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Abstract
This thesis proposes a full-stack solution for the digitisation process of the Swiss Archive

for Landscape Architecture (ASLA).

A desktop app is developed using Tauri, enabling the management of the archive’s data
as well as the correction of AI predictions.

The AI pipeline is containerised using Docker and is accessible via a web API. Each plan is
formatted and preprocessed, before three deep learning models are applied: a pretrained
layout model (LayoutLMv3) to detect all text occurrences with k-means clustering to
group text boxes into logical blocks, and a transformer-based OCR model (TrOCR) to
extract text. Relevant entities are then identified using a custom-trained German BERT
model. The output undergoes post-processing for formatting and normalisation, with
project-specific keywords like the architect’s name filtered out. The predicted metadata is
sent back to the client app where metadata files track all changes to the image, ensuring

non-destructive editing.

Every weekend, the machine learning models are retrained on all the manually changed
predictions. The thesis focuses more on implementing a robust pipeline and continuous
retraining than on improving the models because continuous retraining is expected to

enhance the AI pipeline’s performance over time.

The app significantly speeds up the digitisation process for the archive and is a substantial
improvement over the old Excel-based workflow. The AI pipeline’s prediction accuracy
varies by model. Marker detection is 100% reliable, and the OCR model reaches 98% ac-
curacy after retraining on only 77 images. The NER model, currently at 46% accuracy, is
about 10% better than the model from the SA project. If the accuracy continues to increase
with additional training data, an F1-score of over 80% can be foreseen with 600 images.
Thanks to the new app, these images can be collected in less than a month of archival

work.

Keywords: Applied Machine Learning, Transformer Based Deep Learning, Software De-
velopement, Desktop App, AI Integration, Continuous Retraining
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Management Summary
The Archive of Swiss Landscape Architecture (ASLA) holds over 100′000 documents, pri-
marily plans from prominent Swiss and European architects of the 20th century. These
documents are used for teaching, exhibitions, and architectural projects. Currently, the
archive manually digitises its documents, a process that is highly time-consuming.

This thesis aims to automate the digitisation process. The solution involves two main
components: a transformer-based deep learning and image processing pipeline to locate
and extract text, identify relevant entities such as the client, date, or scale of a plan, and
a desktop app to manually edit and refine the AI-generated output.

The AI pipeline employs different machine learning models based on the transformer ar-
chitecture, as well as classical image processing techniques. It predicts entities that the
archive currently transcribes by hand. The pipeline is continuously retrained with new
data as it becomes available, increasing its accuracy over time.

The app handles project management and uploads the images to the AI pipeline. It re-
ceives the predictions and displays them to the user, who can edit and correct them where
necessary. Besides managing the entities, the app also offers basic image editing func-
tionality like changing the white balance, contrast, and brightness of an image.

The new system significantly improves the efficiency of the digitisation process. It pro-
vides a robust and user-friendly interface for archivists, reducing the manual effort re-
quired and ensuring consistent metadata collection. With more training data, the AI
pipeline can be refined on the archive’s data, ultimately saving the archive years in their
effort to digitise their plans and make them accessible to the world faster.

Figure 1: The new editor with predictions from the AI pipeline
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1 Introduction
The Archive of Swiss Landscape Architecture (ASLA) [1] collects and preserves plans
from prominent Swiss and European architects of the 20th century. Currently, the archive
holds over 100′000 documents, organised into estates gifted by the architects themselves
or their families. These documents provide insights into architectural practices and land-
scape design of the last century.

These plans serve multiple purposes: they are used in teaching at OST, displayed in ex-
hibitions, and accessed by external architects and planners working on various projects.
However, a significant challenge is that most of these plans have not been digitised, and
some estates lack even a basic projects list. Consequently, whenever someone wants to
view a specific plan, a member of the archive staff must manually search through all the
plans from a particular architect to locate relevant materials, which is both time-consum-
ing and inefficient.

To address these issues and enhance the accessibility and usability of the archive, a de-
cision was made to digitise the collection and publish them on the archives website. A
dedicated photostation was constructed where plans can be laid on a large board, secured
with magnets, and photographed by a permanently installed camera. The images are au-
tomatically synced with a computer, where metadata is collected. This metadata includes
crucial information such as the project client (Bauherr), the location of the building, the
scale of the plan, and the creation date. Additionally, the images are cropped to the size of
the plan and straightened if necessary. Despite these advancements, the process remains
highly manual and involves frequent switching between various tools, including the cam-
era app, image viewer, file explorer, Photoshop, and Excel. The metadata collection in
Excel, in particular, is cumbersome and not user-friendly, making the entire digitisation
process very time consuming and expensive.

During my SA project, I investigated various automation and machine learning tech-
niques to determine if aspects of this process could be automated. We concluded that a
deep learning pipeline could significantly speed up the metadata collection. However, due
to insufficient training data, the models could not be effectively retrained, resulting in
unsatisfactory accuracy.

In this bachelor’s thesis, I aimed to integrate this AI pipeline into a production environ-
ment. Specifically, I developed a desktop application designed to streamline the process
of working with the plans, managing projects, and collecting metadata. This application
is supported by an enhanced version of the aforementioned AI pipeline, which is contin-
uously retrained as new data becomes available. This iterative improvement aims to in-
crease the accuracy and efficiency of metadata collection, ultimately making the archive
more accessible and functional for all users.

1



2 Objective
2.1 Vision
The ultimate goal of this thesis is to provide the archive with a new and improved work-
flow for digitisation. To address the user experience challenges associated with metadata
collection, a frontend application should be developed. This application is designed to fa-
cilitate the organisation of images into projects (estates) and provide a visual editor where
the collected metadata can be displayed and edited directly on the plan. The visual editor
will also allow for image adjustments that were previously done in Photoshop, such as
white balance, contrast, and brightness adjustments. Furthermore, the app will have ac-
cess to a custom-trained AI pipeline (based on the findings from the SA) that automates
both the image editing and metadata collection processes. This new workflow aims to be
faster, more consistent, and more enjoyable than the current one. By integrating advanced
machine learning techniques and a user-friendly interface, the digitisation process will
become significantly more efficient, reducing the manual effort required and enhancing
the overall user experience.

2.2 Assignment
The following tasks where defined with the thesis supervisor Mitra Purandare at the start
of the project:

1. Build an app that can be used by the archive employee:
• Define functional and non-functional requirements based on the needs of the archive
• Write user stories based on the needs of the archive
• Build a desktop GUI app that runs on the archives computer
• Import the images from the camera and send them to the server
• Receive the processed images from the server and display them with the prediction

results
• The user can edit or override the predicted metadata
• The user can delete, edit or draw new bounding boxes for possible future model training
• Add basic image editing capabilities (whitebalance, exposure, contrast) to manualy

tweak the settings
2. Deploy the AI pipeline on a server

• Containerise the AI pipeline and make it accessible via REST API (send image, recive
prediction)

• Add preprocessing to the AI pipeline:
‣ Marker detection and cropping
‣ Image enhancements with whitebalance, exposure, contrast
‣ Dynamic image processing to make the image better suited for the AI pipeline

like denoising, thresholding, distance transforms and opening morphological op-
erations

• Build a test suite that measures the pipeline performance to make changes to it mea-
sureable and compareable

2



• Try to improve the performance of the specific models and pipeline as a whole
• Compare inference performance on different server hardware (CPU / GPU)
• Implement continous retraining and model improvement with new data
• Visualise model evolution
• Image stiching for plans that do not fit in a single photograph

Italic: Optional task

While all required and most optional tasks could be completed, visualisation of model
improvement and image stitching where not possible in the given time.

2.3 App Specification
The editor is a crossplatform desktop app that enables a user to interact with the AI-
pipeline on the server. It is responsible for managing the images captured by the camera,
send them to the server and save the response accordingly. The following workflows have
been defined with help from Simon Orga, the technical supervisor of the archive:

Capture
1. Open App
2. Start the upload (runs continuously in the background)
3. Start taking pictures, rename them manually and move them to upload directory

• Handle images without project -> warning: user should create new project
4. Receive response and save the images automatically to the working directory

• Handle possible pipeline errors

Edit
1. Open project
2. Select image to edit
3. Change predicted metadata if necessary
4. Change bounding boxes if necessary
5. Edit image: whitebalance, contrast, exposure
6. Export and upload all images to the server (supervisor)

2.4 Requirements
According to the assignment and the app specification, the following requirements where
defined:

ID Scope Task Description
FR-1 App Projects The app should load the projects, keywords, upload di-

rectory, api endpoint and other configuration data from
a global enviorenment file on launch. If no enviorenment
file is specified or found the user should be asked to pro-
vide one or guided through the project of creating a new
one.
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ID Scope Task Description
FR-2 App Projects The app should display a welcome screen with a list of

projects.
FR-3 App Projects Users should be able to create and delete projects, spec-

ifying details such as the project code, architect’s name,
working directory, and export directory. Changes should
be synced to the global enviorenment.

