retrieve the flags for actual implementation into
the pentest components.

Cost Optimization

To comply with NFR 3.33, several strategies were implemented to optimize costs.
Evaluations of costs were performed during the evaluation of solutions like container
deployment or VPN establishment. Dynamic scaling was incorporated within the uti-
lized AKS, ensuring only the necessary number of nodes are in operation. Automated
purging processes in the backend facilitated the deletion of unsuccessful deployments
and orphaned resources, thus averting unnecessary expenses. The adoption of VM
snapshots not only decreased deployment times but also reduced computing time
costs linked with repetitive installations. For DNS management, cost-effectiveness was
achieved by leveraging the free service Cloudflare.

151

Conclusion and Outlook 9
This chapter provides a conclusion, a future outlook and recommendation for the
project.

The core objective of this thesis was to develop a tool that would simplify the creation
and integration of individual pentest labs into the existing HL infrastructure. This tool
was designed to enhance the practical application of cybersecurity concepts within an
environment that closely mimics corporate IT landscapes, thereby providing a more
realistic and comprehensive learning experience.

The successful establishment of a robust foundation and development of the Dynamic
Pentest Lab Generator Framework is noteworthy. However, it is crucial to examine spe-
cific aspects of the product and, considering its scope and complexity, to contemplate
potential future enhancements, further detailed in the subsequent section.

The Terraform deployment has demonstrated the potential for dynamic lab generation
through established templating methodologies. It enables the deployment of virtual
machines, offering customization options via custom installation repositories, and
supports the creation of snapshots to reduce setup times for students. Additionally,
the process incorporates robust network configurations with the creation of subnets
and designed to simulate real-world IT environments. VPN access for students is
streamlined using an OpenVPN container, ensuring secure remote connectivity. The
implementation of DNS resolution through Cloudflare and Azure DNS zones enhances
the usability of accessing resources. The deployment of containers facilitates the reuse
of existing HL Docker images, further enhancing the practicality and relevance of the
labs through a state-of-the-art deployment approach for containerized applications via
Kubernets Cluster. Moreover, the framework includes mechanisms for distributing
dynamic flags and credentials to the resources, crucial for conducting varied and com-
plex security exercises. The implementation of traffic restrictions, managed through
security groups and rules, effectively controls and restricts traffic between the deployed
resources.

In future enhancements, an approach to introduce Transport Layer Security (TLS)
for containers through the use of side containers as reverse proxies could be taken.

152

Leveraging Let’s Encrypt for automated certificate management would seamlessly fit
with the existing use of the public DNS solutions Cloudflare and Azure DNS zones.
This integration would effectively streamline the integration and renewal processes for
Secure Socket Layer (SSL)/TLS certificates.

Furthermore, the Terraform Azure resources, azurerm_linux_virtual_machine and
azurerm_windows_virtual_machine, should be monitored for their ability to support
existing OS disk attachments. The current scenario necessitates the utilization of the
Terraform resource azurerm_virtual_machine to enable the snapshot technology, due
to the lack of such a feature in the aforementioned resources. However, this Terraform
resource has also introduced certain complications, given that it is not receiving the
same enhancement features as the newer resources. These complications have been
extensively delineated in Section 7.3.6 which could be solved when utilizing the newer
resources.

The established VPN Access solution for students was engineered to be able to
dynamically retrieve the VPN profiles and therefore providing great usability since
only the profile has to be imported to build up the tunnel. Also it was configured
in that way that only the corresponding lab traffic gets routed through the tunnel.
However, utilizing a VPN connection for educational purposes within a corporate
environment may pose a challenge. This is because most companies typically prohibit
the establishment of VPNs within their corporate networks. An alternative solution
could be the use of Azure Virtual Desktop as an entry point for the lab, instead of the
VPN. Azure Virtual Desktop offers a virtual client that can be directly accessed in the
browser. Its deployment also supports the use of custom images, which would allow
the integration of the HL Kookarai image, thereby providing all the necessary tools
for the pentest lab. There are corresponding Terraform resources for the deployment
of Azure Virtual Desktop. This could be integrated into the existing Terraform
deployment in such a way that, based on the provided configuration, either the VPN
or Azure Virtual Desktop is used as the lab’s entry point. Although this alternative
would be a robust solution, it would incur additional costs, unlike the OpenVPN
container which doesn’t introduce any extra expenses as it operates on the already
existing Kubernetes Cluster.

The backend serves as a crucial intermediary between the user-facing frontend and
the underlying infrastructure management performed by Terraform. Its primary
responsibilities include providing API endpoints for the frontend, initiating Terraform
deployments, and providing the deployment including the Deployment Manager in
the form of a dockerfiles.tar.gz. Creating a seamless bridge between the frontend
and backend presented significant challenges due to the peculiarities inherent in the
different technologies used. These peculiarities, such as the frontend providing slightly
adjusted keys in the JSON or Terraform requiring correctly capitalized user inputs,
had to be mitigated by the backend. This ensured that user inputs from the frontend
ultimately generated valid Terraform code, as even a small mistake could cause the
entire deployment to fail. Handling the statuses of all incoming Terraform deployments

153

along with their associated logic posed a significant challenge. It was particularly
critical, yet difficult, to ensure that labs were consistently and appropriately cleaned
up, even in the face of errors. Such errors could include logical flaws in the user-
provided configuration that the backend parser or Terraform’s initialization process
did not detect. This aspect was key to avoiding any additional costs due to orphaned
deployments.

While the backend could still benefit from additional error handling and general
code cleanup, the overall quality is good, and the logic is handled cleanly given its
complexity. Adjustments in the backend will always be closely tied to changes in the
user interface it dynamically hydrates or to updates in Terraform.

When considering potential enhancements, limitations could be established on the
accessible SKUs and the number of virtual machines or containers that may be
incorporated into a lab. A strategy could also be developed to allocate a budget
for costs incurred per lab, on an hourly basis. This could be achieved by dynamically
retrieving and validating the costs for each resource added to the lab. While this was
not a requirement for this project, considering the lab-creators as trustworthy actors, it
may be prudent to implement such restrictions in less trustful environments to avoid
excessive costs.

