
Bachelor Thesis

PanPal: A chef’s chatbot

Semester: Spring 2024

Version: 1.0
Date: 2024-06-13 19:39:31Z

Git Version: 29cefe1

Author Andri Joos
Advisor Prof. Dr. Mitra Purandare

External Co-Examiner Dr. Raphael Polig
Internal Co-Examiner Prof. Frank Koch

Department of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

This report presents the comprehensive development of “PanPal: A chef’s chatbot”,
aimed at enhancing the Smart Eating platform by integrating an interactive cooking
assistant. The project addresses the absence of a chatbot to assist users with various
cooking-related tasks, leveraging both an OpenAI GPT model and Mixtral, an open
source large language model (LLM) hosted at OST. The report provides an in-depth
analysis of the planning, execution, and evaluation phases of the project, highlighting
the methodologies, risk management strategies, and the overall development lifecycle.

The final product is a robust, user-friendly chatbot fully integrated into the Smart Eating
infrastructure. It offers a hands-free experience, allowing users to interact with the
assistant without needing to touch their devices. Despite some limitations, the project
successfully meets its objectives and lays the groundwork for future enhancements. Key
achievements include the development of a versatile cooking assistant, the successful
integration of the chatbot into the Smart Eating platform, and the implementation of
effective project management strategies.

The report includes a comparative analysis of the available assistants to aid users in
making informed choices. The report also highlights areas for future work, such as
improving the Mixtral assistant’s capabilities.

i

Acknowledgements

In this chapter, I would like to express my gratitude to those who supported me through-
out my bachelor thesis.

First and foremost, I would like to thank my advisor, Prof. Dr. Mitra Purandare. Her
valuable feedback and helpful ideas significantly improved my work. I greatly appreciated
having her as my advisor for the bachelor thesis.

I also want to thank Lars Herrmann, Abinas Kuganathan and Clemens Meier for their
help throughout the project. Their inputs were greatly appreciated.

Finally, I would like to thank my friends and family for their support, not only during
this thesis, but over the past three years.

ii

Contents

I Management Summary 1

1 Management Summary 2
1.1 Problem . 2
1.2 Techniques . 2
1.3 Results . 2
1.4 Outlook . 4
1.5 Conclusion . 4

II Product Documentation 6

2 Requirements 7
2.1 Functional Requirements . 7

2.1.1 Actor . 7
2.1.2 User Stories . 8

2.2 Non-Functional Requirements . 12
2.2.1 Compatibility . 12
2.2.2 Usability . 12
2.2.3 Security . 13
2.2.4 Maintainability . 13
2.2.5 Portability . 14

3 Architecture 15
3.1 Project Architecture . 15

3.1.1 Smart Eating Project Structure . 16
3.1.2 Chatbot Project Structure . 17

3.2 C4 Diagrams . 18
3.2.1 System Context Diagram . 18
3.2.2 Container Diagram . 19
3.2.3 Component Diagram . 20
3.2.4 Code diagram . 21

3.3 Data Flow . 23

iii

3.3.1 Text Data Flow . 23
3.3.2 Audio Data Flow . 24

3.4 Toolstack . 25
3.4.1 Development Process . 25
3.4.2 IDE . 26
3.4.3 Frameworks & Libraries . 26
3.4.4 Programming Languages . 27
3.4.5 Build Tools . 27
3.4.6 Documentation . 27

4 Quality Measures 28
4.1 Guidelines & Tools . 28

4.1.1 LATEX formatting . 28
4.1.2 Code . 29
4.1.3 Definition of Done . 29
4.1.4 Git . 30
4.1.5 Sprint Retrospective . 30

4.2 Build Tools . 30
4.2.1 Smart Eating Project . 30
4.2.2 Documentation . 30

4.3 Test Strategy . 31
4.3.1 Unit Tests . 31
4.3.2 Acceptance Tests . 32
4.3.3 UI Tests . 32
4.3.4 LLM Behavior Tests . 32
4.3.5 Testing Frameworks . 32

4.4 Assistant Comparison . 33

5 Limitations 34
5.1 Audio limitations . 34
5.2 Recipe selection limitation . 34
5.3 Language limitations . 34
5.4 Assistant limitations . 34

III Project Documentation 36

6 Initial Project Description 37
6.1 Supervisor . 37
6.2 Student(s) . 37
6.3 Goal . 37
6.4 Assignment . 37
6.5 Deliverables . 38
6.6 Dates . 38

iv

6.7 Grading . 38
6.8 Support . 38

7 Project Plan 39
7.1 Resources . 39

7.1.1 People . 39
7.1.2 Time . 40
7.1.3 Costs . 40
7.1.4 Tooling . 40

7.2 Roles . 40
7.3 Processes & Meetings . 41

7.3.1 Backlogs . 41
7.3.2 Sprint . 41

7.4 Risk Management . 42
7.4.1 Risk categorization method . 43
7.4.2 Familiarization with existing project | 3 (L: 1, C: 3) 43
7.4.3 Lack of experience with OpenAI assistants | 8 (L: 2, C: 4) 43
7.4.4 Lack of experience with OpenAI API | 4 (L: 1, C: 4) 44
7.4.5 OpenAI model training takes too much time | 1 (L: 1, C: 1) 44
7.4.6 In-house models not working | 2 (L: 2, C: 1) 44
7.4.7 Lack of experience in the in-house models API | 1 (L: 1, C: 1) . . . 44
7.4.8 Gitlab failure | 2 (L: 1, C: 2) . 45
7.4.9 Specification of requirements/features is inaccurate | 3 (L: 1, C: 3) 45
7.4.10 Time management | 6 (L: 2, C: 3) 45
7.4.11 Changes History . 45

7.5 Long-term Plan . 46
7.5.1 Phases . 46
7.5.2 Features . 47
7.5.3 Epics . 47
7.5.4 Milestones . 47

IV Bibliography 50

V Appendix 52

8 Testing Protocols 53
8.1 UI tests . 53
8.2 Acceptance Tests . 54

8.2.1 OpenAI assistant . 54
8.2.2 Mixtral assistant . 55

8.3 LLM Behavior Tests . 56
8.3.1 OpenAI assistant . 56

v

8.3.2 Mixtral assistant . 57

9 Tooling Evaluations 58
9.1 LangChain vs. Haystack . 58

9.1.1 LangChain . 58
9.1.2 Haystack . 58
9.1.3 Conclusion & Decision . 59

10 Assistant Comparison 60
10.1 Behavior Tests . 60

10.1.1 Interim Conclusion . 60
10.2 Processing Speed . 60

10.2.1 OpenAI Assistant . 61
10.2.2 Mixtral Assistant . 61
10.2.3 Interim Conclusion . 61

10.3 Privacy . 61
10.3.1 Interim Conclusion . 61

10.4 Conclusion . 62

vi

Part I

Management Summary

1

Chapter 1

Management Summary

1.1 Problem

As described in the Initial Project Description, the Smart Eating platform lacks an
interactive chatbot. This chatbot should be able to assist the user with various cooking
related tasks. The chatbot should integrate a GPT model from OpenAI as well as an
large language model hosted at OST. Furthermore, the chatbot should provide a hands-
free experience for the user.

1.2 Techniques

As a first step, Scrum was selected as a short-term project management framework to
iteratively create a working, presentable product. To ensure that the project would be
completed within the given timeframe, RUP was chosen as a long-term project man-
agement framework. I have these project management frameworks because I already
gathered some experience with them in previous projects.

1.3 Results

The final solution successfully addresses the problem by delivering a robust, user-friendly
chatbot. The user can choose between the OpenAI assistant, which uses the OpenAI API
and the Mixtral assistant, which uses the Mixtral model hosted at OST. The chatbot
was developed such that a new assistant can be easily integrated.

