

Enhancing Cybersecurity with Machine Learning:

Beaconing Detection in PCAP Data

Bachelor Thesis

Department of Computer Science

OST – Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Spring Term 2024

	

Author Anastasiia Graftceva

Advisor Nikolaus Heners

External Expert Ludovico Bessi

Internal Expert Stefan Kapferer

Acknowledgements
I would like to extend my gratitude to the following individuals for their contributions to

this study:
Firstly, I would like to thank Nikolaus Heners for allowing me to undertake this project,

his unwavering support throughout the term, and his spot-on ideas. His belief in my abilities
and selection of me for this topic, despite the competition, has been a significant motivating
factor throughout this journey.

Secondly, my sincere thanks to Ludovico Bessi and Stefan Kapferer for their insightful
questions, valuable inputs, and expert advice. Their critical feedback has been instrumental in
refining my research and improving the quality of this paper.

Lastly, I am deeply grateful to my husband Marc for his constant support, cheer-ups, and
motivation. His understanding and encouragement have provided me with the emotional
strength and balance necessary to complete this work.

2

Abstract
This study explores the enhancement of cybersecurity through the application of

machine learning techniques, specifically focusing on the detection of beaconing activity in
network traffic (PCAP) data. PCAP, or packet capture, refers to the process of intercepting
and logging traffic that passes over a computer network.

Beaconing, a communication technique and a common indicator of malicious activity
requires complex multilevel detection methods due to its discreet and repetitive nature. My
approach involves the development of a dual-model framework with a combination of a
Histogram Gradient Booster Classifier (HGBC) and a Long Short-Term Memory (LSTM)
neural network. The HGBC classifies the initial features extracted from the PCAP data, while
the LSTM model further refines the detection by capturing temporal dependencies between
consecutive packet flows.

The combined model achieves an accuracy rate of 99.37%, demonstrating its
effectiveness in identifying beaconing patterns. This high level of accuracy illustrates the
potential of a combination of machine learning and deep learning algorithms in advancing
cybersecurity measures for unmasking threats in network traffic analysis.

3

Management Summary
Overview
This study explores the application of advanced Machine Learning (ML) and Deep

Learning (DL) methods for detecting malicious patterns in network captures (PCAP),
focusing specifically on beaconing. Beaconing is a communication technique where malware
intermittently sends signals to an external server, known as Command and Control (C2),
often to receive instructions or exfiltrate data. Detecting beaconing is challenging due to its
low-frequency, regular communication patterns that blend in with legitimate traffic. This
discreet behavior makes it a significant threat, as the malware can remain undetected for long
periods, facilitating extensive data breaches.

Objective of the Study
The goal of this project is to develop a dual-model framework that integrates a

Histogram Gradient Boosting Classifier (HGBC) and a Long Short-Term Memory (LSTM)
neural network. The HGBC, an ML algorithm based on decision trees, is designed to identify
presence of malicious periodic signals based on PCAP data features analysis, while the LSTM
neural network detects temporal dependencies in sequential data for more accurate results.

Key Findings
• Model Accuracy: The dual-model framework achieves an accuracy rate of 99.37% on the

tailor-made dataset
• Performance: The model correctly identifies beaconing patterns in files containing

malicious content and accurately recognises benign files.
• ML Classifier Efficiency: The HGBC uses histograms to speed up training by considering

unique values when looking for the best split, where the algorithm determines the best
point to divide the data into subsets that are more homogeneous. By reducing the number
of potential split points, the HGBC shortens the time needed for training, allowing for
rapid model development even on large datasets.

• NN Efficiency: The LSTM neural network effectively captures temporal dependencies in
the data, enhancing the detection of sequential patterns associated with beaconing. By
leveraging its memory cell architecture, LSTM efficiently processes sequences, making it
highly suitable for time-series analysis.

• Data Preparation: The process of extracting individual flows and computing relevant
metrics, such as flow intervals, packet sizes, and communication frequencies, is central for
beaconing detection and has a direct impact on the model's high performance. By
accurately capturing and analysing these metrics, the model can effectively differentiate
between normal network traffic and the subtle, periodic signals characteristic of
beaconing, thereby enhancing its detection capabilities.

4

Approach
Data Preparation involves converting raw data into individual packet flows based on

source and destination IP, port number, and protocol. Relevant metrics such as payload
entropy and the mean and standard deviation of intervals between consecutive packets within
a flow are computed. For Classification, the computed flow data is processed by the HGBC,
which provides an initial assessment of potential malicious patterns. During temporal analysis,
the output of the HGBC is used to create sequences for the LSTM neural network, which
detects temporal dependencies to refine detection accuracy. Finally, a detailed detection report
is generated, indicating the amount and percentage of malicious sequences or their absence in
the original input data.

Implications and Recommendations
The proposed dual-model framework could be further integrated into Network Detection

and Response (NDR), Security Orchestration, Automation, and Response (SOAR) systems,
and other cybersecurity tools to improve pattern recognition and anomaly detection,
particularly for identifying beaconing activities. For future work consider the following:
• Framework Adjustment: Tailoring the framework to specific network requirements,

considering data volume, unique network and communication patterns, and particular
threat detection needs.

• Data engineering: Enlargement of the training dataset that would accommodate the needs
of the large and complex networks also in terms of diversity of the protocols and length of
individual flows.

5

TABLE OF CONTENT

1. Introduction	 8

1.1 What is beaconing?	 8

1.2 Harm caused	 9

1.3 Defense vector	 10

2. Methods	 13

2.1 Building a Dataset	 13

2.1.1 Malicious part	 15

2.1.2 Benign part	 15

2.1.3 Features Computation	 16

2.2 Building a classifier	 18

2.3 Adding a neural network	 19

2.3.1 NN-Components	 20

2.4 Building a Pipeline	 22

3. Results	 25

3.1 Preparatory information	 25

3.2 Training	 26

3.2.1 Intermediate results: HGBC	 26

3.2.2 Final results: HGBC-LSTM	 26

3.3 Simulating beaconing	 28

3.4 Wireshark Analysis	 30

3.5 Inference	 32

3.5.1 HGBC	 32

3.5.2 HGBC-LSTM	 33

4. Conclusion	 35

6

4.1 Model Complexity	 35

4.2 Limitations of the study	 35

4.3 Application	 36

4.4 Requirements	 38

4.5 Future Steps and Recommendations	 38

Academic Vocabulary	 40

7

1. Introduction

1.1 What is beaconing?

In cybersecurity, a type of attack that aims to stay hidden while keeping operational
abilities is often referred to as an "Advanced Persistent Threat" (APT). These threats are a 1

source of substantial concern due to their ability to evade detection over an extended period
of time, potentially causing harm without being noticed.

A prevalent method employed by malware on compromised systems to establish
communication with an external command and control (C2) server — under the possession of
the adversaries — is known as beaconing. This technique is characterized by its ability to 2

execute communications that are either periodic, randomised, or triggered by specific events,
thereby complicating the task of consistent detection and therefore is one of the important
elements of the APT lifecycle.

Beaconing performs the transmission of signals or data packets from the infected host to
the C2 server at predetermined intervals, which may vary from seconds to hours, according to
the configuration set by the attackers. Following the installation of the malware on a host
system, the process of beaconing becomes automated. The primary objective of this process is
to maintain communication channels between the malware and the attackers, enabling the C2
server to verify the operational status of the malware. Moreover, through these periodic
communications, the C2 server is able to receive data harvested by the malware from the
compromised system(s), as well as dispatch new instructions or updates back to the malware,
thereby directing it to execute specific tasks, download additional components, or propagate
to other systems within a network (so-called “lateral movement”).

Beaconing poses a significant hurdle for cybersecurity professionals for a variety of
reasons, but mostly due to its secretive and consistent nature. This mechanism facilitates
malware to remain in a hibernating state while simultaneously maintaining a connection with
the attacker's C2 servers. The indistinct nature of this communication makes its detection
problematic, as it can seamlessly integrate with legitimate network activities. This capability
enables attackers to establish and prolong their presence within a compromised network for
months or even years.

 What Is an Advanced Persistent Threat (APT)? https://www.kaspersky.com/resource-center/definitions/1

advanced-persistent-threats, accessed in April 2024

 Someone or a group that intends to perform malicious actions against other cyber resources (https://2

www.sciencedirect.com/topics/computer-science/cyber-adversary#:~:text=Defining Adversary,actions against other
cyber resources.), accessed in April 2024

8

1.2 Harm caused

I would like to provide a few examples of APT attacks to illustrate their significance and
underscore beaconing as a vital component of their life span.