FR-4 App Upload The app should provide an upload screen to start/stop
uploads and handle errors. The upload should run con-
tinuously in the background.

FR-5 App Upload The app should not allow the upload of images without
a project.

FR-6 App Upload The app should automatically receive responses from the
server and save images to the working directory.

FR-7 App Upload Atomicity and data integrity should be guaranteed when
moving image files and the corresponding metadata.

FR-8 App Editor The app should have a visual editor where the user can
draw bounding boxes, edit the labels and text of entities,
and adjust the image.

FR-9 App Editor All edits to an image should be performed non-destruc-
tively. All changes should be stored as instructions in a
json file and saved with the image.

FR-10 App Editor All changes should be autosaved. The metadata file and
image in the working directory act as a single source of
truth.

FR-11 App Editor All manual changes should be recorded for later retrain-
ing of the models.

FR-12 App Editor The editor should keep track of the last edited image so
that when a project is reopened, the user is at the same
point where they left off.

FR-13 App User The functionality of the app should be well documented
so that new users can be onboarded quickly and with
minimal human guidance.

FR-14 AI Server The api endpoints should always be reachable. A crash
or error in the pipeline should not lead to api failure.

FR-15 AI Server If no requests are made for 30 minutes, the ai-models
should be unloaded from memory to free up unused re-
sources. The are reloaded if a new request is made.

FR-16 AI PreProc. The user placed markers should be recognised and the
image cropped accordingly.
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ID Scope Task Description
FR-17 AI PreProc. Each image should be normalised for inference by the

AI pipeline.
FR-18 AI Pipeline The inference pipeline should be able to run on CPU if

no GPU is available.
FR-19 AI Pipeline The pipeline should provide appropriate warnings and

error messages.
FR-20 AI Pipeline The pipeline should find all entities on a plan, extract the

text and assign the correct label.
FR-21 AI Training The models should be continuously retrained on new

user supplied data.
FR-22 AI Training Model performance should be stored on the server for

monitoring and comparison.

NFR-1 General Quality The code should be well structured and follow best prac-
tices for each language.

NFR-2 General Testing Unit tests should be implemented where appropriate.

Table 1: Requirements

2.4.1 Future requirements
• It was decided not to implement any user authentication or role based access control

to focus on other features of the app. If the need arises this could be added at a later
point in time.

• Censoring of sensitiv image regions could be easely added in the editor based on the
bounding boxes feature. It could also be integrated into the AI pipeline but this would
require bigger changes as well as training data that is currently not available.

2.5 User Stories
User stories were used in this project to ensure a user-centric approach in developing
the new workflow and app. The usability of the app is of crucial importance because the
archive employees spend a lot of time with it. The user stories provide a clear and struc-
tured framework for addressing real-world challenges and requirements. They help in
translating the technical requirements into actionable tasks, and ensuring that the app is
both functional and user-friendly.

2.5.1 Project Management
As an archive employee, I want to create new projects, specifying details such as the pro-
ject code, architect’s name, working directory, and export directory so that I can organise
the digitisation tasks efficiently. I should also be able to edit these details later or delete a
project.
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Risks: • Incomplete or incorrect project details could lead to major problems with data
consistency and difficulty in locating files.

• Accidental deletion of a project could lead to confusion but generally no data
is lost.

2.5.2 Project Selection
As an archive employee, I want to see a list of all projects so that I can easily select and
continue working on them.

Risk: • The welcome screen might become cluttered with too many projects, making
it difficult to navigate. This can be solved by only displaying the most recent
projects and hiding older ones behind a button.

2.5.3 Image Upload
As an archive employee, I want to have full control of the upload process. I want to be
able to see the current upload status (uploading / stopped), the server connection, and
any files with errors. I want to be able to manually retry a failed upload. Images without a
project should never be uploaded. The upload should run continuously in the background
and automatically query the upload dirctory for new images.

Risks: • Interruptions in the upload process could lead to incomplete data transfer and
potential data loss. This can be solved by atomic upload and move operations.

• If implemented wrongly continuous background uploads could consume sig-
nificant bandwidth and system resources, affecting other tasks.

• Intransparent upload errors could lead to confusion, data loss and workflow
distruptions.

2.5.4 Visual Editor
As an archive employee, I want a visual editor where I can draw bounding boxes, edit
labels and the text of entities, and adjust the image so that I can ensure all metadata is
accurate. I want to be able to move the image around and zoom in and out with a fluid
framerate.

Risks: • Errors in bounding box drawing or metadata editing could compromise the
quality and accuracy of the digitised data.

• An unresponsive or unintuitive editor could frustrate users, leading to lower
productivity.

2.5.5 Nondestructive Editing and Autosave
As an archive employee, I want all my changes to be saved automatically and I want to
be sure that all changes can be reverted.

Risks: • Failure during saving could lead to inconsistend or lost data.
• If edits are performed destructive, the image could be rendered unusable.
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2.5.6 Editing Continuity
As an archive employee, I want the app to remember the last edited image when reopen-
ing a project so that I can continue from where I left off.

Risks: • If the app fails to remember the last edited image, users might waste time find-
ing their previous working point or accidentally skip some images.

2.5.7 Documentation
As an archive employee, I want the app to be well-documented so that I and other new
users can quickly learn how to use it with minimal guidance.

Risks: • Poor or outdated documentation could lead to confusion and increased on-
boarding time. Because the turnover of the people working on digitisation is
high, this can tax the archive supervisor excessively.

2.5.8 Oversight and Supervision
As the archives supervisor, I want to be able to check in on the people working on the
digitisation from anywhere. I want to be able to setup projects and check the progress.

Risks: • If the enviorenment synchronisation does not work properly, supervision
would become impossible without beeing physically at the photo-station.
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3 Architecture & Technologies
3.1 Constraints
The archive provides windows notebooks to the employees working on digitisation. The
app needs to run on this hardware, meaning that it does not have access to a GPU.

The archive is currently in the process of migrating their server infrastructure to new
hardware with a more powerfull CPU but also no GPU. This server is currently used to
run the archive website and the Anton database [2].

3.2 Inference on Device
The initial idea was to integrate the AI pipeline directly into the app. This approach would
have the advantage of eliminating the need for server infrastructure. Additionally, the en-
tire project could have been developed using a single language: Python. To test this idea,
I built a rudimentary Python GUI app using PyQt [3], integrated the existing machine
learning code from the SA project, and attempted to build and package it with setuptools
[4].

The first major issue encountered was that PyTorch, the machine learning library used,
needed to be installed and built for a specific platform and sometimes even for a specific
CPU generation. This requirement made it nearly impossible to build the app once for
each platform and then distribute it universally. Consequently, I decided to abandon the
approach of performing inference on the device.

3.3 Standalone App
Decoupling the app from the AI pipeline allows for the selection of technologies best
suited for each task. Several cross-platform desktop app development platforms exist,
with Electron.js being the most popular. Electron.js is an open-source framework devel-
oped by GitHub that allows developers to build cross-platform desktop applications using
web technologies like HTML, CSS, and JavaScript [5]. By leveraging the Chromium ren-
dering engine and the Node.js runtime, Electron enables the creation of apps that function
consistently on Windows, macOS, and Linux. This integration allows developers to use
web development technologies to create rich desktop applications, incorporating features
like native menus, notifications, and file system access. Popular applications like Visual
Studio Code and Slack are built with Electron.

However, Electron apps have long been criticised for excessive memory use and the ne-
cessity to bundle a Node.js runtime with the app. The main drawback for this project is the
restriction to use JavaScript only. The app’s image editing features require computation-
ally intensive matrix operations that need to run very fast, which is difficult to achieve
with JavaScript. Therefore, other frameworks were also evaluated [6].
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3.3.1 Crossplatform Framework Comparison
An ideal framework would use familiar technologies as well as a fast programming lan-
guage. The following different frameworks where compared:

3.3.1.1 Flutter
Flutter is an open-source UI toolkit by Google that enables developers to build natively
compiled applications for mobile, web, and desktop from a single codebase. Using the
Dart programming language, Flutter offers a rich set of pre-designed widgets and tools
to create highly responsive and visually appealing user interfaces. It is known for its fast
performance and flexible design capabilities, making it well-suited for the project. Al-
though I have some experience with Flutter from the Distributed Systems course where
we built a mobile app with Flutter, I am not very familiar with the Dart programming
language and the framework as a whole.

3.3.1.2 React Native
React Native is an open-source framework by Facebook that allows developers to build
mobile applications for iOS and Android using JavaScript and React. It enables the cre-
ation of native-like apps with a single codebase, offering a wide range of components and
tools to ensure performance and a smooth user experience. While I have a good under-
standing of web technologies, I have never worked with React before. Moreover, React
Native, like Flutter, is more geared towards mobile app development than desktop apps.

