
Bachelor Thesis
Department of Computer Science

OST – University of Applied Sciences
Campus Rapperswil-Jona

Autumn Term 2025

Author Fiona Pichler
Advisor Prof. Dr. Farhad D. Mehta

External Co-Examiner Sandy Maguire
Internal Co-Examiner Cyrill Brunschwiler

Abstract

Text editing is a ubiquitous task. Its efficiency varies depending on the chosen editor
and, more significantly, on a user’s skill level. Modal editors offer strong benefits, like
allowing users to keep their hands on the keyboard. However, their commands are often
unintuitive and pose a steep learning curve for beginners. This thesis aims to make the
initial experience with modal editing more pleasant and less frustrating.

To achieve this, a beginner-friendly modal editor based on Vim’s keybindings is imple-
mented. The editor is developed using algebra-driven design and Haskell. True to its
name, Vim with training wheels supports new users through contextual help texts and
colors, along with a tutorial that emphasizes understanding over rote memorization. It
includes essential features such as editing and command undo functionality.

ii

Management Summary

Background

Text editing is one of the most basic and common activities done by computer users.
There are many programs available, but not all of them are as intuitive to a common
user. While discussions go on over which is the most ergonomic, the fastest, the most
efficient or simply the best way to edit text, it of course depends on the user and the use
case.

Vim was released in 1991 as an improved clone of vi. Vim is a modal editor, where full
functionality can only be used over the commandline. It is not intuitive to use for to-
day’s GUI-spoiled computer users. Nevertheless it is used by a large community. People
appreciate it for being extensively customizable and open-source. The ability to work
with modal editors helps users to navigate through a terminal and access systems and
files by commandline. Many other programs like man, less and more use similar key-
bindings like Vim.

The entry into the world of modal editors is rather hard. There are only few tutorials
and learning by doing can be especially frustrating, as every command has to be looked
up and it needs time to get used to the workflows. After a dissuasive first experience
many users turn back to the more familiar GUI-Editors. While experienced users have
internalized the structure of combining commands, there is no simple guide for begin-
ners and the structure needs to be discovered by oneself.

Objectives

The aim is to enhance the initial experience of using Vim and make it easier to start
working with modal editors. This is done by providing a set of basic functions needed
to use an editor as well as implementing a beginner-friendly editor and a tutorial focus-
ing on the system of changing modes and combining commands rather than learning as
many commands as possible.

iii

Approach

Upon starting this project a lot of research on tutorials for Vim, vim-like editors and
basic concepts of text editing was done. The usage and functionality of vim keybind-
ings were analyzed to be able to imitate them. Relying on Vimtutor the basic functions
a beginner needs to know could be defined. Since no base editor to build on, without a
lot of overhead, could be found, an editor was implemented. Since Vim’s commands can
be combined like building blocks, they are well suited for using an algebraic approach.
Algebra-Driven-Design and Haskell were used to implement the editor. The defined
algebra for editing text was mapped to a TUI using vim keybindings. The concept to
make the editor beginner friendly was to use more visual feedback for the user and help
texts to remember commands relevant to the current mode. The visual feedback is im-
plemented using colors for the modes and to show where the focus for keyboard input
lays. The tutorial was kept simple, as the editor implements features to help learning by
doing.

Results

The editor with the name ”vim with training wheels” lives up to it’s name, as it sup-
ports the user with additional feedback and a better overview of what is happening. It
supports a basic set of functions to move the cursor, edit text, undo and redo an edit.
The tutorial is a file to read and navigate through directly using vim with training wheels.
The tutorial focuses on explaining the modes and combination of commands to help un-
derstand the big picture rather than only what different commands exist.

Figure 1: vim with training wheels

iv

The repository for Vim with training wheels was already opened to external contribu-
tors for ZuriHac25. It got a lot of positive feedback and was used as a first project to
get into Haskell.Brick and also Haskell in general. Since functionality is implemented
very simple it can be easily understood and expanded.