The first attack that comes to mind is cyber espionage on RUAG, a Swiss company
specialising in aerospace engineering and defense. In this incident, attackers, believed to be
part of an APT group, penetrated RUAG's network and maintained their presence undetected
for an extended period. Malware installed on the network "sent HTTP requests to transfer
the data to the outside, where several layers of Command-and-Control (C&C) servers were
located“ , receiving instructions and exfiltrating data in a controlled manner. This attack, 3

known as “APT Case RUAG” was discovered in early 2016. However first indications of 4

compromise (IOCs) were already present in logs almost 18 months prior, in September 2014,
with no earlier logs available for inspection. According to the “APT Case RUAG. Technical
Report”, it is still unknown at which point in time adversaries penetrated the RUAG network
and how much damage exactly the company sustained.

Another example involving beaconing is the “SolarWinds Orion Platform Attack” which
occurred in 2020. The attack stands for one of the most intricate and widespread cyber
espionage efforts yet identified, mostly due to the amount of hosts involved. Attackers
infiltrated the software build system of the SolarWinds Orion Platform, the “infrastructure
monitoring and management platform” of one of the largest B2B Software Developer in the 5

US, inserting malicious code into software updates distributed to thousands of customers.
This inserted backdoor, referred to as "SUNBURST," empowered the attackers to penetrate,
surveil, and potentially disrupt operations across over 18,000 organisations globally, 6

encompassing government entities and corporations. Remarkably, the malware evaded
detection for over a year. By “mimicking legitimate network traffic, the attackers were able to
circumvent threat detection techniques employed by SolarWinds, other private companies, and
the federal government” . 7

 Summary: Technical Report about the Espionage Case at RUAG, https://www.ncsc.admin.ch/ncsc/en/home/3

dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html, accessed in March 2024

 Technical Report about the Espionage Case at RUAG: https://www.ncsc.admin.ch/ncsc/en/home/4

dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html, accessed in March 2024

 https://www.solarwinds.com/orion-platform, accessed in March 20245

 A 'Worst Nightmare' Cyberattack: The Untold Story Of The SolarWinds Hack https://www.npr.org/6

2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack, APRIL 16,
202110:05 AM ET, accessed in March 2024

 New Findings From Our Investigation of SUNBURST https://orangematter.solarwinds.com/2021/01/11/new-7

findings-from-our-investigation-of-sunburst/, accessed in March 2024

9

https://www.ncsc.admin.ch/ncsc/en/home/dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html
https://www.ncsc.admin.ch/ncsc/en/home/dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html
https://www.ncsc.admin.ch/ncsc/en/home/dokumentation/berichte/fachberichte/technical-report_apt_case_ruag.html

These both cases illustrate how the unnoticed infiltration of an APT may cause
extraordinary damage, often making it difficult to fully assess its extent.

 While APTs are known for their sophisticated use of beaconing, this technique is
broadly applicable in the malware community due to its effectiveness in maintaining
communication with infected hosts.

Adversaries are increasingly adopting beaconing as a low-detection communication
technique in their ever-evolving malware arsenals. This subtle method of communication is
particularly effective in evading traditional security measures that rely on identifying large or
anomalous data transfers. Moreover, adversaries are continuously improving their skills,
leveraging advanced algorithms, machine learning, and deep learning included, to enhance the
secrecy and efficiency of their malware. These sophisticated techniques, once the domain of
APT groups, are now becoming more accessible to a broader range of cyber criminals. As a
result, even less sophisticated attackers can deploy highly effective beaconing strategies,
increasing the prevalence and threat posed by such malware in the cybersecurity landscape.

Another significant threat arises from the integration of IoT devices into modern
networks, as it greatly expands the attack surface for cyber hazards. This is largely due to the
inherent security weaknesses often found in these devices, including weak default credentials,
lack of regular updates, inadequate encryption if applied at all, and the frequent absence of
built-in security features. These vulnerabilities make IoT devices particularly susceptible to
malware infections. Once compromised, these devices can serve as hidden entry points within
a network, enabling attackers to maintain persistent access and control without drawing
attention. This persistent access poses a substantial risk, as it can be leveraged to launch
further attacks, exfiltrate data, or disrupt network operations sometimes causing astronomical
costs due to damages.

1.3 Defense vector

Over the past decade, it has become obvious, that APT attacks are occurring more
frequently. According to the publicly available data from the Statista portal , the revenue from 8

the APT protection market has been steadily increasing globally by an average of 0.8 billion
USD year to year. From 2015 to 2023, the APT protection market growth represents a more
than fourfold increase, indicating a strong demand for cybersecurity solutions capable of
defending against advanced threats. As cyber attacks continue to evolve, the need for
advanced, comprehensive protection measures becomes increasingly decisive, driving sustained
investment and innovation in the cybersecurity sector. The market's projected expansion in

 Revenue from advanced persistent threat (APT) protection market worldwide from 2015 to 2027 8

(in billion U.S. dollars), https://www.statista.com/statistics/497945/advanced-persistent-threat-market-
worldwide/, accessed in May 2024

10

upcoming years underscores the importance of continued alertness and development in
cybersecurity to safeguard against ever-more sophisticated threats.

As detection techniques have been in constant improvement, including more complex
network monitoring tools and anomaly detection systems, the tactics used by malware,
including beaconing patterns, have also evolved. Modern beaconing may vary the timing of
communications to avoid creating predictable patterns or use different protocols and ports to
avoid detection. Some malware even uses social media platforms, decentralised networks, or
legitimate web services for beaconing to further obscure their traffic.

While beaconing presents significant risks, its very nature as an automated activity
inherently involves repetitive patterns, which can be both a challenge and an advantage in
cybersecurity efforts. Regular signaling, even jittered or randomised in any way, creates
detectable patterns. It is possible to analyse traffic logs for such patterns, identifying
anomalies that recur at unusual intervals which may not align with normal user or system
activities. Advanced security tools and network monitoring solutions employ various forms of
traffic analysis to detect unusual patterns. This could be achieved through for instance
examining data transfers at consistent intervals which could indicate automated
communication. Spikes or dips in traffic that occur with unusual regularity can be a sign of
beaconing activities.

Modern cybersecurity defense strategies often incorporate ML algorithms that can learn
from network behavior to detect deviations from the norm. These algorithms can be
particularly effective in environments with high volumes of data, recognizing even slight
deviations. Detecting beaconing however, still remains a significant challenge despite advanced
strategies. As mentioned above, one key difficulty is that malware can vary its beaconing
intervals or randomise packet sizes to evade pattern-based detection. This intentional
randomness makes it hard to identify consistent communication patterns over longer periods
due to the extensive data volumes that need to be processed and analysed. Moreover, when
beaconing data is encrypted, the challenge intensifies. Encrypted communication masks the
content of the data packets, making it difficult to look into without complicated, and
sometimes invasive, techniques. Decryption requires resources in terms of manpower, know-
how, and time, and can pose privacy concerns, that further impede the detection process . 9

These evasion strategies highlight the need for advanced detection methods that can identify
subtle anomalies in network traffic, even when typical patterns are obfuscated or encrypted.

Large networks with hundreds of thousands of endpoints highlight additional challenges.
Beaconing often involves low-frequency, subtle signals that can be easily overlooked among
high-volume, legitimate network traffic. Network environments typically generate large
volumes of traffic, making it difficult to isolate beaconing signals without tricky data

 Shining a Light on Malware Beaconing, https://blogs.blackberry.com/en/2023/03/shining-a-light-on-malware-9

beaconing, accessed in April 2024

11

processing and filtering techniques. Malware dynamic behavior requires detection systems to
be highly adaptable and continuously updated. Beaconing traffic can closely resemble
legitimate network traffic, such as regular software updates or automated backups. This
similarity makes it challenging to distinguish between benign and malicious activity without
high accuracy. The high potential for false positives, where benign activity is misclassified as
malicious, can overwhelm security analysts and reduce the effectiveness of detection systems.

As detecting beaconing usually requires temporal analysis for higher accuracy, monitoring
traffic over time to identify periodic patterns becomes a necessity. On large networks,
however, this task is particularly challenging due to the extensive data volumes involved and
the need for long-term storage. Handling massive amounts of data necessitates data collection
mechanisms and substantial storage capacity, which can be both technically demanding and
financially burdensome.

A network with a dozen of thousands of servers and working stations generate terabytes
of data every hour. Processing these giant data sets requires high computational power, as
the system must sift through enormous amounts of network traffic to detect the subtle, low-
frequency signals indicative of beaconing. This processing must be both fast and accurate to
be effective, which often demands cutting-edge hardware and optimised software solutions.
The financial implications of deploying such resources can be significant, potentially rendering
the process cost-ineffective for many organisations.

