
Development of a scalable and secure
RAG-as-a-Service infrastructure

Bachelor Thesis - Spring Term 2025

Department:
Computer Science

Field of Study:
Software Engineering,
Artificial Intelligence,

Networks, Security & Cloud Infrastructure

Authors:

Lukas Ammann
(lukas.ammann@ost.ch)

Sara Ott
(sara.ott@ost.ch)

Advisor: Prof. Dr. Marco Lehmann (marco.lehmann@ost.ch)

External Co-Examiner: Andreas Landerer (andreas.landerer@gmail.com)

Internal Co-Examiner: Prof. Dr. Mitra Purandare (mitra.purandare@ost.ch)

Version: 1.0
Date: 2025-06-05

mailto:lukas.ammann@ost.ch
mailto:sara.ott@ost.ch
mailto:marco.lehmann@ost.ch
mailto:andreas.landerer@gmail.com
mailto:mitra.purandare@ost.ch

Abstract
Large Language Models (LLMs) have become very popular with the introduction of chatbots such as
ChatGPT or Gemini. LLMs are very good at Natural Language Processing (NLP), which means they have
the ability to interpret and communicate in human language. However, they are limited to the knowledge
used during training, so it is difficult and resource-intensive to keep them up-to-date and/or to integrate
domain-specific knowledge. In addition, LLMs tend to hallucinate and give inaccurate answers when the
specific data is not available in the language model.

To overcome these limitations, Retrieval-Augmented Generation (RAG) has been introduced. This novel
approach facilitates the incorporation of up-to-date and domain-specific knowledge, while reducing the
hallucination of LLMs by providing missing information in a targeted manner. These substantial benefits
have led to the popularity of RAG.

One of the most pressing concerns in many RAG implementations is the security and privacy of the
data involved, especially when handling sensitive or classified information. Ensuring that data remains
within authorized boundaries, maintaining full traceability, and preventing unauthorized data exposure
are critical requirements.

To address these challenges, we propose an architectural blueprint and core functionality for a secure and
scalable RAG-as-a-Service infrastructure. This design emphasizes local data processing and containment
within system boundaries, enabling predictable data flows and robust privacy protection. The system
incorporates the security risks and mitigation strategies identified in our prior research, ensuring adapt-
ability and resilience through a modular and customizable core framework. Furthermore, the architecture
is designed for seamless scalability and to host multiple systems on a single infrastructure. This makes it
suitable for a wide range of use cases and deployment scenarios.

The system’s core components were developed using a microservice-based design and deployed via Kuber-
netes to ensure scalability and adaptability. Security was a central concern throughout the implementation
process. In addition to encrypting all external traffic, we integrated a modern authentication solution based
on the OAuth 2.0 and OpenID Connect standards to safeguard our RAG system. The resulting platform is
fully operational and will be used during our hands-on workshop at the IEEE Swiss Conference on Data
Science (SDS2025) on June 26, 2025, at the Circle Convention Center, Zurich Airport. Additional steps
included comprehensive system testing and thorough preparation for the upcoming workshop.

Keywords: Retrieval-Augmented Generation (RAG), RAG Security, RAG-as-a-Service, Data Security,
Privacy, Scalable Architecture, Secure AI Systems, Local RAG Pipeline, Large Language Models (LLMs),
Natural Language Processing (NLP), Microservice Architecture, Docker, Kubernetes, Workshop, SDS2025,
IEEE

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

II

Management Summary

Introduction
Retrieval-Augmented Generation (RAG) systems are valuable tools for enhancing AI language models by
incorporating real-time, specialized, or domain-specific knowledge. This integration improves accuracy
and relevance, reduces hallucination, and unlocks numerous business applications such as improving
customer service, streamlining operations, and supporting decision making. By increasing productivity,
RAG systems can deliver significant financial benefits. While implementation can be straightforward
thanks to frameworks, complexity rapidly increases with custom requirements.

Problems
The deployment of RAG systems introduces significant security and privacy challenges. These systems
often process sensitive data, raising concerns around unauthorized access, misuse, and operational vul-
nerabilities. Without proper safeguards, organizations face the risk of regulatory penalties, reputational
damage, and financial loss.

RAG systems require specialized components, such as Large Language Models (LLMs) and vectorization
services. Due to the significant computational power and complex infrastructure needed to support these
systems, there is a strong temptation to rely on third-party hosted solutions. However, doing so can lead
to reduced traceability of the data flow and further introduce operational risks.

Building and maintaining a secure and fully self-hosted RAG system is a non-trivial endeavor. It requires
deep expertise across various technical domains and a significant investment of time and resources to
ensure secure and reliable operation. This challenge is particularly pronounced for small and medium-
sized enterprises, which may lack the necessary infrastructure, personnel, or budget to implement such
systems.

