
API Security Lab

Bachelor Thesis
Documentation

Department of Computer Science
OST – University of Applied Sciences

Campus Rapperswil-Jona

Spring Term 2024

Authors Corsin Salutt
Thajakan Thirunavukkarasu

Advisor: Ivan Bütler
External Co-Examiner: Dr. Benjamin Fehrensen
Internal Co-Examiner: Prof. Dr. Frieder Loch

Contents

I Abstract 1

Acronyms 6

Glossary 8

II Technical report 9

1 Introduction 10
1.1 Initial situation . 10
1.2 Project scope . 10
1.3 OST Hacking-Lab . 11

2 Research 12
2.1 API and history . 12

2.1.1 Definition . 12
2.1.2 What is an API? . 12
2.1.3 Simple Object Access Protocol . 12
2.1.4 Web Services Description Language 13
2.1.5 API styles . 13

2.2 API Security in context . 14
2.2.1 Information security . 14
2.2.2 Network security . 15
2.2.3 Application security . 15

2.3 Identifying threats . 15
2.4 Defensive mechanism . 16
2.5 Token-based authentication and OAuth 2.0 17

2.5.1 Token-based authentication . 17
2.5.2 OAuth2 . 18
2.5.3 OAuth scopes . 19
2.5.4 OAuth grant types . 19

2.6 OpenID Connect . 21
2.7 Microservice . 21

i

2.8 OWASP Top 10 API Security Risks 2023 22
2.8.1 Broken Object Level Authorisation 22
2.8.2 Broken Authentication . 22
2.8.3 Broken Object Property Level Authorization 22
2.8.4 Unrestricted Resource Consumption 23
2.8.5 Broken Function Level Authorization 23
2.8.6 Unrestricted Access to Sensitive Business Flows 23
2.8.7 Server Side Request Forgery . 23
2.8.8 Security Misconfiguration . 23
2.8.9 Improper Inventory Management 24
2.8.10 Unsafe Consumption of APIs . 24

3 Lab evaluation 25
3.1 Approach . 25
3.2 Lab idea taxonomy . 25
3.3 Lab idea collection . 26

3.3.1 Lab ideas . 26
3.3.2 OAuth2 vulnerabilities . 30

3.4 Decision matrix . 32
3.4.1 Criteria . 32
3.4.2 Outcome . 35

4 Proof of concept 36
4.1 Lab PoC: API enumeration and reconnaissance 36

4.1.1 Objectives . 36
4.1.2 Prerequisites: . 36
4.1.3 Equipment/Software . 36
4.1.4 Setup steps . 37
4.1.5 Successful PoC . 38
4.1.6 PoC status . 38

4.2 Lab PoC: Implementing logging . 41
4.2.1 Objectives . 42
4.2.2 Prerequisites . 42
4.2.3 Equipment/Software . 42
4.2.4 Setup steps . 42
4.2.5 Successful PoC . 43
4.2.6 PoC status . 43

4.3 Lab PoC: OWASP Coraza WAF . 46
4.3.1 Objectives . 46
4.3.2 Prerequisites . 46
4.3.3 Equipment/Software . 46
4.3.4 Setup steps . 46
4.3.5 Successful PoC . 47
4.3.6 PoC status . 47

ii

4.4 Lab PoC: OAuth2 vulnerabilities . 48
4.4.1 Objectives . 48
4.4.2 Prerequisites . 48
4.4.3 Equipment/Software . 48
4.4.4 Setup steps . 48
4.4.5 Successful PoC . 49
4.4.6 PoC Status . 49

4.5 Lab PoC: Implementing API rate limiting and throttling 50
4.5.1 Objectives . 50
4.5.2 Prerequisites . 50
4.5.3 Equipment/Software . 50
4.5.4 Setup steps . 51
4.5.5 Successful PoC . 51
4.5.6 PoC Status . 51

4.6 Lab PoC: Implementing input validation and sanitization 52
4.6.1 Objectives . 52
4.6.2 Prerequisites . 52
4.6.3 Equipment/Software . 52
4.6.4 Setup steps . 52
4.6.5 Successful PoC . 53
4.6.6 PoC Status . 53

5 Lab documentation 57
5.1 Lab structure . 57
5.2 Lab access . 58
5.3 Generic Hacking-Lab resources . 58

5.3.1 Dynamic nginx Multi-Docker . 58
5.3.2 Theia Web IDE . 59

5.4 API Security: API enumeration and reconnaissance 60
5.4.1 Descriptive information . 60
5.4.2 Lab development . 61
5.4.3 Lab solution . 62

5.5 API Security: Implementing logging . 63
5.5.1 Descriptive information . 63
5.5.2 Lab development . 64
5.5.3 Lab solution . 65

5.6 API Security: OWASP Coraza WAF . 66
5.6.1 Descriptive information . 66
5.6.2 Lab developement . 67
5.6.3 Lab solution . 69

5.7 API Security: OAuth2 vulnerabilities . 70
5.7.1 Descriptive information . 70
5.7.2 Lab developement . 71

iii

5.7.3 Lab solution . 73
5.8 API Security: Rate limiting . 74

5.8.1 Descriptive information . 74
5.8.2 Lab developement . 75
5.8.3 Lab solution . 78

5.9 API Security: Input validation and sanitization 79
5.9.1 Descriptive information . 79
5.9.2 Lab development . 80
5.9.3 Lab solution . 81

6 Quality Measures 82
6.1 General lab requirements . 82
6.2 Test concept . 82

6.2.1 Roles and responsibilities . 83
6.3 Defined test cases . 84

6.3.1 Test cases: API enumeration and reconnaissance 84
6.3.2 Test cases: Implementing logging 85
6.3.3 Test cases: OWASP Coraza WAF 86
6.3.4 Test cases: OAuth2 vulnerabilities 88
6.3.5 Test cases: Rate limiting . 90
6.3.6 Test cases: Input validation and sanitisation 92

6.4 Public testing . 94
6.4.1 Tools . 94
6.4.2 Questions . 95
6.4.3 Overall feedback . 95
6.4.4 Feedback improvements . 96

7 Results 98

8 Conclusion and outlook 99
8.1 Conclusion . 99
8.2 Outlook . 99

iv

Part I

Abstract

1

Abstract

APIs (Application Programming Interfaces) are integral to modern software develop-
ment and digital transactions, facilitating communication and data exchange between
diverse systems. However, their widespread use has made them prime targets for cyber-
attacks. Many APIs are developed rapidly without sufficient security measures, leading
to vulnerabilities such as weak authentication, data exposure, inadequate logging, and
poor error handling.The bachelor thesis aims to develop labs in API security for future
OST Hacking-Lab students to raise awareness of risks.

The research phase extensively examined API history, styles, and security fundamentals.
Key areas such as threat identification, authentication methods and the OWASP Top
10 API Security Risks 2023 were explored. This foundational research informed the
collection and categorization of lab ideas, which were then evaluated using a decision
matrix based on feasibility, educational value, and expandability criteria.

A proof of concept (PoC) phase validated the feasibility of each lab, followed by iterative
improvements based on detailed feedback from usability testing. Participants evaluated
the labs on setup difficulty, usability, design, and realism, leading to enhancements that
ensured an effective learning experience.

The project successfully developed six labs covering most OWASP Top 10 API Security
risks. Each lab provided hands-on experience identifying and mitigating these vulnera-
bilities through practical exercises using tools in a containerized environment.

To enhance the educational value, future expansions could include additional labs to
cover remaining OWASP risks and specialized areas like Cloud Provider APIs and ad-
vanced OAuth2 authentication flows.

2

Management summary

Problem statement

In modern software development and digital transactions, Application Programming
Interfaces (APIs) play a crucial role. They enable different software systems to com-
municate and share data. However, due to their widespread use, APIs have become
prime targets for cyberattacks. Many APIs are built quickly without enough focus on
security, making them vulnerable to threats such as unauthorized access, data breaches,
and service disruptions. Common security issues include weak authentication, exposure
of sensitive data, insufficient logging, and poor error handling.

Given the importance of APIs, it is essential to address these security challenges. This
project aims to develop practical API Security labs for students at the OST Hacking-
Lab. These labs will provide hands-on experience with real-world scenarios, helping
students learn how to secure APIs effectively. The labs will cover critical topics such as
authentication methods, rate limiting, input validation, and secure API implementation.
This practical approach will prepare students for the development and usage of APIs.

Approach & technology

The foundation of the thesis was built upon deep research into various aspects of API
Security. This research included the history and evolution of APIs, different API styles
and their security implications, and critical factors necessary for ensuring API Security.
Methods for identifying API threats were explored. Various authentication methods,
including token-based authentication and OAuth2, were examined. Detailed workings
of OAuth2 flows were analyzed, and the OWASP Top Ten Security Risks 2023, which
are listed below in Table 1, were reviewed.

3

OWASP Top 10 API Security Risks – 2023

API1 Broken Object Level Authorization

API2 Broken Authentication

API3 Broken Object Property Level Authorization

API4 Unrestricted Resource Consumption

API5 Broken Function Level Authorization

API6 Unrestricted Access to Sensitive Business Flows

API7 Server-Side Request Forgery (SSRF)

API8 Security Misconfiguration

API9 Improper Inventory Management

API10 Unsafe Consumption of APIs

Table 1: OWASP Top 10 API Security Risks – 2023

Building on this research, a wide array of lab ideas was collected. These ideas were
organized within a framework to improve comparison and provide an overview of the
categories they cover, ensuring a wide variety of labs. A set of criteria for the decision
matrix was defined to evaluate and select suitable lab ideas systematically. These cri-
teria included the knowledge required to build them, the risk of being orphaned, access
to online resources for help, expandability for future labs, and interest for students and
lecturers.

The six labs with the highest scores were selected using the decision matrix, and each
was subjected to a PoC analysis. This PoC phase involved developing a basic version
of each lab to test core concepts and functionalities. It was crucial to identify potential
challenges and refine the lab design before full-scale development.

After development, the labs underwent a usability testing phase involving a group of
test participants. Participants provided valuable feedback on setup difficulty, usability,
general difficulties encountered, lab design, and realism. This feedback was used to make
iterative improvements, enhance the setup process, clarify instructions, and refine lab
scenarios to ensure an effective learning experience.

Results

The project successfully developed six labs, each addressing a distinct vulnerability from
the OWASP Top 10 API Security Risks 2023. These labs covered key risks such as Bro-
ken Authentication, Broken Object Property Level Authorization, Unrestricted Resource
Consumption, Server-Side Request Forgery, Security Misconfiguration, and Unsafe Con-
sumption of APIs.

4

The following labs were developed:

• Implementing logging: Students learn how to implement robust logging mech-
anisms to monitor API activity and detect potential security incidents.

• Enumeration and reconnaissance: This lab teaches students how to recognize
and prevent unauthorized information gathering from APIs.

• OAuth2 vulnerabilities: Students are taught to analyze and identify an im-
proper authentication implementation and exploit it to gain unauthorized access.

• OWASP Coraza WAF: This lab configures and uses the OWASP Coraza WAF
to protect an application from various attack vectors.

• Rate limiting: Students learn how to implement rate limiting to prevent abuse
of API endpoints.

• Input validation and sanitization: This lab emphasizes the importance of
validating and sanitizing input to prevent injection attacks and other malicious
activities.

The developed labs were categorized into three types: two tool-based, three implementation-
based, and one lab focused on exploiting vulnerabilities from an attacker’s perspective.

The labs were designed to be engaging and interactive, providing a structured learning
experience. Each lab used Docker containers to ensure isolated and consistent envi-
ronments, making the setup process straightforward and repeatable. Feedback from
participants indicated high satisfaction with the labs’ setup difficulty, usability, general
challenges, design, and realism.

Looking ahead, the project could expand by creating additional labs to cover the re-
maining OWASP Top 10 API Security Risks. Focusing on specific areas such as cloud
provider APIs and delving deeper into OAuth2 authentication flows could further en-
hance the educational value. This future work would ensure a comprehensive coverage
of API Security, addressing evolving cybersecurity challenges effectively.

5

Acronyms

API Application Programming Interface. 10

COBRA Common Object Request Broker Architecture. 13

CSRF Cross-Site Request Forgery. 21

DoS Denial-of-service. 23

EJB Enterprise Java Bean. 13

HTTP Hypertext Transfer Protocol. 13

IDE Integrated Development Environment. 42

IT Informatin technology. 11

JWT JSON Web Token. 21

NIST National Institute of Standards and Technology. 12

OIDC OpenID Connect. 21

OWASP Open Worldwide Application Security Project. 22

PKCE Proof Key of Code Exchange. 19

PoC Proof of concept. 10

RBAC Role Based Access Control. 27

REST Representational State Transfer. 13

RMI Remote Method Invocation. 13

RPC Remote Procedure Call. 13

6

SMTP Simple Mail Transfer Protocol. 13

SOAP Simple Object Access Protocol. 12

SQL Structured Query Language. 30

SSRF Server Side Request Forger. 23

TCP Transmission Control Protocol. 13

UDP User Datagram Protocol. 13

URL Uniform Resource Locator. 36

UUID Universally Unique Identifier. 11

W3C World Wide Web Consortium. 12

WAF Web Application Firewall. 15

WSDL Web Services Description Language. 13

XML Extensible Markup Language. 13

XSS Cross-Site-Scripting. 30

7

Glossary

Hacking-Lab Hacking-Lab is an online ethical hacking, computer network and security
challenge (CTF) and training platform used by individuals, enterprises, universi-
ties, educational entities and armed forces.. 10

Microservice Microservice is an architectural style that structures an application as a
collection of services that are Independently deployable and Loosely coupled. 14

ModSecurity ModSecurity is an open-source web application firewall module that is
widely used to enhance the security of web applications and protect them from var-
ious attacks. It operates as an Apache or Nginx module, providing real-time mon-
itoring, logging, and access control capabilities to HTTP requests and responses
passing through a web server. . 46

OWASP ModSecurity Core Rule Set The OWASP ModSecurity Core Rule Set is
a set of generic attack detection rules for use with ModSecurity or compatible web
application firewalls. The CRS aims to protect web applications from a wide range
of attacks, including the OWASP Top Ten, with a minimum of false alerts. The
CRS provides protection against many common attack categories, including SQL
Injection, cross-site scripting, Local File Inclusion, etc. . 46

Rainbow table A rainbow table is a database that is used to gain authentication by
cracking the password hash. It is a precomputed dictionary of plaintext passwords
and their corresponding hash values that can be used to find out what plaintext
password produces a particular hash. . 40

RESTful A RESTful API is an architectural style for an application programming
interface that uses HTTP requests to access and use data. That data can be used
to GET, PUT, POST and DELETE data types, which refers to reading, updating,
creating and deleting operations related to resources. . 12

8

Part II

Technical report

9

Chapter 1

Introduction

The following chapter gives a brief introduction to the initial situation and the scope of
the bachelor thesis.

1.1 Initial situation

APIs play a crucial role in software development and digital business transactions. How-
ever, with the increasing spread and importance of APIs, there is also a growing threat
landscape.

This bachelor thesis aims to develop an API Security Lab curriculum for future students
of the OST using the Hacking-Lab. This curriculum will provide practical exercises that
allow students to apply theoretical concepts in a hands-on environment, simulating real-
world scenarios and challenges.

By completing these interactive tasks, future OST students will be better equipped
to identify and mitigate API Security risks, securely develop and consume APIs, and
contribute to a more secure digital ecosystem. This project can potentially enhance the
practical skills and knowledge of future OST Hacking-Lab students, preparing them for
the growing demand for expertise in API Security.