To provide a hands-free experience, the assistants can transcribe audio and respond by
speaking their answer.

2

Figure 1.1: Assistant selection Figure 1.2: Assistant selection Figure 1.3: Assistant selection

The chatbot is fully integrated into the Smart Eating infrastructure.

3

Figure 1.4: Smart Eating platform with integrated chatbot

To help users make an informed decision about which assistant is best for them, the
assistants are compared.

1.4 Outlook

During the project, several improvements were identified.

The Mixtral assistant could be improved with further prompt engineering and providing
a tool to search for the relevant recipe information. The implementation of noise can-
celling will allow users to use the chatbot even in noisy conditions. If a user wants to
swap ingredients, the chatbot should respect the user’s preferences, allergies and eating
habits.

These improvements, as well as eliminating the current limitations, will provide a better
user experience.

1.5 Conclusion

The “PanPal: A chef’s chatbot” project integrates a robust and user-friendly chatbot
into the existing Smart Eating platform. Despite some limitations, such as the Mixtral

4

assistant’s issues with ingredient quantities and step-by-step instructions, the project
successfully meets its objectives and lays the groundwork for future enhancements.

5

Part II

Product Documentation

6

Chapter 2

Requirements

2.1 Functional Requirements

2.1.1 Actor

There is only one actor, specifically a user visiting the Smart Eating platform. This
actor wants to be guided through cooking process, as well as get related information.
Either, he wants to communicate with the system via text or voice.

7

Figure 2.1: Use case diagram

Note: The user can hop from one use case to another in the last stage. However, to
increase readability and decrease complexity of the diagram, this is ommitted in the
image.

2.1.2 User Stories

The actions a user wants to perform are defined by the following User Stories. They are
marked with US-X, where X is the number corresponding to the User Story.

All User Stories will be given a priority of development, as well as rough estimation of
development effort needed. The Fibonacci scale is a common measure in the scrum pro-
cess and reflects the relative effort of a task in the project (Story Points). Additionally,
the MoSCoW method will be used to prioritize the User Stories.

US-1: Chatbot UI

As a user, I want the chatbot to be integrated into the Smart Eating platform. The
chatbot should be easily accessible.

8

https://premieragile.com/why-are-fibonacci-numbers-used-in-story-point-estimation/
https://monday.com/blog/project-management/moscow-prioritization-method/

Estimation 1

Prioritization Must Have

US-2: Assistant model selection

As a user, I want to be able to select the assistant model so I can interact with my
preferred model.

Estimation 1

Prioritization Must Have

US-3: GPTAgent

As a user, I want to communicate with a GPTAgent.

Estimation 5

Prioritization Must Have

US-4: In-house LLM

As a user, I want to communicate with an OST in-house LLM. Which one will be
evaluated during the project.

Estimation 8

Prioritization Must Have

US-5: LLM comparison

As a user, I want to have a clean and simple comparison of the used LLMs.

Estimation 3

Prioritization Must Have

US-6: Communicate with text

As a user, I want to be able to communicate with the chatbot via text.

Estimation 5

9

Prioritization Must Have

US-7: Select receipe

As a user, I want to be able to select the receipe to be cooked.

Estimation 5

Prioritization Must Have

US-8: Ingredients of receipe

As a user, I want to know which ingredients are needed in the current receipe.

Estimation 5

Prioritization Must Have

US-9: Total time of receipe

As a user, I want to know how much time is needed to complete the current recipe.

Estimation 3

Prioritization Must Have

US-10: Step-by-step guidance

As a user, I want to be able to tell the chatbot to provide step-by-step guidance, with
the chatbot stopping at each step until I tell it to move on to the next step in the cooking
process.

Estimation 5

Prioritization Must Have

US-11: Communication with audio

As a user, I want to be able to communicate with the chatbot using my voice.

Estimation 5

Prioritization Should Have

10

US-12: Assistant takes user’s eating habits into account

As a user, I want the assistant to take my eating habits, such as allergies, if I am
vegetarian, vegan etc. into account.

Estimation 5

Prioritization Could Have

US-13: Further in-house LLMs

As a user, I want to be able to use all OST in-house LLMs.

Estimation 21

Prioritization Could Have

US-14: Remaining time

As a user, I want to know how much time is left until the receipe is completed.

Estimation 8

Prioritization Could Have

US-15: Steps of cooking process

As a user, I want to get on overview of the required steps to cook the meal.

Estimation 8

Prioritization Could Have

US-16: Infos about previous steps

As a user, I want to be able to get information about previous steps.

Estimation 3

Prioritization Could Have

US-17: Saving the chat

As a user, I want my chat to be saved automatically, so I can pick up the conversation
at any time again, even if I closed the application in the meantime.

11

Estimation 5

Prioritization Won’t Have

US-18: Recipe suggestion

As a user, I want to receive recipe suggestions based on my preferences.

Estimation 21

Prioritization Won’t Have

2.2 Non-Functional Requirements

Each NFR has a “Fulfillment Check” row which describes who has the responsibility to
check if the NFR is fulfilled and how this is checked.

2.2.1 Compatibility

ID NFR-1

Subject Integration into existing system

Requirement Co-existence

Priority High

Measures If there is an existing technology used in the existing project
for a similar problem, the same technology must be used.
New technologies must be discussed with the architect and
the team members of the existing system.

Fulfillment check The architect is responsible to check the technology- and
toolstack.

2.2.2 Usability

ID NFR-2

Subject Model response quality

Requirement Operability

Priority High

Measures The models must be carefully evaluated.

Fulfillment check A predefined testset of questions which determine the qual-
ity of the models.

12

ID NFR-3

Subject Chatbot accessibility

Requirement Accessibility

Priority High

Measures The chatbot must be easily accessible.

Fulfillment check The location of the chatbot in the existing system is deter-
mined together with the stakeholders.

2.2.3 Security

ID NFR-4

Subject User authentication

Requirement Authenticity

Priority High

Measures The existing system already has authentication in place.

Fulfillment check No fulfillment check needed as requirement is already ful-
filled.

2.2.4 Maintainability

ID NFR-5

Subject Software maintainability

Requirement Modularity

Priority High

Measures The software architecture must be designed using state-of-
the-art principles.

Fulfillment check The architect is responsible to check if the defined architec-
ture is implemented accordingly.

ID NFR-6

Subject Unit Tests

Requirement Testability

Priority High

Measures The unit tests must cover a vast part of the business logic.
However, it is not foreseeable at the moment if there even is
unit-testable code.

Fulfillment check Test concept

13

2.2.5 Portability

ID NFR-7

Subject User installability

Requirement Installability

Priority High

Measures As the software runs as website, it is not necessary to install
anything.

Fulfillment check No fulfillment check needed, as this is fulfilled anyways.

ID NFR-8

Subject Developer installability

Requirement Installability

Priority Medium

Measures A docker image must be created and integrated into the
current docker ecosystem.

Fulfillment check The docker image is created and builds sucessfully. The
project manager is responsible to check this requirement.

14

Chapter 3

Architecture

This chapter explores the main structure of the project.

3.1 Project Architecture

This section provides an overview of the Smart Eating project structure and the structure
of the chatbot project that it contains.

15

3.1.1 Smart Eating Project Structure

Figure 3.1: Smart Eating project structure

The Smart Eating project is a collection of multiple independent applications. Each ap-
plication has its own directory and can be built independently. The diffrent applications
are interconnected through the use of APIs.

All projects already exist, apart from the smarteating chatbot. The primary logic for
processing user input and generating responses for the chatbot will be implemented
within this project.

