
SA Documentation

Monad Torrent
Semester: Autumn 2024

Version: 01.00
Date: 2024-12-20 16:06:38Z

Git Version: 9da5147

Project Team: Davor Lucic
Fadil Smajilbasic

Project Advisor: Dr. Farhad Mehta

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Contents

I Management Summary 1

II Product Documentation 4

1 Requirements 5
1.1 Actors . 5
1.2 Functional Requirements . 6
1.3 Overview Use Cases . 11
1.4 Use Case Diagram . 12
1.5 Non-Functional Requirements . 13
1.6 Minimal Viable Product . 15

2 Domain Analysis 16

3 Architecture 18

4 Quality Measures 20
4.1 Organisational . 20
4.2 CI/CD . 20
4.3 Testing strategy . 20

4.3.1 Frontend . 20
4.3.2 Backend . 21

III Project Documentation 22

5 Initial Project Proposal 23

6 Project Plan 24
6.1 Role distribution and collaboration framework 24

6.1.1 Role distribution . 25
6.2 Project Phases . 25

i

7 Personal Reports 26
7.1 Davor Lucic . 26
7.2 Fadil Smajilbasic . 26

8 Personal Reports 28
8.1 Davor Lucic . 28

9 Regular Meetings 30

Bibliography 30

Part I

Management Summary

1

Management Summary

Even though this is the first chapter of your document, it is typically the last one filled
with content. The Management Summary is a brief and high-level summary of your
project. It should give any reader unfamiliar to the project an overview of the contents
included later in the document.

A common structure is:

• What is the problem we wanted to solve?

• How did we solve the problem?

• Does your solution solve the problem in a successful way?

• Will there be consecutive projects based on your work?

Diagrams and images work very well in this chapter, especially screenshots of your
software.

One final remark: a well written management summary is a good starting point for
your Project Presentation, as you will address a similar audience there.

The Problem

From a product standpoint it is nothing new. There are many Bittorrent clients out
there. From that standpoint it is of less importance in what language it is written and
what libraries are used. The end user just wants a product that works.

When looking at it from a project perspective the problem looks very promising. Many
students shy away from using the functional programming paradigm, as many view it
as too difficult, too tedious, or they just simply don’t see the point in switching from
what they know already. We want to give our fellow students a different perspective,
and maybe some courage to start their first functional project themselves.

2

The Solution

To better understand the intricacies of a functional project, we had to build one ourselves
first. Because neither of us has any experience in building a larger product in Haskell,
it gives us the unique advantage that we don’t just understand the problem, but also
feel it. By building the Monad Torrent we gathered the necessary experience to at least
lay the groundworks of how a product built in a functional manner could look like. In
addition to this documentation, we will also write a manual on how to recreate the
glorious Monad Torrent, batteries included.

The Result

Even though we didn’t cover every function we initially planned to implement, we believe
this project was still a success, since we believe that a solid documentation is just as
important as a working product. We hope that anyone that is interested in pursuing
this further can use our manual as a foundation to extend their own Monad Torrent.
Our goal during the creation of the product and manual was to approach each problem
with the same approach, knowing we built a solid foundation to do so.

The Future of Monad Torrent

Upon submission we unfortunately have to put this project on ice for now. Next semester
both of is will not have time to pursue this topic further, as we have other classes and
projects coming up. Nevertheless, we don’t want to flag it as ”done” or ”abandoned”
quite yet, since there is still a lot of room for improvement, like magnet link functionality,
multi-file torrents, UDP-friendly trackers, prettier UI, and so on.

Part II

Product Documentation

4

Chapter 1

Requirements

1.1 Actors

Unlike in many other application with different use cases for different roles, we want to
focus on only one actor: the end user. Even in a team setting where many users would
use this product, each and every user manages their files and usage of Monad Torrent
independently.