1.2 Project scope

The scope of this bachelor thesis is to evaluate labs for the OST Hacking-Lab platform.
Future students should gain an in-depth insight into the topic based on the labs devel-
oped. The first part of this project will cover research and evaluation of topics regarding
API Security. The second part will be about selecting the topics based on criteria and
PoCs. The final part will be the lab development.

10

1.3 OST Hacking-Lab

The Hacking-Lab is an online education platform dedicated to the realm of cyberse-
curity. It contains practice-oriented labs, which are organised in an event covering a
specific IT security subject. The challenges include clear instructions outlining the tasks
and deliverables for a successful lab completion. The submission can be a flag, which
is a random UUID hidden in the lab exercises or a write-up, a report documenting the
problem-solving process or answers to the lab questions.

This bachelor thesis does not include a detailed explanation of the Hacking-Lab and its
components. They are prerequisites for those who read and continue work on this thesis.

11

Chapter 2

Research

This chapter covers the research done on and around API Security during this thesis.
It also briefly introduces APIs and their historical usage before delving deep into the
security aspects.

2.1 API and history

The following section covers the definition of API and the historical usage of it.

2.1.1 Definition

According to the National Institute of Standards and Technology (NIST) the term API
is defined as follows:
A system access point or library function with a well-defined syntax accessible from
application programs or user code to provide well-defined functionality [1].

2.1.2 What is an API?

Software applications historically leveraged APIs as linked libraries, gaining access to
functions and procedures. Nowadays, most APIs are available over the internet as REST-
ful web services [2].

An API serves as a boundary within a software system, offering a defined set of operations
for other components or systems to utilise. It handles client requests, which can be user
interfaces or other APIs. The API may interact with different APIs to fulfil its tasks [2].

2.1.3 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is an important messaging standard defined by
the World Wide Web Consortium (W3C) and its member editors that helped introduce
the widespread use of web services, also called APIs [3] SOAP uses an Extensible Markup

12

Language (XML) data format to declare its request and response messages, relying on
XML Schema to enforce the structure of its payloads. It consists of three parts [4, 5]:

• an envelope, which defines the message structure and how to process it

• a set of encoding rules for expressing instances of application-defined data types

• a convention for representing procedure calls and responses

SOAP has three major characteristics:

• extensibility

• neutrality (SOAP can operate over any protocol such as Hypertext Transfer Pro-
tocol(HTTP), Simple Mail Transfer Protocol(SMTP), Transmission Control Pro-
tocol(TCP), User Datagram Protocol(UDP)

• independence (SOAP allows for any programming model)

2.1.4 Web Services Description Language

Web Services Description Language(WSDL is an XML-based language used to describe
the functionality offered by a web service. It defines the interface of a web service
by specifying the operations it supports, the input and output parameters for each
operation, and the protocol and data format used for communication. Its usage has
declined in recent years, particularly with the rise of REST APIs and more modern
approaches to describing APIs [2].

2.1.5 API styles

Various approaches have emerged in API design regarding providing access to remote
functionalities. These approaches include [2]:

• Remote Procedure Cal(RPC) APIs: Expose procedures or functions callable
by clients over a network connection. They resemble local procedure calls but often
require specific client libraries. The gRPC framework from Google is an example
of a modern RPC approach. The older SOAP framework, which uses XML for
messages, is still widely deployed.

• Remote Method Invocation(RMI): A variant of RPC using object-oriented
techniques, allowing clients to call methods on remote objects as if they were local.
Technologies like Common Object Request Broker Architecture(COBRA) and En-
terprise Java Bean(EJB)s were popular but have declined due to the complexity
of their use.

• Representational State Transfer(REST) Style: Developed by Roy Fielding,
it emphasises standard message formats and a few generic operations to reduce
client-API coupling. Hyperlinks are used for navigation, reducing the risk of client
breakage as the API evolves.

13

• Specialised querying APIs: Some APIs focus on efficiently filtering large datasets,
such as SQL databases or frameworks like GraphQL from Facebook. They pro-
vide a few operations with a complex query language, granting clients significant
control over data retrieval [6].

• WebSocket: A communication protocol providing full-duplex communication
channels over a single TCP connection, often used for real-time applications such
as chat applications and online gaming [7].

Different API styles are preferable in varying environments. For instance, in an Microser-
vice architecture, an efficient RPC framework can minimise the overhead of API calls,
which is suitable when an organisation has control over clients and servers, allowing easy
distribution of new stub libraries. Conversely, for widely used public APIs, the REST
style, employing formats like JSON, enhances interoperability with different client types
[2].

2.2 API Security in context

API Security lies in several security disciplines, but it can be restricted into three most
important areas as shown in the Figure 2.1:

Figure 2.1: API Security fields [2]

• Information security: Focuses on safeguarding information throughout its life-
cycle, including creation, storage, transmission, backup, and destruction.

• Network security: Addresses the protection of data transmitted over networks
and guards against unauthorised access to the network infrastructure.

• Application security: Ensures that software systems are constructed and oper-
ated to resist attacks and prevent misuse.

2.2.1 Information security

In Information security, the security goals are defined, and potential threats are identi-
fied. This process involves analysing potential risks and vulnerabilities associated with

14

the APIs. Additionally, techniques for protecting APIs using access control mecha-
nisms are explored, ensuring that only authorised users or systems can interact with
information security. It also delves into securing sensitive information through applied
cryptography and encryption. Mastering these concepts equips individuals to establish
robust security measures to protect APIs and the data they handle [2].

2.2.2 Network security

In the context of network security, basic tools are used to protect APIs on the net-
work layer, such as web application firewalls (WAF), load-balancers, and reverse proxies.
These tools play different roles in keeping APIs safe. Additionally, secure communication
protocols like HTTPS [2] are used.

2.2.3 Application security

In application security, secure coding techniques are implemented. Additionally, common
software security vulnerabilities are studied to mitigate risks effectively. Understanding
how to securely store and manage system and user credentials for API access is also a
crucial aspect [2].

2.3 Identifying threats

The protection of APIs is strongly related to the understanding of the environment.
Every environment where the API is located has different potential threats. The set of
threats considered relevant to the API is known as the threat model, and the process of
identifying them is called threat modelling [2].

There are many ways to do threat modelling, but the general process is as follows [2]:

1. Draw a system diagram showing the main logical components of your API.

2. Identify trust boundaries between parts of the system. Everything within a trust
boundary is controlled and managed by the same owner, such as a private data
centre or a set of processes running under a single operating system user.

3. Draw arrows to show how data flows between the various parts of the system.

4. Examine each component and data flow in the system and identify threats that
might undermine your security goals in each case. Pay particular attention to flows
that cross trust boundaries.

5. Record threats to ensure they are tracked and managed.

15

2.4 Defensive mechanism

There are several countermeasures to protect APIs. The most common security mecha-
nisms are listed below [2].

• Encryption: Safeguards data from unauthorised access during transmission from
the API to a client and when stored in a database or filesystem. It also prevents
unauthorised modification of data by attackers.

• Authentication: Verifies the identity of users and clients, ensuring they are who
they claim to be.

• Access Control (Authorisation): Ensures that every request to the API is appro-
priately permitted based on predefined criteria.

• Audit Logging: Records all API operations, promoting accountability and facili-
tating effective API monitoring.

• Rate-Limiting: Prevents any individual user or group from monopolising resources,
thus ensuring fair access for all legitimate users.

The Figure 2.2 shows how these processes are layered as a series of filters a request
passes through. Each stage can also be outsourced by external components such as API
gateway [2].

Figure 2.2: Defensive mechanism APIs [2]

16

2.5 Token-based authentication and OAuth 2.0

Token-based authentication and OAuth 2.0 are essential for securing modern APIs.
Token-based authentication allows clients to authenticate once and use a token for subse-
quent requests, enhancing security and efficiency. OAuth 2.0 is a framework that enables
third-party applications to access user resources without exposing user credentials. This
section covers the principles of token-based authentication and OAuth 2.0, including
token generation, usage, and validation, as well as the various OAuth flows and their
roles in secure authorisation [8].

2.5.1 Token-based authentication

Token-based authentication is a popular method used to secure access to APIs.

Figure 2.3: Token-based authentication

The following steps describe the procedure of token-based authentication for accessing
an API as in the Figure 2.3 [9]:

1. Authentication: When a user or client application wants to access an API,
they must first authenticate themselves. Instead of providing their username and
password with each request, they typically exchange those credentials for a token.

2. Token generation: Upon successful authentication, the server generates a to-
ken. This token is a unique string of characters that proves the user’s identity
and authorisation to access specific resources. Tokens are usually generated using
cryptographic algorithms and can contain information such as the user’s identity,
expiration time, and scope of access.

3. Token issuance: The server then returns the token to the client, typically in
response to the authentication request. The client stores this token securely, often
in memory or a secure storage mechanism like the browser’s local storage or a
mobile device’s safe storage.

17

4. Token usage: The client includes the token in the header or as a parameter of
subsequent API requests it makes to the server. This token serves as a credential
that proves the client’s identity and authorisation to access protected resources.

5. Token validation: The server validates the token with each request to ensure
that it has not expired and that a trusted party issued it.

6. Send resource: The resource server sends a response to the requested resources.

2.5.2 OAuth2

OAuth 2.0 serves as a framework for granting third-party applications access to resources
on behalf of a user without requiring the user to disclose their credentials directly to the
application. It’s widely used in scenarios where users want to share their information
stored on one platform with another platform or application. Instead of sharing pass-
words, users authenticate through a trusted provider, like Google or Facebook, and then
authorise specific access to their data for third-party applications. This protocol ensures
a secure, standardised method for applications to access limited user data without com-
promising security [10].

OAuth defines four roles [10]:

• Resource owner: An entity capable of granting access to a protected resource.
When the resource owner is a person, it is referred to as an end-user.

• Resource server: The server hosting the protected resources is capable of ac-
cepting and responding to protected resource requests using access tokens.

• Client: An application making protected resource requests on behalf of the re-
source owner and with its authorisation. The term ”client” does not imply any
particular implementation characteristics (e.g., whether the application executes
on a server, a desktop, or other devices).

• Authorization server: The server issues access tokens to the client after suc-
cessfully authenticating the resource owner and obtaining authorisation.

Access tokens

An OAuth Access token serves as a string the OAuth client utilises to request resources
from the resource server. These tokens don’t adhere to a specific format, and different
OAuth servers employ various formats for their access tokens [11].

Several key properties of access tokens are integral to OAuth’s security model [11]:

• Access tokens aren’t meant to be read or understood by the OAuth client.

18

• They don’t convey user identity or other user-related information to the OAuth
client.

• Access tokens should solely be utilised for making requests to the resource server.
Furthermore, ID tokens shouldn’t be employed to make requests to the resource
server.

Refresh tokens

An OAuth refresh token is a string, which the OAuth client uses to obtain a new access
token without requiring the user’s involvement. Notably, a refresh token is restricted
from granting the client access beyond the scope of the initial authorisation. It allows
authorisation servers to use short-lived access tokens without user intervention when the
tokens expire [11].

2.5.3 OAuth scopes

Scope in OAuth 2.0 restricts an application’s access to a user’s account. The application
can request one or more scopes, which are then displayed to the user for consent. The
access token issued to the application is then limited to the granted scopes [11].

2.5.4 OAuth grant types

OAuth grant type defines the exact sequence of steps in the OAuth process. It also
defines how the client application communicates with the OAuth service at each stage
and how the token is sent. OAuth grant types are often called ”OAuth flows” [12].

OAuth services must be set up to support specific grant types before client applications
can establish the respective flows. In the initial authorisation request to the OAuth
service, the client application indicates the desired grant type [12].

Various grant types exist, each presenting distinct levels of complexity and security im-
plications. Following the two most common grant types, ”authorisation code”, ”implicit
(legacy)”, and Proof Key of Code Exchange (PKCE) are described [12].

Authorisation code grant type

The client application and OAuth service use several browser-based HTTP requests to
initiate the flow. The user will be asked whether they consent to the requested access.
After they accept it, the client application is granted an authorisation code. This code
is used to exchange with the OAuth service to get the access token, which can be used
to make API calls [12]. The full flow can be seen in the Figure 2.4.

19

Figure 2.4: Authorization code flow

Implicit grant type

The Implicit grant type gives the client application the access token right after the user
agrees on the consent. This way it skips getting an authorisation code first, as you can
see in the Figure 2.5. However, it’s not as secure as the other grant types because it
relies only on browser redirects for communication. This makes it easier for attackers to
access the access token and the user’s data [12].

Also, according to the OAuth community, it is defined as a legacy grant type.

Figure 2.5: Implicit flow

20

PKCE

The PKCE extends the authorisation code grant type flow. It was evaluated for the
implicit flow of single-page applications or native apps. These apps are vulnerable to
Cross-Site Request Forgery(CSRF) attacks since they are considered public clients and
cannot securely store their client credentials. The client creates a random code verifier
and the corresponding hash, both will be included in the authorisation request. The
authorisation server validates the verifier during the token exchange process to ensure
the authenticity of the request and to mitigate any interceptions [12]. The full flow can
be seen in the Figure 2.6.

Figure 2.6: Authorisation code flow with PKCE

2.6 OpenID Connect

OpenID Connect (OIDC) is an authentication protocol built on top of OAuth2. It
allows clients to verify end-users identities based on the authentication performed by
an authorisation server and obtain basic profile information about the user. It uses
JSON web tokens (JWT), which can be obtained using flows conforming to the OAuth2
specifications [13].

2.7 Microservice

Microservices are a software development approach where applications are structured as
a collection of loosely coupled services. Each service is focused on a specific business

21

capability and can be independently developed, deployed, and scaled. In the context
of APIs, Microservices often expose their functionality through well-defined interfaces,
allowing other services to interact with them. This promotes modularity and flexibility,
enabling agile development and easier maintenance. Microservices architecture facilitates
the creation of complex systems by breaking them into smaller, manageable components
that small teams can develop and maintain. Overall, Microservices enhance scalability,
resilience, and agility in building and evolving modern software systems [14].

2.8 OWASP Top 10 API Security Risks 2023

The primary goal of the Open Worldwide Application Security Project (OWASP) API
Security Top 10 is to educate those involved in API development and maintenance, for
example, developers, designers, architects, managers, or organizations [15].

2.8.1 Broken Object Level Authorisation

Broken object-level authorisation refers to a vulnerability where an API lacks proper
authorisation checks at the object level, allowing unauthorised access to resources. Even
though the API may authenticate users correctly, it fails to adequately enforce access
controls on individual objects or data within the system. This could lead to attackers
gaining unauthorised access to sensitive information or performing actions they shouldn’t
be allowed to, such as viewing or modifying the data of other users [16].

2.8.2 Broken Authentication

Broken Authentication refers to a vulnerability where authentication mechanisms within
an API are compromised or improperly implemented, leading to unauthorised access to
resources or sensitive data. This vulnerability can arise from weak passwords, insuffi-
cient session management, or flawed authentication protocols. Attackers exploit these
weaknesses to impersonate legitimate users, gaining unauthorised access to accounts
or sensitive information. Broken authentication can result in various security threats,
including account takeover, identity theft, and unauthorised data disclosure [16].

2.8.3 Broken Object Property Level Authorization

Broken Object Property Level Authorization refers to a security vulnerability where an
API lacks proper authorisation checks at the property level of objects, allowing unau-
thorised access to specific attributes or fields within those objects. While the API may
enforce access controls at the object level, it fails to restrict access to individual prop-
erties or data fields within those objects. Attackers can exploit this vulnerability to
access sensitive data within objects they’re not authorised to view or modify, potentially
leading to data leakage or unauthorised manipulation [16].

