
Term Project

Kubernetes Pod Scheduling based on
Energy efficient Metrics

Semester: Fall 2024

Version: 1.0
Date: 2024-12-19 13:42:25Z

Project Team: Marco Schnider
Philipp Hutter

Project Advisor: Prof. Laurent Metzger
Co-Advisor: Fabio Daniel Marti

Technical Advisor: Jan Untersander

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

Initial situation

In modern cloud environments, Kubernetes has become the de facto standard for or-
chestrating containerized applications. However, traditional Kubernetes pod scheduling
algorithms primarily focus on resource allocation metrics such as CPU and memory
utilization. While effective for performance, these methods often neglect energy con-
sumption. This is where our project comes in. Our goal is to design a scheduler that
works alongside the traditional scheduler, with a specific focus on renewable generated
energy availability.

Approach and technologies

This project introduces an energy-aware Kubernetes pod scheduling approach that in-
tegrates energy availability metrics into the scheduling decision process. The proposed
solution enhances the default Kubernetes scheduler by adding a new metric: the avail-
able energy for each worker node. For scheduling logic, we consider both the newly
assigned priority of a pod and the available energy. Decisions are made based on these
metrics, ranging from stopping pods to shutting down entire nodes. Additionally, we
implemented a ”move” function that allows Kubernetes pods to be manually transferred
to another node. This feature demonstrates how workloads can be relocated seamlessly
without noticeable service disruption.

Result

The project was deployed on a solar-powered infrastructure to validate its effectiveness.
The system successfully managed pod scheduling by automatically shifting workloads
when solar energy was unavailable, and the battery charge dropped to critical levels.
Critical system parameters, such as battery thresholds, were made configurable and
easily accessible through an intuitive graphical user interface (GUI). To enhance user
engagement and improve target audience understanding, containerized workloads were
represented as freight containers, giving the project a playful and visually intuitive de-
sign. These findings highlight the potential of energy-aware scheduling to improve the

i

sustainability and cost-effectiveness of Kubernetes-based cloud infrastructures, making
it a promising step toward greener data center operations.

ii

Management Summary

Introduction

Kubernetes is a system that helps manage and organize computer programs, which are
often grouped together in so called pods. To make sure the programs run smoothly, it
automatically places the pods on the right server, called a node, depending on available
resources. If one of the nodes stops working, Kubernetes redistributes the pods onto
different nodes. Given the surge in interest in renewable energy, the goal is to distribute
the pods based on the energy available to the nodes connected to various renewable
energy sources.

Goal

The goal of this project is to create a system that distributes pods onto different nodes
depending on their current energy level. Additionally, a website will be created to
showcase the scheduling process, allowing users to interact with Kubernetes in a playful
manner. The website can then be used at career fairs to get people interest in the
subject. It is designed to capture the attention of people walking by with its vibrant
colors and engaging layout.

Approach

For the design of the website, the initial focus was on how to effectively display the infor-
mation. Mockups were created to plan the layout of the different pages. The next step
was to consider how to make the design engaging. The decision was made to design the
main page like a container port, with container ships representing nodes and containers
representing pods. This concept was implemented using modern web technologies, and
the ships and container port were designed with Figma, a web application for interface
design.

To manage the pod distribution, a system was created to handle scenarios when energy
levels are running low. A priority system was introduced, where each pod could be
assigned a priority that could be adjusted through the website. These priorities would

iii

help determine which pods should be shut down or kept running when resources are
limited. The system also ensures that pods are distributed across different nodes as
needed. Pods that are turned off are only restarted once sufficient energy is available
again.

Results

The result of the project is an eye-catching website which can be used to create interest
in the subject. The use of vibrant colors and unique design will make sure it stands out
among the abundance of colorful displays at career fairs or similar events. The custom
scheduler, which distributes pods based on energy levels, demonstrates how computer
science can be used to create innovative ways to use resources more efficiently. It also
shows how to manage energy sources that can be unpredictable, such as solar panels,
which depend on factors like time of day or weather conditions.

Figure 1: Overview showing the nodes and pods

The website gives people a practical example on how certain systems work. It keeps them
engaged in a playful manner by allowing them to manipulate the system. Users can drag

iv

and drop pods across different nodes or adjust certain thresholds used for the automatic
scheduling. Additionally, the website provides useful information on the system that
help to explain Kubernetes and scheduling.

v

Contents

Acronyms x

I Product Documentation 1

1 Introduction 2
1.1 Motivation . 2
1.2 Related work . 2

1.2.1 Research in scheduling to mitigate carbon emissions 2
1.2.2 Research in emission-aware scheduling 3

1.3 Differentiation from existing projects . 3

2 Goal of the project 4
2.1 Task definition . 4
2.2 Goals . 4

3 General conditions 5
3.1 Type of work . 5

4 Domain Analysis 6
4.1 Domain model . 6

5 Requirements 7
5.1 Functional Requirements . 7

5.1.1 Use case diagram . 7
5.2 Non-Functional Requirements . 12
5.3 User interface design . 15

5.3.1 Accessibility and Platform Independence 15
5.3.2 Target Audience . 15
5.3.3 Core Functionalities . 15
5.3.4 Mockup . 15

6 Architecture 20

vi

6.1 C4 Architecture . 20
6.1.1 System context diagram . 20
6.1.2 Container diagram . 21
6.1.3 Component diagram . 22

6.2 Deployment . 23

7 Implementation Details 25
7.1 Test Cluster . 25
7.2 GitLab CI/CD Pipeline . 25
7.3 Move pods . 26

7.3.1 Standard move . 26
7.3.2 Move with Deployments . 26
7.3.3 Move on the frontend . 26

7.4 Scheduler . 27
7.5 Dockerization . 28
7.6 Read energy . 29
7.7 Design . 29

7.7.1 Initial Approach . 30
7.7.2 Hybrid approach . 30
7.7.3 Result . 32

8 Results 34
8.1 Achievements . 34

8.1.1 Functional requirements . 34
8.1.2 Non-functional requirements . 34

8.2 Shortcomings . 35
8.2.1 Functional requirements . 35
8.2.2 Non-functional requirement . 35

9 Conclusion and outlook 36
9.1 Conclusion . 36
9.2 Outlook . 36

9.2.1 Cache energy data . 36
9.2.2 More complex scheduler . 37

II Project and Time Management 38

10 Project Plan 39
10.1 Collaboration . 39
10.2 Project Roles . 39
10.3 Minimum Viable Product (MVP) . 39
10.4 Long-term plan . 40

10.4.1 Milestones and goals . 41

vii

10.5 Risk management . 42
10.5.1 Risk determination . 43
10.5.2 Contingency plan . 45

10.6 Jira . 46

11 Quality Measures 47
11.1 Planning and Reviews . 47
11.2 Code Quality . 47
11.3 Branching and Peer-Review . 47
11.4 Test concept . 47

11.4.1 Process . 48
11.4.2 Goals . 48
11.4.3 Roles . 48
11.4.4 Environment . 48
11.4.5 Unit-Tests . 49
11.4.6 Schedule . 49
11.4.7 Risks . 50
11.4.8 Definition of Done . 50

12 Tooling 51
12.1 Documentation Guidelines . 51
12.2 Code . 51

12.2.1 Code Guidelines . 51
12.2.2 Coding Setup . 52

12.3 GitLab . 52
12.3.1 Documentation Pipeline . 53
12.3.2 Dockerization Pipeline . 53

12.4 Issue Management / Time Tracking . 53
12.5 Teams . 53

13 Time Tracking Report 54
13.1 Time per person . 54
13.2 Time per phase . 55

Bibliography 56

List of Figures 58

List of Tables 60

III Appendix 60

14 User Manual 61
14.1 Installation of the ReadVoltage Service . 61

viii

14.2 Prerequisites for Deployment . 61
14.3 Deployment . 62

14.3.1 Available Routes . 62
14.4 Deployment of the Sample Apps . 63

14.4.1 Available Routes . 63

15 Test reports 64
15.1 Test history . 64
15.2 Usability-Test . 65

15.2.1 Structure . 65
15.2.2 Results . 65
15.2.3 Conclusion . 66

15.3 Usability-Test questions and answers . 66

16 API Description 74

ix

Acronyms

ARM64 Advanced RISC (Reduced Instruction Set Computer) Machine 64-Bit. 25

CI/CD Continuous Integration / Continuous Deployment. 25, 28

CNI Container Network Interface. 23, 25

CSS Cascading Stylesheet. 30

GUI Graphical User Interface. 2, 11, 12, 13, 16, 29, 30, 40, 41, 49, 52

HTML Hypertext Markup Language. 30, 51

HTTP Hyper Text Transfer Protocol. 22, 23, 74, 75, 76

INS Institut für Netzwerke und Sicherheit. 26

MVP Minimum Viable Product. 39, 40, 42

RAM Random Access Memory. 25

RGB Red, Green and Blue. 30

VPN Virtual Private Network. 25

x

Part I

Product Documentation

1

Chapter 1

Introduction

1.1 Motivation

The motivation behind creating a Kubernetes pods scheduler based on energy efficient
metrics stems from the rising interest and importance of renewable energy sources. Ku-
bernetes is a widely used tool for container orchestration. Combining the rising interest
of renewable energy sources with the popularity of Kubernetes leads to a project that
can be of interest for different sectors and industries.

