Eas_tern Switzerland

Univers ity of Applied Sciences

EASTERN SWITZERLAND UNIVERSITY
OF APPLIED SCIENCES

Project Thesis

Towards Greener Software:

Measuring Performance and Energy
Efficiency of Enterprise Applications

Author: Supervisor:
Jan RUCH Prof. Dr. Olaf ZIMMERMANN

A project submitted in fulfillment of the requirements
for the degree of Master of Science in Engineering
focusing on Computer Science

Spring Term, 2025

Declaration of Authorship

[, Jan Ruch, declare that this project thesis titled, Towards Greener Software: Measuring Performance and
Energy Efficiency of Enterprise Applications and the work presented in it are my own. | confirm that:

* This work was done wholly or mainly while in candidature for a research degree at this University.

« Where any part of this thesis has previously been submitted for a degree or any other qualification at
this University or any other institution, this has been clearly stated.

« Where | have consulted the published work of others, this is always clearly attributed.

« Where | have quoted from the work of others, the source is always given. With the exception of such
quotations, this thesis is entirely my own work.

* | have acknowledged all main sources of help.

« Where the thesis is based on work done by myself jointly with others, | have made clear exactly what
was done by others and what | have contributed myself.

Rapperswil, June 23, 2025

Jan Ruch

Tools Used

+ GitHub Copilot [1] has been used as a plugin for my IDE. Copilot has been pre-installed for coding
purposes, however, Copilot also supports textual suggestions. Sometimes | have wholly or partially
taken over suggestions and adapted them to the context of this report.

+ Scribbr [2] has been used to cite all references in an APA 7th style.

+ DeeplL [3] has been used to translate parts of the chapter Introduction. The initial text has been written
in german in collaboration with Prof. Dr. Olaf Zimmermann.

+ Elicit [4] has been used to support the research of academic publications.

« ChatGPT [5] has been used to improve the text quality of this report by suggesting improvements,
rephrasing sentences, and correcting grammar. The suggestions have not been taken over verbatim,
but rather adapted to the context of this report.

Towards Greener Software | Declaration of Authorship | 1

2 | Declaration of Authorship | Towards Greener Software

Abstract

Performance is an important aspect of software quality in most software applications. In recent years, the
topic of energy efficiency has become increasingly important. Enterprise applications running in the cloud
receive particular attention. Poor performance and low energy efficiency lead to high operating costs and a
negative impact on the environment. Recognizing the significance of performance and energy efficiency as
software quality attributes and how to measure them is crucial.

This research project aims to investigate how two types of software quality attributes, performance and
resource and energy efficiency, are measured according to the state of the art and the practice today;
differences are identified and analysed. Following an empirical approach, an existing application test setup
and its measurement results (publicly available in the “Growing Green Software” blog) are first reproduced
and then compared with the behaviour of a second sample application. The two respective sample
applications are open source-projects leveraging Java and Spring Boot; one of them comes as a set of
microservices. Tools such as JMeter and Joular])X, configurations, and metrics across different test
environments and enterprise applications were experimented with. Contemporary software engineering
practices such as Domain-Driven Design and UML were used to analyse and document the software
architectures of the selected applications.

The measurements confirmed that the performance and energy consumption of the application are
significantly influenced by external factors such as hardware, operating system, and implementation
details. They show that the relative distribution of energy consumption is comparable across different test
environments and enterprise applications. Furthermore, the results suggest an inverse correlation
between performance and energy efficiency when different hardware is compared. They also indicate a
strong correlation when the same hardware is used but implementation details vary.

Future research could explore the energy efficiency of cloud-native applications and cloud infrastructure.

Towards Greener Software | Abstract | 3

4 | Abstract | Towards Greener Software

Acknowledgements

First and foremost, | would like to thank my supervisor Prof. Dr. Olaf Zimmermann for his never-ending
support and guidance throughout this project. His expertise and insights have been invaluable for the
success of this work. While conducting the measurements for this project thesis, writing the report, and
preparing a speech about the topics covered in this thesis, he has always supported me with great effort
beyond his responsibilities. | am grateful for the opportunity to work under his guidance and learn from his
experience.

I would also like to express my gratitude to Prof. Mirko Stocker who has acted as a subject-matter expert
and provided me with valuable feedback and suggestions when it came to the technical aspects of this
project. His work inspired the topic of this thesis, and it has inspired me to further explore the field of
energy-efficient software engineering.

Furthermore, | would like to thank Prof. Dr. Li Fang and the employees at the College of Computing & Data
Science, Nanyang Technological University in Singapore for providing me the technical infrastructure to
conduct measurements for this project thesis. Their support allowed me easy and free access to technical
means to conduct the measurements and experiments necessary for this project.

I would also like to thank my former fellow students and colleagues Marco, Christian, and Valentin for
proofreading this report and providing valuable feedback. Their insights and suggestions have helped me
to ensure that the report is understandable and well-structured.

Last but not least, | would like to thank my family, friends, and especially my partner Céline for their
unwavering support and encouragement throughout this project and my exchange semester in Singapore.
Their belief in me and their emotional support were invaluable during the challenging times of this project.

Towards Greener Software | Acknowledgements | 5

6 | Acknowledgements | Towards Greener Software

Table of Contents

Declaration of AUthOrship oo e e 1
ADSEraCt. . oo 3
ACKNOWIEO M NS, o o e 5
1IN OUCHION . ot e e e e e e 9
1.1, Context and OB eCtiVESttt e e e 9
1.2, Target AUIENCEttt e e e e 10
1.3 RESUILS L.ttt 10
2. Background INformation i 13
2.1, Enterprise ApPliCatioNSt 13
2.2. Software Quality AttriDULeSo 25
2.3.Summary and OULIOOK.t 35
3. Measurement Techniques and Experiment Designttt e 37
3.1. Measurement Methods and TOOISo it e 37
3.2. Architecture of Observed Systems and Tool Deployment. ...ttt 40
3.3. Measurement Challengesot e e 45
3.4. Specification, Tooling and Configurationt e 47
3.5.Summary and OULIOOK.ot 55
4. Measurement ReSUILS e 57
4.1. PetClinic Experiment: Establisha Baseline i e 58
4.2, PetClinic Experiment: Compare JPAand Spring Data JPA. i i i 68
4.3. PetClinic and LakesideMutual Experiments: Compare Master Data APIs 75
4.4, LakesideMutual Experiment: Compare Different Services.ottt 82
4.5, LakesideMutual Experiment: Compare Workflow Variants oottt 89
5. DISCUSSION ettt ettt et e e e e e e e e e e e e e e 99
5.1. Analysis and Interpretation of Measurement Results.ot 99
5.2. Generalization of Measurement Results. e 106
5.3 Related WoOrK . . . 109
D, REIIOS POV, .ttt e e e e e e e 110
5.5, OULIOOK. . 114
6. CONCIUSION . o ettt e e et e e e e e 117
7 AP PENAICES ottt e 119
APPENAIX Al GlOSSaNY . . ot ettt e e 119
Appendix B: Bibliographyo 123
Appendix C: List Of FigUres . ..ot e e e e e e e 131
Appendix D: List Of Tables. . ..ot e 134
Appendix E: List Of LiStings . . .« oot 135

Towards Greener Software | Table of Contents | 7

8 | Acknowledgements | Towards Greener Software

1. Introduction

Software quality attributes play a crucial role in the development and maintenance of enterprise
applications. This project thesis sets out to investigate the state of the art in measuring selected software
quality attributes in enterprise applications. The goal is to contribute to the understanding of how
performance and energy efficiency can be effectively measured and analyzed in practice.

1.1. Context and Objectives

Performance and energy efficiency are important quality attributes of software systems [6] [7]. In recent
years, the topic of energy efficiency has also become increasingly important, especially for cloud-native
applications [8]. Architecture metrics have already been considered in an initial project thesis [9] and in a
supplementary paper on observability in software architectures [10]. There is also a new blog on Growing
Green Software (GGS) [11], whose posts report on performance and efficiency measurements in a Java-
based Spring Boot sample application.

This project thesis aims to investigate whether, how and why the state of the art in the field of performance
and efficiency measurements reported in the academic literature differs from practice. The measurement
results of selected GGS blog posts will first be reproduced, then compared with the behaviour of another,
already known example application, and eventually generalized. The mentioned objective is separated into
five sub-objectives and formulated as research questions.

1. How are the two types of software quality attributes performance and resource and energy efficiency

defined
a. in the scientific literature and in official standards (ISO/IEC/IEEE) and
b. in the gray literature (e.g., Q42, Growing Green Software blog)?

2. How do performance tests and energy efficiency/resource consumption measurements have to be set
up so that their results are accurate, meaningful (with respect to the definitions from question 1) and
reproducible (e.g., with respect to the FAIR criteria)?

3. Is it possible to reproduce the measurements of the Spring Boot PetClinic sample that are reported in
the Growing Green Software blog? Do the interpretations of the data given in the blog posts require
clarification and discussion? How could the reported test and measurements be improved (taking the
answers to questions 1 and 2 into account)?

4. When measuring selected use cases of the sample application LakesideMutual in the same way as the
Spring Boot PetClinic sample, how do the two result sets compare? How can the differences be
explained? Does the monolith version of LakesideMutual show a different behavior than the
microservices version?

5. How can the results from questions 1 to 4 be generalized so that they can serve as guidelines and
examples for future tests and measurements of

a. other Spring Boot applications
b. other Web-based applications

c. any distributed, software-intensive system?

Towards Greener Software | 1. Introduction | 9

To address these research questions, this project thesis follows a systematic approach. Initially, it
researches definitions of performance and resource and energy efficiency from various sources. Next, it
examines suitable tools and techniques for measuring these quality attributes in practice. The selected
tools and techniques are then applied to reproduce existing measurements and expand the
measurements to a second enterprise application. The findings are compared, discussed, and generalized
for future measurements of software quality attributes.

1.2. Target Audience

Academic personnel, such as professors, students, and researchers, can refer to the measurement tools
and techniques presented in this thesis to further their own research or to apply them in their
experiments. They can compare the results of their own measurements with the findings presented in this
thesis and gain insights into the effectiveness of different measurement approaches.

Practitioners, such as software engineers or DevOps engineers, can apply the established metrics in their
projects to evaluate the quality of their software. The gained insights enable them to understand the
implications of their measurements and improve their software. Software architects can refer to the
approach presented in this thesis to design and implement continuous measurement strategies in their
projects.

Additionally, it may be of interest to business personnel, who are involved in software development
projects and want to understand the implications of software quality attributes and the process of
measuring them. They can relate to the findings and result discussion of this thesis to assess the impact of
software quality on project success and cost efficiency. It can help them make informed decisions about
resource allocation and project management.

1.3. Results

This thesis establishes measurable aspects for performance and energy efficiency in the context of
enterprise applications, researches best practices for measuring these aspects, applies them in
experiments, and evaluates the results.

Performance is not directly measurable, it needs to be characterized with measurable aspects.
Performance can be characterized with latency, throughput, and scalability [6]. We specify that scalability
should be treated as a separate quality attribute on the same level of abstraction as performance, because
scalability requires additional measurable aspects itself. This thesis focuses on latency and throughput as
measurable aspects and establishes round-trip time as the metric for latency and average requests as the
metric for throughput.

Resource and energy efficiency is not clearly defined in the context of software engineering. This thesis
refers to the terms useful work and energy efficiency factor to characterize resource and energy efficiency
[12]. We propose to leverage the INVEST mnemonic [13] to define useful work in the context of software
engineering. We understand this method as a step towards a more structured approach of defining useful
work and contributing to the discussion of how to measure resource and energy efficiency in software
engineering.

10 | 1. Introduction | Towards Greener Software

The thesis identifies RAPL and Joular/X to measure the energy consumption of a Java application on
Windows and Linux. Joular)x is combined with Apache JMeter as a load testing tool to measure the
performance of a Java application. The test setup includes automated test scenarios, setup and cleanup
steps, and resource constraints on the JVM to ensure a controlled test environment. The experiments apply
these methods and tools to two Spring Boot enterprise applications written in Java, the PetClinic and
LakesideMutual. The experiments consist of multiple test scenarios, which build on each other to achieve
meaningful results across different test environments and applications. Initial measurements reproduce
existing PetClinic measurements from the GGS blog and establish a baseline for this thesis. The thesis then
adapts the test plan and applies the same techniques and tools to measure LakesideMutual.

The results confirm that performance and energy consumption are affected by external factors, such as
hardware, operating system, and implementation details. The results suggest that the relative distribution
of energy consumption is comparable across different systems, different enterprise applications, and
across different sets of operations. The findings indicate an inverse correlation between performance and
energy efficiency for varying hardware resources. Furthermore, the results indicate a strong correlation
when the same hardware is used but implementation details vary.

The research field of performance and energy efficiency measurements is broad and still evolving. Future
work could explore different Java, Spring Boot, and database versions, configurations, or even code-related
changes. Instead of focusing solely on enterprise applications, future research could also measure other
types of applications, such as embedded systems, controllers, or mobile and desktop applications. Such a
work could contribute to a better understanding of performance and energy efficiency in a broader
context. The topic of performance and energy efficiency is growing and getting increasingly important,
especially with cloud-native deployments. We aim to continue this work in the future and investigate on the
energy efficiency of cloud-native applications and cloud infrastructure.

Towards Greener Software | 1. Introduction | 11

12 | 1. Introduction | Towards Greener Software

2. Background Information

This chapter provides background information on enterprise applications and the software quality
attributes that are relevant to their evaluation. It starts with a definition of enterprise applications in terms
of their characteristics, complexity, and purpose. The focus then shifts to selected software quality
attributes, performance and resource and energy efficiency. Understanding these concepts is essential for
measuring the two enterprise applications in subsequent chapters.

2.1. Enterprise Applications

This section focuses on enterprise applications, as opposed to other types of software systems, such as
embedded systems, control systems, or desktop and mobile applications. It defines enterprise applications
in terms of their characteristics and further introduces two example applications, the PetClinic and
LakesideMutual.

2.1.1. Definition of Enterprise Applications

Enterprise applications differ from other software systems in terms of their complexity, size, and purpose.
Fowler states that enterprise applications are "about the display, manipulation, and storage of large
amounts of often complex data and the support or automation of business processes with that data" [14].
Enterprise applications face different design challenges, such as user and channel diversity, process and
resource integrity, integration needs with other systems, and complex domain models and processing
rules [15]. Prominent examples of enterprise applications are customer relationship management (CRM),
enterprise resource planning (ERP), supply chain management (SCM) systems, or online shops such as
Amazon. These applications are designed to support long-running, complex business processes for
multiple users concurrently interacting with the system [16].

User and channel diversity refers to a wide variety of users and points of interaction with the system.
Different users can have different roles and responsibilities, and they may interact with the system through
different channels, such as web browsers, mobile devices, or APIs. Customers of Amazon would like to
access the online shop through their web browser, a mobile app, or the Alexa voice assistant. The
challenge is to provide a tailored, but consistent user experience across all channels and users.

Process and resource integrity refers to the process or workflow order and the resources involved in the
process. The process order must be followed to ensure that the system behaves correctly and consistently.
Amazon needs to ensure that the order process is followed correctly, from selecting items, adding them to
the cart, checking out, and processing the payment. The resources involved in the process must remain
consistent and available throughout the process.

Integration needs with other systems refers to the need to connect and communicate with other systems,
such as databases, third-party services, or legacy systems. Amazon needs to integrate with various
systems, such as payment providers, shipping companies, and inventory management systems. The
challenge is to ensure that the integration is seamless and does not disrupt the overall system
performance or user experience.

Towards Greener Software | 2. Background Information | 13

Complex domain models and processing rules refer to the business logic and rules that control the
system’s behaviour. The challenge is to ensure that the domain model remains clear, consistent, and
adaptable to changes as the business evolves. All these challenges can be tackled with different established
methods or patterns described in Pattern of Enterprise Application Architecture (PoEAA) [14], Domain-
Driven Design (DDD) [17], or Enterprise Integration Patterns (EIP) [18].

Non-functional requirements, or software quality attributes, are critical for enterprise applications [16]. The
customers of Amazon expect the online shop to be available, responsive, and secure. The online shop must
be able to handle hundreds or thousands of concurrent users and transactions without data consistency
issues. With inconsistent data, the online shop would not be able to process orders correctly, leading to
unsatisfied customers.

Additionally, business processes in enterprise applications are often long-running and complex. Customers
of an online shop can select their favourite payment method, pay the goods, select a shipping method, and
trigger the delivery process. The entire process can take several days and is updated throughout the
process. Such updates may partly depend on third-party companies, such as payment providers or
shipping companies. In another example, banking customers may have contracts for loans or mortgages
that run for several years up to decades.

Eventually, enterprise applications must comply with regulations and laws in their respective domains. In
the banking and finance industry, the Foreign Account Tax Compliance Act (FATCA) [19] or the Sarbanes-
Oxley Act (SOX) [20] are examples of regulations that require strict data handling and reporting procedures.
A failure to comply with these regulations can result in severe penalties and legal consequences for the
organization operating the enterprise application.

Figure 1 shows a mind map including the topics covered and their relationships.

Complex Domain Models)

Long-Running Business Processes)

(Enterprise Applications HMain Characteristics

Multiple Users)

Abide Laws and Regulations)

Figure 1. A mind map illustrating the main characteristics of enterprise applications

This list of examples is not exhaustive, but it illustrates the complexity of enterprise applications and the
challenges they face. It requires time and effort to design, implement, and maintain such complex software
systems. Due to time constraints and the scope of this thesis, it is not feasible to design and implement a
new enterprise application. Therefore, two existing enterprise applications are used throughout the
experiments to conduct measurements and evaluate the results.

14 | 2. Background Information | Towards Greener Software

2.1.2. Introduction of the PetClinic Application

The PetClinic is a monolithic Spring Boot enterprise application written in Java. The PetClinic is a renowned
example application in the Spring community [21]. Its purpose is to demonstrate the capabilities of the
Spring Framework.

The Spring framework is used to build production-ready Java enterprise applications [22]. The Spring Boot
framework builds upon Spring and eases the development of Spring applications [23]. It streamlines the
development process and establishes the concept of convention over configuration [24]. Spring Boot as
well as Spring support a variety of configurations, enabling developers to tailor applications to their specific
needs.

This thesis aims to establish a baseline for further experiments by reproducing the Growing Green
Software (GGS) blog measurements. The GGS blog refers to a specific version of the PetClinic, the Spring
PetClinic REST project [25]. This specific version solely provides a REST APl and no user interface. The
PetClinic application could be combined with a user interface like the Spring PetClinic Angular project [26].
The focus lies on the HTTP endpoints, therefore a user interface is omitted in the context of this thesis. The
application can run with different data sources, such as an H2 or HSQLDB in-memory data store, a MySQL
database, or a PostgreSQL database. The database can be accessed with either JDBC, JPA, or Spring Data
JPA.

A good understanding of the application, its functionality, its architecture, and its deployment is essential
for analyzing and interpreting the experiment results. Figure 2 visualizes the main classes Owner, Pet, and
Vet of the PetClinic application and their relationships to other classes.

@ User

BaseEntit
@ - O username: String

id: int O password: String
o0 enabled: Boolean

(©)NamedEntity © Person (©) Role

firstName: String
lastName: String

{i

© Owner

O address: String
O city: String
o telephone: String

O name: String

0 name: String

©) visit
O date: LocalDate
O description: String

0

©) vet

©) Pet

O birthDate: LocalDate

Figure 2. The UML class diagram of the PetClinic application

Towards Greener Software | 2. Background Information | 15

It appears that the NamedEntity and BaseEntity classes solely exist for the purpose of providing a name and
an id attribute to its subclasses. The concept of inheritance in object-oriented programming is used to
extend the behaviour of superclasses [27] while not violating the Liskov substitution principle [28] [29].
Classes like PetType or Speciality appear to fulfill the role of a database entity while solely storing data
without adding behaviour to the object. This design is known as an anemic domain model according to
Evans [17].

The purpose of the PetClinic application is to manage owners of pets, their pets, and to schedule visits to
veterinarians. The application provides HTTP endpoints for basic create, read, update, and delete (CRUD)
operations on owners, pets, veterinarians, pet types, specialities, visits, and users. All seven classes
correspond to eight entities, which are mapped to database tables.

Figure 3 shows an entity-relationship diagram. The many-to-many relationship between the Vet and
Speciality entities in Figure 2 is resolved with the vet_specialities join table in Figure 3. The 'E' icon
corresponds to the Spring Boot @Entity annotation and represents a database table, the 'J' icon refers to

the join table.

®) ® roles . #join tables

pet_id: int unsigned vet_specialties

username: varchar

;isit_c_laltle: -?Iate . role: varchar vet_id: int unsigned
.de§°:'p on: "'adm Els id: int specialty_id: int unsigned
id: int unsigne
v N
pet_id:id usarname specialty_id:id ‘\vet_id:id

(E) pets

{ :J users L .‘3 vels
name: varchar specialties
birth_date: date password: varchar first_name: varchar
. . . name: varchar -
type_id: int unsigned enabled: tinyint . : last_name: varchar
-) id: int unsigned o .
owner_id: int unsigned username: varchar id: int unsigned

id: int unsigned

W ~y

owner_id:id \type_id:id

@ owners

first_name: varchar

— types
last_name: varchar
address: varchar name: varchar
city: varchar id: int unsigned

telephone: varchar
id: int unsigned

Figure 3. The entity-relationship diagram (UML class diagram) of the PetClinic application

16 | 2. Background Information | Towards Greener Software

A veterinarian can have expertise in multiple specialities, such as internal medicine, surgery, or radiology. A
visit is appointed to a specific pet, which is of a specific pet type, such as a cat or a dog, and owned by an
owner. Users of the application are assigned to different roles, either as vets, owners, or admins. Users and
roles are solely relevant for a potential user interface.

The existing GGS blog test plan focuses on the create, read, update, and delete (CRUD) operations of the
PetClinic application. All data can be accessed via a respective data holder class, which bundles access and
provides manipulation operations. Figure 4 shows an example of retrieving all owners via the
OwnerRestController class, which acts as a master data holder [30] for the Owner entity.

@ «implements OwnersApi»
«MasterDataHolder»

OwnerRestController
T

«implements ClinicService»
ClinicServicelmpl
1

@ «implements OwnerRepository»
JpaOwnerRepository

@ OwnerMapper
1

A
>

2 findAllOwners()

6 toOwnerDtoCollection(owners)

N
>

|
|
|
|
!
|
|
|
|
!
|
|
I
|
!
1
'/ List<OwnerDto>
|

< 8 ResponseEntity<List<OwnerDto>> |

«implements OwnersApi»
«MasterDataHolder»

«implements ClinicService»
OwnerRestController

ClinicServicelmpl

@ OwnerMapper

«implements OwnerRepository»
JpaOwnerRepository

User

Figure 4. The UML sequence diagram of the PetClinic application for retrieving all owners

The OwnerRestController class provides endpoints for operations such as finding all owners, finding
owners by name, finding owners by ID, creating a new owner, updating and deleting an existing owner.
Similar operations are available for all other entities, except for the User entity, which only allows for
creating a new user.

According to the definition in Subsection 2.1.1, enterprise applications are complex software systems that
support long-running business processes and workflows for multiple concurrent users. While the PetClinic
represents an enterprise application based on its intended purpose, its complexity is limited compared to
other enterprise applications as it does not support complex business processes or workflows. A lack of
typical characteristics may result in different results compared to more complex enterprise applications.
The LakesideMutual application addresses this problem and allows for a comparison with the results of the
PetClinic application.

The PetClinic application is built with a monolithic architecture, which combines all components of an
application into a single deployable unit. The application is separated into two tiers, a database tier and a
monolithic backend tier. The frontend tier is out of scope for this thesis and replaced with a load testing
tool. Figure 5 shows the deployment diagram of the PetClinic application on a localhost.

Towards Greener Software | 2. Background Information | 17

Actor

HTTP

localhost

Backend Server (Apache Tomcat)

Spring Boot PetClinic

spring-petclinic-rest-3.4.3 jar B

JDBC

.

Database Server (Docker)

]
MySQL Database

petclinic J

Figure 5. The UML deployment diagram of the PetClinic application

The backend runs as a Spring Boot application on an embedded Tomcat server, while the database runs in
a Docker container. The project recommends to use Docker containers for persistent databases.
Additionally, the GGS blog refers to a MySQL database in a Docker container for its measurements.

Figure 6 visualizes the main characteristics of the PetClinic application to reinforce the understanding of
the application.

One Backend SEWiC&]

Monolithic Architecture

One Database

Lacks Complex Business Pmcesses]

PetClinic

[Enlerprise Applications

CRUD Operations

HTTP API

Figure 6. A mind map illustrating the main characteristics of the PetClinic application

18 | 2. Background Information | Towards Greener Software

2.1.3. Introduction of the LakesideMutual Application

LakesideMutual is a service-oriented Spring Boot enterprise application [31]. It represents the application of
a fictitious insurance company called Lakeside Mutual and serves as a sample application in the context of
Microservice API Patterns (MAP) [30] [32], Domain-driven design (DDD) [17], Patterns of Enterprise
Application-Architecture (PoEAA) [14], and Enterprise Integration Patterns (EIP) [18]. This thesis utilizes the
LakesideMutual application to adapt the PetClinic measurements to a second enterprise application. The
results are compared with each other, interpreted and generalized.

The service-oriented architecture specifies four backend services, three frontend services, two reporting
services, and two administrative services. The frontend services are out of scope for this thesis and
replaced with a load testing tool. The reporting and administrative services are also out of scope and
therefore omitted. The backend services use file-based H2 databases by default, but the application allows
for the configuration of arbitrary databases. The databases are accessed via Spring Data JPA.

The backend services fulfill different responsibilities. The customer core service manages the customer
master data and provides it to other components via HTTP API. The customer management service
provides an HTTP API for the customer management frontend. This APl enables employees to manage
customer data and interact with customers in case of inquiries.

Figure 7 visualizes the main classes CustomerAggregateRoot and InteractionLogAggregateRoot of the
customer core and customer management services respectively.

customer-management-backend
customer-core
© InteractionLogAggregateRoot
@CustomerAggregateRout O customerld: String
O username: String
1 o lastAcknowledgedinteractionld: String
|]
1
0.7
© CustomerProfileEntity
1) T 1d: Long © InteractionEntity
@Customer\d o firstname: String o id: String
o o lastname: String O date: Date
EISTING O birthday: Date o content: String
o0 email: String o0 sentByOperator: boolean
’ 0 phoneNumber: String

currentAddress /moveHistory
1 0.*

@ Address

O id: Long
O streetAddress: String
o postalCode: String

O city: String

Figure 7. The UML class diagram of the customer core and customer management services

The aggregates mark a conceptual boundary in the DDD principles [17]. Within these boundaries, the
composed parts are consistent according to business rules and processes. Figure 8 shows the entity-
relationship diagram of both services, in which the one-to-many relationships are resolved using additional
join tables.

Towards Greener Software | 2. Background Information | 19

customer-core

customers

. wfoin tables
customer_profile_entity_move_history

customer-management

customer_profile_id: bigint
id: varchar(255)

move_history_id: bigint

customer_profile_entity_id: bigint

. wjoin tables
interactionlogs_interactions

customer_profile_id:id customer_profile_entity_id:id

customer_profile_entity

current_address_id: bigint
id: bigint

birthday: datetime(6)

email: varchar(255)
firstname: varchar(255)
lastname: varchar(255)
phone_number: varchar(255)

current_address_id:id

@ addresses

id: bigint

city: varchar(255)
postal_code: varchar(255)
street_address: varchar(255)

interaction_log_aggregate_root_customer_id: varchar(255)
interactions_id: varchar(255)

interaction_log_aggregate_root_customer_id:customer_id

interactionlogs

interactions_id:id

® interactions

move_history_idi:

d| |last_acknowledged_interaction_id: varchar(255)
username: varchar(255)
customer_id: varchar(255)

content: varchar(255)
date: datetime(6)
sent_by_operator: bit(1)
id: varchar(255)

Figure 8. The entity-relationship diagram (UML class diagram) of the customer core and customer management

services

The customer self-service service provides an HTTP API for the customer self-service frontend. This API

enables customers to manage their personal data and request insurance quotes. The first step of the main
business workflow involves customers requesting insurance quotes. Figure 9 shows the main class
InsuranceQuoteRequestAggregateRoot of the customer self-service service and its related classes.

(©) UserLoginEntity
O id: Long

O autherities: String
o email: String

4 | O password: String

(©) customerinfoEntity

O id: Long
o firstname: String
o lastname: String

1
1

billingAddress |contactAddress

(© Address

customer-self-service-backend

@ InsuranceQuoteRequestAggregateRoot

O id: Long
O date: Date
1) O policyld: String

—

1 1
tatusHistory
1 .

@ InsuranceOptionsEntity @ InsuranceQuoteEntity @ RequestStatusChange
O id: Long O id: Long O id: Long
o startDate: Date O expirationDate: Date O date: Date
1
insurancePremium /policyLimit
1
RequestStatus

1

@Customerld

O id: Long

@ MoneyAmount

@ InsuranceType

O streetAddress: String

o postalCode: String EIOAStng

O name: String

O amount: BigDecimal
O currency: Currency

O city: String

REQUEST_SUBMITTED
REQUEST_REJECTED
QUOTE_RECEIVED
QUOTE_ACCEPTED
QUOTE_REJECTED
QUOTE_EXPIRED
POLICY_CREATED

Figure 9. The UML class diagram of the customer self-service service

20 | 2. Background Information | Towards Greener Software

Classes like the Customerld, the MoneyAmount, and the RequestStatus are embedded attributes of other
classes. This design is known as a value object in DDD [17]. These value objects do not require additional
database tables, as they are stored as attributes of other entities. Figure 10 shows the entity-relationship
diagram of the customer self-service service and the value objects as embedded attributes.

customer-self-service

® user_logins

- = . wfoin tables
id: bigint insurancequoterequests_status_history

authorities: varchar(255)
customer_id: varchar(255)
email: varchar(255)
password: varchar(255)

insurance_quote_request_aggregate_root_id: bigint
status_history_id: bigint

insurance_quote_request_aggregate_root_id:id ‘status_history_id:id

@ requeststatuschanges

insurancequoterequests id: bigint

customer_info_id: bigint date: datetime(6)
insurance_options_id: bigint status: enum('policy_created’,
insurance_quote_id: bigint 'quote_accepted',

id: bigint 'quote_expired'’,

date: datetime(6) ‘qﬁzz‘ziffi 0

policy_id: varchar(255) o e

'request_rejected’,
'request_submitted')

customer_info_id:id nsurance_options_id:id insurance_quote_id:id

customerinfos insuranceoptions ® insurancequotes
billing_address_id: bigint o id: bigint
contact_address_id: bigint eIt

expiration_date: datetime(6)
insurance_premium_amount: decimal(38,2)
customer_id: varchar(255) name: varchar(256) msgrance__premlum_curr_ency: varchar(3)
firstname: varchar(255) start_date: datetime(5) policy_limit_amount: decimal(38,2)
lastname: varchar(255) = . policy_limit_currency: varchar(3)

id: bigint deductible_amount: decimal(38,2)
deductible_currency: varchar(3)

contact_address_id:id \billing_address_id:id

@ Addresses
id: bigint
city: varchar(255)
postal_code: varchar(255)
street_address: varchar(255)

Figure 10. The entity-relationship diagram (UML class diagram) of the customer self-service service

The policy management service provides an HTTP API for the policy management frontend. This API
enables employees to manage policies of customers and respond to insurance quote requests. The second
step of the main business workflow involves employees of Lakeside Mutual creating insurance offers based

on the insurance quote requests of customers. The insurance quote requests are updated and sent back to
the customers.

Towards Greener Software | 2. Background Information | 21

Figure 11 shows the main classes PolicyAggregateRoot and InsuranceQuoteRequestAggregateRoot of the policy
management service as well as their related classes.

policy-management-backend

® .
Oid: Long

O date: Date

o policyld: String

1 1 1
tatusHistory
1 1 -
© PolicyAggregateRoot @ " @ N "

(©) customerinfoEntity © A
Ezf::z’;g;:DangATION—DATE‘ Sting o id: Long o id: Long E z‘smﬁg S oid: Long
o oo TR o expirationDate: Date o startDate: Date St o date: Date

1

deductible

\contactAddress |pillingAddress
1

RequestStatus
1 1
; " 1 1 (©) Address REQUEST_SUBMITTED
@ rangagoemententy] [@poicyn| | ©POPood | (@ by | @ Monoyamaunt | Gyl [@ousomerd| |16 Long R e
o id: Long o id: String E:': d’:'));‘:’[?;:: o name: String ° :I"':":’:c'ysgf::r"?;‘ 5 name: String o id: String : ;‘;:;‘Qg?;ﬁ;;"g QUOTE_ACCEPTED
= o city: Strin : QUOTE_REJECTED
1 LS QUOTE_EXPIRED
POLICY_CREATED

0.

(©) nsuringagreementitem

oiid: Long
o title: String
o description: String

Figure 11. The UML class diagram of the policy management service

The policy management service duplicates the insurance quote request aggregate and introduces the
policy aggregate. Two classes Customerld and MoneyAmount are shared value objects between the two
aggregates. The code duplication is also visible in the entity-relationship diagram, as shown in Figure 12.