Moreover, the sheer scale of data can lead to delays in analysis, reducing the timeliness
of threat detection and response. Therefore, balancing the need for thorough temporal
analysis with the practical limitations of computational resources and budget constraints is a
key challenge in the effective detection of beaconing activity on large networks.

12

2. Methods

2.1 Building a Dataset

To detect malicious software, particularly the type that maintains regular communication
with C2 servers through keep-alive and beaconing activities, it is required to perform a
detailed examination of network traffic first. It is important, however, to distinguish between
traffic data captured in automated, IoT-enhanced, or non-automated environments, to
predefine normality for each environmental type as their characteristics may drastically differ.

Automated setups often show predictable traffic patterns due to automated tasks.
Environments with IoT devices for instance may demonstrate a combination of high-volume
and continuous or near-continuous communication with smaller packet sizes, which carry
sensor readings or status updates. In contrast, non-automated setups rely on human-initiated
communication, resulting in less regular and more varied traffic patterns, as they primarily
involve texts, images, and multimedia content.

On the other hand, the duration of traffic monitoring significantly impacts data analysis.
Longer monitoring periods yield more data, enhancing the ability to identify patterns
indicative of abnormal activity. Typically, it is recommended to monitor traffic for at least
several days to capture a broad spectrum of activities and likely potential irregularities.
Additionally, measuring network traffic volume, such as packets per minute, is another
important point. Large volumes of data transfer could indicate routine operations, which
might be considered normal in certain contexts or networks, yet it could also potentially be
indicative of malicious behavior. Conversely, low volumes with intermittent spikes might
suggest beaconing behavior as malware would communicate at predefined intervals. It is
important to note, however, that ‘predefined’ does not necessarily mean ‘every X minutes’, as
intervals could appear more random, especially if jitter or any other form of randomisation is
used.

Analysis of PCAP files involves identifying patterns and anomalies that deviate from the
typical behavior of network traffic. Protocols like DNS (Domain Name System) and HTTP
(Hypertext Transfer Protocol) hold significant relevance in the detection of beaconing
behavior due to their employment in both legitimate and malicious network communications.

Cyber adversaries frequently exploit DNS to secretly establish communications with C2
servers, thereby avoiding detection. This exploitation is facilitated by the use of DNS queries
and responses to create a camouflaged bidirectional communication channel, enabling data
exfiltration and the reception of commands from C2 servers. This method, often referred to as
DNS tunneling, exploits the fact that DNS traffic often bypasses firewalls and can carry small
data payloads. It poses detection challenges, as these packets blend seamlessly with legitimate

13

DNS traffic, thus requiring advanced analysis techniques to differentiate between harmless and
malicious activities.

It is worth mentioning that certain malware variants may employ so-called Domain
Generation Algorithms (DGAs) to dynamically generate a large number of domain names for 10

communication with C2. These domain names often seem random or nonsensical, making it
difficult for security systems to predict or block them. By generating domain names in real
time, malware can establish communication channels with C2 servers without using static,
easily identifiable domain names. Monitoring of DNS request patterns for irregularities may
help in the identification of such behavior. Notably, malicious DNS queries may not depend
on high traffic volumes to achieve their objectives, rendering volume-based detection
strategies insufficient. Instead, the periodic, regular nature of these queries —characteristic of
beaconing — emerges as a distinct indicator when observed over a duration, accentuating the
need for temporal analysis to detect and mitigate such threats effectively.

The payload carried by DNS queries is characteristically unencrypted, presenting an
opportunity for malicious actors to embed malicious code within these payloads. Despite the
potential for encryption to conceal such malicious content, its implementation can
inadvertently trigger suspicion from Intrusion Detection Systems (IDS) due to the distinctive
even distribution of bytes in the payload, a common trait of encrypted data. Consequently,
this aspect of DNS traffic becomes a critical vector for analysis, particularly the examination
of payload randomness.

Analysing the entropy, or a measure for randomness, of the DNS payload provides
valuable insights into the nature of the traffic. If high entropy is often indicative of encrypted
data, reflecting a random distribution of bytes, conversely, low entropy suggests a more
predictable and potentially structured payload, which could be indicative of regular,
unencrypted data or, in the context of cybersecurity threats, a sign of malicious activity.

Given the unencrypted state of typical DNS traffic, the detection of payloads with
unusually low entropy becomes a potential indicator of malicious intent. Malicious actors
aiming to avoid detection might opt for encoding mechanisms that do not exhibit the tell-tale
signs of encryption, such as high entropy, to blend in with legitimate DNS queries. Therefore,
the analysis of payload entropy in DNS traffic emerges as a strategic method for identifying
anomalies that deviate from expected patterns, providing a basis for identifying and
investigating potential security breaches. This approach underscores the nuanced balance
between the tactics employed by adversaries and the sophisticated detection methodologies
required to identify and counteract malicious activities within network communications.

In the course of this research, I collected my own data alongside two open-source
datasets to build a model for proofing the concept. Due to limited resources, I opted for a

 Dynamic Resolution: Domain Generation Algorithms, https://attack.mitre.org/techniques/T1568/002/, accessed 10

in April 2024

14

small dataset that is good enough to show the framework capabilities. Obviously, it does not
reflect the real-world scenario, as the dataset of such manageable size is a fraction of a
production environment.

2.1.1 Malicious part

The first open-source dataset, TII-SSRC-23 Dataset , contains both raw (PCAP) and 11

processed (CSV) data, systematically divided into malicious and benign categories. The
malicious segment of the dataset is organised into folders named after the specific types of
attacks they represent, such as Mirai , Denial of Service (DoS), and Brute Force, among 12

others. Within the scope of malicious traffic analysis, my specific attention is directed toward
the Mirai-botnet DNS and HTTP PCAP files, given their relevance to the research objectives.
What makes Mirai (and botnets in general) relevant to my interest in C2 communications is
that the compromised devices are controlled through a C2 server. The botnet receives
instructions from attackers via these C2 servers, coordinating the bots' actions, including
targeting and executing DoS attacks. This is a clear example of malware that relies on C2
communications for its functioning.

2.1.2 Benign part

The second open-source dataset, MQTTset , is composed of data from eight IoT 13

sensors operating on the MQTT (Message Queuing Telemetry Transport) protocol. These 14

sensors collect data across a variety of parameters, including temperature, light, humidity,
CO-Gas, motion, smoke, door status, and fan operation, each with distinct communication
intervals reflective of the varied behavior patterns among the sensors. The inclusion of
MQTTset complements the TII-SSRC-23 by offering insights into periodic communication
behavior typical of genuine IoT devices. I also partially include a benign portion of TII-
SSRC-23. It is organised by the nature of the traffic, such as audio, text, and background
traffic, thereby providing a diversified range of normal network activities for comparison and
analysis.

During the collection of benign data, I noted several key observations. Benign network
flows tend to have a longer duration, particularly in highly automated environments equipped
with IoT devices. Estimating the packets-to-flow ratio accurately is challenging, as this metric
varies depending on numerous factors, such as network configuration, the types of devices

 https://www.kaggle.com/datasets/daniaherzalla/tii-ssrc-23, accessed in March 202411

 What is Mirai? https://www.cloudflare.com/en-gb/learning/ddos/glossary/mirai-botnet/, accessed in March 12

2024

 https://www.kaggle.com/datasets/cnrieiit/mqttset?select=requirements.txt, accessed in March 202413

 https://mqtt.org/, accessed in March 202414

15

employed, and traffic volume. Consequently, gathering a substantial volume of benign flows to
balance effectively against the malicious data proved to be challenging.

However, it is important to underline that, despite some types of automated traffic
having extremely long flows (e.g., a few hundred flows per several million packets), this should
not be taken as an indicator that raw files with an extremely low flow-to-packets ratio are
necessarily benign. The complexity and variability of network traffic patterns mean that both
benign and malicious files can exhibit a wide range of flow characteristics. Thus,
comprehensive analysis and context-specific understanding are central for accurate
classification.

To obtain the missing portion of benign data, mostly to balance my malicious part, I
conducted a packet capture on my own home network, which includes a few IoT devices such
as a CCTV camera, a robot vacuum cleaner, a few garden sensors, and wifi-enabled pet
accessories. The capture was performed continuously over an 8-hour period, encompassing a
variety of protocols and capturing the typical traffic generated during a daily routine. This
capture aimed to reflect a realistic and diverse set of benign network flows, enhancing the
dataset's representativeness and balance against the malicious data.