3.3.1.3 Ionic
Ionic is an open-source framework that enables developers to build cross-platform mobile,
web, and desktop applications using web technologies like HTML, CSS, and JavaScript.
It offers a library of pre-built UI components and tools, allowing for a seamless devel-
opment process and native-like performance across various platforms. However, Ionic
suffers from a similar problem to Electron with the restriction to use less performant
JavaScript.

3.3.1.4 .NET MAUI
.NET MAUI (Multi-platform App UI) is an open-source framework by Microsoft designed
for building native cross-platform applications for mobile, desktop, and web from a single
codebase. Utilising C# and XAML, .NET MAUI provides a unified API and a rich set of
UI controls, enabling developers to create responsive and high-performance applications
that run on Windows, macOS, iOS, and Android. My main problem with .NET is my un-
familiarity with C# and the Windows development ecosystem. Other than that, MAUI
would have been a great fit for the project.

3.3.1.5 Tauri
Tauri is an open-source framework designed for building tiny, fast, and secure desktop
applications using web technologies like HTML, CSS, and JavaScript. Unlike other frame-
works, Tauri leverages the native operating system’s webview, resulting in smaller appli-
cation sizes and improved performance. This eliminates the need to ship a whole Node.js
runtime like Electron. Tauri also offers the ability to leverage the Rust programming lan-
guage, which I am already familiar with, for performance-critical parts. It provides a flex-
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ible API for integrating with native functionalities, making it ideal for creating fast and
efficient cross-platform applications.

3.3.2 Stack
The main reasons for choosing Tauri were the familiarity with the technologies (HTML,
CSS, and TypeScript for the UI and Rust for the backend). The option to write the per-
formance-critical sections in Rust was also a significant advantage. Instead of JavaScript,
I use TypeScript, which provides more type safety. Tauri allows the use of a frontend
JavaScript framework, and for this project, I chose SvelteKit due to my familiarity with
the technology. The combination of SvelteKit with Tauri is philosophically sound, as Svel-
teKit, unlike React or Vue, also involves a compilation step.

3.4 Server
The server architecture is relatively straightforward. Python was the obvious choice due
to its large ecosystem for machine learning and image processing tasks. I use the OpenCV
package for image processing tasks [7]. Implementing a Python web server to make the
API accessible was logical since all other server code is already in Python. I chose FastAPI
[8] to handle the web traffic because it provides an easy-to-understand API and is light-
weight.

For the pretrained models, I made extensive use of the Hugging Face transformers library
[9]. This open-source library provides tools and models for natural language processing
(NLP), enabling developers to build, train, and deploy state-of-the-art machine learning
models for tasks like text generation, translation, and named entity recognition. Hugging
Face also offers a platform for sharing and collaborating on models, making advanced
NLP accessible. All pretrained models are sourced from the Hugging Face model hub.

To simplify deployment on the ASLA server and ensure a consistent development envi-
ronment, the entire server is dockerised.
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4 App
4.1 User research
Over the last year, I had the opportunity to work on digitisation myself for several weeks
and talk to various other employees. Often, the people working for the archive come from
Swiss mandatory civil service (Zivildienst) or are interns from OST or college students
(Kantonsschule) during a gap year. These employees do not necessarily have a technical
or architectural background.

From my own experiences and informal interviews, I gathered the following pain points
with the current workflow:
1. Employees need to switch between the photo station, camera app, Excel, and Photo-

shop frequently, which is time-consuming and disrupts their workflow.
2. The current image viewer is cumbersome and unreliable, making it difficult to locate

and read relevant texts on the images.
3. The manual and repetitive nature of the tasks often results in inconsistencies and mis-

takes, affecting the overall quality and efficiency of the digitisation process.

4.2 Design
Based on the requirements, user stories and insights from the current workflow, a ba-
sic wireframe for the app was created in Figma. The three most important screens were
blocked out to understand the necessary elements to fulfill the user stories and determine
their optimal placement.

Figure 2: App Wireframes

Next, the wireframes were expanded into mockups. A colour palette was chosen that
primarily uses grey values to keep the focus on the content. A desaturated shade of red
(#EB5757) is used as an accent colour for certain buttons and interactive elements. The
platform’s default sans-serif typeface is used: San Francisco on macOS and Segoe on Win-
dows.

Because the UI is built with web technologies, it is fully responsive, with elements ex-
panding and rearranging based on the available space. A minimum window size of 500
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by 300 pixels is defined to avoid handling edge cases. This ensures the app remains func-
tional across different screen sizes and resolutions.

Figure 3: Responsive design

4.3 Structure
The Tauri app is structured into the following components:

4.3.1 Frontend
The frontend is built with SvelteKit, a powerful framework designed for creating high-
performance web applications using Svelte. Instead of a virtual DOM, Svelte uses a com-
piler to generate native JavaScript code that updates only the changed elements. For use
with Tauri, all sites are prerendered and then rendered by the platform’s native webview:
WKWebView on macOS, WebView2 on Windows, and WebKitGTK or WRY on Linux.
Tauri ensures that the frontend is sandboxed for security. The UI is built using HTML,
native CSS styling, and TypeScript.

4.3.2 Backend
Tauri apps use Rust for their backend logic. The core system manages all interactions with
the operating system and provides the webviews. Tauri provides bindings and APIs to
interact with the operating system and access native features. These bindings are written
in Rust and are accessible from either JavaScript or Rust. Some of the heavily used APIs
include:

• Command API: Allows the frontend to call Rust functions.
• File System API: Provides secure and unrestricted file system access.
• Window API: Manages the different windows of the app.

This structure allows for a clean separation of concerns, ensuring that the frontend can
focus on the user interface and interactions, while the backend handles the core logic and
system-level operations efficiently.

4.4 Components
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4.4.1 Splash Screen
A simple splash screen is shown during app startup. This screen is not clickable and has
no window controls, as it is generally only displayed for a second.

Figure 4: Splash screens for light and dark mode. The design is inspired a project by Ernst
Cramer from 1965: Friedhof Uetliberg.

4.4.2 Welcome Screen
The app manages state with different configuration files. The first one is the local app
config, located in the app config directory at os_config_dir/ch.asla.asla-editor/
app.config. This directory is created when the app is installed. In addition to user pref-
erences, this JSON file contains the path to the environment.config file. This file should
exist only once in the ASLA filesystem. It contains all the project settings, as well as the
path to the upload directory and API endpoint.

Because this environment file is shared among all clients, changes to it are reflected on all
running clients. This allows multiple users, such as an archive supervisor and an archival
intern, to work simultaneously. By creating multiple environment files, multiple instances
can be managed, for example, an older archived environment or a test and development
environment. If the path to the environment file is not valid or present in the app config,
the user is prompted to specify or create a new one.
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{
  "projects": [
    {
      "code": "KLA",
      "name": "Klauser Gebrüder",
      "workingDirectory": "/.../projects/KLA/working",
      "exportDirectory": "/.../projects/KLA/export",
      "subfolders": true,
      "artefacts": [
        "Klauser",
        "KLA",
        "ETH SIA BSA"
      ]
    }, ...
  ],
  "uploadDirectory": "/.../upload",
  "apiEndpoint": "http://localhost:30500/image/"
}

Listing 1: Environment config file

4.4.3 Homescreen
The home screen of the app contains a list of the most recent projects on the left and the
upload manager on the right, as well as a settings button.

Figure 5: Homescreen view
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4.4.4 Upload
The upload component handles the image upload process. It consists of two parts: the
upload Svelte component for the UI and the upload service singleton class. The user can
start and stop the upload and view the status of the images in the upload directory. The
component loads the API URL from the environment config file and reads all the images
in the upload directory. The directory is queried every 2 seconds, and all the image paths
are stored in a writable array [10] using Svelte stores, to which the UI subscribes. If the
server is not reachable, the component displays a warning banner at the top with a refresh
button, and the start button is disabled. If an image upload fails, the image is marked, and
a retry button is shown, allowing the image to be manually sent to the server.

If the server successfully predicts the metadata for an image, the upload component re-
ceives it. According to the filename, the image and the metadata are moved to the cor-
responding working directory. This operation is atomic, ensuring that if one write fails,
the initial status is restored, maintaining data integrity. Because this operation requires
arbitrary file system access, it is handled by the Rust code. The upload service class calls
the process_image function via a Tauri command:

try {
  const prediction: ApiResponse = await invoke('process_image',
    {path: image.path, name: image.name, endpoint: STATE.apiEndpoint}
  )
} catch (err) {
  this.failedImages.push(image.name)
}

Listing 2: Call the process_image Rust function from JavaScript (shortened)

The upload component is built from the ground up with robustness in mind. It can handle
network errors, inference errors, and file system errors without crashing or losing data.

4.4.5 Project
Clicking on the settings icon in the top right corner of a project leads to the project screen.
Here, all the project settings can be changed. The screen is split into a regular section on
the left and a dangerous section on the right.
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ID Scope
Name Display name of the project, functionaly irrelevant.
Artefacts List of tokens that should be ignored during named entity recog-

nition. This helps the AI avoid misclassifing the name of the ar-
chitect as the name of the client and so on.