22 | 2. Background Information | Towards Greener Software

policy-management

@ Insurancepolicies

insuring_agreement_id: bigint

«wfoin tables

. Insuringagreements_agreement_items

insuring_agreement_entity_id: bigint
agreement_items_id: bigint

agreement_items_id:id

[

Insuranceagreementitems

id: bigint

description: varchar(255)
title: varchar(255)

creation_date: datetime(6)
customer_id: varchar(255)
deductible_amount: decimal(38,2)
deductible_currency: varchar(3)
premium_amount: decimal(38,2)
premium_currency: varchar(3)
limit_amount: decimal(38,2)
limit_currency: varchar(3)

wfoin tables

. Insurancequoterequests_status_history

insurance_guote_request_aggregate_root_id: bigint

status_history_id: bigint

insuring_agreement_entity_id:id

end_date: datetime(6)

name: varchar(255)
id: varchar(255)

start_date: datetime(6)

insuring_agreement_id:id

A

Requeststatuschanges

slatus_history_id:id jnsurance_guole_request_aggregate_root_id:id

id: bigint

Insuringagreements

id: bigint

date: datetime(6)
status: enum(’policy_created’,
'guote_accepted',
'quote_expired",
'quote_received',
'guote_rejected’,
'request rejected’,
‘request_submitted’)

@ Insurancequoterequests

id: bigint

customer_info_id: bigint
insurance_options_id: bigint
insurance_quote_id: bigint

date: datetime(6)
policy_id: varchar(255)

@ Customerinfos

billing_address_id: bigint
contact_address_id: bigint
id: bigint

customer_info_id:id

® Insuranceoptions

id: bigint

customner_id: varchar(255)
firstname: varchar(255)
lastname: varchar(255)

deductible_amount: decimal(38,2)
deductible_currency: varchar(3)
name: varchar(255)

start_date: datetime(6)

éﬂtacl_address_id:i}iling_address_id'.id

@ Addresses

id: bigint

city: varchar(255)
postal_code: varchar(255)

street_address: varchar(255)

insurance_options_id:id

{nsurance_quote_id:id

Insurancequotes

id: bigint

expiration_date: datetime(G)
insurance_premium_amount: decimal(38,2)
insurance_premium_currency: varchar(3)
policy_limit_amount: decimal(38,2)
policy_limit_currency: varchar(3)

Figure 12. The entity-relationship diagram (UML class diagram) of the policy management service

restarting the main business workflow.

retrieving all customers in the LakesideMutual application.

Towards Greener Software | 2. Background Information | 23

The third and final step of the business workflow involves customers accepting or declining the received
insurance offer in the customer self-service frontend. The acceptance of an offer results in a new insurance
policy. In case customers decline an offer, they are free to request a new insurance quote, effectively

Similar to the PetClinic application, LakesideMutual relies on master data like customers and operational
data like insurance quote requests. The CustomerinformationHolder class in the LakesideMutual application
is @ master data holder for the Customer entity [30]. Figure 13 visualizes the sequence diagram for

Customer Management Backend Customer Core
«MasterDataHolder» i «MasterDataHolder» i
User CustomerinformationHolder CustomerCoreRemoteProxy ‘ i (@) customerCoreClient CustomerinformationHolder CustomerService ‘ i@ EntityManager
0 T T T T T T
! et < i 10 A 3 3 3 3 3
| 2 getCustomers(fiter, limit, offset) i |] 1 1
i 1 3 getCustomer(iiter,limit, offset)
| 1 4 getc limit, offset, fields = ™)
s getCustomer(filter, limit, offset) 3
i 6 createQuery(query) i
7 long totalSize i
g createQuery(query) i
: 9 List<Customerld> :
1 10 createQuery(auery) i
' 11 List<CustomerAggregateRoot> |
3 13 Dto> 3 ;
3 14 PaginatedCustomerResponseDto 3 ;
3 15 PaginatedCustomerResponseDto 3 i
16 Dto: 3 i
User O ice: i (@) customerCoreCiient ’@ MasterDataHold © ‘ i@
CustomerinformationHolder CustomerC: y CustomerinformationHolder C

Figure 13. The UML sequence diagram of the LakesideMutual application for retrieving all customers

LakesideMutual is built with a service-oriented architecture, which separates the application into multiple

services that are deployed independently. The application is separated into four backend tiers and one

database tier. The frontend tiers are omitted for this thesis and replaced with a load testing tool. Figure 14

shows the deployed services of the LakesideMutual application and their communication with each other

and the database.

Customer

HTTP TGP [ActiveMQ

-0

Employee

HTTP HTTP

localhost

/

]

(@]

Custdmer Self-Service Backend Server (Apache Tomcat)

(Policy Management Backend Server (Apache Tomcat)

customer-self-service-backend-0.0.2 jar

£1
Spring Boot Customer Self-Service Backend

Spring Boot Policy Management Backend

policy-management-backend-0.0. 2.JEIB|

[

Customer Management Backend Server (Apache Tomcat)

Spring Boot Customer Management Backend

customer-management-backend-0.0.2 jar

JDBC

H HTTP HTTP
‘:u(!omer Core Backend Server (Apache Tomcat)
Spring Boot Gustomer Gore

JDBC

|

T

Dmfhase Server (Docket)

MySQJ LakesideMutual Database

= b

7

JDBC

Figure 14. The UML deployment diagram of the service-oriented LakesideMutual application

The diagram illustrates that the backend services communicate with the customer core service, which

provides the customer data. The customer self-service and policy management services communicate with

each other via message queues to process insurance quote requests. Each service has its own database

running in one MySQL Docker container. The experiments in this thesis refer to the illustrated deployment.

24 | 2. Background Information | Towards Greener Software

This thesis builds on the foundational PetClinic experiment, adapting the test scenarios and applying them
to LakesideMutual to broaden the insights into enterprise applications. The adapted measurements focus
on the Customer entity and the insurance request workflow. The increased complexity of the business
processes and the additional services allow for a more accurate measurement of enterprise applications
according to the definition in Subsection 2.1.1. Table 1 provides a comprehensive overview of the two
applications, highlighting their characteristics and differences.

Table 1. A comparison of the PetClinic and LakesideMutual enterprise applications in terms of their characteristics

Characteristic PetClinic LakesideMutual
Framework / Programming Spring Boot / Java Spring Boot / Java
Language
Architecture Monolithic Service-oriented
Number of Services 1 4
Number of Databases 1 4
Configured Data Source MySQL Database MySQL Database
Configured Database Access JPA or Spring Data JPA Spring Data JPA
Data Manipulation Operations + Create Operations + Create Operations

* Read Operations * Read Operations

+ Update Operations + Update Operations

+ Delete Operations + (Delete Operations only on

Policies)
Business Processes None Insurance Quote Request
Workflow

The two enterprise applications differ in their architecture, the number of services, the database access,
the data manipulation operations, and the business processes. This thesis considers said differences in the
test scenarios to achieve meaningful results and ensure comparability. Section 2.2 provides an overview of
the software quality attributes that are relevant for the evaluation of the two enterprise applications.

2.2. Software Quality Attributes

This section elaborates on the software quality attributes performance and resource and energy efficiency to
measure the quality of enterprise applications. It characterizes these two attributes with measurable

aspects and metrics considering official standards, academic literature, and grey literature. The additional
annex document provides further details on the research methods used to identify the relevant literature.

Software quality attributes should be specific, measurable, achievable, relevant, and time-bound (SMART)
[33]. Zimmermann and Stocker mention the Quality Attribute Scenario (QAS), which is an alternative term
for SMART [34]. "A quality attribute scenario specifies a measurable quality goal for a particular context"
[34]. The Software Engineering Institute (SEI) provides a fact sheet for Quality Attribute Workshops (QAWSs)
[35], which are used to establish measurable quality attributes. SEI states that the key concept of a QAW is
a meeting with stakeholders; "during which scenarios representing the quality attribute requirements are

Towards Greener Software | 2. Background Information | 25

generated, prioritized, and refined" [35]. These scenarios provide insights into important business
objectives and specify measurable quality attributes. Bass, Clements, and Kazman provide further
explanations on the different phases and necessary steps of a QAW in [36]. This thesis aims to provide
measurable aspects for selected quality attributes.

2.2.1. Performance

The International Organization for Standardization (ISO) and the International Electrotechnical Commission
(IEC) provide a standard for "Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Product quality model" [37]. The ISO/IEC 25010:2023 standard
contains definitions for performance efficiency and resource utilization. Performance is defined as the
"capability of a product to perform its functions within specified time and throughput parameters and be
efficient in the use of resources under specified conditions" [37]. The standard mentions an efficient use of
resources, which is further elaborated on. Resource utilization is defined as the "capability of a product to
use no more than the specified amount of resources to perform its function under specified conditions"
[37]. The standard does not provide examples for the terms resources and conditions, they need to be
defined individually for each use case. This standard lacks specific, measurable aspects for performance
and Subsection 2.2.2 focuses on resource and energy efficiency in depth.

The Institute of Electrical and Electronics Engineers (IEEE) provides a standard for "Systems and software
engineering — Life cycle management — Part 4: Systems engineering planning" [38]. It covers system
engineering, not software engineering, but it may help to derive measurable aspects from a different
perspective. The ISO/IEC/IEEE 24748-4:2016 standard defines a measure of performance (MOP) as an
"engineering parameter that provides critical performance requirements to satisfy a measure of
effectiveness (MOE)" [38]. The term MOE is defined as an "“operational” measure of success that is closely
related to the achievement of the operational objective being evaluated in the intended operational
environment under a specified set of conditions" [38].

The old, replaced IEEE 1220-2005 standard [39] provides a refined definition of performance requirements.
It defines a performance requirement as a "measurable criteria that identifies a quality attribute of a
function or how well a functional requirement must be accomplished" [39]. This standard emphasizes that
performance is not directly measurable; performance needs to be characterised with measurable aspects.
According to IEEE, performance measurements should rely on technical performance measures (TPMs),
which measure critical MOPs, which in turn satisfy MOEs. In other words, we use TPM to measure
performance requirements in order to evaluate the achievement of objectives under specified conditions.
In case these MOPs are not met, the project could be at a risk of cost, schedule, or performance problems
[39]. The standard neither provides examples or specific aspects for TPMs nor MOPs, it does not provide
clear measurable aspects of performance.

Grey literature provides insights into a more practical approach of analysing software quality. The arc42
Quality Model (Q42) [40] is such an approach to analyse product and system quality. Q42 generally follows
the ISO/IEC 25010 standard with explanations and examples. Q42 defines performance according to the
previously established ISO/IEC 25010 standard [37]. It lists an example of a performance requirement [41],
which measures performance according to the response time it takes to render an image. This example
consists of a context information, a stimulus or trigger, and a metric that specifies the expected
performance.

26 | 2. Background Information | Towards Greener Software

Academic literature provides a comprehensive definition of performance in the context of distributed
software systems. According to Denaro et al. [6], performance can be characterized with latency,
throughput, and scalability.

The definition of latency, throughput, and scalability [6]

Latency typically describes the delay between request and completion of an operation. Throughput
denotes the number of operations that can be completed in a given period of time. Scalability
identifies the dependency between the number of distributed system resources that can be used by
a distributed application (typically number of hosts or processors) and latency or throughput.

Q42 also provides definitions for latency, throughput, and scalability. Q42 specifies: "Latency in general is a
time delay between the cause and the effect of some change in a system" [42]. The definition of
throughput depends on the context it is used in, Q42 refers to a definition from Burke: "Throughput is a
measure of how many units of information a system can process in a given amount of time" [43] [44]. Q42
refers to the ISO/IEC 25010:2023 standard for the definition of scalability. "Capability of a product to handle
growing or shrinking workloads or the ease with which the product’s capacity can be adapted to handle
variability" [45] [37].

We argue that scalability should be treated as a separate quality attribute on the same level of abstraction
as performance. Scalability itself is not measurable, it needs to be characterized with measurable aspects
similar to performance. We specify that scaling a software system should not affect other software quality
attributes of said system. This requires additional metrics and test cases to ensure that no other quality
attribute is affected by scalability. We state that measuring scalability is out of scope for this thesis.

Baumgartner measures performance with latency, throughput, and memory consumption [46] [47]. Initial
memory consumption and average memory consumption under load are interesting aspects of
performance, especially from a server-side perspective. An Abstracta blog post [48] suggests metrics, such
as response time, system throughput, and concurrent users. The amount of clients or concurrent users is a
crucial aspect when performing load or stress tests [49]. The author of the Growing Green Software (GGS)
blog measures performance by measuring the average execution time for an operation in a Java
application [50], He measures performance with a tool named Apache JMeter in the subsequent post
"Evolution of Energy Usage in Spring Boot" [51]. The author does not further specify the metric he uses,
chances are that he refers to the total execution time of a JMeter test plan.

Towards Greener Software | 2. Background Information | 27

Table 2 presents a breakdown of measurable performance quality attributes on a conceptual level in the
context of distributed software systems.

Table 2. Measurable performance quality attributes and metrics (own presentment)

Aspect Description Metric Example

Latency Round-trip time (RTT): The time |2 * Propagation |A login request takes 2 * 100ms
it takes from sending a request to | Delay + propagation delay + 150ms
receiving a responses. Processing Time |processing time = 350ms.

The propagation delay is the time
it takes to transmit a signal from a
sender to a receiver.

Throughput Average requests: The number of | Total Requests / | The system manages to process
requests that a system can Time Interval 10 login requests per second on
process in a given time frame. average.

Figure 15 summarizes the measurable aspects and metrics of the performance quality attribute.

Specific, Measurable, Achievable, Relevant, and Time-bound (SMART))—(Quality Attribute Workshop (QAW) HQuaIiw Attribute Scenario (QAS))

Latency HRound-trip Time)
Performance HMeasurable Aspects

Throughput HAverage Requests)
Scalability

Software Quality Attributes

Figure 15. A mind map illustrating the performance software quality attribute

The established metrics are used in the experiments to measure the performance of the applications.

2.2.2. Resource and Energy Efficiency

Like performance, resource and energy efficiency is a software quality attribute that is not directly
measurable. According to various sources, resource and energy efficiency are not clearly defined in the
context of software engineering [7] [12] [52]. We address this gap by considering definitions from other
fields such as hardware engineering and adapt them to software engineering.

The ISO and the IEC provide a standard for "Information technology — Data centres — Key performance
indicators". The ISO/IEC 30134:2016 standard contains definitions for data centers and covers their
resource usage efficiency. They standardize that information technology (IT) equipment energy
consumption has to be measured in kilowatt-hours (kWh) [53]. We can easily convert kWh to other units
like joules or watts depending on the use case. Resource usage efficiency is defined as the "ratio of output
to the resource used by the device or system when the input and output units are the same" [54]. Even
though this definition is associated with servers and data centers, it provides a basis for understanding
resource and energy efficiency. However, the terms input and output are not further specified and need to
be defined individually.

The Green Software Foundation (GSF) [55] is a non-profit foundation that aims to reduce the
environmental impact of software. The GSF provides standards, tooling and best practices for green
software development. The involved people are working on a standard for green software in a GitHub

28 | 2. Background Information | Towards Greener Software

repository; they have published a "Software Carbon Intensity (SCI) Specification" [56]. The specification has
been released, but it appears to be not yet finalized and not yet a generally accepted standard. However,
they mention a software sustainability action for energy efficiency, which includes all actions that make
software use less electricity to perform the same functionality [56]. This sustainability action, supports the
ISO/IEC 30134:2016 standard by considering energy consumption as an input and functionality as an
output. We can use this specification to further elaborate on functionality and energy consumption.

Capra et al. state that energy efficiency is not clearly defined [57] and suggest the following definition: "In
general, technology is considered efficient when it performs a job with a small amount of extra energy in
addition to the theoretical minimum" [52]. The authors adapted this definition to software engineering and
stated that software energy efficiency can be measured by describing a task, consisting of functional
operations, which the software must perform, and by identifying the theoretical minimum energy required
to perform the task [52]. This requires us to define a set of functional operations. We specify a set of
functional operations to be the functionality or output in the previously established sustainability action.
However, it is still unclear how to define the theoretical minimum energy required to perform a task.

Capra et al. suggest the term specific energy, which describes the energy consumption of a system running
an application executing a workload compared to the average energy consumption of applications with the
same functionality and workload [57]. Figure 16 explains the mathematical definition of specific energy.

The operating definition of specific energy is obtained as fol-
lows. Given an application, say i, belonging to a functional area,
say A, specific energy SE; is defined as:

_ Ed,— Fd,
Ed,

where Ed; is the difference between the power absorbed by the sys-
tem running application i and the power absorbed by the system in
idle, integrated over the time required to complete the workload;
Ed, is the mean value of Ed of applications in functional area A.

The lower the specific energy required to execute a set of bench-
mark workloads, the higher the energy efficiency. Accordingly, we
define the energy efficiency of an application i as:

EE; = 1 — SEinoru (2)

SE; (1)

where SE;yory i the value of SE; normalized to values between 0 and
1 over the sample of applications considered within the same func-
tional area.

Figure 16. The definition of specific energy [57]

It is worth noting that specific energy is normalized and therefore comparable across functional areas [57].
The authors conclude that an "application is considered more energy efficient than another application if it
responds to the same request with lower energy consumption on the same hardware" [57]. So far this
section established a mathematical definition for specific energy, which can be mapped to the input
according to the ISO/IEC 30134:2016 standard. Additionally, it defined a set of functional operations, which
can be mapped to the output respectively. However, this approach considers the energy consumption of
the entire system, not just the software.

The GGS blog [11] covers topics related to software sustainability. The post "Software Efficiency and Energy
Consumption" [58] refers to the definition of efficiency from the Cambridge Dictionary: "the relationship
between the amount of energy put into a machine or process, and the amount of useful work that it

Towards Greener Software | 2. Background Information | 29

produces:" [59]. The blog author clarifies that the term useful work is not standardized in software
engineering. Guldner et al. try to resolve the lack of standardization in the field of green software
engineering [12]. They establish a list of relevant metrics for energy efficiency and a glossary [60], which is
among other resources based on a framework for energy efficiency testing [62]. Figure 17 shows two
relevant metrics to measure energy efficiency, the definition of useful work and energy efficiency factor.

Useful work varied usage scenario Necessary when calculating energy efficiency (see below),
performance metrics (regression error, test accuracy, F1-score, loU,
ete.) can indicate useful work done of ML models

Useful work and energy Especially useful for comparisons, needs additional computation and
possibly the recording of additional metrics

Energy efficiency factor

Figure 17. Relevant metrics for energy efficiency [12]

Useful work is mentioned as a varying unit, which needs to be defined individually for each software
product or use case [12]. This leaves some room for interpretation when defining actual metrics.
Eventually, useful work flows into the calculation of the energy efficiency factor as shown in Figure 18.

Use fulWork Dons
U sed Energy

EnergyEf ficiency =
Figure 18. A mathematical definition of useful work [63]

The energy efficiency factor is defined as "the quotient of the number of processed items (see useful work)
and the energy consumed (by the SuT, CPU, GPU, etc.) in the process" [60]. The acronym SuT stands for
System under Test. When an application has an increased energy efficiency factor, it uses less energy to
process the same amount of useful work. This definition aligns with the previously established definitions
of energy efficiency. The authors suggest to use meaningful measurement units, such as joules for short
energy consumption measurements or when calculating the energy efficiency factor, and kwh for longer,
more resource-intensive measurements.

The term useful work is not defined in sufficient detail and its meaning depends on the domain context it is
used in. This thesis suggests to leverage the INVEST mnemonic [13] to work towards a definition of useful
work. The INVEST acronym represents a set of criteria to assess the quality of a user story and to help
breaking down large work packages into smaller, more manageable tasks. INVEST stands for:
Independent: A story is independent and should not overlap with other stories. Stories should be
implementable in any order.

Negotiable: A story is not a contract, it is a placeholder for a conversation. The story should contain the
essence and motivate the team to discuss the details.

Valuable: A good story is valuable to the customer. Each story should contain a vertical slice of
functionality, which increments the product and provides value.

Estimable: Each story should be estimable, which requires the team to understand the story, and allows
them to estimate overall effort. This criterion is affected by the size of the story, the complexity of the task,
and the teams experience.

Small: Smaller stories tend to be easier to understand, easier to estimate, and easier to implement.
Testable: Each story should be tested to ensure it meets the acceptance criteria.

30 | 2. Background Information | Towards Greener Software

The INVEST mnemonic is applicable to large work packages such as epics as well as too large user stories.

Table 3 shows examples of PetClinic and LakesideMutual Epics that are too large and how they can be

refined according to the INVEST criteria.

Table 3. An example of refined user stories according to INVEST

Application

Epic

Refined User Story

PetClinic

| as a pet owner want to manage my pets,
so that they are taken care of.

| as a pet owner want to create a visit
appointment for my pet at the pet clinic,
so that a veterinarian treats my pet, and |
am informed about the treatment.

LakesideMutual

| as a customer of LakesideMutual want
to manage my insurance policies, so that
| can keep track of my insurance

| as a customer of LakesideMutual want
to request a new insurance quote by
providing my personal information and

coverage.

insurance requirements, so that | can
receive a tailored insurance offer.

We understand these criteria as guidelines and not as strict rules, therefore we adapt these guidelines to

our needs. We utilize parts of the INVEST acronym to define useful work in the context of software

engineering and energy consumption measurements. Table 4 presents a definition of useful work

according to the INVEST acronym.

Table 4. A definition of useful work according to the INVEST acronym

valuable to the users and
consider entire vertical slices,
such as a user-facing
workflow. A workflow might
consist of different strategies
according to the Gang of
Four (GoF) Strategy design
pattern [64].

valuable to the pet owner, as
it ensures that their pet
receives medical treatment.

Criterion Description PetClinic Example LakesideMutual Example
Independent | Useful work should consider | The creation of a visit The insurance quote request
a set of functional operations | appointment can be can be executed
that can be executed executed independently of |independently of other
independently. In some more | other operations given that |operations.
complex scenarios this might | the pet and the clinic are
even be an entire workflow. |known.
Valuable Useful work should be The visit appointment is The process of requesting

and receiving an insurance
offer is valuable to the
customer as it allows them to
compare different insurance
options.

Towards Greener Software | 2. Background Information | 31

Criterion Description PetClinic Example LakesideMutual Example

Small Useful work should be as The vet visit scheduling The insurance request
small or slim as possible. This | process is small, as it only process is small. Submitted
allows for better requires the pet and clinic and cancelled requests, as
understanding of the information. Different well as error cases should be
functionality, easier testing, |outcomes, such as successful | handled separately.
and easier localization of scheduling, cancellation, or
potential issues. error cases, should be

handled separately.

Testable Useful work can be derived | The scheduling process can |The process can be tested by
from existing test cases as be tested by creating unit creating unit tests,
important functionality tests, integration tests, and |integration tests, and user
should be covered by tests. |user acceptance tests to acceptance tests to ensure

ensure that the appointment | that the request is processed
is created correctly and that | correctly.

the pet owner is informed
about the treatment.

The two criteria Negotiable and Estimable do not seem to fit into the context of this thesis and are therefore
omitted. We propose to define useful work according to the use cases and requirements of the software
product, under the assumption that they are documented. These usually contain the essential functionality
that the software product must provide. In case there are no documents available, we suggest to analyze
the source code, especially the test cases, and conduct interviews with experienced personnel to identify
the essential functionality. This practical approach addresses the gap in defining useful work.

Figure 19 shows an updated mind map including the measurable aspects and metrics of the energy and
resource efficiency software quality attributes.

Specific, Measurable, Achievable, Relevant, and Time-bound (SMART))—(Quality Attribute Workshop (QAW))—(Quality Attribute Scenario (QAS))

Latency HRound-trip Time)
Performance HMeasurable Aspects
Throughput HAverage Requests)
(Soﬂware Quality Attributes Scalability)

Measurement Unit kah [joule / watts)
Energy Efficiency Factor HUseful Work Done per Used Energy)
Useful Work HINVEST)

Resource and Energy Efficiency

Measurable Aspects

Color__[Concepts
Existing Concepts
New Concepts

Figure 19. A mind map illustrating the energy and resource efficiency software quality attribute

The established metrics are used in the experiments to measure the energy efficiency of the two enterprise
applications.

32 | 2. Background Information | Towards Greener Software

2.2.3. Correlation Between Performance and Energy Efficiency

The research revealed somewhat contradicting statements regarding the correlation between performance
and resource and energy efficiency. This subsection aims to clarify this correlation.

Capra et al. suggest that the quality attributes energy efficiency and performance are not necessarily
correlated, even worse, they are conflicting with each other [57]. As opposed to Brunnert, who states that
"efficiency has always been at the core of software performance engineering research" [7]. The author
mentions that while it is common for servers or data centers to derive their efficiency from power
consumption and CO2 emissions, there is no established metric for software efficiency.

Naumann et al. state that energy efficiency and performance not necessarily correlate [65]. While they can
closely relate to each other for a software running on a single computer, they can differ significantly for
distributed systems. Additionally, the authors state that there is no tool available to measure energy
efficiency, they recommend to use a performance-based approach to estimate energy efficiency.

Q42 cites a Wikipedia article to define resource efficiency and refer to their previously established
performance definition [37] as a special case of resource efficiency. "Resource efficiency is the maximising
of the supply of money, materials, staff, and other assets that can be drawn on by a person or organization
in order to function effectively, with minimum wasted (natural) resource expenses" [66]. This quality
attribute can be seen in the context of sustainability and environmental impact.

Q42 cites a ChatGPT prompt to define energy efficiency. "In the context of software engineering, “energy
efficiency” refers to the ability of a software system to optimize its energy consumption while performing
its intended tasks effectively" [67]. Energy efficiency can be interpreted as a sub-category of resource
efficiency, as it specifically focuses on energy as an asset.

Q42 defines efficiency according to the Merriam-Webster dictionary: "capable of producing desired results
with little or no waste (as of time or materials)" [68]. They provide similar examples for efficiency
requirements as for performance requirements [69] [70]. The terms producing desired results and no waste
are abstract; Table 5 further specifies them with examples and fictitious values.

Table 5. Specific definitions for efficiency terms (own presentment)

Term Definition Metric Example

Producing Performing an intended task or a | Useful work Send an insurance quote request

desired results |set of operations. according to to a server, process the request,
INVEST and return a response.

Towards Greener Software | 2. Background Information | 33

Term Definition Metric Example

No waste Performing effectively or Latency The round-trip time of the request
performant while optimizing is below 500ms.
energy consumption. Throughput The system can process 10

requests per second.

Energy efficiency| The system consumes 12kWh for
in requests per
kWh

10 requests per second with 1
node. The efficiency factor is 10
requests per second / 12kWh =
0.833 requests per kwWh.

It is uncertain to what extent performance and energy efficiency correlate with each other. ChatGPT states

that they are closely related, but sometimes conflicting, depending on the context. Apparently, optimized

algorithms and efficient hardware can lead to an increase in performance and energy efficiency. They

conflict when it comes to aggressive performance optimizations, such as overclocking CPUs, or when

balancing execution speeds versus power savings. The additional annex document provides the prompt

and the full response.

Based on the literature review, Table 6 formulates three hypotheses for the correlation between

performance and resource and energy efficiency.

Table 6. Hypotheses for the correlation between performance and resource and energy efficiency

efficiency.

Hypothesis Description Example
H1 — No Actions that affect performance |When we have a distributed enterprise application
correlation do not affect resource and energy |with high redundancy or backups, and we scale up

the primary system, our action does not affect the
secondary system, even though they belong to the
same distributed enterprise application.

H2 — Inverse

Actions that increase performance

When we scale up a system to increase

efficiency, and vice versa.

correlation decrease resource and energy performance, the additional hardware resources
efficiency, and vice versa. decrease resource and energy efficiency.
When we activate power-saving modes to increase
energy efficiency, the fewer hardware resources
decrease performance.
H3 — Strong Actions that increase performance | When we improve the codebase to utilize suitable
correlation also increase resource and energy | data structures and algorithms, the resource and

energy efficiency increases due to fewer resources
needed. Performing a few large requests instead of
many small requests increases performance and

energy efficiency due to fewer overhead.

The subsequent experiments aim to test these hypotheses by analyzing and evaluating the results.

34 | 2. Background Information | Towards Greener Software

Figure 15 shows an updated mind map including the potential correlation.

Specific, Measurable, Achievable, Relevant, and Time-bound (SMART))—(Quality Attribute Workshop (QAW))—(Quality Attribute Scenario (QAS))

Performance HMeasurable Aspects

Scalability

Round-trip Time

Latency

Throughput HAverage Requests)

Measurement Unit kah I joule / watts)

Energy Efficiency Factor)—(Useful Work Done per Used Energy)
Useful Work)—(INVEST)

No Correlation

(Soﬁware Quiality Attributes Resource and Energy Efficiency

Measurable Aspects

Correlation Between Quality Attributes HHypothesis

Inverse Correlation)

Strong Correlation

Color__[Concepts
Existing Concepts
New Concepts

Figure 20. A mind map illustrating the correlation between performance and resource and energy efficiency

This section established measurable aspects and metrics for both quality attributes. It identified a potential
correlation and proposed three hypotheses for further investigation. Section 2.3 summarizes the key
findings of this chapter.

2.3. Summary and Outlook

This chapter defined enterprise applications as complex software systems characterized by long-running
business processes and high data consistency requirements. It introduced two representative applications
as case studies for the experiments in this thesis: PetClinic and LakesideMutual. The PetClinic is a monolithic
Spring Boot application that provides HTTP endpoints for managing pet clinic data. LakesideMutual is a
distributed, service-oriented Spring Boot application including complex domain models and business
processes to manage insurance contracts. The experiments conduct similar measurements on both
applications, allowing a comparative analysis of the results.

This chapter defined the two software quality attributes performance and resource and energy efficiency.
Denaro et al. refined the definition of performance in the context of distributed software systems and
identified three measurable quality attributes: latency, throughput, and scalability [6]. This thesis measures
latency with the metric round-trip time and throughput with the metric average requests. Scalability should
be treated as a separate quality attribute on the same level of abstraction as performance.

The literature does not provide a clear definition on resource and energy efficiency in the context of
software engineering. A GGS blog post on software efficiency and energy consumption [58] refers to a
definition of efficiency from the Cambridge Dictionary [59] and mentions the interesting term useful work.
Guldner et al. introduce a definition for useful work and state that it has a varying unit of measurement
[12]. We propose to leverage the INVEST mnemonic [13] to derive useful work, serving as a slightly
structured approach and a small improvement to the varying unit of measurement.

Towards Greener Software | 2. Background Information | 35

The literature review yielded contradicting statements on the correlation between performance and
resource and energy efficiency. This thesis formulates three hypotheses to investigate this correlation in
the context of distributed software systems. It applies a deductive research approach, conducting
measurements on different applications and test environments.

Chapter 3 builds on the foundational knowledge of this chapter. It introduces measurement methods and
tools, describes the computer system architecture and tool interaction, and specifies the configurations
used in the experiments.

36 | 2. Background Information | Towards Greener Software

3. Measurement Techniques and Experiment Design

This chapter builds on the enterprise applications and software quality attributes defined in Chapter 2. It
introduces key measurement methods and tools, describes the hardware and software interaction, and
explains measurement challenges. It then provides a detailed description of the measurement setup and
configuration for the two test environments. These environments provide the foundation for the
experiments and discussions in the subsequent chapters.

3.1. Measurement Methods and Tools

This section focuses on methods and tools to measure the established software quality attributes. It selects
two specific tools, which are used in the experiments to measure the performance and energy
consumption of enterprise applications.

3.1.1. Performance Measurements

There are multiple performance testing methods and tools available to measure the performance of
software systems. Which method or tool is appropriate depends on the system under test and the specific

requirements.

A known performance testing method is microbenchmarking, which is the process of measuring the
performance of code units. Java Microbenchmarking Harness (JMH) supports microbenchmarking for Java
applications [50] [71]. This tool allows to specify warm-up iterations, which resolves Just-In-Time (JIT)
compilation issues to a certain extent. Listing 1 shows an example of a JMH test execution by the Growing
Green Software (GGS) blog [50].

Listing 1. Example of a JMH test execution [50]

java target/java-collection-impls-benchmark. jar

Benchmark collectionSize
CollectionAdd.addToJavaArraylList 100000
CollectionAdd.addToJavaArraylList 200000
CollectionAdd.addToJavaArraylList 500000
CollectionAdd.addToJavaArraylList 1000000
CollectionAdd.addToJavalLinkedList 100000
CollectionAdd.addToJavalLinkedList 200000
CollectionAdd.addToJavalinkedlList 500000
CollectionAdd.addToJavalinkedlList 1000000

5
5
5
5
5
5
5
5

+ + + 1+ 1+ 1+ 1+ I+
O O O 0 2 O

Laaber et al. state that JMH or microbenchmarking in general takes a considerable amount of time to
execute [72]. The authors suggest an approach to reduce execution times while maintaining a high level of
accuracy. They utilize dynamic configurations to stop the execution once the results are stable. The
modified version of JMH is available on GitHub [73]. JMH misconfigurations can affect the actual
performance measurements; common pitfalls should be avoided when using JMH [74].

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 37

Performance testing evaluates a software systems robustness and includes load testing and stress testing
[49]. Load testing is an aspect of performance testing, which simulates expected load and user trafficon a
software system. Load testing can be further divided into volume testing (extensive data loads), peak load
testing (extensive user activity) and endurance testing (extended periods of load). Stress testing, on the
other hand, evaluates the system its behaviour under extreme conditions and tries to identify its limits.

Apache JMeter is a tool used for performance testing in terms of load and stress testing [75] [76]. It
simulates user behaviour and generates load on a system under test by accessing its interface, such as an
HTTP API. The tool can be used for volume, peak load, endurance, or stress testing depending on the
configuration of the test plan. JMeter allows a wide range of configuration options, making it a versatile tool
for performance testing. Figure 21 shows an example of a JMeter test execution for reference.

Samples e Throughput

Figure 21. Example of a JMeter test execution [9]

Huerta-Guevara et al. argue that JMeter runs static pre-configured workloads, which require sufficient
knowledge of the system under test in order to create appropriate test plans [77]. They propose
DYNAMOJM, a tool built on top of JMeter, which enables the creation of dynamic workloads for performance
testing. It appears that the plugin is not yet publicly available and can therefore not be considered for this
thesis. However, this might be an interesting tool in the future, as it could help to create more realistic test
plans and workloads. Other viable tools for performance testing may include Gatling [78] and Locust [79].