22

2.8.4 Unrestricted Resource Consumption

Unrestricted Resource Consumption is a vulnerability where an API does not appropri-
ately limit the amount of resources a user can consume, leading to excessive utilisation
and potential Denial of Service (DoS). This vulnerability can occur due to inefficient
algorithms, lack of rate limiting, or inadequate resource management. Attackers exploit
this weakness by sending many requests or consuming excessive resources, causing the
system to become overwhelmed and unresponsive. Unrestricted Resource Consumption
can result in service degradation or complete downtime, impacting the availability and
performance of the API for legitimate users [16].

2.8.5 Broken Function Level Authorization

Broken Function Level Authorization is a vulnerability where an API fails to properly
enforce access controls at the function or endpoint level, allowing unauthorised users to
execute certain functionalities. This occurs when the API assumes that authentication
alone is sufficient to determine access rights without further validation. Attackers ex-
ploit this weakness to access restricted functionalities or perform actions they are not
authorised to execute. Broken Function Level Authorization can lead to unauthorised
data manipulation, privilege escalation, or other security breaches [16].

2.8.6 Unrestricted Access to Sensitive Business Flows

Unrestricted Access to Sensitive Business Flows is a vulnerability in which an API allows
unauthorised users to access critical business processes or workflows without proper au-
thentication or authorisation. This vulnerability arises when sensitive operations within
the API lack sufficient access controls, enabling unauthorised users to exploit them.
Attackers can leverage this vulnerability to tamper with crucial business processes, ma-
nipulate sensitive data, or perform unauthorised actions, posing significant risks to the
organisation’s operations and security [16].

2.8.7 Server Side Request Forgery

Server Side Request Forgery (SSRF) is a vulnerability in which an attacker manipulates
an API into making unauthorised requests to internal or external resources on behalf of
the server or application. This occurs when the API allows the attacker to specify the
destination of a request, and the server processes it without proper validation. Attackers
exploit SSRF to access sensitive data, bypass firewalls, or perform reconnaissance on
internal networks. SSRF can lead to data breaches, service disruptions, or unauthorised
access to internal resources [16].

2.8.8 Security Misconfiguration

Security Misconfiguration is a vulnerability where an API is deployed or configured
in a way that leaves it open to exploitation or unauthorised access due to insecure

23

settings, defaults, or oversight. This vulnerability can result from improper configuration
of security settings, outdated software versions, or unnecessary exposure of sensitive
information. Attackers exploit security misconfigurations to gain unauthorised access,
manipulate data, or launch other attacks on the system. Security misconfigurations can
lead to data breaches, service disruptions, or unauthorised access to resources [16].

2.8.9 Improper Inventory Management

Improper Inventory Management in the context of an API refers to a vulnerability where
the API fails to adequately track and manage its available resources, endpoints, or de-
pendencies. This vulnerability may result from outdated or inaccurate inventory records,
lack of monitoring, or inadequate documentation of API components. Attackers can ex-
ploit this weakness to target outdated or vulnerable components, leading to security
breaches, service disruptions, or unauthorised access to sensitive data [16].

2.8.10 Unsafe Consumption of APIs

Unsafe Consumption of APIs is a vulnerability where an application or service utilises
APIs in a manner that endanger the security and integrity of the system. This can occur
due to various factors, such as inadequate validation of input/output, lack of encryption,
or reliance on deprecated or vulnerable APIs. Attackers exploit this vulnerability to
manipulate data, inject malicious payloads, or gain unauthorised access to sensitive
information transmitted through the API. Unsafe consumption of APIs can lead to data
breaches, system compromises, or other security incidents [16].

24

Chapter 3

Lab evaluation

This chapter describes the process of the lab evaluation. It includes collecting and sorting
project ideas, creating the decision matrix, and checking the lab feasibility with a proof
of concept analysis.

3.1 Approach

The lab evaluation process consists of the following steps. Firstly, lab ideas are collected,
sorted and categorised using a framework. Criteria that are important for future labs
are then defined. Based on these criteria, a decision matrix is completed with the project
advisor and the final lab ideas are sorted out. Before they are realised, these are checked
for feasibility in the PoC.

3.2 Lab idea taxonomy

The lab idea framework provides a structured approach for organising potential lab
exercises. This framework categorises lab ideas based on relevant factors so that the
comparison of the ideas and decision-making is organised.

The following lab properties are defined:

• ID - Identifier for further linkings

• Name - Lab name

• Type - Lab mode if attacking or defending scenario.

– Attacking

– Defensive

• Complexity - Lab difficulty and time consumption

25

– Easy

– Medium

– Hard

• Category - Based on API Security basics, the five main categories

– Encryption

– Authentication

– Authorisation

– Audit logging

– Rate limiting

• Required skills - Required skills needed for students

– Security fundamentals

– Programming & scripting

– Network security

An example of an empty lab framework can be seen in the Table 3.1.

ID Name

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.1: Example lab framework

3.3 Lab idea collection

The following section contains the collection of the lab ideas, which will then be evaluated
in the decision matrix.

3.3.1 Lab ideas

OAuth2 WebApp

This lab focuses on setting up OAuth2 for a basic WebApp using Keycloak. Students
will learn to integrate OAuth2 for authentication and authorisation in web applications.
This exercise emphasises practical implementation and understanding of the security
benefits and challenges of OAuth2.
The corresponding lab framework can be seen in the Figure 3.2.

26

ID 1 Name OAuth2 WebApp

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.2: Lab idea: OAuth2 WebApp

JWT & Role Based Access Control (RBAC)

In this lab, students will implement secure authentication and authorisation mechanisms
for an API using JWT and RBAC. This lab teaches how to generate and validate JWTs
and use RBAC to enforce fine-grained access control within an application.
The corresponding lab framework can be seen in the Figure 3.3.

ID 2 Name JWT & RBAC

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.3: Lab idea: JWT & RBAC

OWASP Juice Shop

This lab involves selecting challenges regarding API Security in the OWASP Juice Shop.
Students will engage with realistic scenarios to identify and mitigate security vulnera-
bilities in APIs using a popular open-source platform designed for security training [17].
The corresponding lab framework can be seen in the Figure 3.4.

ID 3 Name OWASP Juice Shop

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.4: Lab idea: OWASP Juice Shop

27

Implementing logging

In this lab, students will learn how to implement logging for an API. They will under-
stand the importance of audit logging, capturing relevant security events, and analysing
logs to detect and respond to potential security incidents.
The corresponding lab framework can be seen in the Figure 3.5.

ID 4 Name Implementing logging

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.5: Lab idea: Implementing logging

API rate limiting

Students will learn how to implement API rate limiting and throttling mechanisms to
prevent abuse, ensure fair usage, and improve the security and performance of an API
service. This lab highlights various strategies for controlling API usage and mitigating
DoS attacks.
The corresponding lab framework can be seen in the Figure 3.6.

ID 5 Name API rate limiting

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.6: Lab idea: API rate limiting

OWASP Coraza WAF

This lab focuses on API penetration testing and rule implementation with Coraza WAF.
Students will explore how to use WAF to protect APIs from common attacks and how
to analyse custom security rules.
The corresponding lab framework can be seen in the Figure 3.7.

28

ID 6 Name OWASP Coraza WAF

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.7: Lab idea: OWASP Coraza WAF

API Security attacker view

This lab aims to help students understand common API Security vulnerabilities and
how attackers exploit them. By simulating attack scenarios, students will gain insights
into the attacker’s mindset and learn defensive strategies to protect APIs.
The corresponding lab framework can be seen in the Figure 3.8.

ID 7 Name API Security attacker view

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.8: Lab idea: API Security from an attacker’s perspective

Tooling lab

This lab aims to familiarise students with standard API Security testing and assessment
tools. Students will explore various security tools and their applications in identifying
and mitigating API vulnerabilities.
The corresponding lab framework can be seen in the Figure 3.9.

ID 8 Name Tooling lab

Type Complexity Category* Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.9: Lab idea: Tooling lab

*No specific category addressable

29

3.3.2 OAuth2 vulnerabilities

In this lab, students will explore and exploit common OAuth2 vulnerabilities. They will
learn about potential weaknesses in OAuth2 implementations and how attackers can
exploit these vulnerabilities to compromise security.
The corresponding lab framework can be seen in the Figure 3.10.

ID 9 Name OAuth2 vulnerabilities

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.10: Lab idea: OAuth2 vulnerabilities

JWT vulnerabilities

This lab focuses on discussing and exploiting common JWT vulnerabilities. Students
will understand the pitfalls in JWT implementation and how to secure JWT-based
authentication and authorisation mechanisms.
The corresponding lab framework can be seen in the Figure 3.11.

ID 10 Name JWT vulnerabilities

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.11: Lab idea: JWT vulnerabilities

Input validation and sanitisation

Students will implement input validation and sanitisation techniques to prevent Struc-
tured Query Language (SQL) injection, Cross-Site-Scripting (XSS) attacks, and other
common vulnerabilities. This lab emphasises the importance of validating and sanitising
user inputs to maintain application security.
The corresponding lab framework can be seen in the Figure 3.12.

30

ID 11 Name Input validation and sanitisation

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.12: Lab idea: Input validation and sanitisation

API enumeration and reconnaissance

To understand the API’s functionalities, students will perform API enumeration tech-
niques such as endpoint discovery, parameter probing, and header analysis. This lab
teaches an attacker the initial steps to discover API weaknesses.
The corresponding lab framework can be seen in the Figure 3.13.

ID 12 Name API enumeration and reconnaissance

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.13: Lab idea: API enumeration and reconnaissance

API Logging & monitoring

In this lab, students will implement a monitoring mechanism for APIs to track and
analyse security-related events. They will learn how to set up logging infrastructure,
monitor API traffic, and respond to suspicious activities effectively.
The corresponding lab framework can be seen in the Figure 3.14.

ID 13 Name API Logging & monitoring

Type Complexity Category Required skill

Attacking Easy Encryption Security fundamentals

Authentication

Medium Authorization Programming & scripting

Defensive Audit logging

Hard Rate limiting Network security

Table 3.14: Lab idea: API Logging & monitoring

31

3.4 Decision matrix

In this section, the decision matrix for the labs is evaluated. The criteria are described,
and weights are set to address the interest.

A decision matrix, as you see in Figure 3.1, is a systematic approach used to evaluate
and prioritise a set of options based on predefined criteria. This method involves listing
topics in rows and evaluation criteria in columns, assigning weights to each criterion ac-
cording to its importance. Each topic is then scored against the criteria, and the scores
are multiplied by the weights to produce a weighted score for each option. The total
weighted scores are calculated to determine the best topics. This structured technique
helps in making objective, informed decisions by quantifying and comparing the worth
of each topic, ensuring that all relevant factors are considered and balanced according
to their significance.
The five highest total values are coloured green. This means that the topics Implement
logging, Implement rate-limiting and throttling, OWASP Coraza WAF, OAuth2 vulner-
abilities, Input validation and sanitization, API enumeration and reconnaissance and
API monitoring are elected for further progression. Due to time constraints, the lab
idea API monitoring is not considered for further development.

3.4.1 Criteria

The following criteria are defined.

C1: Know-How

Description:
The following criteria will be set based on the knowledge of the topic and whether there
is experience in this area.
Scale:

3 - Already used and have knowledge about the topic.

2 - Have some experience with a related topic

1 - No experience with the topic

Weight: The weighting of this criterion is classified as normal and, therefore, given the
value of 1.
Decision:
This criterion is classified as normal because it can be influenced. In this way, missing
know-how can be worked on.

32

C2: Danger of being orphaned

Description:
How likely is it that the topic is orphaned?
Scale:

3 - It is very unlikely that the topic will be orphaned

2 - There is a chance that the topic is orphaned

1 - It is likely that the topic is orphaned

Weight: The weighting of this criterion is classified as normal and, therefore, given the
value of 1.
Decision:
This criterion is classified as normal because it is often impossible to predict accurately
how a topic will develop.

C3: Documentation & Community

Description:
How well is the tool or topic documented, and are there active communities for support
and questions?
Scale:

3 - Documentation is comprehensive, up-to-date, and user-friendly, providing clear
guidance and examples

2 - Documentation exists but may be incomplete or difficult to follow.

1 - Documentation is scarce or outdated, making it challenging to understand and
use the tool or topic.

Weight: The weighting of this criterion is classified as normal and, therefore, given the
value of 1.
Decision:
This criterion is normal because meaningful documentation and community are useful
but unnecessary.

C4: Expandability

Description:
Assess how well the project idea aligns with the current threat landscape in IT security.
Scale:

3 - The topic allows easy expansion

33

2 - It is possible to expand

1 - There is no possibility for expansion

Weight: The weighting of this criterion is considered important and, therefore, given
the value of 2.
Decision:
This criterion is considered necessary because extensibility enables long-term use of sys-
tems and promotes innovation, flexibility and adaptability, which is of great advantage
in a fast-moving technological environment

C5: Student interest

Description:
How much interest do we have in the topic?
Scale:

3 - The project idea will likely generate high interest and enthusiasm.

2 - The project idea has the potential to pique the interest.

1 - The project idea is unlikely to generate significant interest.

Weight: The weighting of this criterion is considered important and, therefore, given
the value of 2.
Decision: This criterion is considered important because it serves as a personal control
element for students.

C6: Lecturer interest

Description:
How much interest does the lecturer have in the topic?
Scale:

3 - The project idea will likely generate high interest and enthusiasm.

2 - The project idea has the potential to pique the interest.

1 - The project idea is unlikely to generate significant interest.

Weight: The weighting of this criterion is considered important and, therefore, given
the value of 2.
Decision:
This criterion is considered important because it serves as a personal control element for
the supervisor.

34

3.4.2 Outcome

Figure 3.1: Decisionmatrix

35

Chapter 4

Proof of concept

This chapter defines each lab PoC before the lab development. It is used to verify the
feasibility and functionality of the lab idea.

4.1 Lab PoC: API enumeration and reconnaissance

The proof of concept for API enumeration and reconnaissance is defined as follows.

4.1.1 Objectives

This PoC setup aims to demonstrate the process of API enumeration and reconnaissance
using Burp Suite. In advance, tools like ”Fuzz Faster U Fool” could also be used, which
could be beneficial to bring students knowledge about various tools. By conducting this
PoC, the feasibility of identifying and exploring APIs, understanding their endpoints,
and analyzing their security implications can be showcased.
An API endpoint is a Uniform Resource Locator (URL) that acts as the point of contact
between an API client and an API server. API clients send requests to API endpoints
to access the APIs functionality and data [18].

4.1.2 Prerequisites:

• Basic understanding of APIs and HTTP protocols.

• Access to a target environment with APIs for testing (e.g., a demo web application
with exposed APIs).

4.1.3 Equipment/Software

• Burp Suite

• Web browser (preferably Firefox or Chrome)

• Target web application with exposed APIs,

36

https://github.com/ffuf/ffuf

4.1.4 Setup steps

• Install and configure Burp Suite:

– Download and install BURP Suite on a local machine

– Configure the proxy settings in a web browser to route traffic through Burp
Suite

• Identify target environment:

– Select a target web application that exposes APIs for testing purposes.

– Ensure that the target environment is accessible and available for testing.

• Start and verify Burp Suite:

– Launch Burp Suite on a local machine.