2.1.3 Features Computation

After having collected the required PCAP files, I processed them as follows:

1. Flow Extraction
To analyse the network traffic, I extracted individual flows using the 5-tuple identifiers:

source IP, destination IP, source port, destination port, and protocol. Here's a detailed
explanation of each component and the extraction process:

Source IP is the IP address of the device that initiated the flow. It helps in identifying
the origin of the traffic within the network. Destination IP is the IP address of the device that
is the target of the flow. It indicates where the traffic is directed. Source port is a number
assigned to the session by the originating device. It helps in differentiating multiple flows
coming from the same source IP. Destination Port is a number assigned to the session by the
receiving device. It helps in directing the incoming traffic to the appropriate service or
application on the target device. Protocol refers to the network protocol used for the
communication (e.g., TCP, UDP, ICMP, etc). It provides an understanding of the nature of
the traffic and how the data is being transmitted.

2. Feature Calculation
Features in a dataset are individual measurable characteristics or properties, which are

used as input variables by models to make classifications or predictions. For each flow, I
computed the following features:

16

• mean_interval: Specifies the average time interval between packets in a flow. This
metric provides insights into the regularity and rhythm of communication patterns. A non-
zero mean might indicate periodic communication.
• std_dev_interval: Specifies the standard deviation of the time interval between

packets, indicating variability in the intervals. A very low or close-to-zero standard
deviation suggests an automated process.
• mean_payload_entropy: Specifies the entropy of the payload data, measuring the

randomness or unpredictability of the data content in packets. High entropy often
indicates encrypted or compressed data, while low entropy (1-4 bits) could suggest
structured data or potentially malicious payloads that avoid encryption to remain
undetected.
• mean_packet_size: Specifies the average size of packets within the flow.
• std_dev_packet_size: Specifies the standard deviation of packet sizes, showing how

much packet size varies within the flow. Low values of standard deviation indicate that
the packets are of similar size, which could be a sign of automated check-ins.
• label: Serves as a classification marker for the flow, where 1 indicates malicious and

0 indicates benign.
• mean_frequencies: Specifies the average frequency observed in the flow. Beaconing

might show a strong dominant frequency (high mean value) that corresponds to the
periodicity of the beacon signals.
• std_dev_frequencies: Specifies the standard deviation of the frequencies within a

flow. I would expect less variability in the frequencies, reflecting the regularity of signal
intervals. A lower standard deviation suggests that most of the packet intervals are around
a few dominant frequencies, reinforcing the possibility of beaconing.
Frequencies were calculated using the Fourier Transform, a mathematical technique that

transforms a signal from its original domain (often time or space) into a representation in the
frequency domain. The original signal consists of the time intervals between consecutive
packets. These intervals represent how often packets are sent over a network. After applying
FFT (Fast Fourier Transform), the signal is represented as a series of frequencies that show
how often certain patterns of packet timing repeat. Each value in the result of the FFT
corresponds to a specific frequency component of the packet timing. These components
indicate the presence of periodic patterns within the packet intervals. Each frequency value
corresponds to a different rate at which these patterns repeat, providing insight into the
regularity and potential periodicity of the network traffic.

Low frequencies often represent slower, more dominant patterns, possibly indicating
regular or periodic traffic patterns, while high frequencies can indicate more rapid changes in
packet intervals, potentially pointing to bursts of traffic or irregular activities.

17

2.2 Building a classifier

HGB is a machine learning method based on the gradient boosting algorithm. This
algorithm builds decision trees sequentially, one at a time, where each new tree is built to
predict residuals (errors) of previously built trees combined. The key components that define
how the algorithm optimises, learns, and integrates results from previous predictions are Loss
Function, Weak Lerner, and Additive Model.

Loss Function quantifies the difference between the predicted values and the actual
values. It essentially measures the error of a model on a dataset. After each round of
boosting, the algorithm evaluates the loss and uses its gradient (i.e., the first derivative of the
loss function) to determine the direction in which to update the model predictions.

The Loss function used in my model is binary cross-entropy loss (BCE). For a single
instance (data point or sequence) loss the formula would be the following:

,
where is the true label (0 or 1) and is the predicted probability of the class with label

1 (malicious).
There are many loss functions that can be used for training a classifier. BCE in my case

is well-suited for binary classification tasks, enabling the model to quantify the difference
between predicted probabilities and actual binary labels effectively. Since HGB builds decision
trees sequentially, during training it minimises the loss function over each individual
prediction.

Weak Learner is a simple model that does slightly better than random guessing but is
generally not very accurate by itself. In gradient boosting, decision trees are commonly used
as weak learners. The fundamental idea behind boosting is to combine multiple weak learners

L (y, ̂y) = − [y log(̂y) + (1 − y)log(1 − ̂y)]
y ̂y

18

Fig.1 Gradient Booster diagram

to create a strong learner. Each weak learner is trained to correct the errors of the preceding
ones. In each iteration, a new weak learner focuses on the instances that had the most error
for the previous models. Weak learners are typically shallow trees, sometimes only one level
deep. They have high bias but low variance. By combining multiple weak learners, boosting
aims to maintain low variance while reducing bias, which helps achieve a balance between
accuracy and generalisation (so-called ‘bias-variance tradeoff’). 15

Additive model in boosting refers to the way the final strong learner is constructed,
which occurs by sequentially adding weak learners to one another, rather than modifying
existing ones. Each new weak learner in the sequence is fitted to the residual errors made by
the previous model in the sequence. In mathematical terms, if is the model obtained

after the -th step, then the model at step is , where

is the new tree and is the learning rate, a hyper-parameter that scales the contribution of
each weak learner. It controls how 'fast' the model learns, with smaller values generally
leading to more robust models at the cost of requiring more trees.

HGB efficiency is built on the fact, that it incorporates histograms to speed up training 16

by evaluating unique values for optimal splits, thereby minimising split points and accelerating
training while conserving memory. Moreover, HGB operates effectively without data
normalisation and exhibits resilience to outliers in the dataset.

2.3 Adding a neural network

As already stated, beaconing activities involve regular and predictable communication
patterns. Detecting this involves identifying communications patterns amidst other network
traffic, which can vary greatly in volume and timing.

By focusing on the timing aspect of network communications, it is possible to more
accurately distinguish between legitimate automated traffic (like regular updates or backups)
and malicious beaconing activity. This specificity helps in reducing false positives, where
benign activities are incorrectly flagged as malicious.

Timing data becomes even more powerful when correlated with other metrics like
payload entropy, packet size, and traffic frequency. This multi-faceted approach amplifies the
accuracy of detecting beaconing activity by confirming suspicions that arise from timing
analysis with other indicators of compromise.

The second stage of the research augments the non-temporal feature set, specifically
focusing on time series analysis of the communication patterns. This involves adjusting the

Fm(x)

m m + 1 Fm+1(x) = Fm(x) + α ⋅ h(x) h(x)

α

 Understanding the Bias-Variance Tradeoff, https://towardsdatascience.com/understanding-the-bias-variance-15

tradeoff-165e6942b229, accessed in June 2024

 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu, 16

"LightGBM: A Highly Efficient Gradient Boosting Decision Tree," NeurIPS, 2017.

19

existing pipeline to accommodate the additional complexity of temporal data, which requires
sequence modeling to effectively capture and utilise the dynamic nature of the data.

By incorporating both non-temporal and temporal feature analysis, I aim to achieve a
more nuanced understanding and detection capability for identifying malicious network
activities, thereby enhancing the overall effectiveness of the cybersecurity measures deployed
to hold out against cyber espionage.

2.3.1 NN-Components

Before explaining the architecture of LSTM I would like to give a short overview of the
most important components used in a neural network.

Layers are the fundamental structural units in a NN architecture that process input data
and transform it through various computations. Each layer typically consists of nodes (or
neurons), which are connected by weights and biases that are adjusted during training.

Input layer is the entry point for data in the neural network. Each input layer node
corresponds to a feature in the input data. There are no computations performed in this layer;
it is used to pass the input data to the next layer.

Hidden layers perform the majority of the computations required by the network. There
are several types of hidden layers, but in my research, I focus on the combination of LSTM
and Dense Layer:

Long Short-Term Memory, or LSTM, is a type of recurrent neural network (RNN)
architecture designed to overcome the limitations of traditional RNNs in capturing long-term
dependencies in sequential data. LSTMs are composed of repeating modules of neural
network layers. Each module has three main components:

	 Forget Gate: This gate determines what information from the previous time step
should be discarded or “forgotten”. It takes as input the previous hidden state and the

current input , passes them through a sigmoid activation function, and outputs a vector of
numbers between 0 and 1. A value of 0 means "completely forget this information", while a
value of 1 means "remember this information".

	 Input Gate: This gate decides what new information should be stored in the cell state.
It consists of two parts: a sigmoid layer that decides which values to update, and a tanh layer
that creates a vector of new candidate values that could be added to the state. The sigmoid
layer outputs numbers between 0 and 1, determining which values to update, and the tanh
layer outputs numbers between -1 and 1, representing new candidate values.