3.1.2. Resource and Energy Efficiency Measurements

Guldner et al. conclude that there is no existing, generally accepted, measurement model for resource and
energy consumption for software [12]. Together, they developed the Green Software Measurement Model
(GSMM). The GSMM consists of measurement models, setups, and methods from multiple research
groups. However, according to the authors, the GSMM approach has limitations when it comes to complex
architectures or distributed systems. Brunnert states that the GSMM approach does not consider
interrelationships of software components [7]. The article proposes "the use of resource demand
measurements at the level of individual components and transactions as a basis for measuring how green
a software is" [7]. Resource demands are the consumption of CPU, memory, storage, or network.

Jay et al. conducted experiments with multiple software-based power meters and concluded that the
results correlate [80]. Deviations between hardware-based and software-based power meters are
significant and not constant. Apart from the inconsistent results, it remains unclear whether hardware-
based tools are suitable for measuring the energy consumption of distributed systems.

38 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

Castor [81] and De Souza [82] compare hardware-based power meters with software-based power meters
in their respective articles. They conclude that hardware-based power meters do not affect the system
under test, but only measure the entire system, whereas software-based power meters can measure
individual components, but may affect the system under test. Castor defines an ideal approach to measure
the energy footprint of an application.

An ideal approach to measure the energy footprint of an application [81]

An ideal approach is noninvasive, i.e., it does not affect what is being evaluated, accurate, i.e., the
values it reports perfectly match what is being observed, and supports a wide range of levels of
granularity, from whole system all the way to individual lines of code.

We require a method or technology that allows us to measure individual components in a distributed
system, as opposed to measuring the entire system. Running Average Power Limit (RAPL) is a suitable
technology [83] [84]. RAPL is a feature of modern Intel processors, which allows for measuring the power
consumption of various power domains, such as the CPU or memory. "RAPL readings are highly correlated
with plug power, promisingly accurate enough and have negligible performance overhead" [83]. This
technology can be used as an alternative to hardware-based power meters when utilizing Intel processors.

Joular/X [85] is a Java-based agent, which utilizes RAPL and provides real-time power data, which allows the
analysis of energy consumption over time and the detection of hotspots. The term real-time is not further
specified, but it appears that the power data is collected at runtime, aggregated, and logged at the end of
the execution. JoularJX hooks into the JVM to measure the energy consumption of entire Java applications
down to single methods. This technology in combination with performance testing tools can provide a
detailed insight into the energy consumption of Java applications.

Other viable options that may be used to measure the energy consumption of applications include:
PinPoint supports various platforms, among them RAPL on Linux, FreeBSD, and macOS [86]. Itis a
command-line tool that takes different configuration parameters to measure arbitrary processes passed as
an argument. The tool then calculates the power consumption and prints the results to the console.
PowerLetrics is available for Linux and provides the energy footprint in real-time for each process based
on RAPL [87]. The project is still in an early phase and not available on other operating systems.
SmartWatts is a software-based power meter that uses RAPL to estimate the power consumption of
containers, such as Docker containers or Kubernetes pods [88]. The entire tool or at least parts of it are
solely available for Linux.

Windows Energy Estimation Engine is a built-in tool on Windows to measure consumed power [89]. It has
two major constraints, it requires a device with a battery, and it measures all processes running on the
system. Processes can be filtered, but it is not always clear which process belongs to which application.
MacPowerMonitor is available on GitHub for macOS and reads the power consumption through the built-
in Powermetrics utility [90].

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 39

Table 7 lists the main methods and tools discussed in this section.

Table 7. An overview of methods and tools to measure performance and energy consumption

Software Quality Attribute

Test Method

Tool

Performance

Microbenchmarking

Java Microbenchmarking Harness
(MH)

Load Testing

Apache JMeter

Gatling

Locust

Resource and Energy Efficiency

Hardware-based Power Meter

Various models and
manufacturers

Software-based Power Meter

JoularJX

PinPoint

PowerlLetrics

SmartWatts

Windows Energy Estimation
Engine

MacPowerMonitor

Green Software Measurement
Model (GSMM)

Multiple measurement models,
setups, and methods combined

This section established methods and tools to measure the performance and energy consumption of

enterprise applications. Section 3.2 refers to the selected tools and explains how they interact with the

hardware and software of the test environments.

3.2. Architecture of Observed Systems and Tool Deployment

This section focuses on the architecture and layers of the two test environments. It explains their

similarities and differences, and it describes how the tools work and interact with the application under

test. Understanding the architecture of the computer system helps to set up the test environments and to

troubleshoot potential issues.

40 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

Figure 22 shows a black box overview of the test environment and its components.

Running Application Code Monitoring

Sensors & Drivers
Architecture

Computer System

Figure 22. Overview of the test environment and its components

The test environment consists of a computer system that relies on hardware sensors and software drivers
to measure the power consumption of the system. This computer system runs the application under test,
the load and performance testing tool, and the monitoring tool. The monitoring tool then measures the
energy consumption of the application under test. This setup allows for measuring the power consumption
of specific processes, as opposed to measuring the entire system. Measuring specific processes isolates the
application under test from other services and daemons running on the system.

The two test environments are based on Windows and Linux. Different operating systems result in slightly
different system architectures. Figure 23 zooms in on the system architecture and illustrates the

differences between Windows and Linux.

[Browser IVisualVM WMif)QLh Grafana

Power orkbenc Client Applications
[JMeter I ;] Prometheus

Monitor

a

Virtualization

PetClinic JoularJX MySQL Database [Middleware J

Java Virtual Machine Docker Engine

Driver

| [
[

— A

Scaphandre

Windows Linux oS

MS Surface Pro 9 Lab Workstation

Legend:
Blue / Windows s Orang Green / Middleware/ Clientims

Figure 23. The computer system architecture for Windows and Linux

The lower part of the system architecture coloured in blue refers to Windows, orange refers to Linux.
JoularJX on Windows requires an additional driver installation to interact with the RAPL interface [91] [92].
Linux comes with Powercap already pre-installed to read data from the available sensors. Both
environments run the same virtualization layer and middleware coloured in green. The upper part
illustrates potential client applications interacting with the middleware.

An important client application is the PowerMonitor tool on Windows. Joular)X requires the PowerMonitor
tool to read the power consumption of the CPU through the RAPL interface and integrated components

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 41

like sensors and model-specific registers (MSR) [93]. Figure 24 from the official repository [94] shows the
interaction between the sensors, the Scaphandre driver, and the MSRs.

m Data aggregation & access

PN
L
N
Prometheus exporter
28 Windows10 ,©‘ (&2 é
GNU/Linux
MSR sensor ' Powercap sensor
MSR driver 4 .
Powercap driver
scaphandre
MSRO | | MSRO | | MSRO | | MSRO | | MSRO | | MSRO | | MSRO MSRO
610 X611 X612 X613 X614 X615 X616 X617 57 s

Figure 24. The interaction between the sensors, the Scaphandre driver, and the MSRs [94]

Grafana and Prometheus are used as a means to visualize the data collected by the monitoring tools and to
test if the setup works correctly. They are not part of the test environment in this thesis. Instead of pushing
the data to Prometheus, the data is consumed by PowerMonitor (on Windows) and JoularJX, which are not
visualized in this figure.

JoularJX is a Java agent and runs in a separate thread alongside the monitored application. It calculates the
power consumption of the application under test based on the CPU usage of the JVM. Figure 25 shows how
a thread in a Java application is monitored by Joular]JX. The JoularJX thread itself is not specifically
mentioned but is one of the N threads in the JVM.

Gava Application \

Thread 1 Thread n
y
1 “
! 1
1
1
: Source code |
N kmonltorlng cycle ///
~ N ~ ',
Application ~ ~ ="

monitoring cycle
. statistics on method,
Correlation & CPU metrics, process
Computation power

Source code power
consumption

Figure 25. The architecture of Joular/X [95]

42 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

Joular]X calculates the power consumption of each thread in the JVM and checks the stacktrace to identify
the method being executed. "Joular)X statistically analyzes the ratio of each method observed in the
stacktrace, and allocate the power consumption accordingly" [95]. As the application is monitored in cycles,
Joular]X can provide evolving power consumption data over time for different execution branches and
methods. The data collection over time allows for a detailed analysis of the power consumption of an

application. Figure 26 and Figure 27 show the application monitoring cycles and the statistical analysis of
methods.

1 Code monitoring \
)
‘o cycle

Application T
monitoring cycle

——
-
————

Figure 26. The application monitoring cycles by Joular/X [95]

t t+d

v

10 samplings 12 samplings
459% of energy 55%o0 of energy

(a0 0eselCCesssees-
Figure 27. The statistical analysis of methods by Joular/X [95]

This thesis refers to the total energy consumption of the application under test instead of the evolution of
power consumption over time. Joular]X calculates the total energy consumption by summing up the power
consumption of execution branches. JoularJX allows for method-level filtering to support the analysis of the
energy consumption for specific methods. This feature is of great importance for the interpretation of the
results, as it allows to identify hotspots in the application.

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 43

Figure 28 summarizes the system stack, the interaction with the software drivers and hardware sensors,
the running application under test, and the monitoring cycles with JoularJX.

Java Application

Application

monitoring cycle
t t+d
Source code power 10 samplings 12 samplings
pling pling
45% of energy 55% of energy
Browser || visuawm | [MBQ T Grafana
frkhane: Client Applications
Power
JMeter B Prometheus
Monitor
’ 0 Data aggregation & access.
PetClinic Joular)X MySQL Database Middleware 1t
. -
2]
e Ol cNL‘i/LQ
[Sensors] _ MSR sensor @ | Povercap sensor .

Scaphandre Driver

Windows Linux

H

e

MS Surface Pro 9 Lab Workstation 610

Figure 28. Summary of the system stack and the interaction of its components
This illustration replaces the black box overview in Figure 22 with a white box summary.

Figure 29 shows a mind map covering the test environment, the system stack, and the interaction of the

components.

JoularJX and JMeter)

Application Under Test HMeasurement in Cycles)

Scaphandre Driver and MSR Sensors)

Driver and Sensors

System Stack

[Test Environment

Powercap Driver and Sensors)

Windows

Operating System

Hardware

Figure 29. A mind map illustrating the test environment, the system stack, and the interaction of the components

This section provided insights into the test environment and the tools used to measure the power
consumption of the application under test. Section 3.3 describes certain challenges and solutions that arise
when measuring applications.

44 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

3.3. Measurement Challenges

This section focuses on the challenges of measuring Java applications and how to establish a controlled test
environment. This thesis aims to apply techniques and best practices from academic and grey literature to

achieve reproducible and comparable measurements.

Measuring Java applications can be challenging due to the complexity of the Java ecosystem and the
various factors that can influence performance. Java requires the Java Virtual Machine (JVM) as a part of the
Java Runtime Environment (JRE) to execute Java bytecode. The JVM uses Just-In-Time (JIT) compilation to
optimize the execution of Java bytecode according to the available hardware. This optimization can lead to
performance deviations between different test environments. Additionally, the JVM uses the Garbage
Collector (GC) to manage memory and clean up unused objects. The GC runs unpredictably leading to
performance deviations between different test runs. Measuring Java applications accurately can be
challenging due to the impact of JVM, JIT and GC [96] [97].

Such problems require a controlled test environment and applicable best practices to reduce the impact of
uncertain factors on the measurements. Guldner et al. state that "there is no consensus on measurement
setups, methods, or techniques for data analysis" [12] in the context of software systems. They refer to
sustainability labels such as the Energy Star label or the Blue Angel label. The Energy Star label specifies
requirements for energy measurement test setups, such as the input power, ambient temperature, relative
humidity, light measuring devices, and power meters [98] [99]. While this specification applies for
computers, it is a good starting point for setting up and documenting a controlled test environment.

A controlled test environment includes a controlled test scenario to ensure that the measurements are
reproducible and comparable. Figure 30 presented by Guldner et al. visualizes the flow of a test scenario
including a setup before the test scenario, the test actions, and a cleanup after the test scenario [12]. The
entire run can be iterated multiple times, potentially automated.

- Which tasks does the product perform?
*| - Which functions are used often?
- Which functions induce a high energy consumption?

iterations?

.—> ldle | yfLogstart | | nction1 > Action2 —> .. —> Actionn > "°9SIOP L y|Exportand
1 min time time clean up
- Scenario = actions between . Not part of the measurement
start and stop times - - Clean RAM and caches o
- Synchronized via time - Delete scenario-created folders and files
stamps - Reset software (settings, etc.)

- Export statistics
Figure 30. Test setup and cleanup [12]

In order to achieve meaningful results close to a real world scenario, Baumgartner runs tests multiple
times, usually seven times, removes the peaks and calculates the average [46] [47]. Castor comes to a
similar conclusion as Baumgartner that multiple measurements are important. However, he states that a
long test execution does not require multiple test runs as transient factors get irrelevant over time and
additional executions are a waste of time [81]. The GGS blog executes measurements multiple times and
provides a shell script to run the tests in a loop [51] [100].

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 45

Results and findings are easily digestible when presented in a structured or visualized way. Guldner et al.
support the use of graphs to display deviations and outliers in their measurements [12]. Castor also
includes deviations and outliers in his graphs to provide a more realistic view of the test results [81]. The
GGS blog uses diagrams and graphs to illustrate the results [50] [51].

The Abstracta blog post on "How to Do Performance Testing for Web Application?" [48] suggests to mirror
the testing environment as closely to the productive environment as possible. Details, such as bandwidth
limitations, resource utilization, and potential third-party services are important to consider. Equal

environments help to uncover real challenges that users might face when interacting with an application.

Replicating a productive environment or setting up a controlled test environment can be challenging.
Brunnert and Krcmar agree that test environments are not always available due to expenses and intensive
setup procedures [101]. JoularJX enables measurements on a regular system, without the need for a
dedicated and hardened test environment, as it measures specific processes instead of the entire system.

Baumgartner uses a dedicated machine with guaranteed resources as a controlled test environment to
measure the performance of applications [46] [47]. This thesis utilizes resource constraints on the JVM to
ensure equal resource allocation across system boundaries. The JVM can be parameterized by using the
-Xmx, -Xms, and -XX:ActiveProcessorCount flags [102].

Baumgartner suggests to explore VM optimizations with the VM Options Explorer [103]. He mentions a few
other optimizations in his speech [46] such as a tool named buildpacks [104] to create optimized container
images. Optimizations would introduce additional variables and complexity, which would make it
increasingly difficult to reproduce existing measurements. Optimizing the JVM, containers, or the
application itself is out of scope for this thesis. However, such optimizations might be valuable for
applications in a production environment.

Table 8 summarizes the techniques and best practices to achieve a controlled test setup and which sources
cover them. It states if and how the technique is applicable in the project thesis.

Table 8. Techniques to establish a controlled test environment and their applicability in the project thesis

Technique / Academic |GGS Blog |Other Grey |Applicability
Best Practice Literature Literature
Detailed Test Scenario |Yes Yes No Yes with an Apache JMeter test plan in

a .jmx file containing all steps.

Automated Test Yes Yes No Yes with a shell script to set up, run,
Execution with Setup and clean up all tests.
and Cleanup Steps

Multiple Measurements|Yes Yes Yes Yes with a shell script to run the test
scenario multiple times and with
JMeter its built-in support for multiple

iterations.
Dedicated Test Yes No Yes No because a dedicated machine,
Environment mirroring the productive environment,

is not applicable in this thesis.

46 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

Technique / Academic |GGSBlog |Other Grey |Applicability

Best Practice Literature Literature

Guaranteed Resources |No No Yes Yes with resource constraints that are
configured on the JVM.

Optimizations No No Yes No because optimizations of the JVM,
containers, or the application itself are
out of scope for this thesis.

Result lllustration Yes Yes Yes Yes with diagrams, graphs, tables, and
screenshots to illustrate the results.

This table solely refers to the sources cited in this thesis. Additional sources likely exist that cover said
techniques, which are not included in this table.

This section discussed the challenges of measuring Java applications and how to establish a controlled test
environment. Section 3.4 refers to these techniques and covers tooling and test environment
configurations for the subsequent experiments.

3.4. Specification, Tooling and Configuration

This section focuses on the environment specifications, tools, and configurations used for the experiments.
It aims to enable reproducibility and comparability of the results.

3.4.1. System Specifications

The experiments in this thesis are conducted on two different systems, a Microsoft Surface Pro 9 and a
Linux remote server. All experiments refer to the same tools and configurations to ensure meaningful
results. Table 9 lists the system specifications of the two test environments.

Table 9. System specification of the Microsoft Surface Pro 9 and the Linux remote server

Specification Windows Linux

Device Microsoft Surface Pro 9 Linux Remote Server
Operating System |Windows 11 Home 24H2 Ubuntu 22.04.5 LTS
Processor Intel i7-1255U, 2.60 GHz Intel i9-10940X, 3.30 GHz
Memory 16 GB 128 GB

The two systems mainly differ in terms of available resources, such as CPU and memory. The Microsoft
Surface Pro 9 is a mobile device with limited resources, while the Linux remote server has a powerful Intel
i9 processor and 128 GB of memory. The connection to the remote server is established via SSH.

This thesis utilizes resource constraints to account for the different system specifications. The initial
experiments are conducted both with and without resource constraints on the Java Virtual Machine (JVM)
to analyze their impact on the performance and energy consumption of the applications under test.
Further experiments are solely conducted with resource constraints to increase the comparability of the

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 47

results while reducing the complexity of the setup and the analysis. Listing 2 shows an example command
to specify resource constraints on the JVM.

Listing 2. Example command to specify resource constraints on the JVM

java :ActiveProcessorCount-8

The -Xmx8g parameter configures the maximum heap size to 8GB of memory. The -Xms8g parameters
configures the minimum heap size respectively. The -XX:ActiveProcessorCount=8 parameter configures the
number of active processors the JVM can use. The PetClinic application is configured with 8GB of memory
and 8 active processors. The LakesideMutual application receives the same amount of resources, shared
between the four backend services. Therefore, each service is configured with 2GB of memory and 2 active

processors.

3.4.2. Tools and Versions

The experiments are conducted with the same tools and versions on both systems to guarantee
meaningful and reproducible results. Table 10 lists the tools and versions used in this thesis.

Table 10. Tools and versions used for the experiments

Tool Version
Java Development Kit 17.0.14-tem
Spring Boot 343
MySQL Database 8.4.4
JMeter 5.6.3
Joular)X 3.0.1

The Java Development Kit is separately installed on both systems. The Spring Boot version is configured in
the Maven pom.xml file of the application. The MySQL database version is configured in the Docker run
command or the docker-compose.yml file respectively. JMeter and JoularJX have their own specific
configurations and command line parameters.

3.4.3. JMeter

JMeter can be started as a regular Desktop application with a user interface. This user interface allows
users to configure the test plan or to analyse test results with tool support. While it is also possible to
execute the test plan in GUI mode, Apache recommends running load tests in non-GUI mode. Listing 3
provides an example command to run JMeter.

Listing 3. Example command to run JMeter in non-GUI mode for load testing

jmeter
/path/to/test-plan. jmx

/path/to/test-result.jtl
/path/to/jmeter.log

The -n parameter triggers the non-GUI mode, the -t parameter specifies the path to the test plan file, the

48 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

-1 parameter specifies the path to the test results file, and the -j parameter specifies the path to the log
file. The test plan file contains the test configurations and specifies which requests are sent to the
application under test. The test results file contains important metrics such as the response time,
throughput, and error rate. JMeter can open the results file in a separate listener in the GUI to analyze it.
The log file contains information about the test execution, such as the amount of requests sent, the
number of errors, and the test duration.

The PetClinic test plan consists of multiple variable configurations, thread groups, requests, and variable
extractors. Figure 31 displays the JMeter GUI with the test plan for the PetClinic application including the
global variables, which are visible in the center panel.

File Edit Search Run Options Tools Help

= W) — ¢ P @, =
N8@aE K00+ -=rPr@0|dder =B wanan Ao o0 @)
B PetClinic Load Generator Test Pl
2. User Defined Variables C5AE
- g HTTP Header Manager Name: PetClinic Load Generator
[=+243> Owner Group
= Random Parameters Conment:
&
j+ & GET Owners User Defined Variables
+- 4" Create Owner
4 /¥ GET Owner Name: Value
* Update Created Owner ENDPOINT_BASE ${7P(ENDPOINT?BASE,Iocth0§t)}
Delete Created Owner ENDPOINT_OWNERS ${__P(ENDPOINT_OWNERS, /api/owners)}
& eated Dwn ENDPOINT_VETS ${__P(ENDPOINT_VETS,/api/vets)}
[#-5 Pet Group ENDPOINT_PETS ${__P(ENDPOINT_PETS, /api/pets)}
[+-c43> Visit Group ENDPOINT_PETTYPES ${__P(ENDPOINT_PETTYPES,/api/pettypes)}
[+ Vet Group ENDPOINT_PROTOCOL ${__P(ENDPOINT_PROTOCOL, http)}
View Results Tree ENDPOINT_PORT ${__P(ENDPOINT_PORT,9966)}
G Summary Report ENDPOINT VISITS ${__P(ENDPOINT_VETS,/api/visits)}
. Response Time Graph ENDPOINT_SPECIALITY ${__P(ENDPOINT_SPECIALITY,/api/specialties)}
Detail Add Add from Clipboard Delete Up Down

Run Thread Groups consecutively (i.e. one at a time)

Run tearDown Thread Groups after shutdown of main threads

() Functional Test Mode (i.e. save Response Data and Sampler Data)
Selecting Functional Test Mode may adversely affect performance.

Add directory or jar to classpath Clear

Browse... Delete

Library

Figure 31. The PetClinic test plan with global variables in JMeter

The global variables configure the protocol, host, port, and context path of the application under test.
These variables are used in the thread groups and requests to avoid hardcoding the values in multiple
places.

The test plan defines thread groups for owners, pets, visits, and vets in the left panel. Each thread group
consists of multiple requests, such as GET Owners, or Create Owner. Figure 32 shows the Owner Group
configuration in the center panel.

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 49

File Edit Search Run Options Tools Help

F8ad X ol +=~>Pr0@0 ddex

PetClinic Load Generator

= B 00:00:00 A\ 0 0/0 @

1 2. User Defined Variables Thread Group
x’f’ HTTP Header Manager Name: Owner Group
-
= _ Random Parameters G
+ {,“ GET Owners Action to be taken after a Sampler error

%

[" Create Owner

+- " GET Owner

Update Created Owner

¢ Delete Created Owner

[#}-:3" Pet Group Number of Threads (users): |5

+-4 Visit Group

+-43 Vet Group
View Results Tree Loop Count: (] Infinite 100

-, Summary Report

%

© Continue () Start Next Thread Loop () Stop Thread () Stop Test () Stop Test Now

\4 \4

Thread Properties

Ramp-up period (seconds): |0

Response Time Graph Same user on each iteration
(") Delay Thread creation until needed
() specify Thread lifetime

Duration (seconds):

Startup delay (seconds):

Figure 32. The PetClinic test plan with a thread group for the owner endpoint in JMeter

The configuration in the center panel allows, among other options, to configure the number of threads, the
ramp-up period, and the loop count. This configuration defines how many users (threads) are simulated,
how long it takes to start all threads (ramp-up period), and how often each thread executes the requests
(loop count). All respective requests within the thread group are executed in series once the thread is
executed, while multiple users (threads) are executed in parallel.

Each thread group executes requests to fetch all entities, create a new entity, get a specific entity, update
an entity, and delete an entity. Figure 33 shows the GET Owners request configuration in the center panel.

File Edit Search Run Options Tools Help

e a H‘ P DD‘ + =P @O 9l Nt = 00:00:00 A\ 0 00 £3)
= PetClinic Load Generator

2%, User Defined Variables HTTP Request

2% HTTP Header Manager Name: GET Owners

—+» Owner Group

= | Random Parameters

-

Comments:

5 ;
Basic Ad: d
[+ #* Create Owner vance
[+ 4~ GET Owner Web Server
" Update Created Owner Protocol [http]: ROTOCOL} | Server Name or IP: | ${ENDPOINT_BASE} Port Number: | DPOINT_PORT}
- 4 Delete Created Oy
5 /PEt G?:j e Created Owner HTTP Request
& Visit G P ‘GET ~ | Path: ${ENDPOINT_OWNERS} Content encoding:
isit Group S
H<4d> Vet Group D Redirect Automatically Follow Redirects Use KeepAlive [:] Use multipart/form-data D Browser-compatible headers

View Results Tree ;
Parameters Body Data Files Upload

~_ Summary Report
- Response Time Graph Send Parameters With the Request:
Name: | Value | URL Encode? | Content-Type | Include Equals?

Figure 33. The PetClinic test plan with request configurations to fetch all owners in /Meter

The screenshot shows that the global variables, presented in Figure 31, are used to configure the protocol,
host, port and context path. The request method is selected via dropdown, in this case GET. Additional
parameters or body data can be configured in the respective tabs at the bottom of the center panel.

50 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

The test plan for the PetClinic application executes a total of 11'500 requests. These 11'500 requests are
split into 5'500 GET requests and 6'000 POST, PUT, and DELETE requests. The LakesideMutual test plan is
adapted from the PetClinic test plan and focuses on customer master data and workflow executions. Figure
34 illustrates the LakesideMutual test plan with all thread groups in the left panel.

File Edit Search Run Options Tools Help

D8ad X ol + = -

(AY LIER I 3

o0:00:00 A\ 0 00 (£3)

P LakesideMutual Load Generator
2%, User Defined Variables
2. HTTP Header Manager
t-4> Setup Auth
i+ Workflow Reject Insurance Quote Request
+-<3 Workflow Reject Insurance Offer
<3 Workflow Accept Insurance Offer

= Random Parameters

i ¢ Counter

[+ #* GET User

[+ #* GET Customer

[+ 4~ GET Insureance Quotes

[+ % GET Policies

[+ #* POST Insureance Quote

[+ #* GET Policies

[+ 4~ GET Insureance Quotes

[f" GET Insureance Quotes

[+ #* GET Insureance Quote

[ﬂ“ PATCH Insureance Quotes

[+ 4~ GET Insureance Quote

[+ % GET User

[+ #* GET Customer

[ﬂ“ GET Insureance Quotes

[+ 4~ GET Policies

[f" GET Insureance Quote

[+ #* PATCH Insureance Quotes

[+ #* GET Insureance Quote
-4 Customer-Core: Customer CRU
}-4 Customer-Self-Service / Customer-Management:

View Results Tree
- Summary Report
- Response Time Graph

Test Plan

Name: LakesideMutual Load Generator

Comments:

User Defined Variables

Name:

Value

ENDPOINT_BASE

${__P(ENDPOINT_BASE, localhost)}

ENDPOINT_AUTH

${__P(ENDPOINT AUTH, /auth)}

ENDPOINT_USER

${__P(ENDPOINT USER, /user)}

ENDPOINT_CUSTOMERS

${__P(ENDPOINT_CUSTOMERS,/customers)}

ENDPOINT_POLICIES

${__P(ENDPOINT_POLICIES, /policies)}

ENDPOINT_INSURANCE_QUOTES

${__P(ENDPOINT_INSURANCE_QUOTES, /insurance-quote-requests)}

ENDPOINT_INTERACTION_LOGS

${__P(ENDPOINT INTERACTION_LOGS, /interaction-logs)}

ENDPOINT_NOTIFICATIONS

${__P(ENDPOINT_NOTIFICATIONS, /notifications)}

ENDPOINT_PROTOCOL

${__P(ENDPOINT_PROTOCOL, http)}

ENDPOINT_PORT_CUSTOMER_CORE

${__P(ENDPOINT_PORT_CUSTOMER _CORE,8110)}

ENDPOINT_PORT_CUSTOMER_MANAGEMENT

${__P(ENDPOINT_PORT_CUSTOMER MANAGEMENT,8100)}

ENDPOINT_PORT_POLICY_MANAGEMENT

${__P(ENDPOINT_PORT_POLICY_MANAGEMENT,8090)}

Detail

Add Add from Clipboard Delete Up Down

Run Thread Groups consecutively (i.e. one at a time)
Run tearDown Thread Groups after shutdown of main threads

D Functional Test Mode (i.e. save Response Data and Sampler Data)

Selecting Functional Test Mode may adversely affect performance.

Add directory or jar to classpath Browse...

Delete Clear

Library

Figure 34. LakesideMutual test plan with thread groups for workflows and customers

The left panel lists all thread groups including the insurance request workflow with three different

outcomes. Each outcome is represented by a separate thread group and consists of multiple requests to

simulate the workflow. Each thread group starts with a customer requesting an insurance quote, which is

processed by a LakesideMutual employee. The first group resembles an employee rejecting the insurance

quote request. The second group resembles an employee accepting the insurance quote request and
sending an offer to the customer, which is then rejected by the customer. The third group resembles a

customer accepting the received insurance offer and effectively creating a new policy. The remaining two

thread groups execute create, read, and update requests for customer master data.

JMeter and its load test scenarios are combined with JoularJX to measure the energy consumption of the

applications under test.

3.4.4. JoularJX

JoularJX runs as a Java agent attached to the JVM running the application under test. Joular)JX requires a

separate configuration file to configure the measurement intervals, filter method names, and other

parameters. The configuration file is passed to the JVM as a system property. Listing 4 provides an example

command to run JoularX.

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 51

Listing 4. Example command to run Joular/X as a Java agent attached to the JVM

:ActiveProcessorCount-8
:/path/to/joularjx. jar

.config-/path/to/config.properties
/path/to/application. jar

The -javaagent parameter specifies the path to the Joular)X jar file. The -Djoularjx.config parameter
specifies the path to the configuration file. The -jar parameter specifies the path to the jar file of the
application under test. The config.properties file for the PetClinic application is configured according to the
GGS blog measurement setup. Listing 5 shows the config.properties file for the PetClinic application.

Listing 5. Joular/X config.properties file for the PetClinic application

filter-method-names
=org.springframework.samples.petclinic.rest.controller.OwnerRestController,org.springframework.sa
mples.petclinic.rest.controller.PetRestController,...

save-runtime-data=false

overwrite-runtime-data=true

logger-level=INFO

track-consumption-evolution=false

evolution-data-path=evolution

hide-agent-consumption=true

enable-call-trees-consumption=false

save-call-trees-runtime-data=false

overwrite-call-trees-runtime-data=true

stack-monitoring-sample-rate=1

application-server=true
powermonitor-path=path//to//spring-petclinic-energy-benchmarking//PowerMonitor.exe

The most important configurations are the filter-method-names, the application-server, and the
powermonitor-path under Windows. The filter-method-names parameter specifies the classes that Joular)X
logs into a separate log file. The application server specifies whether the application under test runs on top
of an application server or framework. This is true for Spring Boot applications as they run on top of an
embedded Tomcat server. Joular)X requires the PowerMonitor executable under Windows to read the CPU
power consumption.

The config.properties file for the LakesideMutual application is adapted accordingly. Listing 6 reveals
different filter-method-names for LakesideMutual.

Listing 6. Joular/X config.properties file for the LakesideMutual application

filter-method-names
=com. lakesidemutual.customercore.interfaces.CustomerInformationHolder,com.lakesidemutual.customer

core.interfaces.CityReferenceDataHolder, ...

The list of filter-method-names in both listings are just examples and not exhaustive.

Their sole purpose is to illustrate the different package names and classes.

52 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

3.4.5. Test Automation Script

The setup is designed to be reproducible and allows for meaningful comparisons between the two
applications. The test automation scripts and instructions are available on GitHub. The benchmark setup
for the PetClinic application is available in the spring-petclinic-energy-benchmarking repository [100]. The
benchmark setup for the LakesideMutual application is available in the LakesideMutual-energy-
benchmarking repository [105].

Setup and cleanup steps are part of the script and ensure that the environment is ready for the test
execution and that no leftover data is present. These steps include starting and stopping the database
Docker container, loading test data, starting and stopping the application under test, and copying the
Joular]JX'logs to a specific location. On Linux, the test execution is automated with a shell script that
performs all setup steps, executes the tests, and cleans up the environment.

On Windows, the test automation is not possible at the time of writing this thesis. The reason is that
Joular)X is attached to the JVM as an agent and immediately terminates when the application under test is
stopped. The process can not be terminated gracefully enough to allow Joular)X to finish writing the logs.
This problem only occurs when the process runs in the background, not when it runs in the foreground.
Therefore, the test execution requires manual interaction via the command line. A user needs to start the
database Docker container, start the application under test, start the JMeter test plan, wait for the test plan
to finish, stop the application under test, copy the JoularJX logs and store them in a file, and stop the
database Docker container.

3.4.6. Database Configuration on Windows

The database runs in a Docker container and is initialized with test data from separate sql scripts. All files
are located in the spring-petclinic-energy-benchmarking and LakesideMutual-energy-benchmarking
repositories respectively.

The PetClinic application uses a MySQL database that is started with Docker. This thesis refers to
commands tested on Windows with Git Bash in order to run Linux-like commands. Listing 7 lists the Docker
run command to start the MySQL database.

Listing 7. Docker run command to start the MySQL database

docker run mysql MYSQL_ROOT_PASSWORD-petclinic MYSQL_DATABASE-petclinic

3306:3306 mysql:8

The container is started with the name mysgql/, in detached mode, and is removed automatically once
stopped. The docker container spins up an empty MySQL database with the name petclinic and the root
password petclinic. Listing 8 shows the command to initialize the database with test data.

Listing 8. Docker command to initialize the MySQL database with test data

docker exec mysql mysql root petclinic < ./benchmark-ddl-and-data.sql

The docker exec command executes the mysq/ command inside the running container named mysgql. The
input redirection operator < specifies the file to be executed inside the container.

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 53

The LakesideMutual application uses multiple MySQL databases, each with its own schema, running in one
Docker container. The Docker container and the volume are created and started with Docker Compose.
Listing 9 shows the Docker Compose command to start the MySQL databases.