Actor Explanation

End User

• Can add torrents

– Via link

– Via file

– Choose wich files to download

• Can manage torrent queue

– Reorder torrents

– Pause/resume downloads

– Delete torrents

– Access torrent information (Size, Seed-
ers/Leetchers, Torrent Contents)

• Can access and change torrent settings

– Via Settings menu

– Via config file

5

1.2 Functional Requirements

FR-1 Downloading a Torrent via file

Actor End User

Goal Successfully download a torrent by uploading a torrent file

Preconditions

• The user has a valid .torrent file available

Postconditions

• The torrent file begins downloading to the user’s device

• The user can view the download progress and access the
downloaded file once completed

Priority High

FR-2 Downloading a Torrent via magnet link

Actor End User

Goal Successfully download a torrent by using a magnet link

Preconditions

• The user has a working internet connection

• The user has a valid magnet link available

Postconditions

• The torrent file begins downloading to the user’s device

• The user can view the download progress and access the
downloaded file once completed

Priority Low

FR-3 Reorder torrents in download queue

Actor End User

Goal Change the priority/order of torrents in the download/upload
queue

Preconditions

• The user has one or more torrents added to the queue

• The user is using the Monad Torrent client with multiple
active or pending torrents

Postconditions

• The torrents are reordered based on the user’s prefer-
ences

• The new queue order is reflected in the torrent client

Priority Low

FR-4 Pause and resume torrent downloads

Actor End User

Goal Pause an active torrent download and resume it later

Preconditions

• The user has one or more torrents actively downloading
or uploading

• The torrent client is running

Postconditions

• Paused downloads stop consuming bandwidth, and
downloads can be resumed from the last point

Priority Low

FR-5 Delete torrents from the queue

Actor End User

Goal Remove a torrent from the download or upload queue

Preconditions

• The user has one or more torrents in the queue

Postconditions

• The torrent is removed from the queue, and optionally,
its data is deleted from the disk

Priority Medium

FR-6 Access General Torrent Information

Actor End User

Goal View detailed information about a torrent, including file size,
number of seeders/leechers, and the contents of the torrent

Preconditions

• The user has added one or more torrents to the client

• The torrent is actively downloading, uploading, or is
completed but still in the queue

Postconditions

• The user views the requested information, which helps
them understand the progress and health of the torrent

Priority High

FR-7 Delete Torrent Files and Their Contents

Actor End User

Goal Permanently remove torrent files from the file system, along
with any downloaded content (e.g., media files, documents,
etc.)

Preconditions

• The user has already downloaded files using a torrent
client

• The torrent client can access the download folder

• The user has sufficient permission to delete files from
the file system

Postconditions

• The user views the requested information, which helps
them understand the progress and health of the torrent

• The torrent file is removed from the client and the sys-
tem (if applicable)

• The downloaded files and folder associated with the tor-
rent are deleted from the file system

• Disk space is freed up after deletion

Priority High

FR-8 Adjust Download Speed via Settings menu

Actor End User

Goal Modify the maximum download and/or upload speed limits
for torrents

Preconditions

• The torrent client has the capability to set speed limits

• The user has access to the settings menu

Postconditions

• The download/upload speeds are adjusted based on the
user’s input

Priority Low

FR-10 Adjust Download Speed via config file

Actor End User

Goal Modify the maximum download and/or upload speed limits
for torrents

Preconditions

• The torrent client has the capability to set speed limits

• The user has access to the config file

Postconditions

• The download/upload speeds are adjusted based on the
user’s input

Priority Low

FR-11 Adjust Default Folder via Settings menu

Actor End User

Goal Change the default folder where torrents and their down-
loaded files are saved

Preconditions

• The torrent client allows the user to modify folder paths

• The user has access to the settings menu

Postconditions

• The new folder location is used for all future downloads

Priority Low

FR-12 Adjust Default Folder via config file

Actor End User

Goal Change the default folder where torrents and their down-
loaded files are saved