The development of the Generator’s frontend presented substantial effort and notable
challenges. On one hand, the frontend needed to meet all requirements and include
all functionalities for the Terraform deployments and backend logic to be useful to
the end-user. On the other hand, there were numerous technical requirements set by
the developers of Hacking-Lab AG. The requirements of the specific frameworks, that
had to be used for this project, was only announced after the fourth week already in
preparation and development. Therefore a compromise had to be made and it was
decided to discard the existing frontend in week four and redo it in the freshly defined
frameworks. Overcoming the steep learning curve, due to new frameworks and
technologies, required considerable time and resources. In the end, these challenges
were overcome, resulting in a working application that allows users to visually create
lab environments. This includes creating network nodes, configuring the resources
represented by those nodes, and connecting them to different subnets that can also
be user-created. Furthermore it serves as a central point for management of the labs.
This concludes actions such as initiating deployments, downloading deployments,
analyzing logs for debugging, and inspecting deployment statuses.

The frontend is not just a static web application displaying an editable graph with
some data; it is dynamically built to be expanded and improved without advanced
frontend knowledge. This was achieved by building the entire lab creation process in
the frontend around the structural JSON files defined by the backend. This approach
allows the frontend to dynamically render fully functional content without changing a
single line of code in the frontend itself. The frontend consists of different building
blocks rendered via templating according to the backend-specified model structure

154

JSON file. This makes the application well-maintained and easily adaptable to new
use cases, such as deploying new resources in future cloud-based lab environments.

Despite this, the frontend still requires refinement and is missing certain user-experience
functionalities. The primary focus was on core elements, such as features associated
with cloud deployment and lab creation, treating user-experience features as secondary,
to be addressed if extra resources were available. Ideally, higher priority would have
been given to user feedback and input validation during resource modification and
validating the correctness of the supplied values. The backend already supplies the
necessary information and regular expressions to theoretically validate user input
for each resource property. However, the development of basic functionality in the
frontend required substantial resources, leaving this aspect incomplete.

Another aspect is the overall design of the application, which currently appears
quite rudimentary and practical. With some effort, the design could be significantly
improved and adjusted to match the HL Framework even more. Lastly, a feature on
the list of optional goals was replacing the simple graph nodes with fitting icons. This
is partially implemented on the backend by sending a base64-encoded image for each
resource. These images could be used to visualize the resources in the graph more
clearly, enhancing the application’s visual appeal. This feature ties into the design
improvement but was specifically planned as an optional enhancement.

The existing framework, in general, could be adapted to replace the current Deploy-
ment Manager. Its capability to deploy Terraform labs and centrally manage them
could be utilized directly by students for deployment purposes. By using the already
integrated authentication service, a role specifically for students could be created,
allowing them only to deploy specific labs and view their own deployments.

In conclusion, with a total investment of 1294 hours, this project has successfully
established a framework, providing significant benefits in efficiency, accessibility, and
integration for creating pentest labs. Simultaneously, it also has paved the way for
further expansion of HL into the public cloud native realm. Future enhancements will
further refine the tool, ensuring it remains adaptable and relevant in the evolving field
of cybersecurity.

155

Personal Reports 10

Personal Report - Dante

This project marked my first experience being solely responsible for an entire fron-
tend implementation, including its creation and architectural design. Meeting the
requirements from both the deployment and backend teams sometimes presented
significant challenges, particularly in developing a suitable frontend to display these
requirements effectively.

Initially working with new technologies and frameworks was a setback. Four weeks
into the project, I had to switch from React to Angular with DaisyUI and Tailwind,
resulting in several lost hours and the need to rewrite the existing frontend. Integrating
the vis-network library with our custom backend data structure was another complex
and often unintuitive task, which cost me a couple extra hours.

The project involved numerous requirements and feature requests from different
parties, which required prioritization, the translation into the frontend architecture,
and eventual implementation. This was sometimes on a tight schedule, with features
needing to be developed overnight or within a few days, alongside managing a normal
job and attending other lectures. Consequently, I accumulated a significant surplus of
hours compared to the planned hours for the project credits.

Despite these challenges, I am extremely happy and content with the final result we
achieved as a team. We successfully integrated the backend, deployment, and frontend
into a fully functional application. I am proud of my accomplishment in building the
frontend from scratch, including its configuration, setup, and scalability for future
needs. Implementing dynamic rendering was initially daunting, but I managed to
achieve it by staying calm in stressful situations and relying on the support of my
great teammates, who consistently pushed me and believed in my abilities.

I am also very grateful to our supervisor, Ivan, who was always ready to help, open to
our approach and implementation, and provided us with a lot of trust. His support
was invaluable throughout the project.

156

Personal Report - Janosch

In this project, I was tasked with developing the backend in Django. This role
included designing and implementing the server-side logic, database interactions, and
core functionalities that our application required. From setting up the initial project
structure to ensuring seamless integration with other components, the responsibility
was comprehensive and demanding.

Working with Django was both familiar and challenging. While I had prior experience
with Python web/API frameworks, the complexity of this project required a deeper
understanding and innovative problem-solving skills. We needed to ensure that the
data structures and the code in general were easily maintainable by others, that the
project was generic and configurable enough to be deployed in various tenants, that it
scaled well, and of course, to implement the wishlist of features.

Because all of us were working part-time (40-60%) on different days and also having
different study schedules, we had a tight schedule. This led to occasional long
late-night meetings after a day of already working 8-9 hours, which was hard on
all of us. Despite these challenges, the communication in the team was good and
fruitful. Regular check-ins, clear documentation, and collaborative problem-solving
were essential to our success. This experience highlighted the importance of effective
teamwork and the ability to adapt to varying schedules and high workloads.

This project did feel less like a thesis and more like being a group of freelancers
developing a product, but I guess that is a peculiarity in IT. I’m very glad that the
real-world setting of our work enabled us to create a product that will be used in the
future and not just discarded after completion. However, I do wish we had more time
to focus on the academic aspects of our thesis, as the typical IT thesis at OST heavily
emphasizes product creation similar to real-world development. This emphasis is
understandable, given that OST is a university of applied sciences.