Conclusion

Vim with training wheels is an editor looking like vim with a mask on, that helps with
orientation. Users are guided with help texts and visual feedback which help building
confidence. It can be used for teaching computer science, for a first understanding of
modal editors, as well as for new Haskell programmers as an example project. Further
work could include more functions for example search and replace or building a web app
to make the editor more accessible to users.

v

Contents

I Product Documentation 1

1 Objectives 2

1.1 Problem Statement . 2

1.2 Goals . 2

1.3 Constraints . 3

1.4 Deliverables . 3

2 Background 4

2.1 Modal Editor . 4

2.2 Vim . 4

2.3 Algebra-Driven Design . 4

2.4 Current State of the Art . 4

2.4.1 Vimtutor . 5

2.4.2 Vim Adventures . 5

2.4.3 Vim Golf . 5

3 Requirements 6

3.1 Actors . 6

3.2 Usecases . 6

3.3 Functional Requirements . 8

3.3.1 Editor . 8

3.3.2 Help page . 10

vi

3.3.3 Tutorial . 10

3.4 Non-Functional Requirements . 10

4 Design 11

4.1 Architecture . 11

4.2 Algebra . 12

4.3 Keymappings . 12

4.4 UI Design . 12

4.5 Naming . 12

5 Implementation 13

5.1 TUI . 13

5.2 Algebra . 13

5.3 Modules . 13

5.4 Testing Environment . 13

5.4.1 Unit Tests . 14

5.4.2 Property Tests . 14

5.4.3 Manual Testing . 14

5.4.4 Limitations . 15

5.5 External Contribution . 15

6 Outcomes 16

6.1 Requirements . 16

6.1.1 Functional Requirements . 16

6.1.2 Non-Functional Requirements . 16

6.2 Product . 17

6.2.1 Editor . 17

6.2.2 Tutorial . 17

6.2.3 Haskell Project . 19

vii

7 Conclusion and Outlook 20

7.1 Conclusion . 20

7.2 Outlook . 20

Bibliography 20

II Appendix 22

List of Vim Commands 23

Algebra 25

Tutorial Text 34

viii

Part I

Product Documentation

1

Chapter 1

Objectives

1.1 Problem Statement

Learning to use a new program Nowadays most programs have a GUI, used with a mouse
or on a touchscreen one can navigate through menus select and move. Spoiled by GUIs
it is not easy to switch to an environment where navigation is done with a keyboard.
But the good-old terminal is still being used, as it needs less resources to run and pro-
vides a lot of functionality. Learning ones way around the command-line usually in-
cludes using a text editor. While there are endless discussions on which is the most ef-
ficient, the fastest and the most ergonomic editor it depends on the user and the use
case. Especially useful is the ability to use modal editors like Vim, since some concepts,
like movement or quitting are not only used in Vim but also for other command-line
programs like man or less and they are preinstalled on many systems.

The entry into the world of modal editors is rather hard, as often when opening an ed-
itor one is greeted with no information on how to use or at least exit again. The few
tutorials usually don’t explain the system behind the editor and the structure of the
commands and the modes. This makes learning very frustrating, time consuming and
dissuasive. While experienced users have internalized the structure of combining com-
mands, there is no simple guide for beginners and the structure needs to be discovered
by oneself.

1.2 Goals

The initial experience of using modal editors should be more pleasant. This can build
confidence to the command-line as well as shorten the time to learn. Helping beginners
to understand the definition of a modal editor and the structure behind the combina-
tions of commands, can help to learn the usage faster, as many people remember details
by understanding the logic behind, rather than by memorizing. This is achieved by pro-
viding a Beginner-friendly editor implementing Vim keybindings.

2

1.3 Constraints

This thesis focuses on Vim, since the author was more familiar with it and also since
man and less use similar keybindings. There was no further analysis between using Vim
or another modal editor. There was no added value in analyzing this further since the
goal is to provide a positive first experience and understanding of a modal editor to the
user. Since this thesis also especially focuses on the structure behind Vim commands
and the modality. It makes sense to use Algebra-Driven-Design and Haskell to model
and implement the functionality. The solution should implement a TUI, as it should be
a command-line editor. Only the basic functionality will be implemented, considering
time and to not overwhelm the user. Every thing should be open source, in the spirit of
Vim.

1.4 Deliverables

The deliverable should contain a basic modal text editor, as well as an Algebra for edit-
ing text and a tutorial to learn using the editor. Furthermore a set of basic commands
to be able to work with Vim and detailed documentation on implementation. The soft-
ware should contain tests and should be well structured, simple and clean.

3

Chapter 2

Background

This chapter provides background information for the thesis. As well as some known
tutorials.

2.1 Modal Editor

A modal editor operates in different modes. Depending on the mode different actions
can be done. For example can a pressing ”j” either lead to put ”j” in the text or moving
the cursor around.

2.2 Vim

Vim [9] is a modal command-line editor, it is pre-installed on many systems. Vim, was
released in 1991 and gained popularity, since it is open-source and customizable. The
keybindings can be used in many other programs via a plugin or directly.