Code This string is used to match an image to this project, eg: ASLA_K-
LA_100305_1.jpg

Working directory The path where the images and predictions from the AI Pipeline
are saved to.

Export directory The path where a copy of the images are saved to during export-
ing.

Structure Sets a project up for nested directories (not implemented)

Table 2: Project settings

Figure 6: Project view

4.4.6 Editor
The largest and most complex component is the Editor. Since users will spend the most
time here, it is crucial that the user experience is well thought out, sophisticated, and
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reliable. The Editor consists of the Svelte editor component with its sub-components and
the Rust backend to handle the image data.

Figure 7: Editor view

4.4.6.1 Image selection
When the Editor is opened, the correct image needs to be loaded. Every project stores the
name of the last opened file in a hidden file called .current inside its working directory.
If this image does not exist anymore or if it’s the first time the project is opened, the first
image is selected.

4.4.6.2 Rust Backend
The backend creates an Editor struct when the app is launched. This struct allocates
memory to hold the image data and stores the current image path. If the frontend requests
image data, the Rust code reads the image based on the provided path. The image is read
as an ImageBuffer that stores the RGB pixel values as Vec<u8> with three entries. If the
path is the same as the current image, the image is not reloaded but served from the cur-
rent buffer. Memory access is controlled with a MutexGuard.

If the user edits the image’s white balance, contrast, or brightness, the image data needs
to be updated. Since real-time performance is crucial for user feedback, the pixel-level
updates are performed in parallel with Rayon:

17



image
  .rows_mut()  // creates an itarator over the mutable rows of this
image
  .par_bridge()  // parallelises the iterator: one row per thread
  .for_each(|row| {
    row.for_each(|pixel| {
      *pixel = update_pixel(*pixel, white_balance, contrast, brightness)
    })
  });

Listing 3: Image update function in Rust (simplified)

The update_pixel function implements a custom update function that combines all three
operations, white balance, contrast and brightness into a single calculation:

Figure 8: Pixel update function, where w: whitebalance, c: contrast and b: brightness

The current implementation needs to send the image data as a base64 encoded string to
the frontend. This encoding step results in several hundred milliseconds of processing
time, which does not allow for real-time image editing. The ideal solution would be to
have a shared memory block between the front and backend. However, this feature is not
currently available in Tauri but is expected to be included in the next version [11] with
changes to the inter-process communication.

The Rust backend also writes and reads the metadata json files. Each image has an iden-
tically named .json file with the following structure:
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{
  "entities": [
    {
      "label": "loc",
      "text": "Aarau",
      "hasBoundingBox": true,
      "boundingBox": { "top": 940, "right": 2571, "bottom": 996,
"left": 2427 },
      "manuallyChanged": false
    } ...
  ],
  "grading": {
    "contrast": 0.95,
    "brightness": 1.1,
    "whiteBalance": [1, 1, 1],
    "manuallyChanged": true
  },
  "format": {
    "crop": { "top": 197, "right": 1574, "bottom": 258, "left": 1603 },
    "rotation": 0.014,
    "manuallyChanged": false
  }
}

Listing 4: Metadata file

4.4.6.3 Viewport
The left two thirds of the editor are dedicated to the current open plan. The viewport gets
the image data from the rust backend and displays it with an HTML img element. The
editor has two main interactive functions: Navigation and drawing.

Navigation consists of move and zoom. Both are implemented with a transformation ma-
trix:

Figure 9: Transformation, where : zoom level and : translation

This transformation matrix is updated on every mouse move or wheel event and updates
the position and scale of the image accordingly.

The user can drag the plan in any direction with the mouse. Translation is implemented
with a mouse move listener that provides the moveX and moveY properties which are
mapped to  and  in the transformation matrix. Moving the plan out of the viewport
is prevented with a min and max value depending on the zoom level.

The user can change the scale of the plan with the mouse wheel. The scale is limitied to a
range between 0.5 (50%, zoomed out) and 5 (500%, zoomed in). After every mouse wheel
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event the scale is calculated and used in the transformation matrix as  (the same value
for the x and y axis). This scales the image from the center which is not what most users
expect. More intuitiv is that the zoom origin is at the current pointer position. This is
implemented by calculating the position of the mouse pointer after applying the trans-
formation matrix and then correcting the x and y translation for this change:

Figure 10: Scale from mouse pointer

The navigation allows the user to inspect the plan in detail and
to read small text. It also allows the plan to be positioned so
that the bounding boxes for the entities can be inspected and
edited. A new bounding box can be started from an entity in
the controls panel. In drawing mode, mouse drags do not map
to translation anymore but instead span a bounding box. The
same moveX and moveY event properties are used to calculate
the size of the bounding box. An existing bounding box can be
resized from any corner. Each corner has an hoverable 25 pixel
big region which displays a drag handle if the mouse is inside
it.

Figure 11: Bounding
box drag handle

4.4.6.4 Controls
On the right side of the editor are the controls. This sidepanel is scrollable. On the top is
the name of the current image displayed. The first panel below that is the text detection
(Texterkennung). Every entity is displayed with its label (drop down), a button to remove
or create the bounding box, a delete button to remove the entity and an input containing
the entitiy text. A new entity can be created by clicking on a button at the bottom of the
list. When a new entity is created, the viewport automatically switches to the drawing
mode to create the bounding box, and the input is focused for streamlined data input.
When the user hovers over an entity the corresponding bounding box (if present) has a
red drop shadow to help find it in the viewport. This should avoid time spent searching
for the text on the plans, something that is quite common in the current workflow.

The next panel containts the image editing settings. It currently contains three slider
for brightness, contrast and whitebalance. If one of these values changes, the Rust
update_image function is called to update the pixel values of the image.
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4.4.6.5 Shortcuts
Keyboard shortcuts are a useful tool to make the user experience more seamless. The fol-
lowing shortcuts are implemented for the editor:

CMD  + 0  : Reset the viewport, center it, and scale it to 100%

CMD  + n  : Create a new entity, equivalent to a button click

ESC  : Cancel drawing operation

<  / >  : Previous / next image

4.5 Buildsteps
Because the app needs to support different platforms, an automated build step is imple-
mented. Tauri requires the build process to be run on the target architecture because it
depends on native libraries. This is implemented with a GitHub Action:

1. Set the build environment, e.g., macOS or Windows.
2. Check out the repository with the source code.
3. Install Node.js (version 20) for the frontend.
4. Install the Rust toolchain (stable) for the backend.
5. Install npm packages: npm install
6. Build the app: npm run tauri build
7. Upload the executable.

The final executable can then be distributed (via website, for example) and installed on
the target system.

4.6 Testing & Bugfixes
During the development of the AI pipeline, I needed to gather training data. Naturally, I
used the app to create entities and draw bounding boxes. This process proved extremely
valuable as I spent considerable time with the editor. I identified what worked well and
the small pain points that became disruptive when repeated dozens of times. For example,
the initial size of the dragging area was too small, resulting in many aborted entity resizes.
During this period, I found several bugs and issues that had escaped during development.

This testing of the app was especially useful because, at that time, no one was working
for the archive, so I couldn’t let them test the app.

4.7 User Guide and Documentation
The functionality of the app, as well as the entire workflow, is documented in the user
guide (Appendix). In the five-page document, every step of the digitisation process is ex-
plained. The document is written in German and aims to reduce the training overhead for
new employees. Since the users are often at the archive for only a short amount of time,
the clear instructions should help streamline the onboarding process and free up time for
the supervisors.
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5 Introduction to Transformer-
Based Deep Learning
In recent years, the field of artificial intelligence has witnessed remarkable advancements,
particularly in the domains of Natural Language Processing (NLP) and Optical Character
Recognition (OCR). At the forefront of these advancements is the development and ap-
plication of transformer-based models. This chapter aims to provide the necessary conext
for the implementation of the AI Pipeline with a focus on OCR and Named Entity Recog-
nition (NER).

5.1 Transformer Models
Transformer models, introduced by Vaswani et al. in 2017 [12], revolutionized the field
of NLP by addressing the limitations of recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs). The primary innovation of transformers is the self-atten-
tion mechanism, which allows models to weigh the importance of different words in a
sentence regardless of their position. This architecture enables parallelisation, reducing
training times and improving the handling of long-range dependencies.

Transformers consist of an encoder-decoder structure. The encoder processes the input
sequence (can be text or image) and produces a continuous representation, which the
decoder then uses to generate the output sequence. Key components of the transformer
architecture include multi-head self-attention, position-wise feed-forward networks, and
positional encoding.

Figure 12: TrOCR Architecture [13]
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5.1.1 Encoder
The encoder’s primary function is to process the input sequence and transform it into a
continuous representation. It comprises a stack of identical layers, each containing two
main sub-layers:

1. Multi-Head Self-Attention Mechanism: This mechanism allows the encoder to attend
to different positions within the input sequence simultaneously. By computing atten-
tion scores, the model determines the relevance of each word in the sequence relative
to every other word. The multi-head aspect refers to having multiple attention heads
that can focus on different parts of the sequence independently, capturing various as-
pects of the relationships between words.