Listing 9. Docker Compose command to start the MySQL databases

docker-compose docker-compose.yml up

The Docker Compose file is located in the LakesideMutual-energy-benchmarking repository and configures
the database and the database initialization. The sql scripts are copied into a volume that is mounted to
the container. MySQL automatically executes the scripts when the container is started.

3.4.7. Application Configuration

All experiments refer to the same application configurations with slight changes to the database access.
Both applications under test, the PetClinic and LakesideMutual, are configured with application properties
files and external parameters.

All applications and configurations are available on GitHub. The PetClinic application is available in the
spring-petclinic-rest repository in the spring-petclinic community [25]. The LakesideMutual application is
available in the LakesideMutual repository in the Microservice-API-Patterns community [31].

When it comes to the PetClinic experiments, all test executions are performed on the main branch of the
spring-petclinic-rest repository. The application is started with the available mysq/ and jpa profiles. The
mysql profile configures a mysql database connection, while the jpa profile configures the database access
with JPA. The first experiments use the same configuration parameters as the GGS blog to replicate the
results. The subsequent experiments adapt the configuration to use Spring Data JPA instead of JPA. This
change is necessary because LakesideMutual relies on Spring Data JPA to access the database. This
intermediate step allows to compare the results within the same application and across different
applications.

Listing 10 presents the command to start the PetClinic application with the correct profiles and datasource
properties.

Listing 10. The command to start the PetClinic application with the correct system properties

:ActiveProcessorCount-8
:/path/to/joularjx/target/joularjx-3.0.1. jar
.config-/path/to/spring-petclinic-energy-benchmarking/config.properties

.sql.init.mode~never

.profiles.active-mysql, jpa
.datasource.username-root
.datasource.password-petclinic
.threads.virtual.enabled-false
/path/to/spring-petclinic-rest/target/*. jar

The -Dspring parameters configure system properties that add or overwrite existing values in the
application properties files. The -Dspring.sql.init. node=never parameter prevents the application from
automatically initializing the database, as this is done separately. The -Dspring.profiles.active=mysql,jpa
parameter activates the mysql and jpa profiles. The -Dspring.datasource.username and

54 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

-Dspring.datasource.password parameters configure the database connection. The
-Dspring.threads.virtual.enabled=false parameter disables the use of virtual threads and is configured
according to the GGS blog.

When it comes to the LakesideMutual application, the experiments are conducted on the spring-boot-3.4.3-
benchmark branch. This branch is based on the main branch and contains the necessary changes to run
the benchmarks. The necessary changes include the update to Spring Boot 3.4.3, the configuration of the
database connection, updates to the test data files, and a removal of the circuit breaker configuration. Each
service of the LakesideMutual application is started separately and requires its own configuration and
command to start. Listing 11 starts the customer core service of LakesideMutual with the correct system
properties.

Listing 11. The command to start the LakesideMutual customer core service with the correct system properties

java :ActiveProcessorCount-2 \
:/path/to/joularjx/target/joularjx-3.0.1.jar \
.config-/path/to/LakesideMutual-energy-benchmarking/joularjx_LakesideMutual-

SOA_config.properties \
.threads.virtual.enabled-false \
.profiles.active-default,test \
/path/to/LakesideMutual/customer-core/target/#*. jar

The main difference to the PetClinic application lies in the activated profiles. The LakesideMutual
application would generally use the default profile if no other profile is specified. By default, the customer
core service loads the test data file and initializes the database through repositories. This mechanism
affects the energy consumption of the service. To prevent external influences on the measurements, an
external sql script loads the test data is into the database on startup. The test profile is activated to prevent
the customer core service from loading the test data file and initializing the database through repositories.

This section established the system specifications, tools, and configurations used for the experiments.
Section 3.5 summarizes the key findings of this chapter.

3.5. Summary and Outlook

This chapter established methods and tools to measure the performance and resource and energy
efficiency of enterprise applications. It illustrated the test environments, their system architecture, and the
interaction of the components running on the test systems. Furthermore, it provided an overview of
challenges faced when preparing the test environments and the test plans. Eventually, it presented the test
configurations that are used to conduct the experiments.

When it comes to performance testing, we identify different testing methods like load and stress testing, as
well as two tools: JMH and JMeter. We decide to leverage JMeter for our performance testing, as it is a
versatile tool, which we already used in a previous thesis to measure the performance of LakesideMutual
[9]. Additionally, the same tool is used on the GGS blog to measure the performance of the PetClinic
application [51]. Furthermore, JMH can run for a considerable amount of time, which might not be suitable
for our project thesis since we are limited in time and hardware resources.

Towards Greener Software | 3. Measurement Techniques and Experiment Design | 55

When it comes to measuring resource and energy efficiency, we identify the GSMM approach, which
appears to be a good starting point in general, but not suitable for complex architectures or distributed
systems. We decide to utilize software-based power meters over hardware-based power meters, because
they enable us to measure specific processes on a running system. We choose Joular)X to conduct resource
and energy efficiency measurements as it is based on RAPL, which is available on our test systems, and
because it supports fine granular measurements down to single methods. Joular)X is used on the GGS blog
to measure the energy consumption, which makes it a suitable tool to reproduce the test results.

The selected tools are applied on the two test environments running on Windows and Linux. The two test
environments differ in the used hardware resources, sensors and software drivers. Both applications run in
the JVM with JoularJX attached to the JVM as an agent. JoularJX then measures the application under test in
cycles and calculates the energy consumption based on CPU power statistics.

The test scenarios include setup and cleanup phases, automated with a test script on Linux. Each scenario
is executed multiple times to account for deviations and outliers. The JVM is parameterized with resource
constraints to ensure equal resource allocation across system boundaries.

We rely on the test plan provided by the GGS blog to reproduce the measurements. This test plan is based
on JMeter and contains a set of requests to measure the performance of the PetClinic. The test plan for
LakesideMutual is adapted from the existing PetClinic test plan. The test plans are stored in .jmx files and
the results are stored in .jtl files, which enables easy sharing with the research community. This structured
approach allows others to comprehend and trace our test results.

The configurations and setup procedures are documented in detail, including the tool versions, tool
configurations, and application startup procedures. The respective resource files are publicly available in
their GitHub repositories. These actions should enable other researchers or practitioners to reproduce our
results and to build upon our work.

This chapter established measurement methods, tools, and configurations that provide a foundation for
the experiments. Chapter 4 presents the experiment results of the local measurements using the PetClinic
and LakesideMutual applications.

56 | 3. Measurement Techniques and Experiment Design | Towards Greener Software

4. Measurement Results

This chapter summarizes the experiment results of the local measurements using the PetClinic and
LakesideMutual applications. The experiments are conducted on two different operating systems, Windows
and Linux, to compare the performance and energy consumption in different environments. The results
are compared with the Growing Green Software (GGS) blog results, with each other across the different
systems, and with each other between the two enterprise applications. The author of the GGS blog acted as
a subject-matter expert for this thesis. He shared his knowledge and stated his personal opinions in
personal conversations with us.

The experiments include multiple test scenarios, each scenario changes one test parameter at the time to
achieve comparable results. Figure 35 illustrates the experiments, their test scenarios, and how they build

on each other.

PetClinic: PetClinic: LakesideMutual:
All Entities Owner Entity Insurance Workflow

4)

Reject Reject | Accept
Quote Offer Offer

Ne v

Spring Data
JPA, CRU
(Service-
oriented)

Spring Data
Spring Data JPA, CRU
JPA, CRU (Monolithic)
(Customer-
. Core/
SpringData Monolithic)
JPA, CRU

JPA, CRUD
JPA, CRUD Operations
Operations
(Without
Resource
Constraints)

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Reproduce GGS Compare JPA and Compare Master Data Compare Different
Measurements Spring Data JPA APIs Services

Experiment 5
Compare Workflow
Variants

Figure 35. All experiments and their test scenarios illustrated as a staircase

The first experiment utilizes the PetClinic application and executes the existing test plan including all
entities. It includes two scenarios, one without resource constraints and one with resource constraints. The
second experiment reduces the number of entities to the owner entity. It compares JPA with Spring Data
JPA in the first two scenarios, and then compares CRUD versus CRU in scenario two and three. The third
experiment utilizes the same Spring Data JPA CRU setup from the second experiment and compares it to
the LakesideMutual customer entity. The LakesideMutual operations are only conducted on the monolithic
customer-core service to achieve a fair comparison. The fourth experiment compares the same monolithic
customer-core results with the service-oriented results. The fifth experiment compares the three
LakesideMutual insurance workflow variants with each other. This last experiment is detached from the
other experiments and does not compare itself to the previous results.

Towards Greener Software | 4. Measurement Results | 57

4.1. PetClinic Experiment: Establish a Baseline

This first experiment is based on the GGS blog and aims to reproduce the measurements with the same
tools and configurations. It intends to achieve similar results and confirm the local measurement setup to
establish a baseline for this thesis. This experiment covers two scenarios. The first test scenario runs the
application without any resource constraints. The second test scenario runs the application with the
respective resource constraints parameters described by Listing 2 in Section 3.4. This section visualizes the
experiment results and summarizes the findings of the first PetClinic experiment.

4.1.1. Experiment on Windows

The experiment collects data on the performance and the energy efficiency of the PetClinic application
running on Windows. The results of interest are the impact of resource constraints and the correlation
between performance and energy efficiency. Subsection 2.2.1 states that performance is characterized by
latency and throughput. Table 11 summarizes the average latency and throughput reported by JMeter.

Table 11. The latency and throughput of the PetClinic application on Windows

Test Execution Average Latency Average Throughput
Without Resource Constraints |681ms 1.7 Requests per second
With Resource Constraints 652ms 6.3 Requests per second

The results indicate that the resource constraints have a positive impact on the performance, as the
latency is reduced and the throughput is increased. This observation reflects in the overall processing time
of the test execution extracted from the JMeter log file. Figure 36 visualizes the processing time for all
requests sent to the PetClinic application.

PetClinic on Windows
2500

2000

1500

%

1000

Execution Time in Seconds

500

B Without Resource Constraints [l With Resource Constraints

Figure 36. The processing time for all requests sent to the PetClinic application reported by /Meter on Windows

The box plot visualizes the distribution of processing times for all requests in a constrained and a non-
constrained test execution. The two whiskers show the minimum and maximum processing times. The box
shows the interquartile range between the first and third quartile. The line inside the box represents the
median, while the X symbol represents the mean.

58 | 4. Measurement Results | Towards Greener Software

The vertical axis visualizes the processing time in seconds. The box plot reveals a significant distribution of
processing times for the non-constrained test executions compared to the constrained test executions. The
median and mean are slightly higher for the non-constrained test execution. This diagram supports the
initial observation that the constrained test scenario achieves a better performance.

The performance results and processing times can be compared with the total energy consumption of the
test executions. Figure 37 visualizes the energy consumption of the PetClinic application extracted from the
Joular]X report files.

PetClinic on Windows
4000

3500
3000
2500
2000
1500

1000

Energy Consumption in Joules

500

B Without Resource Constraints [l With Resource Constraints

Figure 37. The energy consumption of the PetClinic application measured with Joular/X on Windows

The vertical axis visualizes the energy consumption in Joules. The box plot illustrates that the energy
consumption is distributed similarly for non-constrained as well as constrained test executions. It appears
that JoularJX measured significant outliers, especially for the constrained test executions. When comparing
the median, the constrained test scenario consumes about 2'000 Joules more energy than the non-
constrained scenario.

Towards Greener Software | 4. Measurement Results | 59

The total energy consumption is distributed among different Spring Boot controllers. These controllers
receive and handle the requests sent by JMeter. Figure 38 visualizes the energy consumption of all Spring
Boot controllers.

PetClinic on Windows

VisitRestController
VetRestController
SpecialtyRestController
PetTypeRestController

PetRestController |EE—G—™
S

OwnerRestController

Useful Work in Controller

0 200 400 600 800 1000 1200
Energy Consumption in Joules

W Without Resource Constraints B With Resource Constraints
Figure 38. The energy consumption of all Spring Boot controllers on Windows

The horizontal axis refers to the energy consumption in Joules, while the vertical axis lists the controller
classes. The horizontal axis reveals a difference in absolute energy consumption between the non-
constrained and constrained test executions. The constrained scenario generally consumes significantly
more energy over all controllers. In the specific case of the OwnerRestController, the constrained test
scenario consume 250 to 300 Joules more for the same amount of work.

60 | 4. Measurement Results | Towards Greener Software

The controller classes aggregate the energy consumption of all operations within the respective controller
class. Figure 39 visualizes a granular view of the energy consumption of all operations in the PetClinic
application.

PetClinic on Windows

updateVisit
LISVt S
getVisit
deleteVisit
addVisit

updateVet
listVets B
getVet
deleteVet
addVet |

listSpecialties
listPetTypes

updatePet
listPets T — s
getPet

deletePet
addPet

Useful Work in Operations

updateOwner |
LS T OV IN &S —
getOwner |
deleteOwner |
addOwner |

0 200 400 600 800 1000 1200
Energy Consumption in Joules

W Without Resource Constraints m With Resource Constraints
Figure 39. The energy consumption of all operations on Windows

The vertical axis lists all operations within controller classes. It is evident that the listVisits, listVets, listPets,
and listOwners consume considerably more energy than the remaining operations. It appears that the
amount of energy consumed by other operations is almost negligible.

The difference in absolute energy consumption between the two test executions is also visible. Again, the
listOwners operation consumes 250 to 300 Joules more on the constrained test executions as opposed to
the non-constrained ones. The discrepancy in absolute energy consumption between the two test
scenarios reflects in their energy efficiency.

Subsection 2.2.2 states that resource and energy efficiency is characterized in useful work done per Joule.
The energy efficiency of the system is calculated by dividing the useful work by the total energy consumed
to perform said useful work. For this experiment, the entire test plan consisting of 11'500 requests is
considered useful work. The total energy consumption refers to the average energy consumption of the
entire PetClinic application across all test executions for each scenario. Table 12 summarizes the energy
efficiency of the PetClinic application on Windows.

Towards Greener Software | 4. Measurement Results | 61

Table 12. The energy efficiency of the PetClinic application on Windows

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
Without Resource Constraints 11'500 Requests 1'406.88 Joules 8.17 Requests per
Joule
With Resource Constraints 11'500 Requests 2'344.25 Joules 4.91 Requests per
Joule

The calculations reveal that the non-constrained test executions achieve a better energy efficiency in terms
of requests per Joule. The constrained test executions perform, on average, about three requests per Joule
worse than the non-constrained ones. While the constraints improve the performance, they also increase

the energy consumption. This sums up the experiment results on Windows, Subsection 4.1.2 reports on
the experiment results on Linux.

4.1.2. Experiment on Linux

The experiment on Linux refers to the same requirements and presets as the experiment on Windows
described in Subsection 4.1.1. The results of primary interest are the differences and similarities of the
measurements on Windows and Linux.

Table 13 summarizes the average latency and throughput for the test executions reported in the JMeter
result file.

Table 13. The performance analysis of the PetClinic application on Linux

Test Execution Average Latency Average Throughput
Without Resource Constraints |350ms 13.4 Requests per second
With Resource Constraints 351ms 13.4 Requests per second

The results indicate that the resource constraints have a negligible impact on the performance, as the
latency and throughput are almost equal. This observation is visible in the overall processing time of the

test executions extracted from the JMeter log file. Figure 40 visualizes the processing time for all requests
sent to the PetClinic application.

62 | 4. Measurement Results | Towards Greener Software

PetClinic on Linux
830

825
820

815

810

Execution Time in Seconds

805

800

B Without Resource Constraints [l With Resource Constraints

Figure 40. The processing time for all requests sent to the PetClinic application reported by JMeter on Linux

The vertical axis visualizes the processing time for all requests in seconds. The results reveal that the
resource constraints have a slightly negative impact on the processing time. However, it is worth noting
that the discrepancy between the two outliers is only about 15 seconds, which seems negligible in the
context of the overall processing time.

The equal performance reflects in equal energy consumption for both test scenarios. Figure 41 visualizes
the energy consumption of the PetClinic application extracted from the Joular)X report files.

PetClinic on Linux

34200
34000
33800 —
33600
33400
33200
33000
32800
32600
32400
32200
32000

Energy Consumption in Joules

B Without Resource Constraints [l With Resource Constraints

Figure 41. The energy consumption of the PetClinic application measured with Joular/X on Linux

The vertical axis visualizes the energy consumption in Joules. The test executions appear to have a large
distribution of energy consumption, especially for the constrained test scenario. However, the relative
difference of about 1'000 Joules between the constrained and non-constrained test executions is only
about 3% of the total energy consumption. It is worth noting that the absolute energy consumption on
Linux is up to ten times higher than on Windows.

Towards Greener Software | 4. Measurement Results | 63

The massive increase in energy consumption raises the question of how it is distributed across the system.
Figure 42 visualizes the energy consumption distribution across the Spring Boot controllers.

PetClinic on Linux

VisitRestController
VetRestController
SpecialtyRestController

PetTypeRestController

Useful work in Controller

PetRestController | EG—_—————

OwnerRestController

0 2000 4000 6000 8000 10000 12000 14000 16000
Energy Consumption in Joules

m Without Resource Constraints | With Resource Constraints
Figure 42. The energy consumption of all Spring Boot controllers on Linux

The horizontal axis visualizes the energy consumption in Joules. The vertical axis lists the controller classes.
The diagram reveals that the absolute energy consumption is almost equal between both test scenarios.
The relative distribution of energy consumption is similar to the one on Windows described in Figure 38.

64 | 4. Measurement Results | Towards Greener Software

Figure 43 visualizes a granular view of the energy consumption of all operations aggregated in the Spring
Boot controllers.

PetClinic on Linux

updateVisit
listVisits
getVisit
deleteVisit
addVisit

updateVet
listVets
getVet
deleteVet
addVet

listSpecialties
listPetTypes

updatePet |
listPets
getPet
deletePet |
addPet |

Useful Work in Operations

updateOwner |
listOwners
getOwner |
deleteOwner |
addOwner |

0 2000 4000 6000 8000 10000 12000 14000 16000

Energy Consumption in Joules
B Without Resource Constraints m With Resource Constraints

Figure 43. The energy consumption of all operations on Linux

The vertical axis lists the operations. The results on Linux align with the results on Windows described in
Figure 39. The energy consumption is distributed similarly across all operations. The listVisits, listVets,
listPets, and listOwners operations consume significantly more energy than the remaining operations.

The observed results suggest just minor deviations in energy efficiency for both test scenarios. Table 14
summarizes the energy efficiency of the PetClinic application on Linux.

Table 14. The energy efficiency of the PetClinic application on Linux

Test Execution

Useful Work
(Amount of
Requests)

Total Energy
Consumption

Energy Efficiency

Without Resource Constraints

11'500 Requests

32'725.28 Joules

0.35 Requests per
Joule

With Resource Constraints

11'500 Requests

32'433.56 Joules

0.36 Requests per
Joule

Towards Greener Software | 4. Measurement Results | 65

The difference in energy efficiency between both test scenarios is marginal. These minor deviations
confirm that the resource constraints have a negligible impact on the energy efficiency on Linux. However,
the energy efficiency is considerably lower on Linux compared to Windows indicating that the Linux
machine consumes more energy to process the same amount of requests. This sums up the experiment
results on Linux, Subsection 4.1.3 summarizes the experiment results and discusses the findings.

4.1.3. Experiment Summary

The experiment results on Windows and Linux provide valuable insights into the performance and energy
consumption of the PetClinic application. The test executions on the two test environments reveal
differences in performance and resource and energy efficiency. Figure 44 aggregates Figure 36 from
Subsection 4.1.1 and Figure 40 from Subsection 4.1.2. Figure 44 illustrates the significant difference in
execution time for all requests between Windows and Linux.

PetClinic on Windows and Linux
2500
2000

1500 ?

1000

500

Execution Time in Seconds

0

I Windows Without Resource Constraints [l Windows With Resource Constraints

B Linux Without Resource Constraints B Linux With Resource Constraints

Figure 44. Comparison of execution times between Windows and Linux

The vertical axis visualizes the execution time in seconds. Test executions under Windows take up to twice
as long as on Linux. Additionally, the test executions under Windows have a significantly broader
distribution of execution times than the ones under Linux.

66 | 4. Measurement Results | Towards Greener Software

This observation is reflected in the energy consumption of the PetClinic application. Figure 45 aggregates
Figure 37 and Figure 41 respectively. Figure 45 visualizes the massive energy consumption differences
between Windows and Linux.

PetClinic on Windows and Linux

40000

35000 %
30000
25000
20000
15000
10000
5000
0

Energy Consumption in Joules

—?

B Wwindows Without Resource Constraints [l Windows With Resource Constraints

B Linux Without Resource Constraints B Linux With Resource Constraints

Figure 45. Comparison of energy consumptions between Windows and Linux

The absence of an automated test script on Windows likely explains the broad distribution and the high
energy consumption outliers. A possible explanation is that the application is not immediately stopped
after the load testing finishes, leading to a longer execution time and higher energy consumption.
Eventually, an automated test execution is recommended to remove human interference and reduce

potential variance in the measurements.

The results further indicate an inverse correlation between performance and energy efficiency. Worse
performance on Windows is associated with lower energy consumption resulting in better energy
efficiency. Better performance on Linux is associated with higher energy consumption resulting in worse
energy efficiency. The resource constraints on Windows seem to reinforce this observation as the
constrained test executions achieve a better performance but consume more energy. Resource constraints
allow the JVM to allocate more resources, which in turn consume more energy. The consistent results on
Linux are likely due to the powerful hardware. It appears that the Linux environment is able to allocate
more resources to the JVM by default. In order to achieve consistent results within and across different
systems, we decide to run all test executions with resource constraints.

The findings of these experiments are consistent with the observations in the GGS blog. The author of the
GGS blog measured the energy consumption of the PetClinic application on a macOS device and reported
similar results. Figure 46 illustrates results from the GGS blog that show the relative energy consumption of
operations measured with JoularJX.

Towards Greener Software | 4. Measurement Results | 67

Total Joules per Operation

1500
Spring Boot Version

BN Temurin-17.0.1+12-Spring-Boot-2.7.18

g 1000 BN Temurin-17.0.1+12-Spring-Boot-3.0.13
g BN Temurin-17.0.1+12-Spring-Boot-3.1.12
~ 500 BN Temurin-17.0.1+12-Spring-Boot-3.2.1

BN Temurin-17.0.1+12-Spring-Boot-3.3.1

listOwners listPets listVisits
Operation

Total Joules per Operation

Spring Boot Version
BN Temurin-17.0.1+12-Spring-Boot-2.7.18
B Temurin-17.0.1+12-Spring-Boot-3.3.1
BN Temurin-17.0.1+12-Spring-Boot-3.2.1
BN Temurin-17.0.1+12-Spring-Boot-3.0.13
1 BN Temurin-17.0.1+12-Spring-Boot-3.1.12

N W B

Joules

0

et

< x X . X .
N\ o NE o o o o
3660« #° &% ﬁé‘&‘ \x’,@oqA 2
&

NS
&
32 p Qb’a

e et % el oL
e o &,&v
& &63‘ W W'

& o

Operation

Figure 46. The energy consumption of all operations on macOS from the GGS blog [51]

The vertical axis reveals a massive difference in energy consumption of over 1'000 Joules between the
listOwners, listPets, and listVisits operations at the top, and the remaining operations at the bottom. This
behaviour appears to be consistent across all three test environments and leads to the conclusion that the
energy consumption of operations mainly depends on the amount of data processed. The /ist operations
process all entities in the database table in each request. In comparison, the addOwner operation only
processes one entity per request.

Section 4.2 adapts the PetClinic test plan and the application configuration to solely measure the owner
endpoints of the PetClinic again. Measuring the owner endpoint is a preparatory step for the
measurements of LakesideMutual.

4.2. PetClinic Experiment: Compare JPA and Spring Data JPA

This section uses an adapted version of the original PetClinic test plan, evaluated in Section 4.1, to measure
the owner HTTP endpoints only. The experiment covers three scenarios. The first scenario includes the
entire set of create, read, update and delete (CRUD) operations on owners utilizing native JPA to access the
database. The second scenario executes the same set of operations utilizing Spring Data JPA to access the
database. The third scenario covers just the CRU operations, without the delete operation, utilizing Spring
Data JPA to access the database. Omitting the delete operation and using Spring Data JPA is a preparatory
step that is necessary to compare the results to the LakesideMutual application in Section 4.3. All test runs
are conducted with resource constraints to reduce the complexity when comparing the results.

68 | 4. Measurement Results | Towards Greener Software

4.2.1. Experiment on Windows

The results of interest in this experiment are the impact of different database access technologies and the
impact of omitting the delete operation. Table 15 lists the performance results for the three test scenarios.

Table 15. The latency and throughput of the PetClinic owner endpoint on Windows

Test Execution Average Latency Average Throughput

JPA With CRUD 526ms 6.1 Requests per second
Spring Data JPA With CRUD 474ms 4.0 Requests per second
Spring Data JPA With CRU 796ms 3.2 Requests per second

The first scenario with native JPA and CRUD establishes a baseline for this experiment as the remaining test
configurations are equal to the experiment in Section 4.1. The second scenario with Spring Data JPA and
CRUD appears to perform slightly better when it comes to latency but worse when it comes to throughput.
The third scenario with Spring Data JPA and CRU reveals the worst performance of all scenarios. It roughly
shows a 300ms increase in latency and a 0.8 requests per second decrease in throughput.

Figure 47 illustrates the total execution time for all requests sent to the PetClinic owner endpoint.

PetClinic on Windows
400

350

300 —
250 S— —

200

150

100

Execution Time in Seconds

50

0

B JPAWith CRUD [M Spring Data JPAWith CRUD [l Spring Data JPA With CRU

Figure 47. The processing time for all requests sent to the PetClinic owner endpoint reported by JMeter on Windows

The vertical axis illustrates the execution time for all requests in seconds. The JPA CRUD scenario reveals a
narrow distribution of execution times. The Spring Data JPA scenarios have rather broad distributions of
execution times. This could be a symptom of utilizing Spring Data JPA instead of native JPA. It is surprising
that the Spring Data JPA CRU scenario, which executes fewer requests, requires more execution time.

Towards Greener Software | 4. Measurement Results | 69

The total energy consumption reflects the deviations in the performance results. Figure 48 illustrates the
energy consumption details of the PetClinic application.

PetClinic on Windows

1200
& 1000 I
=
3 -
£ 800
c
5
g
£ 600
3
172}
5
S 400
&
(3}
& 200
0

Il JPAWith CRUD [l Spring Data JPAWith CRUD [l Spring Data JPA With CRU

Figure 48. The energy consumption of the PetClinic application measured with Joular/X on Windows

The JPA CRUD and Spring Data JPA CRU scenarios show a consistent energy consumption of about 900 and
1000 Joules respectively. The Spring Data JPA CRUD scenario shows significant deviations when it comes to
energy consumption. Its third quartile and the median value are at around 900 Joules. The diagram
illustrates outliers at around 350 Joules, which is more than 50% less energy consumption compared to the
median.

This raises the question if the outliers affect the distribution of the energy consumption. Figure 49
illustrates the distribution of energy consumption for all owner operations.

PetClinic on Windows

updateOwner f

getOwner r

deleteOwner |

Useful Work in Operations

addOwner r

0 100 200 300 400 500 600 700 800 900
Energy Consumption in Joules

m JPA With CRUD m Spring Data JPA With CRUD B Spring Data JPA With CRU
Figure 49. The energy consumption of all owner operations on Windows

It appears that the outliers in Figure 48 mainly affect the listOwners operation. The Spring Data JPA CRUD
scenario reveals a deviation of about 250 to 300 Joules for the listOwners operation. The remaining
operations are mainly unaffected, due to their overall low energy consumption.

70 | 4. Measurement Results | Towards Greener Software

This massive deviation reflects in the energy efficiency. Table 16 lists the energy efficiency for the three test
scenarios.

Table 16. The energy efficiency of the PetClinic application on Windows

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
JPA With CRUD 2'500 Requests 924.18 Joules 2.71 Requests per
Joule
Spring Data JPA With CRUD 2'500 Requests 692.49 Joules 3.61 Requests per
Joule
Spring Data JPA With CRU 2'000 Requests 1006.97 Joules 1.99 Requests per
Joule

The JPA CRUD scenario consumes about 230 Joules more than the second scenario. The Spring Data JPA
CRUD scenario appears to be the most energy efficient with about 700 Joules and 3.61 requests per Joule.
However, it is important to note that the outliers positively affect the average energy efficiency. The Spring
Data JPA CRU scenario consumes just shy of 100 Joules more energy than the first scenario and therefore is
the least energy efficient. This sums up the experiment results on Windows, Subsection 4.2.2 reports on
the experiment results on Linux.

4.2.2. Experiment on Linux

The experiment on Windows revealed significant deviations in the energy consumption of the test scenario
with Spring Data JPA and the delete operation. It is unclear whether these deviations are due to the
database access technology or due to other factors such as the operating system. The experiment on Linux
aims to clarify this question. The results of interest in this experiment are again the impact of a different
database access technology and the impact of omitting the delete operation. Table 17 lists the
performance results for the three test scenarios on Linux.

Table 17. The latency and throughput of the PetClinic owner endpoint on Windows

Test Execution Average Latency Average Throughput
JPA With CRUD 321ms 10.6 Requests per second
Spring Data JPA With CRUD 326ms 11.7 Requests per second
Spring Data JPA With CRU 470ms 8.4 Requests per second

The first two scenarios including the delete operation show a similar latency, but the second scenario
shows a slightly higher throughput. The third scenario excluding the delete operation shows an increase in
latency and a decrease in throughput. The results overall appear to be more consistent than the results on
Windows.

Towards Greener Software | 4. Measurement Results | 71

Figure 50 illustrates the total execution time for all requests sent to the PetClinic owner endpoint.

PetClinic on Linux
250

20 ==

150

100

Execution Time in Seconds

50

0

M JPAWith CRUD [Spring Data JPAWith CRUD M Spring Data JPA With CRU

Figure 50. The processing time for all requests sent to the PetClinic owner endpoint reported by JMeter on Linux

The vertical axis illustrates the execution time for all requests in seconds. The results reveal a slightly
different distribution of execution times compared to the results on Windows. The JPA CRUD scenario
shows a broader distribution of execution times, while the Spring Data JPA scenarios show a more narrow
distribution. The absolute execution times are much faster on Linux, similar to the first experiments
described in Subsection 4.1.2. The median values reveal that the first two CRUD scenarios are almost
equally performant, while the third one is the slowest of all scenarios.

Figure 51 illustrates the energy consumption of the PetClinic application.

PetClinic on Linux

]
7000 ——

6000

8000

5000

4000

3000

2000

Energy Consumption in Joules

1000
0

B JPAWith CRUD [Spring Data JPAWith CRUD [l Spring Data JPA With CRU

Figure 51. The energy consumption of the PetClinic application measured with Joular/X on Linux

The first test scenario with JPA and CRUD shows a broader distribution of energy consumption. The second
scenario with Spring Data JPA and CRUD reveals a slightly higher but more narrow distribution of energy
consumption. The third scenario with CRU has the highest energy consumption of all scenarios.

72 | 4. Measurement Results | Towards Greener Software

Figure 52 illustrates the distribution of energy consumption for all owner operations.

PetClinic on Linux

g updateOwner \
Q
©
o
o
£ getOwner |
< |
o
= deleteOwner |
2
&
& addOwner |
0 1000 2000 3000 4000 5000 6000 7000

Energy Consumption in Joules
m JPA With CRUD m Spring Data JPA With CRUD W Spring Data JPA With CRU
Figure 52. The energy consumption of all owner operations on Linux

The diagram reveals a similar energy distribution as in all previous experiments. Energy consumption
deviations mainly affect the listOwners operation. It appears that the test scenario without the delete
operations consumes the most energy. This results in a negative impact on energy efficiency.

Table 18 lists the energy efficiency for the three test scenarios.

Table 18. The energy efficiency of the PetClinic application on Linux

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
JPA With CRUD 2'500 Requests 5757.21 Joules 0.43 Requests per
Joule
Spring Data JPA With CRUD 2'500 Requests 6813.93 Joules 0.37 Requests per
Joule
Spring Data JPA With CRU 2'000 Requests 7492.56 Joules 0.27 Requests per
Joule

The Spring Data JPA CRUD scenario consumes about 1000 Joules more than the JPA CRUD scenario. The
Spring Data JPA CRU scenario in turn consumes about 700 Joules more than the Spring Data JPA CRUD
scenario. This implies a negative impact on energy efficiency, especially for the third scenario, which
executes 500 requests less than the other two scenarios. This sums up the experiment results on Linux,
Subsection 4.2.3 summarizes the experiment results and discusses the findings.

Towards Greener Software | 4. Measurement Results | 73

4.2.3. Experiment Summary

The experiments on Windows and Linux provide insights into the impact of using native JPA or Spring Data
JPA. Additionally, they reveal how omitting the delete operation affects the performance and energy
consumption. The results on both test environments show deviations and unexpected behaviour, making it
difficult to draw conclusions.

On Windows, the Spring Data JPA CRUD scenario has a medium to high performance, because it has the
lowest latency, a medium throughput, and the lowest median execution time. Additionally, it has the lowest
energy consumption, which results in the highest energy efficiency. These results indicate that there is a
strong correlation between performance and energy efficiency. However, the Spring Data JPA CRUD
scenario is heavily affected by outliers as shown in Figure 48, which makes the results unreliable. It is
unclear what causes the inconsistencies in the results.

Surprisingly, the Spring Data JPA CRU scenario on Windows consumes the most energy even though it
executes 500 requests less than the other two scenarios. This behaviour would be explainable by the fact
that Spring Data JPA performs worse than JPA, but in that case, the Spring Data JPA CRUD scenario should
not be the most energy efficient. This is a clear indication that the results are inconsistent and that the
outliers in the Spring Data JPA CRUD scenario heavily affect the average energy efficiency.