2.3 Algebra-Driven Design

Algebra-Driven Design [6] is an approach to design and model a problem. The focus
lays on the proper level of abstraction. Laws are created to model a problem resulting in
an algebra. Analyzing equations and combinations the model can be better understood
and becomes more reliable.

2.4 Current State of the Art

This is a selection of tutorials to learn Vim commands.

4

2.4.1 Vimtutor

Vim Tutor [10] is the tutorial included when installing vim. It consists of a file to read
through and edit examples while reading. The most basic commands are introduced. It
focuses mostly on introducing commands and leaves out concepts of which commands
can be combined. Since there is no repetition commands can be forgotten again very
quickly. It is good to read through and get an overview of commands.

2.4.2 Vim Adventures

Vim Adventures [5] is a web browser game where the user navigates through using Vim
commands. It helps using h, j, k ,l vor movement and also to have get more detailed
knowledge of what a command does. For example, some obstacles can be overcome by
using the functionality that the position in a line is remembered when moving down,
even if the line one is currently at has fewer chars than the line before.

2.4.3 Vim Golf

Vim Golf [2] focuses on efficiency. The user gets an input to edit and a target output.
The goal is to get to the target output using the least possible commands. Vim Golf
lives from the community. Once a member one can upload own challenges. When a
challenge is completed the user gets a ranking and can look at the commands of some
users above themselves in the ranking. This helps to find more efficient ways.

5

Chapter 3

Requirements

The requirements are structured using FURPS.

3.1 Actors

The System under development (SUD) knows only one Actor, the user. The goal of the
user is to edit text and learn in a tutorial the basic commands to edit text using basic
vim commands.

3.2 Usecases

Figure 3.1: Use Case Diagram for the SUD

6

UC-ID Title Description Prior-
ity

UC01 Editor The SUD can be used as an editor for textfiles 1

UC02 Help / information The SUD contains a Help page with infor-
mation on the functions and the underlying
algebra to help the user navigate and get
deeper understanding of the commands.

1

UC03 Tutorial The SUD has a tutorial to teach the user how
to use the SUD.

2

7

3.3 Functional Requirements

3.3.1 Editor

FR-ID Title Description Priority

FR01 Movement basic The user can move the cursor using h (left), j
(down), k (up), l (right)

1

FR02 Movement interme-
diate

The user can move the cursor using e (end of
word), w (start of next word), $ (end of line),
0 (beginning of line)

1

FR03 Deleting chars The user can copy-delete using x 1

FR04 Deleting lines The user can copy-delete lines using dd 1

FR05 Deleting selections The user can copy-delete using d + movement 1

FR06 insertion front using i to enter insertion mode 1

FR07 insertion after using a to enter insertion mode inserting after
cursor

1

FR08 Visual mode using v to enter visual mode 1

FR09 Normal mode using Esc to enter normal mode 1

FR10 Saving file using :w to write to file 1

FR11 quitting editor using :q to quit editor 1

8

FR-ID Title Description Priority

FR12 Movement advanced The user can move the cursor using G, gg, 2

FR13 insertion end of line using A to enter insertion mode after end of
line

2

FR14 Copy use y to copy selection 2

FR15 paste use p to paste 2

FR16 undo using u to undo last change 2

FR17 redo using CTRL + r to redo the undone thing 2

FR18 Open new lines Using o (open line below), O (open line above) 3

FR19 Replace one The user can replace using r 3

FR20 Replace all The user can replace using R 3

FR21 Change The user can use c to delete specified and start
insert mode

3

9

3.3.2 Help page

FR-ID Title Description Prior-
ity

FR22 Cheatsheet The help page contains a cheatsheet for the
commands

1

3.3.3 Tutorial

FR-ID Title Description Prior-
ity

FR23 Tutorial The tutorial should teach the user the basic
commands.

1

3.4 Non-Functional Requirements

NFR-
ID

Title Description Prior-
ity

NFR01 Usability - Clear
Instructions

The Editor should use clear language for help
messages, tutorials and instructions

1

NFR02 Usability - Visual
Feedback

The Editor should provide feedback when the
user performs a task.

1

NFR03 Reliability - Stabil-
ity

The SUD should run stable without issues 1

NFR04 Performance - Load-
time

The SUD should start quickly (within 2-3
seconds)

1

NFR05 Performance - Input The SUD should respond to input within 0.5
seconds.

1

NFR06 Supportability -
Documentation

Code should be well-documented to facilitate
future modifications

1

10

Chapter 4

Design

This chapter explains the architecture as well as the algebra for editing text.

