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Abstract 
This study explores the enhancement of cybersecurity through the application of 

machine learning techniques, specifically focusing on the detection of beaconing activity in 
network traffic (PCAP) data. PCAP, or packet capture, refers to the process of intercepting 
and logging traffic that passes over a computer network.  

Beaconing, a communication technique and a common indicator of malicious activity 
requires complex multilevel detection methods due to its discreet and repetitive nature. My 
approach involves the development of a dual-model framework with a combination of a 
Histogram Gradient Booster Classifier (HGBC) and a Long Short-Term Memory (LSTM) 
neural network. The HGBC classifies the initial features extracted from the PCAP data, while 
the LSTM model further refines the detection by capturing temporal dependencies between 
consecutive packet flows.  

The combined model achieves an accuracy rate of 99.37%, demonstrating its 
effectiveness in identifying beaconing patterns. This high level of accuracy illustrates the 
potential of a combination of machine learning and deep learning algorithms in advancing 
cybersecurity measures for unmasking threats in network traffic analysis. 
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Management Summary 
Overview 
This study explores the application of advanced Machine Learning (ML) and Deep 

Learning (DL) methods for detecting malicious patterns in network captures (PCAP), 
focusing specifically on beaconing. Beaconing is a communication technique where malware 
intermittently sends signals to an external server, known as Command and Control (C2), 
often to receive instructions or exfiltrate data. Detecting beaconing is challenging due to its 
low-frequency, regular communication patterns that blend in with legitimate traffic. This 
discreet behavior makes it a significant threat, as the malware can remain undetected for long 
periods, facilitating extensive data breaches. 

Objective of the Study 
The goal of this project is to develop a dual-model framework that integrates a 

Histogram Gradient Boosting Classifier (HGBC) and a Long Short-Term Memory (LSTM) 
neural network. The HGBC, an ML algorithm based on decision trees, is designed to identify 
presence of malicious periodic signals based on PCAP data features analysis, while the LSTM 
neural network detects temporal dependencies in sequential data for more accurate results. 

Key Findings 
• Model Accuracy: The dual-model framework achieves an accuracy rate of 99.37% on the 

tailor-made dataset 
• Performance: The model correctly identifies beaconing patterns in files containing 

malicious content and accurately recognises benign files. 
• ML Classifier Efficiency: The HGBC uses histograms to speed up training by considering 

unique values when looking for the best split, where the algorithm determines the best 
point to divide the data into subsets that are more homogeneous. By reducing the number 
of potential split points, the HGBC shortens the time needed for training, allowing for 
rapid model development even on large datasets. 

• NN Efficiency: The LSTM neural network effectively captures temporal dependencies in 
the data, enhancing the detection of sequential patterns associated with beaconing. By 
leveraging its memory cell architecture, LSTM efficiently processes sequences, making it 
highly suitable for time-series analysis. 

• Data Preparation: The process of extracting individual flows and computing relevant 
metrics, such as flow intervals, packet sizes, and communication frequencies, is central for 
beaconing detection and has a direct impact on the model's high performance. By 
accurately capturing and analysing these metrics, the model can effectively differentiate 
between normal network traffic and the subtle, periodic signals characteristic of 
beaconing, thereby enhancing its detection capabilities. 
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Approach 
Data Preparation involves converting raw data into individual packet flows based on 

source and destination IP, port number, and protocol. Relevant metrics such as payload 
entropy and the mean and standard deviation of intervals between consecutive packets within 
a flow are computed. For Classification, the computed flow data is processed by the HGBC, 
which provides an initial assessment of potential malicious patterns. During temporal analysis, 
the output of the HGBC is used to create sequences for the LSTM neural network, which 
detects temporal dependencies to refine detection accuracy. Finally, a detailed detection report 
is generated, indicating the amount and percentage of malicious sequences or their absence in 
the original input data. 

Implications and Recommendations 
The proposed dual-model framework could be further integrated into Network Detection 

and Response (NDR), Security Orchestration, Automation, and Response (SOAR) systems, 
and other cybersecurity tools to improve pattern recognition and anomaly detection, 
particularly for identifying beaconing activities. For future work consider the following: 
• Framework Adjustment: Tailoring the framework to specific network requirements, 

considering data volume, unique network and communication patterns, and particular 
threat detection needs. 

• Data engineering: Enlargement of the training dataset that would accommodate the needs 
of the large and complex networks also in terms of diversity of the protocols and length of 
individual flows. 
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1. Introduction 

1.1 What is beaconing? 

In cybersecurity, a type of attack that aims to stay hidden while keeping operational 
abilities is often referred to as an "Advanced Persistent Threat"  (APT). These threats are a 1

source of substantial concern due to their ability to evade detection over an extended period 
of time, potentially causing harm without being noticed. 

A prevalent method employed by malware on compromised systems to establish 
communication with an external command and control (C2) server — under the possession of 
the adversaries  — is known as beaconing. This technique is characterized by its ability to 2

execute communications that are either periodic, randomised, or triggered by specific events, 
thereby complicating the task of consistent detection and therefore is one of the important 
elements of the APT lifecycle. 

Beaconing performs the transmission of signals or data packets from the infected host to 
the C2 server at predetermined intervals, which may vary from seconds to hours, according to 
the configuration set by the attackers. Following the installation of the malware on a host 
system, the process of beaconing becomes automated. The primary objective of this process is 
to maintain communication channels between the malware and the attackers, enabling the C2 
server to verify the operational status of the malware. Moreover, through these periodic 
communications, the C2 server is able to receive data harvested by the malware from the 
compromised system(s), as well as dispatch new instructions or updates back to the malware, 
thereby directing it to execute specific tasks, download additional components, or propagate 
to other systems within a network (so-called “lateral movement”). 

Beaconing poses a significant hurdle for cybersecurity professionals for a variety of 
reasons, but mostly due to its secretive and consistent nature. This mechanism facilitates 
malware to remain in a hibernating state while simultaneously maintaining a connection with 
the attacker's C2 servers. The indistinct nature of this communication makes its detection 
problematic, as it can seamlessly integrate with legitimate network activities. This capability 
enables attackers to establish and prolong their presence within a compromised network for 
months or even years.  

 What Is an Advanced Persistent Threat (APT)? https://www.kaspersky.com/resource-center/definitions/1

advanced-persistent-threats, accessed in April 2024

 Someone or a group that intends to perform malicious actions against other cyber resources (https://2

www.sciencedirect.com/topics/computer-science/cyber-adversary#:~:text=Defining Adversary,actions against other 
cyber resources.), accessed in April 2024
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1.2 Harm caused 

I would like to provide a few examples of APT attacks to illustrate their significance and 
underscore beaconing as a vital component of their life span. 

The first attack that comes to mind is cyber espionage on RUAG, a Swiss company 
specialising in aerospace engineering and defense.  In this incident, attackers, believed to be 
part of an APT group, penetrated RUAG's network and maintained their presence undetected 
for an extended period.  Malware installed on the network "sent HTTP requests to transfer 
the data to the outside, where several layers of Command-and-Control (C&C) servers were 
located“ , receiving instructions and exfiltrating data in a controlled manner. This attack,  3

known as “APT Case RUAG”  was discovered in early 2016. However first indications of 4

compromise (IOCs) were already present in logs almost 18 months prior, in September 2014, 
with no earlier logs available for inspection. According to the “APT Case RUAG. Technical 
Report”, it is still unknown at which point in time adversaries penetrated the RUAG network 
and how much damage exactly the company sustained.  

Another example involving beaconing is the “SolarWinds Orion Platform Attack” which 
occurred in 2020. The attack stands for one of the most intricate and widespread cyber 
espionage efforts yet identified, mostly due to the amount of hosts involved. Attackers 
infiltrated the software build system of the SolarWinds Orion Platform, the “infrastructure 
monitoring and management platform”  of one of the largest B2B Software Developer in the 5

US, inserting malicious code into software updates distributed to thousands of customers. 
This inserted backdoor, referred to as "SUNBURST," empowered the attackers to penetrate, 
surveil, and potentially disrupt operations across over 18,000 organisations  globally, 6

encompassing government entities and corporations. Remarkably, the malware evaded 
detection for over a year. By “mimicking legitimate network traffic, the attackers were able to 
circumvent threat detection techniques employed by SolarWinds, other private companies, and 
the federal government” . 7

 Summary: Technical Report about the Espionage Case at RUAG, https://www.ncsc.admin.ch/ncsc/en/home/3

dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html, accessed in March 2024

 Technical Report about the Espionage Case at RUAG: https://www.ncsc.admin.ch/ncsc/en/home/4

dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html, accessed in March 2024

 https://www.solarwinds.com/orion-platform, accessed in March 20245

 A 'Worst Nightmare' Cyberattack: The Untold Story Of The SolarWinds Hack https://www.npr.org/6

2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack, APRIL 16, 
202110:05 AM ET, accessed in March 2024

 New Findings From Our Investigation of SUNBURST https://orangematter.solarwinds.com/2021/01/11/new-7

findings-from-our-investigation-of-sunburst/, accessed in March 2024
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These both cases illustrate how the unnoticed infiltration of an APT may cause 
extraordinary damage, often making it difficult to fully assess its extent. 