2. Position-Wise Feed-Forward Networks: Following the self-attention mechanism, each
position in the sequence is passed through a fully connected feed-forward network.
This network consists of two linear transformations with a ReLU activation in between.
The feed-forward network is applied independently and identically to each position,
contributing to the model’s ability to handle long-range dependencies.

3. Positional Encoding: Unlike RNNs, transformers do not inherently capture the order
of tokens in a sequence. Therefore positional encoding is introduced to provide this
information. Positional encodings are added to the input embeddings and incorporate
information about the position of each token in the sequence. These encodings can be
learned or predefined, allowing the model to distinguish between different positions.

5.1.2 Decoder
The decoder is responsible for generating the output sequence based on the continuous
representation produced by the encoder. Like the encoder, the decoder is also composed
of a stack of identical layers, but with an additional sub-layer to handle the encoder-de-
coder interactions:

1. Masked Multi-Head Self-Attention Mechanism: The decoder uses a masked version of
the multi-head self-attention mechanism to ensure that predictions for a given posi-
tion can depend only on known outputs up to that position. This masking prevents the
model from attending to future tokens in the sequence.

2. Encoder-Decoder Attention Mechanism: This sub-layer allows the decoder to attend
to the entire encoded input sequence. It operates similarly to the self-attention mech-
anism but focuses on the encoder’s output rather than the decoder’s own previous
outputs. This enables the decoder to incorporate information from the input sequence
into its generation process.

3. Position-Wise Feed-Forward Networks: As in the encoder, each position in the decoder
sequence is passed through a feed-forward network to process the attended informa-
tion and produce the final representation.
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4. Positional Encoding: Positional encodings are also added to the input embeddings of
the decoder to provide information about the position of each token in the output
sequence.

5.1.3 Workflow
The overall workflow of the encoder-decoder structure in a transformer model can be
summarized into the follwing steps:

1. Input Processing: The input sequence is first embedded and combined with positional
encodings.

2. Encoding: The encoder processes the input embeddings through multiple layers of self-
attention and feed-forward networks, producing a continuous representation.

3. Decoding: The decoder generates the output sequence by attending to the encoder’s
continuous representation and its own previously generated tokens, applying masked
self-attention, encoder-decoder attention, and feed-forward networks at each layer.

4. Output Generation: The final layer of the decoder produces the output sequence, which
is then transformed (typically through a linear layer and softmax function) into prob-
abilities over the target vocabulary to generate the final predictions.

5.2 OCR with Transformers
OCR is the process of converting different types of documents, such as scanned paper
documents, PDFs, or images captured by a digital camera, into editable and searchable
data. Traditional OCR systems rely on pattern recognition and machine learning tech-
niques. However, transformer-based models have shown significant promise in enhanc-
ing OCR accuracy and efficiency.

The application of transformers in OCR involves the use of vision transformers (ViTs) and
text recognition transformers. ViTs apply the transformer architecture to image patches,
treating them as sequences, similar to words in a sentence. This approach has been effec-
tive in capturing the spatial dependencies within images. Furthermore, text recognition
transformers combine the principles of vision transformers and traditional sequence-to-
sequence models to decode text from images.

5.3 NER with Transformers
NER is a crucial task in NLP that involves identifying and classifying named entities (e.g.
names or locations) within a text. The advent of transformer models, particularly Bidirec-
tional Encoder Representations from Transformers (BERT), has significantly improved
NER performance.

BERT and its variants (like German-BERT or RoBERTa) leverage the transformer archi-
tecture’s bidirectional self-attention mechanism, enabling the model to consider the con-
text of a word from both its left and right sides. This contextual understanding is crucial
for accurately identifying named entities. For instance, the word “Apple” can refer to a
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fruit or a technology company, depending on the context. Transformer-based models ef-
fectively disambiguate such cases by understanding the surrounding context.
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6 AI Pipeline
6.1 Foundation
During my SA project, “AI for Digitisation of Historic Architectural Plans”, I explored dif-
ferent approaches and deep learning models to find an effective image processing pipeline
for the given problem. I proposed a three-model architecture, which forms the basis for
this thesis. This chapter will explain the setup, with all the work done during the SA
clearly marked. The existing parts of the pipeline are summarized here, readers interested
in more details can find a detailed description in the SA paper.

Additionally, even before the SA, I created a CNN-based marker detection script. This
approach was deemed too elaborate and resource-intensive, as marker detection could
be achieved without deep learning by using template matching. Reimplementing marker
detection is part of this BA.

6.1.1 Learnings from the SA
The most relevant conclusion from the SA was that the models needed training data from
the archive. Synthetic and simulated training data could only improve accuracy to a cer-
tain point. Additionally, to train the layout and OCR models, bounding boxes are needed,
which did not exist. Based on this, I decided to work with the models as they were and
implement them in a way that would allow automatic and continuous retraining on the
data gathered daily by archive employees using the new app. This approach saved me
from spending days and weeks gathering training data myself.

Another insight from the SA was that the NER model had difficulty distinguishing the
architect’s name from a client’s name. This issue arises because both are names. The same
problem occurred with the address of the architect’s office, which is often present on the
plans. To solve this problem, I created a list of artefacts for each project. This list can be
filled out when a new project is started. The artefacts are sent with every image and used
by the NER model to ignore these predictions.

The final insight from the SA was the importance of preprocessing every image before it
is handed to the machine learning models. I believed that this technique could improve
the models’ performance, as other papers [14], [15] recommended it.

6.1.2 Task
The main task of the AI pipeline is to find and name the text entities on the plan. But it
also needs to automate the following steps, that are currently done manually:
1. Crop and rotate the image correctly
2. Remove the archive stamp
3. Automatic retraining and model changes
4. Resource management
5. Performance evaluation
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6.1.3 Architecture
With the app in place, the server needs to handle the uploaded images and send a predic-
tion back. It consists of the following components:
1. A FastAPI webserver to handle the uploaded images
2. Marker detection and orientation
3. Stamp removal
4. Preprocessing
5. Text localisation and clustering
6. Text extraction
7. Named entitiy recognition
8. Postprocessing

And for the retraining:
1. API to recive training images from the app
2. Retrain models
3. Evaluate new models and compare to the current ones
4. Update the better performing models

Figure 13: Architecture Diagram

6.2 Evaluation
One of the major pain points in the SA was the lack of an evaluation or test suite for the
different models. Although I attempted to formalize and automate the evaluation process,
the diverse architectures and outputs of the models required many tests to be performed
manually. For this thesis, I developed a test_model function that automates the evalua-
tion process. This function allowed me to verify that each modification and addition to
the pipeline actually improved model performance.

The test function automates the evaluation of model performance by running the pro-
vided models with a fixed set of test images and metadata. After each test, the results are
saved into the benchmark directory and a dictionary with the results is returned.
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BENCHMARK REPORT

---------------- Config
layout model: microsoft/layoutlmv3-large
ocr model:    ../models/ocr/ocr_v3
ner model:    ../models/ner/ner
test images:  11

---------------- Results
layout model: 0.267
ocr model:    0.971
ner model:    0.425

---------------- Comments
Testing ocr model, trained with 10 epochs, 77 training samples

Listing 5: Benchmark file example

With the test_model function, I could continuously verify improvements in model per-
formance. For instance, after implementing stamp removal or new preprocessing steps,
I reran the test suite to compare the results with previous benchmarks. This automated
testing approach ensured that each change to the pipeline was validated, leading to more
consistent improvements. Approaches that did not work could be stopped early.

6.3 API
To handle image uploads I implemented a very basic webserver with FastAPI [16]. It ex-
poses the followin routes:

/ping GET Used by the app to check if the server is online
/models GET Returns the currently loaded models with their evaluation score
/image POST Takes an image and a list of artefacts and returns a prediction
/retraing POST Takes an image and its metadata and stores it in the retraining

directory

6.4 Model Service
To enable dynamic management of the models and their memory usage, I created a model
service class that manages the models. This class is instantiated once when the server
starts and abstracts access to the models. It exposes a run_pipeline method that performs
inference and can load or unload models based on a specified path. The currently used
models are saved in the project root in a ai_config.json file. This file defines the the
currently used models and the corresponding test score. Additionally the file defines the
retraining settings like number of images and training iterations.

The first time the pipeline is run, the models are loaded, and a timer is set (currently to 30
minutes). Each time the pipeline is run (i.e., a prediction is requested), the timer is reset.

28



If the timer runs out, all models are unloaded to free up shared system resources. This
also allows the retrained and improved models to be loaded automatically.