Apart from the scheduler another motivation of the project is to create a website to
present Kubernetes and container orchestration to interested people at career fairs and
other events. The aim is to give people the opportunity to engage with Kubernetes by
playing around with the pods and nodes and learning the basics about how it works.
The goal is to inspire attendees to consider pursuing a degree in computer science.

Both of these motivations coincide with the motivations of both team members. Marco is
particularly interested in creating engaging GUI and frontend applications, while Philipp
has a keen interest for network infrastructure. Additionally, both are eager to expand
their knowledge in the other’s area of expertise.

1.2 Related work

Considering the popularity of Kubernetes and interest in renewable energy it is important
to consider the context of existing research and projects in the field. This section outlines
related works that have informed the current project, providing an overview of the
current state of research.

1.2.1 Research in scheduling to mitigate carbon emissions

There has been research and development in creating a scheduler based on energy data
from renewable sources. One project for example distributes the pods in accordance to

2

the highest available share of renewable energy of a node in a cluster. Additionally, it
takes weather conditions into account to make sure the applications are placed onto the
optimal nodes in the long term. [5]

1.2.2 Research in emission-aware scheduling

Other research in the field focuses on emission-aware scheduling. Instead of just schedul-
ing jobs onto nodes that are connected to renewable energy sources, it takes the current
energy-mix into account. It looks at historical data of the power mix used by a data-
center and schedules jobs accordingly. [6]

1.3 Differentiation from existing projects

As outlined in the previous section, research on scheduling pods based on renewable
energy measurements is an active area of study. This project differentiates itself by
emphasizing the educational and presentation aspects of the topic. The primary goal is
to develop an application that not only demonstrates Kubernetes and pod scheduling
but also serves as an engaging learning tool to inspire interest in pursuing a degree in
computer science. Therefore, our focus extends beyond the scheduler itself, prioritizing
the creation of an interactive and captivating frontend to spark curiosity and enthusiasm
for the subject.

3

Chapter 2

Goal of the project

2.1 Task definition

The initial task definition given was purposely defined loosely, to allow the team members
to define themselves what they wanted to focus on. The main objective was to create a
scheduler that schedules pods based on energy efficient metrics. As the project progressed
it was made clear that one goal of the project should be to create an application that
could be shown at career fairs.

2.2 Goals

Two goals were defined for the project. They are both of the same priority.

The first goal is to create a scheduler that takes energy measurements from renewable
sources into account when scheduling the pods on a node. It should periodically check the
energy levels of the nodes and act accordingly. Pods that need to be stopped when there
is not enough energy should be restarted once the energy levels have recovered.

The second goal is to create a website that gives an overview over the Kubernetes-Cluster.
The website allows the user to interact with the cluster by moving pods between the
different nodes. Additionally the scheduler can be manually started and adjusted from
the site. As mentioned before, the focus on career fairs led to certain adjustments in the
goals. The website should have an eye-catching design and a playful element. It should
also include some educational aspects to help interested people understand Kubernetes
and container orchestration.

4

Chapter 3

General conditions

3.1 Type of work

This work is a student research project (term project) that was carried out in the fall
semester of 2024. The planned time budget is 17 hours per week. With 14 weeks, that
makes a total of 238 hours. The thesis is worth 8 ECTS credits.

5

Chapter 4

Domain Analysis

4.1 Domain model

The following graphic describes the domain model. The system has zero to many nodes
that themselves have zero to many different pods that run on the nodes.

Figure 4.1: Domain model

6

Chapter 5

Requirements

5.1 Functional Requirements

The functional requirements include all planned functionalities. They are split into two
categories. Requirements for the frontend and requirements for the backend. Addition-
ally some functionalities are marked as optional, these will only be implemented if there
is enough time.

5.1.1 Use case diagram

The only actor of the software is the user who interacts with it through the web ap-
plication. The use case diagram shows the different interactions of the user with the
website.

7

Figure 5.1: Use case diagram

Backend

The backend includes all interactions with the Kubernetes-Cluster and the scheduler
logic.

8

ID UC1

Name Process energy measurement

Actor System

Description The program processes the energy measurement it receives
from a specified source.

Precondition Energy measurements exist.

Standard process
1. The program connects to a websocket or reads in a text

file.
2. The measurements get processed.

Alternativ process The measurements cannot get processed. The program
throws an error.

Postcondition The measurements can be used for further tasks.

Result Reading the energy data was implemented, however the mea-
surements takes a long time (1 minute) to compute. Con-
sidering this and the time constraint the final version of the
project uses random numbers for the energy measurements.
More is described in the implementation details.

Table 5.1: Description Use Case 1

ID UC2

Name Pods get deployed on nodes according to the energy measure-
ments.

Actor System

Description The energy measurements get processed and the pods are ef-
ficiently distributed across the nodes.

Precondition There are nodes to run the pods on. The amount of pods is
specified.

Standard process
1. The program processes the amount of energy available

on every node.
2. The program distributes the pods efficiently across the

nodes.

Alternativ process There is not enough energy to deploy the specified amount of
containers. The program throws an error.

Postcondition The specified number of pods get deployed on the nodes.

Result The scheduler is called every minute, when turned on and
distributes the pods according to the energy measurements.

Table 5.2: Description Use Case 2

9

ID UC3

Name Node does not have enough energy

Actor System

Description When a node which is hosting one or multiple pods, runs out
of energy the pods need to be redistributed onto nodes with
enough energy.

Precondition There are nodes that can host pods.

Standard process
1. The energy measurements get processed.
2. One node does not have enough energy.
3. The pod on the node gets deactivated.
4. The pod gets deployed on a different node.

Alternativ process There are no nodes with enough energy to deploy the pods.

Postcondition The correct amount of pods are running.

Result The pods are correctly redistributed onto other nodes.

Table 5.3: Description Use Case 3

Frontend

The frontend is where the user interacts with the application.

ID UC4

Name Choose amount of pods that are supposed to run.

Actor User

Description The user can specify the number of pods that are supposed
to run on the nodes directly on the website.

Precondition There are pods to run on the nodes.

Standard process
1. The user opens the website
2. The user specifies the number of pods they want to run

by typing in a number into a textbox.

Alternativ process The input is invalid. The program throws an error.

Postcondition The program is processed further.

Result The user cannot specify the number of pods directly, however
they can move the pods to the nodes that they want them to
run on.

Table 5.4: Description Use Case 4

10

ID UC5

Name Check location of the pods

Actor User

Description The user can check which node currently runs which pods by
looking at the diagrams on the website.

Precondition There are nodes that can run pods.

Standard process
1. The user opens the website.
2. The containers that run on each node are illustrated.

Alternativ process There are currently no pods running.

Postcondition The user can see which pods are running on which nodes.

Result The Graphical User Interface (GUI) shows which pods are
running on which nodes. Additionally the pods can be filtered
according to their namespace.

Table 5.5: Description Use Case 5

ID UC6 (optional)

Name Drag&Drop pods

Actor User

Description On the website the user can drag one illustrated pod and drop
it on another node.

Precondition There are nodes that run pods.

Standard process
1. User drags a pod from a node.
2. User drops the pod on a different node.

Alternativ process There is an error. An error message is thrown. The pod
continues running on the old node.