 While APTs are known for their sophisticated use of beaconing, this technique is 
broadly applicable in the malware community due to its effectiveness in maintaining 
communication with infected hosts.  

Adversaries are increasingly adopting beaconing as a low-detection communication 
technique in their ever-evolving malware arsenals. This subtle method of communication is 
particularly effective in evading traditional security measures that rely on identifying large or 
anomalous data transfers. Moreover, adversaries are continuously improving their skills, 
leveraging advanced algorithms, machine learning, and deep learning included, to enhance the 
secrecy and efficiency of their malware. These sophisticated techniques, once the domain of 
APT groups, are now becoming more accessible to a broader range of cyber criminals. As a 
result, even less sophisticated attackers can deploy highly effective beaconing strategies, 
increasing the prevalence and threat posed by such malware in the cybersecurity landscape. 

Another significant threat arises from the integration of IoT devices into modern 
networks, as it greatly expands the attack surface for cyber hazards. This is largely due to the 
inherent security weaknesses often found in these devices, including weak default credentials, 
lack of regular updates, inadequate encryption if applied at all, and the frequent absence of 
built-in security features. These vulnerabilities make IoT devices particularly susceptible to 
malware infections. Once compromised, these devices can serve as hidden entry points within 
a network, enabling attackers to maintain persistent access and control without drawing 
attention. This persistent access poses a substantial risk, as it can be leveraged to launch 
further attacks, exfiltrate data, or disrupt network operations sometimes causing astronomical 
costs due to damages. 

1.3 Defense vector 

Over the past decade, it has become obvious, that APT attacks are occurring more 
frequently. According to the publicly available data from the Statista portal , the revenue from 8

the APT protection market has been steadily increasing globally by an average of 0.8 billion 
USD year to year. From 2015 to 2023, the APT protection market growth represents a more 
than fourfold increase, indicating a strong demand for cybersecurity solutions capable of 
defending against advanced threats. As cyber attacks continue to evolve, the need for 
advanced, comprehensive protection measures becomes increasingly decisive, driving sustained 
investment and innovation in the cybersecurity sector. The market's projected expansion in 

 Revenue from advanced persistent threat (APT) protection market worldwide from 2015 to 2027 8

(in billion U.S. dollars), https://www.statista.com/statistics/497945/advanced-persistent-threat-market-
worldwide/, accessed in May 2024

10



upcoming years underscores the importance of continued alertness and development in 
cybersecurity to safeguard against ever-more sophisticated threats. 

As detection techniques have been in constant improvement, including more complex 
network monitoring tools and anomaly detection systems, the tactics used by malware, 
including beaconing patterns, have also evolved. Modern beaconing may vary the timing of 
communications to avoid creating predictable patterns or use different protocols and ports to 
avoid detection. Some malware even uses social media platforms, decentralised networks, or 
legitimate web services for beaconing to further obscure their traffic. 

While beaconing presents significant risks, its very nature as an automated activity 
inherently involves repetitive patterns, which can be both a challenge and an advantage in 
cybersecurity efforts. Regular signaling, even jittered or randomised in any way, creates 
detectable patterns. It is possible to analyse traffic logs for such patterns, identifying 
anomalies that recur at unusual intervals which may not align with normal user or system 
activities. Advanced security tools and network monitoring solutions employ various forms of 
traffic analysis to detect unusual patterns. This could be achieved through for instance 
examining data transfers at consistent intervals which could indicate automated 
communication. Spikes or dips in traffic that occur with unusual regularity can be a sign of 
beaconing activities. 

Modern cybersecurity defense strategies often incorporate ML algorithms that can learn 
from network behavior to detect deviations from the norm. These algorithms can be 
particularly effective in environments with high volumes of data, recognizing even slight 
deviations. Detecting beaconing however, still remains a significant challenge despite advanced 
strategies. As mentioned above, one key difficulty is that malware can vary its beaconing 
intervals or randomise packet sizes to evade pattern-based detection. This intentional 
randomness makes it hard to identify consistent communication patterns over longer periods 
due to the extensive data volumes that need to be processed and analysed. Moreover, when 
beaconing data is encrypted, the challenge intensifies. Encrypted communication masks the 
content of the data packets, making it difficult to look into without complicated, and 
sometimes invasive, techniques. Decryption requires resources in terms of manpower, know-
how, and time, and can pose privacy concerns, that further impede the detection process . 9

These evasion strategies highlight the need for advanced detection methods that can identify 
subtle anomalies in network traffic, even when typical patterns are obfuscated or encrypted. 

Large networks with hundreds of thousands of endpoints highlight additional challenges. 
Beaconing often involves low-frequency, subtle signals that can be easily overlooked among 
high-volume, legitimate network traffic. Network environments typically generate large 
volumes of traffic, making it difficult to isolate beaconing signals without tricky data 

 Shining a Light on Malware Beaconing, https://blogs.blackberry.com/en/2023/03/shining-a-light-on-malware-9

beaconing, accessed in April 2024
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processing and filtering techniques. Malware dynamic behavior requires detection systems to 
be highly adaptable and continuously updated. Beaconing traffic can closely resemble 
legitimate network traffic, such as regular software updates or automated backups. This 
similarity makes it challenging to distinguish between benign and malicious activity without 
high accuracy. The high potential for false positives, where benign activity is misclassified as 
malicious, can overwhelm security analysts and reduce the effectiveness of detection systems.  

As detecting beaconing usually requires temporal analysis for higher accuracy, monitoring 
traffic over time to identify periodic patterns becomes a necessity. On large networks, 
however, this task is particularly challenging due to the extensive data volumes involved and 
the need for long-term storage. Handling massive amounts of data necessitates data collection 
mechanisms and substantial storage capacity, which can be both technically demanding and 
financially burdensome. 

A network with a dozen of thousands of servers and working stations generate terabytes  
of data every hour. Processing these giant data sets requires high computational power, as 
the system must sift through enormous amounts of network traffic to detect the subtle, low-
frequency signals indicative of beaconing. This processing must be both fast and accurate to 
be effective, which often demands cutting-edge hardware and optimised software solutions. 
The financial implications of deploying such resources can be significant, potentially rendering 
the process cost-ineffective for many organisations. 

Moreover, the sheer scale of data can lead to delays in analysis, reducing the timeliness 
of threat detection and response. Therefore, balancing the need for thorough temporal 
analysis with the practical limitations of computational resources and budget constraints is a 
key challenge in the effective detection of beaconing activity on large networks. 
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2. Methods 

2.1 Building a Dataset 

To detect malicious software, particularly the type that maintains regular communication 
with C2 servers through keep-alive and beaconing activities, it is required to perform a 
detailed examination of network traffic first. It is important, however, to distinguish between 
traffic data captured in automated, IoT-enhanced, or non-automated environments, to 
predefine normality for each environmental type as their characteristics may drastically differ.  

Automated setups often show predictable traffic patterns due to automated tasks. 
Environments with IoT devices for instance may demonstrate a combination of high-volume 
and continuous or near-continuous communication with smaller packet sizes, which carry 
sensor readings or status updates. In contrast, non-automated setups rely on human-initiated 
communication, resulting in less regular and more varied traffic patterns, as they primarily 
involve texts, images, and multimedia content. 

On the other hand, the duration of traffic monitoring significantly impacts data analysis. 
Longer monitoring periods yield more data, enhancing the ability to identify patterns 
indicative of abnormal activity. Typically, it is recommended to monitor traffic for at least 
several days to capture a broad spectrum of activities and likely potential irregularities. 
Additionally, measuring network traffic volume, such as packets per minute, is another 
important point. Large volumes of data transfer could indicate routine operations, which 
might be considered normal in certain contexts or networks, yet it could also potentially be 
indicative of malicious behavior. Conversely, low volumes with intermittent spikes might 
suggest beaconing behavior as malware would communicate at predefined intervals. It is 
important to note, however, that ‘predefined’ does not necessarily mean ‘every X minutes’, as 
intervals could appear more random, especially if jitter or any other form of randomisation is 
used.  