16

3.1.2 Chatbot Project Structure

Figure 3.2: Chatbot project structure

The main.py sets up the API and handles the API calls. It mainly interacts with the
assistants. The code diagrams provide an overview of these interactions.

The assistants module contains all of the logic associated with the assistants. The section
on the assistants structure offers a more detailed analysis of the module’s structure.

The remaining modules are sufficiently self-explanatory that further discussion is unnec-
essary.

Assistants Module Structure

Figure 3.3: Assistants module structure

17

The assistants module is structured in such a way that different assistants can utilise
different technologies and are completely independent of each other. It may be advisable,
however, to transfer some shared logic to the assistants module in the future, thus
avoiding the duplication of code in assistants with similar technologies. As the openai
assistant utilises the openai package, while the mixtral assistant employs the LangChain
framework, there is currently no shared code.

3.2 C4 Diagrams

C4 diagrams visualize the software architecture.

It should be noted that the diagrams are not exhaustive; in order to enhance readabil-
ity and comprehensibility, details have been omitted. They are intended to facilitate
understanding of the architecture of the application.

3.2.1 System Context Diagram

Figure 3.4: System Context Diagram

18

3.2.2 Container Diagram

Figure 3.5: Container Diagram

19

3.2.3 Component Diagram

Figure 3.6: Component Diagram

Given the absence of a open-source and freely accessible alternative to the OpenAI text-
to-speech model, the OpenAI model is currently employed for text-to-speech, even in
the event that another assistant, such as the Mixtral assistant, is selected.

20

3.2.4 Code diagram

Figure 3.7: High-level Code Diagram

Now let’s have a closer look at the assistant implementations.

21

OpenAI Assistant Code Diagram

Figure 3.8: OpenAI Assistant Code Diagram

The OpenAI assistant uses GPT-3.5 via the the OpenAI API.

22

Mixtral Assistant Code Diagram

Figure 3.9: Mixtral Assistant Code Diagram

The Mixtral assistant uses the Mixtral model hosted at OST.

3.3 Data Flow

This section describes the data flow through the different containers using the different
input methods.

3.3.1 Text Data Flow

The following diagram illustrates the data flow when the user communicates with text.

23

Figure 3.10: Text data flow

3.3.2 Audio Data Flow

The following diagram illustrates the data flow when the user communicates with audio,
that is, when the user speaks the message instead of typing it.

24

At first glance, it may seem counterintuitive to transcribe the user’s audio and send the
transcription back to the Web application frontend. However, this approach is chosen
to be able to display the transcription in the message history of the chatbot. The text-
based response from the assistant is also returned to the Web application frontend for
the same reason.

The effect of using the audio input method instead of the text input method can be
found in the Assistant Comparison.

3.4 Toolstack

The following tools are employed and implemented in the software development process.

3.4.1 Development Process

The source code of the project is stored on the official OST Gitlab server. The documen-
tation source code on the other hand is stored on a selfhosted instance of Gitlab. The
integrated issue management system and merge request capabilities of the selfhosted
instance provide a streamlined and agile workflow.

25

https://gitlab.ost.ch/
https://git.joos.io/ost/ba/report

The existing project was already present on the OST Gitlab. For the documentation
however, I chose Gitlab, because I am very familiar with the Gitlab ecosystem, since the
used Gitlab server is a instance hosted by myself.

3.4.2 IDE

Visual Studio Code is used for React, Python and Docker development. Additionally, it
is used to write the documentation.

As there are some C# components in the project, JetBrains Rider is also utilized as an
IDE.

3.4.3 Frameworks & Libraries

React

The web-application’s frontend is built using React.

.NET

The web-application’s backend is built using .NET 7.

Python Frameworks & Libraries

openai The openai package simplifies the interaction with the OpenAI API.

LangChain LangChain is a python framework to interact with an LLM backend,
such as llama.cpp. It provides built-in context management support and chains, which
facilitates the usage of custom LLM’s. For a justification of why I chose this tool and
not haystack, another popular framework to interact with LLM backends, have a look
at the Tooling evaluation.

fastapi The fastapi framework is used to easily set up an API.

uvicorn As the code must run as a web service, uvicorn is utilized.

openai-whisper Openai-whisper is a speech-to-text model and is used as an alter-
native to whisper accessible via the OpenAI API. This, because there may be people,
which are not willing to share their voice with OpenAI. With the locally hosted whisper,
this can be guaranteed.

pydub Pydub is a package to handle and analyze audio data. It is used for the speech-
to-text part of the application.

cachetools The cachetools package is used to implement the ChatMemoryCache.

26

https://pypi.org/project/openai/
https://platform.openai.com/
https://pypi.org/project/langchain/
https://github.com/ggerganov/llama.cpp
https://pypi.org/project/fastapi/
https://pypi.org/project/uvicorn/
https://pypi.org/project/openai-whisper/
https://pypi.org/project/pydub/
https://pypi.org/project/cachetools/

3.4.4 Programming Languages

JavaScript

The web-application’s frontend is written in JavaScript.

C#

The web-application’s backend is written in C#.

Python

Several services, including the chatbot service, are written in Python.

3.4.5 Build Tools

Docker

Docker is used to containerize all services of the application.

Gitlab CI

The Smart Eating Docker images are built using Gitlab CI. In addition, Gitlab CI is
used to compile the documentation into a pdf.

3.4.6 Documentation

The documentation is written in LATEX, which makes collaboration and source control
easy. Additionally, it allows to generate a pdf, which is the preferred format for reports.

Diagrams

Most of the diagrams are created as “diagrams as code” in python using the diagrams
package and in markdown using mermaid. The long-term Gantt-Chart, however, is
created using Microsoft Excel.

27

https://pypi.org/project/diagrams/
https://pypi.org/project/diagrams/
https://mermaid.js.org/

Chapter 4

Quality Measures

Quality measures are critical indicators used to evaluate the effectiveness and efficiency
of software development, encompassing various metrics that assess the software’s func-
tionality, performance, security, maintainability, and other key factors.

4.1 Guidelines & Tools

The guidelines ensure the readability of the code as well as clean code.

4.1.1 LATEX formatting

Most of this section is adopted from my Studienarbeit [1] and only slightly modified for
this project.

I did not use any official LATEX formatting rules. However, I used my own latex for-
matting rules to ensure consistent formatting throughout the document, as well as an
enhanced readability of the LATEX content. These rules are:

• Each sentence must be on a new line.

• The content belonging to the title must be one intendation more than the title
itself.

• For intendation, spaces are used, not tabs.

• One intendation is 4 spaces.

• Before a title, there must be an empty line.

• Each file must end with an empty line.

• Subitems are created with an additional itemize.

• Between the end of an itemize for subitems and the next item, an empty line must
be present. Excluded are the meeting notes.

28

• The itemize for the subitems must use one intendation more than the corresponding
item

• If a file gets too big (≥ 50 lines), it may be worth to outsource and break down
the file content into multiple files.

4.1.2 Code

React

The React guidelines of PillarStudios are used. However, if there are deviations in the
already used coding guidelines, they will be documented here.

ESLint The de-facto standart Linter for JavaScript code is ESLint. It is already used
in Smart Eating project.

C#

The C# code must comply with the common C# code conventions. However, if there
are deviations in the already used coding guidelines, they will be documented here.

ReSharper ReSharper is a well-known productivity extension, integrated into Jet-
Brains Rider. It provides various features like quick fixes and code refactoring following
defined coding conventions.

Python

The official Python coding guideline is used.

4.1.3 Definition of Done

The definition of done defines, when an issue can be considered as resolved.

• Acceptance criteria

– All tasks belonging to the issue have been completed.

– The feature is ready to demonstrate.