I want to express my gratitude to my teammates for their excellent collaboration and
to our supervisor, Ivan. He was always ready to help, open to our approach and
implementation, and placed a great deal of trust in us. His support was invaluable
throughout the project.

157

Personal Report - Samuel

Throughout this project, I was tasked with the responsibility of managing the Terraform
deployment. While the backend and frontend components were designed to leverage
this deployment for a user-friendly experience, my role was to implement the actual
logic, architecture, and dynamic aspects of the lab deployments.

Being very interested in cloud deployments and automation, I took great pleasure in
designing, overthinking, and building the necessary logic to fulfill the requirements. I
had worked on smaller deployments earlier but never had the chance to design such a
complex deployment with numerous dependencies and components involved. The
challenge of building everything dynamically was something I particularly enjoyed. It
required establishing corresponding designs to facilitate this. Furthermore, existing
bugs in certain Terraform resources or feature incompleteness required additional
troubleshooting and engineering to meet the requirements.

In general, I am very happy with the result. Having built a Terraform deployment that
facilitates the deployment of VMs, a Kubernetes cluster to run containers, performs
custom installations and debugging of them, automates the snapshot process, provides
network restrictions, establishes DNS resolution with public resolution, and provides
VPN access for the students — all dynamically and unique, solely based on a JSON
file — is something I am very proud of.

Despite the enjoyment I found in the work, it was a challenging time. The project re-
quirements and tight schedule often led to late-night sessions dedicated to implement-
ing, debugging, and improving the deployments to meet the necessary requirements
and ensure their stability. Additionally, like all of us, managing a regular job and other
academic tasks left little room for free time. As a result, I also accumulated a surplus
of hours compared to the planned hours for the project credits.

Overall, I am also very grateful for the teamwork. Without such a great performance
from all of us and the team spirit to build something innovative and functional, we
wouldn’t have achieved such success. I also want to thank Ivan, our supervisor, for
this great assignment and the support and help he provided.

158

List of Figures

2.1 Manual Pentest Creation System-Context 6
2.2 Dynamic Pentest Generator System-Context 7

3.1 Use-Case Diagram . 9

4.1 DPL Domain Model . 37
4.2 C4 Context Diagram . 38
4.3 C4 Container Diagram . 40
4.4 C4 Component Diagram . 42
4.5 Azure Lab Architecture . 44
4.6 Frontend Figma Overview . 53
4.7 Frontend Figma Flow . 54
4.8 Frontend Architecture Diagram . 56
4.9 Pricing Azure Container Deployment . 74

6.1 Git Branching Workflow . 86

7.1 Info Page . 98
7.2 Lab Editor Page . 99
7.3 Labs Page . 100
7.4 Deployment Manager View . 146

159

List of Tables

3.1 User Story: Create Subnets Resources . 12
3.2 User Story: Create Virtual Machine Resources 13
3.3 User Story: Create Container Resources 14
3.4 User Story: Create Connection between Resources 15
3.5 User Story: Access to the Lab via VPN 16
3.6 User Story: Subnet Configuration . 16
3.7 User Story: Container Configuration . 17
3.8 User Story: Virtual Machine Configuration 18
3.9 User Story: Firewall Configuration . 19
3.10 User Story: Custom Installation Repositories 20
3.11 User Story: Customized Installations VM 21
3.12 User Story: Custom/HL Container Images from Private Registry 22
3.13 User Story: Selective Resource Exposure 22
3.14 User Story: Credential Management and Distribution 23
3.15 User Story: Multiflag Integration and Management 24
3.16 User Story: Save Labs . 24
3.17 User Story: Load Labs . 25
3.18 Export Lab for Deployment Manager . 25
3.19 User Story: Download Designed lab . 26
3.20 User Story: Upload existing Lab . 27
3.21 User Story: Lab Validation . 28
3.22 User Story: Deploy Lab . 28
3.23 User Story: Snapshot Lab . 29
3.24 User Story: Authenticate with HL SSO 30
3.25 Non-Functional Requirements: NFR01 . 31
3.26 Non-Functional Requirements: NFR02 . 31
3.27 Non-Functional Requirements: NFR03 . 32
3.28 Non-Functional Requirements: NFR04 . 32
3.29 Non-Functional Requirements: NFR05 . 32
3.30 Non-Functional Requirements: NFR06 . 33
3.31 Non-Functional Requirements: NFR07 . 33
3.32 Non-Functional Requirements: NFR08 . 34
3.33 Non-Functional Requirements: NFR09 . 34
3.34 Non-Functional Requirements: NFR10 . 35

160

List of Tables List of Tables

3.35 Tracking of the NFRs . 35

4.1 Azure Resource Naming . 48
4.2 Container Deployment Evaulation . 75

161

List of Listings

4.1 Model Data Structure . 51
4.2 Model Data Structure for a new Resource 58

7.1 Dynamic Button Creation through JSON File 102
7.2 Resource Editor Text Input Example . 103
7.3 Azure Offer Dropdown Component . 104
7.4 Notification Component . 107
7.5 Celery Task Chain . 118
7.6 Terraform Structure . 121
7.7 Virtual machine definition . 122
7.8 Configuration Definition . 123
7.9 Dynamic Generation utilizing Loops . 124
7.10 Conditional for each . 124
7.11 Dynamic Block . 124
7.12 Creation of dynamic Credentials . 125
7.13 Resource Information Dataset . 126
7.14 Kubernetes Provider . 127
7.15 Resource Group Name . 127
7.16 Dynamic Creation of Node Pools . 128
7.17 Dockovpn Deployment ENV . 130
7.18 Root DNS Zone NS Records . 131
7.19 Creation of DNS A-Records . 131
7.20 Virtual Machine Sleep Provisioner . 133
7.21 Creation of virtual Machine Snapshot . 133
7.22 Usage of virtual Machine Snapshots . 134
7.23 Custom installation Linux . 136
7.24 Example Install Output . 137
7.25 Example failing Install Output . 138
7.26 Error handling Powershell . 139
7.27 Error handling Bash . 139
7.28 Deployment Node Selector . 140
7.29 Kubernetes Manifest wait Configuration 141
7.30 Multiflag env Parsing for Container . 141
7.31 Env Assignment Container . 141

162

List of Listings List of Listings

7.32 Docker Pull Secrets . 142
7.33 Network Security Rules . 143
7.34 Deployment Manager Output Function 145
7.35 Deployment Manager Deploy Function 146

163

Bibliography

[1] „Visio“. (2024), [Online]. Available: https : / / www . microsoft . com / en - us /

microsoft-365/visio/flowchart-software (visited on 14/06/2024).