Postcondition The pod is deployed on the new node and shut off on the old
node.

Result The pods can be dragged and dropped between the nodes and
are moved accordingly.

Table 5.6: Description Use Case 6

11

ID UC7 (optional)

Name Change actively running nodes

Actor User

Description Using the website, the user can change the amount of cur-
rently actively running nodes manually.

Precondition There are nodes that run pods.

Standard process
1. User opens website.
2. User activates/deactivates certain node.

Alternativ process There is an error. An error message is thrown.

Postcondition Node gets activated/deactivated.

Result Not implemented due to time restraints.

Table 5.7: Description Use Case 7

ID UC8 (optional)

Name Historical Data

Actor System

Description Historical Data is available in the web-GUI for analysis and
optimization

Precondition Energy information is available

Standard process
1. System receives energy information
2. System stores energy information in database
3. System displays historical energy information in web-

GUI

Alternativ process There is an error. An error message is thrown.

Postcondition Historical energy information is available/not available.

Result Not implemented due to time restraints.

Table 5.8: Description Use Case 8

5.2 Non-Functional Requirements

The non-functional requirements focus on the design and responsiveness of the GUI,
performance and code quality.

12

ID NFR1

Description The Frontend is usable from desktop-devices with
a 13” screen or larger

ISO/IEC 25010 requirement Compatibility - Interoperability

Priority Medium

Measurement Manuel tests will be conducted using different
desktop-devices and different screen sizes

Testing At the end

Result The frontend is usable and looks good on 13” or
larger screens.

Table 5.9: Description Non-Functional Requirement 1

ID NFR2

Description The Frontend is responsive enough to detect
changes in energy level and generation within five
minutes.

ISO/IEC 25010 requirement Performance Efficiency - Time Behaviour

Priority Medium

Measurement Manual test will be conducted.

Testing At the end

Result If the automatic scheduling is enabled the frontend
checks the energy levels every minute.

Table 5.10: Description Non-Functional Requirement 2

ID NFR3

Description The Frontend is created with the goal of simplicity
and to be self-explanatory.

ISO/IEC 25010 requirement Usability - Operability

Priority Medium

Measurement The final GUI will be tested by different people
and the feedback will be implemented accordingly.

Testing At the end

Result A usability test was conducted with positive re-
sults. More details can be found in the Usability
Test section.

Table 5.11: Description Non-Functional Requirement 3

13

ID NFR4

Description Failed operations will be logged to help debug any
possible errors.

ISO/IEC 25010 requirement Maintainability - Analyzability

Priority High

Measurement Errors are manually checked in the log file.

Testing At the end

Result Failed operations in the backend are logged into a
log file.

Table 5.12: Description Non-Functional Requirement 4

ID NFR5

Description Possible errors will be caught and presented to the
user in a usable manner to inform what happened
without the crash of the program.

ISO/IEC 25010 requirement Reliability - Fault tolerace

Priority High

Measurement Manual tests will be conducted to ensure errors
are caught appropriately.

Testing At the end

Result Errors and success messages are shown to the user
with toasts.

Table 5.13: Description Non-Functional Requirement 5

ID NFR6

Description The code quality is according to rules expected by
the linter.

ISO/IEC 25010 requirement Maintainability - Analyzability

Priority High

Measurement No errors generated by the linter.

Testing Periodically

Result There a no linter errors, apart from errors concern-
ing docstrings in the backend, which we decided
to ignore.

Table 5.14: Description Non-Functional Requirement 6

14

ID NFR7

Description The frontend can be accessed using the browsers:
Microsoft Edge, Google Chrome and Mozilla Fire-
fox.

ISO/IEC 25010 requirement Compatibility - Interoperability

Priority High

Measurement No console errors are generated by the Browsers

Testing At the end

Result The frontend works on all required browsers.

Table 5.15: Description Non-Functional Requirement 7

5.3 User interface design

Part of the project is a user interface that visualizes the entire process. Before the user
interface is designed and developed, it is important to define key considerations to ensure
its functionality, accessibility, and relevance to the target audience.

5.3.1 Accessibility and Platform Independence

The user interface should be easily accessible via a website. This makes it platform-
independent and quickly accessible. Additionally it allows for easy adjustments and
expansion of features.

5.3.2 Target Audience

The user interface should offer added value not only for computer scientists but also
for people interested in computer science at professional, educational or other types of
events. It should present the project in a simple way and make the process clearly
visible. Furthermore it should be interactive so interested people can engage with the
technology directly.

5.3.3 Core Functionalities

Apart from showing how the project works, the interface should also be functional. It
should be possible to move pods between the different nodes and start the scheduling
process among other things.

5.3.4 Mockup

As described in the non-functional requirements, the frontend is to be kept deliberately
simplistic.

There are four different tabs planned, which separate the content and functionality of
the website.

15

Overview page

Figure 5.2: Mockup of the overview page

The main part of the GUI is the illustration of the different nodes and the currently
running pods. Each worker node shows, where its energy comes from (solar, wind) and
how much energy is currently stored. Additionally there is a toggle-button to activate
or deactivate the node, this toggle will only be available if the optional use case 7 has
been implemented.

At the top the user can choose to filter the currently shown pods according to their
namespace.

16

Scheduler page

Figure 5.3: Mockup of the scheduler page

The scheduler page shows the flowchart of the scheduling process and explains it in a
short text. This page can be used as an aid when explaining the process of the application
at events.

17

Data page

Figure 5.4: Mockup of the data page

The data page illustrates the scheduling process in a graph. It will show the energy
information of the different nodes throughout the day. This page will only be available
if the optional use case 8 has been implemented.

18

Debug page

Figure 5.5: Mockup of the debug page

The debug page gives the option to start the scheduling process manually or to move
pods around without using drag and drop. More functionality might be implemented
here if needed in the future. The page is designed to give potential presenters the option
to show certain processes, for example the scheduling process, at a convenient time
instead of waiting for it to happen automatically.

19

Chapter 6

Architecture

6.1 C4 Architecture

The C4 architecture model was chosen because it is sufficient for our project, as there
are no complex architectural features. Thus, the C4 architecture is particularly suitable
for visualizing our software architecture.

The C4 model consists of four parts explained in the following chapters:

• System context diagram

• Container diagram

• Component diagram

• Code (omitted)

6.1.1 System context diagram

The System context diagram shows the overall picture of the project. The details are
not important yet. It focuses on the user and the software system, not on technologies
or protocols. [4]

20

Figure 6.1: System context diagram

A user can interact with our system. Our system interacts with a different existing
system on the Raspberry Pi’s which provides the energy data.

6.1.2 Container diagram

The container diagram shows the structure of the software architecture at a high level and
the distribution of responsibilities. A container is a separately executable / deployable
unit that executes code or stores data. The diagram shows the high-level shape of the
software architecture. It also focuses on the technologies chosen for the software.[2]

21

Figure 6.2: Container diagram

By dividing the project into frontend, backend, and Kubernetes cluster, the principle of
separation of concerns is followed, helping to maintain clarity and organization within
the project. The division also enables us to scale each component separately. The
independent nature of our project structure brings the additional benefit of allowing us
to test, develop and maintain part of the project separately.

Additionally there is the mentioned external resource. The energy measurements are
provided to our system via HTTP requests to a Flask webserver.

The frontend is built using React with TypeScript, based on positive experiences with
TypeScript in a previous project. React is chosen to facilitate the development of a clean
frontend application. For the design, React Bootstrap and PrimeReact are used.

For the backend, Python was chosen with the Flask framework, as both developers have
prior experience with Python. Additionally, there are many useful resources available on
how to use Kubernetes with Python, which should aid in the development process.

6.1.3 Component diagram

The component diagram shows how a container is composed. It also explains what its
states are and the details of the technology. [1]

22

https://react.dev/
https://react-bootstrap.github.io/
https://primereact.org/
https://flask.palletsprojects.com/en/3.0.x/

Figure 6.3: Component diagram

The user interacts with the View Controller over the website. The View Controller
encompasses all of the pages and React Components used on those pages. The View
Controller passes user interactions to the HTTP Requester, which sends GET / POST
request to the backend. There the HTTP Handler handles these request and passes them
either to the Controller or to the Scheduler. The Controller handles basic interactions
with the Kubernetes-Cluster. The Scheduler handles the entire scheduling process.