– The feature complies with functional and non-functional requirements.

– In the code review, no major issues were found and the recommendations
from the reviewer(s) have been implemented.

• Quality

– The code complies with the defined code guidelines

• Documentation

– All necessary information has been documented.

29

https://github.com/pillarstudio/standards/blob/master/reactjs-guidelines.md
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://peps.python.org/pep-0008/

4.1.4 Git

To allow a clean and fast workflow, some guidelines regarding git are defined.

Branching

Each task must have its own branch, allowing for later traceability of the changes. The
branch names of the report must follow this pattern: ${issue_nr}-${description_of_task}.
As an example, 28-initial_architecture is used for the branch addressing the initial
architecture.

As there are diffrent Gitlab instances used for the issue tracking and code repository,
branches in the latter must follow this pattern: ${description_of_task}.

Additionally, merging without a merge request and pushing the master branch directly
is not allowed. This is enforced by policies in both, the project repository and documen-
tation repository.

Merges

To minimize errors be merged into the master, a merge request must be opened and
the code must be carefully examined by a reviewer. For the project, another project
member must review the changes, whereas in the report, I review my changes, as I do
not have another team member.

Additionally, the code must be checked for compliance with the code guidelines.

4.1.5 Sprint Retrospective

To reevaluate the quality of the project, each sprint is ended with a review meeting,
which also contains the retrospective.

4.2 Build Tools

4.2.1 Smart Eating Project

Each push to the repository executes a CI pipeline, which in turn builds docker images for
all project components. These docker images are then published to the Gitlab internal
registry.

4.2.2 Documentation

Each push to the documentation repository triggers a build of the documentation. As
many diagrams are diagrams-as-code, these diagrams are built first and then consumed
when building the documentation. This CI pipeline compiles LATEX into a pdf file.

30

4.3 Test Strategy

Various testing types are utilized to ensure a high level of software quality in diffrent
aspects.

4.3.1 Unit Tests

Testing of individual units of code, such as methods, to ensure they are working as
expected and that changes do not introduce bugs. However, it is not foreseeable at the
moment if there even is unit-testable code within this project. If there is, this section
provides information how to write the unit tests.

• Execution: Automated

• Time of Execution: With every push to the repository and locally as desired

F.I.R.S.T principles

Each unit test has to conform with these principles.

• Fast: Unit tests must be fast, meaning they must execute quickly so that they can
be run frequently during development.

• Independent: Unit tests must be independent of one another, meaning that the
outcome of one test must not affect the outcome of another. This ensures that
each test is testing a specific and isolated unit of code.

• Repeatable: Unit tests must be repeatable, meaning that they must always pro-
duce the same result every time they are run with the same preconditions.

• Self-validating: Unit tests must be self-validating, meaning that they must be
able to automatically determine if they have passed or failed without human inter-
vention. This ensures that tests can be run as part of the continuous integration
process.

• Timely: Unit tests must be written in a timely manner, meaning that they must be
written before or directly after the code they are testing is implemented, depending
on the testing technique used. This ensures that the code is written with testability
in mind and helps finding and mitigating bugs early in the development process.

Arrange-Act-Assert Pattern

Most of this section is adopted from my Studienarbeit [1] and only slightly modified for
this project.

To structure the tests, the commonly used AAA pattern is utilized.

• Arrange: During the arrange phase, the necessary prerequisites for the test are
set up. This involves creating any required objects, initializing variables, and
configuring any dependencies that the code under test relies on.

31

• Act: During the act phase, the test executes the action being tested. This could
involve calling a specific method or interacting with an object.

• Assert: In this phase, the test verifies that the action performed in the Act phase
has produced the expected result. This involves comparing the actual result of the
action with the expected result and failing the test if these do not match.

4.3.2 Acceptance Tests

The acceptance tests ensure, that the designed workflow generates the expected behavior
and outputs. These tests, alongside with their results, can be found in the testing
protocols.

• Execution: Manual

• Time of Execution: Before the release, during the Testing & Bugfixing period

4.3.3 UI Tests

The UI tests ensure, that the UI behaves as expected. These tests, alongside with their
results can be found in the testing protocols.

• Execution: Manual

• Time of Execution: Before the release, during the Testing & Bugfixing period

4.3.4 LLM Behavior Tests

Although these tests could be considered acceptance tests, it makes sense to separate
them into their own test section, since LLM’s always have some uncertainty in their
responses. Therefore, the acceptance tests test the coded side of the product, while the
LLM behavior tests test the LLM’s responses. These tests, alongside with their results
can be found in the testing protocols

• Execution: Manual

• Time of Execution: Before the release, during the Testing & Bugfixing period

4.3.5 Testing Frameworks

React

While it is possible to write unit tests for React components, we decided against it in this
project, as there are currently no tests available for the React components and therefore,
a test project must be set up from scratch. Additionally, in this project I will implement
only a very small portion of code in React and testing these components doesn’t make
sense in terms of the cost-benefit ratio.

32

.NET

The web-application’s backend currently uses MSTest as testing framework. Therefore,
this will be used if there is unit-testable code in the web-application’s backend.

Python

In python, the de-facto standard framework for testing pytest is used if there is unit-
testable code.

4.4 Assistant Comparison

The implemented assistants are compared against each other based on test results. This
comparison can be found in the Assistant Comparison.

33

https://github.com/pytest-dev/pytest

Chapter 5

Limitations

This chapter describes the limitations of the Smart Eating chatbot.

5.1 Audio limitations

For optimal performance, users must speak loudly and clearly when interacting with
the chatbot. This ensures accurate audio transcription and reduces the likelihood of
misinterpretations.

The assistants may struggle to transcribe the audio recorded in noisy environments
effectively. For the best experience, users should use the application in a quiet setting
to avoid background noise interference.

A quiet environment is also required for the assistants to pick up when the user stops
speaking.

5.2 Recipe selection limitation

Once a recipe is selected within the chatbot, it cannot be changed.

5.3 Language limitations

The chatbot currently supports only English for both text messages and audio messages.
Therefore, users should only interact with the chatbot in English.

5.4 Assistant limitations

While the OpenAI assistant completes all tasks without any problems, the Mixtral assis-
tant struggles with some tasks. Specifically, the Mixtral assistant hallucinates ingredient

34

quantities and does not provide step-by-step instructions, even when asked. More infor-
mation about this can be found in the LLM behavior tests.

35

Part III

Project Documentation

36

Chapter 6

Initial Project Description

6.1 Supervisor

Mitra Purandare (mitra.purandare@ost.ch)

6.2 Student(s)

Andri Joos

6.3 Goal

This project builds on the Smart Eating platform under development at the Institute
For Software. Smart Eating is a web service for creating meal plans satisfying user’s
nutritional requirements, allergies, as well as likes and dislikes. It also takes user’s life-
style constraints into account to come up with a meal plan.

In a next step, we would like to extend the application by helping the user via a cooking
assistant that can guide the user during the cooking process. The user can ask for next
steps, list of ingredients, and many other cooking related questions. Additionally, the
user can select the receipe via the chatbot. The end goal is to enable the user voice chat
with the assistant freeing the hands of the user from typing in text.

6.4 Assignment

The following subtasks must be completed

• Analysis

– Establish functional requirements (necessary und optional)

– Non-functional requirements (NFR)

37

mailto:mitra.purandare@ost.ch

• Architecture & Design

– Architecture of the chat service (Saving the chat, API interface)

– Analysis Libraries und Frameworks (Langchain etc.)