6.5 Marker detection
The first step currently done manually by the archive
employee after an image is taken is cropping and
rotating it so that the plan is correctly aligned. Pre-
viously, I created a Python script that used a convo-
lutional neural network (CNN) to detect four mag-
nets with high-contrast patterns. For this thesis, I de-
veloped a new and simpler method using template
matching. This approach is feasible because the mark-
ers always have the same distance to the camera and
therefore the same size.

Figure 14: The image used for
template matching

1. A template of the marker is iterated over the entire image, and the matching score for
each position is calculated using convolution.

2. Due to the larger size of the marker, the pixels around the center have high values,
making it impossible to simply take the four highest values, as they could all corre-
spond to the same marker.

3. To address this, we use another kernel (twice as big) to stride over the image and select
only the highest value at each step.

4. Finally, the selected values are ordered and filtered one last time for closeness to en-
sure that two pixels from the same marker where not coincidentally at the border of
the kernel.

5. The pixel coordinates of the four highest values are returned as the marker positions.

This improved method runs much faster than the old CNN-based approach while main-
taining similarly high accuracy. The streamlined process ensures efficient and accurate
alignment of the plans, enhancing the overall digitisation workflow.

6.6 Preprocessing
One way to improve model performance is by editing the images to make text detection
easier. When done manually, the results are very good. By adjusting the contrast (gradi-
ent curve), denoising, and sharpening, we can improve model performance by more than
20%. The challenge is that each image requires different adjustments.

My initial approach was to implement something similar to the manual process. I defined
a set of image heuristics that would then be corrected based on their values. For example,
an image with low contrast would have its contrast increased. However, this method did
not improve the models’ results.
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Metric Calculation
Contrast Michelson contrast
Noise Standard deviation between the original and a smoothed image
Brightness Mean value of all pixels
Sharpness Laplacian Variance
Entropy Shannon Entropy

Table 3: Image metrics

Next, I explored more advanced image processing techniques, which typically focus on
extracting the edges of letters. Two of the most successful pipelines were as follows:

Preprocessing 1
1. Convert image to grayscale.
2. Enhance contrast with CLAHE (Contrast Limited Adaptive Histogram Equalisation).
3. Reduce noise with a Gaussian blur.
4. Binarize the image with a Gaussian adaptive threshold.
5. Apply a morphological close operation with a 3x3 kernel.
6. Detect edges with Canny edge detection, using thresholds of 50 and 150.

Preprocessing 2
1. Convert the image to grayscale.
2. Enhance contrast with a weighted function.
3. Binarize the image with an inverted binary threshold.
4. Apply a distance transform with a mask size of 5.
5. Normalize the image.
6. Threshold again with OTSU’s method.
7. Apply a morphological close operation with a 7x7 kernel.

Both preprocessing pipelines worked well for certain types of images but rendered others
completely unusable.
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Figure 15: The same preprocessing performed on two images. The text on the left image
is more readable and the noise is significantly reduced. The text on the right image has

some closed characters and is much less readable.

Because the plans span a wide period and were created by different people in vastly dif-
ferent styles, I could not find a preprocessing approach that works for all images. One
potential solution is to generate several different images and run them all through the AI
pipeline, selecting the one with the most plausible predictions. However, this approach
is unfeasible because the inference must be run without a GPU, and predictions already
take 30 seconds per image. To cover a reasonable set of configurations, each operation
would have to generate several images, resulting in dozens of generated images from a
single plan.

My final approach, which is now implemented, involves taking the edge and contour en-
hancing techniques and applying them as a mask to the image. This results in a much less
drastic alteration while making the preprocessing more general and robust for different
images. The effect on the models is only marginal with a improved accuracy of about 2.5%

This approach balances the need for enhancing image features relevant to text detection
while preserving the overall integrity of the original image. By using the edge and contour
enhancements as a mask, important features are highlighted without overly modifying
the image, thus maintaining a consistent preprocessing pipeline suitable for the diverse
range of images.
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 adjustment # The enhanced image, similar to the previous pipelines
 mask # image with only 0 or 1 pixels

 adjustment = 255 * factor
 enhanced = np.where(
    mask == 1,
    np.clip(image + adjustment, 0, 255),
    np.clip(image - adjustment, 0, 255)
).astype(np.uint8)

Listing 6: Applying the enhanced image with a contour mask

6.6.1 Stamp removal
(This code was reused from the SA) Some plans within the dataset contain a stamp, which
was introduced during the archival digitisation process.

Figure 16: Example of a stamp on the left and edited template on the right with the bottom
row containing the estate cut off.

The text present on these stamps is detected and extracted by the layout and OCR model.
However, this extraction process can lead to confusion for the NER model and result in
longer inference times. To address these issues, a template matching algorithm is em-
ployed before the image is processed by any model, similar to the marker detection. If the
algorithm identifies coordinates above a specified confidence threshold, it samples and
averages the colors of six surrounding pixels to determine the background color of the
plan in that region. Subsequently, the entire stamp is replaced with this color, effectively
eliminating it from the plan without any sharp lines or artifacts that could influence the
text detection. Tests have shown that a modified version of the stamp where the bottom
row and line are cut off works the most reliably for the template matching algorithm.

6.7 Layout Model
The task of the layout model is to find the bounding boxes for all words on a plan. These
bounding boxes are important for archive employees to quickly locate relevant text on a
plan. Additionally, the OCR model that follows the layout model is limited to single-line
inputs, meaning it cannot process images with multiple lines of text, hence the need to
locate each word by its own.

In the SA project, I proposed the LayoutLM architecture, developed by Xu et al. [17],
designed for document image understanding. For this thesis, I upgraded the base model
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to version three [18]. This upgrade required only minor changes to the code since the
architecture of version three is very similar to version two. The new model performs 4%
better than its predecessor.

6.7.1 Clustering
(This code was reused from the SA) On architectural plans, words are organized into groups,
such as the plan header, creation date and location block and the architect’s address and
signature, among others. These groupings play a pivotal role in named entity recogni-
tion as they provide essential contextual information. Consequently, there is a need to
spatially cluster the words to preserve their relationships. To achieve this, a k-means al-
gorithm is employed, given its capability to group related words based on their proximity.
As the actual number of groups is unknown, the algorithm is executed with varying k
values ranging from 2 to 12. The k-value with the highest silhouette score is then selected
as the optimal clustering parameter. Finally, the boxes in each cluster are ordered from
top to bottom, left to right based on their coordinates. This approach ensures a robust
grouping mechanism for enhancing the accuracy of named entity prediction.

6.8 OCR Model
After the layout model has located the words and clustered them into groups, the OCR
model is used to extract the text from each subimage.

(From the SA) The TrOCR model [19] proposed in the SA consists of a vision transformer
(encoder) and a language transformer (decoder). The encoder divides and flattens the in-
put image into a single row of patches and then generates image embeddings. The decoder
takes these embeddings and produces the string output. Both the encoder and decoder
consist of multi-head atten- tion and feed-forward blocks. The decoder additionally has a
masked multi-head attention layer. This architecture lends itself to extensive pretraining,
and is therefore ideal for our use case where training data is not yet available. TrOCR
has several pretrained models. The large-handwritten is the most accurate model but also
the slowest. One problem is that TrOCR needs a single line input image, meaning it can’t
find words on a page or do predictions on multiline text blocks. Therefore, this model can
only be used in collaboration with another model, like LayoutLM.

1. The image is cropped for each bounding box detected by the layout model. Each
cropped image contains a single word or a group of words that need to be recognized.

2. The cropped images are passed to the OCR model, which predicts the text within each
bounding box.

3. The predicted text from the OCR model is cleaned up by removing special characters
and filtering out single-character predictions.

4. The cleaned text is annotated with a confidence score for the post-processing step. This
score helps in deciding which predictions to keep if several entities of the same type
are predicted during NER.
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6.9 NER Model
The final model in the AI pipeline is the named entity recognition model.

(From the SA) Named Entity Recognition is a natural language processing (NLP) tech-
nique, focused on identifying and classifying entities within textual data. Classically these
entities range from persons and organisations to locations, dates, numbers, and more.
Text is typically tokenized, meaning broken down into smaller units called tokens, which
can be words or subwords. These tokens are then classified into predefined categories.
This classification is based on the context and characteristics of the token. NER models
are often based on transformers or RNN encoders.

The following entities are relevant for the archive:

Entity Label Description Examples
Client CLT The person or organisation owning

the property
Hr. Dr. Müller

Location LOC The location of the project, could
be street, municipality, region or a
combination

Bahnhofstrasse 12,
Rapperswil

Scale MST The scale of the plans 1:50, 1:100, 1:250
Date DATE The creation date of the plan 1.3.1941, 54
Unlabeled O All words without a label des, und, Baum

Table 4: List of entities

Preliminary tests in the SA showed that existing models do not perform very well on
the data, with an accuracy of all models in the single-digit percentages. An off- the-shelf
model would also not work for the given use case because it requires several custom
entities. The client entity for example is a compound of a name, with title, and organisa-
tions. This necessitates training on custom data. In the SA this was done with manually
gathered and synthetically generated data. The final model that was trained during the
SA was a BERT variant for the german language [20], [21].