	 Output Gate: This gate controls what information from the current cell state should
be output to the next hidden state. It takes as input the previous hidden state and the

current input and passes them through a sigmoid activation function. The cell state is
then passed through a tanh function to squish the values between -1 and 1. The output of the

h(t−1)

Xt

h(t−1)

Xt Ct−1

20

sigmoid gate is multiplied element-wise with the output of the tanh gate, resulting in the final
output for the current time step.

The cell state represents the long-term memory of the network. It runs straight down the
entire chain of LSTM units through time, with only minor linear interactions. The cell state
can be seen as the conveyor belt that carries information across different time steps. It is
updated and modified by the forget gate, input gate, and output gate, allowing the LSTM to
selectively add or remove information from the cell state at each time step.

The hidden state is a filtered version of the cell state that only contains relevant
information for the current prediction task. It can be thought of as the "short-term memory"
of the network. The hidden state is computed based on the cell state but is passed through
the output gate, which selectively exposes certain parts of the cell state while suppressing
others. The hidden state carries information that the network has deemed relevant for the
current prediction or classification task.

Dense Layer is a type of neural network layer where every input node is connected to
every output node. The “dense" in its name refers to the complete interconnection of nodes.
In simpler terms, in a Dense layer, the outputs from the previous layer are connected to every
neuron in the current layer.

Each neuron in a Dense layer performs a linear transformation on the inputs it receives,
which can be expressed as a dot product of the inputs and the weights plus a bias term. After
the linear transformation, an activation function is applied to each output. This activation
function can be nonlinear, such as sigmoid, tanh, or ReLU (Rectified Linear Unit). The
activation function is a mathematical operation applied to the output of a neuron in a neural
network, determining whether it should be activated or not, influencing the information flow
through the network. It introduces nonlinearity, enabling the network to learn complex
patterns and relationships in data. There are many activation functions available, I will focus
on the two, most relevant for my model:

ht

21

Fig.2 LSTM diagram

1. Sigmoid Activation Function: The sigmoid function, also known as the logistic
function, is a smooth, S-shaped curve that squashes input values between 0 and 1. It's given

by the formula:

It's commonly used in the output layer of binary classification models to produce
probabilities.

2. Tanh is another S-shaped curve that outputs values between -1 and 1. It's given by

the formula:

LSTM networks use both sigmoid and tanh activation functions in their layers to manage
and regulate the flow of information. The sigmoid function is used for gating mechanisms to
control the flow of information, while the tanh function is used to ensure that the values
added to the cell state and output are properly scaled and can represent both positive and
negative information. This combination has its complementary purpose that allows LSTMs to
effectively capture long-term dependencies and manage information flow through the NN.

2.4 Building a Pipeline

To build a pipeline I first convert the raw data of traffic captured in a PCAP file into a
CSV data frame which I then feed into my classifier. Raw data does not tell me much about
the probable presence of beaconing activity, it is just a collection of sequential packets within
a network recorded over a certain period of time. Therefore the first step in the preparation of
data is the computation of the metrics I discussed in Chapter 2.1.3 Features Computation.

After computing all necessary properties and saving them in a CSV file, I import the pre-
calculated CSV data into a Pandas DataFrame. I then preprocess the data to remove all NaN
values, which result from the computation of means for single-packet flows. Although some
machine learning classifiers can effectively handle NaN values, their presence might pose
challenges when used in NN.

The total number of NaNs eliminated from my dataset was just under 10%, which is
unlikely to significantly affect the dataset's integrity. Nevertheless, to ensure this step does
not damage the classifier's accuracy, I retained both versions of the dataset for further
experimentation with the model. Subsequent experiments showed that eliminating single-
packet flows from the dataset did not result in any drop in accuracy.

Next, I divide the dataset for training, testing, and validation purposes. Since I have a
two-stage approach where each model (HGBC and LSTM) should be trained separately, it is
necessary to avoid any so-called data leakage, which happens when the data used to train the
classifier overlaps with the data used to validate or test either the classifier or the LSTM.

I use the following strategy: first, I divide the entire dataset into a Development Set
(DS) and a Final Test Set (FTS). The DS is used to train the classifier and contains 60% of

f (x) =
1

1 + e−x

f (x) =
ex − e−x

ex + e−x

22

the data. The remaining 40% is set aside for the final testing of the complete pipeline. Next,
the DS is further split into Training (70%), Test (15%), and Validation (15%) subsets. This
split ensures that I can train, tune, and test the classifier without any data overlap with the
LSTM or the final test phase. The Training Set is used to train the classifier, the Validation
Set provides insights for tuning hyper-parameters to improve model performance, and the Test
Set is used to evaluate the classifier independently from the LSTM.

After training the HGBC and validating its performance, I use its output as input for the
LSTM model. I define two variables: y_pred, which contains the predicted labels for the final
test dataset X_final_test, and y_proba, which extracts the probability estimates for the
malicious class from the test predictions. This is useful for threshold-based classification and
further analysis.

Detecting beaconing activity using y_pred (class labels) might be more straightforward.
However, using y_proba (probability outputs) provides a richer input for the LSTM, as it
includes information about the model's confidence in each prediction. This additional
information can help the LSTM better capture subtle changes or uncertainties in the
communication patterns indicative of beaconing.

Using probabilities offers several additional benefits, particularly in providing a sense of
confidence about the predictions. This is especially useful in borderline cases, where the
distinction between categories is not clear-cut. Probabilities give a quantitative measure of
confidence. For example, if a model predicts an outcome with a probability of 0.95, it

23

Fig.3 HGBC-LSTM Pipeline

indicates a high level of confidence in that prediction. Conversely, a probability of 0.55
suggests low confidence, indicating that the model finds the decision to be a close call.

By observing how probabilities change over time, the LSTM can better identify patterns
suggesting beaconing, such as periodic spikes in the probability of the malicious class.

At the next step, I construct sequences from probability estimates and associate them
with the actual labels, which serve as input for my NN Model. A sequence is an ordered set of
data points grouped together as a single input feature to the model. These data points are
related and arranged in a specific order. In my case, these are values recorded over
consecutive time intervals or a series of events that occur one after another.

My given sequence length is set to 30, meaning the LSTM model will look at 30
consecutive flow classifications at a time, moving forward by 1 flow at each iteration, similar
to a sliding window. However, a file might have fewer flows than 30. In such cases, the sliding
window with a sequence length of 30 would be too large for the file. To handle this, I use
padding. This approach allows files with fewer flows to be padded with zeros to match the
required sequence length, ensuring that all flows are of uniform length for input into the
LSTM model.

The sequences are used as input to the LSTM, which attempts to identify patterns in
these sequences. For example, it might learn that certain combinations of benign and
malicious flows suggest a larger security threat.

The importance of sequence data lies in the temporal or logical relationship between
data points. This relationship can provide context that helps a model make more accurate
predictions than if the data points were considered independently. In the context of beaconing
detection, a sequence should ideally cover enough packets to potentially include several cycles
of beaconing activity to capture the periodicity. The length of the sequence is a critical
attribute and needs to be determined empirically. There is also a computational constraint,
where longer sequences can increase both the model's complexity and the computational
power required to train and run the model.

Since the number of flows per PCAP file may vary significantly, the sequence length
needs to be flexible enough to handle files on the smaller end without losing too much
information on larger files. Therefore I consider the typical dynamics within a flow. If key
patterns or malicious behavior manifest over shorter sequences within a flow, a shorter
sequence length may capture these effectively. Conversely, if malicious activities are spread out
or require a broader context, longer sequences might be necessary.

Once the LSTM is trained with HGBC output, I evaluate its performance on new unseen
data. This process helps in understanding the accuracy of the trained LSTM model when
applied to data it has not encountered before. This final evaluation tests the entire model
pipeline — from initial classification to sequential processing by the LSTM — reflecting
application performance similar to a real-world case.

24

3. Results

3.1 Preparatory information

To sum up, for this study I have developed a two-stage HGBC-LSTM framework to
predict malicious flows indicative of beaconing activity based on the features discussed in
Chapter 2.1.3 Features Computation and time-series data collected from a variety of sources
(as discussed earlier in Chapter 2.1 Building a Dataset).

The dataset comprises 12’447 instances, split into 60% development, and 40% final test
sets, while development is further split into 70% train, 15% validation, and 15% testing
segments. This split technique provides 42% of the total samples for training purposes which
corresponds to 5’228 samples, and 9% of the total (1’120 samples) for validation and testing
each. The final test set (4’979 samples) is used for testing the entire pipeline.