– Option to choose chat assistant models

∗ GPTAgent from Open AI

∗ Opensource LLM service (Llama, Mixtral, Phi)

– Comparsion of the response of the models

– Data base choice

• Implementation & Test

– Implementation of the functional requirements

– Documentation

– Test concept

– Possibilities of extension

6.5 Deliverables

• A functional chat bot

• Support for OpenAI assistant as well as open source LLM models

• (Optional but desired) Voice Assistant

6.6 Dates

• 19.02.2024: Start

• 10.06.2024: Submission Abstract

• 14.06.2024, 17:00: Submission of all required documents

• 14.06.2024, 16:00: Start presentations

6.7 Grading

The supervisor is responsible for the assessment. The weighting of the assessment follows
the guidelines for SA/BAs.

6.8 Support

If necessary, support will be provided in the areas of Smart Eating onboarding and LLM
servers.

38

Chapter 7

Project Plan

The project plan outlines the resources, roles and processes required for the successful
completion. It goes into detail which risks I expect and how I have laid out the long
term plan.

7.1 Resources

Most of this section is adopted from my Studienarbeit [1] and only slightly modified for
this project.

7.1.1 People

• Andri Joos

I am currently studying Computer Science with a specialization in Data Science &
Machine Intelligence at the OST University of Applied Sciences. This project is part of
my bachelor’s thesis.

While I have a foundational understanding of Artificial Intelligence, my knowledge is
limited to the courses AI Foundations and AI Applications, as well as my Studienarbeit
in the field of reinforcement learning. However, I am not very familiar with Large
Language Models (LLMs).

I also have a good understanding of Git and source control in general. I have gained
experience in DevOps both in a business environment and in several private projects.

Additionally, I have been a part of a Scrum team in both a business environment and
in the Software Engineering Project. Throughout the course, I gained the necessary
understanding of project management, project documentation, and project execution.

I also have a lot of knowledge in the area of Docker, as I have built a homeserver
infrastructure on Kubernetes and Docker. For this and also for Gitlab CI pipelines I

39

https://eprints.ost.ch/id/eprint/1177/
https://studien.rj.ost.ch/allModules/39012_M_SEProj.html

had to create several docker images myself.

I am also proficient in Python and C#, as I have used them in several private projects,
school projects and business projects. However, I have not yet used React.

7.1.2 Time

The project started with the kickoff meeting on February 19th 2024, 15:00 and will
end on June 14th 2024, 17:00 with the final submission of the report. This, alongside
with the later described milestones, are deadlines which have to be met. For the whole
project, investing 360 hours per person is required. Since the project must be finished
by June 14th 2024, these hours must be met in 15 weeks, where one week is holidays.
Accordingly, the required time is divided into 14 weeks which results in 25 hours per
week per person.

7.1.3 Costs

As this is a bachelor thesis, I do not have a budget which can be expressed in money.
However, the available budget can be expressed as the earlier mentioned 360 hours, that
I can use for this project.

The costs for services, such as an OpenAI API subscription, will be covered by the
university OST.

7.1.4 Tooling

The main IDE for the project and the documentation is Visual Studio Code, as it’s free,
open source and covers all needs. For C# code, JetBrains Rider is used as it provides
many useful features.

For version control, Git is used. As UI for Git, gitextensions is used. To store the
source code, the official OST Gitlab instance is used as the project already lives there.
The Continuous Integration of this server is used to automatically build and test the
application on pushes. To store the source code for the documentation a repository on a
selfhosted instance of Gitlab is used. The issue tracking system of the before mentioned
server will be used to keep track of the work and the time. To collect and evaluate the
time spent, gtt is used.

The documentation is written in LATEX.

Microsoft Teams is used for the communication with the Advisor and the Smart Eating
team.

7.2 Roles

Most of this section is adopted from my Studienarbeit [1] and only slightly modified for
this project.

40

https://git-scm.com/
https://github.com/gitextensions/gitextensions
https://gitlab.ost.ch/
https://git.joos.io/ost/ba/report
https://git.joos.io/
https://github.com/kriskbx/gitlab-time-tracker

Since there is only one team member, all of the following roles will be executed by Andri
Joos. He is responsible to carry out the project successfully.

• Project Manager

• Developer

• Product Owner (in agreement with the project advisor)

• DevOps-Engineer

• Software Architect

7.3 Processes & Meetings

Most of this section is adopted from my Studienarbeit [1] and only slightly modified for
this project.

To achieve an agile workflow, I use Scrum to define processes in this project.

7.3.1 Backlogs

Product Backlog

The Product Backlog is realized in Excel.

Sprint Backlog

The Sprint Backlog is realized in GitLab. Product Backlog items will be refined and
transformed into GitLab Issues during Planning.

7.3.2 Sprint

Sprint information:

• Sprint duration: 2 weeks

• Sprint start: Monday

• Total amount of Sprints: 7

Planning

Each Sprint is started by a planning meeting.

Planning procedure:

1. Specify what should be achieved during this Sprint

2. Evaluate which Product Backlog items should be put into the Sprint Backlog

41

Review

Each Sprint end is initiated by a Review. Since it doesn’t make sense for such a small
team to also do a separate Retrospective meeting, I will do both, the Review and the
Retrospective, in one single Meeting.

Review procedure:

1. Progress evaluation of the project

2. Adjust long term plan

Retrospective procedure:

1. Documentation Quality

• Check if the documentation if properly formatted

• Check for grammatical errors

• Check if anything is missing or should be improved

2. Time Tracking Quality

• Check if the estimations for the tasks are good enough

3. Risk Reevaluation

• Reevaluation of all current risks

• Check for any new risks

4. Code Quality

• Check for bad code

5. Git Quality

• Check for leftover branches

• Check for open merge requests

Stakeholder meeting

This meeting is about the current state of the project and to discuss any problems. The
meeting is attended by the project advisor and myself.

During this meeting, the current progress is presented.

7.4 Risk Management

Risk management is a critical process that involves identifying potential risks and de-
veloping strategies to mitigate or eliminate them.

42

7.4.1 Risk categorization method

To rate the risks, they are categorized and assigned a value using the risk matrix below.
The respective values can be found right next to the title of the risk, likelihood will be
referred to as ”L” and consequence as ”C”.

Figure 7.1: Risk Matrix

7.4.2 Familiarization with existing project | 3 (L: 1, C: 3)

Description

The familiarization with the existing project could take some time.

Mitigation

For support, I can ask people, which have built the system.

7.4.3 Lack of experience with OpenAI assistants | 8 (L: 2, C: 4)

Description

As I have never used OpenAI assistants, getting started with them could be time con-
suming.

43

Mitigation

I have already planned to familiarize myself with OpenAI assistants by building a pro-
totype.

7.4.4 Lack of experience with OpenAI API | 4 (L: 1, C: 4)

Description

I have never used the OpenAI API. Therefore it could be time consuming to understand
how to use it effectively.

Mitigation

I have already planned to familiarize myself with the API by building a prototype.

7.4.5 OpenAI model training takes too much time | 1 (L: 1, C: 1)

Description

The GPTAgent probably needs some fine-tuning. This task will take some time, but the
amount of time is hard to predict.

Mitigation

During planning, this must be taken into account.

7.4.6 In-house models not working | 2 (L: 2, C: 1)

Description

I have never worked with the OST in-house models, but as my advisor informed me,
they are not fine-tuned to handle receipes.

Mitigation

If the in-house models are not working, that’s a great pity. However, fine-tuning the
models is not in the scope of this project.

7.4.7 Lack of experience in the in-house models API | 1 (L: 1, C: 1)

Description

I have never used the API to interact with the models.

Mitigation

I can get support from people, which are familiar with the API.

44

7.4.8 Gitlab failure | 2 (L: 1, C: 2)

Description

Since a selfhosted Gitlab is used to store the code for the documentation, there is a
chance that the server is unavailable for some reason.