The NER model recives the predicted words from the OCR model and combines them
into a sentence based on the clustering done by the Layout model. For each sentence the
model predicts a possible entitiy per word.

6.10 Postprocessing
Before returning the entities back to the app, a postprocessing step is applied.

1. Empty or unlabeled entities get filtered out
2. Entities matching a project artefact, for example the same name as the architect, are

filtered out
3. Scale entities are formatted into scale format ‘ ’ if possible
4. If several entities have the same label, the ones with the highest confidence score are

chosen.
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6.11 Comparison to LLM’s
During the AI pipeline selection in the SA, the potential use of large language models
(LLM) was discussed. Due to the classification of some of the archive’s data as sensitive
personal information, sending data to external services like ChatGPT is not possible.
Nonetheless, to compare the results with state-of-the-art LLMs, I selected some images
without personal information and queried the OpenAI API with the following question:

Kannst du mir bitte folgende text-daten aus dem Bild herauslesen:
- Titel des Projektes / Dokumentes
- Ortschaft wo das Projekt umgesetzt wurde
- Bauherr oder Bauherrin des Objekts
- Massstab des Plans, nur die beiden Zahlen also z.B. 1:100, 1:10 oder 5:1
- Datum des Plans formatiert als DD.MM.YYYY
Bitte gib mir die informationen als JSON mit folgenden keys:
{
    "titel": Titel des Projektes,
    "loc": Ortschaft,
    "clt": Bauherr,
    "mst": Massstab,
    "date": Datum,
}
Verzichte bitte auf jeglichen Text ausser dem JSON sowie auf formatierung
mit Newlines usw.

I tested the models GPT-4 Turbo and GPT-4 Omni. Overall, ChatGPT performed very
well in image extraction. It could format dates and scales consistently and return data
in a structured manner. While it did make mistakes, it generally performed better than
the pipeline from the SA. However, it could not return accurate bounding boxes for the
words. Although it provided pixel values, these were always incorrect.

I also tested Cohere’s Command R+ and Meta’s LLaMA-3 models, but neither could pro-
vide a result.

If, in the future, an open-source large language model becomes available that can run on
hardware provided by the archive, replacing the current AI pipeline with an LLM could
be a valid option. If the model’s accuracy is sufficiently high, the bounding boxes might
even be omitted, given that fewer corrections would be needed and retraining might not
be required anymore.
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7 Retraining
7.1 Proof of model improvement
As discussed in Section 6.1.1: “Learnings from the SA”, my focus for this thesis was on
the pipeline and retraining rather than gathering extensive training data. However, to
demonstrate that additional training data improves model performance, some data col-
lection was necessary. I manually annotated 80 images in two sets.

While the inference code for the three models remains largely unchanged from the SA,
the training pipeline for the layout and OCR models was created during this thesis. In the
SA, the only model that was trained was the NER model.

1. The first and larger set is the training set. These images are prepared exactly as an
archive employee would with the app, just without any AI assistance. Each image in
the training set has a metadata file containing a list of all entities with bounding boxes.

2. The second set is the test or evaluation set. In addition to the metadata file, each image
in this set has a text file containing the sentences for the NER model. This is necessary
because the metadata only contains the entities without the context of the surround-
ing words, e.g., “Garten des Herrn Gretsch in Rapperswil”.

The training code for the models is similar to the inference code but involves more pre-
processing steps. For example, when creating a dataset, the images cannot be inlined into
the encoding because this leads to memory overflows due to the large image sizes. In-
stead, I created a custom dataset class, based on the Torch dataset class, that only loads
and returns an image when it is needed during training.
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class ImageDataset(TorchDataset):
  def __init__(self, hf_dataset, processor: Processor):
    self.dataset = hf_dataset
    self.processor = processor

  def __len__(self):
    return len(self.dataset)

  def __getitem__(self, idx):
    item = self.dataset[idx]
    image = cv2.imread(item['image'])
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    encoded_inputs = self.processor(
      images=image,
      text=item['tokens'],
      boxes=item['bboxes'],
      word_labels=[label2id[label] for label in item['ner_tags']],
      padding="max_length",
      truncation=True,
      return_tensors="pt",
    )
    for k, v in encoded_inputs.items():
      encoded_inputs[k] = v.squeeze()

    encoded_inputs['bbox'] = encoded_inputs['bbox'].to(torch.int64)

    return encoded_inputs

Listing 7: Custom Dataset Class that can handle large images

With this training data, I trained the models first on half the images and then on all im-
ages.
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Figure 17: Model evolution

The accuracy of the OCR model could be improved to more than 98% with the little train-
ing data that was gathered meaning that further retraining will only bring marginal im-
provements. The accuracy of the NER model could be improved about 10% from the base
model trained during the SA and currently reaches an accuracy of 46%. This is more then
twice as good as random guesses (5 entities = 20%), but still not very accurate. If we cal-
culate the improvement that one additional training image provides we get 0.13%. If we
extrapolate this improvement per image with more training data, also taking a decay of
accuracy gains into account, we can predict that after 600 images, a model accuracy of
80% can be reached. This amount of training data can be gathered by an archive employee
in less than a month, thanks to the new app.

Based on these results, I am confident that focusing on the retraining pipeline is the right
approach for this thesis.

7.2 Training
As mentioned in Section 7.1 “Proof of model improvement”, the training code needed to
be implemented for the layout and OCR Models. I used the PyTorch machine learning
framework and ressources from the web, most notably the Huggingface Hub.

7.2.1 Training Data
The app records all entities that are changed manually with a flag in the corresponding
metadata json file. These images and metadata are uploaded to the /retraining/ end-
point. A handler saves the images in the retraining directory on the server.

The data service class provides access to the training data. When data is requested for a
training run, a fixed number of images are selected. The images are randomly picked from
the directory but their likelyhood is determined by their date, meaning that newer images
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are picked with a higher propability than older ones. This should prevent a training run
with images from one physical role or folder of plans. Plans from one source like this can
all be from the same project and therefore be very similar.

7.2.2 Schedule
Retraining is scheduled to happen every saturday morning at 02:00 when the server
should have the least amount of traffic to the asla website. The retraining function is run
by a BackgroundScheduler with a CronTrigger from the apscheduler python package.

7.2.3 Retraining
Retraining runs the retraining function from all models with the training data selected
and loaded by the data service. The retrained models are named according to the conven-
tion model_name_vX, where the version number “X” is automatically incremented based
on the most recent model. The models are initialised with the wheights of the currently
active model.

After training a model it is evaluated. A new instance of the AI service class is created
and loaded with the retrained models. The test_model method evalutes the new models
and the result is compared to the current model score. Each model that has an improved
score is replaced. The model path is saved in the ai_config file and automatically loaded
the next time the ai service loads the models.

7.2.4 Harware limitations
Training the NER model works well on a CPU, with an average epoch taking less than
5 minutes per 100 images. This makes it feasible to retrain the NER model on existing
hardware. However, the OCR model requires GPU training. I used OST’s high-perfor-
mance computer, the DGX-2, equipped with 16 Tesla V100 graphics cards, each with 32GB
of shared GPU memory and 1.5TB of system memory. The combined GPU memory of
512GB and over 2 petaFLOPS of computational power made this setup more than pow-
erfull enough for my models. Training the OCR model required only one Tesla card but
I needed to reduce the batch size from 16 to 8 in order to prevent out of memory errors.
The following configuration was used:

39



Argument Value
Number of training epochs 100
predict_with_generate True
Evaluation Strategy Steps
Per Device Batch Size 8
Fp16 (Mixed precision) True
Number of Dataloaders 4
Gradient Accumulation Steps 4
Max Token Length 64
Early Stopping True
No Repeat N-Grams 3
Length Penalty 3
Number of beams 8

Table 5: OCR Training arguments

All training runs were tracked using Weights and Biases (W&B) [22]. W&B is a compre-
hensive machine learning platform that facilitates the tracking, visualisation, and optimi-
sation of machine learning experiments. It offers tools for experiment tracking, hyperpa-
rameter tuning, and model versioning. Integrating seamlessly with PyTorch, it provides
real-time insights into various metrics during training. I used W&B extensively during
the SA project, and it proved invaluable during this thesis by allowing me to fine-tune
the training process, such as setting the optimal number of steps.

Figure 18: OCR Training loss of the model v4 (current best)

Given that the OCR accuracy is already above 98%, further retraining is not necessary,
eliminating the need for GPU resources for OCR retraining.

The Layout model, while trainable on a CPU, takes much longer than the NER model. A
training run with 100 images would take several days on a CPU compared to minutes
on the DGX-2. Therefore, I conducted my training using the graphics cards. Continuous
retraining of the layout model is probably not feasible with the current setup.
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This leaves two options: either upgrade the ASLA server with a GPU or run the backend
on a different machine, or alternatively, perform the layout retraining manually at peri-
odic intervals.