Analysis of PCAP files involves identifying patterns and anomalies that deviate from the 
typical behavior of network traffic. Protocols like DNS (Domain Name System) and HTTP 
(Hypertext Transfer Protocol) hold significant relevance in the detection of beaconing 
behavior due to their employment in both legitimate and malicious network communications. 

Cyber adversaries frequently exploit DNS to secretly establish communications with C2 
servers, thereby avoiding detection. This exploitation is facilitated by the use of DNS queries 
and responses to create a camouflaged bidirectional communication channel, enabling data 
exfiltration and the reception of commands from C2 servers. This method, often referred to as 
DNS tunneling, exploits the fact that DNS traffic often bypasses firewalls and can carry small 
data payloads. It poses detection challenges, as these packets blend seamlessly with legitimate 
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DNS traffic, thus requiring advanced analysis techniques to differentiate between harmless and 
malicious activities. 

It is worth mentioning that certain malware variants may employ so-called Domain 
Generation Algorithms  (DGAs) to dynamically generate a large number of domain names for 10

communication with C2. These domain names often seem random or nonsensical, making it 
difficult for security systems to predict or block them. By generating domain names in real 
time, malware can establish communication channels with C2 servers without using static, 
easily identifiable domain names. Monitoring of DNS request patterns for irregularities may 
help in the identification of such behavior. Notably, malicious DNS queries may not depend 
on high traffic volumes to achieve their objectives, rendering volume-based detection 
strategies insufficient. Instead, the periodic, regular nature of these queries —characteristic of 
beaconing — emerges as a distinct indicator when observed over a duration, accentuating the 
need for temporal analysis to detect and mitigate such threats effectively.  

The payload carried by DNS queries is characteristically unencrypted, presenting an 
opportunity for malicious actors to embed malicious code within these payloads. Despite the 
potential for encryption to conceal such malicious content, its implementation can 
inadvertently trigger suspicion from Intrusion Detection Systems (IDS) due to the distinctive 
even distribution of bytes in the payload, a common trait of encrypted data. Consequently, 
this aspect of DNS traffic becomes a critical vector for analysis, particularly the examination 
of payload randomness. 

Analysing the entropy, or a measure for randomness, of the DNS payload provides 
valuable insights into the nature of the traffic. If high entropy is often indicative of encrypted 
data, reflecting a random distribution of bytes, conversely, low entropy suggests a more 
predictable and potentially structured payload, which could be indicative of regular, 
unencrypted data or, in the context of cybersecurity threats, a sign of malicious activity. 

Given the unencrypted state of typical DNS traffic, the detection of payloads with 
unusually low entropy becomes a potential indicator of malicious intent. Malicious actors 
aiming to avoid detection might opt for encoding mechanisms that do not exhibit the tell-tale 
signs of encryption, such as high entropy, to blend in with legitimate DNS queries. Therefore, 
the analysis of payload entropy in DNS traffic emerges as a strategic method for identifying 
anomalies that deviate from expected patterns, providing a basis for identifying and 
investigating potential security breaches. This approach underscores the nuanced balance 
between the tactics employed by adversaries and the sophisticated detection methodologies 
required to identify and counteract malicious activities within network communications. 

In the course of this research, I collected my own data alongside two open-source 
datasets to build a model for proofing the concept. Due to limited resources, I opted for a 

 Dynamic Resolution: Domain Generation Algorithms, https://attack.mitre.org/techniques/T1568/002/, accessed 10

in April 2024
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small dataset that is good enough to show the framework capabilities. Obviously, it does not 
reflect the real-world scenario, as the dataset of such manageable size is a fraction of a 
production environment.  

2.1.1 Malicious part 

The first open-source dataset, TII-SSRC-23 Dataset , contains both raw (PCAP) and 11

processed (CSV) data, systematically divided into malicious and benign categories. The 
malicious segment of the dataset is organised into folders named after the specific types of 
attacks they represent, such as Mirai , Denial of Service (DoS), and Brute Force, among 12

others. Within the scope of malicious traffic analysis, my specific attention is directed toward 
the Mirai-botnet DNS and HTTP PCAP files, given their relevance to the research objectives. 
What makes Mirai (and botnets in general) relevant to my interest in C2 communications is 
that the compromised devices are controlled through a C2 server. The botnet receives 
instructions from attackers via these C2 servers, coordinating the bots' actions, including 
targeting and executing DoS attacks. This is a clear example of malware that relies on C2 
communications for its functioning. 

2.1.2 Benign part 

The second open-source dataset, MQTTset , is composed of data from eight IoT 13

sensors operating on the MQTT  (Message Queuing Telemetry Transport) protocol. These 14

sensors collect data across a variety of parameters, including temperature, light, humidity, 
CO-Gas, motion, smoke, door status, and fan operation, each with distinct communication 
intervals reflective of the varied behavior patterns among the sensors. The inclusion of 
MQTTset complements the TII-SSRC-23 by offering insights into periodic communication 
behavior typical of genuine IoT devices. I also partially include a benign portion of TII-
SSRC-23. It is organised by the nature of the traffic, such as audio, text, and background 
traffic, thereby providing a diversified range of normal network activities for comparison and 
analysis. 

During the collection of benign data, I noted several key observations. Benign network 
flows tend to have a longer duration, particularly in highly automated environments equipped 
with IoT devices. Estimating the packets-to-flow ratio accurately is challenging, as this metric 
varies depending on numerous factors, such as network configuration, the types of devices 

 https://www.kaggle.com/datasets/daniaherzalla/tii-ssrc-23, accessed in March 202411

 What is Mirai? https://www.cloudflare.com/en-gb/learning/ddos/glossary/mirai-botnet/, accessed in March 12

2024

 https://www.kaggle.com/datasets/cnrieiit/mqttset?select=requirements.txt, accessed in March 202413

 https://mqtt.org/, accessed in March 202414

15



employed, and traffic volume. Consequently, gathering a substantial volume of benign flows to 
balance effectively against the malicious data proved to be challenging. 

However, it is important to underline that, despite some types of automated traffic 
having extremely long flows (e.g., a few hundred flows per several million packets), this should 
not be taken as an indicator that raw files with an extremely low flow-to-packets ratio are 
necessarily benign. The complexity and variability of network traffic patterns mean that both 
benign and malicious files can exhibit a wide range of flow characteristics. Thus, 
comprehensive analysis and context-specific understanding are central for accurate 
classification. 

To obtain the missing portion of benign data, mostly to balance my malicious part, I 
conducted a packet capture on my own home network, which includes a few IoT devices such 
as a CCTV camera, a robot vacuum cleaner, a few garden sensors, and wifi-enabled pet 
accessories. The capture was performed continuously over an 8-hour period, encompassing a 
variety of protocols and capturing the typical traffic generated during a daily routine. This 
capture aimed to reflect a realistic and diverse set of benign network flows, enhancing the 
dataset's representativeness and balance against the malicious data. 

2.1.3 Features Computation  

After having collected the required PCAP files, I processed them as follows: 

1. Flow Extraction 
To analyse the network traffic, I extracted individual flows using the 5-tuple identifiers: 

source IP, destination IP, source port, destination port, and protocol. Here's a detailed 
explanation of each component and the extraction process: 

Source IP is the IP address of the device that initiated the flow. It helps in identifying 
the origin of the traffic within the network. Destination IP is the IP address of the device that 
is the target of the flow. It indicates where the traffic is directed. Source port is a number 
assigned to the session by the originating device. It helps in differentiating multiple flows 
coming from the same source IP. Destination Port is a number assigned to the session by the 
receiving device. It helps in directing the incoming traffic to the appropriate service or 
application on the target device. Protocol refers to the network protocol used for the 
communication (e.g., TCP, UDP, ICMP, etc). It provides an understanding of the nature of 
the traffic and how the data is being transmitted. 