Mitigation

The server runs on a Kubernetes cluster and therefore should be restarted as soon as a
crash happens. Additionally, accessing the network of the server remotely is possible in
case the Gitlab instance needs to be restarted manually.

7.4.9 Specification of requirements/features is inaccurate | 3 (L: 1, C:
3)

Description

At the start of the project it’s hard to perfectly define all requirements as it’s unclear
how the application will look like in the end.

Mitigation

The agile methodology Scrum is used to assure that requirements will be adjusted to
the current situation during development.

7.4.10 Time management | 6 (L: 2, C: 3)

Description

Due to unexpected events, such as illness, I may be unable to invest the required time
each sprint. There may be also some expected events, where I am unable to invest the
required time.

Mitigation

The time lost must be made up for. Expected time loss must be noted during the sprint
planning. The planning is done accordingly.

7.4.11 Changes History

Risk Value
change

Reason for change Date

Familiarization with ex-
isting project

9 → 6 Architecture was thoroughly
investigated

18.03.2024

45

Lack of experience with
OpenAI assistants

20 → 8 Prototype 18.03.2024

Lack of experience with
OpenAI API

20 → 8 Prototype 18.03.2024

Lack of experience with
OpenAI API

8 → 4 OpenAI API is now known 03.04.2024

OpenAI model training
takes too much time

12 → 1 The OpenAI assistant is good
enough with finetuning the
instructions, no specifically
trained model needed

24.04.2024

Lack of experience in
the in-house models
API

12 → 4 There is someone working
in the Smart Eating project,
that can help me in case any
clarification or help is needed

24.04.2024

Familiarization with ex-
isting project

6 → 3 I’m pretty familiar with the
project

06.05.2024

In-house models not
working

4 → 2 Mixtral model works very well 06.05.2024

Lack of experience in
the in-house models
API

4 → 3 Gained experience with the
API for the in-house models

06.05.2024

Lack of experience in
the in-house models
API

4 → 1 I’m now quite familiar with
this API

21.05.2024

Specification of require-
ments/features is inac-
curate

9 → 6 As the project is almost fin-
ished, there are not many fea-
tures left to do

21.05.2024

Specification of require-
ments/features is inac-
curate

6 → 3 No new requirements/features 04.06.2024

7.5 Long-term Plan

Most of this section is adopted from my Studienarbeit [1] and only slightly modified for
this project.

All the listed items are presented in a Gantt chart. This is attached at the end of this
section.

7.5.1 Phases

I will be working according to the Rational Unified Process (RUP). This includes fol-
lowing phases:

46

• Inception (19.02.2024 - 04.03.2024)

• Elaboration (04.03.2024 - 18.03.2024)

• Construction (18.03.2024 - 03.06.2024)

• Transition (03.06.2024 - 14.06.2024)

7.5.2 Features

Primary Features

Features which are guaranteed to be implemented in the available time of the project.

• Chatbot UI

• Communication with chatbot via text

• Communication with chatbot via audio

• Ask chatbot questions about receipe, chatbot answers

• Select a receipe through chatbot

• Chatbot guides through cooking process

• Assistant model GPTAgent

• Assistant model in-house

• Model quality comparison

Secondary Features

Bonus features which will be implemented if there is some time left.

• All in-house models as assistants

• Saving chat over sessions

• Receipe suggestions

• Noise cancelling for audio

7.5.3 Epics

• Information about cooking process

• Guidance through cooking process

• Selection of assistants

• Assistant interaction

7.5.4 Milestones

• M1 - Initial Project setup (04.03.2024)

– Creation of project documentation

47

– Setup of build pipelines for project documentation

– Setup of time tracking

– Setup of Issue tracking

– Defining collaboration, roles, responsibilities and meetings

– Creation of a long-term plan

– Risk-Manangement

– Requirement analysis

∗ Functional requirements

∗ Non-functional requirements

• M2 - End of elaboration (18.03.2024)

– Phase of Elaboration is completed and documented

– Refined requirements are sorted according to priority

– Architecture is defined

– Creation of prototype is done

– All preparations for implementation are completed

– Quality measures are defined

• M3 - Alpha version (20.05.2024)

– All primary features are implemented rudimentary

– Documentation is up-to-date with the technical solution

• M4 - Final version (03.05.2024)

– Severe bugs are mitigated

• M5 - Final Submission (14.06.2024)

– Finished documentation

– Finished application

48

SW 16
Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Estimate

Actual

Milestones M1 M2 M3 M4 M5
SW 16

Communicate via text

LLM comparison

Testing & Bugfixing

Next step

Sprint 7

14

Infos about previous step

Steps of cooking process

Remaining time

Further in-house LLMs

Communication type voice

Total time of receipe

Ingredients of receipe

Select receipe

In-house LLM

OpenAI assistant

Assistant model selection

Sprint 5

9 10 13 14

Sprint 8

15

Timeplan
Sprint Sprint 1 Sprint 2 Sprint 3 Sprint 4

1 2 3 4 5 6 7 8 10

Sprint 6 Sprint 8Sprint 5

9 11 12 1513

Sprint 7
In
ce
p
ti
o
n

Setup of Issue tracking / Time tracking

Setup of Build pipelines

Risk-Management

Requirement Analysis

El
ab

o
ra
ti
o
n

Refine Requirements

Define initial architecture

Test concept & quality measures

POC / Prototype (cli to talk to GPTAgent)

Defining collaboration, roles, processes and

meetings

Setup report

Creation of long-term plan

C
o
n
st
ru
ct
io
n

Chatbot UI

Sprint 4 Sprint 6

Tr
an

si
ti
o
n

Finalize Product

Finalize Documentation

Sprint Sprint 1 Sprint 2 Sprint 3

11 1281 2 3 4

Receipe suggestions

5 6 7

Saving the chat

Legend: Estimated time Actual time

Milestones

Part IV

Bibliography

50

Bibliography

[1] Andri Joos. Training a simulated drone with deep reinforcement learning. https:
//eprints.ost.ch/id/eprint/1177/. Accessed: 21.02.2024. 2024.

51

https://eprints.ost.ch/id/eprint/1177/
https://eprints.ost.ch/id/eprint/1177/

Part V

Appendix

52

Chapter 8

Testing Protocols

This chapter includes protocols of the executed tests. For each test, the preconditions
must be satisfied in order to ensure a clean and expected environment.

8.1 UI tests

Precondition: Empty chatbot is open, input type is text

ID Description Steps Expected result Actual result Status Issue nr.

1 Audio input can be
started

Start audio recording Chatbot should indi-
cate, that the record-
ing is running

As expected succeeded

2 Audio input can be
stopped

Stop audio recording Chatbot should indi-
cate, that the record-
ing is not running

As expected succeeded

3 No assistant is selected
by default

No assistant is selected
by default

As expected succeeded

4 Assistant change is
visible

Open assistant selection, select an
assistant

Selected assistant
should change to the
one chosen

As expected succeeded

53

8.2 Acceptance Tests

8.2.1 OpenAI assistant

Precondition: Empty chatbot is open, input type is text, OpenAI assistant is selected

ID Description Steps Expected result Actual result Status Issue nr.