Preconditions

• The torrent client allows the user to modify folder paths

• The user has access to the config file

Postconditions

• The new folder location is used for all future downloads

Priority Medium

FR-13 Adjust Maximum Active Downloads via Settings menu

Actor End User

Goal Set the maximum number of torrents that can be actively
downloading at the same time

Preconditions

• The torrent client allows the user to control the number
of active downloads

• The user has access to the settings menu

Postconditions

• The system enforces the maximum limit for active down-
loads based on the user’s input

Priority Low

FR-14 Adjust Maximum Active Downloads via config file

Actor End User

Goal Set the maximum number of torrents that can be actively
downloading at the same time

Preconditions

• The torrent client allows the user to control the number
of active downloads

• The user has access to the config file

Postconditions

• The system enforces the maximum limit for active down-
loads based on the user’s input

Priority Low

1.3 Overview Use Cases

+-------------------+

| End User |

+-------------------+

|

+-----------|-----------+

| |

+--------+----+ +------+-------+

| Add Torrent | | Manage Queue |

+-------------+ +--------------+

| |

+----|-----------+ |-------------+

| | |

Download via File Download via Reorder Torrents

Magnet Link Pause/Resume Torrents

Delete Torrents

Access Torrent Info

+-------------------+

| End User |

+-------------------+

|

+-----------|-----------+

| |

| Access Settings |

| |

+-----------+-----------+

|

+---------------|---------------+

| |

Adjust Download Speed Adjust Download Speed

via Settings Menu via Config File

| |

Adjust Default Folder Adjust Default Folder

via Settings Menu via Config File

| |

Set Max Active Torrents Set Max Active Torrents

via Settings Menu via Config File

1.4 Use Case Diagram

Figure 1.1: Use Case Diagram

1.5 Non-Functional Requirements

ID NFR-1

Subject Good target response time

Requirement Performance - Time Behavior

Measures

• Response time propagating to the persistence storage
below 500ms

– defining limited scopes for default searches

Priority Medium

Verification

• Extend testing to check response times meet target
range

ID NFR-2

Subject Easy and intuitive usability

Requirement Usability - Operability User Interface Aesthetics

Measures

• Layout should be intuitive and well labeled

• Instant gratification with feedback information

• User should be able to ”zoom” through the procedure
without extensive training

Priority Low to Medium

Verification

• External 3rd parties will be asked for feedback and get
back min. 70% of positive Feedback

• Feedback will be gathered by a form where Design, Us-
ability and Customization will be rated from 1 to 10

• Another critical feedback question will also be ”Would
you use this torrent solution over more-established pro-
grams?” or ”Would you recommend this torrent solution
to others”

ID NFR-3

Subject Decoupled code

Requirement Maintainability - Modifiability

Measures

• As little as possible coupled code, no big dependencies
or global variables

Priority High

Verification

• Thorough unit and regression testing

• Specifically removing functions to check if they are un-
intentionally coupled

ID NFR-4

Subject Readable code

Requirement Maintainability - Modifiability

Measures

• Interchangeable methods/classes even if metadata is
parsed. Metadata should be an external object.

Priority High

Verification

• With a linter check if amount of rows in functions are
below 30

ID NFR-5

Subject Testable code

Requirement Maintainability - Testability

Measures

• Testing of all boundaries (unit testing)

• Regression testing for coupling references

• Integration testing for ”final product”

• Testability provided with CI/CD

Priority High

Verification

• Every return value needs a unit test - boundary and type
test

• Input and Output validations - part of defensive pro-
gramming

• automated testing - CI/CD

1.6 Minimal Viable Product

As a first step into the development of this project we want to create a minimal viable
product (MVP) that we can use to download a file. The MVP includes the following
features:

• Parsing a torrent file

• Contact with tracker

• File piece request

• File assembly

Chapter 2

Domain Analysis

Figure 2.1: Domain Model Diagram

The domain model describes the torrent network and how a client can access and
download a file. A file is made out of pieces which are made up of blocks of typically 16
KB in size. Firstly the client Accesses a Torrent repository from which he receives the
Torrent file containing all the torrent information, like the tracker URL, the file name,
the file size, the piece size, and the pieces hashes. Afterwards the client contacts the
tracker and receives a list of peers that are currently seeding the file and are available to
download from. The client then connects to the peers and starts downloading the file.
The client downloads the pieces from the peers and verifies the hash of the piece. If the
hash is correct the piece is written to the file, if not the client requests the piece from
another peer. This process is repeated until the client has downloaded the whole file.