4.1 Architecture

The architecture was kept simple. A Terminal user interface (TUI) is needed for inter-
action between the user and the editor, a file loader to interact with the local filesystem
and a module to handle the TUI input and map it to algebra functions.

It was decided to implement a TUI to keep the commandline in focus and because Vim
is a command-line editor. The Algebra implements the basic functionality to edit text.
The functions can be combined which leads to more functionality.

The TUI has two pages. At startup opens a landing page, to welcome the user and let
them decide between using the editor on a file or opening the tutorial. The file and also
the tutorial are opened by changing to the editor page with the chosen input.

Figure 4.1: Basic Architecture of the Editor

11

4.2 Algebra

The algebra was defined following the book Algebra-Driven Design by Sandy Maguire[6].
The text to edit is modeled as a 3-tuple. Ideas on modeling the current position using
pointers were dismissed for the simplicity of operating on lists in functional program-
ming. Another idea on reversing the first list was dismissed also for simplicity, as only
a thorough analysis would show wether this will be more efficient. Since for the analysis
the most important functions need to be given, the initial concept was retained. The al-
gebra was only defined for the task of editing the text buffer. an attempt was made to
include the whole editor, but then discarded. The alegebra is left very basic. The basic
functions are defined, but others left out, as every movement command like ”e” or ”b”
need their own function which is a combination of simple movements and conditions.
The attempt to include the whole editor provided a deep understanding of what should
be implemented. The algebra can be found in the appendix.

4.3 Keymappings

Some keymappings were intentionally left out. For example the use of the arrow keys to
move around. This should help users focus on the vim specific keybindings.

4.4 UI Design

The UI should be simple like Vim’s but at the same time more approachable. The main
idea was to keep Vim’s design but add more information around it, providing help text
and visual feedback. Working with colors helps to show which mode is used and were
keyboard input is directed to. While in Vim beginners often forget about the mode and
forget changing it, this problem can be solved with the colors to make the mode obvi-
ous.

4.5 Naming

The editor is called vim with training wheels. It was chosen after the first version of
the editor was implemented. Since the mask with helping texts around the actual edi-
tor support the user like training wheels. The user gets more confident and a sense of
achievement, using the non-intuitive commands. The name is very graphic, which led to
the added ASCII art to give the title training wheels.

12

Chapter 5

Implementation

5.1 TUI

The TUI was implemented using brick [1] a TUI library for Haskell. Each window, is
implemented as a separate app, that is called by the main function. This helps to keep
the application states smaller and neat.

5.2 Algebra

While implementing the algebra some laws had to be changed, since the author had not
thought about all the special cases like moving left when the first character is selected
already. Changes on laws were applied but not all functions were added.

5.3 Modules

The program was divided into Haskell modules by task. For a better understanding a
graph was generated using graphmod [3], a tool to automatically draw module depen-
dency graphs. It is showed in figure 5.1

5.4 Testing Environment

The product was constantly tested using the following strategies. In general [4] was used
for testing.

13

Figure 5.1: Dependency Graph of the Modules

5.4.1 Unit Tests

Each function of the algebra has at least one unit test. If some corner cases are known
there are also unit tests for those. The tests were implemented simultaneously with the
function.

5.4.2 Property Tests

Using quickspec [8] property tests were implemented following laws from the algebra.
These tests were very helpful to discover corner cases and help to define the needed
properties.

5.4.3 Manual Testing

Manual testing was done thoroughly by using the TUI and especially focusing on the
visual parts. The program was tested by different users for feedback. These tests were
not done systematically with instructions, to gather more corner cases especially for the
landing page.

14

5.4.4 Limitations

Although it look at first like all functions can be tested, the implemented command han-
dler which maps the algebra functions to the tui is directly editing the tui state. This
should have been handled differently, to maintain testability for these combined func-
tions. To implement another layer between the handler and the Algebra was considered
an overhead and over complication for the program, but now those mappings rely on
manual testing.

5.5 External Contribution

A copy of the project repository [7] was opened for external contribution during Zuri-
Hac2025 [11] the biggest Haskell community event in the world. The program was heav-
ily tested and some missing keymappings and parser functions were discovered. Some
of them were fixed. Namely, not being able to use ”y” and ”d” without further input in
visual mode. The efficiency of moving to the begin and the end of file, which was imple-
mented very slowly before. Also a not used language extension was identified, a remnant
from a function that is not used anymore. As the author is new to external contributors,
some functions were accepted without tests included and others did not perfectly con-
form to the same system of what a module is responsible for and what should rather be
handled in another module.