[2] adr.github.io. „Architectural decision records (adrs)“. (2024), [Online]. Available:
https://adr.github.io/ (visited on 12/06/2024).

[3] T. C. D. contributors. „Cookiecutter django“. (2024), [Online]. Available: https:
//github.com/cookiecutter/cookiecutter-django/ (visited on 12/06/2024).

[4] A. T. at Google. „Angular - the modern web developer’s platform“. (2024), [On-
line]. Available: https://github.com/angular/angular (visited on 12/06/2024).

[5] T. vis-network contributors. „Vis-network“. (2024), [Online]. Available: https:
//github.com/visjs/vis-network (visited on 12/06/2024).

[6] „Hacking-lab“. (2024), [Online]. Available: https://www.hacking-lab.com/
services/ (visited on 14/06/2024).

[7] terraform.io. „Terraform“. (2024), [Online]. Available: https://www.terraform.
io/ (visited on 12/06/2024).

[8] „Azure cloud computing azure“. (2024), [Online]. Available: https://azure.
microsoft.com (visited on 12/06/2024).

[9] „Managed Kubernetes Service (AKS) | Microsoft Azure“. (2024), [Online]. Avail-
able: https://azure.microsoft.com/en-us/products/kubernetes-service
(visited on 13/06/2024).

[10] github.com. „Github“. (2024), [Online]. Available: https://github.com/ (visited
on 12/06/2024).

[11] „Secure access and network connectivity reimagined“. (2024), [Online]. Available:
https://openvpn.net/ (visited on 12/06/2024).

[12] Cloudflare. „Cloudflare“. (2024), [Online]. Available: https://www.cloudflare.
com (visited on 12/06/2024).

[13] c4model.com. „C4 model for visualising software architecture“. (2024), [Online].
Available: https://c4model.com/ (visited on 12/06/2024).

[14] „Let’s Encrypt“. (2024), [Online]. Available: https://letsencrypt.org/ (visited
on 14/06/2024).

164

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://adr.github.io/
https://github.com/cookiecutter/cookiecutter-django/
https://github.com/cookiecutter/cookiecutter-django/
https://github.com/angular/angular
https://github.com/visjs/vis-network
https://github.com/visjs/vis-network
https://www.hacking-lab.com/services/
https://www.hacking-lab.com/services/
https://www.terraform.io/
https://www.terraform.io/
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com/en-us/products/kubernetes-service
https://github.com/
https://openvpn.net/
https://www.cloudflare.com
https://www.cloudflare.com
https://c4model.com/
https://letsencrypt.org/

Bibliography Bibliography

[15] docker.com. „Docker platform for delivering software in containers“. (2024),
[Online]. Available: https://www.docker.com/ (visited on 12/06/2024).

[16] G. Contributors. „Git version control system“. (2024), [Online]. Available: https:
//github.com/git/git (visited on 12/06/2024).

[17] redis.io. „Redis: In-memory data structure store“. (2024), [Online]. Available:
https://redis.io/ (visited on 12/06/2024).

[18] celeryproject.org. „Celery: Distributed task queue“. (2024), [Online]. Available:
https://docs.celeryproject.org/en/stable/ (visited on 12/06/2024).

[19] min.io. „Minio | s3 kubernetes native object storage for ai“.“ (2024), [Online].
Available: https://min.io/ (visited on 09/06/2024).

[20] M. Azure. „Azure products“. (2024), [Online]. Available: https : / / azure .

microsoft.com/en-us/products/ (visited on 12/06/2024).

[21] M. Support. „Resource naming restrictions - azure resource manager“. (2024),
[Online]. Available: https : / / learn . microsoft . com / en - us / azure / azure -

resource-manager/management/resource-name-rules (visited on 12/06/2024).

[22] F. GmbH. „Figma“. (2024), [Online]. Available: https://www.figma.com/ (visited
on 12/06/2024).

[23] T. daisyUI contributors. „Daisyui“. (2024), [Online]. Available: https://github.
com/saadeghi/daisyui (visited on 12/06/2024).

[24] react.dev. „React as web frontend framework“. (2024), [Online]. Available: https:
//react.dev (visited on 12/06/2024).

[25] vuejs.org. „Vuejs as web frontend framework“. (2024), [Online]. Available: https:
//vuejs.org (visited on 12/06/2024).

[26] T. R.-D. Contributors. „React dnd as graph framework“. (2024), [Online]. Avail-
able: https://react-dnd.github.io/react-dnd/docs/overview (visited on
12/06/2024).

[27] jointjs.com/. „Jointjs vis as graph framework“. (2024), [Online]. Available: https:
//jointjs.com (visited on 12/06/2024).

[28] js.cytoscape.org. „Jointjs vis as graph framework“. (2024), [Online]. Available:
https://js.cytoscape.org (visited on 12/06/2024).

[29] tailwindcss.com. „Tailwind as css framework“. (2024), [Online]. Available: https:
//tailwindcss.com (visited on 12/06/2024).

[30] daisyui.com. „Daisy-ui as component library in addition to tailwind“. (2024),
[Online]. Available: https://daisyui.com (visited on 12/06/2024).

[31] react-bootstrap.netlify.app. „React bootstrap ui as css framework“. (2024), [On-
line]. Available: https://react-bootstrap.netlify.app (visited on 12/06/2024).