2. Feature Calculation 
Features in a dataset are individual measurable characteristics or properties, which are 

used as input variables by models to make classifications or predictions. For each flow, I 
computed the following features: 
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• mean_interval: Specifies the average time interval between packets in a flow. This 
metric provides insights into the regularity and rhythm of communication patterns. A non-
zero mean might indicate periodic communication. 
• std_dev_interval: Specifies the standard deviation of the time interval between 

packets, indicating variability in the intervals. A very low or close-to-zero standard 
deviation suggests an automated process. 
• mean_payload_entropy: Specifies the entropy of the payload data, measuring the 

randomness or unpredictability of the data content in packets. High entropy often 
indicates encrypted or compressed data, while low entropy (1-4 bits) could suggest 
structured data or potentially malicious payloads that avoid encryption to remain 
undetected. 
• mean_packet_size: Specifies the average size of packets within the flow. 
• std_dev_packet_size: Specifies the standard deviation of packet sizes, showing how 

much packet size varies within the flow. Low values of standard deviation indicate that 
the packets are of similar size, which could be a sign of automated check-ins. 
• label: Serves as a classification marker for the flow, where 1 indicates malicious and 

0 indicates benign. 
• mean_frequencies: Specifies the average frequency observed in the flow. Beaconing 

might show a strong dominant frequency (high mean value) that corresponds to the 
periodicity of the beacon signals. 
• std_dev_frequencies: Specifies the standard deviation of the frequencies within a 

flow. I would expect less variability in the frequencies, reflecting the regularity of signal 
intervals. A lower standard deviation suggests that most of the packet intervals are around 
a few dominant frequencies, reinforcing the possibility of beaconing. 
Frequencies were calculated using the Fourier Transform, a mathematical technique that 

transforms a signal from its original domain (often time or space) into a representation in the 
frequency domain. The original signal consists of the time intervals between consecutive 
packets. These intervals represent how often packets are sent over a network. After applying 
FFT (Fast Fourier Transform), the signal is represented as a series of frequencies that show 
how often certain patterns of packet timing repeat. Each value in the result of the FFT 
corresponds to a specific frequency component of the packet timing. These components 
indicate the presence of periodic patterns within the packet intervals. Each frequency value 
corresponds to a different rate at which these patterns repeat, providing insight into the 
regularity and potential periodicity of the network traffic. 

Low frequencies often represent slower, more dominant patterns, possibly indicating 
regular or periodic traffic patterns, while high frequencies can indicate more rapid changes in 
packet intervals, potentially pointing to bursts of traffic or irregular activities.  
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2.2 Building a classifier 

HGB is a machine learning method based on the gradient boosting algorithm. This 
algorithm builds decision trees sequentially, one at a time, where each new tree is built to 
predict residuals (errors) of previously built trees combined. The key components that define 
how the algorithm optimises, learns, and integrates results from previous predictions are Loss 
Function, Weak Lerner, and Additive Model.  

Loss Function quantifies the difference between the predicted values and the actual 
values. It essentially measures the error of a model on a dataset. After each round of 
boosting, the algorithm evaluates the loss and uses its gradient (i.e., the first derivative of the 
loss function) to determine the direction in which to update the model predictions.  

The Loss function used in my model is binary cross-entropy loss (BCE). For a single 
instance  (data point or sequence) loss the formula would be the following:   

,  
where  is the true label (0 or 1) and  is the predicted probability of the class with label 

1 (malicious). 
There are many loss functions that can be used for training a classifier. BCE in my case 

is well-suited for binary classification tasks, enabling the model to quantify the difference 
between predicted probabilities and actual binary labels effectively. Since HGB builds decision 
trees sequentially, during training it minimises the loss function over each individual 
prediction. 

Weak Learner is a simple model that does slightly better than random guessing but is 
generally not very accurate by itself. In gradient boosting, decision trees are commonly used 
as weak learners. The fundamental idea behind boosting is to combine multiple weak learners 

L (y, ̂y) = − [y log( ̂y) + (1 − y)log(1 − ̂y)]
y ̂y
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to create a strong learner. Each weak learner is trained to correct the errors of the preceding 
ones. In each iteration, a new weak learner focuses on the instances that had the most error 
for the previous models. Weak learners are typically shallow trees, sometimes only one level 
deep. They have high bias but low variance. By combining multiple weak learners, boosting 
aims to maintain low variance while reducing bias, which helps achieve a balance between 
accuracy and generalisation (so-called ‘bias-variance tradeoff’ ). 15

Additive model in boosting refers to the way the final strong learner is constructed, 
which occurs by sequentially adding weak learners to one another, rather than modifying 
existing ones. Each new weak learner in the sequence is fitted to the residual errors made by 
the previous model in the sequence. In mathematical terms, if  is the model obtained 

after the -th step, then the model at step  is , where  

is the new tree and  is the learning rate, a hyper-parameter that scales the contribution of 
each weak learner. It controls how 'fast' the model learns, with smaller values generally 
leading to more robust models at the cost of requiring more trees. 

HGB efficiency is built on the fact, that it incorporates histograms  to speed up training 16

by evaluating unique values for optimal splits, thereby minimising split points and accelerating 
training while conserving memory. Moreover, HGB operates effectively without data 
normalisation and exhibits resilience to outliers in the dataset. 

2.3 Adding a neural network  

As already stated, beaconing activities involve regular and predictable communication 
patterns. Detecting this involves identifying communications patterns amidst other network 
traffic, which can vary greatly in volume and timing. 

By focusing on the timing aspect of network communications, it is possible to more 
accurately distinguish between legitimate automated traffic (like regular updates or backups) 
and malicious beaconing activity. This specificity helps in reducing false positives, where 
benign activities are incorrectly flagged as malicious. 

Timing data becomes even more powerful when correlated with other metrics like 
payload entropy, packet size, and traffic frequency. This multi-faceted approach amplifies the 
accuracy of detecting beaconing activity by confirming suspicions that arise from timing 
analysis with other indicators of compromise. 

The second stage of the research augments the non-temporal feature set, specifically 
focusing on time series analysis of the communication patterns. This involves adjusting the 

Fm(x)

m m + 1 Fm+1(x) = Fm(x) + α ⋅ h(x) h(x)

α

 Understanding the Bias-Variance Tradeoff, https://towardsdatascience.com/understanding-the-bias-variance-15

tradeoff-165e6942b229, accessed in June 2024

 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu, 16

"LightGBM: A Highly Efficient Gradient Boosting Decision Tree," NeurIPS, 2017.
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existing pipeline to accommodate the additional complexity of temporal data, which requires 
sequence modeling to effectively capture and utilise the dynamic nature of the data. 

By incorporating both non-temporal and temporal feature analysis, I aim to achieve a 
more nuanced understanding and detection capability for identifying malicious network 
activities, thereby enhancing the overall effectiveness of the cybersecurity measures deployed 
to hold out against cyber espionage. 

2.3.1 NN-Components 

Before explaining the architecture of LSTM I would like to give a short overview of the 
most important components used in a neural network. 

Layers are the fundamental structural units in a NN architecture that process input data 
and transform it through various computations. Each layer typically consists of nodes (or 
neurons), which are connected by weights and biases that are adjusted during training. 

Input layer is the entry point for data in the neural network. Each input layer node 
corresponds to a feature in the input data. There are no computations performed in this layer; 
it is used to pass the input data to the next layer. 

Hidden layers perform the majority of the computations required by the network. There 
are several types of hidden layers, but in my research, I focus on the combination of LSTM 
and Dense Layer: 

Long Short-Term Memory, or LSTM, is a type of recurrent neural network (RNN) 
architecture designed to overcome the limitations of traditional RNNs in capturing long-term 
dependencies in sequential data. LSTMs are composed of repeating modules of neural 
network layers. Each module has three main components: 

 Forget Gate: This gate determines what information from the previous time step 
should be discarded or “forgotten”. It takes as input the previous hidden state  and the 

current input , passes them through a sigmoid activation function, and outputs a vector of 
numbers between 0 and 1. A value of 0 means "completely forget this information", while a 
value of 1 means "remember this information". 

 Input Gate: This gate decides what new information should be stored in the cell state. 
It consists of two parts: a sigmoid layer that decides which values to update, and a tanh layer 
that creates a vector of new candidate values that could be added to the state. The sigmoid 
layer outputs numbers between 0 and 1, determining which values to update, and the tanh 
layer outputs numbers between -1 and 1, representing new candidate values. 

 Output Gate: This gate controls what information from the current cell state should 
be output to the next hidden state. It takes as input the previous hidden state  and the 

current input  and passes them through a sigmoid activation function. The cell state  is 
then passed through a tanh function to squish the values between -1 and 1. The output of the 

h(t−1)

Xt

h(t−1)

Xt Ct−1
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sigmoid gate is multiplied element-wise with the output of the tanh gate, resulting in the final 
output  for the current time step. 

The cell state represents the long-term memory of the network. It runs straight down the 
entire chain of LSTM units through time, with only minor linear interactions. The cell state 
can be seen as the conveyor belt that carries information across different time steps. It is 
updated and modified by the forget gate, input gate, and output gate, allowing the LSTM to 
selectively add or remove information from the cell state at each time step. 

The hidden state is a filtered version of the cell state that only contains relevant 
information for the current prediction task. It can be thought of as the "short-term memory" 
of the network. The hidden state is computed based on the cell state but is passed through 
the output gate, which selectively exposes certain parts of the cell state while suppressing 
others. The hidden state carries information that the network has deemed relevant for the 
current prediction or classification task. 