– Verify that Burp Suite’s proxy is running and listening on a specified port

– Ensure that a web browser is configured to use Burp Suite as the proxy

• Explore target application:

– Navigate to the target web application using a web browser

– Interact with different functionalities of the application to identify API end-
points

• Capture traffic:

– Use Burp Suite’s interception feature to capture HTTP requests and responses
between the web browser and the target application

– Analyze the captured traffic to identify API endpoints, parameters, and pay-
loads

• Reconnaissance and enumeration:

– Utilize Burp Suite’s various tools and features to enumerate and explore the
discovered API endpoints systematically.

– Collect information such as endpoint functionality, supported HTTP meth-
ods, authentication mechanisms, input validation, and error handling

• Document findings:

– Document the discovered API endpoints, along with relevant details such
as endpoint URLs, parameters, expected input/output, and any identified
vulnerabilities or security issues.

37

4.1.5 Successful PoC

A PoC for API enumeration and reconnaissance is considered successful when it effec-
tively identifies API endpoints, conducts thorough reconnaissance, detects security issues
and documents findings.

4.1.6 PoC status

The PoC successfully demonstrated the feasibility of enumerating and conducting re-
connaissance on the Juice Shop API using Burp Suite Community Edition within a
Windows 11 environment. Through systematic analysis, several API endpoints were
identified, along with associated parameters and potential security vulnerabilities. The
tools used in Burp were Target, Proxy, Intruder and Repeater. The following topics
were successfully addressed:

• Brute Force: Using the API for Brute Force attacks on user passwords is possible.
Description:

1. Start Burp Target and open a new browser

2. Go to the Juice Shop and log in with a standard user

3. The login request can be seen in Figure 4.1:

38

Figure 4.1: API login request

4. Request is sent to Intruder

5. In the payload, the email is modified, and a payload marker is set in place
of the password as shown in Figure 4.2. The payload marker is a placeholder
and gets replaced with a word from a wordlist with each request issued by
the Intruder.

39

Figure 4.2: Payload positions

6. Switch to payloads and paste a wordlist at the payload settings. In this
example, the top 100 passwords of 2017 are used. Example payload can be
seen in Figure 4.3.

Figure 4.3: Payload settings

7. Start attack and deselect status codes 4XX. After a few minutes, a request
with status code 200 appears, which shows the admin user’s password.

• Request manipulation: different API vulnerabilities can be exploited through re-
quest manipulation.

• SQLInjection: an SQL injection responds to the user’s JWT. The user password
can then be found by comparing the password hash inside the JWT with a Rainbow
table.

1. Start Burp Target and open a new browser

40

https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/worst-passwords-2017-top100-slashdata.txt

2. Go to the Juice Shop and open the login window

3. In the login window as email, a single quote and a random password are
entered

4. The response can be seen in the Figure 4.4:

Figure 4.4: SQLInjection response

5. At the next try, "’ or 1=1 --" is entered as an email and a random string as
a password. When this is injected into a SQL query, it essentially transforms
the query into "SELECT * FROM users WHERE username = ’’ or 1=1 --’

AND password = ’...’". In this modified query, the WHERE clause always
evaluates to true (1=1), so it returns all records from the user’s table, effec-
tively bypassing any password check.

6. The login is successful, and the admin user is logged in. A corresponding
JWT is received as shown in Figure 4.4 in the response, which also contains
the password hash.

Figure 4.5: SQLInjection response token

4.2 Lab PoC: Implementing logging

The proof of concept for Implementing logging is defined as follows.

41

4.2.1 Objectives

This proof of concept setup aims to demonstrate the process of implementing logging
mechanisms within an API to enhance monitoring. By conducting this proof of concept,
the feasibility of effectively integrating logging functionality into APIs and understanding
its importance in API Security can be showcased.

4.2.2 Prerequisites

• Basic understanding of APIs and HTTP protocols

• Familiarity with a programming language commonly used for API development

• Access to a development environment for API implementation and testing

4.2.3 Equipment/Software

• IDE or text editor for coding (e.g., Visual Studio Code, IntelliJ IDEA)

• Web server environment (e.g., Node.js) for hosting the API

• Logging framework/library for the chosen programming language

4.2.4 Setup steps

• Select logging framework:

– Choose a logging framework/library suitable for the programming language
and environment used for API development

• Integrate logging framework:

– Install and configure the selected logging framework/library within the API
codebase

• Configure logging levels:

– Customize logging levels for different components of the API to ensure ap-
propriate granularity

• Format log entries:

– Define a structured format for log entries to include essential metadata such
as timestamp, client IP address, request method, endpoint URL, and response
status code

• Deploy and test logging functionality:

– Deploy the API to a local or test server environment

42

– Send test requests to the API using various scenarios to trigger different types
of log events

– Verify that log entries are generated as expected and contain relevant infor-
mation

• Documentation and reporting:

– Document the steps followed to implement logging within the API, including
configuration settings, code snippets, and sample log entries

4.2.5 Successful PoC

A PoC for implementing logging is considered successful when it effectively implements
logging mechanisms and provides comprehensive coverage of relevant events.

4.2.6 PoC status

The PoC successfully shows the logging implementation for a straightforward REST
API.

1 const express = require(’express ’);

2 const { createLogger , format , transports } = require(’winston ’); // Using

Winston for logging

3 const { combine , timestamp , printf } = format;

4
5 const port = 8000;

6
7 const app = express ();

8
9 // Define log format

10 const logFormat = printf (({ level , message , timestamp }) => {

11 return ‘${timestamp} ${level}: ${message}‘;
12 });

13
14 // Create logger instance

15 const logger = createLogger ({

16 format: combine(

17 timestamp (),

18 logFormat

19),

20 transports: [

21 new transports.Console (),

22 new transports.File({ filename: ’api.log’ })

23]

24 });

25
26 // Middleware to log incoming requests

27 app.use((req , res , next) => {

28 logger.info(‘${req.method} ${req.url}‘);
29 next();

30 });

43

31
32
33 app.get(’/’, (req , res) => {

34 res.send(’Get Request Received!’);

35 })

36
37
38 app.post(’/’, (req , res) => {

39 res.send(’Post Request Received!’);

40 })

41
42 app.put(’/’, (req , res) => {

43 res.send(’Put Request Received!’);

44 })

45
46
47 app.delete(’/’, (req , res) => {

48 res.send(’Delete Request Received!’);

49 })

50
51 // Middleware to log outgoing responses

52 app.use((req , res , next) => {

53 res.on(’finish ’, () => {

54 logger.info(‘${res.statusCode} ${res.statusMessage }; ${res.get(’
Content -Length ’) || 0}b sent ‘);

55 });

56 next();

57 });

58
59 // Error handling middleware

60 app.use((err , req , res , next) => {

61 logger.error(err.stack);

62 res.status (500).send(’Internal Server Error’);

63 });

64
65
66 app.listen(process.env.port || port , async() => {

67 console.log(‘Server Running on PORT: ${port}‘);
68 });

Code Description:

1. Dependencies:

• express: This imports the Express.js framework, which creates the server and
handles HTTP requests.

• winston: This imports the Winston logging library, which provides a flexible
and extensible logging mechanism for Node.js applications.

2. Logger configuration:

44

• The code creates a logger instance using createLogger() from Winston.

• The logger is configured with a custom log format using the combine() func-
tion from Winston’s format module. The log format includes a timestamp,
log level, and message.

• Two transports are added to the logger: one for logging to the console (trans-
ports.Console()) and another for logging to a file (transports.File()). The file
transport is configured to log to a file named api.log.

3. Express app setup:

• An instance of the Express application is created using express().

• Middleware is added to the Express app to log incoming requests. This mid-
dleware function logs each incoming request’s HTTP method (req.method)
and URL (req.url).

• Route handlers are defined for the various HTTP methods (GET, POST,
PUT, DELETE). Each route handler sends a response with a message indi-
cating the type of request received.

4. Middleware for outgoing responses:

• Another middleware function is added to the Express app to log outgo-
ing responses. This middleware listens for the finish event on the response
object (res). When the response is finished, it logs the response status
code (res.statusCode), status message (res.statusMessage), and content length
(res.get(’Content-Length’)) if available.

5. Error handling middleware:

• Error handling middleware is added to the Express app to log errors. If an
error occurs during the processing of a request, this middleware logs the error
stack trace (err.stack) and sends a 500 Internal Server Error response.

6. Server listening:

• The Express app starts listening on the specified port (8000) or the port
specified by the process.env.PORT environment variable. Once the server is
running, a message is logged to the console indicating the port on which the
server is running.

45

4.3 Lab PoC: OWASP Coraza WAF

OWASP Coraza is a Web Application Firewall framework that supports ModSecurity’s
seclang language and is compatible with OWASP ModSecurity Core Rule Set. It is
designed to enhance the security of web applications by providing real-time monitoring,
logging, and protection against a wide range of common web attacks. Coraza operates
as a module for web servers such as Apache and Caddy.

4.3.1 Objectives

This PoC aims to demonstrate the integration of OWASP Coraza with the Caddy server
to protect the backend. This will involve setting up a basic backend website, protecting
it by OWASP Coraza rules, and validating that the rules effectively mitigate common
API Security threats.

4.3.2 Prerequisites

• Basic understanding of API Security concepts

• Familiarity with Caddy server and OWASP Coraza

4.3.3 Equipment/Software

• Docker

• Caddy server with OWASP Coraza module

• Backend (like juice shop)

4.3.4 Setup steps

• Setup caddy docker

• Configure OWASP Coraza module for caddy

• Configure Caddyfile

– Define the rules for API Security (OWASP core rule set)

• Test API with and without OWASP Coraza:

– Send requests to the API endpoint with and without OWASP Coraza enabled.
Verify that OWASP Coraza effectively mitigates security threats and blocks
malicious requests.

• View audit logs

46

4.3.5 Successful PoC

The PoC is considered successful when:

• The integration of OWASP Coraza with the Caddy server was successfully achieved.

• OWASP Coraza effectively mitigates common API Security threats

• Malicious requests are promptly blocked while legitimate requests continue to flow
seamlessly, preserving API functionality

• Comprehensive logs provided by OWASP Coraza demonstrate its ability to detect
and block security threats effectively.

4.3.6 PoC status

Figure 4.6: OWASP Coraza WAF PoC architecture

As shown in the Figure 4.6 the PoC was successfully implemented using docker. The
setup included a Caddy, Juice Shop, Elasticsearch, Kibana and a Python logging script.
The Caddy proxy was serving as a WAF by enabling the Coraza module. It also included
the OWASP ModSecurity Core Rule Set. The Caddy Coraza intercepted incoming
requests reverse proxy before they were forwarded to the Juice Shop. With this method,
no security features need to be implemented for the backend application, which in our
case was the Juice Shop. The dropped traffic from the WAF was audited in a log, which
was forwarded through a Python script to an Elasticsearch instance. The elasticsearch
index was then visualised through Kibana, and the audit logs were available over the
web interface.

47

4.4 Lab PoC: OAuth2 vulnerabilities

The proof of concept for OAuth2 vulnerabilities is defined as follows.

4.4.1 Objectives

This PoC aims to assess OAuth 2.0 security vulnerabilities within a setup involving
Keycloak as an identity provider and Nextcloud as the client application. This involves
identifying and testing potential vulnerabilities of OAuth 2.0 authentication and autho-
rization mechanisms [19] [20].

4.4.2 Prerequisites

• Understanding of OAuth 2.0 framework and its security implications

• Familiarity with Keycloak and Nextcloud setup and configuration

4.4.3 Equipment/Software

• Docker

• Keycloak server installed and configured as the OAuth 2.0 provider

• Nextcloud instance set up as the OAuth 2.0 client

• OAuth 2.0 client application for testing (Postman)

• Vulnerability scanning and testing tools (e.g., OWASP ZAP, Burp Suite)

4.4.4 Setup steps

• Configure Keycloak:

– Set up the Keycloak server as the OAuth 2.0 provider. Configure realms,
clients, and user accounts within Keycloak.

• Integrate Nextcloud with Keycloak

– Configure Nextcloud to use Keycloak as the OAuth 2.0 backend for authen-
tication and authorization.

• Test OAuth 2.0 authentication flow:

– Use OAuth 2.0 client applications to test the authentication flow between
Nextcloud and Keycloak. Verify that users can authenticate securely and
obtain access tokens.

• Test for OAuth 2.0 vulnerabilities:

48

– Utilize vulnerability scanning and testing tools to identify potential OAuth
2.0 vulnerabilities such as authorization code leakage, token manipulation,
insufficient scope validation, etc.

4.4.5 Successful PoC

The PoC is considered successful when:

• A successful integration of Nextcloud with Keycloak as the OAuth 2.0 backend.

• OAuth 2.0 authentication and authorization flows are functioning correctly.

• Vulnerability testing identifies and addresses any OAuth 2.0 vulnerabilities, ensur-
ing the security of the authentication and authorization mechanisms.

4.4.6 PoC Status

During the PoC, it was determined that the integration of Nextcloud with Keycloak
as an OAuth 2.0 provider does not offer an easy attack surface. Therefore, a simple
Node.js with express was developed, which allows the vulnerabilities to be tailored to
the lab without making the topic complex. The Node.js application is used for further
development, and the PoC is considered successful because of the vulnerabilities that
can be used.

49

4.5 Lab PoC: Implementing API rate limiting and throt-
tling

The proof of concept for Implementing API rate limiting and throttling is defined as
follows.

4.5.1 Objectives

This PoC aims to implement the suggested properties for a secure API regarding OWASP
Top 10 API Security Risks - API4:2023 Unrestricted Resource Consumption [16]. The
following limits are mentioned in the OWASP API Security Top 10:

• Execution timeouts

• Maximum allocable memory

• Maximum number of file descriptors

• Maximum number of processes

• Maximum upload file size

• Number of operations to perform in a single API client request (e.g. GraphQL
batching)

• Number of records per page to return in a single request-response

• Third-party service providers’ spending limit

4.5.2 Prerequisites

• Understanding of API Security principles and best practices

• Familiarity with chosen API development framework and environment: Node.js
with Express

4.5.3 Equipment/Software

• Text editor or IDE for API development

• API development framework and libraries

• API testing tools (e.g., Postman, curl)

50

4.5.4 Setup steps

• Choose Rate Limiting/Throttling Library: Select a library compatible with your
chosen API development framework that provides rate limiting and throttling func-
tionalities.

• API Endpoint Configuration: Integrate the chosen library into API code.

• Define properties from OWASP API Security Top 10

• Test properties

4.5.5 Successful PoC

The PoC is considered successful when:

• Rate limiting and throttling are successfully integrated within the API code.

• API endpoints enforce defined rate limits and quotas.

• Testing demonstrates that exceeding limits results in appropriate error responses.

• The API remains functional and responsive within configured limits, mitigating
potential resource exhaustion issues.

4.5.6 PoC Status

The implementation of the PoC was successful. Implementing the API properties men-
tioned in the OWASP API Security TOP 10 - API4:2023 Unrestricted Resource Con-
sumption was possible. Nevertheless, some API properties shouldn’t be restricted to the
application layer and should be limited to the underlying layer (e.g., maximum allocable
memory). The tests created for each applicable API property could also be tested using
the Test framework. The implementation of the properties also did not affect the base
functionality of the API.

51

4.6 Lab PoC: Implementing input validation and sanitiza-
tion

The proof of concept for Implementing input validation and sanitization is defined as
follows.

4.6.1 Objectives

The primary objective of this proof of concept is to demonstrate the effectiveness of
input validation and sanitization in a Node.js and Express environment. By integrating
the express-validator middleware, this PoC aims to ensure that all incoming data is
properly validated and sanitized, thereby enhancing the security and reliability of the
application.