Objectives
The objective of this thesis is to design and develop a secure and scalable RAG-as-a-Service infrastructure.
This includes designing and describing the system’s overall architecture, implementing its core function-
alities, and analyzing a related topic of interest. Finally, the resulting infrastructure is intended to be ready
for use during our workshop at the IEEE Swiss Conference on Data Science (SDS2025) on June 26, 2025,
at the Circle Convention Center, Zurich Airport.

Methodology
To support effective planning and informed decision-making, we conducted a comprehensive evaluation
of various architectural approaches, frameworks, and tools. Based on this analysis, we developed an
architectural blueprint centered on a microservice architecture.

The microservice approach enables us to meet the scalability requirement by allowing individual compo-
nents to scale independently and efficiently using Kubernetes, a proven container orchestration platform.

To ensure security, we leverage insights from our previous research, including the thesis “Analysis of
Risks and Mitigation Strategies in RAG” and the paper “Securing RAG: A Risk Assessment and Mitigation
Framework”. Building on this foundation, we apply industry-standard security measures to provide robust
protection for our RAG system.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

III

Results
The system and its components have been implemented in alignment with the architectural blueprint. This
encompasses the creation of a scalable, modular infrastructure built on containerization. Each component
is either stateless or handles state management appropriately, with well-defined interfaces facilitating
clear communication. To establish a strong security foundation, a robust authentication system was
implemented using industry-standard protocols, including OAuth 2.0 and OpenID Connect. Furthermore,
all external communications are encrypted to ensure the protection of data in transit.

For our workshop, a three-system approach has been set up, showcasing the system’s capability to operate
in an as-a-Service model. Additionally, tasks addressing security-related topics and mitigation strategies
were planned and prepared for participants. The RAG infrastructure was also evaluated for potential risks
and corresponding mitigation strategies — further reinforcing the project’s strong emphasis on security.

By consolidating components, the resulting system enables the efficient use of hardware resources for
computationally intensive tasks across multiple RAG pipelines, while ensuring strict data separation to
maintain privacy. This makes it particularly valuable for small and medium-sized enterprises, offering a
secure and private RAG environment without the complexity of in-house development and maintenance.
The project also lays the groundwork for broader adoption of scalable, privacy-centric RAG architectures
and informs ongoing research in this field. Moreover, the implemented infrastructure supports our
upcoming workshop at the IEEE Swiss Conference on Data Science (SDS2025), titled “Hacking RAG:
Exploring Risks and Implementing Mitigations,” scheduled for June 26, 2025, at the Circle Convention
Center, Zurich Airport.

Outlook
This thesis introduces a scalable and secure RAG-as-a-Service infrastructure. While the core components
have been implemented, the system is designed with flexibility in mind, allowing for future extensions
and adaptations based on specific use cases.

The upcoming workshop will serve as a valuable opportunity to gather insights and direct feedback,
helping to evaluate the infrastructure’s real-world readiness and inform further development.

Further developments are on the horizon — stay tuned.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

IV

Acknowledgements
The successful completion of this thesis was made possible by the invaluable support and contributions of
many individuals. We would like to express our sincere gratitude to all those who assisted with this work,
with special recognition to the individuals highlighted below.

First and foremost, we would like to express our deep appreciation to our advisor, Prof. Dr. Marco Lehmann,
for his invaluable support, guidance, and mentorship throughout this journey. His insightful suggestions
and constructive feedback greatly contributed to our progress. We are especially grateful for his initiative
in organizing a workshop at the SDS2025, as well as for his ongoing support and collaboration.

We would also like to thank Prof. Dr. Mitra Purandare, our co-reader, for her support throughout the thesis
process and for her valuable feedback at our mid-term presentation.

Additionally, we would like to thank Jan Untersander from the Eastern Switzerland University of Applied
Sciences in Rapperswil for his constructive and straightforward collaboration, particularly regarding the
provision and support of the Kubernetes system used during this project.