Dense Layer is a type of neural network layer where every input node is connected to 
every output node. The “dense" in its name refers to the complete interconnection of nodes. 
In simpler terms, in a Dense layer, the outputs from the previous layer are connected to every 
neuron in the current layer.  

Each neuron in a Dense layer performs a linear transformation on the inputs it receives, 
which can be expressed as a dot product of the inputs and the weights plus a bias term. After 
the linear transformation, an activation function is applied to each output. This activation 
function can be nonlinear, such as sigmoid, tanh, or ReLU (Rectified Linear Unit).  The 
activation function is a mathematical operation applied to the output of a neuron in a neural 
network, determining whether it should be activated or not, influencing the information flow 
through the network. It introduces nonlinearity, enabling the network to learn complex 
patterns and relationships in data. There are many activation functions available, I will focus 
on the two, most relevant for my model: 

ht
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1. Sigmoid Activation Function: The sigmoid function, also known as the logistic 
function, is a smooth, S-shaped curve that squashes input values between 0 and 1. It's given 

by the formula:   

It's commonly used in the output layer of binary classification models to produce 
probabilities. 

2. Tanh is another S-shaped curve that outputs values between -1 and 1. It's given by 

the formula:   

LSTM networks use both sigmoid and tanh activation functions in their layers to manage 
and regulate the flow of information. The sigmoid function is used for gating mechanisms to 
control the flow of information, while the tanh function is used to ensure that the values 
added to the cell state and output are properly scaled and can represent both positive and 
negative information. This combination has its complementary purpose that allows LSTMs to 
effectively capture long-term dependencies and manage information flow through the NN.  

2.4 Building a Pipeline 

To build a pipeline I first convert the raw data of traffic captured in a PCAP file into a 
CSV data frame which I then feed into my classifier. Raw data does not tell me much about 
the probable presence of beaconing activity, it is just a collection of sequential packets within 
a network recorded over a certain period of time. Therefore the first step in the preparation of 
data is the computation of the metrics I discussed in Chapter 2.1.3 Features Computation.  

After computing all necessary properties and saving them in a CSV file, I import the pre-
calculated CSV data into a Pandas DataFrame. I then preprocess the data to remove all NaN 
values, which result from the computation of means for single-packet flows. Although some 
machine learning classifiers can effectively handle NaN values, their presence might pose 
challenges when used in NN. 

The total number of NaNs eliminated from my dataset was just under 10%, which is 
unlikely to significantly affect the dataset's integrity. Nevertheless, to ensure this step does 
not damage the classifier's accuracy, I retained both versions of the dataset for further 
experimentation with the model. Subsequent experiments showed that eliminating single-
packet flows from the dataset did not result in any drop in accuracy.  

Next, I divide the dataset for training, testing, and validation purposes. Since I have a 
two-stage approach where each model (HGBC and LSTM) should be trained separately, it is 
necessary to avoid any so-called data leakage, which happens when the data used to train the 
classifier overlaps with the data used to validate or test either the classifier or the LSTM. 

I use the following strategy: first, I divide the entire dataset into a Development Set 
(DS) and a Final Test Set (FTS). The DS is used to train the classifier and contains 60% of 

f (x) =
1

1 + e−x

f (x) =
ex − e−x

ex + e−x
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the data. The remaining 40% is set aside for the final testing of the complete pipeline. Next,  
the DS is further split into Training (70%), Test (15%), and Validation (15%) subsets. This 
split ensures that I can train, tune, and test the classifier without any data overlap with the 
LSTM or the final test phase. The Training Set is used to train the classifier, the Validation 
Set provides insights for tuning hyper-parameters to improve model performance, and the Test 
Set is used to evaluate the classifier independently from the LSTM. 

After training the HGBC and validating its performance, I use its output as input for the 
LSTM model. I define two variables: y_pred, which contains the predicted labels for the final 
test dataset X_final_test, and y_proba, which extracts the probability estimates for the 
malicious class from the test predictions. This is useful for threshold-based classification and 
further analysis. 

Detecting beaconing activity using y_pred (class labels) might be more straightforward. 
However, using y_proba (probability outputs) provides a richer input for the LSTM, as it 
includes information about the model's confidence in each prediction. This additional 
information can help the LSTM better capture subtle changes or uncertainties in the 
communication patterns indicative of beaconing. 

Using probabilities offers several additional benefits, particularly in providing a sense of 
confidence about the predictions. This is especially useful in borderline cases, where the 
distinction between categories is not clear-cut. Probabilities give a quantitative measure of 
confidence. For example, if a model predicts an outcome with a probability of 0.95, it 
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indicates a high level of confidence in that prediction. Conversely, a probability of 0.55 
suggests low confidence, indicating that the model finds the decision to be a close call. 

By observing how probabilities change over time, the LSTM can better identify patterns 
suggesting beaconing, such as periodic spikes in the probability of the malicious class. 

At the next step, I construct sequences from probability estimates and associate them 
with the actual labels, which serve as input for my NN Model. A sequence is an ordered set of 
data points grouped together as a single input feature to the model. These data points are 
related and arranged in a specific order. In my case, these are values recorded over 
consecutive time intervals or a series of events that occur one after another. 

My given sequence length is set to 30, meaning the LSTM model will look at 30 
consecutive flow classifications at a time, moving forward by 1 flow at each iteration, similar 
to a sliding window. However, a file might have fewer flows than 30. In such cases, the sliding 
window with a sequence length of 30 would be too large for the file. To handle this, I use 
padding. This approach allows files with fewer flows to be padded with zeros to match the 
required sequence length, ensuring that all flows are of uniform length for input into the 
LSTM model. 

The sequences are used as input to the LSTM, which attempts to identify patterns in 
these sequences. For example, it might learn that certain combinations of benign and 
malicious flows suggest a larger security threat. 

The importance of sequence data lies in the temporal or logical relationship between 
data points. This relationship can provide context that helps a model make more accurate 
predictions than if the data points were considered independently. In the context of beaconing 
detection, a sequence should ideally cover enough packets to potentially include several cycles 
of beaconing activity to capture the periodicity. The length of the sequence is a critical 
attribute and needs to be determined empirically. There is also a computational constraint, 
where longer sequences can increase both the model's complexity and the computational 
power required to train and run the model. 

Since the number of flows per PCAP file may vary significantly, the sequence length 
needs to be flexible enough to handle files on the smaller end without losing too much 
information on larger files. Therefore I consider the typical dynamics within a flow. If key 
patterns or malicious behavior manifest over shorter sequences within a flow, a shorter 
sequence length may capture these effectively. Conversely, if malicious activities are spread out 
or require a broader context, longer sequences might be necessary. 

Once the LSTM is trained with HGBC output, I evaluate its performance on new unseen 
data. This process helps in understanding the accuracy of the trained LSTM model when 
applied to data it has not encountered before. This final evaluation tests the entire model 
pipeline — from initial classification to sequential processing by the LSTM — reflecting 
application performance similar to a real-world case. 
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3. Results 

3.1 Preparatory information 

To sum up, for this study I have developed a two-stage HGBC-LSTM framework to 
predict malicious flows indicative of beaconing activity based on the features discussed in 
Chapter 2.1.3 Features Computation and time-series data collected from a variety of sources 
(as discussed earlier in  Chapter 2.1 Building a Dataset).  

The dataset comprises 12’447 instances, split into 60% development, and 40% final test 
sets, while development is further split into 70% train, 15% validation, and 15% testing 
segments. This split technique provides 42% of the total samples for training purposes which 
corresponds to 5’228 samples, and 9% of the total (1’120 samples) for validation and testing 
each. The final test set (4’979 samples) is used for testing the entire pipeline.  

The LSTM model was configured with two hidden layers with 50 units each and trained 
using the Adam optimiser over 10 epochs. Model performance was primarily evaluated using 
accuracy and loss metrics, chosen to balance the need for predictive power and 
interpretability. I ran my model on an Apple M1 Max GPU using Python 3.9, Sci-kit Learn 
1.3.1, and Keras 2.14.0. My results should be reproducible within similar environments. 
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3.2 Training 

3.2.1 Intermediate results: HGBC 

After training the HGB-classifier I have obtained the following results: Fig. 4 shows a 
standard accuracy report with some important metrics, where precision shows the accuracy of 
positive predictions; recall shows how well the model identifies actual positives; and f1-score 
shows a ratio of precision and recall combined. Support shows a number of flows identified 
per each class. 