The test executions on Linux appear to be more consistent, but they also show unexpected results. The JPA
CRUD scenario appears to correlate with the initial measurements in Subsection 4.1.2 with a slightly worse
performance and energy efficiency. It is surprising that a subset of the original test plan achieves worse
results in terms of performance and energy efficiency. The idle energy consumption may affect the overall
energy consumption significantly in perspective to the small amount of requests performed.

On Linux, the Spring Data JPA CRUD scenario even reveals a slightly higher energy consumption than the
JPA CRUD scenario. This indicates that Spring Data JPA consumes more energy than native JPA. Spring Data
JPA builds on top of JPA and adds additional abstractions and complexity to facilitate database interactions
for developers. It is likely that the additional complexity leads to an increase in energy consumption. JPA as
an application programming interface relies on the Java Database Connectivity (JDBC) to interact with the
database. Future work could investigate if using JDBC directly instead of JPA or Spring Data JPA would lead
to an even better performance and energy efficiency.

The Spring Data JPA CRU scenario confirms the surprising result observed on Windows. It consumes the
most energy and has the worst performance. It remains unclear why fewer operations consume more
energy in the exact same test setup. If Spring Data JPA is the reason for this behaviour, then the Spring
Data JPA CRUD scenario should have a worse performance and energy efficiency.

All results on Linux indicate a strong correlation between performance and energy efficiency. The JPA CRUD
scenario reveals the best performance and the highest energy efficiency, as opposed to the Spring Data JPA
CRU scenario, which has the worst performance and the lowest energy efficiency.

Section 4.3 considers the result of the Spring Data JPA CRU test scenario and compares it to the
LakesideMutual customer endpoint. This allows to compare the results across two different enterprise
applications.

74 | 4. Measurement Results | Towards Greener Software

4.3. PetClinic and LakesideMutual Experiments: Compare
Master Data APIs

This section refers to the adapted test plan used in the previous experiment in Section 4.2. This experiment
compares the create, read, and update operations of the PetClinic owner endpoint with the
LakesideMutual customer endpoint. The first scenario refers to the PetClinic owner endpoint and the
second scenario refers to the LakesideMutual customer endpoint.

Section 2.1 establishes that the PetClinic application follows a monolithic architecture, while
LakesideMutual is built with a service-oriented architecture. The monolithic architecture inherently
requires the startup of the entire application, while the service-oriented architecture would allow the
startup of selected services. Starting a single service can potentially lead to lower energy consumption and
thus to non-meaningful results. We decide to run all experiments starting LakesideMutual with all four
backend services to ensure a fair comparison of the two applications. This experiment aims to compare
two different enterprise applications with each other.

4.3.1. Experiment on Windows

The results of interest in this experiment are similarities and differences in performance and energy
consumption across the two enterprise applications. Table 19 lists the performance results for both
applications.

Table 19. The latency and throughput of the PetClinic and LakesideMutual applications on Windows

Test Execution Average Latency Average Throughput
PetClinic Owner 796ms 3.2 Requests per second
LakesideMutual Customer 43ms 5.8 Requests per second

The results reveal that the PetClinic application achieves an almost twenty times higher average latency
than the LakesideMutual application. LakesideMutual is able to achieve 2.6 requests per second more
throughput than the PetClinic application for the same operations. This leads to differences in the total
execution times for both scenarios.

Towards Greener Software | 4. Measurement Results | 75

Figure 53 illustrates the total execution time for all requests sent to the owner and customer endpoint.

PetClinic and LakesideMutual on Windows
400

350
250
200

150

100

Execution Time in Seconds

50

B PetClinic Owner [LakesideMutual Customer

Figure 53. The processing time for all requests sent to the PetClinic owner and LakesideMutual customer endpoints
reported by J[Meter on Windows

The box plot confirms that the PetClinic application requires approximately ten times more time to process
the same requests as the LakesideMutual application. The PetClinic scenario reveals a larger variance in the
execution time, suggesting that LakesideMutual is more consistent than the PetClinic.

The total energy consumption reflects the massive difference. Figure 54 illustrates the energy consumption
details of the PetClinic and LakesideMutual application.

PetClinic and LakesideMutual on Windows
1200

1000 []
800

600]

400

Energy Consumptin in Joules

200

B PetClinic Owner [M LakesideMutual Customer

Figure 54. The energy consumption of the PetClinic and LakesideMutual applications measured with Joular/X on
Windows

The diagram illustrates that the PetClinic application consumes about 1'000 Joules as opposed to the
LakesideMutual application, which consumes about 600 Joules. This confirms that the PetClinic application
not only requires more time but also consumes more energy than the LakesideMutual application to
process the same requests.

76 | 4. Measurement Results | Towards Greener Software

As LakesideMutual consists of four backend services, the total energy consumption also includes the
energy consumption of idle running services. Figure 55 visualizes the energy consumption of the Spring
Boot controller of both applications.

PetClinic and LakesideMutual on Windows

CustomerlnformationHolder .

—

Useful Work in Controller

0 100 200 300 400 500 600 700 800 900
Energy Consumption in Joules

m PetClinic Owner ~ ® LakesideMutual Customer
Figure 55. The energy consumption of the PetClinic and LakesideMutual controller measured with Joular/X on Windows

The PetClinic owner controller consumes about 800 Joules, 200 Joules less than the entire application
consumes. This indicates that remaining parts of the application that are not under test consume 200
Joules for arbitrary reasons. The LakesideMutual customer controller on the other hand consumes just
about 50 Joules to perform the same operations. The remaining 550 Joules are consumed by the remaining
operations and services that are not under test. These results illustrate the significant difference in energy
consumption between the two applications.

Towards Greener Software | 4. Measurement Results | 77

Figure 56 shows a granular view of the energy consumption across the involved operations.

PetClinic and LakesideMutual on Windows

updateOwner / updateCustomer L

istOwners / getCustomers —

getOwner / getCustomer ‘

Useful Work in Operations

addOwner / createCustomer ¥
0 100 200 300 400 500 600 700 800 900
Energy Consumption in Joules

B PetClinic Owner M LakesideMutual Customer

Figure 56. The energy consumption of the PetClinic owner and LakesideMutual customer operations measured with
Joular/X on Windows

The diagram reveals that the getCustomers operation consumes about 15 to 20 times less energy than the
listOwners operation in the PetClinic. Both applications have the same amount of test data stored in the
database for customers and owners. It appears that the implementation of the PetClinic is less efficient
than the LakesideMutual implementation. This in turn leads to a higher energy efficiency of the
LakesideMutual application.

Table 20 lists the energy efficiency of the PetClinic and LakesideMutual applications.

Table 20. The energy efficiency of the LakesideMutual application on Windows

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
PetClinic Owner 2'000 Requests 1006.97 Joules 1.99 Requests per
Joule
LakesideMutual Customer 2'000 Requests 623.85 Joules 3.21 Requests per
Joule

The results confirm that the PetClinic application consumes about 400 Joules more energy for the same
amount of work than the LakesideMutual application. Therefore, LakesideMutual achieves a higher energy
efficiency than the PetClinic application. This sums up the experiment results on Windows, Subsection 4.3.2
reports on the experiment results on Linux.

78 | 4. Measurement Results | Towards Greener Software

4.3.2. Experiment on Linux

The experiment on Windows reveals a massive difference in energy consumption between the PetClinic
and LakesideMutual. The test executions on Linux aim to confirm the observations on a different test
environment. The results of interest are whether the reduced energy consumption for LakesideMutual can
be confirmed.

Table 21 lists the performance results for both applications.

Table 21. The latency and throughput of the PetClinic and LakesideMutual applications on Linux

Test Execution Average Latency Average Throughput
PetClinic Owner 470ms 8.4 Requests per second
LakesideMutual Customer 43ms 16.2 Requests per second

The impression of PetClinic being slower than LakesideMutual is confirmed. The absolute numbers for the
two test environments deviate, but the PetClinic is still significantly slower than LakesideMutual.
Surprisingly, the latency of the LakesideMutual application is the same as on Windows. The LakesideMutual
application seems to be even more performant on Linux than on Windows given the higher throughput.

Figure 57 illustrates the total execution time for all requests.

PetClinic and LakesideMutual on Linux
250

200 1

150

100

Execution Time in Seconds

50

B PetClinic Owner [M LakesideMutual Customer

Figure 57. The processing time for all requests sent to the PetClinic owner and LakesideMutual customer endpoints
reported by JMeter on Linux

The diagram reveals a similar picture as on Windows. The overall execution time is slightly faster on Linux
compared to Windows. The PetClinic application requires about 200 seconds to process the same requests
as the LakesideMutual application is able to process in about 25 seconds.

Towards Greener Software | 4. Measurement Results | 79

Figure 58 visualizes the energy consumption of the Spring Boot controllers.

PetClinic and LakesideMutual on Linux

CustomerinformationHolder -
T

Useful Work in Controller

0 1000 2000 3000 4000 5000 6000 7000
Energy Consumption in Joules

m PetClinic Owner m LakesideMutual Customer
Figure 58. The energy consumption of the PetClinic and LakesideMutual controller measured with Joular/X on Linux

Similarly to the Windows experiment, the PetClinic controller consumes significantly more energy than the
LakesideMutual controller. On Linux, the OwnerRestController consumes about 6.5 times more energy
than the CustomerinformationHolder, as opposed to about 15 times more energy on Windows.

Figure 56 shows the energy consumption for each operation.

PetClinic and LakesideMutual on Linux

updateOwner / updateCustomer h

stOwners / getCustomers —

getOwner / getCustomer h

Useful Work in Operations

addOwner / createCustomer h

0 1000 2000 3000 4000 5000 6000 7000
Energy Consumption in Joules

m PetClinic Owner W LakesideMutual Customer

Figure 59. The energy consumption of the PetClinic owner and LakesideMutual customer operations measured with
Joular/X on Linux

80 | 4. Measurement Results | Towards Greener Software

The relative distribution of energy consumption across the operations is equal to the one on Windows. The
listOwners operation consumes the most energy, while all remaining operations in the PetClinic scenario
consume an almost negligible amount of energy. The results for the LakesideMutual scenario show a more
even distribution between the getCustomers operation and the remaining operations. The getCustomers
operation still consumes the most energy with about 500 Joules.

Table 22 lists the energy efficiency of the PetClinic and LakesideMutual applications.

Table 22. The energy efficiency of the PetClinic and LakesideMutual application on Linux

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
PetClinic Owner 2'000 Requests 7492.56 Joules 0.27 Requests per
Joule
LakesideMutual Customer 2'000 Requests 5494.01 Joules 0.36 Requests per
Joule

Linux achieves a worse energy efficiency than Windows and the absolute difference in efficiency is just
about 0.09 requests per Joule as opposed to 1.22 requests per Joule on Windows. However, the results
confirm that the LakesideMutual application is significantly more performant and energy efficient than the
PetClinic application. This sums up the experiment results on Linux, Subsection 4.3.3 summarizes the
experiment results and discusses the findings.

4.3.3. Experiment Summary

The experiments aim to compare the performance and energy efficiency across two different enterprise
applications. The results indicate massive performance and energy consumption differences between the
two applications. The relative distribution of energy consumption appears to be comparable across the two
applications and both test environments. The getCustomers and listOwners operations consume the most
energy in all experiments.

The previous experiments in Section 4.2 revealed inconsistent results for test executions with and without
the delete operation. The results indicated that Spring Data JPA consumes more energy to perform the
same, or even less, work. This experiment relies on the same setup with Spring Data JPA and does perform
similar create, read, and update operations. It appears that Spring Data JPA is not the only reason for the
high energy consumption of the PetClinic application. The massive performance and energy consumption
differences between the PetClinic and LakesideMutual suggest that the implementation of the PetClinic
application is less efficient than the LakesideMutual implementation.

Furthermore, the results suggest an inverse and a strong correlation between performance and energy
efficiency. The inverse correlation appears between the two test environments. The Linux environment is
able to achieve a better performance at the cost of a worse energy efficiency, while the Windows
environment achieves a better energy efficiency at the cost of a worse performance. A strong correlation
occurs between the two applications. The implementation of LakesideMutual leads to a better
performance and energy efficiency than the PetClinic application.

Towards Greener Software | 4. Measurement Results | 81

This section relied on the LakesideMutual customer core service to test the customer endpoint. Section 4.4
considers the same LakesideMutual customer test scenario and extends the setup to compare a single
running service with multiple running services. This setup allows for a comparison of a monolithic
architecture with a service-oriented architecture.

4.4. LakesideMutual Experiment: Compare Different Services

This section measures the customer endpoints of the LakesideMutual application in two variants and
compares the results. This experiment consists of two scenarios and refers to the different services
described in Subsection 2.1.3.

The first scenario covers the create, read, and update operations directly on the customer core service.
Directly using the customer core service resembles the monolithic architecture of the PetClinic application
and establishes a baseline for the second scenario. The first scenario is therefore referred to as the
monolithic scenario. The second scenario covers the same set of operations using the customer
management and the customer self-service services. Both services communicate with the customer core
service. Using all three services aligns with the service-oriented architecture of the LakesideMutual
application and mimics its real-world usage. The second scenario is therefore referred to as the service-
oriented scenario. The experiments are solely conducted with resource constraints to reduce the complexity
when comparing the results.

4.4.1. Experiment on Windows

The results of interest in this experiment are the differences between a single service call and multiple
service calls. Table 23 lists the performance results for the two test scenarios.

Table 23. The latency and throughput of the LakesideMutual customer endpoint on Windows

Test Execution Average Latency Average Throughput
Monolithic 43ms 5.8 Requests per second
Service-oriented 68ms 7.6 Requests per second

The results reveal a similar latency for both test scenarios. The service-oriented scenario reports an
increase of 25ms in latency and 1.8 requests per second in throughput. This increase is explainable by the
fact that the customer management and customer self-service services perform additional network calls to
the customer core service. Chances are that multiple services are able to handle more requests in parallel,
which would indicate that the overall execution time is lower.

82 | 4. Measurement Results | Towards Greener Software

Figure 60 illustrates the total execution time for all requests sent to the customer endpoint.

LakesideMutual on Windows
35

a0 ——

25
20 ——
15

10

Execution Time in Seconds

Il Monolithic [M Service-oriented

Figure 60. The processing time for all requests sent to the LakesideMutual customer endpoint reported by JMeter on
Windows

The vertical axis visualizes the execution time for all requests in seconds. The previous assumption that
multiple services are able to handle more requests in parallel is not confirmed by the results. They require
about ten seconds more to complete all requests, which is about one third of the total execution time. This
should also reflect in the energy consumption of the application.

Figure 61 illustrates the total energy consumption of the LakesideMutual application.

LakesideMutual on Windows
800

500
400

300

200

Energy Consumptin in Joules

100

Il Monolithic [M Service-oriented

Figure 61. The energy consumption of the LakesideMutual application measured with Joular/X on Windows

The diagram reveals an almost equal median for both scenarios with a slightly higher energy consumption
for the service-oriented scenario. This is explainable by the additional network calls between the services.
The total energy consumption of the LakesideMutual application aggregates all four running services.
Figure 62 splits the total energy consumption into the three main services involved in the customer test.

Towards Greener Software | 4. Measurement Results | 83

LakesideMutual on Windows

Policy Management

. .
(]
O
b=
o
i)
o
o
0 50 100 150 200 250

Energy Consumption in Joules

W Monolithic m Service-oriented
Figure 62. The energy consumption of the LakesideMutual services measured with Joular/X on Windows

This diagram shows the idle energy consumption for the policy management service. The customer core
service consumes about the same amount of energy in both scenarios. The service-oriented scenario
consumes slightly more energy in the customer self-service and customer management services. This is
expected due to the additional network calls between the services.

The customer core, customer management, and customer self-service services have a specific
CustomerinformationHandler class each. They are responsible to handle the respective customer requests in
each service. Each CustomerinformationHolder class has methods to handle customer information and
methods to handle the common logic such as creating a response object. Figure 63 visualizes the
distribution of energy consumption across all customer operations.

84 | 4. Measurement Results | Towards Greener Software

LakesideMutual on Windows

g o registerCustomer
o 9 .
S3 2 addHATEOASLinks
ZCP o
o @ authenticationRequest
. <
v O
g € updateCustomer
S %
8o getCustomers
O ©
= getCustomer

updateCustomer
getincludedFields
getCustomers

Useful Work in Operations

getCustomer
createPaginatedCustomerResponseDto

Customer Core

createCustomerResponseDto
createCustomer

o
[&)]

10 15 20 25 30 35 40
Energy Consumption in Joules

®m Monolithic m Service-oriented
Figure 63. The energy consumption of the LakesideMutual customer operations measured with Joular/X on Windows

The results for the monolithic test scenario confirm that only methods in the customer core service are
affected by the test plan. The getCustomers operation of the customer core service consumes about 30
Joules, significantly more than the remaining operations. The next most energy-consuming operations are
the updateCustomer and createCustomer operations with about 7 Joules. The helper methods
getincludedFields, createPaginated_CustomerResponse_Dto, and createCustomerResponseDto consume almost
negligible amounts of energy.

The service-oriented scenario including the customer management and customer self-service services
shows a similar distribution of energy consumption. The getCustomers operation consumes the most
energy in both the customer core and customer management services. The updateCustomer operations
and the createCustomer or registerCustomer operations consume the second most energy. The helper
methods consume a negligible amount of energy.

Table 24 lists the energy efficiency of the LakesideMutual application.

Table 24. The energy efficiency of the LakesideMutual application on Windows

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
Monolithic 2'000 Requests 623.85 Joules 3.21 Requests per
Joule
Service-oriented 2'000 Requests 649.74 Joules 3.08 Requests per
Joule

Towards Greener Software | 4. Measurement Results | 85

The monolithic scenario consumes slightly less energy than the service-oriented scenario. Therefore, it has
a slightly higher energy efficiency of 3.21 requests per Joule. This sums up the experiment results on
Windows, Subsection 4.4.2 reports on the experiment results on Linux.

4.4.2. Experiment on Linux

The experiment on Linux has the same requirements and presets as the experiment on Windows in
Subsection 4.4.1. It further investigates the effects of a single service call versus multiple service calls. The
primary results of interest in this experiment are the differences between a monolithic and a service-
oriented architecture.

Table 25 lists the performance results for the customer requests on Linux.

Table 25. The latency and throughput of the LakesideMutual customer endpoint on Linux

Test Execution Average Latency Average Throughput
Monolithic 43ms 16.2 Requests per second
Service-oriented 63ms 15.7 Requests per second

The performance results reveal that the Linux environment is able to achieve the same latency as the
Windows environment but roughly double the throughput. The throughput of the monolithic scenario is
slightly higher on Linux as opposed to Windows.

Figure 64 illustrates the total execution time for all requests.

LakesideMutual on Linux
30

25 E
” ———

15

10

Execution Time in Seconds

Il Monolithic [Service-oriented

Figure 64. The processing time for all requests sent to the LakesideMutual customer endpoint reported by /Meter on
Linux

The vertical axis refers to the execution time in seconds. The diagram is almost identical to the results on
Windows, visualized in Figure 60. The service-oriented scenario including the customer management and
self-service services requires about five seconds more to complete all requests than the monolithic one.

86 | 4. Measurement Results | Towards Greener Software

Figure 65 visualizes the total energy consumption of the LakesideMutual application.

LakesideMutual on Linux
8000

7000 P
5000
4000

3000

2000

Energy Consumptin in Joules

1000

Il Monolithic [M Service-oriented

Figure 65. The energy consumption of the LakesideMutual application measured with Joular/X on Linux

The relative distribution of energy consumption for both scenarios is similar to the results on Windows.
When it comes to the absolute energy consumption, the experiment on Linux consumes ten times more
energy than the experiment on Windows. The results confirm that multiple service calls consume slightly
more energy than a single service call.

Figure 66 illustrates the energy consumption of LakesideMutual per service.

LakesideMutual on Linux

Policy Management
Customer Self-Service

Customer Management

Application Services

Customer Core

o

500 1000 1500 2000 2500
Energy Consumption in Joules

B Monolithic ® Service-oriented
Figure 66. The energy consumption of the LakesideMutual services measured with joular/X on Linux

The customer core service consumes the most energy in both scenarios. This is expected as the customer
core service is responsible for the customer data and handles all requests in the background. The results
confirm the observations on Windows. It is expected that the idle policy management service consumes an
almost equal amount of energy in both scenarios.

Towards Greener Software | 4. Measurement Results | 87

Figure 67 displays a granular distribution of energy consumption across all involved operations.

LakesideMutual on Linux

createPaginatedCustomerResponseDto
createCustomerResponseDto

g @ registerCustomer
oL 9O)

2o = addHATEOASLINKS

g2 _—

&) authenticationRequest mmmm
2 53
o £ £ updateCustomer s—
S < a0
o g8 getCustomers m———————
1) 35
) = getCUSIOMES m—
£
=<
g updateCustomer [——
= S getincludedFields
= &)
3 5 T U ST 0 S
> E getCustomer [,

3 !
N
ey

createCustomer

o

100 200 300 400 500 600 700
Energy Consumption in Joules

H Monolithic m Service-oriented
Figure 67. The energy consumption of the LakesideMutual customer operations measured with Joular/X on Linux

The results confirm that in both scenarios the getCustomers operation in the customer core and customer
management service consumes the most energy. It appears that the registerCustomer operation is the key
factor for the increased energy consumption in the customer self-service service. It is likely that multiple
database queries affect the energy consumption.

The increase in energy consumption for multiple service calls reflects in a decreased energy efficiency.
Table 26 lists the total energy consumption and energy efficiency of the LakesideMutual application.

Table 26. The energy efficiency of the LakesideMutual application on Linux

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
Monolithic 2'000 Requests 5494.01 Joules 0.36 Requests per
Joule
Service-oriented 2'000 Requests 6678.17 Joules 0.30 Requests per
Joule

The results confirm that multiple service calls slightly reduce the energy efficiency by about 0.06 requests
per Joule. This sums up the experiment results on Linux, Subsection 4.3.3 summarizes and discusses the
experiment findings.

88 | 4. Measurement Results | Towards Greener Software

4.4.3. Experiment Summary

The experiments using LakesideMutual aim to reproduce the master data measurements on the PetClinic
application and compare a monolithic and a service-oriented architecture. The results reveal great
similarities between the two test scenarios and between the two test environments.

Section 4.1 and Section 4.2 indicated that absolute numbers can not be compared within the same
application across system boundaries. When it comes to latency and total execution time, this experiment
indicates that absolute numbers can be compared across different test environments for the same
application. The latency between the two test scenarios is almost equal in both test environments. Using
multiple services consistently results in a higher latency. This is expected due to the additional network
calls between the services. In case the services are deployed on different servers, potentially farther apart,
the latency is expected to increase significantly. The overall execution time is slightly higher on Windows
than on Linux, but the distribution is almost equal. Using multiple services is slightly slower than using a
single service on both test environments.

However, absolute numbers for throughput and energy consumption still reveal significant differences
across system boundaries. Using multiple services is slightly faster in terms of throughput than using a
single service on Windows. On Linux, the opposite is true. The results do not allow to draw a conclusion
whether the throughput is better for a single service or multiple services. The total energy consumption is
significantly higher on Linux than on Windows.

The relative distribution of energy consumption is similar for both test scenarios across both test
environments. This suggests that the application itself is comparable across system boundaries.
Unsurprisingly, the customer core service consumes the most energy in both test scenarios. This is
expected as the other two services depend on the customer core to handle the customer data. It is
interesting that the power consumption of the customer self-service heavily depends on the
registerCustomer operation. Chances are that not only the amount of entities handled by the service, but
also the amount of database queries has a massive impact on the energy consumption.

The margins in this experiment are too small to draw a conclusion about the correlation between
performance and energy efficiency. One could argue that this resembles the hypothesis that there is no
correlation between performance and energy efficiency. We specify that this experiment does not provide
sufficient evidence to support this claim. Especially with a service-oriented architecture, the performance is
highly dependent on the network and would require further investigation.

All experiments so far solely focused on simple CRU(D) operations. The last experiment utilizes the
LakesideMutual application to measure a more complex, business relevant workflow. Section 4.5 reports
on the results and compares the findings.

4.5. LakesideMutual Experiment: Compare Workflow Variants

This experiment aims to measure the performance and energy efficiency of the LakesideMutual application
with a focus on complex business workflows instead of CRUD operations. The test plan is designed to
perform a workflow simulating interactions between customers and policy managers. The workflow can
end in three different outcomes, the experiment executes a separate test scenario for each outcome and
compares the results. The workflow ends either when a policy manager rejects the insurance quote

Towards Greener Software | 4. Measurement Results | 89

request, when the customer rejects the insurance offer made by the policy manager, or when the customer
accepts the insurance offer. Accepting the offer results in a successful insurance policy creation and leads
to further processing steps. The experiment is solely conducted with resource constraints to reduce the
complexity when comparing the results.

4.5.1. Experiment on Windows

The primary results of interest in this experiment are the comparability of performance and relative energy
distribution in complex business workflows. The different test plans do not allow for a direct comparison
with other experiments, but the results may indicate similarities between them.

Table 27 lists the performance results of the LakesideMutual workflows on Windows.

Table 27. The latency and throughput of the LakesideMutual Workflows on Windows

Test Execution Average Latency Average Throughput

Reject Insurance Quote 211ms 5.0 Requests per second
Reject Insurance Offer 229ms 7.1 Requests per second
Accept Insurance Offer 305ms 8.2 Requests per second

The results show a slight increase in latency and throughput for each subsequent workflow. It appears that
an increase of requests leads to a higher latency while the system is able to process more requests overall.
This is explainable by the fact that many small requests can be processed faster than a few large requests.

The results indicate that the quote rejection scenario should be the first one to finish. Figure 68 illustrates
the total execution time for all requests sent to the LakesideMutual application.

LakesideMutual on Windows

350

=
300

250 — —
200
150

100

Execution Time in Seconds

50

0

B Reject Insurance Quote [l Reject Insurance Offer [l Accept Insurance Offer

Figure 68. The processing time for all requests sent to the LakesideMutual application reported by JMeter on Windows

The diagram illustrates that the quote rejection scenario is the first one to finish processing the requests.
The offer rejection scenario, which executes more requests and has a higher latency, is the second one to
finish the requests. The offer acceptance scenario, which creates policies and has the highest latency, is the
last one to finish processing the requests.

90 | 4. Measurement Results | Towards Greener Software

This raises the question of how the energy consumption is affected by the different workflows. Figure 69
visualizes the energy consumption of each scenario.

LakesideMutual on Windows

1000
900
800
700
600
500
400
300
200
100
0

-

Energy Consumption in Joules

B Reject Insurance Quote [l Reject Insurance Offer [l Accept Insurance Offer

Figure 69. The energy consumption of the LakesideMutual application measured with Joular/X on Windows

The box plot reveals a surprising result. The quote rejection scenario, which executes the least amount of
requests, has the highest median value and largest third quartile range. This suggests that this scenario
consumes more energy than the other two scenarios.

It is possible to evaluate which service consumes the most energy, especially in the quote rejection
scenario. Figure 70 illustrates the energy consumption for each LakesideMutual service across all three
scenarios.

LakesideMutual on Windows

Policy Management
Customer Self-Service

Customer Management

Application Services

Customer Core

o

50 100 150 200 250 300
Energy Consumption in Joules

W Reject Insurance Quote H Reject Insurance Offer W Accept Insurance Offer
Figure 70. The energy consumption of the LakesideMutual services measured with Joular/X on Windows

It appears that the quote rejection scenario consumes more energy in the customer core and customer
management services than the other two scenarios. The results show that the relative distribution of
energy consumption between the services is similar across all three scenarios. A more granular analysis of
the energy distribution is required to determine the cause of the high energy consumption in the quote

Towards Greener Software | 4. Measurement Results | 91

rejection scenario. Figure 71 provides a detailed analysis for the distribution of energy across all operations

involved.

LakesideMutal on Windows

respondTolnsuranceQuoteRequest
getinsuranceQuoteRequests
getlnsuranceQuoteRequest

getPolicies

Policy Management

! ,l il

createPolicyDto

getCurrentUser
respondTolnsuranceQuote
getlnsuranceQuoteRequest
createlnsuranceQuoteRequest

addHATEOASLinks

Useful Work in Operations

Customer Self-Service

getlnsuranceQuoteRequests
getCustomer

authenticationRequest

getCustomer

Customer
Core

createCustomerResponseDto

o

10 20 30 40 50 60 70 80 90
Energy Consumption in Joules

W Reject Insurance Quote M Reject Insurance Offer W Accept Insurance Offer
Figure 71. The energy consumption of the LakesideMutual operations measured with Joular/X on Windows

The results suggest that the quote rejection test scenario consumes significantly more energy for the
getCustomer operation. The test executions do not provide a clear explanation for this behaviour. The
results further indicate that the offer acceptance scenario consumes a lot more energy for the
createPolicyDto and getPolicies operation.

The getinsuranceQuoteRequests operations consume the largest amount of energy in all three scenarios.
This behaviour is consistent with the previous experiments as multiple entities are handled in a single
request.

The difference in energy consumption can be misleading as the quote rejection scenario executes fewer
requests due to the fact that the workflow finishes earlier. It is important to compare the energy
consumption of the workflows with the amount of requests processed. Table 28 lists the amount of
requests processed, the total energy consumed, and the energy efficiency for each test scenario.

92 | 4. Measurement Results | Towards Greener Software

Table 28. The energy efficiency of the LakesideMutual application on Windows

Test Execution

Useful Work
(Amount of
Requests)

Total Energy
Consumption

Energy Efficiency

Reject Insurance Quote

2'696 Requests

786.41 Joules

3.43 Requests per
Joule

Reject Insurance Offer

4411 Requests

737.63 Joules

5.98 Requests per
Joule

Accept Insurance Offer

4411 Requests

750.71 Joules

5.88 Requests per

Joule

The results confirm that the quote rejection test scenario consumes the most energy and is the least

energy efficient. It remains unclear why this scenario consumes more energy for fewer requests.

Interestingly, the offer rejection scenario is the most energy efficient. This is explainable by the additional

processing steps that are required in the offer acceptance scenario to create a policy after accepting the

insurance offer. This sums up the experiment results on Windows, Subsection 4.5.2 reports on the

experiment results on Linux.

4.5.2. Experiment on Linux

The experiment on Windows raises one big question: Why does the quote rejection scenario with the

fewest requests consume the most energy? The experiments on Linux aim to reproduce the results and to

find an explanation for the unexpected behaviour. The results of primary interest is the relative distribution

of energy consumption across test scenarios, services, and operations.

Table 29 lists the performance results of the LakesideMutual workflows on Linux.

Table 29. The latency and throughput of the LakesideMutual Workflows on Linux

Test Execution

Average Latency

Average Throughput

Reject Insurance Quote 144ms 11.7 Requests per second
Reject Insurance Offer 148ms 15.5 Requests per second
Accept Insurance Offer 184ms 13.9 Requests per second

The results indicate similar behaviour for LakesideMutual as the experiment on Windows. The latency and

throughput increases slightly for each subsequent scenario. However, on Linux, the offer rejection scenario

has the highest throughput, as opposed to the offer acceptance scenario on Windows.

Towards Greener Software | 4. Measurement Results | 93

Figure 72 illustrates the total execution time for all requests.

LakesideMutual on Linux
250

200
150

100

Execution Time in Seconds

50

0

B Reject Insurance Quote M Reject Insurance Offer [l Accept Insurance Offer

Figure 72. The processing time for all requests sent to the LakesideMutual application reported by JMeter on Linux

The results reveal an equivalent behaviour as the experiment on Windows. The box plots have a slightly
more narrow distribution than the results on Windows.

Figure 73 illustrates the total energy consumption for each test scenario.

LakesideMutual on Linux

18000
=

+

16000
14000
12000 O —
10000

8000

6000

4000

Energy Consumption in Joules

2000
0

B Reject Insurance Quote [l Reject Insurance Offer [l Accept Insurance Offer

Figure 73. The energy consumption of the LakesideMutual application measured with Joular/X on Linux

The box plot reveals similarities to the distribution of execution times shown in Figure 72. The result on
Linux appear to be more intuitive as the ones on Windows visualized in Figure 69. The quote rejection
scenario with the least amount of requests consumes the least amount of energy. The offer rejection
scenario has a medium energy consumption. The offer acceptance scenario, which subsequently creates
policies, consumes the most energy.

This raises the question if the relative distribution of energy consumption is significantly different between
the Linux and Windows environments. Figure 74 shows the energy consumption of each LakesideMutual
service across all three scenarios.

94 | 4. Measurement Results | Towards Greener Software

LakesideMutual on Linux

Policy Management
Customer Self-Service

Customer Management

Application Services

Customer Core

0 1000 2000 3000 4000 5000 6000 7000
Energy Consumption in Joules

B Reject Insurance Quote B Reject Insurance Offer ~ B Accept Insurance Offer
Figure 74. The energy consumption of the LakesideMutual services measured with Joular/X on Linux

A comparison between this figure and Figure 70 does not reveal fundamental differences. The relative
distribution between the services is similar across all three scenarios. The diagram visualizes that the
energy distribution is similar even within each service. The quote rejection scenario consumes the least
amount of energy across all services while the offer acceptance scenario consumes the most energy.

Towards Greener Software | 4. Measurement Results | 95

Figure 75 provides a detailed analysis for the distribution of energy across all operations involved.