[32] mui.com. „Material ui as css framework“. (2024), [Online]. Available: https:
//mui.com (visited on 12/06/2024).

165

https://www.docker.com/
https://github.com/git/git
https://github.com/git/git
https://redis.io/
https://docs.celeryproject.org/en/stable/
https://min.io/
https://azure.microsoft.com/en-us/products/
https://azure.microsoft.com/en-us/products/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules
https://www.figma.com/
https://github.com/saadeghi/daisyui
https://github.com/saadeghi/daisyui
https://react.dev
https://react.dev
https://vuejs.org
https://vuejs.org
https://react-dnd.github.io/react-dnd/docs/overview
https://jointjs.com
https://jointjs.com
https://js.cytoscape.org
https://tailwindcss.com
https://tailwindcss.com
https://daisyui.com
https://react-bootstrap.netlify.app
https://mui.com
https://mui.com

Bibliography Bibliography

[33] „Chocolatey“. (2024), [Online]. Available: https://chocolatey.org/ (visited on
14/06/2024).

[34] „Nix“. (2024), [Online]. Available: https://nixos.org/ (visited on 14/06/2024).

[35] „Introduction to snaps“. (2024), [Online]. Available: https://ubuntu.com/core/
services/guide/snaps-intro (visited on 14/06/2024).

[36] „Azure Container Instances | Microsoft Azure“. (2024), [Online]. Available:
https://azure.microsoft.com/de-de/products/container-instances (visited
on 13/06/2024).

[37] just-containers. „Just-containers/s6-overlay“. (2024), [Online]. Available: https:
//github.com/just-containers/s6-overlay (visited on 12/06/2024).

[38] M. Support. „S6-overlay support in container instances“. (2024), [Online]. Avail-
able: https://learn.microsoft.com/en-us/answers/questions/1153255/s6-
overlay-support-in-container-instances (visited on 12/06/2024).

[39] M. Support. „About Azure Point-to-Site VPN connections - Azure VPN Gate-
way“. (2023), [Online]. Available: https://learn.microsoft.com/en-us/azure/
vpn-gateway/point-to-site-about (visited on 12/06/2024).

[40] DockOVPN. „Dockovpn“. (2024), [Online]. Available: https://dockovpn.io/
index.html (visited on 12/06/2024).

[41] J. A. Donenfeld. „Wireguard: Fast, modern, secure vpn tunnel“. (2024), [Online].
Available: https://www.wireguard.com/ (visited on 12/06/2024).

[42] „Keycloak“. (2024), [Online]. Available: https://www.keycloak.org/ (visited on
13/06/2024).

[43] https://github.com/manfredsteyer/angular-oauth2-oidc. „About azure point-
to-site vpn connections - azure vpn gateway“. (2024), [Online]. Available: https:
//github.com/manfredsteyer/angular-oauth2-oidc (visited on 12/06/2024).

[44] Okta. „Auth0 by okta“. (2024), [Online]. Available: https://auth0.com/blog/
complete-guide-to-angular-user-authentication/ (visited on 12/06/2024).

[45] P. Contributors. „Welcome to pyjwt“. (2024), [Online]. Available: https://pyjwt.
readthedocs.io/en/stable/ (visited on 12/06/2024).

[46] P. A. Contributors. „The ultimate python library in building oauth and openid
connect servers and clients.“ (2024), [Online]. Available: https://pypi.org/
project/Authlib/ (visited on 12/06/2024).

[47] D.-O. Contributors. „Django oauth toolkit“. (2024), [Online]. Available: https:
//django-oauth-toolkit.readthedocs.io/en/stable/index.html (visited on
12/06/2024).

[48] greg-lindsay. „What is an azure private dns zone?“ (2024), [Online]. Avail-
able: https : / / learn . microsoft . com / en - us / azure / dns / private - dns -

privatednszone (visited on 12/06/2024).

166

https://chocolatey.org/
https://nixos.org/
https://ubuntu.com/core/services/guide/snaps-intro
https://ubuntu.com/core/services/guide/snaps-intro
https://azure.microsoft.com/de-de/products/container-instances
https://github.com/just-containers/s6-overlay
https://github.com/just-containers/s6-overlay
https://learn.microsoft.com/en-us/answers/questions/1153255/s6-overlay-support-in-container-instances
https://learn.microsoft.com/en-us/answers/questions/1153255/s6-overlay-support-in-container-instances
https://learn.microsoft.com/en-us/azure/vpn-gateway/point-to-site-about
https://learn.microsoft.com/en-us/azure/vpn-gateway/point-to-site-about
https://dockovpn.io/index.html
https://dockovpn.io/index.html
https://www.wireguard.com/
https://www.keycloak.org/
https://github.com/manfredsteyer/angular-oauth2-oidc
https://github.com/manfredsteyer/angular-oauth2-oidc
https://auth0.com/blog/complete-guide-to-angular-user-authentication/
https://auth0.com/blog/complete-guide-to-angular-user-authentication/
https://pyjwt.readthedocs.io/en/stable/
https://pyjwt.readthedocs.io/en/stable/
https://pypi.org/project/Authlib/
https://pypi.org/project/Authlib/
https://django-oauth-toolkit.readthedocs.io/en/stable/index.html
https://django-oauth-toolkit.readthedocs.io/en/stable/index.html
https://learn.microsoft.com/en-us/azure/dns/private-dns-privatednszone
https://learn.microsoft.com/en-us/azure/dns/private-dns-privatednszone

Bibliography Bibliography

[49] greg-lindsay. „Dns zones and records overview - azure public dns“. (2024),
[Online]. Available: https://learn.microsoft.com/en-us/azure/dns/dns-
zones-records (visited on 12/06/2024).

[50] T. Registry. „Cloudflarerecord(resource)“. (2024), [Online]. Available: https://
registry.terraform.io/providers/cloudflare/cloudflare/latest/docs/

resources/record (visited on 12/06/2024).

[51] T. Registry. „Azurermdnsarecord“. (2024), [Online]. Available: https://registry.
terraform.io/providers/hashicorp/azurerm/latest/docs/resources/dns_a_

record (visited on 12/06/2024).