These results suggest that the model is performing very well and generalising effectively 
across unseen data. Both the test (98.66%) and validation (99.11%) accuracies are excellent, 
indicating that the classifier is effective at distinguishing between the two classes. 

The precision and recall values are nearly perfect, which means that the classifier not 
only labels a high proportion of positive samples correctly (precision) but also labels the most 
positive samples correctly identified by the classifier (recall). 

The f1-scores, which balance precision and recall, are close to 1, suggesting a balanced 
classifier that doesn’t overly favour precision at the expense of recall or vice versa. 

The training speed of the classifier on a subset of 5,228 samples is 0.654 seconds. 
Several factors contribute to this quick training time. The dataset is relatively small for 
modern machine learning tasks, which inherently requires less computation. The features used 
are numeric and relatively straightforward, which simplifies the processing. The HGBC is 
designed for speed and is particularly suitable for larger datasets, making it efficient even with 
smaller datasets. Additionally, the data is clean and the features are preprocessed efficiently, 
which reduces overhead during training. The hardware used also plays its role in speeding up 
the training process. 

3.2.2 Final results: HGBC-LSTM 

The HGBC-LSTM model demonstrated a slightly better accuracy of 99.35% and a loss 
of 2.8% over 10 epochs if compared with the HGBC on a standalone basis. 

Initially, the loss starts at 0.5479 and rapidly drops to 0.2196 by the second epoch, 
indicating significant learning between the first and second epochs. Afterward, the loss 
continues to decrease at a diminishing rate until it stabilises around 0.03. This pattern 
suggests that most learning occurs in the early epochs, with the model quickly converging to 
an optimal solution. 

The accuracy, starting from the initial epoch, quickly reaches approximately 99.39%, 
stabilising around 99.35% to 99.39% for the subsequent epochs. This high level of accuracy 
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indicates that the model is highly effective in correctly classifying the given sequences 
according to the dataset. 

The model reaches low loss and high accuracy relatively quickly, which is a positive sign 
of its effectiveness. However, this could also suggest that the task may be somewhat 
straightforward for the model given its architecture, or that the model is extensively benefiting 
from easily learnable patterns in the data. 

The stabilisation of loss and accuracy in later epochs indicates that continuing training 
beyond 10 epochs might not yield significant improvements under the current configuration 
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and data. This suggests that the model's capacity and the complexity of the task are well-
matched. The model's accuracy on the final test set is very close to the accuracy observed 
during training, suggesting that the model generalises well to new, unseen data. This also  
indicates that the model is not significantly overfitting. 

As described above, both the HGBC and HGBC-LSTM models demonstrate excellent 
performance. The HGBC-LSTM combination shows just a slight improvement over the HGBC 
alone. This slight improvement highlights the effectiveness of integrating the two models’ 
architecture, as the HGBC provides solid initial predictions, and the LSTM leverages temporal 
patterns and probability estimates for further refinement. The combined approach allows the 
system to capture both static and dynamic features of the data, resulting in a more nuanced 
and accurate classification. This synergy between machine learning and neural networks 
underscores the potential benefits of hybrid models in complex pattern recognition tasks. 

3.3 Simulating beaconing  

To test my model on previously unseen data, I need to generate beaconing traffic, inject 
it into my network, and capture the resulting data for the model evaluation.  

This process involves several steps and can be accomplished using various tools and 
techniques. For my setup, I use Kookarai , a penetration testing Linux virtual machine, which 17

I have already preinstalled on one of my laptops. 

Since the Kookarai Virtual Machine (VM) comes equipped with several tools for 
cybersecurity professionals, I make use the Metasploit  penetration testing framework for 18

beaconing generation. The Metasploit framework is a powerful tool that can cause harm if not 
used diligently; for ethical reasons, I do not disclose the exact commands in this paper. 

The idea behind the beaconing simulation is similar to what I discussed in section 
Introduction 1.1 What is Beaconing? To simulate a C2 server I first configure a Metasploit 
handler on my VM. I use a reverse HTTP payload, which creates a reverse connection back to 

 Kookarai https://kookarai.idocker.hacking-lab.com/, accessed in May, 202417

 https://www.metasploit.com/, accessed in May, 202418
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the handler. Here LHOST is set to my VM IP address, and LPORT is the connection port 
that the handler will be listening on. The handler's role is to manage the connection initiated 
by the payload, which in a real-world attack would be the compromised system calling back to 
the attacker's server.  

In a real-world scenario, a malicious actor would then create a payload designed to be 
installed on the victim’s system using various techniques, such as ARP spoofing , phishing, or 19

exploiting software vulnerabilities. Once installed, this payload would establish a connection to 
the C2 server, allowing the attacker to control the victim's system remotely. However, for 
testing purposes, I take a simpler approach to avoid the complexity and ethical concerns of 
using real malware. I write a Python script that simulates the beaconing process. This script 
sends periodic  HTTP GET requests to my VM host every 30 seconds. It is also designed to 
print the status code of the response to confirm that the beacon check-in has been sent, 
where a status code of 200 would indicate a successful transmission. By running this script on 
a separate laptop, I can simulate the behavior of an infected machine communicating with a 
C2 server. 

While my script is running, I capture traffic on my “victim” laptop using Wireshark. Due 
to time constraints, I do not plan to capture traffic over several days, as my script is made to 
send a signal every 30 seconds. I only need to generate enough data to run my model (despite 
that the model’s design allows a low number of flows per file I would not try to do it with less 
than 30 flows due to the necessity to recognize patterns). After some time, I obtain a PCAP 
file containing a total of 25,058 packets. To ensure that my network traffic capture includes 

 “A hacker sends fake ARP packets that link an attacker's MAC address with an IP of a computer already on the 19

LAN.”, https://www.okta.com/identity-101/arp-poisoning/, accessed in June, 2024
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sufficient relevant data, I filter out only packets containing the malicious payload, resulting in 
277 packets. Within these filtered packets, I observe communication with the VM and status 
code 200 for the GET requests, confirming that the beaconing generation was successfully 
captured as expected. 

It is important to note that the beaconing simulation used in this study is intentionally 
simple and direct, designed purely for testing purposes. In a real-world scenario, such 
communication would be much harder to detect by merely inspecting the filtered PCAP file. 
The straightforward nature of this simulation does not capture the complexity employed in 
actual cyberattacks. Real-world beaconing often uses various obfuscation techniques, such as 
encrypted traffic, randomised intervals, and blending in with legitimate traffic, substantially 
complicating detection efforts.  

Moreover, real-world penetration testing should incorporate a more sophisticated 
beaconing simulation. Such simulations should closely mimic actual attack scenarios, including 
the use of advanced evasion techniques, to thoroughly test and validate the model's 
effectiveness. By simulating attacks that are as realistic as possible, researchers can better 
assess the model's capabilities and ensure it is solid enough to handle the nuanced and 
intricate nature of genuine cyber threats. 

3.4 Wireshark Analysis 

An important preliminary step before performing inference testing on unseen data is an 
analysis of PCAP files. This analysis may be conducted in many ways, using tools like 
Wireshark or tcpdump, or writing scripts with help of libraries  for traffic capture analysis. 20

This initial step helps to understand the data and provides an overview of the patterns of 
network traffic, which has its critical importance before inputting this data into an HGBC-
LSTM model for further analysis.  

For the inference phase, I have a collection of 4 PCAP files (file1.pcap, file2.pcap, 
file3.pcap, file4.pcap). The first three files each contain 10’000 packets and were provided for 
blind testing with the acknowledgement that two of them intentionally include beaconing 

 For instance, Scapy, “a powerful Python-based interactive packet manipulation program and library.” https://20

pypi.org/project/scapy/, accessed in May, 2024
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injections, but without specifying which ones exactly. The fourth file was obtained during the 
beaconing simulation experiment discussed earlier in Chapter 3.3 Simulating beaconing. 

Further analysis and inference will be performed on these four network capture files to 
evaluate the model's ability to detect beaconing activity. The goal is to determine which of 
the provided files contain the beaconing injections by leveraging the patterns and insights 
derived from the training data.  

As mentioned in the Chapter 1 Introduction, malware often employs DNS queries for 
beaconing purposes. Therefore to determine if my files 1 to 3 exhibit any signs of malicious 
activity, the first step I take is to filter the traffic capture for NXDOMAIN DNS responses, 
that occur when a DNS query is made for a domain that does not exist. Malware, particularly 
those utilising beaconing techniques, frequently generates random domain names for DNS 
queries in an attempt to locate and communicate with C2 servers. By identifying and 
analysing these NXDOMAIN responses, I can obtain input on potential malicious activity 
within the provided network traffic. 