15

Chapter 6

Outcomes

This chapter describes the final product, it’s limits and learnings.

6.1 Requirements

Most requirements are fulfilled, but not all of them.

6.1.1 Functional Requirements

For time reasons replacement mode was not implemented, as a priority three require-
ment and not being essential for a good user experience. All priority three functional
requirements were dismissed to focus on the other implementations.

6.1.2 Non-Functional Requirements

NFR05 was not met at first when using ”gg” and ”G” to move to the beginning or to
the end of a file. This was at first a desicion, to not further expand the algebra. Using
existing functions resulted in very slow performance. This issue was solved by an exter-
nal user and can not be oberseved any more in the vim-tw github repository.

16

6.2 Product

This bachelor thesis implemented a whole commandline editor.

6.2.1 Editor

Vim with training wheels is a fully functional text editor. Files can be opened, edited
and saved. Commands can be undone and repeated using a count. The TUI supports
the user with help texts that change according to the mode. The current mode is made
obvious using colors. Also the focus for keyboard input is indicated by color. The editor
scrolls automatically following the cursor, but only in vertical direction. Long lines can
only be showed by extending the terminal window to the right. This works depending
on the screen size. A text wrap is not implemented.

Figure 6.1: the Landing page of Vim with training wheels

Figure 6.2: Vim with training wheels in normal mode

6.2.2 Tutorial

The tutorial is used by reading and navigating through a text using Vim with training
wheels. Reading some explanations the user learns about modes, different types of com-

17

Figure 6.3: Vim with training wheels in insert mode

Figure 6.4: Vim with training wheels in visual mode

18

mands and the commands to use. Using ascii art the tutorial is designed more exciting.
The tutorial text can be found in the appendix.

6.2.3 Haskell Project

Discovered at ZuriHac2025 [11] this project is not only a beginner friendly editor, but
also a beginner friendly Haskell project to contribute to. The algebra is implemented
very simply by using recursion and pattern matching. The TUI is only two applications
of arranged widgets visualizing the state. There is still functionality that can easily be
implemented by mostly copying existing code and making small changes. With Vim as
the model there are many commands that could be added.

19

Chapter 7

Conclusion and Outlook

7.1 Conclusion

This thesis resulted in an educational program. Vim with training wheels can be used
to learn and get accustomed to basic vim commands in a safe environment and also to
practice Haskell skills implementing small functionalities. Using algebra-driven design
the program’s design was elaborated thoroughly, which led to an efficient implemen-
tation. The algebra could be more defined and also including the combination of the
functions. Since this was the authors first project using algebra-driven design the final
algebra resulted in not being over all functions. Although the design of using the 3-tuple
to represent the buffer might not be best for every use case, it led to the simple almost
pure use of Haskell.

7.2 Outlook

Since the project is already open for contribution and presented to a number of pro-
grammers it can grow from here on. It could be used in schools for student’s first com-
mandline experience. The algebra should be published with the program, to help under-
stand the design and keeping it simple. An additional tutorial similar to vim golf would
be nice, since to getting used to an editor it needs to really be used.

20

Bibliography

[1] brick: A declarative terminal user interface library. url: https : / / hackage .
haskell.org/package/brick. (accessed: 09.09.2025).

[2] Mandy Neumeyer Frank Hofmann. Vimgolf – Vim mit wenigen Tastendrücken
meistern. url: https://www.linux-community.de/ausgaben/linuxuser/
2018/09/unter-par/. (accessed: 09.09.2025).

[3] graphmod: Present the module dependencies of a program as a dot graph. url:
https://hackage.haskell.org/package/graphmod. (accessed: 09.09.2025).

[4] Hspec: A Testing Framework for Haskell. url: https://hspec.github.io/.
(accessed: 09.09.2025).

[5] Doron Linder. Vim Adventures. url: https://vim-adventures.com/. (accessed:
09.09.2025).

[6] Sandy Maguire. Algebra-Driven Design. Leanpub.com, 2020.
[7] Fiona Pichler. vim-tw repository. url: censored. (accessed: 09.09.2025).
[8] quickspec: Equational laws for free! url: https : / / hackage . haskell . org /

package/quickspec. (accessed: 09.09.2025).
[9] Vim - the ubiquitous text editor. url: https://www.vim.org/. (accessed: 09.09.2025).

[10] Vim Tutor. url: https://vimschool.netlify.app/introduction/vimtutor/.
(accessed: 09.09.2025).

[11] zurihac2025. url: https://zfoh.ch/zurihac2025/. (accessed: 09.09.2025).