4.6.2 Prerequisites

• Basic knowledge of Node.js and Express

• Familiarity with JavaScript and middleware concepts

• Simple Node.js application

4.6.3 Equipment/Software

• IDE or text editor for coding (e.g., Visual Studio Code, IntelliJ IDEA)

• Web server environment (e.g., Node.js) for hosting the API

• Logging framework/library for the chosen programming language

4.6.4 Setup steps

• Select input validation framework:

– Choose an input validation framework/library suitable for the programming
language and environment used for API development

• Integrate input validation and sanitization:

– Install and configure the selected input validation framework/library within
the API codebase

• Configure input validation for input fields:

– Customize input validation to fit different criteria and use cases.

52

4.6.5 Successful PoC

A PoC for implementing input validation and sanitization is considered successful when
it effectively implements a mechanism to validate and sanitize input along with given
criteria.

4.6.6 PoC Status

The PoC successfully shows the input validation implementation for a simple JavaScript
application.

1 import express from ’express ’;

2 import bodyParser from ’body -parser ’;

3 import { body , validationResult } from ’express -validator ’;

4 import Datastore from ’nedb’;

5
6 const app = express ();

7 const port = 3001;

8
9 const db = new Datastore ({ filename: ’users.db’, autoload: true });

10
11 app.use(bodyParser.json());

12 app.use(bodyParser.urlencoded ({ extended: true }));

13
14 const userValidationRules = [

15 body(’username ’)

16 .isAlphanumeric ().withMessage(’Username must be alphanumeric ’)

17 .isLength ({ min: 3 }).withMessage(’Username must be at least 3

characters long’)

18 .trim().escape (),

19 body(’email ’)

20 .isEmail ().withMessage(’Invalid email address ’)

21 .normalizeEmail (),

22 body(’password ’)

23 .isLength ({ min: 6 }).withMessage(’Password must be at least 6

characters long’)

24 .matches (/\d/).withMessage(’Password must contain a number ’)

25 .trim().escape (),

26 body(’birthdate ’)

27 .isDate ({ format: ’YYYY -MM -DD’ }).withMessage(’Birthdate must be in

YYYY -MM -DD format ’)

28];

29
30 const validate = (req , res , next) => {

31 const errors = validationResult(req);

32 if (errors.isEmpty ()) {

33 return next();

34 }

35
36 const extractedErrors = errors.array().map(err => {

37 return { [err.param]: err.msg };

38 });

39

53

40 return res.status (422).json({

41 errors: extractedErrors ,

42 });

43 };

44
45 app.get(’/’, (req , res) => {

46 res.redirect(’/register ’);

47 });

48
49 app.get(’/register ’, (req , res) => {

50 res.send(‘

51 <form action="/register" method="post">

52 <label for="username">Username:</label >

53 <input type="text" id="username" name="username">

54 <label for="email">Email:</label >

55 <input type="email" id="email" name="email">

56 <label for="password">Password:</label >

57 <input type="password" id="password" name="password">

58 <label for="birthdate">Birthdate (YYYY -MM-DD):</label >

59 <input type="text" id="birthdate" name="birthdate">

60 <input type="submit" value="Register">

61 </form >

62 ‘);

63 });

64
65 app.post(’/register ’, userValidationRules , (req , res) => {

66 const { username , email , password , birthdate } = req.body;

67 const errors = validationResult(req);

68 if (! errors.isEmpty ()) {

69 return res.status (400).json({ errors: errors.array () });

70 }

71 const user = { username , email , password , birthdate };

72 db.insert(user , (err , newUser) => {

73 if (err) {

74 return res.status (500).json({ error: ’Failed to register user’ });

75 }

76 res.send(’User registered successfully ’);

77 });

78 });

79
80 if (process.env.NODE_ENV !== ’test’) {

81 app.listen(port , () => {

82 console.log(‘Server is running on http:// localhost:${port}‘);
83 });

84 }

85
86 export default app;

Code description

1. Dependencies

54

• express: Imports the Express.js framework to create the server and handle
HTTP requests

• body-parser: Parses incoming request bodies in a middleware before your
handlers, available under the req.body property

• express-validator: Provides a set of middleware for validating and sanitizing
input data

• nedb: A lightweight JavaScript database for Node.js applications used for
storing user data

2. Express app setup

• An instance of the Express application is created using express()

• Middleware is added to the Express app to parse JSON and URL-encoded
request bodies using body-parser.json() and body-parser.urlencoded({ ex-
tended: true })

3. Validation rules

• Username: Must be alphanumeric, at least three characters long, and is san-
itized to remove any unwanted characters

• Email: Must be a valid email address and is normalized

• Password: Must be at least 6 characters long, contain at least one number,
and is sanitized to remove any unwanted characters

• Birthdate: Must be a valid date in the YYYY-MM-DD format

4. Middleware for validation

• A middleware function checks for validation errors using validationResult().
If errors are found, they are formatted and returned as a JSON response with
a 422 status code. The request proceeds to the next middleware or route
handler if no errors are found.

5. Routes

• GET/: Redirects to the/register route.

• GET /register: Serves as an HTML form for user registration, allowing users
to input their username, email, password, and birthdate.

• POST /register: Handles form submissions. It validates and sanitizes input
data using the predefined rules. If validation passes, the user data is inserted
into the NeDB database. A 500 Internal Server Error response is returned if
there is a database error. Otherwise, a success message is sent.

6. Database configuration

55

• A NeDB database is initialized with the filename users.db, and autoload is
enabled to automatically load the database on startup.

7. Server listening

• The Express app listens on port 3001 (or a different port if specified by the
process.env.PORT environment variable). Once the server is running, a mes-
sage is logged to the console indicating the URL the server is accessible.

56

Chapter 5

Lab documentation

This chapter contains information about the developed resources in the Hacking-Lab
and documentation for each lab created. Figure 5 shows an overview of the created labs.

Figure 5.1: Hacking-Lab: Labs overview

5.1 Lab structure

The Hacking-Lab Challenge Generator [21] was used for the base structure of the lab
instruction. It provides a base tool set of scripts, files and directories for the lab authors.
Each lab has an introduction part at the beginning containing the following sections:

• Introduction - Describes the challenge

• Prerequisites - Student needs to solve the challenge

• Goal - Overall goal of the challenge

57

• Task - Overview of tasks

• Flag Format - Write-UP, Flag

The Table 5.1 will be included in all labs with the risks marked related to the challenge.

OWASP Top 10 API Security Risks – 2023

API1 Broken Object Level Authorization

API2 Broken Authentication

API3 Broken Object Property Level Authorization

API4 Unrestricted Resource Consumption

API5 Broken Function Level Authorization

API6 Unrestricted Access to Sensitive Business Flows

API7 Server-Side Request Forgery (SSRF)

API8 Security Misconfiguration

API9 Improper Inventory Management

API10 Unsafe Consumption of APIs

Table 5.1: OWASP Top 10 API Security Risks – 2023 [16]

Lab images

The lab images were used from the Hacking-Lab Midjourney collection. https://bit.
ly/hl-images

5.2 Lab access

The lab instructions are referenced over a link in the following documentation. To access
the lab, it is needed to Sign-Up to https://ost.hacking-lab.com and access the lab
event over the following redeem link https://ost.hacking-lab.com/events/redeem/

Y55W4-N2LJA-LBCS6-PA4G4

5.3 Generic Hacking-Lab resources

The following resources were developed or improved for generic use and can be used for
future labs.

5.3.1 Dynamic nginx Multi-Docker

The Hacking-Lab only allows one endpoint exposure in the default setup. The Multi-
Docker resource is used to expose multiple services. It allows the exposure of up to
3 services as shown in the Figure 5.2 in one Docker Compose file. Unfortunately, it
is handled manually and has no dynamic configuration over Environment variables or
custom naming for services. [22]

58

https://bit.ly/hl-images
https://bit.ly/hl-images
https://ost.hacking-lab.com
https://ost.hacking-lab.com/events/redeem/Y55W4-N2LJA-LBCS6-PA4G4
https://ost.hacking-lab.com/events/redeem/Y55W4-N2LJA-LBCS6-PA4G4

Figure 5.2: Multi-Docker before Figure 5.3: Multi-Docker after

To improve the User Experience and allow dynamic configuration of the exposed services,
an updated version of the ”nginx-multi-docker” was released. The improved resource
named ”dynamic-nginx-multi-docker” uses the environment variables provided in the
resources Compose file to generate the nginx landing page for the lab services.
Now, it is possible to configure the environment variable URLs to assign the hobo host-
names to the according service name dynamically as shown in the Figure 5.3.

1 version: ’2.3’

2
3 services:

4 nginx -multi -docker -hobo:

5 image: REGISTRY_BASE_URL/dynamic -nginx -multi -docker:stable

6 hostname: ’hobo’

7 networks:

8 - hobo

9 environment:

10 - "domainname=idocker.REALM_DOMAIN_SUFFIX"

11 - "SERVICES=hobo"

12 - URLS=Keycloak:hobo -1,Note App:hobo -2

13 cpus: 1

14 mem_limit: 128M

5.3.2 Theia Web IDE

A few labs require an IDE to solve the challenge. A ”Theia Web IDE” resource was al-
ready available from previous labs. Unfortunately, the container had Node.js 12 running
and an older Theia version, which was deprecated. Also, the previously used repository
was archived in October 2022.[23]

Therefore, a new Docker image was created based on node:22-alpine. The base image
needed to be alpine to install the s6-overlay [24], which is the default for Hacking-Lab
resources to spin up services. Additionally, the build process of Theia had to be modified
so that it is compatible with Alpine because Theia uses node:18-bullseye as the base
image for the Docker build. At last, the PHP and PHP-FPM versions were upgraded.

59

5.4 API Security: API enumeration and reconnaissance

The Figure 5.4 shows the challenge overview on the Hacking-Lab platform from the lab
API enumeration and reconnaissance containing the challenge image, OWASP Top 10
API Security Risks reference, challenge properties and resources.

Figure 5.4: API enumeration and reconnaissance challenge

The challenge can accessed through the following link:
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/

7798

5.4.1 Descriptive information

Learning goal

In this lab, students learn how to use Burp Suite. The main functions used will be Target,
Intruder and Repeater. A website that has intentionally built-in vulnerabilities will be
investigated using these tools. Particular attention will be paid to the API interfaces
and endpoints.

Lab duration

90 min

OWASP Top 10 API Security Risks relation

The website is examined with the help of Burp Suite. Vulnerabilities are also exploited.
These vulnerabilities are affected by ”Broken Object Property Level Authorization”.

60

https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7798
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7798

An attacker can supply specific API endpoints with incorrect values and exploit these
vulnerabilities without proper privileges.

API3: Broken Object Property Level Authorization
Broken Object Property Level Authorization issues arise because authorization checks
are not fine-grained enough to control access within an object’s property level. This can
lead to unauthorized access or modification of sensitive data, such as roles, permissions,
payment information, or personal details.

API9: Improper Inventory Management
This vulnerability occurs when an application does not properly manage and validate
inventory-related operations, such as item quantities and stock levels, leading to potential
exploitation and business logic issues.

5.4.2 Lab development

Architecture

The challenge in the Hacking-Lab provides a web application with a Juice Shop as a
resource. This web application can be accessed with the browser via HTTPS. In the lab,
a pre-installed Kookarai with Burp Suite is recommended.

Figure 5.5: Architecture enumeration and reconnaissance [17] [25] [26]

Development

Enumeration and reconnaissance are major steps in the process of security testing. They
serve to gather as much information as possible about the target system, enabling a
deeper understanding and identifying potential vulnerabilities that could be exploited.
This lab provides various tools and offers support with instructions to assist in the exe-
cution.

Burp Suite Community Edition
Burp Suite is a comprehensive web vulnerability scanner and security testing tool used
by penetration testers and security professionals. It provides features for scanning,

61

mapping, and analyzing web applications to identify security vulnerabilities. Key com-
ponents include the Proxy for intercepting and modifying web traffic, the Scanner for
automated vulnerability detection, the Intruder for custom attacks, and the Repeater
for manual testing of requests.

OWASP Juice Shop
The OWASP Juice Shop is the example application that needs to be enumerated. There-
fore, the existing juice-shop image is used.

5.4.3 Lab solution

The lab is considered complete after the student follows all the instructions and submits
a flag and a report with the answers to the provided questions.

62

5.5 API Security: Implementing logging

The Figure 5.6 shows the challenge overview on the Hacking-Lab platform from the
lab Implementing logging containing the challenge image, OWASP Top 10 API Security
Risks reference, challenge properties and resources.

Figure 5.6: Implement logging challenge

The challenge can accessed through the following link:
https://ost.hacking-lab.com/events/1093/curriculumevents/1122/challenges/

7801

5.5.1 Descriptive information

Learning goal

In this lab, students work on a lab that includes Theia IDE from Hacking-Lab [27].
This allows the editing of JavaScript files directly in the lab environment and running
them afterwards. The goal is to implement and configure an Express middleware called
Winston into an existing web application.

Lab duration

90 min

OWASP Top 10 API Security Risks relation

Maintaining comprehensive and secure logging practices can significantly enhance your
ability to protect APIs, detect threats early, and respond effectively to security incidents.

63

https://ost.hacking-lab.com/events/1093/curriculumevents/1122/challenges/7801
https://ost.hacking-lab.com/events/1093/curriculumevents/1122/challenges/7801

API8: Security Misconfiguration
Proper logging can help identify security misconfigurations. Logs may reveal unusual
or unauthorized access attempts, errors in configuration settings, or other indicators
that an API is not properly secured. These misconfigurations can go unnoticed without
adequate logging, leaving the API vulnerable.

5.5.2 Lab development

Architecture

The Figure 5.7 shows the lab architecture.

Figure 5.7: Architecture overview logging lab

Development

The lab container is based on the Theia Web IDE 5.3.2 resource and uses a nginx to
expose the following services:

README
The README is the landing page when the student starts the container. It contains
essential information about the lab services, how to use the Theia Web IDE and how to
start the Bubble app.

64

Theia Web IDE
Theia Web IDE provides the web IDE for the students to develop and start the Bubble
sample app.

Bubble app
The Bubble app is a simple JavaScript application. It provides two API endpoints. One
is called when a user presses the ”create-bubble” button. This creates a bubble with a
random counter between 1 and 5. The user can press on the bubbles, which decreases
the affected counter by 1. As soon as the counter reaches 0, the bubble is deleted. This
is executed by the ”delete-bubble” endpoint. Following Figure 5.8 shows the app.

Figure 5.8: Bubble app

5.5.3 Lab solution

The lab is considered complete after the student follows all the instructions and submits
a report that contains JavaScript code.

65

5.6 API Security: OWASP Coraza WAF

The Figure 5.9 shows the challenge overview on the Hacking-Lab platform from the lab
OWASP Coraza WAF containing the challenge image, OWASP Top 10 API Security
Risks reference, challenge properties and resources.

Figure 5.9: OWASP Coraza WAF challenge

The challenge can accessed through the following link:
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/

7800

5.6.1 Descriptive information

Learning goal

The lab aims to introduce students to OWASP Coraza WAF within the Caddy server
setup. Through practical exercises, participants will grasp how Coraza WAF defends
web applications from typical vulnerabilities. They’ll also gain firsthand experience
configuring, deploying, and assessing its effectiveness against web API Security threats.

Lab duration

60 min

OWASP Top 10 API Security Risks relation

OWASP Coraza is a web application firewall that can help mitigate API Security risks
outlined in the API7: Server Side Request Forgery and API8: Security Misconfiguration.