[52] M. ATT&CK. „Gather victim network information: Dns, sub-technique t1590.002 -
enterprise“. (2024), [Online]. Available: https://attack.mitre.org/techniques/
T1590/002/ (visited on 12/06/2024).

[53] Microsoft. „Typescript“. (2024), [Online]. Available: https : / / github . com /

microsoft/TypeScript (visited on 12/06/2024).

[54] T. ruff contributors. „Typescript-eslint“. (2024), [Online]. Available: https://
github.com/typescript-eslint/typescript-eslint (visited on 12/06/2024).

[55] T. ruff contributors. „Ruff“. (2024), [Online]. Available: https://github.com/
astral-sh/ruff (visited on 12/06/2024).

[56] postgresql.org. „Postgresql database“. (2024), [Online]. Available: https://www.
postgresql.org/ (visited on 12/06/2024).

[57] kubernetes.io. „Kubernetes container orchestration platform“. (2024), [Online].
Available: https://kubernetes.io/ (visited on 12/06/2024).

[58] tflint. „Tflint“. (2024), [Online]. Available: https://github.com/terraform-
linters/tflint (visited on 13/06/2024).

[59] visualstudio.com. „Visual studio code“. (2024), [Online]. Available: https://
code.visualstudio.com/ (visited on 12/06/2024).

[60] jetbrains.com. „Jetbrains pycharm“. (2024), [Online]. Available: https://www.
jetbrains.com/pycharm/ (visited on 12/06/2024).

[61] jetbrains.com. „Jetbrains webstorm“. (2024), [Online]. Available: https://www.
jetbrains.com/webstorm/ (visited on 13/06/2024).

[62] postman.com. „Postman api platform“. (2024), [Online]. Available: https://www.
postman.com/ (visited on 12/06/2024).

[63] insomnia.rest. „Insomnia: The api design platform and rest client“. (2024), [On-
line]. Available: https://insomnia.rest/ (visited on 12/06/2024).

[64] latex-project.org. „Latex document preparation system“. (2024), [Online]. Avail-
able: https://www.latex-project.org/ (visited on 12/06/2024).

[65] overleaf.com. „Overleaf collaboration tool for latex“. (2024), [Online]. Available:
https://www.overleaf.com/ (visited on 12/06/2024).

167

https://learn.microsoft.com/en-us/azure/dns/dns-zones-records
https://learn.microsoft.com/en-us/azure/dns/dns-zones-records
https://registry.terraform.io/providers/cloudflare/cloudflare/latest/docs/resources/record
https://registry.terraform.io/providers/cloudflare/cloudflare/latest/docs/resources/record
https://registry.terraform.io/providers/cloudflare/cloudflare/latest/docs/resources/record
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/dns_a_record
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/dns_a_record
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/dns_a_record
https://attack.mitre.org/techniques/T1590/002/
https://attack.mitre.org/techniques/T1590/002/
https://github.com/microsoft/TypeScript
https://github.com/microsoft/TypeScript
https://github.com/typescript-eslint/typescript-eslint
https://github.com/typescript-eslint/typescript-eslint
https://github.com/astral-sh/ruff
https://github.com/astral-sh/ruff
https://www.postgresql.org/
https://www.postgresql.org/
https://kubernetes.io/
https://github.com/terraform-linters/tflint
https://github.com/terraform-linters/tflint
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://www.postman.com/
https://www.postman.com/
https://insomnia.rest/
https://www.latex-project.org/
https://www.overleaf.com/

Bibliography Bibliography

[66] jetbrains.com. „Jetbrains qodana“. (2024), [Online]. Available: https://www.
jetbrains.com/qodana/ (visited on 12/06/2024).

[67] zotero.org. „Zotero“. (2024), [Online]. Available: https://www.zotero.org/
(visited on 13/06/2024).

[68] T. pre-commit contributors. „Pre-commit“. (2024), [Online]. Available: https:
//pre-commit.com/ (visited on 12/06/2024).

[69] atlassian.com. „Jira bug tracking and project management“. (2024), [Online].
Available: https://www.atlassian.com/software/jira (visited on 12/06/2024).

[70] atlassian.com. „Confluence collaboration software“. (2024), [Online]. Available:
https://www.atlassian.com/software/confluence (visited on 12/06/2024).

[71] miro.com. „Miro collaborative online whiteboarding platform“. (2024), [Online].
Available: https://www.miro.com/ (visited on 12/06/2024).

[72] microsoft.com. „Teams virtual meetings and chatting tool“. (2024), [Online].
Available: https://www.microsoft.com/en-us/microsoft-teams/ (visited on
12/06/2024).

[73] nginx.com. „Nginx web server and reverse proxy“. (2024), [Online]. Available:
https://www.nginx.com/ (visited on 12/06/2024).

[74] T. ngx-markdown Contributors. „Ngx-markdown library“. (2024), [Online].
Available: https://github.com/jfcere/ngx-markdown (visited on 12/06/2024).

[75] T. B. Practices. „Code structure“. (2022), [Online]. Available: https://www.

terraform-best-practices.com/code-structure (visited on 12/06/2024).

[76] M. Support. „Analyze decision criteria - training“. (2024), [Online]. Available:
https://learn.microsoft.com/en-us/training/modules/choose-network-

plugin-aks/3-analyze-decision-criteria (visited on 12/06/2024).

[77] K. Documentation. „Assigning pods to nodes“. (2024), [Online]. Available: https:
//kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

(visited on 12/06/2024).

[78] T. D. contributors. „Dockovpn“. (2024), [Online]. Available: https://github.
com/dockovpn/dockovpn (visited on 12/06/2024).

[79] T. Registry. „Support for manageddiskid f romanexistingosdisk“. (2024), [Online].
Available: https://github.com/hashicorp/terraform- provider- azurerm/
issues/8195 (visited on 12/06/2024).