6.2 Deployment

The entire application is deployed on a Kubernetes cluster. The cluster itself runs on
three Raspberry Pi 4s, providing a lightweight and cost-effective solution for hosting
the application. The Kubernetes distribution used is K3s, chosen for its simplicity and
suitability for resource-constrained environments. [3]

Flannel serves as the Container Network Interface (CNI), enabling seamless communica-
tion between pods across the nodes in the cluster. To expose the application to external
traffic, a Traefik ingress controller is utilized, which also handles load balancing and
routing traffic to the appropriate services.

The deployment process ensures that the application is highly available and capable

23

of scaling horizontally to meet demand. All components are containerized and orches-
trated within the cluster, allowing for efficient resource utilization and streamlined up-
dates.

Figure 6.4: Deployment diagram

24

Chapter 7

Implementation Details

7.1 Test Cluster

A test Kubernetes cluster was set up using the hardware provided, which consisted of
Raspberry Pis. Given that K3s is specifically designed for production workloads on
resource-constrained devices, it was chosen as the Kubernetes distribution. During the
setup, it was realized that the Raspberry Pi 3s did not have enough RAM to build the
cluster. After extensive troubleshooting, a Dell Mini PC was used as the master node,
which worked perfectly. [3]

At the beginning of the test cluster setup, Cilium was selected as the CNI, as Philipp
already had some knowledge about it, and it was also recommended by our Technical
Advisor. But as the troubleshooting continued on, one step of it was the removal of the
custom Cilium CNI for the default Flannel CNI. In the end, this was not a major issue,
as the advanced features of Cilium, such as Network Policies, were not required during
the project.

The Test Cluster was setup at Philipps home, and shared using a Tailscale VPN. This
solution allowed remote access to the cluster, enabling both of us to connect and test
newly developed features easily. The setup with the Tailscale VPN was very straight
forward and intuitive.

7.2 GitLab CI/CD Pipeline

A GitLab CI/CD pipeline was created to automate the Docker image build process. The
goal was simple: every time a new Git commit is made, the CI/CD pipeline automatically
creates a new Docker image for deploying the application. There was a problem however,
the application needed to run on low-powered Raspberry Pi’s, which are based on the
ARM64 processor architecture. This required modifications to the initially planned
pipeline. After spending a lot of time adjusting it, the pipeline still would not work.

25

Following extensive troubleshooting, the decision was made to reach out to the technical
advisor for assistance. He shared a pipeline that the INS currently uses in production.
Upon reviewing it, the solution became clear: the wrong Docker base image had been
used for the pipeline. Using the correct image, the pipeline worked flawlessly.

7.3 Move pods

For the success of the project, the move functionality is of utmost importance. Without
the ability to move the pods, adjusting the scheduling based on energy measurements
would not be possible. While implementing this functionality, two different strategies
were tested.

7.3.1 Standard move

It is important to note that a pod cannot be directly moved from one node to another
in Kubernetes. Instead, it must be destroyed and then redeployed. Initially, this was
the approach. However, it quickly led to an issue. Every time a pod was destroyed,
Kubernetes redeployed it immediately, usually on the wrong node. Kubernetes tracks
the number of pods that should be running for each deployment and ensures that the
desired count is maintained, which caused the problem. As a result, a different strategy
had to be developed.

7.3.2 Move with Deployments

Through further research and advice from the advisors it was decided to use deployments
to our advantage. All moveable pods are part of a deployment. The deployments are
assigned a node affinity during the moving-process, with the help of which the pods
are scheduled on the correct node. All nodes are assigned a label with their name.
During the move process the node affinity is used to specify that the pods of a certain
deployment can only be deployed on nodes with the specified name. Once the node
affinity is updated, Kubernetes will destroy the pod and redeploy in on the correct node
automatically.

7.3.3 Move on the frontend

As the application needs to be interactive, so it can aid to get people interested in
the subject, having a drag and drop functionality to manually move the pods gives a
interesting hands-on experience. The drag and drop functionality was implemented using
React dnd kit. This made it simple to assign the pods on the overview as Draggable-
Containers and the nodes as Droppable-Containers. A request is send to the backend
with the pod and the node it has been moved to and the moving-process starts as
described above.

26

https://dndkit.com/

7.4 Scheduler

As the worker nodes are not directly connected to the power grid but are powered by
solar or wind energy, it can happen that they have little or no energy. In this case, a
strategy for handling this scenario is defined.

The pods that are deployed on the nodes are assigned a priority level: High, Medium
or Low. This priority level is used to decide which pods are switched off first when the
energy is low. By default, a pod has the priority level Medium.

If a worker node only has a battery power of less than or equal to 10%, the pods running
on this worker are allocated to the other workers. If the other workers have no energy
for all these pods, the priority level is used to decide which pods are redeployed and
which pods are switched off.

If only one worker node is still running, the focus is placed on the high-priority pods.
If the last worker has less than 40% battery power, all but the high-priority pods are
switched off.

If the last worker node also has less than 10% power, all pods are switched off.

All mentioned thresholds are modifiable on the website.

The graphic below illustrates this scheduler logic.

27

Figure 7.1: Scheduling diagram

7.5 Dockerization

In order to be able to deploy both pieces of the application, the frontend and the back-
end. It needs to be containerized. This was done using the CI/CD pipeline mentioned
above. The frontend is built using a multi-stage build, which first builds the application
and then copies the build into a nginx container. The backend is built using a simple
Dockerfile, which copies the source code into a Python container. To efficiently deploy

28

the application, environment variables were used. This way the backend can be config-
ured to use the correct Kubernetes Config and the frontend can be configured to use the
correct backend. Challenges arose when the frontend was built with the environment
variables, as the React App was not able to access them. The solution chosen was the
contrary to the best-practice of using a .env-file. A simple script was added to the fron-
tend, which replaces the placeholders with the correct value during the first run. This
approach was chosen because the environment variables are needed to be set at runtime,
whereas React sets them at build time.

7.6 Read energy

The external system to read the energy data was only available at the very end of the
project. However it was still implemented.

The script was provided by the project advisor, and no changes were made to it. In
essence the script accomplishes three things:

• Reads the energy data from a serial device.

• Stores battery voltage and charging current in a dictionary.

• Serves the data using a Flask webserver.

Due to the very important nature of this script, certain steps were taken to ensure its
reliability. The script is run as a service on the Raspberry Pi, which means it is started
automatically when the Raspberry Pi boots up. This ensures that the energy data is
always available.

Unfortunately, reading the energy from the Raspberry Pi takes approximately one minute.
The original plan was to retrieve the energy data every time it was needed, whether for
scheduling or displaying it on the website. However, the one-minute delay proved to
be too long for practical use. As a result, and due to time constraints, two versions
of the project were created: The main version, which uses randomly generated energy
values for faster performance, and a secondary version that retrieves actual energy data,
but is slower. Possible improvements to address this issue are discussed in the Outlook
section.

7.7 Design

As the project progressed, it became clear that the design of the GUI would be just
as important as its functionality. This led to a reevaluation of the initial approach.
After some brainstorming, the decision was made to use the metaphor of shipping con-
tainers, which Docker and Kubernetes already use, and design the GUI around that
concept.

The overview was designed in a way to make the nodes look like container ships and the

29

pods would be containers on said ships. The containers are colored differently depending
on their namespace. To keep the application dynamic, each namespace could not be
simply assigned a different color, as new namespaces could be added in the future. The
problem was solved by generating a hash from the namespace and using this hash to
create different RGB values. This way every new namespace will get a unique color and
the colors will persist over page reload without having to be saved into a database.

To keep with the metaphor the master node represents the port were everything gets
coordinated.

7.7.1 Initial Approach

Initially, all elements of the GUI were intended to be created with CSS. This way the
design would be very flexible and quickly adjustable. This however, proofed to be a
difficult task. Creating the front of the container ship already lead to problems. The
goal was to make sure to get the shape of it right, however using only CSS, a satisfying
result could not be achieved. In order to get the desired result, Figma, which is a design
tool, was used to create the more complex shapes of the design.

7.7.2 Hybrid approach

Using this hybrid approach of Figma and CSS, the container ship and port was cre-
ated.

Container ship

After familiarizing ourselves with Figma, the front and back parts of the container ship
were created first.