66

https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7800
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7800

API7: Server Side Request Forgery
OWASP Coraza helps mitigate SSRF by:

• Input Validation: Enforcing strict validation rules for user-supplied URLs.

• Whitelisting/Blacklisting: Allowing only trusted domains and blocking malicious
ones.

• Disabling HTTP Redirections: Blocking redirection responses.

• Media Type Enforcement: Ensuring only expected media types are accepted.

• URL Parsing: Implementing robust URL parsing and validation.

• Rate Limiting: Limiting the number of sensitive requests.

• Logging/Monitoring: Logging suspicious activity and alerting administrators.

API8: Security Misconfiguration
OWASP Coraza helps mitigate Security Misconfiguration by:

• Secure configurations such as TLS encryption.

• Proper CORS (Cross-Origin Resource Sharing) policies.

• Restricted HTTP methods.

• Sanitized error handling practices.

5.6.2 Lab developement

Architecture

The Figure 5.10 shows the lab architecture.

Figure 5.10: Architecture overview OWASP Coraza WAF lab

67

Developement

The Medium article inspired the lab idea: OSS WAF stack using Coraza, Caddy, and
Elastic [28].
The lab consists of five containers: Dynamic nginx Multi-Docker, Coraza Caddy, Elas-
ticsearch, Kibana and OWASP Juice Shop.

Dynamic nginx Multi-Docker
This container provides a simple nginx landing page containing all the links to the lab re-
sources since the Hackin-Lab link only allows the reference of one URL for each resource.

Coraza Caddy
OWASP Coraza is configured over a caddy module to provide caddy web application
firewall capabilities. The custom Dockerfile builds caddy with the Coraza WAF enabled,
installs the s6-overlay and copies the needed files. This contains the Caddyfile, which
loads the Coraza WAF modules and enables the audit log and logger.py, a custom
script to watch the audit logs, parse and send them to the Elasticsearch instance.

Elasticsearch
The Elasticsearch container uses the default image elasticsearch:7.17.20 and is used
to collect the logs from the Coraza Caddy WAF.

Kibana
Kibana uses the default kibana:7.17.20 image and is used to visualize the logs from
the WAF.

OWASP Juice Shop
The OWASP Juice Shop is the example application that needs to be protected. There-
fore, the existing juice-shop image is used.

Compose file
The following Compose file is deployed. (Filtered to only image and environment vari-
able)

1 version: ’2.3’

2
3 services:

4 nginx -multi -docker -hobo:

5 image: REGISTRY_BASE_URL/dynamic -nginx -multi -docker:stable

6 environment:

7 - URLS=JuiceShop:hobo -1,Kibana:hobo -3

8
9 owasp -coraza -waf -hobo -1:

10 image: REGISTRY_BASE_URL/multi -docker -coraza -caddy:stable

11 environment:

12 - "BACKEND_APPLICATION=hobo -4.i.vuln.land"

68

13 - "BACKEND_APPLICATION_PORT =3000"

14
15 owasp -coraza -waf -hobo -2:

16 image: REGISTRY_BASE_URL/multi -docker -coraza -kibana:stable

17
18 owasp -coraza -waf -hobo -3:

19 image: REGISTRY_BASE_URL/demo -docker -shell -chatgpt -3-sa:stable

20
21 owasp -coraza -waf -hobo -4:

22 image: REGISTRY_BASE_URL/juice -shop:stable

Flow
Any incoming vulnerable request to the OWASP Juice Shop will be captured and blocked
by the Coraza Caddy WAF instance. The log script will detect the audit logs generated
by the blocked requests, which process and send the data to the Elasticsearch instance.
Finally, Kibana will be able to visualize the logs for the student and read the coraza
index from Elasticsearch.

5.6.3 Lab solution

The lab is considered complete after the student follows all the instructions and submits
a report with the answers to the provided questions.

69

5.7 API Security: OAuth2 vulnerabilities

The Figure 5.11 shows the challenge overview on the Hacking-Lab platform from the lab
OAuth2 vulnerabilities containing the challenge image, OWASP Top 10 API Security
Risks reference, challenge properties and resources.

Figure 5.11: OAuth2 Vulnerabilities challenge

The challenge can accessed through the following link:
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/

7799

5.7.1 Descriptive information

Learning goal

The primary goal of this challenge is to identify and exploit a vulnerability in the OAuth2
authentication flow to impersonate another user. By achieving this, the students will:

• Learn how misconfigurations or incorrect implementations in authentication can
be exploited.

• Understand the importance of secure coding practices in authentication mecha-
nisms.

• Gain practical experience in analyzing and exploiting web application vulnerabili-
ties.

Lab duration

60min

70

https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7799
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7799

OWASP Top 10 API Security Risks relation

The lab focuses on API2: Broken Authentication because it targets a vulnerability in
the OAuth2 implementation used for user login within a web application.

• API2: Broken Authentication deals with weaknesses in how APIs identify and
verify users.

• The lab specifically mentions analyzing the OAuth2 login flow, a core function of
user authentication in APIs.

• The goal is to exploit a flaw and impersonate another user, bypassing the intended
access control mechanism. This indicates a serious failure in the authentication
process.

The lab highlights how a broken authentication implementation allows unauthorized
access to the API by impersonating a user ”john”.

5.7.2 Lab developement

Architecture

The Figure 5.12 shows the lab architecture.

Figure 5.12: Architecture overview OAuth2 vulnerabilities lab

Developement

The lab consists of three containers: Dynamic nginx Multi-Docker, Notes application
and Keycloak.

Dynamic nginx Multi-Docker
This container provides a simple nginx landing page containing all the links to the lab re-
sources since the Hackin-Lab link only allows the reference of one URL for each resource.

Notes App
This Node.js application is a simple notes app that uses Keycloak for user authentica-
tion and Express for handling HTTP requests.”It uses sessions to handle user state and
JWTs to secure communications.”

71

When a user accesses the root route (/), the application checks if they are authenticated.
If not, it redirects them to Keycloak for authentication. Upon successful login, Keycloak
redirects back to the application with an authorization code. The application exchanges
this code for access tokens in the callback route (/callback). These tokens are stored in
the session to maintain the authenticated state. The figure 5.13 shows the login page of
the Notes App.

Figure 5.13: Notes App: Welcome page

Once authenticated, users are greeted with a personalized welcome page, which prompts
them to view or add notes. The application decodes the JWT token to extract user
information, ensuring the session contains the correct user data. This allows the appli-
cation to display user-specific notes and provide an interface for adding new notes.

The application manages notes by retrieving and displaying user-specific notes stored in
an in-memory object. Users can add new notes through the interface as shown in the
Figure 5.14, which are saved to this in-memory store. This ensures that each user can
manage their notes independently.

Figure 5.14: Notes App: Notes

Access control is enforced throughout the application. Only authenticated users can
access routes that involve note management. This is checked by verifying the presence
of access tokens in the session before allowing access to sensitive routes.

72

1 app.post(’/login’, async (req , res) => {

2 const { username , accessToken } = req.body;

3
4 if (username && accessToken) {

5 ACTIVE_USER = username;

6 res.send(’Login successful!’);

7 } else {

8 res.send(’Error: no username or accessToken is defined ’);

9 }

10 });

The vulnerability in the POST /login route is primarily due to the insecure handling
of user authentication. Specifically, the route sets the active user (ACTIVE USER) based
solely on the provided username and accessToken without proper validation. This
allows any user who sends a POST request with arbitrary values for username and
accessToken to impersonate any user. This lack of proper authentication checks can
lead to unauthorized access and potential session hijacking, where an attacker can access
another user’s notes and personal data without proper authorization.

Keycloak
Keycloak is used in this application to manage user authentication and authorization
securely. It handles the login process, providing a centralized and secure way to au-
thenticate users. When users attempt to log in, they are redirected to Keycloak, which
verifies their credentials and issues the authorization token. The application then uses
the token to maintain user sessions and verify identities.

5.7.3 Lab solution

The lab is considered solved after the student has successfully impersonated the user
”john”, where the flag is stored in his notes as seen in the Figrue 5.15 and answered the
provided questions in the write-up.

Figure 5.15: Notes App: Solution

73

5.8 API Security: Rate limiting

The Figure 5.16 shows the challenge overview on the Hacking-Lab platform from the
lab Rate limiting containing the challenge image, OWASP Top 10 API Security Risks
reference, challenge properties and resources.

Figure 5.16: Rate limiting challenge

The challenge can accessed through the following link:
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/

7885

5.8.1 Descriptive information

Learning goal

The primary goal of this challenge is to secure a basic Library app by implementing best
practices to mitigate Unrestricted Resource Consumption vulnerabilities. By achieving
this, students will:

• Learn how to prevent excessive resource usage in APIs.

• Understand the importance of rate limiting and resource management.

• Gain practical experience in applying security measures to protect web APIs.

Lab duration

90min

74

https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7885
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7885

OWASP Top 10 API Security Risks relation

The lab is built on API4:2023 Unrestricted Resource Consumption and directly handles
the API recommendation for this field. It focuses on each API property mentioned in
the OWASP Top 10 API Security Risks and provides information on how and why it
needs to be considered.

5.8.2 Lab developement

Architecture

This Figure 5.23 shows the lab architecture.

Figure 5.17: Architecture overview Rate limiting lab

Development

The lab container is based on the Theia Web IDE 5.3.2 resource and uses an nginx to
expose the following services:

README
The README is the landing page when the student starts the container. It contains

75

important information about the lab services, how to use the Theia Web IDE, how to
start the Library sample app and how the Test report page works.

Theia Web IDE
Theia Web IDE provides the web IDE for the students to develop and start the Library
sample app.

Library sample app
The library application, as shown in Figure 5.18, allows users to lend and return books.
The application provides several endpoints for interacting with the book database but
lacks important resource management features.

The Library API consists of the following main functionalities:

• Uploading books: Users can upload books through a JSON file or directly in the
request body.

• Lending books: Users can lend books by specifying the book ID.

• Returning books: Users can return lent books by specifying the book ID.

• Viewing books: Users can view the list of books.

Figure 5.18: Library sample app

It uses Swagger [29] to document the API endpoints and provide base information about
how to consume the API with an execution possibility. The following Figure 5.19 shows
a Swagger overview.

76

Figure 5.19: Library sample app

Test report
Jest, a JavaScript Testing framework, handles the code validation. Several assertions
were created with supertest to verify each API property. The report page is generated
by jest-html-reporter and exposed through nginx.
A shell script runs every minute to execute the tests and generate the report for the
students. When all tests are successful, the dynamic flag will be imported into the
HTML of the report page. Following a Figure 5.20 with unsuccessful tests.

77

Figure 5.20: Library app: Test report

5.8.3 Lab solution

The lab is considered solved after the student has successfully implemented all API
properties from the API4:2023 Unrestricted Resource Consumption and submitted the
flag after all tests were successful. Following a Figure 5.21 with all tests successful.

Figure 5.21: Library app: Test report solution

78

5.9 API Security: Input validation and sanitization

The Figure 5.22 shows the challenge overview on the Hacking-Lab platform from the lab
Input validation and sanitization containing the challenge image, OWASP Top 10 API
Security Risks reference, challenge properties and resources.

Figure 5.22: Input validation and sanitization challenge

The challenge can accessed through the following link:
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/

7886

5.9.1 Descriptive information

Learning goal

The goal of this lab is to implement input validation and sanitization. Therefore, a
simple input form for user registration is provided. Since students must meet specific
criteria for a validation service to pass successfully, they must correctly implement the
Express middleware express-validator.

Lab duration

90 min

OWASP Top 10 API Security Risks relation

This lab is about implementing input validation and sanitization, which serves as a
countermeasure for unsafe API consumption. By learning this, students can prevent vul-
nerabilities such as injection attacks, data corruption, and unauthorized access, thereby

79

https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7886
https://ost.hacking-lab.com/events/1120/curriculumevents/1121/challenges/7886

ensuring the security and integrity of their applications when interacting with external
APIs.

API10: Unsafe Consumption of APIs
This risk occurs when applications consume APIs without adequately handling the input
or output, leading to various security issues such as injection attacks, data leaks, or
compromised systems.

5.9.2 Lab development

Architecture

This Figure 5.23 shows the lab architecture.

Figure 5.23: Architecture overview input validation lab

Development

The lab container is based on the Theia Web IDE 5.3.2 resource and uses a nginx to
expose the following services:

80

README
The README is the landing page when the student starts the container. It contains
essential information about the lab services, how to use the Theia Web IDE and how to
start the user registration app.

Theia Web IDE
Theia Web IDE provides the web IDE for the students to develop and start the user
registration sample app.

User registration app
The user registration app provides input fields that can be implemented with express-
validator. This allows specific input validation and sanitization. See Figure 5.24

Figure 5.24: User registration app

5.9.3 Lab solution

The lab is considered complete after the student follows all the instructions and the
validation service can complete all tests. The student must then submit a flag and his
code.

81

Chapter 6

Quality Measures

The following chapter contains requirements and test concept descriptions for the eval-
uating labs afterwards.

6.1 General lab requirements

The following general requirements are defined for the labs.

• Consumer - The target audience of the lab should be computer science students
who want to learn about topics in API Security.

• Language - English will be the general language for all lab instructions.

• Grading - The lab should have a Write-Up, Flag or Write-Up + Flag as submission
to validate the challenge.

• Platform - The lab components should be fully compatible and functional on the
Kookarai Pentesting Linux virtual machine.

6.2 Test concept

This section defines the test concept of how the labs will be tested. It describes the test
plan and defines the requirements of the test cases.

Testing approach

The testing will be done in three phases.

• Author testing - The lab author defines the test cases before developing the lab
and tests them afterwards.

• Partner testing - The team partner of the author will do this testing to verify
the outcome of the Test cases.

82

• Public testing - This testing will be done by a 3rd party user, which has no
relation to the topic. Hereby, the focus lies on the user experience and general
understanding of the lab.

Testing Schedule

The tests will be done immediately after finishing the lab and will follow the phases
defined in the testing approach section.

Test deliverables

• Author testing: The test report will be the deliverable for this phase.

• Partner testing: The test report will be the deliverable for this phase.

• Public testing: The feedback form will be the deliverable for this phase.

6.2.1 Roles and responsibilities

• Test manager (Thajakan Thirunavukkarasu) - Is responsible for monitoring
the test and verifying that all the phases are validated properly with the corre-
sponding quality.

• Tester (Corsin Salutt & Thajakan Thirunavukkarasu) - Are responsible for
performing the tests at the author testing and partner testing phase.

• User acceptance tester - Provide feedback on usability, functionality, and overall
user experience.

Test cases

The test cases are defined using the following template.

TC-ID Unique identifier for each test case

Lab Lab name, where it belongs to

Description Description of the test case

Precondition Any preconditions that must be met before the test case can be
executed

Test steps Step-by-step instructions for executing test case

Expected result The expected outcome or behaviour of the test

Environment Details of the test environment

Priority high/medium/low

Status pass/fail/NA

Notes Any additional notes

Table 6.1: Test Case template

83

6.3 Defined test cases

This chapter includes all the test cases defined for the individual labs.

6.3.1 Test cases: API enumeration and reconnaissance

TC-ID TC-1-1

Lab API enumeration and reconnaissance

Description API-enum-recon resource can be started and is accessible

Precondition User is logged in to the HL

Test steps 1. Start the API-enum-recon docker resource 2. Access the
webpage of the resource

Expected result Resource can be started and accessed

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.2: TC-1-1: API enumeration and reconnaissance

TC-ID TC-1-2

Lab API enumeration and reconnaissance

Description Burp can interact with the HL resource

Precondition HL resource is running and accessible. Kookarai is started
and Burp is open

Test steps 1. Go to Burp Target and open a new browser 2. Access the
FQDN of the HL resource

Expected result Traffic can be seen in Burp. Burp can send and retrieve
requests from the resource.