The LSTM model was configured with two hidden layers with 50 units each and trained
using the Adam optimiser over 10 epochs. Model performance was primarily evaluated using
accuracy and loss metrics, chosen to balance the need for predictive power and
interpretability. I ran my model on an Apple M1 Max GPU using Python 3.9, Sci-kit Learn
1.3.1, and Keras 2.14.0. My results should be reproducible within similar environments.

25

Fig.4 Accuracy report on HGBC

3.2 Training

3.2.1 Intermediate results: HGBC

After training the HGB-classifier I have obtained the following results: Fig. 4 shows a
standard accuracy report with some important metrics, where precision shows the accuracy of
positive predictions; recall shows how well the model identifies actual positives; and f1-score
shows a ratio of precision and recall combined. Support shows a number of flows identified
per each class.

These results suggest that the model is performing very well and generalising effectively
across unseen data. Both the test (98.66%) and validation (99.11%) accuracies are excellent,
indicating that the classifier is effective at distinguishing between the two classes.

The precision and recall values are nearly perfect, which means that the classifier not
only labels a high proportion of positive samples correctly (precision) but also labels the most
positive samples correctly identified by the classifier (recall).

The f1-scores, which balance precision and recall, are close to 1, suggesting a balanced
classifier that doesn’t overly favour precision at the expense of recall or vice versa.

The training speed of the classifier on a subset of 5,228 samples is 0.654 seconds.
Several factors contribute to this quick training time. The dataset is relatively small for
modern machine learning tasks, which inherently requires less computation. The features used
are numeric and relatively straightforward, which simplifies the processing. The HGBC is
designed for speed and is particularly suitable for larger datasets, making it efficient even with
smaller datasets. Additionally, the data is clean and the features are preprocessed efficiently,
which reduces overhead during training. The hardware used also plays its role in speeding up
the training process.

3.2.2 Final results: HGBC-LSTM

The HGBC-LSTM model demonstrated a slightly better accuracy of 99.35% and a loss
of 2.8% over 10 epochs if compared with the HGBC on a standalone basis.

Initially, the loss starts at 0.5479 and rapidly drops to 0.2196 by the second epoch,
indicating significant learning between the first and second epochs. Afterward, the loss
continues to decrease at a diminishing rate until it stabilises around 0.03. This pattern
suggests that most learning occurs in the early epochs, with the model quickly converging to
an optimal solution.

The accuracy, starting from the initial epoch, quickly reaches approximately 99.39%,
stabilising around 99.35% to 99.39% for the subsequent epochs. This high level of accuracy

26

indicates that the model is highly effective in correctly classifying the given sequences
according to the dataset.

The model reaches low loss and high accuracy relatively quickly, which is a positive sign
of its effectiveness. However, this could also suggest that the task may be somewhat
straightforward for the model given its architecture, or that the model is extensively benefiting
from easily learnable patterns in the data.

The stabilisation of loss and accuracy in later epochs indicates that continuing training
beyond 10 epochs might not yield significant improvements under the current configuration

27

Fig.6 HGBC-LSTM training results

Fig. 5 Training Loss and Accuracy Plots

and data. This suggests that the model's capacity and the complexity of the task are well-
matched. The model's accuracy on the final test set is very close to the accuracy observed
during training, suggesting that the model generalises well to new, unseen data. This also
indicates that the model is not significantly overfitting.

As described above, both the HGBC and HGBC-LSTM models demonstrate excellent
performance. The HGBC-LSTM combination shows just a slight improvement over the HGBC
alone. This slight improvement highlights the effectiveness of integrating the two models’
architecture, as the HGBC provides solid initial predictions, and the LSTM leverages temporal
patterns and probability estimates for further refinement. The combined approach allows the
system to capture both static and dynamic features of the data, resulting in a more nuanced
and accurate classification. This synergy between machine learning and neural networks
underscores the potential benefits of hybrid models in complex pattern recognition tasks.

3.3 Simulating beaconing

To test my model on previously unseen data, I need to generate beaconing traffic, inject
it into my network, and capture the resulting data for the model evaluation.

This process involves several steps and can be accomplished using various tools and
techniques. For my setup, I use Kookarai , a penetration testing Linux virtual machine, which 17

I have already preinstalled on one of my laptops.

Since the Kookarai Virtual Machine (VM) comes equipped with several tools for
cybersecurity professionals, I make use the Metasploit penetration testing framework for 18

beaconing generation. The Metasploit framework is a powerful tool that can cause harm if not
used diligently; for ethical reasons, I do not disclose the exact commands in this paper.

The idea behind the beaconing simulation is similar to what I discussed in section
Introduction 1.1 What is Beaconing? To simulate a C2 server I first configure a Metasploit
handler on my VM. I use a reverse HTTP payload, which creates a reverse connection back to

 Kookarai https://kookarai.idocker.hacking-lab.com/, accessed in May, 202417

 https://www.metasploit.com/, accessed in May, 202418

28

Fig.7 Simulating C2 server with Metasploit

the handler. Here LHOST is set to my VM IP address, and LPORT is the connection port
that the handler will be listening on. The handler's role is to manage the connection initiated
by the payload, which in a real-world attack would be the compromised system calling back to
the attacker's server.

In a real-world scenario, a malicious actor would then create a payload designed to be
installed on the victim’s system using various techniques, such as ARP spoofing , phishing, or 19

exploiting software vulnerabilities. Once installed, this payload would establish a connection to
the C2 server, allowing the attacker to control the victim's system remotely. However, for
testing purposes, I take a simpler approach to avoid the complexity and ethical concerns of
using real malware. I write a Python script that simulates the beaconing process. This script
sends periodic HTTP GET requests to my VM host every 30 seconds. It is also designed to
print the status code of the response to confirm that the beacon check-in has been sent,
where a status code of 200 would indicate a successful transmission. By running this script on
a separate laptop, I can simulate the behavior of an infected machine communicating with a
C2 server.

While my script is running, I capture traffic on my “victim” laptop using Wireshark. Due
to time constraints, I do not plan to capture traffic over several days, as my script is made to
send a signal every 30 seconds. I only need to generate enough data to run my model (despite
that the model’s design allows a low number of flows per file I would not try to do it with less
than 30 flows due to the necessity to recognize patterns). After some time, I obtain a PCAP
file containing a total of 25,058 packets. To ensure that my network traffic capture includes

 “A hacker sends fake ARP packets that link an attacker's MAC address with an IP of a computer already on the 19

LAN.”, https://www.okta.com/identity-101/arp-poisoning/, accessed in June, 2024

29

Fig.8 Filtered network capture

sufficient relevant data, I filter out only packets containing the malicious payload, resulting in
277 packets. Within these filtered packets, I observe communication with the VM and status
code 200 for the GET requests, confirming that the beaconing generation was successfully
captured as expected.

It is important to note that the beaconing simulation used in this study is intentionally
simple and direct, designed purely for testing purposes. In a real-world scenario, such
communication would be much harder to detect by merely inspecting the filtered PCAP file.
The straightforward nature of this simulation does not capture the complexity employed in
actual cyberattacks. Real-world beaconing often uses various obfuscation techniques, such as
encrypted traffic, randomised intervals, and blending in with legitimate traffic, substantially
complicating detection efforts.

Moreover, real-world penetration testing should incorporate a more sophisticated
beaconing simulation. Such simulations should closely mimic actual attack scenarios, including
the use of advanced evasion techniques, to thoroughly test and validate the model's
effectiveness. By simulating attacks that are as realistic as possible, researchers can better
assess the model's capabilities and ensure it is solid enough to handle the nuanced and
intricate nature of genuine cyber threats.

3.4 Wireshark Analysis

An important preliminary step before performing inference testing on unseen data is an
analysis of PCAP files. This analysis may be conducted in many ways, using tools like
Wireshark or tcpdump, or writing scripts with help of libraries for traffic capture analysis. 20

This initial step helps to understand the data and provides an overview of the patterns of
network traffic, which has its critical importance before inputting this data into an HGBC-
LSTM model for further analysis.

For the inference phase, I have a collection of 4 PCAP files (file1.pcap, file2.pcap,
file3.pcap, file4.pcap). The first three files each contain 10’000 packets and were provided for
blind testing with the acknowledgement that two of them intentionally include beaconing

 For instance, Scapy, “a powerful Python-based interactive packet manipulation program and library.” https://20

pypi.org/project/scapy/, accessed in May, 2024

30

Fig.9 Example of filtering NXDOMAIN responses on malicious traffic capture

injections, but without specifying which ones exactly. The fourth file was obtained during the
beaconing simulation experiment discussed earlier in Chapter 3.3 Simulating beaconing.

Further analysis and inference will be performed on these four network capture files to
evaluate the model's ability to detect beaconing activity. The goal is to determine which of
the provided files contain the beaconing injections by leveraging the patterns and insights
derived from the training data.