LakesideMutual on Linux

% respondTolnsuranceQuoteRequest '
£ getinsuranceQuOoteReqUESTS |
oo
©
S getinsuranceQuoteRequest ’
>
> getPolicies |hm—
°
o createPolicyDt0 | —
(%2}
c
o
= getCurrentUser |
@ @
8- g respondTolnsuranceQuote g
E ? getinsuranceQuoteRequest §
g b createlnsuranceQuoteRequest I
_— [}
2 £ addHATEOASLinks |
o 2
%] 172}
> 3 getinsuranceQuoteRequests |
getCustomer [
authenticationRequest |
2
[0}
s 2
g3 getCustomer [
(&)

createCustomerResponseDto

ISR —

500 1000 1500 2000 2500 3000 3500 4000 4500
Energy Consumption in Joules

M Reject Insurance Quote M Reject Insurance Offer W Accept Insurance Offer
Figure 75. The energy consumption of the LakesideMutual operations measured with Joular/X on Linux

The results show a similar distribution of energy consumption as the experiment on Windows. It appears
that the main difference between Linux and Windows is the energy consumption for getCustomer in the
customer core service. On Windows, the quote rejection scenario consumes significantly more energy
during the getCustomer operation as shown in Figure 71. The reason for this behaviour is unclear and
would require further investigation.

96 | 4. Measurement Results | Towards Greener Software

Table 30 lists the energy efficiency of the LakesideMutual application on Linux.

Table 30. The energy efficiency of the LakesideMutual application on Linux

Test Execution Useful Work Total Energy Energy Efficiency
(Amount of Consumption
Requests)
Reject Insurance Quote 2'696 Requests 11869.54 Joules 0.23 Requests per
Joule
Reject Insurance Offer 4411 Requests 15014.87 Joules 0.29 Requests per
Joule
Accept Insurance Offer 4411 Requests 16932.13 Joules 0.26 Requests per
Joule

The results are surprisingly similar to the experiment on Windows. The quote rejection scenario has the
worst energy efficiency even though it consumes the least amount of energy. The offer rejection scenario is
more energy efficient than the offer acceptance scenario, however, the margins between the three
scenarios are small. This sums up the experiment results on Linux, Subsection 4.5.3 summarizes and

discusses the findings of the LakesideMutual workflow experiments.

4.5.3. Experiment Summary

The experiments described in this section can not be compared directly with the previous experiments. The
previous experiments focused on CRU(D) operations while this experiment focuses on complex business
workflows. The previous experiments already indicated that absolute numbers are not comparable across
different systems and applications. It appears that even the same application on the same system can
produce deviating results depending on the test scenario.

Figure 76 aggregates and compares the total energy consumption for the previous experiments.

LakesideMutual on Windows
3000

2000
1500

1000

Energy Consumptin in Joules

500

B Seperate Workflows [l All Workflows

Figure 76. A comparison of aggregated energy consumption of the LakesideMutual application on Windows

The first box plot shows the aggregated total energy consumption for all three previously established test

Towards Greener Software | 4. Measurement Results | 97

executions. The second box plot shows the total energy consumption for the same amount of requests
performed in one test execution. Surprisingly, even though the same amount of requests is processed, the
energy consumption is significantly different. When all requests are executed in one test execution without
starting and stopping the application, the energy consumption is significantly lower. Figure 77 visualizes the
same results for the Linux environment.

LakesideMutual on Linux
60000

50000

40000

30000

20000

Energy Consumptin in Joules

10000

B Seperate Workflows All Workflows

Figure 77. A comparison of aggregated energy consumption of the LakesideMutual application on Linux

The diagram reveals that the observed behaviour on Windows is the polar opposite on Linux. The second
box plot illustrates that the energy consumption is significantly higher when all requests are executed in
one test execution. The results indicate that neither different applications, nor different systems, nor
different test plans with equal requests can be compared directly.

On the other hand, the results in this experiment confirm that the relative distribution of energy
consumption can be compared not only across different systems, but also across different applications and
even across different types of useful work. The results suggest that complicated business processes have
similar energy distribution patterns as CRUD operations. It appears that the main factors for energy
consumption are the amount of entities processed per request and the amount of database accesses
required. Chances are that implementation details, such as database sequence allocation size, the
database access technology, or algorithms and data structures have a significant impact on the energy
consumption.

This summarizes the LakesideMutual experiment and its results. It is also the last experiment in this thesis.
Chapter 5 considers the findings of all experiments, compares them with each other, and discusses the
results in detail.

98 | 4. Measurement Results | Towards Greener Software

5. Discussion

This chapter analyses, interprets, and compares the results of the experiments conducted in this thesis. It
then generalizes the findings for other Spring Boot applications, other web-based applications, and
software-intensive systems in general. It provides a list of related work and reflects on the research
objectives and achievements, on the challenges faced during the experiments, and the reviewed literature.
Eventually, it provides an outlook on possible next steps in the fields of software measurement and energy-
efficient software.

5.1. Analysis and Interpretation of Measurement Results

This section analyzes the experimental results presented in Chapter 4 and discusses their implications. The
discussion alternates between the findings of this thesis and the evidence from additional literature to

support the findings. Key takeaways are highlighted in the text and summarized at the end of each
subsection.

5.1.1. Performance

All experiments report deviating performance measurements across different enterprise applications and
test environments. To examine on one specific example, the results report varying performance
measurements for the PetClinic application on Windows and Linux.

Table 31. The latency and throughput deviations across experiments on Windows and Linux

Test Plan Latency Throughput

PetClinic All Entities CRUD on Windows 652ms 6.3 Requests per second
PetClinic All Entities CRUD on Linux 351ms 13.4 Requests per second
PetClinic Owner CRUD on Windows 526ms 6.1 Requests per second
PetClinic Owner CRUD on Linux 321ms 10.6 Requests per second
PetClinic Owner CRU + Spring Data JPA on 796ms 3.2 Requests per second
Windows

PetClinic Owner CRU + Spring Data JPA on Linux |470ms 8.4 Requests per second

The Linux environment achieves a better performance in terms of latency and throughput than Windows.
The performance measurements exhibit similar evolution patterns across the test plans. The first two rows
executing the entire test plan achieve a higher latency and throughput on both environments compared to
row three and four executing the owner test plan. When comparing row three and four to row five and six,
the latency increases on both test environments, while the throughput decreases. The absolute numbers
alone do not provide sufficient evidence on why performance evolves the way it does.

The author of the Growing Green Software blog states that a test scenario should not be compared across
system boundaries. He experienced similar deviations, as observed in this thesis, with other systems and
suggested to compare results solely within the same system. His statement refers to absolute numbers in
general, but especially to performance comparisons.

Towards Greener Software | 5. Discussion | 99

@ | Absolute numbers can not be compared across different test environments.

Azimi et al. investigate an enhanced operating system support for multicore processors [106]. They
conclude that the hardware resources, in their case the processor, and the operating system have a
significant impact on the performance and energy efficiency of applications. Becker and Chakraborty
investigate an Intel processor its microarchitecture and its impact on performance measurements [107].
Their experiments confirm that measurement setups can significantly impact performance measurements
depending on the selected analysis method.

The literature confirms that even minor changes in the processor architecture and operating system can
affect the performance and energy efficiency of applications. This thesis relies on two entirely different
hardware resources and operating systems to evaluate whether the results can be compared even across
system boundaries. It appears that the performance results are not comparable due to the variations;
both, the GGS blog author and the literature, support this finding.

7 Different hardware resources and operating systems can significantly affect the
- performance of an application.

Another experimental finding refers to the impact of Spring Data JPA on performance compared to native
JPA. The PetClinic measurements reveal lower performance results when using Spring Data JPA instead of
JPA on the same test environment. Spring Data JPA builds on top of JPA and adds complexity and overhead
to the database access mechanism to facilitate the database access for software developers.

Bonteanu and Tudose measure and compare JPA, Hibernate, and Spring Data JPA against well-known
databases, such as MySQL, Oracle, SQLServer, and PostgreSQL [108]. They conclude that Hibernate and JPA
achieve similar performance results and confirm that Spring Data JPA comes with additional overhead.
Colley, Stanier, and Asaduzzaman investigate on the impact of object-relational mapping (ORM)
frameworks on performance [109]. They conclude that ORM frameworks negatively affect performance in
terms of query execution duration. They identify problematic areas and provide potential mitigations, but
many mitigations include configuring the ORM, adapting the query, or tuning the database.

@ | The selected ORM framework can significantly affect the performance of an application.

The high loads during the experiments generated excessive heat on the Windows device. Operating
systems apply thermal throttling to prevent overheating by reducing the processor clock speed. Rao and
Vrudhula elaborate on optimal processor throttling under thermal conditions [110].

The impact of thermal throttling on processors [110]

The throttling mechanism allows the processor to gracefully handle workloads with a mix of high and
low power tasks by running low power tasks at full speeds, and the more intense ones at lower
speeds. The ideal DTM strategy maintains the chip temperature at or below the specified maximum
with minimum performance loss due to throttling.

O Thermal throttling mechanisms can have an impact on performance measurements and
- should be considered when executing extensive performance tests.

100 | 5. Discussion | Towards Greener Software

Subsection 2.2.1 refers to academic literature and grey literature to establish latency, throughput, and the
average execution time as a common denominator for performance measurements. The selected
approach does not provide sufficient evidence to compare performance results. It appears necessary to
conduct multiple performance measurements from different perspectives to gain a holistic view of the
performance of an application. Different configurations and metrics provide additional clues to compare,
interpret, and understand performance measurements.

Figure 78 lists important parameters for performance testing scenarios in distributed software
applications, proposed by Denaro, Polini, and Emmerich [6].

Workload Number of clients

Client request frequency

Client request arrival rate
Duration of the test

Physical Number and speed of CPU(s)
resources Speed of disks

Network bandwidth

Middleware Thread pool size

configuration | Database connection pool size
Application component cache size
JVM heap size

Message queue buffer size
Message queue persistence
Application Interactions with the middleware
specific - use of transaction management
- use of the security service

- component replication

- component migration
Interactions among components
- remote method calls

- asynchronous message deliveries
Interactions with persistent data
- database accesses

Figure 78. Parameters for performance testing in a distributed software application [6]

They state that performance testing can yield different results depending on the usage of services,
middleware, and deployment environments. The authors suggest that a performance test should consider
application-specific use cases, such that the most critically interactions are covered. When applying
performance measurements in practice, it is important to define which aspects of an enterprise application
shall be evaluated. Furthermore, Denaro et al. emphasize on early and continuous performance testing to
avoid performance problems in later stages of the software development process [6]. They conclude that
empirical testing outperforms performance estimation models.

Multiple metrics and parameters should be considered to evaluate the performance of

r — .

O an application. Performance measurements should be conducted early and continuously
throughout the software development process.

Key takeaways about performance:

+ Absolute performance numbers are not comparable across different test environments.

+ Performance measurements can be affected by the hardware resources and operating systems.
+ Performance measurements can be affected by the selected ORM framework.

+ Performance measurements can be affected by thermal throttling mechanisms.

+ Latency, throughput, and average execution time are not sufficient to gain a holistic view of the
performance of an application.

Towards Greener Software | 5. Discussion | 101

+ Additional metrics and parameters should be considered to evaluate the performance of an
application.

+ Performance measurements should be conducted early and continuously throughout the software
development process.

5.1.2. Resource and Energy Efficiency

The previous Performance Subsection 5.1.1 suggests that absolute performance numbers are not
comparable across different test environments. The experimental results reveal that numerical values for
energy consumption are not comparable either.

Capra et al. investigate the energy consumption of management information systems (MIS) in the context
of ERPs, CRMs and DBMS [111]. The authors state that different management information systems
significantly deviate in their energy consumption [57]. The experiments were conducted on a Windows and
a Linux test environment, the authors report remarkable differences between the two operating systems.
The authors conclude that the infrastructure layer, such as operating systems or Java Virtual Machines,
affects the energy efficiency of applications.

Anagnostopoulou, Dimitrov, and Doshi confirm that the power management of operating systems can
affect the energy savings for enterprise servers [112]. The article refers to a Linux test setup and does not
provide further information on other operating systems. Chances are that different operating systems use
different power management mechanisms, affecting the energy efficiency respectively.

7 Absolute energy consumption numbers are not comparable across different test
- environments.

The experiments reveal similar relative distributions of energy consumption across different operating
systems, different enterprise applications, and even across different sets of operations (useful work). A
comparison between the initial PetClinic experiment and the GGS blog results reveals the same relative
distribution of energy consumption. The CRU operations on the PetClinic and LakesideMutual confirm that
listOwner and listCustomer consume the most energy. Even the LakesideMutual insurance policy workflow
allows to observe similar results.

The relative distribution of energy consumption remains consistent and can be
r : . . I
O compared across different test environments, enterprise applications, and sets of

w
operations (useful work).

The PetClinic and LakesideMutual measurements reveal an increase in energy consumption for operations
that read all records from a database table. The listOwner, listPet, listVet, and litVisit operations of the
PetClinic application are examples for this behaviour. The getCustomers, getinsuranceQuoteRequests, and
getPolicies operations of LakesideMutual consume significantly more energy than the remaining
operations. The results suggest that the amount of energy consumption correlates with the amount of
records fetched from the database.

102 | 5. Discussion | Towards Greener Software

Bonteanu and Tudose investigate the execution time for create, read, update, and delete operations on
well-known databases [108]. They conclude that each database has its own performance characteristics
and that operations can achieve different results on different databases. Figure 79 visualizes that different
databases can be optimized for specific operations and may not perform well for other operations.

Read Operation

8,000 —e— MySQL

-@= QOracle
SQLServer

-@=— PostgreSQL
6,000

4,000

Time {ms)

2,000

1000 2000 5000 10000 20000 50000 100000 200000 500000

Number of operations

Figure 79. The execution time for the read operation on multiple databases using Spring Data JPA [108]

The graph shows an exponential increase in execution time for the read operations on all databases. The
execution time for the MySQL database is around 2'000 milliseconds for 50'000 entries, while the Oracle
database takes three times as long.

According to Bonteanu and Tudose, the read operation is the most efficient operation on a database. Their
results suggest that the create and update operations are the worst performer on a MySQL database
depending on whether JPA, Hibernate, or Spring Data JPA is used. In contrast, the results of this thesis
suggest that fetching all records from a database table is the worst performing operation in an enterprise
application. It is important to note that their results are based on performing all operations for 50'000
entries, but it remains unclear how they perform the read operations. Chances are that they perform one
read operation at the time to fetch one record by its primary key. In our experiments, one operation
fetches all records from the database, as opposed to just one record.

O The amount of records fetched from the database affects the execution time and
- therefore the energy consumption of operations.

Furthermore, the LakesideMutual measurements reveal that the registerCustomer operation consumes a
substantial amount of energy. The implementation performs multiple database calls to store the customer
and fetch the logged-in user. Listing 12 shows the implementation storing a new customer in the database,
then fetching an already logged-in customer via email, and eventually storing the logged-in user with an
updated customer id.

Towards Greener Software | 5. Discussion | 103

Listing 12. The implementation of the registerCustomer operation in the LakesideMutual application

public ResponseEntity<CustomerDto> registerCustomer

CustomerDto customer - customerCoreRemoteProxy.createCustomer(dto
UserLoginEntity loggedInUser - userlLoginRepository.findByEmail(loggedInUserEmail

loggedInUser.setCustomerId(new CustomerId(customer.getCustomerId
userLoginRepository. save(loggedInUser

The results suggest that the energy consumption of an arbitrary operation in the context of enterprise
applications heavily depends on database-related aspects; including but not limited to the amount of
requests sent to the database, the amount of records fetched from the database, the allocation size of the
database sequence, the amount of records stored when performing bulk operations, and the database
access technology.

O The amount of database requests and other database-related aspects can significantly
- affect the energy consumption of an operation.

Subsection 2.2.2 refers to academic and grey literature, which lacks a common definition for resource and
energy efficiency in the context of software engineering. The literature mentions the term useful work to
calculate the energy efficiency factor for an enterprise application. We propose to utilize the INVEST
mnemonic as a structured approach to define the term useful work in the context of this thesis. It allows to
scope the measurement by defining relevant use cases for the test scenarios and identifying sets of
operations that represent useful work. This approach was successfully applied during this thesis but could
be further elaborated in future work.

The current state of the art in software engineering does not seem to provide guidelines on how to write
energy-efficient software in general. Each application is unique and requires an analysis and a tailored
approach to improve its energy efficiency. Future work could investigate on how to continuously measure
and improve the energy efficiency of an application.

@ The INVEST mnemonic can be used to define useful work in the context of software
- engineering. Useful work helps to scope the energy efficiency measurements.

Key takeaways about resource and energy efficiency:

+ Absolute energy consumption numbers are not comparable across different test environments.

* The relative distribution of energy consumption remains consistent and can be compared across
different test environments, enterprise applications, and sets of operations (useful work).

« The amount of records fetched from the database affects the energy consumption of an operation.

+ The amount of database requests and other database-related aspects can significantly affect the
energy consumption of an operation.

+ The INVEST mnemonic can be used to define useful work in the context of software engineering.

+ Useful work helps to scope the energy efficiency measurements.

104 | 5. Discussion | Towards Greener Software

5.1.3. Correlation Between Performance and Energy Efficiency

Subsection 2.2.3 elaborates three hypotheses on the correlation between performance and energy
efficiency. This thesis proposes that there is either no correlation, an inverse correlation, or a strong
correlation.

The inverse correlation hypothesis states that additional hardware resources may increase performance
but decrease energy efficiency. The findings suggest that different hardware setups lead to an inverse
correlation. The more powerful the hardware in terms of CPU clock speeds or memory read/write speeds,
the better the performance, but the more energy is consumed. Vice versa, the less powerful the hardware,
the worse the performance, but the less energy is consumed. Table 32 shows an example for inverse
correlation between performance and energy efficiency on Windows and Linux.

Table 32. An example for inverse correlation between performance and energy efficiency on Windows and Linux

Test Execution Average Latency Average Throughput Energy Efficiency

PetClinic Owner on 796ms 3.2 Requests per second |1.99 Requests per Joule
Windows
PetClinic Owner on 470ms 8.4 Requests per second |0.27 Requests per Joule

Linux

The PetClinic results on Windows run on a less powerful hardware setup and therefore produce a higher
latency and process less than half the throughput compared to Linux. But the test executions on Windows
achieve a much better energy efficiency than on Linux.

7 Different hardware setups can lead to an inverse correlation between performance and
- energy efficiency.

The strong correlation hypothesis suggests that varying implementation details can affect the performance
and energy consumption of an application positively or negatively. The experiment with the PetClinic
application on Linux described in Subsection 4.2.2 reveals that the same test plan executed with JPA
achieves a better performance and energy efficiency than with Spring Data JPA. Additionally, the
experiments in Section 4.3 confirm that the implementation details of an enterprise application can
increase the performance and energy efficiency likewise. The LakesideMutual application achieves better
performance and energy efficiency results than the PetClinic application across both test environments.
Table 33 shows an example for strong correlation between performance and energy efficiency on
Windows.

Table 33. An example for strong correlation between performance and energy efficiency on Windows

Test Execution

Average Latency

Average Throughput

Energy Efficiency

PetClinic Owner

796ms

3.2 Requests per second

1.99 Requests per Joule

LakesideMutual
Customer

43ms

5.8 Requests per second

3.21 Requests per Joule

The numbers reveal that LakesideMutual processes the same amount of useful work much faster with a

higher energy efficiency.

Towards Greener Software | 5. Discussion | 105

O Varying implementation details can lead to a strong correlation between performance
- and energy efficiency.

The findings of this thesis are indicative and not conclusive. The experiments do not provide clear
information on what causes the correlations between performance and energy efficiency. Further research
could investigate on this topic and provide more insights and explanations.

5.2. Generalization of Measurement Results

This section considers the findings of all experiments described in Chapter 4 and their implications on
other software systems. The main findings include that absolute numbers are not comparable across
system boundaries, while relative distributions of energy consumption remain consistent. This section
generalizes the findings to other Spring Boot applications, web-based applications, and software-intensive
systems in general.

5.2.1. Other Spring Boot Applications

From personal experience, we specify that many Spring Boot applications follow a layered or N-tier
architecture and run a client-server architecture. The PetClinic and LakesideMutual act as servers and
provide HTTP endpoints to clients. Depending on the context and requirements, applications may
additionally implement other architectural styles such as a service-oriented architecture, a serverless
architecture, or an asynchronous architecture.

Subsection 5.1.1 analyzes the performance deviations of the two Spring Boot applications across Windows
and Linux. The findings of this thesis indicate that even minor changes in the configurations such as
swapping JPA for Spring Data JPA can affect the performance and overall energy consumption of an
application [108]. We expect similar Spring Boot applications, with different configurations and running on
a different hardware setup, to achieve diverging performance results.

Subsection 5.1.2 analyzes the resource and energy efficiency deviations of the two Spring Boot applications
across Windows and Linux. The results suggest that the relative distribution of energy consumption is
comparable across different Spring Boot applications. We expect similar Spring Boot applications to
consume varying amounts of energy, while revealing similar relative distributions of energy consumption.

When measuring different architectural styles, such as serverless or asynchronous architectures, the
measurement methods and tools may need to be adapted. As a serverless application may not run
continuously, additional metrics such as "cold start time" are necessary to gain a holistic view of the
performance. When measuring the energy consumption of an asynchronous application, it may be
necessary to consider the energy consumption of the message broker or the event bus.

5.2.2. Other Web-Based Applications

The following list provides examples of other web-based applications selected based on their popularity
and anecdotal evidence. They include but are not limited to enterprise applications, browser games, social
media, and online learning platforms.

106 | 5. Discussion | Towards Greener Software

« E-commerce applications such as Amazon.

+ Issue and project tracking software such as Jira.

* IT service management platforms such as ServiceNow.
+ Browser games such as 2048.

+ Social media platforms such as Facebook.

+ Online learning platforms such as Udemy.

Web-based enterprise applications typically perform a similar set of operations to retrieve, update, and
delete data from a database. The PetClinic provides endpoints to perform CRUD operations on the
database. LakesideMutual provides endpoints to manage customer data, insurance policies, and customer
inquiries in rather complex business workflows across multiple distributed services. Amazon allows
customers to search for products (read data), add products to a shopping cart (create data), remove
products (delete data), and place an order (update data). Jira and ServiceNow allow users to create, read,
update, and delete issues, tickets, or requests.

Different enterprise applications may provide different business functionalities and processes that differ in
their complexity and longevity. We specify that their business processes boil down to the same database-
related aspects and operations. Enterprise applications eventually perform CRUD operations because
databases inherently work this way. Exactly these CRUD operations enable a comparison of the relative
distribution of energy consumption across different enterprise applications, according to Subsection 5.1.2.
The database itself is an important factor that affects the performance and energy consumption of an
arbitrary enterprise application [108].

Other web-based applications like browser games require a real-time, low-latency connection to the server.
The user interacts with the game in real-time, and the server needs to control the game state, such as
actions, positions, collisions, and scores. Database queries are probably too slow for real-time applications,
so they may use in-memory data structures or caching mechanisms. Future work could investigate if the
operations performed on such in-memory data structures or caches reveal a similar relative distribution of
energy consumption as the CRUD operations performed on a database.

Social media platforms like Facebook probably implement complex algorithms to recommend content to
users. Chances are that these algorithms constantly run in the background to analyze user behavior and
interactions. Measurements need to be adapted such that they cover the impact of these algorithms on the
overall performance and energy consumption of the application. It would be particularly interesting to
optimize these algorithms as they are used in a large scale.

Online learning platforms like Udemy probably rely on content delivery networks to deliver video content
to users, or they may use document databases to store course content. The main load of users streaming
videos is probably outsourced to the content delivery network, while the application itself is responsible for
managing user accounts, course enrollments, and progress tracking. The application still performs CRUD
operations on a database to manage user accounts and course content. These operations could reveal a
similar relative distribution of energy consumption as the operations performed in the PetClinic and
LakesideMutual applications.

Towards Greener Software | 5. Discussion | 107

5.2.3. Other Software-Intensive Systems

Other software-intensive systems may diverge from web-based applications completely, such as desktop
and mobile applications, games, embedded systems or controllers. Examples for other software-intensive
systems may include but are not limited to:

+ Desktop applications such as Microsoft Word.

« Mobile applications such as the Revolut banking app, the WhatsApp messenger, or the Garmin fitness
app.

+ Games including desktop, mobile, and console games such as Minecraft.

« Embedded systems such as automated thermostats.

+ Controller systems such as a mechanical actuator.

« Smart Factories (Industry 4.0) such as automated production lines.

We selected these examples again because of their popularity and based on anecdotal evidence. Desktop
and mobile applications are widely used in everyday life, while games are a popular form of entertainment.
Embedded systems and controllers are used in various industries, such as automotive, manufacturing, and
home automation. Last but not least, smart factories are a hot topic in manufacturing and are often
referred to as Industry 4.0.

Microsoft Word can be used offline, without client-server communication, and does not rely on a database
to store data. Desktop applications can store data on the local file system or in a cloud storage service.
Load testing may require different methods and tools, such as simulating keyboard and mouse inputs, or
measuring the time it takes to open and save files. Energy consumption measurements may focus on the
application’s resource usage, such as CPU and memory, rather than network requests or database
operations.

Games, as mentioned before, require a real-time, low-latency connection to the server. While latency is a
very common and important quality aspect of games, a generic load and performance test may not be
applicable. Benchmarks may focus on the time it takes to load a level, the frame rate, or the time it takes to
respond to user inputs. CRUD operations on in-memory data structures or caches may reveal a similar
relative distribution of energy consumption as the CRUD operations performed on a database. The scope
of useful work needs to be defined according to the game mechanics and the expected user interactions.

Embedded systems are small parts of a larger system and are designed for a specific functionality [113].
They receive or collect data from the environment and perform a specific task. Control systems are a
subset of embedded systems and can act in open or closed loop systems. "A control system is a set of
mechanical or electronic devices that regulates other devices or systems by way of control loops" [114].
Figure 80 shows an example of a closed loop control system.

108 | 5. Discussion | Towards Greener Software

Closed-loop control system

Input Control signal Output

Control System being
system controlled

Sensor
Feedback loop

Figure 80. An example for a closed loop control system [114]

Such systems operate in a different context, with different requirements and constraints, but they still
receive data from connected devices and send data to connected systems. A controller in a fridge may
monitor the temperature with a sensor and turn on the compressor when the temperature exceeds a
certain threshold.

Smart factories are a combination of industrial automation and the Internet of Things (loT) [115].
Embedded systems and other software platforms are connected with each other and exchange messages
via message brokers. They may use different means of communication such as Bluetooth, Wi-Fi, or Zigbee.
Energy consumption measurements may be adapted to measure the amount of data per message in bytes
and the amount of messages exchanged. Performance tests may generate messages with different sizes
and measure the time it takes to send and receive these messages.

Each type of software system has its own context, requirements, and constraints. Each system may
implement different architectural styles and patterns, which require different measurement methods and
tools. Some may require huge data sets for load testing, others may not run continuously or do not even
serve HTTP endpoints. Measuring performance requires multiple different metrics and parameters to gain
a holistic view of the system under test. The selected approach of defining useful work to measure energy
efficiency proofs to be applicable but needs to be adapted to the specific context of the software system.
INVEST helps to define useful work but may not be suitable for different types of software systems. Future
work could further elaborate on useful work in combination with INVEST and how to use it in actual
software projects.

5.3. Related Work

This section references related work in the field of software measurements related to performance and
resource and energy efficiency. Some of the important resources covered in this thesis are journal articles,
the Green Software Foundation (GSF), and the Green Software (GGS) blog.

Denaro et al. report on performance characteristics and why performance is an important requirement for
software projects [6]. They suggest an approach for performance testing for distributed enterprise
applications beginning in early stages of the development process. Capra et al. suggest a measure for
energy efficiency and provide a methodology to measure the energy efficiency of software applications

Towards Greener Software | 5. Discussion | 109

[57]. They conclude that different software designs have significant impact on energy efficiency. Guldner et
al. elaborate the Green Software Measurement Model (GSMM), which combines measurement models,
setups, and methods from multiple research groups [12]. This approach appears to cover a wide range of
software measurements and is a good starting point for future research.

The GSF is a non-profit organization that aims to promote the development of sustainable software [55]. It
is a good source of information on the topic of green software and energy efficiency in general. We expect
them to gain more influence in the future and to become a leading organization when it comes to
standards, tooling, and best practices.

The GGS blog reports on practice-oriented methods to performance and energy consumption
measurements [11]. It is an inspiration for the experiments in this thesis and an interesting source of
information. The blog provides beginner-friendly articles for people who would like to get into the field of
software measurements and benchmarking. Practitioners can find an easy introduction to the topic with
practical examples.

There are many more articles online we have not discussed in this thesis, just two of them are mentioned
here. An article on energy based performance tuning for large scale high performance systems from 2012
by Laros et al. reports on "energy savings opportunities of up to 39% with little to no impact on run-time
performance" [116]. A later 2016 article by Jin et al. investigates improvements in energy efficiency when
using parallel programming and power-saving features [117]. The topics seem interesting and relevant for
improving energy efficiency, especially in the context of cloud computing. Similar methods may be applied
to improve the energy efficiency of enterprise applications.

The list is not exhaustive and only provides a few examples of the many articles available on the topics of
software measurements, performance, and resource and energy efficiency. The research field of green
software appears to be growing, further research is needed to improve the energy efficiency of software
systems and eventually the ecological footprint. Section 5.4 reflects on the achievements and challenges of
this thesis.

5.4. Retrospective

This section reflects on the research objectives, the challenges faced, and the added value for the target
audience. This thesis is successfully completed based on the defined objectives but leaves room for further
improvements and future work.

5.4.1. Research Objectives

This thesis aims to investigate whether, how and why the state of the art in the field of performance and
efficiency measurements reported in the academic literature differs from practice. Section 1.1 separates
the objective into five sub-objectives and formulates them as research questions.

1. How are the two types of software quality attributes performance and resource and energy
efficiency defined a.) in the scientific literature and in official standards (ISO/IEC/IEEE) and b.) in the
gray literature (e.g., Q42, Growing Green Software blog)?

110 | 5. Discussion | Towards Greener Software

The quality attribute of performance is widely accepted and defined in standards [37], academic literature
[6], and grey literature [41] [42] [43]. This thesis relies on latency and throughput as measurable aspects of
performance and combines them with the average execution time for the test plan. The selected approach
turns out to be suitable for measuring the performance of an application from a client perspective. The
approach accompanies the energy consumption measurements and puts them into perspective, but it is
not able to provide sufficient insights into why the performance deviations occur. Additional metrics are
required to gain a holistic view of the performance of an application.

The quality attribute of resource and energy efficiency lacks standardization and varies between different
sources [12] [56] [57]. It appears that the term useful work is a common denominator in the definitions of
resource and energy efficiency [12] [60], which finds its application in practice [58]. This thesis proposes to
leverage the INVEST mnemonic [13] to define the scope of useful work. The selected approach seems
suitable for the context of this thesis, and for a use in practice.

2. How do performance tests and energy efficiency/resource consumption measurements have to
be set up so that their results are accurate, meaningful (with respect to the definitions from
question 1) and reproducible (e.g., with respect to the FAIR criteria)?

The literature and practitioners suggest to set up a controlled test environment in order to achieve
meaningful results [12] [46]. In case it is not feasible to use an isolated testing lab or mirror a production
environment, resource constraints can guarantee or restrict resources for test executions [102]. The impact
of resource constraints depends on the environment they are used in. The findings in this thesis suggest
that they have a positive impact on systems with limited resources, and a negligible or even negative
impact on systems with sufficient resources. Resource constraints definitely have their place when it comes
to production deployments in practice, but their usage depends on specific requirements and

environmental factors.

One part of a controlled test environment is an automated test execution script including a setup phase,
multiple test steps, and a cleanup phase. This thesis relies on an automated test execution script on Linux.
The tests on Windows are not fully automated and require manual intervention to conduct the
experiments. Automated test executions should always be preferred over manual interactions to save
time, ensure reproducibility, and reduce the probability of human error.

When it comes to achieving accurate and meaningful results, the practitioners suggest to use multiple
iterations, calculate averages, and report outliers [46] [81]. Diagrams illustrate the results with outliers and
deviations to provide a more realistic view of the test results [12]. Relying on multiple iterations, averages,
visualizations, and outliers proves to be suitable when documenting measurement results in practice.

The industry standard of load testing with third party tools such as JMeter, Gatling, or Locust, is a simple
and effective way to measure the performance of software systems. The configuration and usage of JMeter
is rather straightforward with a low learning curve, which makes it a suitable tool for this thesis and
practitioners in the industry. JMeter allows to store test plans in files, which can be easily shared, reused,
and adapted. Additionally, all results are stored in structured files, which can be analyzed and visualized
with JMeter. This makes it a good choice for documenting test plans and the corresponding results.

JoularJX as a measurement tool provides valuable insights into the energy consumption of Java
applications, which helps to optimize the energy efficiency of software systems. Joular)X stores the

Towards Greener Software | 5. Discussion | 111

measurement results in .csv files, which can be evaluated with third party tools like Excel. It is a reliable,
easy-to-use tool, and a versatile option for multiple operating systems. The selected test environment
setup and measurement tools are suitable to gain accurate, meaningful, and reproducible results.

3. Is it possible to reproduce the measurements of the Spring Boot PetClinic sample that are
reported in the Growing Green Software blog? Do the interpretations of the data given in the blog
posts require clarification and discussion? How could the reported test and measurements be
improved (taking the answers to questions 1 and 2 into account)?

The GGS blog measurements of the PetClinic application are successfully reproduced in this thesis and help
to rule out potential misconfigurations and invalid results in the later experiments. The blog post
interpretations of the data are clear and provide valuable insights into the energy consumption of the
PetClinic across different Spring Boot versions. The findings of this thesis reveal significant performance
differences between Windows and Linux compared to the GGS blog. The deviations occur due to different
hardware resources and operating systems. However, the relative distribution of energy consumption for
all involved operations is similar across the different operating systems.

The GGS blog introduces the term useful work, but does not further elaborate on it and uses kilowatt-hours
and Joules instead. It does suggest to combine useful work with user stories or use cases. This thesis
proposes to leverage the INVEST mnemonic to define the scope of useful work and to use it in practice.
Future work could further elaborate on useful work in combination with INVEST to scope the test plan
according to user stories or use cases. A real enterprise application could be measured and analyzed such
that the selected user stories can be improved and optimized on a technical level.