Environment The test environment is the Hacking-Lab Challenge page and
Kookarai OS.

Priority high

Status pass/fail/NA

Notes -

Table 6.3: TC-1-2: API enumeration and reconnaissance

84

6.3.2 Test cases: Implementing logging

TC-ID TC-2-1

Lab Implementing logging

Description Readme is accessible

Precondition User is logged in to the HL

Test steps 1. Start the Implementing logging docker resource 2. Ac-
cess the webpage of the resource, which should show the lab
readme page

Expected result Readme page can be accessed

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.4: TC-2-1: Implementing logging

TC-ID TC-2-2

Lab Implementing logging

Description Theia instance is accessible

Precondition User is logged in to the HL

Test steps 1. Start the Implementing logging docker resource 2. Ac-
cess the webpage of the resource, which should show the labs
readme page 3. From the readme page, access the Theia in-
stance

Expected result Theia instance is accessible

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.5: TC-2-2: Implementing logging

85

TC-ID TC-2-3

Lab Implementing logging

Description Theia instance works properly

Precondition User is logged in to the HL

Test steps 1. Access the Theia instance 2. Open, edit and save files
in the root directory 3. Start the terminal and execute npm
start

Expected result Theia instance works properly

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.6: TC-2-3: Implementing logging

6.3.3 Test cases: OWASP Coraza WAF

The test cases are defined using the following template.

TC-ID TC-3-1

Lab OWASP Coraza WAF

Description Exposed services in multi-service docker are available over
the browser.

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the coraza-waf multi-service docker resource 2. Nav-
igate to the nginx page exposing the services from the multi-
service setup 3. Click on all Service1 and Service2

Expected result Service 1 should open up the vulnerable backend application,
and Service2 should open Kibana.

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.7: TC-3-1: OWASP Coraza WAF

86

TC-ID TC-3-2

Lab OWASP Coraza WAF

Description Logger script does create the elastic index automatically.

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the coraza-waf multi-service docker resource 2. Run
a vulnerable curl command on Service1 3. Check in Kibana
if the index is automatically created.

Expected result Under Kibana settings, it should show the ”coraza” index.

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.8: TC-3-2: OWASP Coraza WAF

TC-ID TC-3-3

Lab OWASP Coraza WAF

Description Audit logs are enabled on caddy.

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the coraza-waf multi-service docker resource 2. Run
a vulnerable curl command on Service1 3. Create a dash-
board in Kibana 4. Check if audit logs are visible in the
Kibana dashboard

Expected result Audit logs from caddy should be visible on newly created
Kibana dashboard.

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.9: TC-3-3: OWASP Coraza WAF

87

TC-ID TC-3-4

Lab OWASP Coraza WAF

Description Backend Application can be changed

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Go to Hacking-Lab resource manager to the owasp-coraza
resource 2. Configure another backend image for the appli-
cation 3. Configure the Caddy BACKEND APPLICATION
and BACKEND APPLICATION PORT env var in the
caddy service 4. Redeploy the challenge 5. Start the
OWASP-coraza resource in the challenge

Expected result When navigating to the Service1, the new backend applica-
tion should be available.

Environment The test environment is the Hacking-Lab Challenge page.

Priority low

Status pass/fail/NA

Notes -

Table 6.10: TC-3-4: OWASP Coraza WAF

6.3.4 Test cases: OAuth2 vulnerabilities

TC-ID TC-4-1

Lab OAuth2 Vulnerabilities

Description Multi-Docker is working and correctly linked to the applica-
tion on the nginx services page.

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the ”lab-oauth2-vulnerabilities-multidocker” re-
source. 2. Wait until the service is started. 3. Navigate
to Keycloak and Note App. 4. Check if they are running.

Expected result Keycloak and Note App are linked correctly and running.

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.11: TC-4-1: OAuth2 Vulnerabilities

88

TC-ID TC-4-2

Lab OAuth2 Vulnerabilities

Description Keycloak client import and login function.

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the ”lab-oauth2-vulnerabilities-multidocker” re-
source. 2. Wait until the service is started. 3. Import the
keycloak client config as declared in the lab instructions. 4.
Test the login with the admin user in the Notes App

Expected result Logged in as the admin user in the Notes App

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.12: TC-4-2: OAuth2 Vulnerabilities

TC-ID TC-4-3

Lab OAuth2 Vulnerabilities

Description Notes app functionality

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the ”lab-oauth2-vulnerabilities-multidocker” re-
source. 2. Wait until the service is started. 3. Import the
keycloak client config as declared in the lab instructions. 4.
Login as admin user 5. Take some notes

Expected result Notes are listed and stored.

Environment The test environment is the Hacking-Lab Challenge page.

Priority medium

Status pass/fail/NA

Notes -

Table 6.13: TC-4-3: OAuth2 Vulnerabilities

89

TC-ID TC-4-4

Lab OAuth2 Vulnerabilities

Description Impersonating user ”john”

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the ”lab-oauth2-vulnerabilities-multidocker” re-
source. 2. Wait until the service is started. 3. Import the
keycloak client config as declared in the lab instructions. 4.
Login as admin user 5. Do a POST request using accessTo-
ken and username to the /login endpoint. 6. Navigate to the
Notes App and refresh the site.

Expected results Notes of the user ”john” are listed, which include the Flag.

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.14: TC-4-4: OAuth2 Vulnerabilities

6.3.5 Test cases: Rate limiting

TC-ID TC-5-1

Lab Rate limiting

Description Check if Theia is accessible and working.

Precondition Multi-service docker resource is deployed and linked to the
challenge

Test steps 1. Start the ”lab-api-rate-lmiting” resource. 2. Open the
link to Theia from the README. 3. Change the name of
one of the initial books. 4. Save and run npm start in the
terminal. 6. Check the Library sample app web page.

Expected results The applied changes should be visible on the Library web
page.

Environment The test environment is the Theia environment

Priority high

Status pass/fail/NA

Notes -

Table 6.15: TC-5-1: Rate limiting

90

TC-ID TC-5-2

Lab Rate limiting

Description Upload books to Library

Precondition Resource is deployed and linked to the challenge

Test steps 1. Start the ”lab-api-rate-lmiting” resource. 2. Open the
link to Theia from the README. 3. Start the terminal and
run npm start 4. Upload a book through POST request and
file.

Expected results The books should be visible on the Library page.

Environment The test environment is the Library sample app.

Priority low

Status pass/fail/NA

Notes -

Table 6.16: TC-5-2: Rate limiting

TC-ID TC-5-3

Lab Rate limiting

Description Test report page solution

Precondition Resource is deployed and linked to the challenge

Test steps 1. Start the ”lab-api-rate-lmiting” resource. 2. Open the
link to Theia from the README. 3. Copy and pase the lab
solution from teacher grading. 4. Check the Test report page

Expected results All tests should be passed.

Environment Test report web page.

Priority high

Status pass/fail/NA

Notes -

Table 6.17: TC-5-3: Rate limiting

91

TC-ID TC-5-4

Lab Rate limiting

Description Students cannot access the test file.

Precondition Resource is deployed and linked to the challenge

Test steps 1. Start the ”lab-api-rate-lmiting” resource. 2. Open the
link to Theia from the README. 3. Try to open the test
directory from the Theia workspace. 4. Try to open it from
the terminal.

Expected results It is not accessible from the GUI and terminal.

Environment Test report web page.

Priority medium

Status pass/fail/NA

Notes -

Table 6.18: TC-5-4: Rate limiting

6.3.6 Test cases: Input validation and sanitisation

TC-ID TC-6-1

Lab Input validation and sanitization

Description Readme is accessible

Precondition User is logged in to the HL

Test steps 1. Start the Implementing logging docker resource 2. Ac-
cess the webpage of the resource which should show the labs
readme page

Expected result Readme page can be accessed

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.19: TC-6-1: Input validation and sanitization

92

TC-ID TC-6-2

Lab Input validation and sanitization

Description Theia instance is accessible

Precondition User is logged in to the HL

Test steps 1. Start the Implementing logging docker resource 2. Ac-
cess the webpage of the resource, which should show the labs
readme page 3. From the readme page, access the Theia in-
stance

Expected result Theia instance is accessible

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.20: TC-6-2: Input validation and sanitization

TC-ID TC-6-3

Lab Input validation and sanitization

Description Theia instance works properly

Precondition User is logged in to the HL

Test steps 1. Access the Theia instance 2. Open, edit and save files in
the root directory 3. Start terminal and execute npm start

Expected result Theia instance works properly

Environment The test environment is the Hacking-Lab Challenge page.

Priority high

Status pass/fail/NA

Notes -

Table 6.21: TC-6-3: Input validation and sanitization

93

TC-ID TC-6-4

Lab Input validation and sanitization

Description Test report page solution

Precondition Resource is deployed and linked to the challenge

Test steps 1. Start the ”lab-api-rate-lmiting” resource. 2. Open the
link to Theia from the README. 3. Copy and pase the lab
solution from teacher grading. 4. Check the Test report page

Expected results All tests should be passed.

Environment Test report web page.

Priority high

Status pass/fail/NA

Notes -

Table 6.22: TC-6-4: Input validation and sanitization

TC-ID TC-6-5

Lab Input validation and sanitization

Description Students cannot access the test file.

Precondition Resource is deployed and linked to the challenge

Test steps 1. Start the ”lab-api-rate-lmiting” resource. 2. Open the
link to Theia from the README. 3. Try to open the test
directory from the Theia workspace. 4. Try to open it from
the terminal.

Expected results It is not accessible from the GUI and terminal.

Environment Test report web page.

Priority medium

Status pass/fail/NA

Notes -

Table 6.23: TC-6-5: Input validation and sanitization

6.4 Public testing

The public testing section explains the testing method, the tools used, and the testing
phase results.

6.4.1 Tools

Microsoft Forms is used to collect feedback from the participants. It is easy to set up
and collect feedback and integrates well with the Microsoft toolset.
The questions are kept general so they can be used throughout all labs. They are
integrated into the instruction at the end of each lab with a link to the feedback form

94

to keep it simple and easy for all participants.

6.4.2 Questions

The following questions were asked:

1. How easy was it to set up the environment before the start of the labs? 1 difficult
- 10 easy

2. How easily were you able to navigate through the lab instructions? 1 difficult - 10
easy

3. Did you encounter any difficulties while performing tasks in the lab environment?
1 a lot of problems - 10 no problems

4. How good were the API Security challenges designed? 1 not good - 10 very good

5. How supportive did you find the laboratory environment? 1 no support - 10 very
good support

6. How adequate were the resources and tools provided for completing the tasks? 1
not good - 10 very good

7. How would you rate the realism of the scenarios presented in the lab? 1 not realistic
- 10 very realistic

8. Were there any areas for improvement or suggestions you would like to provide for
enhancing the lab experience?

6.4.3 Overall feedback

The following statistics show the overall feedback across all labs. Shown in Figure 6.1.
The statistics come from 4 participants for each lab.

Figure 6.1: Overall feedback labs

95

The overall feedback was good for all the, except for some outliers, which were not
extremely bad. The improvements made out of the feedback are discussed in the next
section.

6.4.4 Feedback improvements

This section contains the improvement after the feedback result.

Enumeration and reconnaissance

The overall lab feedback was positive; therefore, no improvements were made.

Implement logging

The feedback is positive, but there is a recommendation to include an image guide to
make it easier. Therefore, an image guide is now present in this lab.

Another feedback is to improve the grading system. Due to lack of time, another vali-
dation service isn’t implemented.

OAuth2 vulnerabilities

The lab instructions were not improved because the overall rating regarding the instruc-
tions was positive.

The following improvements were mentioned in the free text field of question 9.

• ”Hints are currently placed at the end of all steps. They would be more helpful to
find them in the correct step.”

• ”noting against lab but better teachers grading would be good to have”

The hints were intentionally placed at the end of the instruction so that the students
would not see them when they opened the task. So, there will be no changes to this
feedback.
The teacher grading was improved for the second feedback with an example code of how
the exploit post request works. Since there was no such example.

OWASP Coraza WAF

The lab instructions were improved based on feedback provided by the free back.

• ”It would be nice if the service site could be more graphical. On Kibana setup the
hint in number five would be better placed as an information in number 4. In Step
three an example of a Log would be good to find it faster.”

96

• ”Very good lab to understand API / logs also one minor mistake in step 1 - Open
Kibana by clicking Service 3 on nginx services page. you don’t have anything
named Service 3 now as you have renamed.”

Regarding the first feedback, the static nginx services page was replaced with the Dy-
namic nginx multi-docker 5.3.1. Also the lab instruction were rearranged based on the
feedback and additional pictures were added to help the students.

The second feedback was an adjustment that was forgotten after the Dynamic nginx
change. It is fixed now.

Rate limiting

The following free text feedback was received for the lab:

• ”A bit complex to understand due to the description.”

To make the description more understandable, it was rewritten to be more precise.

Input validation and sanitisation

The lab was improved after the feedback that there is a partial problem with the execu-
tion of the lab.

• ”‘npm start‘ gives permission issues on the ‘users.db‘ file. Please check.”

The error is resolved, and the lab is not working.

97

Chapter 7

Results

As a result of this thesis, six labs were successfully created. Each lab covers a separate
vulnerability of the OWASP Top 10 API Security Risks - 2023. The labs cover the
following risks as you can see in the Table 7.1.

OWASP Top 10 API Security Risks – 2023 Lab

API1 Broken Object Level Authorization

API2 Broken Authentication OAuth2 Vulnerabilities

API3 Broken Object Property Level Authorization Enumeration and reconnaissance

API4 Unrestricted Resource Consumption Rate limiting

API5 Broken Function Level Authorization

API6 Unrestricted Access to Sensitive Business Flows

API7 Server-Side Request Forgery (SSRF) OWASP Coraza WAF

API8 Security Misconfiguration
Implement logging,
OWASP Coraza WAF

API9 Improper Inventory Management Enumeration and reconnaissance

API10 Unsafe Consumption of APIs Input validation and sanitization

Table 7.1: OWASP Risks covered with labs

The developed labs can be categorized into three types: tool-based, implementation-
based, and labs focused on exploiting vulnerabilities from the attacker’s perspective.
Although the goal of developing six labs was met, three API Security Risks were not
covered these are:

• API1:2023 - Broken Object Level Authorization

• API5:2023 - Broken Function Level Authorization

• API6:2023 - Unrestricted Access to Sensitive Business Flows

98

Chapter 8

Conclusion and outlook

This chapter covers the personal conclusion of this thesis and the outlook for future
research based on this thesis.

8.1 Conclusion

This project aimed to develop and create labs on the Hacking-Lab platform regarding
API Security. This was achieved using the OWASP Top 10 API Security Risks as a
foundation for the lab development. The developed labs cover at least one Risk from
the Top 10. The created labs allow students to apply theoretical concepts hands-on,
simulating real-world scenarios and challenges.

The labs were created in a structured way so that the student was not overwhelmed by
the challenge. Also, the appropriate hints were integrated to help the students without
spoiling the solution.

Students gain a comprehensive understanding of the subject by combining tool-based
and implementation-based exercises. Additionally, by covering seven of ten risks from
the OWASP Top 10, the students will gain a broad knowledge of API Security by solving
the labs.