1 Sending a text mes-
sage adds a new mes-
sage to message his-
tory

Create message, send message Sent message shows up
in message history

As expected succeeded

2 Sending a text
message generates
response

Create & send message, wait for
response

The response from the
assistant is displayed
in the message history

As expected succeeded

3 Messages are not lost
when switching input
modes

Create & send message, turn on
audio recording, create & send
message, end audio recording

The first message &
response show up in
message history

As expected succeeded

4 Audio recording au-
tomatically stops in
good conditions after a
few seconds of silence

Start audio recording speak some-
thing, be silent for a few seconds

The audio recording
is automatically
stopped, a response is
generated

As expected succeeded

5 Audio recording can
be manually stopped

Start audio recording, speak
something, stop voice input

The audio recording
stops, a response is
generated

As expected succeeded

6 Response from audio
recorded message is
spoken

Start audio recording, speak
something, stop audio recording,
wait for generated response

The generated re-
sponse is spoken

As expected succeeded

7 Audio recording
restarts automatically
if stopped automati-
cally

Start audio recording, speak
something, be silent for a few
seconds, wait until response is
generated

Audio recording is
restarted automati-
cally

As expected succeeded

8 Audio recording does
not restart automati-
cally if stopped manu-
ally

Start audio recording, speak
something, stop audio recording
manually, wait until response is
generated

Audio recording not
restarted automati-
cally

As expected succeeded

54

8.2.2 Mixtral assistant

Precondition: Empty chatbot is open, input type is text, Mixtral assistant is selected

ID Description Steps Expected result Actual result Status Issue nr.

1 Sending a text mes-
sage adds a new mes-
sage to message his-
tory

Create message, send message Sent message shows up
in message history

As expected succeeded

2 Sending a text
message generates
response

Create & send message, wait for
response

The response from the
assistant is displayed
in the message history

As expected succeeded

3 Messages are not lost
when switching input
modes

Create & send message, turn on
audio recording, create & send
message, end audio recording

The first message &
response show up in
message history

As expected succeeded

4 Audio recording au-
tomatically stops in
good conditions after a
few seconds of silence

Start audio recording speak some-
thing, be silent for a few seconds

The audio recording
is automatically
stopped, a response is
generated

As expected succeeded

5 Audio recording can
be manually stopped

Start audio recording, speak
something, stop voice input

The audio recording
stops, a response is
generated

As expected succeeded

6 Response from audio
recorded message is
spoken

Start audio recording, speak
something, stop audio recording,
wait for generated response

The generated re-
sponse is spoken

As expected succeeded

7 Audio recording
restarts automatically
if stopped automati-
cally

Start audio recording, speak
something, be silent for a few
seconds, wait until response is
generated

Audio recording is
restarted automati-
cally

As expected succeeded

8 Audio recording does
not restart automati-
cally if stopped manu-
ally

Start audio recording, speak
something, stop audio recording
manually, wait until response is
generated

Audio recording not
restarted automati-
cally

As expected succeeded

55

8.3 LLM Behavior Tests

8.3.1 OpenAI assistant

Precondition: Empty chatbot is open, input type is text, OpenAI assistant is selected

ID Description Steps Expected result Actual result Status Issue nr.

1 Correct recipe is eval-
uated and selected

Send a message like “I wanna to
the [recipe name]”, wait for the re-
sponse

The response in-
dicates, that the
correct recipe has
been selected

As expected succeeded

2 Ingredients are listed Select a recipe, wait for the
response, send a message like
“Which ingredients do I need?”,
wait for the response

The last response con-
tains all the necessary
ingredients

As expected succeeded

3 Ingredients are listed
with the amount
needed

Select a recipe, wait for the re-
sponse, send a message like “How
much of the ingredients do I
need?”, wait for the response

The last response con-
tains all the necessary
ingredients with the
amount needed

As expected succeeded

4 Total time of recipe Select a recipe, wait for the re-
sponse, send a message like “How
long does this recipe take?”, wait
for the response

The last response con-
tains the total time of
the recipe

As expected succeeded

5 Step-by-step guidance Select a recipe, wait for the
response, send a message like
“Guide me through the recipe”,
when the response for the first
step is generated, send a message
like “Done, continue”, repeat the
last step until the response states,
that the recipe is finished

The assistant success-
fully guides through
the recipe step-by-step

As expected succeeded

6 Infos about previous
step

Select a recipe, wait for the
response, send a message like
“Guide me through the recipe”,
when the response for the first
step is generated, send a message
like “Done, continue”, wait until
the response is generated, send a
message, which refers to the previ-
ous response, like “How much salt
do I need in the previous step?”,
wait for the response

The assistant answers
correctly

As expected succeeded

7 Remaining time Select a recipe, wait for the
response, send a message like
“Guide me through the recipe”,
when the response for the first
step is generated, send a message
like “How much time do I need
from now on?”

The stated time in the
last response is lower
than the total time of
the recipe

The total time of the
recipe was 100 min-
utes. The first step
took 60 minutes. The
chatbot said, that the
remaining time after
the first step is 80 min-
utes. The expected re-
sult is met, but the
answer is not entirely
correct.

succeeded

Be aware, that these tests cover only a small subset of the assistant’s capabilities. How-
ever, the tests are intended to cover the most likely use cases.

56

8.3.2 Mixtral assistant

Precondition: Empty chatbot is open, input type is text, OpenAI assistant is selected

ID Description Steps Expected result Actual result Status Issue nr.

1 Correct recipe is eval-
uated and selected

Send a message like “I wanna to
the [recipe name]”, wait for the re-
sponse

The response in-
dicates, that the
correct recipe has
been selected

As expected succeeded

2 Ingredients are listed Select a recipe, wait for the
response, send a message like
“Which ingredients do I need?”,
wait for the response

The last response con-
tains all the necessary
ingredients

As expected succeeded

3 Ingredients are listed
with the amount
needed

Select a recipe, wait for the re-
sponse, send a message like “How
much of the ingredients do I
need?”, wait for the response

The last response con-
tains all the necessary
ingredients with the
amount needed

Tested with Panze-
rotti. Makes up some
ingredient quantities
(e.g. recipe: flour:
300g, chatbot: flour:
500g)

failed Not
resolvable
at the
moment

4 Total time of recipe Select a recipe, wait for the re-
sponse, send a message like “How
long does this recipe take?”, wait
for the response

The last response con-
tains the total time of
the recipe

As expected succeeded

5 Step-by-step guidance Select a recipe, wait for the
response, send a message like
“Guide me through the recipe”,
when the response for the first
step is generated, send a message
like “Done, continue”, repeat the
last step until the response states,
that the recipe is finished

The assistant success-
fully guides through
the recipe step-by-step

Works sometimes, but
most of the times the
assistant gives all steps
at once.

failed Not
resolvable
at the
moment

6 Infos about previous
step

Select a recipe, wait for the
response, send a message like
“Guide me through the recipe”,
when the response for the first
step is generated, send a message
like “Done, continue”, wait until
the response is generated, send a
message, which refers to the previ-
ous response, like “How much salt
do I need in the previous step?”,
wait for the response

The assistant answers
correctly

Not ex-
ecutable,
because
step-by-step
does not
work reliably

7 Remaining time Select a recipe, wait for the
response, send a message like
“Which steps do i need for this
recipe?”, when the response is
generated, send a message like
“From step 2 how much time do
i need until the dish is finished?”,
wait for the response

The stated time in the
last response is lower
than the total time of
the recipe

As expected succeeded

Be aware, that these tests cover only a small subset of the assistant’s capabilities. How-
ever, the tests are intended to cover the most likely use cases.

57

https://fooby.ch/en/recipes/13760/panzerotti
https://fooby.ch/en/recipes/13760/panzerotti

Chapter 9

Tooling Evaluations

This chapter contains the discussion about the advantages and disadvantages of the
available tools, as well as a justification why a tool is selected in the end.

9.1 LangChain vs. Haystack

Both, LangChain and Haystack, are frameworks to simplify the interaction with an LLM
backend, in our case llama.cpp.

9.1.1 LangChain

LangChain is a relatively new framework, released in October 2022 and is currently in
version 0.2.