Last but not least, we would like to thank you. Thank you, the reader of this thesis, for taking the time to
read what we have created over the past semester.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

V

Table of Contents

I. Introduction . 1
1. Initial Situation . 2

1.1. Preliminary Work . 2
1.2. Resulting Steps . 3

2. Related Work . 4
2.1. Capabilities . 4
2.2. Security . 4

3. Retrieval-Augmented Generation (RAG) . 5
3.1. General Architecture . 5
3.2. Workflow . 7
3.3. Benefits . 8
3.4. Approaches . 8
3.5. Use Cases . 9
3.6. Limitations . 9

II. Planning . 10
1. Requirements . 11

1.1. Actors . 11
1.2. Use Case Diagram . 12
1.3. Functional Requirements . 13
1.4. Non-Functional Requirements . 14

2. Testing Concept . 15
2.1. Quadrant One . 15
2.2. Quadrant Two . 15
2.3. Quadrant Three . 15
2.4. Quadrant Four . 16

3. C4 Model . 17

III. Architecture . 18
1. Architectural Pattern . 19

1.1. Utility Analysis . 19
1.2. Further Considerations . 22

2. RAG Framework . 23
2.1. LlamaIndex vs. LangChain . 23
2.2. Decision . 24

3. Vector Store . 25
3.1. ChromaDB vs. Weaviate . 25
3.2. Decision . 25

4. Embeddings . 26
5. State Management . 27

5.1. Strategies . 27
5.2. State Store . 28

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

VI

5.3. Redis . 29
6. Tools . 31

6.1. GitLab . 31
6.2. Docker . 31
6.3. Kubernetes (K8s) . 31
6.4. RAG Frameworks . 33
6.5. Data Storage . 33
6.6. Authentication . 34
6.7. Python Modules . 34
6.8. Code Quality Tools . 35

IV. Infrastructure . 36
1. Environment . 37

1.1. Docker Compose . 37
1.2. Kubernetes Cluster . 38
1.3. Repository . 43
1.4. Container Registry . 43
1.5. Code Quality Tooling . 46

2. Authentication . 47
2.1. Fundamentals . 47
2.2. Security Considerations . 48
2.3. Components . 49
2.4. Workflow . 51

V. Implementation . 57
1. MVP Pipeline . 58

1.1. System Architecture . 58
1.2. Workflow . 60
1.3. Components . 61

2. Basic Pipeline . 63
2.1. System Architecture . 63
2.2. Components . 66

VI. Further Topic . 76
1. Shared Hosting . 77
2. Security Considerations . 79

2.1. Risks . 79
2.2. Mitigation Strategies . 80

3. Workshop . 81
3.1. Hosting Setup . 81
3.2. Synthetic Data . 82
3.3. Workshop Procedure . 83
3.4. Conclusion . 84

VII. Evaluation . 85

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

VII

1. Testing . 86
1.1. Preparation . 86
1.2. Functional Tests . 89
1.3. End-to-End Tests . 91
1.4. Reasoning . 92
1.5. Load and End-User Test . 96
1.6. Performance Tests . 97

2. Limitations / Next Steps . 100
2.1. Implement Local LLM . 100
2.2. Implement Patch Management . 100
2.3. Implement Automated Testing . 100
2.4. Implement Logging Solution . 100
2.5. Improve API Error Messages . 100
2.6. Improve System Prompts . 100
2.7. Improve Document Chunking . 101
2.8. Implement UBAC (User-Based Access Control) in the Vector Store 101
2.9. Implement Secret Management . 101
2.10. Enhance Kubernetes Hardening . 101

VIII. Conclusion & Outlook . 102
1. Conclusion . 103
2. Outlook . 103

IX. Appendix . 104
1. Bibliography . 105
2. List of Figures . 110
3. List of Tables . 111
4. Use of AI Tools . 112
5. Functional Test Protocols . 113

5.1. F1: User Login with Valid Credentials . 113
5.2. F2: User Login with Invalid Credentials . 114
5.3. F3: User Logout . 115
5.4. F4: Upload PDF File . 116
5.5. F5: Ask Chatbot Question - Typical Case . 118
5.6. F6: Ask Chatbot Question - No Related Information . 119
5.7. F7: Give Citation . 120
5.8. F8: Admin View . 121
5.9. F9: API Documentation . 122

6. End-to-End Test Protocols . 123
6.1. E1: Access Restriction . 123
6.2. E2: Chat History . 124

7. Swagger Documentation Screenshots . 125
7.1. Retrieval Service . 125
7.2. LLM Service . 125
7.3. Manager Service . 126

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

VIII

7.4. Embedding Service . 126

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

IX

Glossary

gRPC – Google Remote Procedure Call: High-performance, open-source remote procedure call (RPC)
framework that uses HTTP/2 for transport and protocol buffers for interface definition.

HTTP – Hypertext Transfer Protocol: Protocol used to transfer data in networks.

Ingress – Kubernetes Ingress: Kubernetes resource that defines rules for routing external HTTP and
HTTPS traffic to services within the cluster. Managed by an Ingress Controller.