4. When measuring selected use cases of the sample application LakesideMutual in the same way as
the Spring Boot PetClinic sample, how do the two result sets compare? How can the differences be
explained? Does the monolith version of LakesideMutual show a different behavior than the
microservices version?

The initial test plan solely considers CRUD operations with JPA, while the adapted test plan considers CRU
operations and workflows with Spring Data JPA. The process of adapting the test plan is covered in a total
of five experiments. The test concept includes comparing CRUD and CRU operations, comparing JPA and
Spring Data JPA, and comparing the monolith and microservices versions of LakesideMutual. The results
confirm varying performance results between different operating systems and even between different
implementation details, such as JPA or Spring Data JPA. The relative distribution of energy consumption
remains consistent across the two operating systems, across database access technologies, across
different enterprise applications, and even across different sets of operations.

Additionally, the correlation between performance and energy efficiency is analyzed. The findings suggest
an inverse correlation between performance and energy efficiency when using different hardware
resources. The Linux test environment runs more powerful hardware resources, achieves a higher
performance, but consumes more energy than the Windows test environment. The results also suggest a
strong correlation when comparing applications with varying implementation details. The PetClinic
achieves better performance and energy efficiency with JPA than with Spring Data JPA. Eventually
LakesideMutual achieves significantly better performance and energy efficiency than the PetClinic
application for the same set of operations.

112 | 5. Discussion | Towards Greener Software

5. How can the results from questions 1 to 4 be generalized so that they can serve as guidelines and
examples for future tests and measurements of a.) other Spring Boot applications b.) other Web-
based applications c.) any distributed, software-intensive system?

The results of the PetClinic and LakesideMutual applications allow for a generalization of the findings for
other Spring Boot applications, web-based applications, and other enterprise applications. Simple CRUD
operations on databases are a common denominator for enterprise applications and can be used to
generalize the findings. The results solely provide indications for other types of applications and act as a
good starting point for further research.

All research questions are successfully answered, and the research objectives are met.

5.4.2. Challenges

We faced several challenges and learned valuable lessons throughout this thesis. The first challenge was to
set up a controlled test environment and to configure the measurement tools correctly. A misconfiguration
of JoularJX led to incorrect measurement results, which made it impossible to reproduce the results of the
GGS blog post. Reproducing existing measurements before conducting our own measurements proved to
be a valuable step in the process. It prevented us from misconfigurations and invalid results in the later
experiments.

O | learned to pay close attention to configuration details, test the setup thoroughly, and to
- document the test environment setup properly.

The second challenge was to automate the test executions on Windows. Joular)X works reliably when
executed in foreground mode. We faced challenges on Windows when running the application in
background mode. We were not able to terminate the process gracefully enough, resulting in lost energy
consumption logs. Therefore, we had to run the tests in foreground mode and manually terminate the
process after the test execution. This appears to be a limitation of JoularJX in combination with Windows, as
the tool works as expected on Linux. We do not exclude a potential misconfiguration or misuse of the tool
from our side. We encourage to further investigate this behaviour on Windows and potentially improve the
tool.

7 | learned that it is important to test the measurement tools on all target operating
- systems and to ensure that they work as expected.

The third challenge was to achieve meaningful results across different test environments and different sets
of operations. The two test environments differ in hardware resources and the applications under test
differ in their functionality. We created a test concept that resembles a staircase approach, where each
experiment and each scenario builds upon the previous one. Each test scenario specifically changes one
aspect in the test setup to achieve comparable results. It allowed us to draw conclusions even across
system boundaries and different enterprise applications.

O | learned that it is important to have a clear test concept and to achieve meaningful
- results.

Towards Greener Software | 5. Discussion | 113

5.4.3. Added Value for the Target Audience

This thesis primarily targets academic personnel and practitioners in the field of software engineering and
architecture. Professors, students, and researchers may benefit from the detailed research, the
experimental setup, and the measurement results as a baseline for their own research. Software engineers
and architects can apply the established measurement techniques and metrics to gain insights in their
projects and to optimize their software systems. Additionally, product owners and project managers may
refer to the findings and implications to understand the trade-offs between software quality, customer
satisfactions, costs, and sustainability.

5.5. Outlook

This thesis focused on measurements of enterprise applications, specifically two Spring Boot applications
written in Java. The Spring Boot framework comes with a lot of features and complex configurations, which
have a potential impact on measurement results. Further research could address several aspects in
connection with Spring Boot.

1. Different versions of Java, Spring Boot, and even database versions could be investigated.

2. The impact of database interactions can be isolated by comparing different database vendors,
database connection technologies, database sequence allocation sizes, and database transaction
properties (ACID).

3. Code changes related to Spring Boot, such as using @Autowired versus manual dependency injection,
may reveal interesting results.

When it comes to other types of applications, such as embedded and control systems, or desktop and
mobile applications, the findings of this thesis may not directly apply. An interesting next step could involve
extending the measurements to other types of applications. This includes further methods and tools for
measuring the performance of an application, as well as further elaborating useful work when it comes to
measuring energy efficiency.

Cloud deployments are becoming increasingly popular, and the energy consumption of cloud-based
applications is a growing concern. Sustainability and energy efficiency are becoming more important in the
software engineering community. A Master's thesis could extend the work of this thesis by investigating the
energy consumption of a real enterprise application running in a cloud environment. It appears that there
is a disconnect between conceptual user stories and actual software implementation with respect to
energy efficiency. The findings of this thesis can be used to identify the useful work of an application,
measure its energy consumption, and evaluate its energy efficiency. The goal is to identify wasteful
operations that degrade the energy efficiency, and to provide recommendations for optimizing the energy
consumption of cloud-based applications.

The following activities should be achieved with the help of research, experiments, and if applicable,

programming activities:

1. ldentify how energy consumption measurements have to be setup so that their results are accurate,
meaningful (with respect to the findings of the second project thesis), and reproducible.

2. Reproduce the existing measurements of the second project thesis on a bare-metal Linux server by
applying the setup identified in the first step.

114 | 5. Discussion | Towards Greener Software

3. Deploy and measure the same application on a cloud server and compare the results to the ones
obtained in the second step.

4. Analyze wasteful operations in the enterprise application and provide optimization recommendations
with respect to useful work and user stories.

5. Generalize the findings from step one to four and establish guidelines for energy-efficient software
engineering in cloud environments.

The scope of such a thesis could also be adapted to cloud-native application development. It is possible to
investigate the energy consumption of cloud-native application traits by lifting and shifting an existing
application to the cloud. This could include the deployment of an application on laaS, and the subsequent
refactorings to utilize cloud-native traits such as Paas, serverless computing, and other cloud offerings.

Critical success factors for such a thesis may include:

+ Relying on a real enterprise application, including complex domain models and long-running business
processes, to establish a solid foundation for the research.

« Comparing on-premise and cloud deployments to identify differences in energy consumption.

+ Achieving meaningful results by ensuring equal technology stacks, configurations, and application

versions.

Such a thesis would provide valuable insights into the energy consumption of cloud-based applications and
help to establish guidelines for energy-efficient software engineering. We aim to promote sustainable
software development and reduce the environmental impact of growing cloud infrastructure.

Towards Greener Software | 5. Discussion | 115

116 | 5. Discussion | Towards Greener Software

6. Conclusion

This thesis set out to investigate whether and how the state of the art in the field of performance and
efficiency measurements reported in the academic literature differs from practice. Performance
measurements are well established in the academic literature. The selected approach of measuring
performance with latency and throughput is not sufficient to gain a holistic view of the performance of an
application. Additional metrics from different perspectives need to be evaluated to gain a comprehensive
understanding of the performance of an application. In practice, measurements need to be conducted
continuously to recognize performance issues early on in the software development process.

With respect to resource and energy efficiency measurements, the software engineering literature lacks a
common definition of measurable aspects. The literature mentions the term useful work but does not
provide a sufficient definition. This thesis successfully leverages the INVEST mnemonic to clarify the term
useful work for energy efficiency measurements of enterprise applications. Future research could further
elaborate the concept of useful work and how it can be applied to other types of applications.

The experiments are conducted with JMeter as a load testing tool and JoularJX as an energy consumption
measurement tool. Best practices and methods mentioned in the literature are applied to the experiments,
such as using automated test scripts with setup and cleanup phases, running multiple test executions,
calculating average results, and using visualizations to interpret the results. Equal tools, versions, and
configurations across all systems and applications are essential to achieve meaningful results.

The measurements confirm that the performance and energy consumption of applications are significantly
influenced by external factors such as hardware, operating systems, and implementation details. The
results suggest that the absolute performance of an application can not be compared across system
boundaries and enterprise applications. They reveal that the relative distribution of energy consumption is
comparable across different test environments, enterprise applications, and even sets of operations.

The experiments suggest that the performance correlates with the energy efficiency. The results indicate
that different hardware resources lead to an inverse correlation between performance and energy
efficiency. Systems with more powerful hardware resources perform better, but consume more energy,
and vice versa. Furthermore, the results indicate that implementation and configuration details lead to a
strong correlation between performance and energy efficiency. A test plan using JPA performs better with
higher energy efficiency than the same test plan using Spring Data JPA. The LakesideMutual application
differs in its implementation from the PetClinic application and achieves better performance and energy
efficiency.

The achieved results and insights can be used by professors and students for their own research. Software
engineers and architects can refer to the testing methods, tools, and configurations used in the
experiments to measure their own applications. Product owners and project managers can refer to the
result analysis and interpretation to take informed decisions about the implications of performance and
energy efficiency.

Energy efficient software engineering is becoming increasingly important with respect to sustainability. We
aim to continue this work in a follow-up Master’s thesis and investigate the energy efficiency of cloud-native
applications and cloud infrastructure. Such work contributes to a more sustainable software development
process and eventually reduces the ecological impact of software systems.

Towards Greener Software | 6. Conclusion | 117

118 | 6. Conclusion | Towards Greener Software

7. Appendices

Appendix A: Glossary

arc42

arc42 is an open-source tool for architecture communication and documentation.

arc42 Quality Model

arc42 Quality Model (Q42) is an approach to analyse and increase product and system quality.

Application Programming Interface

An application programming interface (API) provides a set of functions to other software components or
systems to interact with the software providing the API.

Class Diagram

The class diagram is a Unified Modeling Language (UML) diagram that describes the structure of
software systems. It shows classes, attributes, operations and relationships between classes.

Cloud Computing

Cloud computing refers to multiple cloud services communicating with each other via internet
protocols.

Cloud-native

Cloud-native is a term used to describe applications that are designed to run in cloud computing
environments. This involves building, deploying and managing software applications.

Control System

A control system is an embedded system that interacts with the environment to control mechanical or
electrical actuators.

Docker

Docker is a tool to deploy and run applications in virtual containers. Containerization allows developers
to ship applications including all dependencies across different environments.

Docker Compose

Docker Compose is a tool that builds upon Docker and allows developers to define and run multi-
container applications.

Embedded System

An Embedded system is part of a larger system and fulfills a specific task.

Energy Efficiency Factor

The energy efficiency factor describes the ratio of useful work done by a system to the energy
consumed by the system.

Towards Greener Software | 7. Appendices | 119

Enterprise Application

An enterprise application is a software system that differs from other software systems in terms of
complexity, longevity, and amount of users. Enterprise applications provide long-running business
processes to multiple hundreds or thousands of users.

Entity-Relationship Diagram

The entity-relationship diagram (ERD) is a UML diagram that describes a data model and how entities
relate to each other.

FAIR

FAIR stands for Findable, Accessible, Interoperable, and Reusable. The FAIR principles are a set of
guidelines, which should be followed when publishing research data and all processing steps involved.

Growing Green Software

Growing Green Software (GGS) is a blog that reports on performance and efficiency measurements in
the context of Java-based Spring Boot applications.

INVEST

INVEST is a mnemonic that stands for Independent, Negotiable, Valuable, Estimable, Small, and
Testable. This set of criteria is used to assess the quality of user stories in agile software development

and improve the size of work packages.

Java

Java is an open-source, cross-platform, object-oriented programming language that runs in the Java
Virtual Machine (JVM).

Java Database Connectivity

The Java Database Connectivity (JDBC) is an API that describes how clients such as Java applications can

access databases.

Java Persistence API

The Java Persistence API (JPA) is an interface that builds upon JDBC and eases the interaction with

databases by introducing object-relational mapping.

Java Virtual Machine

The Java Virtual Machine (JVM) is a runtime environment that runs on top of an operating system. This

allows Java to run on any platform that supports a JVM.

JMeter

Apache JMeter is an open-source load and performance testing tool. JMeter interacts with applications
via APIs and simulates users interacting with the application.

Joular)X

JoularJX'is an open-source tool that allows users to measure specific Java applications down to the

method level.

120 | 7. Appendices | Towards Greener Software

LakesideMutual

LakesideMutual is an open-source project developed by the Eastern Switzerland University of Applied
Sciences, which represents a fictitious insurance company called Lakeside Mutual. This software project
resembles a distributed enterprise application and is used in this thesis to evaluate the established
software quality attributes.

Latency

Latency describes the time it takes to send a request, process the request, and retrieve the response.

Master Data

In APl design, master data describes all data that is long-living, rarely updated, and frequently
referenced.

Measurement

A measurement is the definition and execution of a procedure to get a single data point. In the context
of this thesis, a measurement measures a quality attribute of an architecture. Multiple measurement
executions, multiple data points, can be aggregated in a metric.

Metric

A metric contains multiple measurement definitions and their respective data points. Metrics represent
the deviation between multiple measurements over time.

Monolithic Architecture

A monolithic architecture provides the entire application functionality in a single deployment unit.

MySQL Database

MySQL is an open-source relational database management system (RDBMS) provided by Oracle. MySQL
is a widely used database system and is used in this thesis to persist data.

Operational Data

In API design, operational data describes all data that is short-living, frequently updated, and rarely
referenced.

Performance

Performance is an important non-functional requirement or software quality attribute for enterprise
applications. Performance describes multiple characteristics of a system such as throughput and
latency.

PetClinic

The PetClinic is an open-source project developed by the Spring community to demonstrate the Spring
framework. The PetClinic resembles a monolithic enterprise application and is used in this thesis to
reproduce the GGS blog measurements.

Running Average Power Limit

The Running Average Power Limit (RAPL) is a feature of Intel processors that allows users to measure
the power consumption statistics of the CPU.

Towards Greener Software | 7. Appendices | 121

Resource and Energy Efficiency

Resource and energy efficiency is a software quality attribute that describes how well a system uses its
resources and energy.

Service-Oriented Architecture

A service-oriented architecture (SOA) provides the entire application functionality in multiple
deployment units. Each unit is called a service and usually interacts with other services via APIs.

Software Quality Attribute

A software quality attribute is a non-functional requirement that describes a certain quality aspect of a
software system. An example of a software quality attribute is performance, which describes how well a
system performs under certain conditions.

Spring Framework

The Spring framework is an open-source Java framework that enables developers to build production-
ready enterprise applications. Spring is an alternative to other Java frameworks such as Jakarta EE.

Spring Boot Framework

Spring Boot is an open-source Java framework to develop applications based on Java and Spring. Spring
Boot allows developers to use convention over configuration.

Spring Data JPA
Spring Data JPA builds upon JPA and introduces abstraction layers to ease the interaction with the
database from a developer its perspective.

Test Plan

A test plan describes the entire test scenario including the test steps, the test data, the expected results,
and the actual results.

Throughput

Throughput describes the amount of requests a system can process in a given time interval.

Useful Work

Useful work is a term introduced by academic literature to describe work that is done by a system. The
definition of useful work depends on the domain context and requires further specification.

122 | 7. Appendices | Towards Greener Software

Appendix B: Bibliography

[1]1 GitHub Copilot - Your Al pair programmer. (2025). GitHub. Retrieved February 19, 2025, from
https://github.com/features/copilot

[2] Scribbr. (2023, March 13). Wir korrigieren Dokumente flr Schule, Studium und Job. Retrieved
February 19, 2025, from https://www.scribbr.ch/

[3] DeeplL. (n.d.). Deepl Translate: The world's most accurate translator. Retrieved February 19, 2025,
from https://www.deepl.com/en/translator

[4] Elicit: the Al Research Assistant. (n.d.). Elicit. Retrieved February 19, 2025, from https://elicit.com/
[5] OpenAl. (n.d.). ChatGPT. ChatGPT. Retrieved June 18, 2025, from https://chatgpt.com/

[6] Denaro, G., Polini, A., & Emmerich, W. (2004). Early performance testing of distributed software
applications. Workshop on Software and Performance (WOSP 2004), 94-103. https://doi.org/10.1145/
974044.974059

[7]1 Brunnert, A. (2024). Green Software Metrics. ICPE '24 Companion, 287-288. https://doi.org/10.1145/
3629527.3652883

[8] Kern, E., Dick, M., Naumann, S., Guldner, A., &Johann, T. (2013). Green Software and Green Software
Engineering - Definitions, Measurements, and Quality Aspects. ICT4S 2013: Proceedings of the First
International Conference on Information and Communication Technologies for Sustainability, ETH
Zurich. https://doi.org/10.3929/ethz-a-007337628

[9] Ruch, J. (n.d.). Measuring Software Architecture Quality: Elaborating Metrics to Compare Enterprise
Application Architectures. Not published.

[10] Ruch, J. (n.d.). EVA Advanced Software Architecture - Metrics for Observability. Not published.

[11] Stocker, M. (2024, December 23). Growing Green Software - medium. Medium. Retrieved February
19, 2025, from https://medium.com/growing-green-software

[12] Guldner, A., Bender, R., Calero, C., Fernando, G. S., Funke, M., Gréger, J., Hilty, L. M.,
Hoérnschemeyer, J., Hoffmann, G., Junger, D., Kennes, T., Kreten, S., Lago, P., Mai, F., Malavolta, I.,
Murach, J., Obergoker, K., Schmidt, B., Tarara, A., ... Naumann, S. (2024). Development and evaluation
of a reference measurement model for assessing the resource and energy efficiency of software
products and components—Green Software Measurement Model (GSMM). Future Generation
Computer Systems, 155, 402-418. https://doi.org/10.1016/j.future.2024.01.033

[13] Wake, B. (2003, August 17). INVEST in good stories, and SMART tasks. XP123. Retrieved February
28, 2025, from https://xp123.com/invest-in-good-stories-and-smart-tasks/

[14] Fowler, M. (2002, November). Patterns of enterprise Application Architecture. O'Reilly Online
Learning. Retrieved April 1, 2025, from https://learning.oreilly.com/library/view/patterns-of-enterprise/
0321127420/

[15] Zimmermann, O. & Eastern Switzerland University of Applied Sciences. (2024, September 17).
Application Architecture: Introduction & Architecturally Significant Requirements [Slide show]. Lecture,
Switzerland.

[16] Hartwich, C. (2004). Chapter 3: The Distributed Architecture of MultiTiered Enterprise Applications.
In Refubium FU-Berlin. Freie Universitat Berlin. Retrieved April 1, 2025, from https://refubium.fu-
berlin.de/bitstream/handle/fub188/4741/03_chapter3.pdf?sequence=4&isAllowed=y

[17] Evans, E. (2003, August). Domain-Driven Design: tackling complexity in the heart of software.
O'Reilly Online Learning. Retrieved April 1, 2025, from https://learning.oreilly.com/library/view/domain-
driven-design-tackling/0321125215/

Towards Greener Software | 7. Appendices | 123

https://github.com/features/copilot
https://www.scribbr.ch/
https://www.deepl.com/en/translator
https://elicit.com/
https://chatgpt.com/
https://doi.org/10.1145/974044.974059
https://doi.org/10.1145/974044.974059
https://doi.org/10.1145/3629527.3652883
https://doi.org/10.1145/3629527.3652883
https://doi.org/10.3929/ethz-a-007337628
https://medium.com/growing-green-software
https://doi.org/10.1016/j.future.2024.01.033
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://learning.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://learning.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://refubium.fu-berlin.de/bitstream/handle/fub188/4741/03_chapter3.pdf?sequence=4&isAllowed=y
https://refubium.fu-berlin.de/bitstream/handle/fub188/4741/03_chapter3.pdf?sequence=4&isAllowed=y
https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://learning.oreilly.com/library/view/domain-driven-design-tackling/0321125215/

[18] Hohpe, G., & Woolf, B. (2003, October). Enterprise integration patterns: Designing, building, and
deploying messaging solutions. O'Reilly Online Learning. Retrieved April 1, 2025, from
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/

[19] Internal Revenue Service. (n.d.). Foreign Account Tax Compliance Act (FATCA) | Internal Revenue
Service. Retrieved June 6, 2025, from https://www.irs.gov/businesses/corporations/foreign-account-tax-
compliance-act-fatca

[20] Sarbanes-Oxley Compliance Professionals Association. (n.d.). Sarbanes-Oxley Act | Sarbanes-Oxley
Compliance Professionals Association (SOXCPA). Retrieved June 6, 2025, from https://www.sarbanes-
oxley-act.com/

[21] The Spring PetClinic community. (n.d.). Retrieved March 7, 2025, from https://spring-
petclinic.github.io/

[22] Spring by VMware Tanzu. (n.d.). Spring Framework. Spring Framework. Retrieved April 30, 2025,
from https://spring.io/projects/spring-framework

[23] Spring by VMware Tanzu. (n.d.-a). Spring boot. Spring Boot. Retrieved April 30, 2025, from
https://spring.io/projects/spring-boot

[24] IBM. (2025, April 16). Java Spring Boot. What is Java Spring Boot? Retrieved April 30, 2025, from
https://www.ibm.com/think/topics/java-spring-boot

[25] GitHub - spring-petclinic/spring-petclinic-rest: REST version of the Spring Petclinic sample
application. (n.d.). GitHub. Retrieved March 7, 2025, from https://github.com/spring-petclinic/spring-
petclinic-rest

[26] GitHub - spring-petclinic/spring-petclinic-angular: Angular 16 version of the Spring Petclinic sample
application (frontend). (n.d.). GitHub. Retrieved March 15, 2025, from https://github.com/spring-
petclinic/spring-petclinic-angular

[27] Harel, D., & Kupferman, O. (2002). On object systems and behavioral inheritance. IEEE Transactions
on Software Engineering, 28(9), 889-903. https://doi.org/10.1109/tse.2002.1033228

[28] Ramachandrappa, N. C. (2024). SOLID design principles in software engineering. International
Journal of Computer Trends and Technology, 72(9), 18-23. https://doi.org/10.14445/22312803/ijctt-
v72i9p104

[29] Liskov, B. (1987). Data Abstraction and Hierarchy. Addison-Wesley. Retrieved June 6, 2025, from
https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hierarchy.pdf

[30] Zimmermann, O., Stocker, M., Lubke, D., Zdun, U., & Pautasso, C. (2022, November). Patterns for
API Design: Simplifying Integration with Loosely Coupled Message Exchanges. O'Reilly Online Learning.
Retrieved March 27, 2025, from https://learning.oreilly.com/library/view/patterns-for-api/
9780137670093/

[31] Microservice-API-Patterns. (n.d.). GitHub - Microservice-API-Patterns/LakesideMutual: Example
Application for Microservice API Patterns (MAP) and other patterns (DDD, PoEAA, EIP). GitHub.
Retrieved April 22, 2025, from https://github.com/Microservice-API-Patterns/LakesideMutual

[32] Zimmermann, O., Stocker, M., Lubke, D., Zdun, U., & Pautasso, C. (n.d.). Patterns for API design.
Microservice API Patterns (MAP). Retrieved June 6, 2025, from https://microservice-api-patterns.org/
[33] Wikipedia contributors. (2025, February 4). SMART criteria. Wikipedia. Retrieved March 1, 2025,
from https://en.wikipedia.org/wiki/SMART _criteria

[34] Zimmermann, O., & Stocker, M. (2024). Design Practice Reference: Activities and Templates to Craft
Quality Software in Style. In design-practice-repository. Leanpub. Retrieved March 1, 2025, from
https://leanpub.com/dpr

124 | 7. Appendices | Towards Greener Software

https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://www.irs.gov/businesses/corporations/foreign-account-tax-compliance-act-fatca
https://www.irs.gov/businesses/corporations/foreign-account-tax-compliance-act-fatca
https://www.sarbanes-oxley-act.com/
https://www.sarbanes-oxley-act.com/
https://spring-petclinic.github.io/
https://spring-petclinic.github.io/
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-boot
https://www.ibm.com/think/topics/java-spring-boot
https://github.com/spring-petclinic/spring-petclinic-rest
https://github.com/spring-petclinic/spring-petclinic-rest
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/spring-petclinic/spring-petclinic-angular
https://doi.org/10.1109/tse.2002.1033228
https://doi.org/10.14445/22312803/ijctt-v72i9p104
https://doi.org/10.14445/22312803/ijctt-v72i9p104
https://www.cs.tufts.edu/~nr/cs257/archive/barbara-liskov/data-abstraction-and-hierarchy.pdf
https://learning.oreilly.com/library/view/patterns-for-api/9780137670093/
https://learning.oreilly.com/library/view/patterns-for-api/9780137670093/
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservice-api-patterns.org/
https://en.wikipedia.org/wiki/SMART_criteria
https://leanpub.com/dpr

[35] Software Engineering Institute. (2018). The SEI Quality Attribute Workshop. In Software Engineering
Institute. Retrieved March 5, 2025, from https://insights.sei.cmu.edu/documents/2542/
2018_010_001_513488.pdf

[36] Bass, L., Clements, P., & Kazman, R. (2021, August). Software Architecture in Practice, 4th Edition.
O'Reilly Online Learning. Retrieved March 5, 2025, from https://learning.oreilly.com/library/view/
software-architecture-in/9780136885979/

[37]11SO & IEC. (2023). ISO. Online Browsing Platform (OBP). Retrieved February 19, 2025, from
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en

[38]1SO, IEC, & IEEE. (2016). ISO. Online Browsing Platform (OBP). Retrieved March 1, 2025, from
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24748:-4:ed-1:v1:en

[39] IEEE Standard for Application and Management of the Systems Engineering Process. (2005). IEEE.
https://doi.org/10.1109/ieeestd.2005.96469

[40] Starke, G., & Hruschka, P. (n.d.-b). Home. Arc42 Quality Model. Retrieved February 19, 2025, from
https://quality.arc42.org/

[41] Starke, G., & Hruschka, P. (2000, September 2). Response time for image rendering. arc42 Quality
Model. Retrieved February 19, 2025, from https://quality.arc42.org/requirements/response-time-for-
image-rendering

[42] Starke, G., & Hruschka, P. (2022b, December 28). Latency. arc42 Quality Model. Retrieved March 1,
2025, from https://quality.arc42.org/qualities/latency

[43] Starke, G., & Hruschka, P. (2022c, December 28). Throughput. arc42 Quality Model. Retrieved
March 1, 2025, from https://quality.arc42.org/qualities/throughput

[44] Burke, J. (2025, February 11). What is throughput? Search Networking. Retrieved March 1, 2025,
from https://www.techtarget.com/searchnetworking/definition/throughput

[45] Starke, G., & Hruschka, P. (2022c, December 28). Scalability. arc42 Quality Model. Retrieved March
1, 2025, from https://quality.arc42.org/qualities/scalability

[46] Devoxx, & Baumgartner, P. (2024, October 10). Lean Spring Boot Applications for the Cloud by
Patrick Baumgartner [Video]. YouTube. Retrieved March 2, 2025, from https://www.youtube.com/
watch?v=s982aX2HSfk

[47] Patbaumgartner. (n.d.). talk-lean-spring-boot-applications-for-the-cloud/lean-spring-boot-
applications-for-the-cloud.pdf at main - patbaumgartner/talk-lean-spring-boot-applications-for-the-
cloud. GitHub. Retrieved March 2, 2025, from https://github.com/patbaumgartner/talk-lean-spring-
boot-applications-for-the-cloud/blob/main/lean-spring-boot-applications-for-the-cloud.pdf

[48] Team, B. A., & Team, A. (2023, November 20). How to run web app testing. Blog About Software
Development, Testing, and Al | Abstracta. Retrieved March 2, 2025, from https://abstracta.us/blog/
performance-testing/how-to-do-performance-testing-for-web-application/

[49] Team, A. (2024, April 24). Performance Testing VS Load Testing | Abstracta. Blog About Software
Development, Testing, and Al | Abstracta. Retrieved March 2, 2025, from https://abstracta.us/blog/
performance-testing/performance-testing-vs-load-testing/

[50] Stocker, M. (2024a, November 16). Measuring Java Energy consumption - Growing Green Software -
medium. Medium. https://medium.com/growing-green-software/measuring-java-energy-consumption-
987654efdabb

[51] Stocker, M. (2024a, November 13). Evolution of energy usage in Spring Boot - Growing green
Software - medium. Medium. https://medium.com/growing-green-software/evolution-of-energy-usage-
in-spring-boot-69c7c372dba3

Towards Greener Software | 7. Appendices | 125

https://insights.sei.cmu.edu/documents/2542/2018_010_001_513488.pdf
https://insights.sei.cmu.edu/documents/2542/2018_010_001_513488.pdf
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24748:-4:ed-1:v1:en
https://doi.org/10.1109/ieeestd.2005.96469
https://quality.arc42.org/
https://quality.arc42.org/requirements/response-time-for-image-rendering
https://quality.arc42.org/requirements/response-time-for-image-rendering
https://quality.arc42.org/qualities/latency
https://quality.arc42.org/qualities/throughput
https://www.techtarget.com/searchnetworking/definition/throughput
https://quality.arc42.org/qualities/scalability
https://www.youtube.com/watch?v=s982aX2HSfk
https://www.youtube.com/watch?v=s982aX2HSfk
https://github.com/patbaumgartner/talk-lean-spring-boot-applications-for-the-cloud/blob/main/lean-spring-boot-applications-for-the-cloud.pdf
https://github.com/patbaumgartner/talk-lean-spring-boot-applications-for-the-cloud/blob/main/lean-spring-boot-applications-for-the-cloud.pdf
https://abstracta.us/blog/performance-testing/how-to-do-performance-testing-for-web-application/
https://abstracta.us/blog/performance-testing/how-to-do-performance-testing-for-web-application/
https://abstracta.us/blog/performance-testing/performance-testing-vs-load-testing/
https://abstracta.us/blog/performance-testing/performance-testing-vs-load-testing/
https://medium.com/growing-green-software/measuring-java-energy-consumption-987654efdabb
https://medium.com/growing-green-software/measuring-java-energy-consumption-987654efdabb
https://medium.com/growing-green-software/evolution-of-energy-usage-in-spring-boot-69c7c372dba3
https://medium.com/growing-green-software/evolution-of-energy-usage-in-spring-boot-69c7c372dba3

[52] Capra, E., Francalanci, C., & Slaughter, S. A. (2012). Measuring application software energy
efficiency. IT Professional, 14(2), 54-61. https://doi.org/10.1109/mitp.2012.39

[53]11SO & IEC. (2016b). ISO. Online Browsing Platform (OBP). Retrieved February 19, 2025, from
https://www.iso.org/obp/ui/#iso:std:iso-iec:30134:-2:ed-1:v1:en

[54]1SO & IEC. (2016). ISO. Online Browsing Platform (OBP). Retrieved February 19, 2025, from
https://www.iso.org/obp/ui/#iso:std:iso-iec:30134:-1:ed-1:v1:en

[55] Green Software Foundation. (n.d.). GSF. Retrieved February 19, 2025, from
https://greensoftware.foundation/

[56] Green-Software-Foundation. (n.d.). sci/SPEC.md at main - Green-Software-Foundation/sci. GitHub.
Retrieved February 19, 2025, from https://github.com/Green-Software-Foundation/sci/blob/main/
SPEC.md

[57] Capra, E., Francalanci, C., & Slaughter, S. A. (2011). Is software “green”? Application development
environments and energy efficiency in open source applications. Information and Software Technology,
54(1), 60-71. https://doi.org/10.1016/].infsof.2011.07.005

[58] Stocker, M. (2024a, November 23). Software Efficiency and Energy Consumption - Growing Green
Software - medium. Medium. https://medium.com/growing-green-software/software-efficiency-and-
energy-consumption-916b390593ec

[59] Cambridge University Press & Assessment. (2025). efficiency. In Cambridge Dictionary. Retrieved
February 19, 2025, from https://dictionary.cambridge.org/dictionary/english/efficiency

[60] english/glossary.md - main - Green-Software-Engineering / Green Software Measurement Model -
GitLab. (2023, September 8). GitLab. Retrieved February 20, 2025, from https://gitlab.rlp.net/green-
software-engineering/gsmm/-/blob/main/english/glossary.md

[62] Mancebo, J., Calero, C., Garcia, F., Moraga, M. A., & De Guzman, I. G. (2021). FEETINGS: Framework
for energy efficiency testing to improve environmental goal of the software. Sustainable Computing
Informatics and Systems, 30, 100558. https://doi.org/10.1016/j.suscom.2021.100558

[63])Johann, T., Dick, M., Naumann, S., & Kern, E. (2012). How to measure energy-efficiency of software:
Metrics and measurement results. GREENS 2012, Zurich, Switzerland, 51-54. https://doi.org/10.1109/
greens.2012.6224256

[64] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of Reusable
Object-Oriented Software. Pearson Deutschland GmbH. https://learning.oreilly.com/library/view/
design-patterns-elements/0201633612/

[65] Naumann, S., Dick, M., Kern, E., & Johann, T. (2011). The GREENSOFT Model: A reference model for
green and sustainable software and its engineering. Sustainable Computing Informatics and Systems,
1(4), 294-304. https://doi.org/10.1016/j.suscom.2011.06.004

[66] Wikipedia contributors. (2024, December 30). Resource efficiency. Wikipedia. Retrieved February
19, 2025, from https://en.wikipedia.org/wiki/Resource_efficiency