LangChain has built-in support for a variety of NLP tasks. Additionally, it has built-in
support of a broad range of LLM providers, such as the OpenAI API.

A key concept of LangChain are chains, which is a sequence of components to invoke.
As a basic example, we have a retriever which passes its result to an LLM. The retriever
retrieves the interesting documents from a set of documents, based on retriever-specific
criterias. The retrieved documents then get passed to the LLM, which can draw infor-
mation from them. Particularly interesting for this project is the ConversationChain,
which simplifies the usage of the LLM in a chatbot scenario. The ConversationChain
also handles the memory, so the LLM can answer context-based requests.

Because of its flexibility, LangChain has a steeper learning curve.

9.1.2 Haystack

Haystack is another quite popular framework to interact with LLM backends.

It also has built-in support for a variety of NLP tasks.

58

https://github.com/ggerganov/llama.cpp
https://python.langchain.com/
https://python.langchain.com/v0.2/docs/integrations/retrievers/
https://python.langchain.com/v0.2/docs/integrations/llms/
https://api.python.langchain.com/en/latest/chains/langchain.chains.conversation.base.ConversationChain.html
https://docs.haystack.deepset.ai/

The key feature Pipelines is the counterpart to the LangChain chains. Another key
feature are the Agents. Particularly interesting is the Conversational Agent, which sim-
plifies the usage of the LLM in a chatbot scenario, similar to the LangChain Conversa-
tionChain. The Conversational Agent also handles the memory, so the LLM can answer
context-based requests. Unfortunately, the Agents are no longer a part of Haystack in
version 2.0 and above.

As it is less flexible than LangChain, Haystack is easier to get started with.

9.1.3 Conclusion & Decision

Of course, in this evaluation, only a small subset of the available concepts and tools were
discussed. However, most of the concepts can be found in both frameworks. That’s why
I focused on evaluating the concepts, that are important to this project.

LangChain has built-in support for a broader range of NLP tasks. Also the Conver-
sationChain makes it a lot easier to implement chatbots. Another important factor is
that LangChain is already the de facto standard for NLP tasks at OST. My personal
opinion is also that LangChain has more of a future, as it already has a greater range of
functions than Haystack, even though it has not been on the market for long. However,
it has a steeper learning curve.

Haystack also supports many NLP tasks, although not quite as many as LangChain does.
Since Agents were removed in version 2.0, it takes a little bit more effort to implement
the ConversationChain counterpart with Haystack. However, it is easier to get started
with.

After careful evaluation of these advantages and disadvantages, LangChain was selected
as framework.

59

https://docs.haystack.deepset.ai/docs/pipelines
https://docs.haystack.deepset.ai/v1.25/docs/agent
https://docs.haystack.deepset.ai/v1.25/docs/agent#conversational-agent

Chapter 10

Assistant Comparison

This chapter compares the available assistants.

10.1 Behavior Tests

The behavior test results can be found in the LLM Behavior Tests.

10.1.1 Interim Conclusion

The LLM Behavior Tests clearly show, that the Mixtral assistant currently has some
significant deficites. In particular, the hallucination of ingredient quantities and the
inability to provide step-by-step guidance make the assistant very unreliable.

The OpenAI assistant on the other hand provides assistance in all common use cases.

10.2 Processing Speed

The processing speed is tested for both text input and audio input. For text messages
the time is measured from when the message is sent to when the full response is received.
For audio messages the time is measured from when speaking stopps until the audio of
the response starts.

Note that the application runs locally, which affects the used time to process a message.

60

10.2.1 OpenAI Assistant

Message type Message Used time

Text Which ingredients do i need? 6s

Audio Which ingredients do i need? 25s

Text How long does this recipe take? 5s

Audio How long does this recipe take? 17s

10.2.2 Mixtral Assistant

Message type Message Used time

Text Which ingredients do i need? 21s

Audio Which ingredients do i need? 57s

Text How long does this recipe take? 19s

Audio How long does this recipe take? 46s

10.2.3 Interim Conclusion

Although these times are not entirely representative, they clearly show that the OpenAI
assistant is much faster than the Mixtral assistant in all aspects.

10.3 Privacy

The Mixtral assistant offers a high level of privacy because the used Mixtral LLM is
hosted at OST and therefore the user’s input is not sent to an external service. The
conversation is also only stored for one day, after which it is deleted and cannot be
recovered.

The OpenAI assistant on the other hand uses the OpenAI API. OpenAI stores the
conversation history forever. However, OpenAI claims, that they do not use API data
for training.

10.3.1 Interim Conclusion

The mixtral assistant provides a significantly higher level of privacy than the OpenAI
assistant, as the user’s input gets processed internally without the need for an external
service.

61

https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction

10.4 Conclusion

The previous comparisons clearly show, that the OpenAI assistant performs better than
the Mixtral assistant in both response quality and correctness and speed. What is better
about the Mixtral assistant is its privacy.

62

	I Management Summary
	Management Summary
	Problem
	Techniques
	Results
	Outlook
	Conclusion

	II Product Documentation
	Requirements
	Functional Requirements
	Actor
	User Stories

	Non-Functional Requirements
	Compatibility
	Usability
	Security
	Maintainability
	Portability

	Architecture
	Project Architecture
	Smart Eating Project Structure
	Chatbot Project Structure

	C4 Diagrams
	System Context Diagram
	Container Diagram
	Component Diagram
	Code diagram

	Data Flow
	Text Data Flow
	Audio Data Flow

	Toolstack
	Development Process
	IDE
	Frameworks & Libraries
	Programming Languages
	Build Tools
	Documentation

	Quality Measures
	Guidelines & Tools
	LaTeX formatting
	Code
	Definition of Done
	Git
	Sprint Retrospective

	Build Tools
	Smart Eating Project
	Documentation

	Test Strategy
	Unit Tests
	Acceptance Tests
	UI Tests
	LLM Behavior Tests
	Testing Frameworks

	Assistant Comparison

	Limitations
	Audio limitations
	Recipe selection limitation
	Language limitations
	Assistant limitations

	III Project Documentation
	Initial Project Description
	Supervisor
	Student(s)
	Goal
	Assignment
	Deliverables
	Dates
	Grading
	Support

	Project Plan
	Resources
	People
	Time
	Costs
	Tooling

	Roles
	Processes & Meetings
	Backlogs
	Sprint

	Risk Management
	Risk categorization method
	Familiarization with existing project TEXT 3(L: 1, C: 3)
	Lack of experience with OpenAI assistants TEXT 8(L: 2, C: 4)
	Lack of experience with OpenAI API TEXT 4(L: 1, C: 4)
	OpenAI model training takes too much time TEXT 1(L: 1, C: 1)
	In-house models not working TEXT 2(L: 2, C: 1)
	Lack of experience in the in-house models API TEXT 1(L: 1, C: 1)
	Gitlab failure TEXT 2(L: 1, C: 2)
	Specification of requirements/features is inaccurate TEXT 3(L: 1, C: 3)
	Time management TEXT 6(L: 2, C: 3)
	Changes History

	Long-term Plan
	Phases
	Features
	Epics
	Milestones

	IV Bibliography
	V Appendix
	Testing Protocols
	UI tests
	Acceptance Tests
	OpenAI assistant
	Mixtral assistant

	LLM Behavior Tests
	OpenAI assistant
	Mixtral assistant

	Tooling Evaluations
	LangChain vs. Haystack
	LangChain
	Haystack
	Conclusion & Decision

	Assistant Comparison
	Behavior Tests
	Interim Conclusion

	Processing Speed
	OpenAI Assistant
	Mixtral Assistant
	Interim Conclusion

	Privacy
	Interim Conclusion

	Conclusion