JWT – JSON Web Token: Compact, URL-safe token format used to securely transmit information between
parties as a JSON object, commonly used for authentication and authorization.

K8s – Kubernetes: Open-source container orchestration platform for automating deployment, scaling, and
management of containerized applications.

MVP – Minimum Viable Product: Product with the minimum set of features necessary to satisfy early
adopters and gather feedback for future development.

NIST – National Institute of Standards and Technology: U.S. agency that develops standards and
guidelines to promote innovation, including widely used frameworks in science, technology, and cyber-
security.

OAuth 2.0 – Open Authorization 2.0: Authorization framework that enables third-party applications to
obtain limited access to user accounts on an HTTP service.

OIDC – OpenID Connect: Authentication layer built on top of OAuth 2.0 that allows clients to verify the
identity of end-users based on the authentication performed by an authorization server.

OWASP – Open Worldwide Application Security Project: Non-profit organization with the aim of
improving the security of applications, services and software in general.

PII – Personally Identifiable Information: Information that can be used to identify an individual, such as
a name, email address, or phone number.

SSH – Secure Shell: Cryptographic protocol that provides secure remote login and other network services
over an unsecured network.

SSO – Single Sign-On: Authentication process that allows users to access multiple applications or systems
with one set of login credentials.

UBAC – User-Based Access Control: Access control model that grants or restricts access to resources
based on the identity of individual users.

UML – Unified Modeling Language: Standardized modeling language used to visualize, specify, construct,
and document the artifacts of a software system.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

X

Part I
Introduction

Introduction

1. Initial Situation
Large Language Models (LLMs) have become incredibly popular with the introduction of chatbots such as
ChatGPT or Gemini. LLMs are very good at natural language processing (NLP), which means they have
the ability to understand and communicate in human language [1]. However, as good as this may sound,
LLMs also have their limitations. LLMs are limited to the knowledge used during training, and it is difficult
and resource-intensive to keep them up to date and/or to integrate domain-specific knowledge for several
reasons briefly outlined below.

The training of these so-called foundation models consists of several steps, including basic training of
the model, fine-tuning for specific tasks, and aligning the model to desired behaviors and goals. Each of
these steps presents their own challenges, including scaling laws in training [2], fine-tuning to ensure
optimal performance [3], and further considerations to align the model [4], [5], making this process time
and resource intensive. In addition, LLMs tend to hallucinate when required information is not remem-
bered in the model, leading to inaccurate responses [6]. To address these problems, Retrieval-Augmented
Generation (RAG) has been introduced [7].

Retrieval-Augmented Generation (RAG) is a promising technique for extending the capabilities of Large
Language Models (LLMs) by integrating information retrieved by a RAG system. With this approach, new
data (not seen by the LLM), domain-specific knowledge, or other information can be selectively incorpo-
rated into the query sent to the LLM, resulting in more recent, more accurate, and more relevant responses.
This information could include current news, internal business documents, weather information, and
much more.

1.1. Preliminary Work
Of course, the adoption of RAG systems sounds very promising, and it is, but at the same time it introduces
new security risks that need to be addressed. As this is a relatively new topic, it can be quite tedious to get
an overview of the risks and mitigation strategies as they are spread across many sources and each risk
and mitigation strategy found needs to be evaluated individually to determine if it applies to one’s RAG
system.

For this reason, in our study thesis [8], we reviewed and organized different risks and mitigation strategies
regarding Retrieval-Augmented Generation (RAG) systems. The resulting thesis provides a high-level
overview of the actual security risks associated with RAG systems, as well as possible mitigation strategies.
Furthermore, it helps to assess whether the mentioned risks and/or mitigation strategies apply to one’s
own RAG implementation. It therefore reduces the effort required to evaluate the risks and mitigation
strategies, encouraging the reader to evaluate their own RAG pipeline accordingly.

The research foundation of our study thesis also provides the basis for our paper, Securing RAG: A Risk
Assessment and Mitigation Framework [9]. The paper synthesizes the knowledge from our study thesis
and integrates it into a broader view by incorporating additional information and offering a concise
overview of the environment. The following excerpt from the abstract offers further insight into the paper.

This paper reviews the vulnerabilities of RAG pipelines, and outlines the attack surface from data pre-
processing and data storage management to integration with LLMs. The identified risks are then paired
with corresponding mitigations in a structured overview. In a second step, the paper develops a framework
that combines RAG-specific security considerations, with existing general security guidelines, industry
standards, and best practices. The proposed framework aims to guide the implementation of robust,
compliant, secure, and trustworthy RAG systems.