21

https://hackage.haskell.org/package/brick
https://hackage.haskell.org/package/brick
https://www.linux-community.de/ausgaben/linuxuser/2018/09/unter-par/
https://www.linux-community.de/ausgaben/linuxuser/2018/09/unter-par/
https://hackage.haskell.org/package/graphmod
https://hspec.github.io/
https://vim-adventures.com/
censored
https://hackage.haskell.org/package/quickspec
https://hackage.haskell.org/package/quickspec
https://www.vim.org/
https://vimschool.netlify.app/introduction/vimtutor/
https://zfoh.ch/zurihac2025/

Part II

Appendix

22

vimcommands.md 2025-06-10

 /

vim Commands

This is an overview what commands do an with which other command they can be built.

Normal Mode

Movement Direction

Name keystroke Definition

Left h

Right l

Up k (count h until [\n] + h until [\n] + [count] l or until [\n])

Down j (count h until [\n] + l until [\n] + [count] l or until [\n])

Move to End of File G down and right until eof (j + l) * 1000

Move to start of file gg up and left until beginning of file (k + h) * 1000

move to certain number [linenumber] G (gg + [linenumber]j)

Movement Stepsize

Name keystroke Definition

End of Word e (l until [space])

Before next Word w {e + l}

End of Line $ (l until [\n] + h)

Start of Line 0 (h until [\n] + l)

Text Manipulation

Name keystroke Definition

Delete char x
copy selection + delete
selection

Delete Line dd (0 + select $ + x)

Delete word dw select w + x

Delete
d $number
$motion

select $number $motion + x

Replacement R start replace mode

replace one r[char] x + insert [char]

Put insert last deleted p insert [char]

vimcommands.md 2025-06-10

 /

Name keystroke Definition

replace r x + insert mode [char] + Esc

change (deletes specified and starts insert
mode)

c $motion d [motion] + insert mode

copy y add selection

paste p insert selection

Undo, Redo, LineUndo

https://vimhelp.org/undo.txt.html#undo-redo

Name keystroke Definition

Undo last thing u changes during insert mode are one command

Undo Line Manipulation U undo also undos on the whole line

redo Ctrl + r undo an undo

Insert Mode

Name keystroke Definition

Insert i

Append a

Append at End of Line A

open a new line below o

open a new line above O

Command Mode

Name keystroke Definition

search /[phrase to search]

find matching parenthesis %

substitute :s/old/new/g (there are many more options)

save file :w

quit vim :q!

Algebra

Datatypes

newtype AfterSelection :: AfterSelection [Char]

newtype BeforeSelection :: [Char]

newtype CurrentSelection :: [Char]

newtype CurrentBuffer :: (BeforeSelection, CurrentSelection,
AfterSelection)

25

Helper Functions

checkSelection :: CurrentBuffer -> [Char] -> bool

Example:
([a,b],[c],[d,e]) , [c] -> True

safehead :: [Char] -> [Char]

Example:
([a,b,c]) -> [a]

safetail :: [Char] -> [Char]

Example:
([a,b,c]) -> [b,c]

safelast :: [Char] -> [Char]

Example:
([a,b,c]) -> [c]

safeinit :: [Char] -> [Char]

Example:
([a,b,c]) -> [a,b]

getSelectionSize :: CurrentBuffer -> Natural

Example:
([a,b],[c,d],[e]) -> 2

getInlinePos :: CurrentBuffer -> Natural

Example:
[a,b,\n,c,d][e][f,g,e] -> 2 (start index at 0)

26

repeatTimes :: Natural -> a -> (a -> CurrentBuffer -> CurrentBuffer) ->
(CurrentBuffer -> CurrentBuffer)

Example:
->

The function repeatTimes takes a Natural, a variable and a function that take as input
the same variable as well as a CurrenBuffer. The function is then repeated, taking the
cariable as input. Natural is the number of times the function is repeated. This function
helps to handle repeated commands.

discardArgument :: a -> CurrentBuffer -> CurrentBuffer

Example:
function a -> function

The function discardArgument is needed to use repeatTimes on functions that don’t
take an input.