For instance, looking at the filtered file1.csv I see a few NXDOMAIN responses in the 
traffic capture, with two of them being repeated. Repeated queries often indicate an 
automated process, but based on this screenshot alone, I cannot definitively conclude that 
these connections are malicious. There are several potential reasons for these repeated 
queries.  Firstly, the application or service attempting to resolve the domain might be 
configured to automatically retry upon failure. If the domain continuously resolves to 
NXDOMAIN, the retry could be a built-in response to attempt reconnection or re-resolution. 
Secondly, a benign automated process might be running on the system, attempting to access 
a download repository, but for some reason is incorrectly formatted or using a broken URL. 

Two domains (https._tcp.download.docker.com, https._tcp.packages.microsoft.com) 
appear to be legitimate services related to Docker and Microsoft. However, the use of service 
records (SRV _https._tcp) in these queries is rather atypical for normal operations of 
fetching packages or updates. This unusual behavior could be a result of misconfiguration, on 
the other hand, it could also be an attempt to mimic legitimate traffic for evil-minded 
purposes. Typically, when systems fetch updates or download software packages, they use 
standard DNS queries that resolve to A or AAAA records as pictured in Fig.10. The presence 
of SRV queries in this context raises a red flag, suggesting that further investigation is 
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necessary to determine the intent behind these queries and ensure they are not part of any 
malicious activity. 

Out of the three files I have checked, only file1.pcap and file2.pcap contain NXDOMAIN 
responses, which might indicate some suspicious connections. Therefore, my particular 
attention will be concentrated on these first two files to further investigate and analyse the 
potentially malicious activity indicated by these responses.  

3.5 Inference 

3.5.1 HGBC 

First, I present intermediate results from the ML classifier. These results provide valuable 
insights and can be used independently or in conjunction with the LSTM model. While they 
may not represent the final outcome, they already indicate the direction and effectiveness of 
the initial classification process. 

For file1.csv, the model identified 68 benign flows and 3 malicious flows. While it is 
challenging to match these detections directly to the PCAP data, this rough estimate 
indicates that the classifier was able to detect the beaconing activity. 

In contrast, file2.csv, which contains three times more flows than file1.csv, showed 340 
benign flows and 51 malicious flows, representing approximately 13% of the total flows. This 
higher proportion of detected malicious flows further demonstrates the classifier's effectiveness 
in identifying beaconing activity amidst regular network traffic. 
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As expected, file4.pcap contained the beaconing activity generated during the simulation 
experiment. The classifier successfully identified the periodic requests and the corresponding 
responses, validating its accuracy against the known data. 

Additionally, a strong sign of validation can be observed in the classifier's performance 
on file3.csv, which contains only benign traffic. The classifier detected zero malicious flows in 
file3.csv, indicating its accuracy and reliability in distinguishing between benign and malicious 
communication patterns. This result underscores the model's capability to accurately identify 
beaconing activity without generating false positives in a benign dataset. 

These intermediate results suggest that the HGBC on a standalone basis is effective in 
distinguishing between benign and malicious traffic. This indicates that the HGBC can be 
reliably used on files with a similar volume of flows, providing accurate detection of beaconing 
activity without falsely flagging benign traffic. This capability is important for ensuring the 
reliability of the classifier in practical network applications. 

3.5.2 HGBC-LSTM 

The full model successfully detected malicious sequences in all three files with beaconing 
injections: file1.pcap, file2.pcap, and file4.pcap from the simulation. Specifically, in file1.csv, 
the model identified 2 malicious sequences out of 42, resulting in a malicious rate of 4.76% 
flows in the file. In file2.csv, it detected 48 malicious sequences out of 362, with a malicious 
rate of 13.26%. In file4.csv, the model found 9 malicious sequences out of 161, yielding the 
malicious rate of 5.59%. 

As for the file3.pcap, the only benign file available for the testing, the model did not find 
any suspicious sequences which verifies the intermediate output results. 

The HGBC-LSTM results demonstrate marginal deviation from the results when HGBSC 
is used on a standalone basis, just adding some additional accuracy to the prediction. The 
sequences analysed, each with a length of 30 flows, ensure that temporal dependencies and 
repetitive patterns can be effectively captured.  
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Fig.12 HGBC-LSTM results on unseen benign file



These findings illustrate the high productivity of the framework structure suggested for 
this study. The initial results from the classifier were already promising, showing the model's 
capability to identify malicious activity. However, incorporating the LSTM further enhances 
this accuracy, leveraging its strength in capturing temporal relationships and improving the 
model's overall performance. The combination of the Histogram Gradient Booster Classifier 
and the LSTM neural network ensures that the model not only achieves high accuracy in 
controlled environments but also maintains its effectiveness in more complex and varied real-
world scenarios. This improved accuracy underscores the potential of the model to be 
integrated into Network Intrusion Detection and Response systems or other security toolsets, 
significantly advancing cybersecurity measures. 
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Fig.13 HGBC-LSTM results on unseen malicious files



4. Conclusion 

4.1 Model Complexity 

Complex models tend to be more prone to overfitting, especially when trained on 
relatively small datasets. Overfitting occurs when a model learns the noise in the training data 
instead of generalising from the patterns. This can lead to excellent performance on training 
data but poor performance on unseen data. 

However, the use of a more complex HGBC-LSTM model may still be justified under 
certain conditions. The combination of HGBC (Hierarchical Gradient Boosting Classification) 
and LSTM (Long Short-Term Memory) can model complex non-linear relationships and 
temporal dynamics in the data more effectively than either approach alone. If the underlying 
data structure is complex or if there are interactions across time steps that are critical for 
prediction, the additional complexity of the LSTM may provide substantial benefits. 

While the dataset currently used for training consists of just over 12,000 samples, this 
may not sufficiently challenge the model's capacity to generalize. In scenarios where the 
model is expected to handle more varied and larger datasets, the robustness provided by the 
HGBC-LSTM combination could prevent performance degradation. The LSTM component 
excels at capturing temporal dependencies, making it suitable for modeling the sequential 
nature of network traffic, while HGBC can effectively handle non-linear relationships and 
feature interactions. 

Moreover, in cybersecurity, where the patterns of malicious activity can be subtle and 
distributed over time, the ability to model these temporal dynamics is central. The HGBC-
LSTM model's capacity to learn from sequential data and adapt to complex patterns 
enhances its potential for accurate beaconing detection. Ensuring the model's strength and 
performance on larger, more diverse datasets will be essential for its successful deployment in 
real-world environments. This approach aims to strike a balance between model complexity 
and generalization, leveraging the strengths of both HGBC and LSTM to build a powerful and 
reliable detection system. 

4.2 Limitations of the study 

The insufficiency of real-world data in cybersecurity is primarily due to concerns about 
privacy and security. Organisations are often reluctant to share data because it can contain 
sensitive information about their networks, operations, and vulnerabilities. Sharing such data 
could potentially expose them to further attacks or legal liabilities. Additionally, there are 
often regulatory and compliance constraints that limit the extent to which data can be 
shared, particularly in sectors like finance and healthcare where data protection laws are strict. 
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Another reason is the inherent difficulty in capturing and labeling cybersecurity data. 
Cyber attacks are complex and vary in nature, making it challenging to create comprehensive 
datasets that accurately reflect the diverse threat landscape. Furthermore, much of the 
valuable data resides within private networks and is not accessible to the broader research 
community. 

These factors contribute to a lack of publicly available, high-quality datasets, which 
hinders the development and testing of advanced cybersecurity models. Researchers and 
practitioners must often rely on simulated data or small, anonymised datasets, which may not 
fully capture the complexities of real-world cyber threats. 

The significant testing and evaluation of my model were limited due to several reasons. 
Firstly, there were time constraints that restricted the duration available for comprehensive 
testing. This limited timeframe meant that not all possible data flows and scenarios could be 
thoroughly evaluated. Additionally, there were resource limitations, both in terms of 
computational power and manpower, which further constrained the ability to conduct 
extensive trainings and tests. These limitations obstructed the ability to evaluate the model 
on varied data comprehensively, potentially affecting the durability and generalisability of the 
model's performance across different scenarios. 

4.3 Application 

Combining the HGBC-LSTM model with traditional anomaly detection methods such as 
statistical analysis, rule-based systems, or clustering algorithms, creates a hybrid detection 
system that leverages the strengths of both approaches. This hybrid system can improve 
overall detection capability and reduce false positives by using the HGBC-LSTM model’s 
advanced learning algorithms to identify complex patterns in network traffic indicative of 
beaconing activity, while traditional methods provide a foundational layer of anomaly 
detection. For example, in a corporate network, this system could more accurately detect 
subtle, sophisticated beaconing attempts by APTs that might otherwise be missed or flagged 
incorrectly. 