Figure 7.2: Ship parts created with Figma

The space between these two parts is created using regular HTML Elements and CSS,
this way the size of the ship can still be flexible.

30

https://www.figma.com

Containers

The port was to be filled with containers. For this different colored boxes were created
and detailed so they would look like shipping containers.

Figure 7.3: Containers for the port

Crane

In order for the port to represent the master node, it has to visually communicate that
it is responsible for the distribution of the pods (containers) on the nodes (container
ships). To achieve this cranes were illustrated and placed onto the port.

Figure 7.4: Crane for the port

Vehicles

To add more visual interest, two vehicles were made for the port. A forklift and a truck
with a container.

Figure 7.5: Vehicles for the port

31

Port

Using the mentioned elements the port was put together. Some of the containers are
stacked on top of each other like they would be at a real cargo port. Additionally tracks
for the cranes were added.

Figure 7.6: Port representing the master node

7.7.3 Result

Putting all the elements together the following result was achieved. At the top left is
the timer until the next automatic schedule with a start/stop toggle. In the middle is
the navigation and the filter for the different namespace. On the right an example pod,
which serves as a legend. The main part of the page is the node overview.

32

Figure 7.7: Overview page

33

Chapter 8

Results

In this chapter the achievements and shortcomings are laid out. The results are organized
according to objectives defined in the requirements chapter.

8.1 Achievements

The achievements are split into two parts. First the functional requirements are discussed
and then the non-functional requirements.

8.1.1 Functional requirements

The main functional requirements and an optional one were achieved.

Use cases UC2 and UC3, which involve the scheduler, could be implemented successfully.
The scheduler can be turned on or off on the website. When turned on, the scheduler
runs every minute and distributes the pods according to the energy measurements when
necessary.

Use case 4 is about choosing the amount of pods that should be running on a node.
Originally it was planned that the user can input the amount of pods that they want to
run on a node into an input-field, this behaviour was not implemented however. Instead
the user can drag&drop the pods onto the different nodes like described in the optional
use case 6. This also ties into use case 5, the user can see all nodes and pods in the
overview.

8.1.2 Non-functional requirements

All non-functional requirements could be achieved. For NFR3 the original goal was to
create a frontend which is simple and self-explanatory. During development is became
clear that the frontend needed more eye-catching elements as described in the design-

34

implementation. However the goal of it being self-explanatory as proven by the Usability-
Test was still achieved.

8.2 Shortcomings

The shortcoming will also be split into functional requirements and non-functional re-
quirements.

8.2.1 Functional requirements

The first functional requirement UC1 could not be fully implemented. While the energy
data could be accessed, the process took too much time. Since access to the energy
measurements was granted late in the project, there was not enough time to resolve
these issues.

Additionally the two optional use cases UC7 and UC8 were not implemented due to time
restraints.

8.2.2 Non-functional requirement

As stated above, all non-functional requirements could be achieved.

35

Chapter 9

Conclusion and outlook

As we conclude this project, it is essential to reflect on its outcomes while also considering
potential improvements and directions for future work.

9.1 Conclusion

This thesis aimed to extend a scheduler so that it also takes into account the availability
of electricity from renewable sources. Additionally the system should also be presented
in a understandable way to people interested in a computer science degree.

As mentioned in the results chapter we could achieve most of our goals. We have a
working scheduler and a good looking and functional website.

The scheduler works well and is, apart from the slow energy readings, very responsive.
The priority labels give the users control over the scheduler which is useful as the energy
generation of a solar panel can fluctuate.

The website adds the playful element we sought out to implement and should help make
the complex topics of Kubernetes and container orchestration easier to understand.

9.2 Outlook

In the future the project could be improved and expanded upon in the following ways:

9.2.1 Cache energy data

As discussed in the results chapter, reading the energy data from the nodes is currently
a time-consuming process. In the future, this could be improved by implementing a
system that periodically collects and caches the data in the background. This approach
would reduce the delay when accessing the data.

36

9.2.2 More complex scheduler

The scheduler could be enhanced in several ways. One potential improvement would
be to incorporate weather forecasts into the scheduling process. Nodes connected to
solar panels, which would generate less energy during poor weather conditions, could be
given lower priority in the scheduling. In addition to weather data, other factors such as
historical energy production and geographical data could also be considered to further
optimize the scheduling process.

37

Part II

Project and Time Management

38

Chapter 10

Project Plan

10.1 Collaboration

Kanban is used as our project management methodology. As there are only two of us
working on this project, it is not necessary to use SCRUM. The Kanban board and the
weekly meetings are enough to keep everybody up to date. Daily stand-ups are therefore
not necessary and the time can be used for other purposes.

10.2 Project Roles

Due to our limited group size it does not make sense to create elaborate roles for this
project. Nonetheless these two roles were defined:

Role Person Area of responsibility

Lead Developer Frontend Marco Schnider Creation of a Web Frontend using Re-
act

Lead Systems Engineer Philipp Hutter Initial Kubernetes Setup

Table 10.1: Project Roles

For every other task the team members have to work together and responsibilities are
assigned when needed.

10.3 Minimum Viable Product (MVP)

The Minimum Viable Product (MVP) is a version of a product that has just enough
features to satisfy early customers and gather feedback for future product development.
It is a strategy commonly used in software development and startups to quickly test and

39

validate a product idea before investing significant time and resources. In our case, the
MVP will be equivalent to the initial release, covering all essential, non-optional features
of our application.

MVP Date: 24.11.2024 (this was achieved)

10.4 Long-term plan

In this chapter, the long-term plan was outlined at the beginning of the project. First,
the total time available for the project was listed in weeks. Then, the features and
goals of the project were identified, and rough deadlines were set for their completion.
Additionally, the Milestones were defined.

Figure 10.1: Container diagram

The features are the following:

• F1.1) Assign pods to nodes (manually)

• F1.2) Read energy data

• F1.3) Automatic allocation based on energy

• F1.4) Create GUI (with different Tabs)

• F1.5) Develop backend

• F1.6) Dockerize the application

• F1.7) Adjust scheduler

• F1.8) Error logging

The following additional (optional) features were defined:

40

• F2.1) Scalable Frontend (Frontend can work with a dynamic number of nodes)

• F2.2) Scalable Scheduler (Scheduler can work with a dynamic number of nodes)

• F2.3) GUI: Drag & Drop of pods onto nodes

• F2.4) GUI: Change the number of active nodes

• F2.5) Display historical data

As the long term plan shows most of the features could be finished in time. The only
delay was caused by the feature F1.2, as we had to wait for the system to read the energy
to be finished.

10.4.1 Milestones and goals

The following milestones will help us to gradually achieve our goals for this project. At
the end of the project all milestones will have been reached.

M1: Set up project

• Set up basic project structure

– Setting up GitLab

– Configuring the time tracking

– Configuring the time reporting

– Configuring issue management

• Analyze and evaluate project risks and discuss measures

M2: Requirements and Architecture

• Define functional and non-functional requirements

• Define use cases

• Define project architecture

• Define tooling

• Specify long-term-plan

M3: Prototype

• Create initial backend functionality.

• Test plausibility of the project based on the prototype.

• Create test concept with the required unit tests, usability tests and system tests.

41

M4: MVP

• Basic MVP functions are implemented and users are ready to use the application.

• Initial user feedback is obtained.

• Identifying and fixing bugs or problems that were discovered during tests.

• Documentation: Create user manual, give reasons for the chosen technologies,
logical and physical technologies, describe the logical and physical distribution of
the components and demonstrate the expandability of the architecture.

M5: Production release

• Functional completeness: Ensure that all planned functions are implemented and
work as expected.

• Final testing: Carry out a thorough testing of the software to ensure that it meets
all functional and non-functional requirements.

• Bug fixing: Identifying and fixing any remaining bugs or problems in the software.

• Performance optimization: Optimizing the performance of the software to ensure
that it runs smoothly and efficiently.

• Documentation: Finalizing the user manual based on feedback.

M6: Final delivery

• Deliver a high-quality software product that fulfills all requirements

• Complete all defined development tasks

• Thoroughly test all functions

• Resolve all problems and errors

• Document project comprehensively

10.5 Risk management

In the following tables the risks and their probability and severity are defined.