27

Selection

selectRight :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a,b],[c,d],[e]

selectRightInline :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[\n,d,e] -> [a,b],[c],[\n,d,e]

unselectRight :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a,b],[],[c,d,e]

Law size of selectRight

∀((a,b,c) :: CurrentBuffer).
(c /= []) =>
getSelectionSize (selectRight (a,b,c)) = getSelectionSize (a,b,c) + 1

Law selectRight/unselectRight

∀((a,b,c) :: CurrentBuffer).
(c /= []) =>
selectRight . unselectRight (a,b,c) = (a,b,c)

Law size of selectRightInline

∀((a,b,c) :: CurrentBuffer).
(c /= [] && safehead c /= "\n") =>
getSelectionSize (selectRightInline (a,b,c)) = getSelectionSize (a,b,c) +
1

28

Law selectRightInline/unselectRight

∀((a,b,c) :: CurrentBuffer).
(a /= [] && safehead c /= "\n") =>
selectRightInline . unselectRight (a,b,c) = (a,b,c)

Law size of unselectRight

∀((a,b,c) :: CurrentBuffer).
(length b > 1) =>
getSelectionSize(unselectRight (a,b,c)) = getSelectionSize (a,b,c) - 1

selectLeft :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a],[b,c],[d,e]

selectLeftInline :: CurrentBuffer -> CurrentBuffer

Example:
[a,b,\n],[c],[e] -> [a,b,\n],[c],[e]

unselectLeft :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a,b,c],[],[d,e]

Law size of selectLeft

∀((a,b,c) :: CurrentBuffer).
(a /= []) =>
getSelectionSize(selectLeft (a,b,c)) = getSelectionSize (a,b,c) + 1

Law selectLeft/unselectLeft

∀((a,b,c) :: CurrentBuffer).
(a /= []) =>
selectLeft . unselectLeft (a,b,c) = f

29

Law size of selectLeftInline

∀((a,b,c) :: CurrentBuffer).
(a /= [] && safelast a /= "\n") =>
getSelectionSize(selectLeftInline (a,b,c)) = getSelectionSize (a,b,c) + 1

Law selectLeftInline/unselectLeft

∀((a,b,c) :: CurrentBuffer).
(a /= [] && safelast a /= "\n") =>
selectLeftInline . unselectLeft (a,b,c) = f

Law size of unselectLeft

∀((a,b,c) :: CurrentBuffer).
(length b > 1) =>
getSelectionSize(unselectLeft (a,b,c)) = getSelectionSize (a,b,c) - 1

30

Moving operators

moveRight :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a,b,c],[d],[e]

moveLeft :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a],[b],[c,d,e]

Law inverse/moveRight/moveLeft

∀((a,b,c) :: CurrentBuffer).
(c /= [] && safelast c /= "\n") =>
moveRight . moveLeft f = f

Law associativity/moveRight/moveLeft

∀((a,b,c) :: CurrentBuffer).
(a /= [] && safelast a /= "\n" && safehead c /= "\n") =>
moveRight . moveLeft (a,b,c) = moveLeft . moveRight (a,b,c)

Law moveRight/select

∀(f :: CurrentBuffer).
moveRight f = unselectLeft . selectRight f

Law moveLeft/select

∀(f :: CurrentBuffer).
moveLeft f = unselectRight . selectLeft f

31

moveLeftUntilNewline :: [Char] -> CurrentBuffer -> CurrentBuffer

Example:
->

moveRightUntilNewline :: [Char] -> CurrentBuffer -> CurrentBuffer

Example:
->

moveUp :: CurrentBuffer -> CurrentBuffer

Example:
[a,b,\n,c],[d],[e,f] -> [a][b][\n,c,d,e,f]

Law moveUp/definition

moveUp f = (repeatTimes moveLeft (countLinePos f)) (repeatTimes
moveLeftUntil 2) [\n] f

moveDown :: CurrentBuffer -> CurrentBuffer

Example:
[a,b,c],[d],[e,\n,f,g] -> [a,b,c,d,e,\n,f][g][]

Law moveDown/definition

moveDown f = (repeatTimes moveLeft (countLinePos f)) moveRightUntil [\n] f

32

Insertion & Deletion

insertOnebeforeSelection :: CurrentBuffer -> Char -> CurrentBuffer

Example:
[a,b],[c],[d,e], x -> [a,b],[x],[c,d,e]

insertManybeforeSelection :: CurrentBuffer -> [Char] -> CurrentBuffer

Example:
[a,b],[c],[d,e], [x,y,z] -> [a,b,x,y,z],[c],[d,e]

deleteSelection :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a,b],[d],[e]

deleteOneBeforeSelection :: CurrentBuffer -> CurrentBuffer

Example:
[a,b],[c],[d,e] -> [a],[c],[d,e]

33

Tutorial Text

**

Welcome to Vim with training wheels!