8.2 Outlook

The future of this project could include the creation or improvement of labs to cover
the remaining risks from the OWASP Top 10 API Security Risks 2023. Besides that,
focusing on specific areas like cloud provider API would also be interesting as it becomes
more and more relevant. Also, the OAuth2 authentication flow can be researched deeply
as it becomes the de facto standard for authentication.

99

List of Figures

2.1 API Security fields [2] . 14
2.2 Defensive mechanism APIs [2] . 16
2.3 Token-based authentication . 17
2.4 Authorization code flow . 20
2.5 Implicit flow . 20
2.6 Authorisation code flow with PKCE . 21

3.1 Decisionmatrix . 35

4.1 API login request . 39
4.2 Payload positions . 40
4.3 Payload settings . 40
4.4 SQLInjection response . 41
4.5 SQLInjection response token . 41
4.6 OWASP Coraza WAF PoC architecture 47

5.1 Hacking-Lab: Labs overview . 57
5.2 Multi-Docker before . 59
5.3 Multi-Docker after . 59
5.4 API enumeration and reconnaissance challenge 60
5.5 Architecture enumeration and reconnaissance [17] [25] [26] 61
5.6 Implement logging challenge . 63
5.7 Architecture overview logging lab . 64
5.8 Bubble app . 65
5.9 OWASP Coraza WAF challenge . 66
5.10 Architecture overview OWASP Coraza WAF lab 67
5.11 OAuth2 Vulnerabilities challenge . 70
5.12 Architecture overview OAuth2 vulnerabilities lab 71
5.13 Notes App: Welcome page . 72
5.14 Notes App: Notes . 72
5.15 Notes App: Solution . 73
5.16 Rate limiting challenge . 74
5.17 Architecture overview Rate limiting lab 75
5.18 Library sample app . 76

100

5.19 Library sample app . 77
5.20 Library app: Test report . 78
5.21 Library app: Test report solution . 78
5.22 Input validation and sanitization challenge 79
5.23 Architecture overview input validation lab 80
5.24 User registration app . 81

6.1 Overall feedback labs . 95

101

List of Tables

1 OWASP Top 10 API Security Risks – 2023 4

3.1 Example lab framework . 26
3.2 Lab idea: OAuth2 WebApp . 27
3.3 Lab idea: JWT & RBAC . 27
3.4 Lab idea: OWASP Juice Shop . 27
3.5 Lab idea: Implementing logging . 28
3.6 Lab idea: API rate limiting . 28
3.7 Lab idea: OWASP Coraza WAF . 29
3.8 Lab idea: API Security from an attacker’s perspective 29
3.9 Lab idea: Tooling lab . 29
3.10 Lab idea: OAuth2 vulnerabilities . 30
3.11 Lab idea: JWT vulnerabilities . 30
3.12 Lab idea: Input validation and sanitisation 31
3.13 Lab idea: API enumeration and reconnaissance 31
3.14 Lab idea: API Logging & monitoring . 31

5.1 OWASP Top 10 API Security Risks – 2023 [16] 58

6.1 Test Case template . 83
6.2 TC-1-1: API enumeration and reconnaissance 84
6.3 TC-1-2: API enumeration and reconnaissance 84
6.4 TC-2-1: Implementing logging . 85
6.5 TC-2-2: Implementing logging . 85
6.6 TC-2-3: Implementing logging . 86
6.7 TC-3-1: OWASP Coraza WAF . 86
6.8 TC-3-2: OWASP Coraza WAF . 87
6.9 TC-3-3: OWASP Coraza WAF . 87
6.10 TC-3-4: OWASP Coraza WAF . 88
6.11 TC-4-1: OAuth2 Vulnerabilities . 88
6.12 TC-4-2: OAuth2 Vulnerabilities . 89
6.13 TC-4-3: OAuth2 Vulnerabilities . 89
6.14 TC-4-4: OAuth2 Vulnerabilities . 90
6.15 TC-5-1: Rate limiting . 90

102

6.16 TC-5-2: Rate limiting . 91
6.17 TC-5-3: Rate limiting . 91
6.18 TC-5-4: Rate limiting . 92
6.19 TC-6-1: Input validation and sanitization 92
6.20 TC-6-2: Input validation and sanitization 93
6.21 TC-6-3: Input validation and sanitization 93
6.22 TC-6-4: Input validation and sanitization 94
6.23 TC-6-5: Input validation and sanitization 94

7.1 OWASP Risks covered with labs . 98

103

Bibliography

[1] NIST, “Nist glossary.” https://csrc.nist.gov/glossary/term/application_

programming_interface, February 2024.

[2] N. Madden, API Security in Action. Manning Publications, 2021.

[3] “W3c.” https://www.w3.org/, February 2024.

[4] K. Lane, “What is soap api.” https://blog.postman.com/

soap-api-definition/, 2023. Accessed: 2024-06-13.

[5] C. Miller, “From soap to rest: Tracing the history of apis.” https://blog.treblle.
com/from-soap-to-rest-tracing-the-history-of-apis/, July 2023.

[6] Dgraph, “The ultimate guide to graphql.” https://dgraph.io/whitepaper/

the-ultimate-guide-to-graphql, n.d. Accessed: 2024-06-12.

[7] MuleSoft, “What is an api?.” https://www.mulesoft.com/resources/api/

what-is-an-api, n.d. Accessed: 2024-06-12.

[8] M. Pollicove, “Ultimate guide to token-based authentica-
tion.” https://www.pingidentity.com/en/resources/blog/post/

ultimate-guide-token-based-authentication.html, 2021.

[9] A. by Okta, “What is oauth2.0?.” https://auth0.com/intro-to-iam/

what-is-oauth-2, n.d.

[10] IETF, “Rfc 6749.” https://datatracker.ietf.org/doc/html/rfc6749, October
2012.

[11] OAuth, “Oauth 2.0.” https://oauth.net/2/, n.d. Accessed: 2024-06-12.

[12] Auth0, “Application grant types.” https://auth0.com/docs/get-started/

applications/application-grant-types, n.d. Accessed: 2024-06-12.

[13] Auth0, “Openid connect protocol.” https://auth0.com/docs/authenticate/

protocols/openid-connect-protocol, n.d. Accessed: 2024-06-12.

[14] atlassian, “Microservices architecture.” https://www.atlassian.com/

microservices/microservices-architecture, n.d. Accessed: 2024-06-13.

104

https://csrc.nist.gov/glossary/term/application_programming_interface
https://csrc.nist.gov/glossary/term/application_programming_interface
https://www.w3.org/
https://blog.postman.com/soap-api-definition/
https://blog.postman.com/soap-api-definition/
https://blog.treblle.com/from-soap-to-rest-tracing-the-history-of-apis/
https://blog.treblle.com/from-soap-to-rest-tracing-the-history-of-apis/
https://dgraph.io/whitepaper/the-ultimate-guide-to-graphql
https://dgraph.io/whitepaper/the-ultimate-guide-to-graphql
https://www.mulesoft.com/resources/api/what-is-an-api
https://www.mulesoft.com/resources/api/what-is-an-api
https://www.pingidentity.com/en/resources/blog/post/ultimate-guide-token-based-authentication.html
https://www.pingidentity.com/en/resources/blog/post/ultimate-guide-token-based-authentication.html
https://auth0.com/intro-to-iam/what-is-oauth-2
https://auth0.com/intro-to-iam/what-is-oauth-2
https://datatracker.ietf.org/doc/html/rfc6749
https://oauth.net/2/
https://auth0.com/docs/get-started/applications/application-grant-types
https://auth0.com/docs/get-started/applications/application-grant-types
https://auth0.com/docs/authenticate/protocols/openid-connect-protocol
https://auth0.com/docs/authenticate/protocols/openid-connect-protocol
https://www.atlassian.com/microservices/microservices-architecture
https://www.atlassian.com/microservices/microservices-architecture

[15] owasp, “Owasp api security top 10.” https://owasp.org/API-Security/

editions/2023/en/0x03-introduction/, 2023. Accessed: 2024-06-13.

[16] OWASP-API-Security-Project-team, “Owasp top 10 api security risks – 2023.”
https://owasp.org/API-Security/editions/2023/en/0x11-t10/, June 2023.

[17] B. Kimminich, “Juice shop logo.” https://raw.githubusercontent.com/

bkimminich/juice-shop/master/frontend/src/assets/public/images/

JuiceShop_Logo_400px.png.

[18] T. P. Team, “What is an api endpoint?,” What is an API endpoint?, 2023.

[19] A. S. Pedro Ruivo, “Keycloak.” https://github.com/keycloak/keycloak.

[20] PortSwigger, “Oauth 2.0 authentication vulnerabilities.” https://portswigger.

net/web-security/oauth.

[21] I. Bütler, “Hacking-lab challenge generator.” https://github.com/Hacking-Lab/

generator-hl-challenge.

[22] I. Bütler, “Multiple docker resources.” https://hacking-lab.atlassian.net/

wiki/spaces/HLSD/pages/333971467/Hacking-Lab+Challenge+Development+

Procedures, November 2023.

[23] J. Faltermeier, “theia-blueprint.” https://github.com/eclipse-theia/

theia-blueprint/tree/master.

[24] J. R. Laurent Bercot, “s6-overlay.” https://github.com/just-containers/

s6-overlay.

[25] Hacking-Lab, “Kookarai.” https://level1.idocker.hacking-lab.

com/wp-content/uploads/2023/01/E1_beautiful_hacker_woman_bot_

860f3a75-51b7-4a26-a8bd-78f746c9137f.png, n.d. Accessed: 2024-06-13.

[26] PortSwigger, “Burp suite.” https://portswigger.net/burp, n.d. Accessed: 2024-
06-13.

[27] I. Bütler, “alpine-nginx-with-theia-web-ide-hl.” https://github.com/

Hacking-Lab/alpine-nginx-with-theia-web-ide-hl.

[28] J. Tosso, “Oss waf stack using coraza, caddy, and elastic.” Medium, 2023. Accessed:
2024-06-06.

[29] Swagger, “Swagger.” https://swagger.io/.

105

https://owasp.org/API-Security/editions/2023/en/0x03-introduction/
https://owasp.org/API-Security/editions/2023/en/0x03-introduction/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://raw.githubusercontent.com/bkimminich/juice-shop/master/frontend/src/assets/public/images/JuiceShop_Logo_400px.png
https://raw.githubusercontent.com/bkimminich/juice-shop/master/frontend/src/assets/public/images/JuiceShop_Logo_400px.png
https://raw.githubusercontent.com/bkimminich/juice-shop/master/frontend/src/assets/public/images/JuiceShop_Logo_400px.png
https://github.com/keycloak/keycloak
https://portswigger.net/web-security/oauth
https://portswigger.net/web-security/oauth
https://github.com/Hacking-Lab/generator-hl-challenge
https://github.com/Hacking-Lab/generator-hl-challenge
https://hacking-lab.atlassian.net/wiki/spaces/HLSD/pages/333971467/Hacking-Lab+Challenge+Development+Procedures
https://hacking-lab.atlassian.net/wiki/spaces/HLSD/pages/333971467/Hacking-Lab+Challenge+Development+Procedures
https://hacking-lab.atlassian.net/wiki/spaces/HLSD/pages/333971467/Hacking-Lab+Challenge+Development+Procedures
https://github.com/eclipse-theia/theia-blueprint/tree/master
https://github.com/eclipse-theia/theia-blueprint/tree/master
https://github.com/just-containers/s6-overlay
https://github.com/just-containers/s6-overlay
https://level1.idocker.hacking-lab.com/wp-content/uploads/2023/01/E1_beautiful_hacker_woman_bot_860f3a75-51b7-4a26-a8bd-78f746c9137f.png
https://level1.idocker.hacking-lab.com/wp-content/uploads/2023/01/E1_beautiful_hacker_woman_bot_860f3a75-51b7-4a26-a8bd-78f746c9137f.png
https://level1.idocker.hacking-lab.com/wp-content/uploads/2023/01/E1_beautiful_hacker_woman_bot_860f3a75-51b7-4a26-a8bd-78f746c9137f.png
https://portswigger.net/burp
https://github.com/Hacking-Lab/alpine-nginx-with-theia-web-ide-hl
https://github.com/Hacking-Lab/alpine-nginx-with-theia-web-ide-hl
https://swagger.io/

	I Abstract
	Acronyms
	Glossary

	II Technical report
	Introduction
	Initial situation
	Project scope
	OST Hacking-Lab

	Research
	API and history
	Definition
	What is an API?
	Simple Object Access Protocol
	Web Services Description Language
	API styles

	API Security in context
	Information security
	Network security
	Application security

	Identifying threats
	Defensive mechanism
	Token-based authentication and OAuth 2.0
	Token-based authentication
	OAuth2
	OAuth scopes
	OAuth grant types

	OpenID Connect
	Microservice
	OWASP Top 10 API Security Risks 2023
	Broken Object Level Authorisation
	Broken Authentication
	Broken Object Property Level Authorization
	Unrestricted Resource Consumption
	Broken Function Level Authorization
	Unrestricted Access to Sensitive Business Flows
	Server Side Request Forgery
	Security Misconfiguration
	Improper Inventory Management
	Unsafe Consumption of APIs

	Lab evaluation
	Approach
	Lab idea taxonomy
	Lab idea collection
	Lab ideas
	OAuth2 vulnerabilities

	Decision matrix
	Criteria
	Outcome

	Proof of concept
	Lab PoC: API enumeration and reconnaissance
	Objectives
	Prerequisites:
	Equipment/Software
	Setup steps
	Successful PoC
	PoC status

	Lab PoC: Implementing logging
	Objectives
	Prerequisites
	Equipment/Software
	Setup steps
	Successful PoC
	PoC status

	Lab PoC: OWASP Coraza WAF
	Objectives
	Prerequisites
	Equipment/Software
	Setup steps
	Successful PoC
	PoC status

	Lab PoC: OAuth2 vulnerabilities
	Objectives
	Prerequisites
	Equipment/Software
	Setup steps
	Successful PoC
	PoC Status

	Lab PoC: Implementing API rate limiting and throttling
	Objectives
	Prerequisites
	Equipment/Software
	Setup steps
	Successful PoC
	PoC Status

	Lab PoC: Implementing input validation and sanitization
	Objectives
	Prerequisites
	Equipment/Software
	Setup steps
	Successful PoC
	PoC Status

	Lab documentation
	Lab structure
	Lab access
	Generic Hacking-Lab resources
	Dynamic nginx Multi-Docker
	Theia Web IDE

	API Security: API enumeration and reconnaissance
	Descriptive information
	Lab development
	Lab solution

	API Security: Implementing logging
	Descriptive information
	Lab development
	Lab solution

	API Security: OWASP Coraza WAF
	Descriptive information
	Lab developement
	Lab solution

	API Security: OAuth2 vulnerabilities
	Descriptive information
	Lab developement
	Lab solution

	API Security: Rate limiting
	Descriptive information
	Lab developement
	Lab solution

	API Security: Input validation and sanitization
	Descriptive information
	Lab development
	Lab solution

	Quality Measures
	General lab requirements
	Test concept
	Roles and responsibilities

	Defined test cases
	Test cases: API enumeration and reconnaissance
	Test cases: Implementing logging
	Test cases: OWASP Coraza WAF
	Test cases: OAuth2 vulnerabilities
	Test cases: Rate limiting
	Test cases: Input validation and sanitisation

	Public testing
	Tools
	Questions
	Overall feedback
	Feedback improvements

	Results
	Conclusion and outlook
	Conclusion
	Outlook