16

The client can also seed the file to other peers after he has downloaded the file.

Chapter 3

Architecture

Figure 3.1: Architecture Diagram

We heavily leaned on the codecrafters.io guide as a basis for our project. Thus,
many of the main components from that guide are present in our architecture model.
We had a little trouble designing the architecture model since the creating it on a

18

functional basis was a foreign concept to us, since we were heavily familiar with the
object-oriented paradigm. We decided to create a architecture model which will represent
the main components of the application and the functions that were implemented. the
function names are semantic and should help understand what component is responsible
for what.

Chapter 4

Quality Measures

4.1 Organisational

Typically, a feature is ”done” when it covers the defined functional requirement. In some
cases where the feature is bigger in scope, we allowed the developers to use their own
discretion and experience to break it up into multiple sub-parts that are merge ready.
So in bigger features (e.g. User Interface implementation) we allow multiple merges into
the main branch without the deletion of the feature branch.

4.2 CI/CD

During the whole development lifecycle we only worked with a documentation pipeline.
It is very similar to another pipeline we used for a different project. In short, it automat-
ically builds the document from the LaTeX documentation and delivers this very PDF
file as an artifact. Additionally you can trigger a spellchecker manually in the pipeline.

Towards the end of the project we aimed to create a build pipeline for the product
itself, where it just builds the project from its files and delivers an executable as an
artifact.

4.3 Testing strategy

4.3.1 Frontend

Testing of the front end has been done by just using the application. After implementing
the code, we tested the differemt functions and how they interact with the UI. If the
desiered behaviour has been reached, the test can be marked as ”passed”.

20

4.3.2 Backend

Again, we were fortunate to have worked with the codecrafters challenge, as the most
important elements of the backend were implemented with the help of the challenge.
Therefore we were able to utilise the built in tests from the challenge to determine if
the business logic is correct or faulty. The link to the CLI tool can be found here
https://docs.codecrafters.io/cli/installation

https://docs.codecrafters.io/cli/installation

Part III

Project Documentation

22

Chapter 5

Initial Project Proposal

Project name: Monad Torrent
MonadTorrent

Team Members

1. Davor Lucic (davor.lucic@ost.ch)
2. Fadil Smajilbasic(fadil.smajilbasic@ost.ch)

Vision

After taking the Functional Programming course we were fascinated by the elegance of
Haskell, and how you can get a lot of functionality out of a handful of lines of code.
One thing we both never grasped is, how we could actually use that knowledge in real
life software projects. Hence, this project will additionally be a learning process for us,
where we want to share the knowledge we gained.
The goal and vision of this project is not just a working torrent written in a functional
programming language, but it is to show to our fellow students and anyone that comes
across this project that building a project with the functional paradigm isn’t just pos-
sible, but something that should be considered as a valid option next to more common
approaches.

Proposed Realisation

As discussed we want to use Haskell to bring this project into fruition. For our frontend
there is a Library called ”Brick”, which will aid us in building a beautiful, but simple
Terminal User Interface (TUI). There are many Torrent Libraries available for Haskell,
but we plan on staying away from most of them, as we want to get as much of an inside
view as possible. We have considered using a torrent file library to handle the file itself,
but if possbible, the networking part will be programmed by us completely.