42

10.5.1 Risk determination

Probability
/ Severity

1 Very un-
likely

2 Unlikely 3 Occasion-
ally

4 Likely 5 Frequent

4-Catastrophic R6

3-Critical R3 R7

2-Significant R2

1-Low R1, R4 R5

Table 10.2: Risk Matrix

ID R1

Risk Learning curve

Comment Possible learning curve for team members who are not fa-
miliar with the tools and technologies used.

Preventive measures With the role allocation, the development leads are clearly
defined. The corresponding leaders already have experience
in all of the main technologies in use.

Corrective measures The features are divided into as small tasks as possible. The
individual leaders will support the team members with less
experience.

Table 10.3: Description Risk 1

ID R2

Risk Scope Creep

Comment Unclear definition of the requirements, which will lead to a
continuous expansion of the project.

Preventive measures In the meetings, it is precisely defined what the goals for
the project are.

Corrective measures Optional features can be scrapped.

Table 10.4: Description Risk 2

43

ID R3

Risk Limited resources

Comment Absence of a team member.

Preventive measures Both team members have to document on which function-
ality they are currently working on.

Corrective measures The tasks that fall to the person concerned are redis-
tributed in an impromptu meeting.

Table 10.5: Description Risk 3

ID R4

Risk Compatibility problems

Comment Different versions of tools and technologies.

Preventive measures The version of each technology used is documented, and all
members must use this specific version for the duration of
the project.

Corrective measures For different versions, upgrades and downgrades are carried
out.

Table 10.6: Description Risk 4

ID R5

Risk Time estimation

Comment Too much or too little time will be allocated to certain
tasks.

Preventive measures The regular meetings enable us to recognize differences
early on and initiate measures.

Corrective measures Optional Features can be scrapped or implemented.

Table 10.7: Description Risk 5

44

ID R6

Risk Dependencies on third parties

Comment Dependence on external libraries, APIs or services with po-
tential risks in terms of access reliability, compatibility or
support.

Preventive measures Use as few external resources as possible. In addition, it is
also possible to integrate external libraries into a separate
class.

Corrective measures If an external resource fails, in a few cases it can mean the
end for our project.

Table 10.8: Description Risk 6

ID R7

Risk Problems with the master node

Comment The Raspberry Pi, which is used as the master will not be
powerful enough.

Preventive measures Use lightweight OS and Kubernetes tools.

Corrective measures If the master node cannot be made to work, it will be nec-
essary to consider using a VM on a more powerful machine
as the master node.

Table 10.9: Description Risk 7

10.5.2 Contingency plan

Not all risks can be recognized from the beginning. The contingency plan can be used
if an unexpected risk occurs.

1. The problem will identified and discussed with the fellow team member.

2. If the problem cannot be fixed easily, it will be promoted to a standalone task and
more time will be spend on it.

3. If the problem cannot be fixed it will be discussed with the project advisor.

The purpose of this contingency plan is to define a planned response in the event of
incidents that affect the normal course of the project. Because the process has already
been defined, the interruption within the project can be minimized through a targeted
response.

45

10.6 Jira

To plan the project and assign tasks, Jira is used, with the main focus on short-term
planning and the issue tracking. The project is divided into 4 task types:

• Task Default type that document the work that needs to be done.

• Milestone Special type that mark milestones in our project.

• Meeting Special type in which time spent on meetings is noted, as it cannot be
directly assigned to another task.

• Bug Error that was found during testing and needs to be resolved.

At every weekly meeting the work that needed to be done to advance in our project
according to our Long-Term-Plan was discussed.

46

https://ost-team-k8sps.atlassian.net/jira/software/projects/KAN/boards/1

Chapter 11

Quality Measures

11.1 Planning and Reviews

Through planning with Jira, the project is effectively implemented by assigning, tracking,
and coordinating tasks to ensure a smooth process and successful completion. The
meetings are used to discuss progress, identify challenges, and to develop solutions to
ensure the goals of the project can be achieved with the desired quality.

11.2 Code Quality

How the quality of the code is ensured is defined in the coding setup. Namely through
a linter, Prettier and Husky hooks. These tools were chosen because they are suitable
for the project, and both team members have prior experience with them.

11.3 Branching and Peer-Review

The branching strategy is defined in the GitLab guidelines. Features and bug fixes are
developed in dedicated branches that branch of from the develop branch. These branches
are later merged back into the develop branch to ensure conflict-free integration. Once all
tests have passed successfully and all issues have been resolved, the changes are merged
into the main branch. This ensures that there is always a working version of the project
on the main branch.

11.4 Test concept

The test concept describes what is tested, how it is tested, what tools are used, and the
process of the tests. Additionally, responsible individuals are assigned to the tests, and
the risks are assessed in case a test fails.

47

11.4.1 Process

The process is as follows:

• Clarify what needs to be tested based on the requirements.

• Decided how the tests will be conducted.

• Execute the tests.

• Document successes and errors.

• After the errors have been resolved, re-run the tests.

11.4.2 Goals

The following functionalities and elements are tested:

• All use-cases

• Compatibility

• Performance

• Usability

• Maintainability

• Reliability

The goals are taken from the use-cases and the non-functional-requirements.

11.4.3 Roles

There are two different roles:

• Test lead: Creates the test cases.

• Tester: Executes the tests and documents the findings.

11.4.4 Environment

The tests are executed in the following environment:

Client

• Operating System: Windows 11

• Browsers: Microsoft Edge, Google Chrome, Mozilla Firefox

• React version: 18.3.1

• Typescript: 4.9.5

48

Server

• Operating System: Raspberry Pi OS (Debian GNU/Linux 12)

• Flask version: 3.0.3

• Python version: 3.10

Kubernetes and Docker

• Kubernetes version: 1.30.6+k3s1

• Container Runtime: containerd://1.7.22-k3s1

11.4.5 Unit-Tests

Unit tests were initially planned for the project, but ultimately it was decided against
creating them. The focus shifted to the GUI design, as discussed in the Design chapter.
Given the need to set up mocks for the Kubernetes client to properly test most functions,
time constraints became a challenge. Although the importance of automated testing is
recognized, priorities had to be adjusted.

11.4.6 Schedule

The tests will be completed during the transition phase. For more information see the
long-term plan.

ID T1

Name Functionality-Tests

Process All functional and non-functional requirements of the applica-
tion are to be tested. Every requirement will be tested one-
by-one and checked if the results are as expected. This way
the connection between the frontend, backend and Kubernetes
Cluster is also tested.

Method Manual

Risk High

Relevant for All goals

Test environment Client and Server

Interval At the end

Table 11.1: Process Functionality-Tests

49

ID T2

Name Performance-Tests

Process The performance of the application as described in NFR2 is to
be tested.

Method Manual

Risk Medium

Relevant for Performance

Test environment Client and Server

Interval At the end

Table 11.2: Process Performance-Tests

ID T3

Name Usability-Tests

Process The final application will be tested for its usability by showing
it to at least 2 uninvolved people and having them play through
certain scenarios.

Method Manual

Risk Medium

Relevant for Usability, Compatibility

Test environment Client

Interval At the end

Table 11.3: Process Usability-Tests

11.4.7 Risks

The tests are associated with different risks. Tests that cover critical aspects of our
project (parts that the project cannot function without) are associated with high risk.
Other tests like the usability-test are not as high of a risk as the core goal of the project
can still be achieved without them fully succeeding.

11.4.8 Definition of Done

The use-cases are defined as done when the following criteria are achieved:

• All tests pass.

• Coding guidelines were complied with.

• The process and the result are as described for the use case.

• The implementations correspond to the specifications described for the NFRs.

50

Chapter 12

Tooling

12.1 Documentation Guidelines

The following guidelines for the documentation were worked out:

1. Document in english

2. Document using LaTeX.

3. Use the given template.

4. Use meaningful titles that divide the text well.

5. Use clean formatting that helps to make the text easy to read.

6. Identify references from external sources as such.

7. Write a caption for each figure and table.

8. Write reference names of the captions for figures and tables in the kebab-case.

9. When drawing a diagram, use the same Flowchart maker, diagrams.net (former
draw.io).

12.2 Code

12.2.1 Code Guidelines

The code should be written according to the following guidelines:

1. Write TypeScript variable and function names in camelCase.

2. Write TypeScript constants in uppercase, with individual words separated by un-
derscores.

3. Write HTML element identifiers in kebab-case.

51

https://app.diagrams.net/

4. Give arrays a plural name.

5. Write comments where necessary, the code should be written in a self-explanatory
way.

6. Use the same words for the same concepts.

7. Use ESLint/PyLint so that the code is uniform.

12.2.2 Coding Setup

To comply with the coding style, the standard rules of ESLint and PyLint are used. An
additional rule has also been added:

• No log calls with the console, instead a separate logger should be used for the final
product. (Does not prevent pushing but gives a warning).