7.2.4.1 DGX-2 and Apptainer
Apptainer [23] is a container platform similar to Docker but tailored for scientific and
high-performance computing (HPC) applications. It ensures reproducibility and portabil-
ity across different computing environments, from local development to large-scale HPC
systems. Apptainer is the required method to run code on the DGX-2. I created a custom
Apptainer image for training the OCR and Layout models, along with scripts to upload
training data and download the trained models. With this infrastructure in place and
monitoring with W&B, retraining the models periodically should be a simpler process,
though it does not match the efficiency of an automatic workflow.
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8 Conclusion
8.1 New Workflow
The new workflow with the app and the AI pipeline is as follows:
1. The ASLA Editor desktop app is opened, and the upload process is started.
2. The employee selects a new roll or folder of plans.
3. The first plan is positioned on the photostation, and the corners are secured with the

marker magnets.
4. The image is taken.
5. The plan is labeled with a unique name (e.g., ASLA_KLA_100305_1) and the image is

automatically or manually named with the same identifier.
6. After the roll or folder is photographed, all images are moved to the upload directory.
7. The current project is opened in the app, displaying the last edited image.
8. The employee clicks through the images, verifying the text of the entities. The bound-

ing boxes help them quickly locate the entities.
9. If an entity is not correct, it is quickly corrected.

10. At the end of the day, the app is closed without the need to save anything.
11. When the employee returns on Monday, the models have learned from the manual

corrections and are hopefully a bit better.

8.2 BA Task definition
This thesis builds upon the foundation laid by the SA “Digitise Historic Architectural
Plans with OCR and NER Transformer Models.” In the SA the primary objective was to
develop an AI pipeline capable of detecting handwritten text on historical plans, perform-
ing Optical Character Recognition (OCR) to identify words, and subsequently extracting
a set of named entities (NER). The focus of this Bachelor’s thesis is to leverage the insights
and apply the proposed models to create a desktop application for use by the archive. The
desktop application is designed to improve and speed up the archival process. The images
from the camera are transmitted to a server, where they are processed by the AI pipeline.
The results are sent back to the application where the user can refine the AI predictions
as needed, enhancing the overall efficiency and accuracy of the digitisation process.

8.3 Evaluation
The following assignments where defined at the start of this Bachelors thesis:

8.3.1 Build an app that can be used by the archive employee:

Task: Required
Define functional and non-functional requirements based on the needs of the archive

Result
Both types of requirements where defined based on interviews with the archive, espe-
cially Simon Orga.

42



Task: Required
Write user stories based on the needs of the archive

Result
Different user stories where written based on the requirements.

Task: Required
Build a desktop GUI app that runs on the archives computer

Result
The app runs cross platform on macOS and Windows (Linux is not tested) thanks to
the chosen framework and the buildpipeline.

Task: Required
Import the images from the camera and send them to the server

Result
The app's upload manager can upload images from a directory and handle any errors.
The user can control the upload as well as select images manually.

Task: Required
Receive the processed images from the server and display them with the prediction
results

Result
The upload manager also handles the returned predictions and saves them in the work-
ing directory for that project. The Editor can read the prediction and display the image
with the bounding boxes and entities.

Task: Required
The user can edit or override the predicted metadata

Result
The predicted text can be edited by the user.

Task: Optional
The user can delete, edit or draw new bounding boxes for possible future model training

Result
The bounding boxes can be created, deleted and edited by the user in the visual editor.
Shortcuts for the most important actions are available.
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Task: Optional
Add basic image editing capabilities (whitebalance, exposure, contrast) to manually
tweak the settings

Result
Whitebalance, exposure and contrast can all be changed in the editor. One minor down-
side is that rendering the image takes a few hundred milliseconds, therefore adjsut-
ments are not quite real time.

8.3.2 Deploy the AI pipeline on a server

Task: Required
Containerise the AI pipeline and make it accessible via REST API (send image, recive
prediction)

Result
The pipeline is dockerised and deployed with a FastAPI webserver.

Task: Required
Add preprocessing to the AI pipeline:
• Marker detection and cropping
• Image enhancements with whitebalance, exposure, contrast
• Dynamic image processing to make the image better suited for the AI pipeline like

denoising, thresholding, distance transforms and opening morphological operations

Result
Marker detection is implemented and works. Preprocessing is implemented but does
not meaningfully improve model

Task: Required
Build a test suite that measures the pipeline performance to make changes to it mea-
surable and comparable

Result
The test suite can benchmark an arbitrary combination of models and save the result
as text and json.

Task: Required
Try to improve the performance of the specific models and pipeline as a whole

Result
The performance of the pipeline could only be improved marginally. The new pre- and
post-processing steps did not bring big accuracy increases. But the retraining pipeline
could lead to significant improvements.
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Task: Required
Compare inference performance on different server hardware (CPU / GPU)

Result
The inference and especially the test performance was evaluated.

Task: Optional
Implement continuos retraining and model improvement with new data

Result
Retraining is fully implemented, including automatic model updates. Retraining the
layout model proved to be difficult on CPU.

Task: Optional
Visualise model evolution

Result
Visualising the model scores is not implemented. The data is available it only needs
some kind of UI to visualise it.

Task: Optional
Image stiching for plans that do not fit in a single photograph

Result
This is not implemented and would require bigger changes in the upload code as well
as changes in the server code.

8.3.3 Deliverables
The following deliverables where specified:
• Desktop app
• Containerised server app
• Pipeline test suite
• Complete source code and research
• User guide and documentation for archive employees

8.3.4 Requirements
All functional and non-functional requirements specified in Section  2.4 have been
achieved.

8.3.5 Achievements
With the creation of the app and the implementation of a functional AI pipeline, this
thesis can be considered a success. The app alone will significantly enhance the efficiency
and quality of the digitisation process, as well as improve the daily workflow of archive
employees. The app has clear business value for the archive.
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Currently, the AI pipeline is only partially useful, depending on the specific plan being
processed. However, this thesis has laid the groundwork for the improvement of predic-
tion quality and accuracy over time. Achieving an F1-score of 80% within a few months
would be transformative, reducing the digitisation timeline by years.

8.3.6 Code Base
Although the code base was rarely highlighted in this thesis, a significant amount of time
and effort was dedicated to its development. The code is meticulously crafted and adheres
to modern programming standards. Many components were rewritten several times to
incorporate new ideas, insights, and learnings, enhancing their functionality and relia-
bility.

The architecture of the app and the AI pipeline is highly modular, allowing individual
components to be exchanged or updated independently. For instance, any of the three
models can be replaced by entirely different ones, provided their predictions conform
to the expected data structure. Additionally, a substantial portion of the functionality is
covered by unit tests, ensuring robustness and reliability.

Overall, the thoughtful design and rigorous development of the code base contribute sig-
nificantly to the project’s success, facilitating future improvements and adaptations.

8.4 Future Work
The app as well as the AI pipeline can be extended in the future. Especially the model
evolution needs to be monitored. As new open source models are developed, they can
be tested and compared to the current ones. Especially the capabilities of large language
models could be interesting and well suited for the problem. The app can be extended
with the ability to handle very large plans by automatically stiching them together.

Another interesting project could be the incoorperation of redaction. Certain plans con-
tain sensitiv information that needs to be redacted before the plans are published on the
web. In a first step, the app could be equipped with the ability to let the user redact parts.
This data could be gathered over months of normal work until enough training data is
gathered, so that a machine learning model could be trained to propose which parts to
automatically redact.

Finally the export process could be directly integrated into the publishing workflow so
that the archive supervisor could export and upload the images to the web with a single
click.
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11 Appendix
11.1.1 Disclaimer: Advanced Tools
In the process of writing this thesis I used different tools:
SemanticScholar was used to summarise and find literature, provided by a machine
learning model.
ChatGPT was used to correct grammar mistakes and edit some passages for clarity. It
also helped me find problems to coding challenges and helped with the Typst syntax.
JetBrains AI was used during developement. It provides advanced code completion.

11.1.2 Documents
• Agreement of own contribution

• Copyright agreement

• Publication agreement

• BA Task Definition

• Time planning
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List of Abbreviations
AI Artificial Intelligence
API Application Programming Interface
ASLA Archive of Swiss Landscape Architecture
BA Bachelor of Arts
BERT Bidirectional Encoder Representations from Transformers
CLAHE Contrast Limited Adaptive Histogram Equalisation
CNN Convolutional Neural Network
CPU Central Processing Unit
DGX Deep Learning System by NVIDIA
GPU Graphics Processing Unit
HPC High-Performance Computing
JSON JavaScript Object Notation
LLM Large Language Model
NER Named Entity Recognition
NLP Natural Language Processing
OCR Optical Character Recognition
OST Eastern Switzerland University of Applied Sciences
RNN Recurrent Neural Network
SA Semesterarbeit (Semester Project)
W&B Weights and Biases
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