**
This editor will help you get to know basic
Vim functionality in a training environment.
**
**

How to use this tutorial

Use the keys "h", "j", "k", "l" to move around like:

k
^

h <-+-> l
v
j

We will take a closer look at movements later.

You can try out the commands here and later in
the editor.

This tutorial will focus particularly on the
structure behind the commands.

**
**

Modality

Vim is a modal editor.
This means the keybindings depend on the mode you
are currently in.

34

**
Normal mode

command: "ESC"

As the starting point in Normal mode keyboard input
is written to the command-line below.
Commands are directly executed if valid.

The training wheels help you see the command-line.

While in vim an "i" will always start insert mode,
With training wheels, the command needs to be the
only string on the command-line to be valid.

**
Insert mode

command: "i"

For writing new text Insert mode is needed.
Focus lies on the text, and it can be directly
edited. There are more commands to start Insert mode
command: "a" start Insert mode after the cursor
command: "A" start Insert mode at the end of the line.

Use "Esc" to get back to Normal mode.

**
Visual mode

command: "v"

Some commands require a selection as input. In
Visual mode the selections are visual. For example, to
be sure you delete the next two words in
the selection can be made in Visual mode
to then apply a command.

Selections use the same keybindings as movements.

Use "Esc" to clear the command-line and get back
to Normal mode.

**
Command mode

command: ":"

35

Exit the editor, save the file, or toggle help, all
need Command mode.

Commands will only be executed after using "Enter".

In Vim Command mode is mostly invisible. The wheels
help you see it. There are also other commands in
Vim not starting with ":" but the training wheels
don't support those commands.

Use "Esc" to clear the command-line and get back
to Normal mode

**
**

Direct Commands

Some commands don't need further input. But they
can be repeated.

��������� �����������
� count � + � command �
��������� �����������

For example use "7j" to execute "j" 7 times.
Most commands can be used more efficiently when
combined with a count.

**
**

Operator Commands

Some commands need further input like a motion.

��������� ����������� ����������
� count � + � command � + � motion �
��������� ����������� ����������

For example "y", yank, which copies the selection
to a clipboard.

**
**

That's it for the main concept.

1. Keybindings depend on the mode you are in.

36

2. Commands can be used like building blocks for
more efficient usage.

Let's move on to the different commands.
Many of them can be remembered by the first
letter of a verb describing their action.
**
**

Command-line commands

Let's first look at how you can exit the editor
and safe the file.

":w" -> write to file which means saving it

":q" -> quit the program

":wq" -> write to file then quit the program

**
**

Movements or Selection

k
^

h <-+-> l
v
j

As shown before the above keys are used to move
around, but we can be even more efficient:

"b" -> move to the beginning of the word
instead of "h" moving left by character
we can move left by word.

"e" -> move to end of word.
move to the right by word

"0" -> move to the beginning of the line

"$" -> move to the end of the line

Movements can also be used as motions for
commands and as selections in visual mode.

37

**
**

Meet your new best friend

Before you edit this tutorial's text by mistake,
take a look at a vim-beginners best friend

**** ****
*** ** ** ***
** * **
* *
** undo **

** **
*** ***

** **
*

"u" -> undo last edit
"Ctrl-r" -> redo the undo

Whatever happens, undo is there to take you back
to the good old times.

**
**

Edit text

"x" -> delete the current character and copy it
to the clipboard

"p" -> put the clipboard contents after the cursor

"d" + motion -> delete the selected and copy it
to the clipboard

"dd" -> delete the whole line

"y" + motion -> yank the selected, which means
copy it to the clipboard

"yy" -> yank the whole line

**
**

Unfortunately, the training wheels don't support
all Vim commands and functionality, but hopefully
they helped you get some comfort with using modes

38

and only the keyboard for editing text.

**
**

39

	I Product Documentation
	Objectives
	Problem Statement
	Goals
	Constraints
	Deliverables

	Background
	Modal Editor
	Vim
	Algebra-Driven Design
	Current State of the Art
	Vimtutor
	Vim Adventures
	Vim Golf

	Requirements
	Actors
	Usecases
	Functional Requirements
	Editor
	Help page
	Tutorial

	Non-Functional Requirements

	Design
	Architecture
	Algebra
	Keymappings
	UI Design
	Naming

	Implementation
	TUI
	Algebra
	Modules
	Testing Environment
	Unit Tests
	Property Tests
	Manual Testing
	Limitations

	External Contribution

	Outcomes
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Product
	Editor
	Tutorial
	Haskell Project

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

	II Appendix
	List of Vim Commands
	Algebra
	Tutorial Text