In addition, certain processes are automated in the coding projects to facilitate devel-
opment. The commands and their functions are described in the README.md and
package.json files:

Backend

• README.md

Frontend

• README.md

• package.json

Before changes can be committed, the linter and prettier are automatically started using
Husky hooks, if an error occurs during these processes, the commit is not executed. This
ensures that changes follow the coding guidelines. The same happens with no-main-push
but only when a commit is being pushed to the main branch of the remote repository.
This is done to ensure that all relevant changes are merged using the GitLab GUI and a
pull request and can then be viewed directly by another team member. The exception
to this pre-commit-hook is the Documentation Repository.

12.3 GitLab

GitLab is used for version management. The project is divided into three main reposi-
tories. One each for the backend and frontend and one for the documentation.

1. Write commit messages in english.

2. At each weekly meeting, the changes are discussed and merged from the Develop
branch into the Main branch.

52

https://eslint.org/
https://pypi.org/project/pylint/
https://gitlab.ost.ch/k8s-pod-scheduling/backend/-/blob/main/README.md?ref_type=heads
https://gitlab.ost.ch/k8s-pod-scheduling/frontend/-/blob/main/README.md?ref_type=heads
https://gitlab.ost.ch/k8s-pod-scheduling/frontend/-/blob/main/package.json?ref_type=heads
https://typicode.github.io/husky/
https://gitlab.ost.ch/k8s-pod-scheduling/backend
https://gitlab.ost.ch/k8s-pod-scheduling/frontend
https://gitlab.ost.ch/k8s-pod-scheduling/documentation

12.3.1 Documentation Pipeline

Pipelines are used for the automatic creation of PDF files. These are executed with
every commit to the documentation repository.

12.3.2 Dockerization Pipeline

To create docker images an additional pipeline was used. More information on the
pipeline can be found in the Implementation chapter.

12.4 Issue Management / Time Tracking

Jira is used for issue tracking and management, as it also functions as a time tracking
tool. To ensure this functionality, Jira was configured with additional fields in the task
template.

12.5 Teams

Microsoft Teams with its own group is used to exchange information and inform about
extraordinary meetings or ask for help.

53

Chapter 13

Time Tracking Report

13.1 Time per person

The following diagram shows the time dedicated by each team member for the project.
Both team members contributed an equal amount of work towards the project.

Figure 13.1: Diagram: Time per person

54

13.2 Time per phase

The following diagram illustrates the estimated time and actual time spend on the
different phases of the project.

Figure 13.2: Diagram: Time per phase

55

Bibliography

[1] Component diagram. https://c4model.com/diagrams/component. Accessed:
2024-12-16.

[2] Container diagram. https://c4model.com/diagrams/container. Accessed: 2024-
12-16.

[3] Homepage. https://k3s.io/. Accessed: 2024-12-19.

[4] System context diagram. https://c4model.com/diagrams/system-context. Ac-
cessed: 2024-12-16.

[5] Timo Kraus. Renewable-aware kubernetes scheduling to mitigate carbon emissions
in distributed systems. Master’s thesis, Technische Universität Berlin, 2022.

[6] Marco Aiello Tobias Piontek, Kawsar Haghshenas. Carbon emission-aware job
scheduling for kubernetes deployments. The Journal of Supercomputing, 65(3), 2023.

56

https://c4model.com/diagrams/component
https://c4model.com/diagrams/container
https://k3s.io/
https://c4model.com/diagrams/system-context

List of Figures

1 Overview showing the nodes and pods . iv

4.1 Domain model . 6

5.1 Use case diagram . 8
5.2 Mockup of the overview page . 16
5.3 Mockup of the scheduler page . 17
5.4 Mockup of the data page . 18
5.5 Mockup of the debug page . 19

6.1 System context diagram . 21
6.2 Container diagram . 22
6.3 Component diagram . 23
6.4 Deployment diagram . 24

7.1 Scheduling diagram . 28
7.2 Ship parts created with Figma . 30
7.3 Containers for the port . 31
7.4 Crane for the port . 31
7.5 Vehicles for the port . 31
7.6 Port representing the master node . 32
7.7 Overview page . 33

10.1 Container diagram . 40

13.1 Diagram: Time per person . 54
13.2 Diagram: Time per phase . 55

15.1 Questions and answers 1-2 . 66
15.2 Questions and answers 3-4 . 67
15.3 Questions and answers 5-6 . 68
15.4 Questions and answers 7-8 . 69
15.5 Questions and answers 9-10 . 70
15.6 Questions and answers 11-13 . 71

57

15.7 Questions and answers 14-15 . 72
15.8 Questions and answers 16-18 . 73

58

List of Tables

5.1 Description Use Case 1 . 9
5.2 Description Use Case 2 . 9
5.3 Description Use Case 3 . 10
5.4 Description Use Case 4 . 10
5.5 Description Use Case 5 . 11
5.6 Description Use Case 6 . 11
5.7 Description Use Case 7 . 12
5.8 Description Use Case 8 . 12
5.9 Description Non-Functional Requirement 1 13
5.10 Description Non-Functional Requirement 2 13
5.11 Description Non-Functional Requirement 3 13
5.12 Description Non-Functional Requirement 4 14
5.13 Description Non-Functional Requirement 5 14
5.14 Description Non-Functional Requirement 6 14
5.15 Description Non-Functional Requirement 7 15

10.1 Project Roles . 39
10.2 Risk Matrix . 43
10.3 Description Risk 1 . 43
10.4 Description Risk 2 . 43
10.5 Description Risk 3 . 44
10.6 Description Risk 4 . 44
10.7 Description Risk 5 . 44
10.8 Description Risk 6 . 45
10.9 Description Risk 7 . 45

11.1 Process Functionality-Tests . 49
11.2 Process Performance-Tests . 50
11.3 Process Usability-Tests . 50

15.1 Test History: T1 . 64
15.2 Test History: T2 . 65
15.3 Summarized results of the Usability-Test 65

59

Part III

Appendix

60

Chapter 14

User Manual

To deploy our application, this manual can be used. It contains all the necessary in-
formation to install and run the application. It also contains information about the
different functionalities of the application and how to use them.

14.1 Installation of the ReadVoltage Service

The ReadVoltage service reads the energy consumption of the worker nodes. It is nec-
essary for the scheduler to work properly. The installation process is described in the
following steps:

1. Clone the ReadVoltage Git Repository

2. Copy the readVoltage.service file to the systemd directory.

3. Reload the systemd daemon.

4. Enable the service to start on boot.

5. Start the service.

14.2 Prerequisites for Deployment

The following points must be provided before the deployment:

• Kubernetes Cluster with at least 2 nodes

• Traefik installed on the cluster

• ReadVoltage Service installed on the Worker Nodes

• Git installed on the nodes

• Access to the Git Repository

61

https://gitlab.ost.ch/k8s-pod-scheduling/readvoltage

• Create a Git Access Token

14.3 Deployment

The deployment process is described in the following steps:

1. Clone the Deployment Git Repository

2. Apply the namespace-scheduler.yaml

3. Create a Kubernetes secret for the container registry in the namespace ”scheduler”

4. Apply the service-account-scheduler.yaml

5. Apply the backend-scheduler.yaml

6. Apply the cors-middleware.yaml

7. Apply the ingress.yaml

8. Apply the frontend-scheduler.yaml

This will replicate the entire deployment. To achieve a different deployment, the same
steps can be used, but the files need to be adjusted accordingly.

14.3.1 Available Routes

After the successful deployment, the following routes are available:

• / - Frontend

• /nodeInfo - [GET] Node Information

• /nodes - [GET] List of Nodes

• /pods - [GET] List of Pods

• /namespaces - [GET] List of Namespaces

• /schedule - [GET] Start a scheduling run

• /setPriority - [POST] Set the priority of a pod

• /move - [POST] Move a pod to a different node

• /scheduleWithCustomEnergy - [POST] Start a scheduling run with custom energy
values

• /setBatteryThresholds - [POST] Set the battery thresholds for the scheduler

• /getBatteryThresholds - [GET] Get the battery thresholds for the scheduler

A detailed description on how to use them can be found in the API description chap-
ter.