[80] T. Registry. „Azurermlinuxvirtualmachine“. (2024), [Online]. Available: https:
/ / registry . terraform . io / providers / hashicorp / azurerm / latest / docs /

resources/linux_virtual_machine (visited on 12/06/2024).

[81] M. Support. „Create a vm from a specialized image version - azure virtual
machines“. (2024), [Online]. Available: https://learn.microsoft.com/en-
us / azure / virtual - machines / vm - specialized - image - version (visited on
12/06/2024).

168

https://www.jetbrains.com/qodana/
https://www.jetbrains.com/qodana/
https://www.zotero.org/
https://pre-commit.com/
https://pre-commit.com/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
https://www.miro.com/
https://www.microsoft.com/en-us/microsoft-teams/
https://www.nginx.com/
https://github.com/jfcere/ngx-markdown
https://www.terraform-best-practices.com/code-structure
https://www.terraform-best-practices.com/code-structure
https://learn.microsoft.com/en-us/training/modules/choose-network-plugin-aks/3-analyze-decision-criteria
https://learn.microsoft.com/en-us/training/modules/choose-network-plugin-aks/3-analyze-decision-criteria
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://github.com/dockovpn/dockovpn
https://github.com/dockovpn/dockovpn
https://github.com/hashicorp/terraform-provider-azurerm/issues/8195
https://github.com/hashicorp/terraform-provider-azurerm/issues/8195
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_virtual_machine
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_virtual_machine
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_virtual_machine
https://learn.microsoft.com/en-us/azure/virtual-machines/vm-specialized-image-version
https://learn.microsoft.com/en-us/azure/virtual-machines/vm-specialized-image-version

Bibliography Bibliography

[82] T. T. P. A. Contributors. „Support for importing osdisk“. (2024), [Online]. Avail-
able: https://github.com/hashicorp/terraform-provider-azurerm/issues/
8794 (visited on 12/06/2024).

[83] T. Registry. „Meta issue: Support for terraform-plugin-framework“. (2024),
[Online]. Available: https://github.com/hashicorp/terraform- provider-
azurerm/issues/25765 (visited on 12/06/2024).

[84] T. A. Contributors. „[bug] agent breaks when deploying template with vm
and runcommand“. (2024), [Online]. Available: https://github.com/Azure/
WALinuxAgent/issues/2521 (visited on 12/06/2024).

[85] T. Registry. „Error: Failed to construct rest client on kubernetes_manifest re-
source“. (2024), [Online]. Available: https://github.com/hashicorp/terraform-
provider-kubernetes/issues/1775 (visited on 12/06/2024).

169

https://github.com/hashicorp/terraform-provider-azurerm/issues/8794
https://github.com/hashicorp/terraform-provider-azurerm/issues/8794
https://github.com/hashicorp/terraform-provider-azurerm/issues/25765
https://github.com/hashicorp/terraform-provider-azurerm/issues/25765
https://github.com/Azure/WALinuxAgent/issues/2521
https://github.com/Azure/WALinuxAgent/issues/2521
https://github.com/hashicorp/terraform-provider-kubernetes/issues/1775
https://github.com/hashicorp/terraform-provider-kubernetes/issues/1775

Glossary

Capture The Flag A competitive cybersecurity exercise in which participants tackle
security problems to capture or defend computer systems. Participants must
then discover and exploit hidden "flags," secret values protected by system
vulnerabilities, in order to score points.. 5

Hacking-Lab Hacking-Lab is a platform that provides ethical hacking for educational
purposes. The overall goal is to promote awareness in the field of hacking and
security. The corresponding challenges are developed in the format of a capture
the flag scenario.. 2

Infrastructure as a Service A cloud computing model which offers infrastructure
components such as virtual machines, storage, and networking resources on a
pay-as-you-go basis.. 79

Network Security Group A Network Security Group (NSG) is a feature that acts as
a virtual firewall for virtual machines, containers, and other resources within a
virtual network. It manages inbound and outbound traffic using security rules
that allow or deny access based on IP address, port, and protocol. 46

Penetration Testing A method of evaluating the security of a computer system or
network by simulating an attack from malicious outsiders. Penetration testing
involves attempting to exploit system vulnerabilities. Such assessments are
valuable for validating the effectiveness of defensive mechanisms and end-user
adherence to security policies.. ii

RESTful API An architectural style for designing networked applications, using a set
of constraints to create scalable and stateless communication over HTTP. 33

170

Acronyms

ACI Azure Container Instance. 72–74

ADR Architecture Decision Records. 2

ADR Architecural Decision Record. 36, 45, 59, 121, 128, 129, 131, 135, 142

AKC Azure Kubernetes Cluster. 150

AKS Azure Kubernetes Service. 46, 72–74, 127–129, 139, 151

API Application Programming Interface. 18, 41, 43, 49, 50, 85, 100, 102, 107, 108,
111–113, 129, 141, 148, 157

AVM Azure Virtual Machine. 46, 72–74

AZNG Azure Virtual Network Gateway. 78, 79

CD Continuous Delivery. 88, 90, 91

CI Continuous Integration. 88, 90, 91

CMID Client Machine ID. 132

CORS Cross-Origin Resource Sharing. 97

CPU Central Processing Unit. 17, 140, 150

CRUD Create, Read, Update and Delete. 49

CSS Cascading Style Sheets. 57, 84, 101, 110

CTF Capture The Flag. 6, 137

DinD Docker-in-Docker. 88

DNS Domain Name System. 2, 6, 39, 45, 82, 83, 97, 121, 123, 126, 127, 129, 132, 149,
152, 153, 158

DOM Domain Object Model. 95

DPL Dynamic Pentest Lab. 1, 4, 36, 37, 39, 49, 50, 59, 60, 93, 105, 159

171

Acronyms Acronyms

ECTS European Credit Transfer System. 7

GUI Graphical User Interface. 62, 63, 92

HL Hacking-Lab. v, 5, 6, 10, 22, 24, 25, 30, 32, 34, 39, 41, 59–64, 68–70, 72, 73, 77, 79–81,
93, 94, 107, 110, 111, 119, 142, 145, 146, 148, 150, 152, 153, 155, 160