As mentioned in the Chapter 1 Introduction, malware often employs DNS queries for
beaconing purposes. Therefore to determine if my files 1 to 3 exhibit any signs of malicious
activity, the first step I take is to filter the traffic capture for NXDOMAIN DNS responses,
that occur when a DNS query is made for a domain that does not exist. Malware, particularly
those utilising beaconing techniques, frequently generates random domain names for DNS
queries in an attempt to locate and communicate with C2 servers. By identifying and
analysing these NXDOMAIN responses, I can obtain input on potential malicious activity
within the provided network traffic.

For instance, looking at the filtered file1.csv I see a few NXDOMAIN responses in the
traffic capture, with two of them being repeated. Repeated queries often indicate an
automated process, but based on this screenshot alone, I cannot definitively conclude that
these connections are malicious. There are several potential reasons for these repeated
queries. Firstly, the application or service attempting to resolve the domain might be
configured to automatically retry upon failure. If the domain continuously resolves to
NXDOMAIN, the retry could be a built-in response to attempt reconnection or re-resolution.
Secondly, a benign automated process might be running on the system, attempting to access
a download repository, but for some reason is incorrectly formatted or using a broken URL.

Two domains (https._tcp.download.docker.com, https._tcp.packages.microsoft.com)
appear to be legitimate services related to Docker and Microsoft. However, the use of service
records (SRV _https._tcp) in these queries is rather atypical for normal operations of
fetching packages or updates. This unusual behavior could be a result of misconfiguration, on
the other hand, it could also be an attempt to mimic legitimate traffic for evil-minded
purposes. Typically, when systems fetch updates or download software packages, they use
standard DNS queries that resolve to A or AAAA records as pictured in Fig.10. The presence
of SRV queries in this context raises a red flag, suggesting that further investigation is

31

Fig.10 Example of legitimate DNS queries

necessary to determine the intent behind these queries and ensure they are not part of any
malicious activity.

Out of the three files I have checked, only file1.pcap and file2.pcap contain NXDOMAIN
responses, which might indicate some suspicious connections. Therefore, my particular
attention will be concentrated on these first two files to further investigate and analyse the
potentially malicious activity indicated by these responses.

3.5 Inference

3.5.1 HGBC

First, I present intermediate results from the ML classifier. These results provide valuable
insights and can be used independently or in conjunction with the LSTM model. While they
may not represent the final outcome, they already indicate the direction and effectiveness of
the initial classification process.

For file1.csv, the model identified 68 benign flows and 3 malicious flows. While it is
challenging to match these detections directly to the PCAP data, this rough estimate
indicates that the classifier was able to detect the beaconing activity.

In contrast, file2.csv, which contains three times more flows than file1.csv, showed 340
benign flows and 51 malicious flows, representing approximately 13% of the total flows. This
higher proportion of detected malicious flows further demonstrates the classifier's effectiveness
in identifying beaconing activity amidst regular network traffic.

32

Fig.11 HGBC accuracy report

As expected, file4.pcap contained the beaconing activity generated during the simulation
experiment. The classifier successfully identified the periodic requests and the corresponding
responses, validating its accuracy against the known data.

Additionally, a strong sign of validation can be observed in the classifier's performance
on file3.csv, which contains only benign traffic. The classifier detected zero malicious flows in
file3.csv, indicating its accuracy and reliability in distinguishing between benign and malicious
communication patterns. This result underscores the model's capability to accurately identify
beaconing activity without generating false positives in a benign dataset.

These intermediate results suggest that the HGBC on a standalone basis is effective in
distinguishing between benign and malicious traffic. This indicates that the HGBC can be
reliably used on files with a similar volume of flows, providing accurate detection of beaconing
activity without falsely flagging benign traffic. This capability is important for ensuring the
reliability of the classifier in practical network applications.

3.5.2 HGBC-LSTM

The full model successfully detected malicious sequences in all three files with beaconing
injections: file1.pcap, file2.pcap, and file4.pcap from the simulation. Specifically, in file1.csv,
the model identified 2 malicious sequences out of 42, resulting in a malicious rate of 4.76%
flows in the file. In file2.csv, it detected 48 malicious sequences out of 362, with a malicious
rate of 13.26%. In file4.csv, the model found 9 malicious sequences out of 161, yielding the
malicious rate of 5.59%.

As for the file3.pcap, the only benign file available for the testing, the model did not find
any suspicious sequences which verifies the intermediate output results.

The HGBC-LSTM results demonstrate marginal deviation from the results when HGBSC
is used on a standalone basis, just adding some additional accuracy to the prediction. The
sequences analysed, each with a length of 30 flows, ensure that temporal dependencies and
repetitive patterns can be effectively captured.

33

Fig.12 HGBC-LSTM results on unseen benign file

These findings illustrate the high productivity of the framework structure suggested for
this study. The initial results from the classifier were already promising, showing the model's
capability to identify malicious activity. However, incorporating the LSTM further enhances
this accuracy, leveraging its strength in capturing temporal relationships and improving the
model's overall performance. The combination of the Histogram Gradient Booster Classifier
and the LSTM neural network ensures that the model not only achieves high accuracy in
controlled environments but also maintains its effectiveness in more complex and varied real-
world scenarios. This improved accuracy underscores the potential of the model to be
integrated into Network Intrusion Detection and Response systems or other security toolsets,
significantly advancing cybersecurity measures.

34

Fig.13 HGBC-LSTM results on unseen malicious files

4. Conclusion

4.1 Model Complexity

Complex models tend to be more prone to overfitting, especially when trained on
relatively small datasets. Overfitting occurs when a model learns the noise in the training data
instead of generalising from the patterns. This can lead to excellent performance on training
data but poor performance on unseen data.

However, the use of a more complex HGBC-LSTM model may still be justified under
certain conditions. The combination of HGBC (Hierarchical Gradient Boosting Classification)
and LSTM (Long Short-Term Memory) can model complex non-linear relationships and
temporal dynamics in the data more effectively than either approach alone. If the underlying
data structure is complex or if there are interactions across time steps that are critical for
prediction, the additional complexity of the LSTM may provide substantial benefits.

While the dataset currently used for training consists of just over 12,000 samples, this
may not sufficiently challenge the model's capacity to generalize. In scenarios where the
model is expected to handle more varied and larger datasets, the robustness provided by the
HGBC-LSTM combination could prevent performance degradation. The LSTM component
excels at capturing temporal dependencies, making it suitable for modeling the sequential
nature of network traffic, while HGBC can effectively handle non-linear relationships and
feature interactions.

Moreover, in cybersecurity, where the patterns of malicious activity can be subtle and
distributed over time, the ability to model these temporal dynamics is central. The HGBC-
LSTM model's capacity to learn from sequential data and adapt to complex patterns
enhances its potential for accurate beaconing detection. Ensuring the model's strength and
performance on larger, more diverse datasets will be essential for its successful deployment in
real-world environments. This approach aims to strike a balance between model complexity
and generalization, leveraging the strengths of both HGBC and LSTM to build a powerful and
reliable detection system.

4.2 Limitations of the study

The insufficiency of real-world data in cybersecurity is primarily due to concerns about
privacy and security. Organisations are often reluctant to share data because it can contain
sensitive information about their networks, operations, and vulnerabilities. Sharing such data
could potentially expose them to further attacks or legal liabilities. Additionally, there are
often regulatory and compliance constraints that limit the extent to which data can be
shared, particularly in sectors like finance and healthcare where data protection laws are strict.

35

Another reason is the inherent difficulty in capturing and labeling cybersecurity data.
Cyber attacks are complex and vary in nature, making it challenging to create comprehensive
datasets that accurately reflect the diverse threat landscape. Furthermore, much of the
valuable data resides within private networks and is not accessible to the broader research
community.

These factors contribute to a lack of publicly available, high-quality datasets, which
hinders the development and testing of advanced cybersecurity models. Researchers and
practitioners must often rely on simulated data or small, anonymised datasets, which may not
fully capture the complexities of real-world cyber threats.

The significant testing and evaluation of my model were limited due to several reasons.
Firstly, there were time constraints that restricted the duration available for comprehensive
testing. This limited timeframe meant that not all possible data flows and scenarios could be
thoroughly evaluated. Additionally, there were resource limitations, both in terms of
computational power and manpower, which further constrained the ability to conduct
extensive trainings and tests. These limitations obstructed the ability to evaluate the model
on varied data comprehensively, potentially affecting the durability and generalisability of the
model's performance across different scenarios.