[67] Starke, G., & Hruschka, P. (2022, December 28). Energy efficiency. arc42 Quality Model. Retrieved
February 19, 2025, from https://quality.arc42.org/qualities/energy-efficiency

[68] Merriam-Webster. (2025). efficient. In Merriam-Webster Dictionary. Retrieved February 19, 2025,
from https://www.merriam-webster.com/dictionary/efficient

[69] Starke, G., & Hruschka, P. (2023, July 23). Reduce energy consumption with every new version.
arc42 Quality Model. Retrieved February 19, 2025, from https://quality.arc42.org/requirements/reduce-
energy-consumption-with-new-version

[70] Starke, G., & Hruschka, P. (20234, July 4). Save at least 20% of carbon emissions with every new

126 | 7. Appendices | Towards Greener Software

https://doi.org/10.1109/mitp.2012.39
https://www.iso.org/obp/ui/#iso:std:iso-iec:30134:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:30134:-1:ed-1:v1:en
https://greensoftware.foundation/
https://github.com/Green-Software-Foundation/sci/blob/main/SPEC.md
https://github.com/Green-Software-Foundation/sci/blob/main/SPEC.md
https://doi.org/10.1016/j.infsof.2011.07.005
https://medium.com/growing-green-software/software-efficiency-and-energy-consumption-916b390593ec
https://medium.com/growing-green-software/software-efficiency-and-energy-consumption-916b390593ec
https://dictionary.cambridge.org/dictionary/english/efficiency
https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/english/glossary.md
https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/english/glossary.md
https://doi.org/10.1016/j.suscom.2021.100558
https://doi.org/10.1109/greens.2012.6224256
https://doi.org/10.1109/greens.2012.6224256
https://learning.oreilly.com/library/view/design-patterns-elements/0201633612/
https://learning.oreilly.com/library/view/design-patterns-elements/0201633612/
https://doi.org/10.1016/j.suscom.2011.06.004
https://en.wikipedia.org/wiki/Resource_efficiency
https://quality.arc42.org/qualities/energy-efficiency
https://www.merriam-webster.com/dictionary/efficient
https://quality.arc42.org/requirements/reduce-energy-consumption-with-new-version
https://quality.arc42.org/requirements/reduce-energy-consumption-with-new-version

version. arc42 Quality Model. Retrieved February 19, 2025, from
https://quality.arc42.org/requirements/carbon-efficiency-save

[71] Laaber, C., & Leitner, P. (2018). An evaluation of open-source software microbenchmark suites for
continuous performance assessment. MSR '18: Proceedings of the 15th International Conference on
Mining Software Repositories, 119-130. https://doi.org/10.1145/3196398.3196407

[72] Laaber, C., Wursten, S., Gall, H. C., & Leitner, P. (2020). Dynamically reconfiguring software
microbenchmarks: reducing execution time without sacrificing result quality. Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE '20), 989-1001. https://doi.org/10.1145/3368089.3409683

[73] Sealuzh. (n.d.). GitHub - sealuzh/jmh. GitHub. Retrieved February 24, 2025, from
https://github.com/sealuzh/jmh

[74] Costa, D., Bezemer, C,, Leitner, P., & Andrzejak, A. (2019). What's Wrong with My Benchmark
Results? Studying Bad Practices in JMH Benchmarks. IEEE Transactions on Software Engineering, 47(7),
1452-1467. https://doi.org/10.1109/tse.2019.2925345

[75] Lenka, R. K., Dey, M. R., Bhanse, P., & Barik, R. K. (2018). Performance and Load Testing: Tools and
Challenges. International Conference on Recent Innovations in Electrical, Electronics & Communication
Engineering - (ICRIEECE), 2257-2261. https://doi.org/10.1109/icrieece44171.2018.9009338

[76] Yenugula, M., Kodam, R., & He, D. (2019). Performance and load testing: Tools and challenges.
International Journal of Engineering in Computer Science, 1(1), 57-62. https://doi.org/10.33545/
26633582.2019.v1.i1a.102

[77] Huerta-Guevara, O., Ayala-Rivera, V., Murphy, L., & Portillo-Dominguez, A. O. (2019). DYNAMOJM: A
JMeter tool for performance testing using dynamic workload adaptation. In Lecture notes in computer
science (pp. 234-241). https://doi.org/10.1007/978-3-030-31280-0_14

[78] Load testing designed for DevOps and CI/CD | Gatling. (n.d.). Gatling. Retrieved March 17, 2025,
from https://gatling.io/

[79] Locust.io. (n.d.). Locust. Retrieved March 17, 2025, from https://locust.io/

[80] Jay, M., Ostapenco, V., Lefevre, L., Trystram, D., Orgerie, A., & Fichel, B. (2023). An experimental
comparison of software-based power meters: focus on CPU and GPU. CCGrid 2023 - 23rd IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing, 1-13. https://doi.org/10.1109/
ccgrid57682.2023.00020

[81] Castor, F. (2024, July 16). Estimating the Energy Footprint of Software Systems: a Primer. arXiv.org.
Retrieved March 17, 2025, from https://arxiv.org/abs/2407.11611v2

[82] De Souza, K. (n.d.). PowerKap - A tool for Improving Energy Transparency for Software Developers
on GNU/Linux (x86) platforms. In Imperial. Imperial College London. Retrieved March 17, 2025, from
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-
projects/Krish-De-Souza---PowerKap%3B-A-tool-for-Improving-Energy-Transparency-for-Software-
Developers-on-GNU.Linux-(x86)-platforms.pdf

[83] Khan, K. N., Hirki, M., Niemi, T., Nurminen, J. K., & Ou, Z. (2018). RAPL in action. ACM Transactions
on Modeling and Performance Evaluation of Computing Systems, 3(2), 1-26. https://doi.org/10.1145/
3177754

[84] Intel. (n.d.). Running Average Power Limit Energy Reporting. Retrieved February 25, 2025, from
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/
advisory-guidance/running-average-power-limit-energy-reporting.html

[85] Noureddine, A. (2021, October 27). Measure the energy consumption of Java applications with

Towards Greener Software | 7. Appendices | 127

https://quality.arc42.org/requirements/carbon-efficiency-save
https://quality.arc42.org/requirements/carbon-efficiency-save
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.1145/3368089.3409683
https://github.com/sealuzh/jmh
https://doi.org/10.1109/tse.2019.2925345
https://doi.org/10.1109/icrieece44171.2018.9009338
https://doi.org/10.33545/26633582.2019.v1.i1a.102
https://doi.org/10.33545/26633582.2019.v1.i1a.102
https://doi.org/10.1007/978-3-030-31280-0_14
https://gatling.io/
https://locust.io/
https://doi.org/10.1109/ccgrid57682.2023.00020
https://doi.org/10.1109/ccgrid57682.2023.00020
https://arxiv.org/abs/2407.11611v2
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-projects/Krish-De-Souza---PowerKap%3B-A-tool-for-Improving-Energy-Transparency-for-Software-Developers-on-GNU.Linux-(x86)-platforms.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-projects/Krish-De-Souza---PowerKap%3B-A-tool-for-Improving-Energy-Transparency-for-Software-Developers-on-GNU.Linux-(x86)-platforms.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1617-ug-projects/Krish-De-Souza---PowerKap%3B-A-tool-for-Improving-Energy-Transparency-for-Software-Developers-on-GNU.Linux-(x86)-platforms.pdf
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html

Joular]JX. Noureddine. Retrieved February 25, 2025, from https://www.noureddine.org/articles/measure-
the-energy-consumption-of-java-applications-with-joularjx

[86] Operating Systems and Middleware Group. (n.d.). GitHub - osmhpi/pinpoint: Perf-Inspired Energy
Profiling Tool. GitHub. Retrieved June 6, 2025, from https://github.com/osmhpi/pinpoint

[87] Hoffmann, D., & Tarara, A. (n.d.). GitHub - green-kernel/powerletrics: Powermetrics for Linux.
GitHub. Retrieved March 17, 2025, from https://github.com/green-kernel/powerletrics

[88] GitHub - powerapi-ng/smartwatts-formula: SmartWatts is a formula for a self-adaptive software-
defined power meter based on the PowerAPI framework. (n.d.). GitHub. Retrieved March 17, 2025, from
https://github.com/powerapi-ng/smartwatts-formula

[89] Chamberlin, S. (2020, September 14). Measuring your application power and carbon Impact (Part 1)
- Sustainable software. Sustainable Software. Retrieved March 17, 2025, from
https://devblogs.microsoft.com/sustainable-software/measuring-your-application-power-and-carbon-
impact-part-1/?WT.mc_id=green-8660-cxa

[90] Noureddine, A. (n.d.-b). GitHub - joular/MacPowerMonitor: Power Monitor for macOS is a
command line tool that read CPU's power consumption through Powermetrics tool. GitHub. Retrieved
March 17, 2025, from https://github.com/joular/MacPowerMonitor

[91]1 Noureddine, A. (n.d.-a). GitHub - joular/joularjx: JoularJX is a Java-based agent for software power
monitoring at the source code level. GitHub. Retrieved March 10, 2025, from https://github.com/joular/
joularjx?tab=readme-ov-file

[92] Noureddine, A. (n.d.). Overview - JoularJ]X Documentation. GitHub. Retrieved February 25, 2025,
from https://joular.github.io/joularjx/overview.html

[93] Raffin, G., & Trystram, D. (2024, January 29). Dissecting the software-based measurement of CPU
energy consumption: a comparative analysis. arXiv.org. Retrieved March 16, 2025, from
https://arxiv.org/abs/2401.15985

[94] Hubblo. (n.d.-b). GitHub - hubblo-org/windows-rapl-driver: Windows driver to get RAPL metrics
from a bare metal machine. GitHub. Retrieved March 16, 2025, from https://github.com/hubblo-org/
windows-rapl-driver?tab=readme-ov-file

[95] Noureddine, A. (n.d.-b). How JoularJX works - JoularJX Documentation. GitHub. Retrieved March 16,
2025, from https://joular.github.io/joularjx/ref/how_it_works.html

[96] Shiv, K., lyer, R., Newburn, C., Dahlstedst, J., Lagergren, M., & Lindholm, O. (2003). Impact of JIT/JlVM
optimizations on JAVA application performance. Proceedings of the Seventh Workshop on Interaction
Between Compilers and Computer Architectures (INTERACT'03, 5-13. https://doi.org/10.1109/
intera.2003.1192351

[97] Horky, V., Libi¢, P., Steinhauser, A., & Tima, P. (2015). DOs and DON'Ts of Conducting Performance
Measurements in Java. ICPE'15, 337-340. https://doi.org/10.1145/2668930.2688820

[98] Energy Star. (2022). ENERGY STAR Program Requirements for Computers - Final Draft Test Method
(Rev. May-2022). In Energy Star. Retrieved February 20, 2025, from https://www.energystar.gov/sites/
default/files/asset/document/ENERGY%20STAR%20Draft%20Test%20Method%20for%20Computers.pdf
[99] Energy Star. (2022b). ENERGY STAR Program Requirements for Computers - Final Draft Test
Method (Rev. July-2022). In Energy Star. Retrieved February 20, 2025, from https://www.energystar.gov/
sites/default/files/asset/document/
ENERGY%20STAR%20Computers%20Version%208.0%20Final%20Specification%20Rev.%20July%202022
pdf

[100] Stocker, M. (n.d.-b). GitHub - misto/spring-petclinic-energy-benchmarking. GitHub. Retrieved

128 | 7. Appendices | Towards Greener Software

https://www.noureddine.org/articles/measure-the-energy-consumption-of-java-applications-with-joularjx
https://www.noureddine.org/articles/measure-the-energy-consumption-of-java-applications-with-joularjx
https://github.com/osmhpi/pinpoint
https://github.com/green-kernel/powerletrics
https://github.com/powerapi-ng/smartwatts-formula
https://devblogs.microsoft.com/sustainable-software/measuring-your-application-power-and-carbon-impact-part-1/?WT.mc_id=green-8660-cxa
https://devblogs.microsoft.com/sustainable-software/measuring-your-application-power-and-carbon-impact-part-1/?WT.mc_id=green-8660-cxa
https://github.com/joular/MacPowerMonitor
https://github.com/joular/joularjx?tab=readme-ov-file
https://github.com/joular/joularjx?tab=readme-ov-file
https://joular.github.io/joularjx/overview.html
https://arxiv.org/abs/2401.15985
https://github.com/hubblo-org/windows-rapl-driver?tab=readme-ov-file
https://github.com/hubblo-org/windows-rapl-driver?tab=readme-ov-file
https://joular.github.io/joularjx/ref/how_it_works.html
https://doi.org/10.1109/intera.2003.1192351
https://doi.org/10.1109/intera.2003.1192351
https://doi.org/10.1145/2668930.2688820
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Draft%20Test%20Method%20for%20Computers.pdf
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Draft%20Test%20Method%20for%20Computers.pdf
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Computers%20Version%208.0%20Final%20Specification%20Rev.%20July%202022.pdf
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Computers%20Version%208.0%20Final%20Specification%20Rev.%20July%202022.pdf
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Computers%20Version%208.0%20Final%20Specification%20Rev.%20July%202022.pdf
https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Computers%20Version%208.0%20Final%20Specification%20Rev.%20July%202022.pdf

March 10, 2025, from https://github.com/misto/spring-petclinic-energy-benchmarking

[101] Brunnert, A., & Krcmar, H. (2015). Continuous performance evaluation and capacity planning
using resource profiles for enterprise applications. Journal of Systems and Software, 123, 239-262.
https://doi.org/10.1016/j.js5.2015.08.030

[102] The java Command. (2024, October 17). Docs Oracle. Retrieved March 3, 2025, from
https://docs.oracle.com/en/java/javase/23/docs/specs/man/java.html

[103] Newland, C. (n.d.). VM Options Explorer - OpenJDK11 HotSpot. Chris Newland 2018-2024.
Retrieved March 2, 2025, from https://chriswhocodes.com/

[104] Cloud Native BuildPacks. (n.d.). Cloud Native Buildpacks. Retrieved March 2, 2025, from
https://buildpacks.io/

[105] Ruch. (n.d.). GitHub - j-ruch/LakesideMutual-energy-benchmarking. GitHub. Retrieved April 22,
2025, from https://github.com/j-ruch/LakesideMutual-energy-benchmarking

[106] Azimi, R., Tam, D. K., Soares, L., & Stumm, M. (2009). Enhancing operating system support for
multicore processors by using hardware performance monitoring. ACM SIGOPS Operating Systems
Review, 43(2), 56-65. https://doi.org/10.1145/1531793.1531803

[107] Becker, M., & Chakraborty, S. (2018). Measuring software performance on Linux. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.1811.01412

[108] Bonteanu, A. M., & Tudose, C. (2024). Performance Analysis and Improvement for CRUD
Operations in Relational Databases from Java Programs Using JPA, Hibernate, Spring Data JPA. Applied
Sciences, 14(7), 2743. https://doi.org/10.3390/app 14072743

[109] Colley, D., Stanier, C., & Asaduzzaman, M. (2018). The Impact of Object-Relational Mapping
Frameworks on Relational Query Performance. 2018 International Conference on Computing,
Electronics & Communications Engineering (iCCECE), 47-52. https://doi.org/10.1109/
iccecome.2018.8659222

[110] Rao, R., & Vrudhula, S. (2007). Performance optimal processor throttling under thermal
constraints. CASES '07: Proceedings of the 2007 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, 257-266. https://doi.org/10.1145/1289881.1289925

[111] Capra, E., Formenti, G., Francalanci, C., & Gallazzi, S. (2010). The impact of MIS software on IT
energy consumption. AlS Electronic Library (AlSel). Retrieved April 5, 2025, from https://aisel.aisnet.org/
ecis2010/95

[112] Anagnostopoulou, V., Dimitrov, M., & Doshi, K. A. (2012). SLA-guided energy savings for enterprise
servers. |[EEE International Symposium on Performance Analysis of Systems and Software, 120-121.
https://doi.org/10.1109/ispass.2012.6189216

[113] Gillis, A. S., & Lutkevich, B. (2024, August 13). What is an embedded system? Search IoT. Retrieved
April 30, 2025, from https://www.techtarget.com/iotagenda/definition/embedded-system

[114] Kirvan, P. (2023, March 31). control system. Whatls. Retrieved April 30, 2025, from
https://www.techtarget.com/whatis/definition/control-system

[115] Hanna, K. T., & Daniel, D. (2024, July 18). What is a smart factory? Search ERP. Retrieved April 30,
2025, from https://www.techtarget.com/searcherp/definition/smart-factory

[116] Laros, J. H., Pedretti, K. T., Kelly, S. M., Shu, W., & Vaughan, C. T. (2012). Energy based performance
tuning for large scale high performance computing systems. HPC '12: Proceedings of the 2012
Symposium on High Performance Computing, 6. https://doi.org/10.5555/2338816.2338822

[117]1]in, C., De Supinski, B. R., Abramson, D., Poxon, H., DeRose, L., Dinh, M. N., Endrei, M., & Jessup, E.
R. (2016). A survey on software methods to improve the energy efficiency of parallel computing. The

Towards Greener Software | 7. Appendices | 129

https://github.com/misto/spring-petclinic-energy-benchmarking
https://doi.org/10.1016/j.jss.2015.08.030
https://docs.oracle.com/en/java/javase/23/docs/specs/man/java.html
https://chriswhocodes.com/
https://buildpacks.io/
https://github.com/j-ruch/LakesideMutual-energy-benchmarking
https://doi.org/10.1145/1531793.1531803
https://doi.org/10.48550/arxiv.1811.01412
https://doi.org/10.3390/app14072743
https://doi.org/10.1109/iccecome.2018.8659222
https://doi.org/10.1109/iccecome.2018.8659222
https://doi.org/10.1145/1289881.1289925
https://aisel.aisnet.org/ecis2010/95
https://aisel.aisnet.org/ecis2010/95
https://doi.org/10.1109/ispass.2012.6189216
https://www.techtarget.com/iotagenda/definition/embedded-system
https://www.techtarget.com/whatis/definition/control-system
https://www.techtarget.com/searcherp/definition/smart-factory
https://doi.org/10.5555/2338816.2338822

International Journal of High Performance Computing Applications, 31(6), 517-549.
https://doi.org/10.1177/1094342016665471

[118] Gunnarsson, K., & Herber, O. (2020). The Most Popular Programming Languages of GitHub's
Trending Repositories. DIVA. Retrieved April 30, 2025, from https://urn.kb.se/resolve?
urn=urn%3Anbn%3Ase%3Akth%3Adiva-280113

[119]Jansen, P. (2022, June 3). TIOBE Index - TIOBE. TIOBE. Retrieved April 30, 2025, from
https://www.tiobe.com/tiobe-index/

[120] Fowler, M. (n.d.). CQRS. martinfowler.com. Retrieved April 30, 2025, from
https://martinfowler.com/bliki/CQRS.htm|

[121] Fowler, M. (n.d.-b). Event sourcing. martinfowler.com. Retrieved April 30, 2025, from
https://martinfowler.com/eaaDev/EventSourcing.html

[122] Nanayakkara, C. (2023, July 9). Microservices Patterns: Event sourcing | Cloud Native Daily.
Medium. https://medium.com/cloud-native-daily/microservices-patterns-event-sourcing-7c6e765681c1
[123]1SO & IEC. (2016¢). ISO. Online Browsing Platform (OBP). Retrieved February 24, 2025, from
https://www.iso.org/obp/ui/#iso:std:iso-iec:25023:ed-1:v1:en

[124]ISO & IEC. (1999). ISO. Online Browsing Platform (OBP). Retrieved February 24, 2025, from
https://www.iso.org/obp/ui/#iso:std:iso-iec:14756:ed-1:v1:en

[125] 1SO & IEC. (2020). ISO. Online Browsing Platform (OBP). Retrieved February 24, 2025, from
http://iso.org/obp/ui/#iso:std:iso-iec:21836:ed-1:v1:en

[126] “Resource constraints.” (2024, September 3). Docker Documentation. Retrieved March 3, 2025,
from https://docs.docker.com/engine/containers/resource_constraints/

[127] “Compose Deploy specification.” (2025, January 29). Docker Documentation. Retrieved March 3,
2025, from https://docs.docker.com/reference/compose-file/deploy/#resources

[128] IBM Spectrum Symphony 7.3.1. (n.d.). IBM. Retrieved March 3, 2025, from https://www.ibm.com/
docs/en/spectrum-symphony/7.3.1?topic=limits-control-groups-cgroups-limiting-resource-usage-linux
[129] Running PowerJoular in WSL - Issue #68 - joular/powerjoular. (n.d.). GitHub. Retrieved March 6,
2025, from https://github.com/joular/powerjoular/issues/68

[130] powercap or intel-rapl not supported - Issue #10160 - microsoft/WSL. (n.d.). GitHub. Retrieved
March 6, 2025, from https://github.com/microsoft/WSL/issues/10160

[131] Ruch, J., & Noureddine, A. (n.d.). Measurement Deviation on Windows 11 - Issue #83 -
joular/joularjx. GitHub. Retrieved March 16, 2025, from https://github.com/joular/joularjx/issues/83
[132] Bednarczuk, P., & Borsuk, A. (2022). EFFICIENTLY PROCESSING DATA IN TABLE WITH BILLIONS OF
RECORDS. Informatyka Automatyka Pomiary W Gospodarce | Ochronie Srodowiska, 12(4), 17-20.
https://doi.org/10.35784/iapgos.3058

[132] Lago, P., Meyer, N., Morisio, M., Muller, H. A., & Scanniello, G. (2013). 2nd International workshop
on green and sustainable software (GREENS 2013). 2013 35th International Conference on Software
Engineering (ICSE), 1523-1524. https://doi.org/10.1109/icse.2013.6606768

[133] Starke, G., & Hruschka, P. (n.d.). arc42 Template Overview. Arc42. Retrieved February 19, 2025,
from https://arc42.org/

[134] Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR research data
toward FAIR and open research software. It - Information Technology, 62(1), 39-47. https://doi.org/
10.1515/itit-2019-0040

130 | 7. Appendices | Towards Greener Software

https://doi.org/10.1177/1094342016665471
https://doi.org/10.1177/1094342016665471
https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-280113
https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-280113
https://www.tiobe.com/tiobe-index/
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://medium.com/cloud-native-daily/microservices-patterns-event-sourcing-7c6e765681c1
https://www.iso.org/obp/ui/#iso:std:iso-iec:25023:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:14756:ed-1:v1:en
http://iso.org/obp/ui/#iso:std:iso-iec:21836:ed-1:v1:en
https://docs.docker.com/engine/containers/resource_constraints/
https://docs.docker.com/reference/compose-file/deploy/#resources
https://www.ibm.com/docs/en/spectrum-symphony/7.3.1?topic=limits-control-groups-cgroups-limiting-resource-usage-linux
https://www.ibm.com/docs/en/spectrum-symphony/7.3.1?topic=limits-control-groups-cgroups-limiting-resource-usage-linux
https://github.com/joular/powerjoular/issues/68
https://github.com/microsoft/WSL/issues/10160
https://github.com/joular/joularjx/issues/83
https://doi.org/10.35784/iapgos.3058
https://doi.org/10.1109/icse.2013.6606768
https://arc42.org/
https://doi.org/10.1515/itit-2019-0040
https://doi.org/10.1515/itit-2019-0040

Appendix C: List of Figures

Figure 1. Amind map illustrating the main characteristics of enterprise applications

Figure 2. The UML class diagram of the PetClinic application

Figure 3. The entity-relationship diagram (UML class diagram) of the PetClinic application

Figure 4. The UML sequence diagram of the PetClinic application for retrieving all owners

Figure 5. The UML deployment diagram of the PetClinic application

Figure 6. A mind map illustrating the main characteristics of the PetClinic application

Figure 7. The UML class diagram of the customer core and customer management services

Figure 8. The entity-relationship diagram (UML class diagram) of the customer core and customer
management services

Figure 9. The UML class diagram of the customer self-service service

Figure 10. The entity-relationship diagram (UML class diagram) of the customer self-service service
Figure 11. The UML class diagram of the policy management service

Figure 12. The entity-relationship diagram (UML class diagram) of the policy management service
Figure 13. The UML sequence diagram of the LakesideMutual application for retrieving all customers
Figure 14. The UML deployment diagram of the service-oriented LakesideMutual application
Figure 15. A mind map illustrating the performance software quality attribute

Figure 16. The definition of specific energy [57]

Figure 17. Relevant metrics for energy efficiency [12]

Figure 18. A mathematical definition of useful work [63]

Figure 19. A mind map illustrating the energy and resource efficiency software quality attribute
Figure 20. A mind map illustrating the correlation between performance and resource and energy
efficiency

Figure 21. Example of a JMeter test execution [9]

Figure 22. Overview of the test environment and its components

Figure 23. The computer system architecture for Windows and Linux

Figure 24. The interaction between the sensors, the Scaphandre driver, and the MSRs [94]

Figure 25. The architecture of JoularJX [95]

Figure 26. The application monitoring cycles by JoularJX [95]

Figure 27. The statistical analysis of methods by Joular]JX [95]

Figure 28. Summary of the system stack and the interaction of its components

Figure 29. A mind map illustrating the test environment, the system stack, and the interaction of the
components

Figure 30. Test setup and cleanup [12]

Figure 31. The PetClinic test plan with global variables in JMeter

Figure 32. The PetClinic test plan with a thread group for the owner endpoint in JMeter

Figure 33. The PetClinic test plan with request configurations to fetch all owners in JMeter

Figure 34. LakesideMutual test plan with thread groups for workflows and customers

Figure 35. All experiments and their test scenarios illustrated as a staircase

Figure 36. The processing time for all requests sent to the PetClinic application reported by JMeter on
Windows

Figure 37. The energy consumption of the PetClinic application measured with JoularJX on Windows
Figure 38. The energy consumption of all Spring Boot controllers on Windows

Figure 39. The energy consumption of all operations on Windows

Towards Greener Software | 7. Appendices | 131

Figure 40. The processing time for all requests sent to the PetClinic application reported by JMeter on Linux
Figure 41. The energy consumption of the PetClinic application measured with JoularJX on Linux

Figure 42. The energy consumption of all Spring Boot controllers on Linux

Figure 43. The energy consumption of all operations on Linux

Figure 44. Comparison of execution times between Windows and Linux

Figure 45. Comparison of energy consumptions between Windows and Linux

Figure 46. The energy consumption of all operations on macOS from the GGS blog [51]

Figure 47. The processing time for all requests sent to the PetClinic owner endpoint reported by JMeter on
Windows

Figure 48. The energy consumption of the PetClinic application measured with JoularJX on Windows

Figure 49. The energy consumption of all owner operations on Windows

Figure 50. The processing time for all requests sent to the PetClinic owner endpoint reported by JMeter on
Linux

Figure 51. The energy consumption of the PetClinic application measured with JoularJX on Linux

Figure 52. The energy consumption of all owner operations on Linux

Figure 53. The processing time for all requests sent to the PetClinic owner and LakesideMutual customer
endpoints reported by JMeter on Windows

Figure 54. The energy consumption of the PetClinic and LakesideMutual applications measured with
JoularJX on Windows

Figure 55. The energy consumption of the PetClinic and LakesideMutual controller measured with Joular)X
on Windows

Figure 56. The energy consumption of the PetClinic owner and LakesideMutual customer operations
measured with JoularJX on Windows

Figure 57. The processing time for all requests sent to the PetClinic owner and LakesideMutual customer
endpoints reported by JMeter on Linux

Figure 58. The energy consumption of the PetClinic and LakesideMutual controller measured with Joular)X
on Linux

Figure 59. The energy consumption of the PetClinic owner and LakesideMutual customer operations
measured with Joular)X on Linux

Figure 60. The processing time for all requests sent to the LakesideMutual customer endpoint reported by
JMeter on Windows

Figure 61. The energy consumption of the LakesideMutual application measured with JoularJX on Windows
Figure 62. The energy consumption of the LakesideMutual services measured with JoularJX on Windows
Figure 63. The energy consumption of the LakesideMutual customer operations measured with JoularJX on
Windows

Figure 64. The processing time for all requests sent to the LakesideMutual customer endpoint reported by
JMeter on Linux

Figure 65. The energy consumption of the LakesideMutual application measured with JoularJX on Linux
Figure 66. The energy consumption of the LakesideMutual services measured with JoularJX on Linux

Figure 67. The energy consumption of the LakesideMutual customer operations measured with JoularJX on
Linux

Figure 68. The processing time for all requests sent to the LakesideMutual application reported by JMeter
on Windows

Figure 69. The energy consumption of the LakesideMutual application measured with JoularJX on Windows
Figure 70. The energy consumption of the LakesideMutual services measured with JoularJX on Windows

132 | 7. Appendices | Towards Greener Software

Figure 71.
Figure 72.

on Linux

Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.

The energy consumption of the LakesideMutual operations measured with Joular]X on Windows
The processing time for all requests sent to the LakesideMutual application reported by JMeter

The energy consumption of the LakesideMutual application measured with JoularJX on Linux

The energy consumption of the LakesideMutual services measured with JoularJX on Linux

The energy consumption of the LakesideMutual operations measured with JoularJX on Linux

A comparison of aggregated energy consumption of the LakesideMutual application on Windows
A comparison of aggregated energy consumption of the LakesideMutual application on Linux
Parameters for performance testing in a distributed software application [6]

The execution time for the read operation on multiple databases using Spring Data JPA [108]

An example for a closed loop control system [114]

Towards Greener Software | 7. Appendices | 133

Appendix D: List of Tables

Table 1. A comparison of the PetClinic and LakesideMutual enterprise applications in terms of their
characteristics

Table 2. Measurable performance quality attributes and metrics (own presentment)

Table 3. An example of refined user stories according to INVEST

Table 4. A definition of useful work according to the INVEST acronym

Table 5. Specific definitions for efficiency terms (own presentment)

Table 6. Hypotheses for the correlation between performance and resource and energy efficiency
Table 7. An overview of methods and tools to measure performance and energy consumption
Table 8. Techniques to establish a controlled test environment and their applicability in the project thesis
Table 9. System specification of the Microsoft Surface Pro 9 and the Linux remote server

Table 10. Tools and versions used for the experiments

Table 11. The latency and throughput of the PetClinic application on Windows

Table 12. The energy efficiency of the PetClinic application on Windows

Table 13. The performance analysis of the PetClinic application on Linux

Table 14. The energy efficiency of the PetClinic application on Linux

Table 15. The latency and throughput of the PetClinic owner endpoint on Windows

Table 16. The energy efficiency of the PetClinic application on Windows

Table 17. The latency and throughput of the PetClinic owner endpoint on Windows

Table 18. The energy efficiency of the PetClinic application on Linux

Table 19. The latency and throughput of the PetClinic and LakesideMutual applications on Windows
Table 20. The energy efficiency of the LakesideMutual application on Windows

Table 21. The latency and throughput of the PetClinic and LakesideMutual applications on Linux
Table 22. The energy efficiency of the PetClinic and LakesideMutual application on Linux

Table 23. The latency and throughput of the LakesideMutual customer endpoint on Windows

Table 24. The energy efficiency of the LakesideMutual application on Windows

Table 25. The latency and throughput of the LakesideMutual customer endpoint on Linux

Table 26. The energy efficiency of the LakesideMutual application on Linux

Table 27. The latency and throughput of the LakesideMutual Workflows on Windows

Table 28. The energy efficiency of the LakesideMutual application on Windows

Table 29. The latency and throughput of the LakesideMutual Workflows on Linux

Table 30. The energy efficiency of the LakesideMutual application on Linux

Table 31. The latency and throughput deviations across experiments on Windows and Linux

Table 32. An example for inverse correlation between performance and energy efficiency on Windows and
Linux

Table 33. An example for strong correlation between performance and energy efficiency on Windows

134 | 7. Appendices | Towards Greener Software

Appendix E: List of Listings

Listing 1. Example of a JMH test execution [50]

Listing 2. Example command to specify resource constraints on the JVM

Listing 3. Example command to run JMeter in non-GUI mode for load testing

Listing 4. Example command to run JoularJX as a Java agent attached to the JVM

Listing 5. Joular]X config.properties file for the PetClinic application

Listing 6. Joular]X config.properties file for the LakesideMutual application

Listing 7. Docker run command to start the MySQL database

Listing 8. Docker command to initialize the MySQL database with test data

Listing 9. Docker Compose command to start the MySQL databases

Listing 10. The command to start the PetClinic application with the correct system properties

Listing 11. The command to start the LakesideMutual customer core service with the correct system
properties

Listing 12. The implementation of the registerCustomer operation in the LakesideMutual application

Towards Greener Software | 7. Appendices | 135

	Declaration of Authorship
	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	1.1. Context and Objectives
	1.2. Target Audience
	1.3. Results

	2. Background Information
	2.1. Enterprise Applications
	2.2. Software Quality Attributes
	2.3. Summary and Outlook

	3. Measurement Techniques and Experiment Design
	3.1. Measurement Methods and Tools
	3.2. Architecture of Observed Systems and Tool Deployment
	3.3. Measurement Challenges
	3.4. Specification, Tooling and Configuration
	3.5. Summary and Outlook

	4. Measurement Results
	4.1. PetClinic Experiment: Establish a Baseline
	4.2. PetClinic Experiment: Compare JPA and Spring Data JPA
	4.3. PetClinic and LakesideMutual Experiments: Compare Master Data APIs
	4.4. LakesideMutual Experiment: Compare Different Services
	4.5. LakesideMutual Experiment: Compare Workflow Variants

	5. Discussion
	5.1. Analysis and Interpretation of Measurement Results
	5.2. Generalization of Measurement Results
	5.3. Related Work
	5.4. Retrospective
	5.5. Outlook

	6. Conclusion
	7. Appendices
	Appendix A: Glossary
	Appendix B: Bibliography
	Appendix C: List of Figures
	Appendix D: List of Tables
	Appendix E: List of Listings