HTML HyperText Markup Language. 95, 98, 100, 102, 103, 107

HTTP Hypertext Transfer Protocol. 41, 97

HTTPS Hypertext Transfer Protocol Secure. 97

ID Identifier. 47, 48, 57, 109, 118

IDE Integrated Development Environment. 85

IEC International Electrotechnical Commission. 31

IP Internet Protocol. 126, 130, 140

ISO International Organization for Standardization. 31

JDBC Java Database Connectivity. 41

JSON JavaScript Object Notation. ii, v, 51, 52, 57, 58, 95, 96, 100, 102–106, 108–110,
112–114, 116, 117, 135, 148, 153–155, 158

JWK JSON Web Key. 81, 82, 120

JWT JSON Web Token. 49, 81, 120

MVC Model View Control. 94, 95

NDA Non-Disclosure Agreement. 145

NFR Non-Functional Requirement. 8, 31, 148, 150, 151

NSG Network Security Group. 46

OS Operating System. 21, 132, 134, 135, 150

OST Ostschweizerische Fachhochschule. ii

P2S Point-to-Site. 78

Pentest Penetration Testing. 1–4, 10, 36, 70, 73, 152, 155

PoC Proof of Concept. 79

172

Acronyms Acronyms

RAM Random-Access Memory. 140, 150

REST Representational State Transfer. 33, 120, 148

RHEL Red Hat Enterprise Linux. 150

SKU Stock Keeping Unit. 18, 28, 113, 114, 154

SSL Secure Socket Layer. 153

SSO Single Sign-On. 10, 148

TCP Transmission Control Protocol. 19

TLS Transport Layer Security. 4, 152, 153

UDP User Datagram Protocol. 19

UI User Interface. 39

URI Uniform Resource Identifier. 81, 82, 120

URL Uniform Resource Locator. 57, 109

UUID Universally Unique Identifier. 47, 115, 127, 149

VM Virtual Machine. ii, 1–3, 5, 6, 13–15, 18, 19, 21–24, 29, 36, 39, 46, 48, 50, 57, 66, 67,
71, 73, 74, 93, 105, 113, 114, 121, 122, 124–126, 128, 132, 133, 135–137, 148–151, 158

VPN Virtual Private Network. 2, 4, 6, 16, 19, 31, 36, 45, 78, 85, 93, 121, 128–131, 151–153,
158, 160

YAML YAML Ain’t Markup Language. 140

173

	Abstract
	Acknowledgments
	Contents
	1 Management Summary
	1.1 Initial Situation
	1.2 Procedure and Technologies
	1.3 Results
	1.4 Implications
	1.5 Conclusion

	2 Introduction
	3 Requirements
	3.1 Functional Requirements
	3.1.1 Roles
	3.1.2 Epics
	3.1.3 User Stories

	3.2 Non-Functional Requirements
	3.2.1 Functional Suitability
	3.2.2 Reliability
	3.2.3 Compatibility
	3.2.4 Security
	3.2.5 Portability
	3.2.6 Maintainability
	3.2.7 Costs
	3.2.8 Usability
	3.2.9 Tracking of the NFRs

	4 Design / Architecture
	4.1 Domain Model
	4.2 System Overview
	4.3 Azure Lab Architecture
	4.3.1 Base Infrastructure
	4.3.2 Core Resources
	4.3.3 Additional Resources
	4.3.4 Resource Naming

	4.4 Backend Architecture
	4.4.1 Core Components
	4.4.2 Key Interactions and Workflows
	4.4.3 Scalability and Maintainability

	4.5 json Model
	4.6 Frontend Architecture
	4.6.1 Conceptual Mockup
	4.6.2 Final Architecture

	4.7 Architectural Decision Records
	4.7.1 ADR: 001 - Web Framework Backend
	4.7.2 ADR: 002 - Web Framework Frontend
	4.7.3 ADR: 003 - Frontend Graph Framework
	4.7.4 ADR: 004 - Frontend CSS Framework
	4.7.5 ADR: 005 - Repository Structure
	4.7.6 ADR: 006 - VM Customized Installation
	4.7.7 ADR: 007 - Public Docker Images
	4.7.8 ADR: 008 - Private hl Docker Images
	4.7.9 ADR: 009 - Restict Communication between Resources
	4.7.10 ADR: 010 - Container Deployment
	4.7.11 ADR: 011 - Persistence of Labs
	4.7.12 ADR: 012 - Terraform Templating
	4.7.13 ADR: 013 - Student Access to the Lab
	4.7.14 ADR: 014 - Authentication Frontend
	4.7.15 ADR: 015 - Authentication Backend
	4.7.16 ADR: 016 - DNS Resolution

	5 Technologies
	6 Quality measures
	6.1 Git Workflow
	6.2 Code Quality
	6.3 Static Code Analysis
	6.4 CI/CD Pipeline
	6.4.1 Backend
	6.4.2 Frontend

	6.5 Testing Strategy
	6.5.1 Unit Tests
	6.5.2 Integration Testing
	6.5.3 End-to-end testing

	7 Implementation
	7.1 Frontend
	7.1.1 General
	7.1.2 Maintability
	7.1.3 Development Setup
	7.1.4 Pages
	7.1.5 Components
	7.1.6 Services
	7.1.7 Styling

	7.2 Backend
	7.2.1 General
	7.2.2 Basic Setup and Structure
	7.2.3 Software
	7.2.4 Django Applications

	7.3 Deployment with Terraform
	7.3.1 Terraform Structure
	7.3.2 Templating Methodologies
	7.3.3 Data Management
	7.3.4 Resource Information
	7.3.5 Baseline Deployment
	7.3.6 Virtual Machine Deployment
	7.3.7 Virtual Machine Snapshot Technology
	7.3.8 Virtual Machine Custom Installations
	7.3.9 Container Deployment
	7.3.10 Network Restrictions

	7.4 Adjustments Deployment Manager

	8 Results
	9 Conclusion and Outlook
	10 Personal Reports
	List of Figures
	List of Tables
	List of Listings
	Bibliography