4.3 Application

Combining the HGBC-LSTM model with traditional anomaly detection methods such as
statistical analysis, rule-based systems, or clustering algorithms, creates a hybrid detection
system that leverages the strengths of both approaches. This hybrid system can improve
overall detection capability and reduce false positives by using the HGBC-LSTM model’s
advanced learning algorithms to identify complex patterns in network traffic indicative of
beaconing activity, while traditional methods provide a foundational layer of anomaly
detection. For example, in a corporate network, this system could more accurately detect
subtle, sophisticated beaconing attempts by APTs that might otherwise be missed or flagged
incorrectly.

One of the possible scenarios for integration of the HGBC-LSTM model in a real-time
detection and response system might look as follows: first, network traffic is continuously
monitored, and packets are captured at regular random intervals to ensure a comprehensive
representation of the traffic over time. These captured packets are saved in PCAP files. These
batches are then fed into the HGBC-LSTM model for analysis. The model evaluates the
processed data against predefined thresholds, and if the output exceeds the set threshold, it
indicates potential malicious activity or an anomaly. Upon detecting an anomaly, the system
triggers an alert. This alert can notify security personnel, activate automated response
mechanisms, or initiate further investigative procedures. The entire process, from packet

36

capture to alert triggering, could be automated using for instance tools as Cron, a Unix-based
scheduling utility that automates the execution of scripts or commands at specified intervals.
Cron scheduling may very well employed in combination with a Python script and libraries
suitable for network traffic analysis (scapy, tshark, tcpdump, etc) or with any of the available
network automation frameworks.

One of the key advantages of the HGBC-LSTM model is its modularity. The
intermediate results from the HGBC can be utilised independently, providing valuable insights
into the classification process before the LSTM component is applied. This modularity allows
for flexible integration into different stages of the detection pipeline, enabling security teams
to leverage the classifier’s output for preliminary assessments or as part of a more extensive
analysis framework. Additionally, the HGBC-LSTM model boasts a fast training speed,
significantly reducing the time required to deploy updates and retrain the system in response
to emerging threats. This rapid training capability ensures that the detection system remains
up-to-date and effective against the latest beaconing techniques, providing a powerful and
adaptive defense mechanism for real-time security applications.

This model framework is not limited to security applications; it also holds potential for
tasks involving pattern recognition and pattern matching due to the high adaptability of its
architecture. To apply the framework to new tasks, one needs to adjust the preprocessing
steps where the raw data is converted into a data frame format specific to the new domain.

For example, in network performance monitoring, the model could be used to detect and
predict network congestion by identifying patterns indicative of congestion versus normal
traffic flow. In Quality of Service (QoS) management, it could analyse traffic patterns to
classify traffic as either meeting QoS requirements or not, thereby ensuring optimal bandwidth
allocation and minimising latency.

In network anomaly detection (which also covers misconfigurations, and might not be
malicious per se), the framework can identify unusual traffic patterns by classifying them as
either normal or anomalous, helping to spot configuration issues. Additionally, in network
usage analytics, the model can be used to classify user behavior patterns as either typical or
atypical, assisting in optimizing network resources.

Lastly, for network traffic classification, the model can distinguish between different types
of traffic based on predefined categories, classifying them as either belonging to the expected
category or not. This helps ensure the efficient handling of various data streams.

Overall, the flexibility and adaptability of this binary classifier model framework make it
a valuable tool for enhancing network management and optimisation across a variety of
applications within computer network traffic.

37

4.4 Requirements

The HGBC-LSTM model meets a variety of functional and non-functional requirements,
which are central for its effectiveness and reliability in real-world applications. Among
functional requirements, I would like to name a few:

1. Real-time Detection, where the model can analyse network traffic data in real-time to
identify beaconing activities swiftly.

2. Integration with Existing Systems, specifically integration with existing security
infrastructures such as SIEM, IDS, SOAR, and firewalls.

3. Adaptability as it is able to adapt to new types of beaconing activities and update its
detection capabilities accordingly.

The model also successfully satisfies some non-functional requirements such as:
1. Performance (as in speed), as the model processes data and generates results quickly,

with minimal latency to ensure real-time detection and response.
2. Scalability, as it can handle large volumes of network traffic and scale according to

the organisation's size and network complexity.
3. Accuracy, as it drastically minimises false positives and false negatives , ensures that 21

genuine threats are detected while benign activities are not incorrectly flagged.
4. Maintainability: The model is easy to update and maintain, with straightforward

procedures for retraining and integrating new threat intelligence.
5. Efficiency: The model is resource-efficient due to utilising the Histogram gradient

booster algorithm for intermediary results, it uses computational resources effectively to
avoid overloading the network infrastructure.

Overall, the HGBC-LSTM model demonstrates its ability to effectively enhance an
organisation's cybersecurity, providing effective and adaptive defense mechanisms for the
detection and mitigation of beaconing activities across various sectors, thereby bolstering the
overall security disposition of organisations.

4.5 Future Steps and Recommendations

To better leverage the complexity of the HGBC-LSTM model, I recommend augmenting
the dataset with more diverse and extensive data, including encrypted traffic, jittered signals,
and other obfuscated communication types.

Adversaries often employ various techniques to conduct beaconing discreetly. The most
relevant techniques include but are not limited to:

 according to the accuracy reports, discussed in the Chapters 3.2 Training and 3.5 Inference21

38

• DGAs, that generate numerous domain names for C2 servers, complicating the
blocking of malicious traffic.
• Fast Flux, a technique that rapidly changes the IP addresses associated with domain

names to evade detection and takedown efforts.
• DNS Tunnelling, which helps encode data in DNS queries and responses to create a

hidden communication channel.
• HTTP/HTTPS Tunnelling, that allows hiding malicious communication within

standard web traffic.
• Steganography, when data is embedded within legitimate files or images to conceal

beaconing signals.
• Packet Fragmentation, that breaks up the payload into smaller packets to avoid

detection by IDS/IPS systems.

Ideally, the training dataset should have a volume of over 1 million flows. This would
significantly help in evaluating the true benefit of the complex model architecture under more
challenging conditions, ensuring its steady performance and generalisability.

I suggest the unseen data be obtained over a longer period of time to capture a
comprehensive view of network activity. It should ideally include traffic data from different
times of the day continuously recorded over longer periods of time, during various days of the
week, and even account for seasonal- or festive-related traffic changes if necessary. This
approach ensures that the dataset reflects the specific patterns and anomalies of the network,
providing a more accurate representation of its normal and abnormal behavior. Collecting data
over an extended period will help identify sequencing and any cyclical changes that might
occur. Additionally, it is important to consider special events, holidays, and other factors that
may impact network traffic. By encompassing these variables, the dataset will be more durable
and effective for training and testing the model, ultimately leading to better performance and
reliability in real-world applications.

I would also recommend developing a framework for incremental learning where the
model can continuously learn from new data without needing complete retraining. This can
help in maintaining the model’s accuracy and relevance over time as network patterns evolve.

39

Academic Vocabulary

Beacon - (in cybersecurity) a signal sent by malware or a compromised device to an
external server.

BCE - or Binary Cross-Entropy, a loss function used for binary classification tasks,
measures the difference between predicted outcome and actual label.

Bias - (in machine learning) is a type of error where certain aspects of a dataset are
given more emphasis or representation than others.

Cell State - a component of Long Shirt-Term Memory neural network, that carries and
updates information over time, allowing the network to maintain long-term dependencies.

Entropy - a measure for randomness, unpredictability (here: payload entropy shows how
uneven byte distribution is)

Flow - sequence of data packets transmitted across a network from a source to a
destination, involving various stages such as packet creation, routing, forwarding, and
reception.

Gradient Boosting - a machine learning algorithm that constructs sequential trees and
aggregates their predictions

Hidden State - (in neural networks) a set of values that capture and maintain
information about past inputs to inform current and future predictions.

Long Short-Term Memory - is a recurrent neural network (RNN) architecture commonly
used in deep learning for its ability to capture long-term dependencies, making it particularly
well-suited for sequence prediction tasks.

Network protocols - a set of rules that define how connected devices communicate across
a network to exchange information efficiently and securely.

Outliers - data points that significantly differ from others
Packet - a smallest data unit that traverse through a network
Variance - (in machine learning) variability in model predictions, indicating how much

the ML function's output can change based on different datasets. High variance typically
arises in highly complex models with a large number of features.

Disclaimer
This report has been proofread with the assistance of ChatGPT.

40

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://openai.com/chatgpt/&ved=2ahUKEwi82surs9aGAxUE_rsIHRKsD50QFnoECA4QAQ&usg=AOvVaw1ZumOaGlg5o8_PrNzZDmeO

	Acknowledgements
	Abstract
	Management Summary
	Introduction
	Methods
	Results
	4. Conclusion
	Academic Vocabulary