One of the possible scenarios for integration of the HGBC-LSTM model in a real-time 
detection and response system might look as follows: first, network traffic is continuously 
monitored, and packets are captured at regular random intervals to ensure a comprehensive 
representation of the traffic over time. These captured packets are saved in PCAP files. These 
batches are then fed into the HGBC-LSTM model for analysis. The model evaluates the 
processed data against predefined thresholds, and if the output exceeds the set threshold, it 
indicates potential malicious activity or an anomaly. Upon detecting an anomaly, the system 
triggers an alert. This alert can notify security personnel, activate automated response 
mechanisms, or initiate further investigative procedures. The entire process, from packet 
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capture to alert triggering, could be automated using for instance tools as Cron, a Unix-based 
scheduling utility that automates the execution of scripts or commands at specified intervals. 
Cron scheduling may very well employed in combination with a Python script and libraries 
suitable for network traffic analysis (scapy, tshark, tcpdump, etc) or with any of the available 
network automation frameworks. 

One of the key advantages of the HGBC-LSTM model is its modularity. The 
intermediate results from the HGBC can be utilised independently, providing valuable insights 
into the classification process before the LSTM component is applied. This modularity allows 
for flexible integration into different stages of the detection pipeline, enabling security teams 
to leverage the classifier’s output for preliminary assessments or as part of a more extensive 
analysis framework. Additionally, the HGBC-LSTM model boasts a fast training speed, 
significantly reducing the time required to deploy updates and retrain the system in response 
to emerging threats. This rapid training capability ensures that the detection system remains 
up-to-date and effective against the latest beaconing techniques, providing a powerful and 
adaptive defense mechanism for real-time security applications. 

This model framework is not limited to security applications; it also holds potential for 
tasks involving pattern recognition and pattern matching due to the high adaptability of its 
architecture. To apply the framework to new tasks, one needs to adjust the preprocessing 
steps where the raw data is converted into a data frame format specific to the new domain. 

For example, in network performance monitoring, the model could be used to detect and 
predict network congestion by identifying patterns indicative of congestion versus normal 
traffic flow. In Quality of Service (QoS) management, it could analyse traffic patterns to 
classify traffic as either meeting QoS requirements or not, thereby ensuring optimal bandwidth 
allocation and minimising latency. 

In network anomaly detection (which also covers misconfigurations, and might not be 
malicious per se), the framework can identify unusual traffic patterns by classifying them as 
either normal or anomalous, helping to spot configuration issues. Additionally, in network 
usage analytics, the model can be used to classify user behavior patterns as either typical or 
atypical, assisting in optimizing network resources. 

Lastly, for network traffic classification, the model can distinguish between different types 
of traffic based on predefined categories, classifying them as either belonging to the expected 
category or not. This helps ensure the efficient handling of various data streams. 

Overall, the flexibility and adaptability of this binary classifier model framework make it 
a valuable tool for enhancing network management and optimisation across a variety of 
applications within computer network traffic. 
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4.4 Requirements 

The HGBC-LSTM model meets a variety of functional and non-functional requirements, 
which are central for its effectiveness and reliability in real-world applications. Among 
functional requirements, I would like to name a few: 

1. Real-time Detection, where the model can analyse network traffic data in real-time to 
identify beaconing activities swiftly.  

2. Integration with Existing Systems, specifically integration with existing security 
infrastructures such as SIEM, IDS, SOAR, and firewalls.  

3. Adaptability as it is able to adapt to new types of beaconing activities and update its 
detection capabilities accordingly. 

The model also successfully satisfies some non-functional requirements such as:  
1. Performance (as in speed), as the model processes data and generates results quickly, 

with minimal latency to ensure real-time detection and response.  
2. Scalability, as it can handle large volumes of network traffic and scale according to 

the organisation's size and network complexity.  
3. Accuracy, as it drastically minimises false positives and false negatives , ensures that 21

genuine threats are detected while benign activities are not incorrectly flagged. 
4. Maintainability: The model is easy to update and maintain, with straightforward 

procedures for retraining and integrating new threat intelligence.  
5. Efficiency: The model is resource-efficient due to utilising the Histogram gradient 

booster algorithm for intermediary results, it uses computational resources effectively to 
avoid overloading the network infrastructure. 

Overall, the HGBC-LSTM model demonstrates its ability to effectively enhance an 
organisation's cybersecurity, providing effective and adaptive defense mechanisms for the 
detection and mitigation of beaconing activities across various sectors, thereby bolstering the 
overall security disposition of organisations. 

4.5 Future Steps and Recommendations 

To better leverage the complexity of the HGBC-LSTM model, I recommend augmenting 
the dataset with more diverse and extensive data, including encrypted traffic, jittered signals, 
and other obfuscated communication types.  

Adversaries often employ various techniques to conduct beaconing discreetly. The most 
relevant techniques include but are not limited to: 

 according to the accuracy reports, discussed in the Chapters 3.2 Training and 3.5 Inference21

38



• DGAs, that generate numerous domain names for C2 servers, complicating the 
blocking of malicious traffic. 
• Fast Flux, a technique that rapidly changes the IP addresses associated with domain 

names to evade detection and takedown efforts. 
• DNS Tunnelling, which helps encode data in DNS queries and responses to create a 

hidden communication channel. 
• HTTP/HTTPS Tunnelling, that allows hiding malicious communication within 

standard web traffic. 
• Steganography, when data is embedded within legitimate files or images to conceal 

beaconing signals. 
• Packet Fragmentation, that breaks up the payload into smaller packets to avoid 

detection by IDS/IPS systems. 

Ideally, the training dataset should have a volume of over 1 million flows. This would 
significantly help in evaluating the true benefit of the complex model architecture under more 
challenging conditions, ensuring its steady performance and generalisability. 

I suggest the unseen data be obtained over a longer period of time to capture a 
comprehensive view of network activity. It should ideally include traffic data from different 
times of the day continuously recorded over longer periods of time, during various days of the 
week, and even account for seasonal- or festive-related traffic changes if necessary. This 
approach ensures that the dataset reflects the specific patterns and anomalies of the network, 
providing a more accurate representation of its normal and abnormal behavior. Collecting data 
over an extended period will help identify sequencing and any cyclical changes that might 
occur. Additionally, it is important to consider special events, holidays, and other factors that 
may impact network traffic. By encompassing these variables, the dataset will be more durable 
and effective for training and testing the model, ultimately leading to better performance and 
reliability in real-world applications. 

I would also recommend developing a framework for incremental learning where the 
model can continuously learn from new data without needing complete retraining. This can 
help in maintaining the model’s accuracy and relevance over time as network patterns evolve. 
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Academic Vocabulary 

Beacon - (in cybersecurity) a signal sent by malware or a compromised device to an 
external server. 

BCE - or Binary Cross-Entropy, a loss function used for binary classification tasks, 
measures the difference between predicted outcome and actual label. 

Bias - (in machine learning) is a type of error where certain aspects of a dataset are 
given more emphasis or representation than others.  

Cell State - a component of Long Shirt-Term Memory neural network, that carries and 
updates information over time, allowing the network to maintain long-term dependencies. 

Entropy - a measure for randomness, unpredictability (here: payload entropy shows how 
uneven byte distribution is) 

Flow - sequence of data packets transmitted across a network from a source to a 
destination, involving various stages such as packet creation, routing, forwarding, and 
reception. 

Gradient Boosting - a machine learning algorithm that constructs sequential trees and 
aggregates their predictions 

Hidden State - (in neural networks) a set of values that capture and maintain 
information about past inputs to inform current and future predictions. 

Long Short-Term Memory - is a recurrent neural network (RNN) architecture commonly 
used in deep learning for its ability to capture long-term dependencies, making it particularly 
well-suited for sequence prediction tasks. 

Network protocols - a set of rules that define how connected devices communicate across 
a network to exchange information efficiently and securely. 

Outliers - data points that significantly differ from others 
Packet - a smallest data unit that traverse through a network 
Variance - (in machine learning) variability in model predictions, indicating how much 

the ML function's output can change based on different datasets. High variance typically 
arises in highly complex models with a large number of features. 

Disclaimer 
This report has been proofread with the assistance of ChatGPT.

40

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://openai.com/chatgpt/&ved=2ahUKEwi82surs9aGAxUE_rsIHRKsD50QFnoECA4QAQ&usg=AOvVaw1ZumOaGlg5o8_PrNzZDmeO

	Acknowledgements
	Abstract
	Management Summary
	Introduction
	Methods
	Results
	4. Conclusion
	Academic Vocabulary