23

mailto:davor.lucic@ost.ch
mailto:fadil.smajilbasic@ost.ch

Chapter 6

Project Plan

Describe the project plan as covered in the SEP2 module. A project plan typically
consists of the following topics:

• Processes, meetings and roles

• Phases, iterations and milestones

• A rough list of things to be done (work items)

• Risk management

• Planning Tools (issue tracker, time tracker, ...)

You should not describe your technical solution in this chapter. It is all about
organizing your project.

6.1 Role distribution and collaboration framework

We have decided to not work with any commonly known method, since it is only going
to be two developers working on this application. However, we will use some elements
from the SCRUM method, such as weekly meetings to have the opportunity to share our
progress and problems over the past week. Nevertheless, we want to encourage sponta-
neous exchanges between us in form of short conversations between stand-ups or even
pair-programming sessions if a light exchange of ideas and inputs doesn’t suffice.

We will also use the built-in Kanban board, time tracker, issue board, and milestone
board from Gitlab to keep an overview of our progress.

The reason we keep our development method as simple as possible is because we want
to spend less time and less resources on managing story points / assigning t-shirt sizes
/ any other metric and more time building and documenting our product.

24

6.1.1 Role distribution

To reduce organisational overhead even more, we decided on no fixed roles. The sponta-
neous coordination of tasks and duties will be possible due to the small size of our team.
For this topic again, we want to prioritise developer experience over bureaucracy.

6.2 Project Phases

Unlike in agile methods, where we sprints of fixed time, we want to approach this project
with a milestone-based ideology. Milestones can vary in length depending on the size of
the scope of said milestone. The milestones for the Project itself are defined as following:

• Milestone 1 - Initial Setup: 17.09.2024 - 20.09.2024:Setup repositories and
add LATEXtemplate in documentation repo.

• Milestone 2 - Research: 17.09.2024 - 30.09.2024: Define basic conditions
for project, such as work methods, organisational topics, functional requirements
ann non-functional requirements, risk analysis including risk matrix, actors, rough
architecture, and roles.

• Milestone 3 - Backend MVP: 30.09.2024 - 21.10.2024: Have a working
minimal viable product including their UI elements.

• Milestone 4 - Expand MVP: 21.10.2024 - 11.11.2024: With the MVP
finished we can start to work on additional features for the torrent client.

• Milestone 5 - Testing and Integration: 11.11.2024 - 25.11.2024: Intensify-
ing tests to our product. Fix bugs and improve the torrent as we test with actual
users. How we want to approach and search for test subjects will be decided at a
later point of the project.

• Milestone 6 - Documentation and Manual : 25.11.2024 - 09.12.2024:
With the project’s ending in sight, we want to start writing the documentation of
the products usage in the Gitlab Wiki page, as well as finalising the documentation
as much as possible. One big part in the documentation will be the documentation
of the architecture. This isn’t done before, because the used architecture may
change throughout development.

• Milestone 7 - Project Submission : 09.12.2024 - 16.12.2024: The last phase
will be used for the cleanup of product and documentation, as well as creating the
handout necessary for submission as well.

The milestones can also be found on the milestones page of our Gitlab repo.

Chapter 7

Personal Reports

7.1 Davor Lucic

I knew from the beginning it was going to be a challenging project, as my experience with
Haskell, the Bittorrent protocol and non-web-based projects was very limited. Even if
the project experienced a few speedbumps, I still view it as a success. The beginning was
quite smooth, as Fadil and me both got familiar with the Bittorent protocol quite quickly.

The development slowed down quite a bit after that burst of initial productivity, as
we introduced the second major component of the application: the user interface. Most
of the code example we found online was already outdated, and the documentation pro-
vided with the Brick library proved to be lackluster. Thus forcing us to fill in the gaps
ourselves and experiment with the library first. After it had already cost us quite a bit
of time, we decided to split responsibilities, where I had the honour to explore the UI
library. I personally take accountability for not doing enough research about the library.
I would have still picked Brick as our tool of choice, since it’s still the best documented
option out there, but if I knew how painfully outdated most of the sources out there
were, I would have invested more time into getting to know the library earlier on.