62

https://gitlab.ost.ch/k8s-pod-scheduling/deployment

14.4 Deployment of the Sample Apps

To deploy the sample apps, the following steps need to be taken:

1. Clone the Sample Apps / Deployment Git Repository

2. Apply the namespace-counter.yaml

3. Create a Kubernetes secret for the container registry in the namespace ”counter”

4. Create a Kubernetes secret for the container registry in the namespace ”default”

5. Apply the counterup.yaml

6. Apply the counterdown.yaml

7. Apply the pictureone.yaml

8. Apply the picturetwo.yaml

9. Apply the picturethree.yaml

10. Apply the picturefour.yaml

11. Apply the counter-ingress.yaml

12. Apply the ingress.yaml

This will deploy the sample apps. To deploy a different set of sample apps, the same
steps can be used, but the files need to be adjusted accordingly.

14.4.1 Available Routes

After the successful deployment, the following routes are available:

• /counterup - Counter Up

• /counterdown - Counter Down

• /pictureone - Solar Panel Raspberry Pi 1

• /picturetwo - Weatherproof Housing for a Raspberry Pi

• /picturethree - Solar Panel Raspberry Pi 2

• /picturefour - Sample Picture

63

https://gitlab.ost.ch/k8s-pod-scheduling/sample-apps/deployment

Chapter 15

Test reports

15.1 Test history

The following tables show the test that were carried out and their results.

ID T1

Date 11.12.2024

Input Tested all requirements manually.

Expected Output All requirements work as expected.

Actual Output Use cases:
• UC1: OK
• UC2: OK
• UC3: OK
• UC4: OK
• UC5: OK
• UC6: OK
• UC7: Not implemented. (Optional Use case).
• UC8: Not implemented. (Optional Use case).

NFRs:
• NFR1: OK
• NFR2: OK
• NFR3: OK
• NFR4: OK
• NFR5: OK
• NFR6: OK
• NFR7: OK

Table 15.1: Test History: T1

64

ID T2

Date 15.12.2024

Input Check if the frontend is responsive enough to fulfill requirement
set in NFR2.

Expected Output The frontend checks at least every 5 minutes for changes in
energy levels. .

Actual Output If automatic scheduling is enabled the frontend checks for
changes in energy levels every minute.

Table 15.2: Test History: T2

15.2 Usability-Test

In order to successfully carry out the Usability-Test, a form was created using Microsoft
Forms. This results in a uniform process between the different tests and makes it easy
to analyze the results.

15.2.1 Structure

The first questions are general questions about the tester, like their age or current
job. Then they are asked to perform certain tasks and rate how easy and intuitive it
was to complete them. The test is finished off by asking general questions about the
application.

15.2.2 Results

The Usability-Test was performed with three different people between the ages of 16 and
22. Two of them have already completed their apprenticeship, while the other is in the
process of doing so. This meant that the target group of people interested in studying
computer science at a university of applied sciences was effectively covered. The tests
yielded the following results:

Category Remark

General impressions The general impressions were very positive.

Using the website No tester had any problems navigating the website. All of them
could easily complete the tasks given to them. They found the
website easy and intuitive to use.

Design The design was well received by every tester.

Feedback One tester wished for more feedback when a node was not
available.

Table 15.3: Summarized results of the Usability-Test

65

https://forms.office.com/
https://forms.office.com/

15.2.3 Conclusion

The overall result of the Usability-Test is very positive. The only area identified for
improvement is the feedback when a node is unavailable. Currently, it is a handled in a
way that when pods cannot be moved onto a node it will not be highlighted in a green
color as it usually would. However, given the time constraints and the fact that the other
tester did not encounter issues with this functionality, it was decided to not prioritize
any changes in this area.

15.3 Usability-Test questions and answers

Figure 15.1: Questions and answers 1-2

66

Figure 15.2: Questions and answers 3-4

67

Figure 15.3: Questions and answers 5-6

68

Figure 15.4: Questions and answers 7-8

69

Figure 15.5: Questions and answers 9-10

70

Figure 15.6: Questions and answers 11-13

71

Figure 15.7: Questions and answers 14-15

72

Figure 15.8: Questions and answers 16-18

73

Chapter 16

API Description

The following list shows all API calls that can be made to the backend.

/nodes

Returns all nodes.
HTTP-Verb: GET
Body: -

/pods

Returns all pods.
HTTP-Verb: GET
Body: -

/namespaces

Returns all namespaces.
HTTP-Verb: GET
Body: -

/nodeInfo

Returns information of the nodes: Energy data, what pods are running on them, if they
are schedulable.
HTTP-Verb: GET
Body: -

74

/nodes

Returns all nodes.
HTTP-Verb: GET
Body: -

/move

Moves pod to specified node.
HTTP-Verb: POST
Body:

• node: string Name of the node the pod should be moved to

• pod: string Name of the pod to move

• namespace: string Namespace of the pod to move

/schedule

Starts the scheduler.
HTTP-Verb: GET
Body: -

/scheduleWithCustomEnergy

Starts scheduler with energy values provided.
HTTP-Verb: POST
Body:

• energy: {[key: string]: Number} Energy level of all active nodes

/setPriority

Sets specified priority of a pod.
HTTP-Verb: POST
Body:

• pod name: string Name of the pod

• pod namespace: string Namespace of the pod

• priority: string Priority to set the pod to

75

/setBatteryThresholds

Sets the different battery thresholds, which are used by the scheduler .
HTTP-Verb: POST
Body:

• minBattery: Number Threshold where pods get moved off of node

• killMediumBattery: Number Threshold where medium priority pods get killed

• uncordonBattery: Number Threshold where node gets schedulable

/getBatteryThresholds

Returns the current battery thresholds used by the scheduler.
HTTP-Verb: GET
Body: -

76

	Acronyms
	I Product Documentation
	Introduction
	Motivation
	Related work
	Research in scheduling to mitigate carbon emissions
	Research in emission-aware scheduling

	Differentiation from existing projects

	Goal of the project
	Task definition
	Goals

	General conditions
	Type of work

	Domain Analysis
	Domain model

	Requirements
	Functional Requirements
	Use case diagram

	Non-Functional Requirements
	User interface design
	Accessibility and Platform Independence
	Target Audience
	Core Functionalities
	Mockup

	Architecture
	C4 Architecture
	System context diagram
	Container diagram
	Component diagram

	Deployment

	Implementation Details
	Test Cluster
	GitLab CI/CD Pipeline
	Move pods
	Standard move
	Move with Deployments
	Move on the frontend

	Scheduler
	Dockerization
	Read energy
	Design
	Initial Approach
	Hybrid approach
	Result

	Results
	Achievements
	Functional requirements
	Non-functional requirements

	Shortcomings
	Functional requirements
	Non-functional requirement

	Conclusion and outlook
	Conclusion
	Outlook
	Cache energy data
	More complex scheduler

	II Project and Time Management
	Project Plan
	Collaboration
	Project Roles
	Minimum Viable Product (MVP)
	Long-term plan
	Milestones and goals

	Risk management
	Risk determination
	Contingency plan

	Jira

	Quality Measures
	Planning and Reviews
	Code Quality
	Branching and Peer-Review
	Test concept
	Process
	Goals
	Roles
	Environment
	Unit-Tests
	Schedule
	Risks
	Definition of Done

	Tooling
	Documentation Guidelines
	Code
	Code Guidelines
	Coding Setup

	GitLab
	Documentation Pipeline
	Dockerization Pipeline

	Issue Management / Time Tracking
	Teams

	Time Tracking Report
	Time per person
	Time per phase

	Bibliography
	List of Figures
	List of Tables

	III Appendix
	User Manual
	Installation of the ReadVoltage Service
	Prerequisites for Deployment
	Deployment
	Available Routes

	Deployment of the Sample Apps
	Available Routes

	Test reports
	Test history
	Usability-Test
	Structure
	Results
	Conclusion

	Usability-Test questions and answers

	API Description