Personally, working on this project proved to be quite rewarding after all. Even if a bit
tedious at times, I’ve grown to really appreciate Haskell’s declarative nature and thus
very clean and concise results. My personal highlight was the journey itself. Noticing
small improvements each and every day, starting to understand certain error messages
more (which the GHC does amazingly well), and seeing everything come together in the
end made me feel a grand sense of accomplishment.

7.2 Fadil Smajilbasic

The project was a great learning experience for me. I had never worked neither with
Haskell nor with a TUI before, and I was excited to learn a new things about the Haskell
language.

26

I was interested in learning more about the Bittorrent protocol, as I had never worked
with it before, just used it because it offers fast transfer speeds.
The usage of the Brick library was a bit challenging at first, as the documentation was
not very clear. However, after some experimentation, I was able to get the hang of.
I think the project went well overall. We were able to implement the core functionality of
the application, and I am happy with the end result even though we did not implement
all the features we wanted to.

Chapter 8

Personal Reports

Before the final submission, personally reflect your work in this project:

• What things did go well?

• Which areas could we improve?

• What were your personal highlights?

The information gathered in this chapter will be very useful for all your future
projects.

8.1 Davor Lucic

I knew from the beginning it was going to be a challenging project, as my experience with
Haskell, the Bittorrent protocol and non-web-based projects was very limited. Even if
the project experienced a few speedbumps, I still view it as a success. The beginning was
quite smooth, as Fadil and me both got familiar with the Bittorent protocol quite quickly.

The development slowed down quite a bit after that burst of intial productivity, as
we introduced the second major component of the application: the user interface. Most
of the code example we found online was already outdated, and the documentation pro-
vided with the Brick library proved to be lackluster. Thus forcing us to fill in the gaps
ourselves and experiment with the library first. After it had already cost us quite a bit
of time, we decided to split responsibilities, where I had the honour to explore the UI
library. I personally take accountability for not doing enough research about the library.
I would have still picked Brick as our tool of choice, since it’s still the best documented
option out there, but if I knew how painfully outdated most of the sources out there
were, I would have invested more time into getting to know the library earlier on.

Personally, working on this project proved to be quite rewarding afterall. Even if a bit
tedious at times, I’ve grown to really appreciate Haskell’s declarative nature and thus

28

very clean and concise results. My personal highlight was the journey itself. Noticing
small improvements each and every day, starting to understand certain error messages
more (which the GHC does amazingly well), and seeing everything come together in the
end made me feel a grand sense of accomplishment.

Chapter 9

Regular Meetings

The Monad-Torrent tean met on a regular basis with their professor and project su-
pervisor. The dates were determined on a rather spontaneous basis, although rarely
surpassing more than 10 days between meetings.

Meeting Agendas were prepared at the end of each meeting for the next meeting. These
agendas were of fixed structure in the beginning, as we had to coordinate formalities
around the projects direction and the actual goals. With time they became more fluent,
as product development and product demos became a focus the more time passed.

Since we are a team of two developers, detailed meeting minutes were of second pri-
ority, as we only had the meetings with all members present. A short bullet-point list
was created and shared after each meeting with the tasks-to-be-done. This philosophy
helped us further achieve the goal of prioritising developer satisfaction over creating
redundant bureaucracy.

30

	I Management Summary
	II Product Documentation
	Requirements
	Actors
	Functional Requirements
	Overview Use Cases
	Use Case Diagram
	Non-Functional Requirements
	Minimal Viable Product

	Domain Analysis
	Architecture
	Quality Measures
	Organisational
	CI/CD
	Testing strategy
	Frontend
	Backend

	III Project Documentation
	Initial Project Proposal
	Project Plan
	Role distribution and collaboration framework
	Role distribution

	Project Phases

	Personal Reports
	Davor Lucic
	Fadil Smajilbasic

	Personal Reports
	Davor Lucic

	Regular Meetings
	Bibliography