— [9]

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 2 / 126

Introduction

1.2. Resulting Steps
Due to the positive feedback and strong interest in the topic, we have decided to build upon it and focus
our bachelor’s thesis on the preliminary work of our study thesis. As a result, certain sections of this thesis,
particularly those on related work and the foundational description of RAG systems, are adapted directly
from our study thesis.

The goal of this thesis is to develop a scalable and secure RAG-as-a-Service infrastructure including the
following key deliverables:
• Design and description of a scalable and secure RAG system architecture.
• Implementation of the core functionalities of the RAG system using an appropriate technology stack.
• Identification and investigation of a related topic of interest.

Furthermore, a workshop for the IEEE Swiss Conference on Data Science [10] will be prepared based on
the previous work and the work of this thesis. Therefore, a bonus goal is that the implementation built
during this thesis can be reused for our workshop.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 3 / 126

Introduction

2. Related Work
As the field of Retrieval-Augmented Generation (RAG) systems emerges, numerous papers, theses, and
surveys have been published recently, reflecting the growing interest and activity in this area. The research
diverges into several distinct directions, addressing both the capabilities and the security of RAG systems.

2.1. Capabilities
The concept of RAG was introduced by Lewis et al. in 2020, who proposed a hybrid model that combines
pre-trained generative models with non-parametric memory through a retrieval mechanism [7]. The
integration of the proposed retrieval process leads to significant improvements in overcoming the common
limitations of LLMs, including the ability to incorporate current and domain-specific knowledge into the
generation task.

Subsequent research has focused on refining RAG architectures to improve efficiency and accuracy. The
concept of RAG has been taken up and developed further by many researchers in several directions.
Surveys such as [11], [12], [13] provide a broad overview of the evolution of RAG.

2.2. Security
An important direction of research has focused on RAG attacks, exploring the various ways in which
malicious actors can exploit these systems. Several studies have explored this topic in depth, including [14],
[15], [16], and [17], which investigate various attack methods such as embedding inversion, knowledge
corruption, and manipulation of system responses.

Another important topic, highlighted by [18] and further discussed in [17] and [19], is the disclosure and
leakage of retrieval data. This includes unintended sharing of retrieval data with third parties, embedding
exposure, and broader data leakage issues within RAG pipelines. These vulnerabilities can compromise
sensitive information, posing risks to both individual privacy and organizational security. Research in this
area emphasizes the need for robust safeguards to ensure that retrieval data remains protected throughout
the system’s lifecycle.

A further area of interest is jailbreaking RAG and LLM systems, where the goal is to bypass their intended
constraints to perform unauthorized actions. Notable works such as [20], [21], [22], [23] and [24], provide
comprehensive analysis and techniques for understanding and preventing these vulnerabilities.

These various research directions, together with legislative initiatives such as the EU AI Act [25] and the US
Executive Order on AI [26], have attracted considerable attention and underscored the need for robust tools
to ensure the safe, transparent, and fair application of AI systems. Other efforts in this direction include
technical frameworks such as the AI Risk Management Framework (AI RMF) [27] and the OWASP Top
Ten for LLM Applications [28], both of which go beyond RAG but also include some risks and mitigation
strategies that also applies to RAG systems.

Last but not least, our study thesis [8] and our paper [9] that builds on this work present a practical
framework tailored to RAG systems that facilitates a critical review of one’s own RAG system for security
vulnerabilities and mitigation strategies.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 4 / 126

Introduction

3. Retrieval-Augmented Generation (RAG)
The purpose of this chapter is to provide a basic understanding of RAG systems. This knowledge is a
prerequisite for the understanding of the whole thesis.

3.1. General Architecture
The general architecture of a RAG system is described below and illustrated in Figure 1 in the form of a
pipeline. This pipeline is intended to illustrate the basic idea of RAG and can be extended at almost any
step, depending on requirements and the specific implementation. The most common places of extensions
are shown as dotted boxes. These components are not mandatory, but are used in many RAG systems to
increase security or improve results. The different components are briefly described below in a technology-
neutral way.

1) General RAG Pipeline: The general RAG pipeline component represents the entire system, encapsu-
lating all processes from user input to post-processing.
a) Input Pre-processing: This step is labeled as a supplemental step because input pre-processing is

not strictly necessary. However, in many RAG systems, security and response results can benefit
greatly if appropriate pre-processing steps on the input are taken. Examples of this step include PII
masking, prompt pattern matching, metadata enrichment, and more.

b) Post-processing: This step is labeled as a supplemental step because post-processing is not strictly
necessary. However, in many RAG systems, security and response results can benefit greatly if
appropriate post-processing steps are taken. Examples of this step include response verification,
adaptive learning, error analysis, and more.

2) Data Ingestion: The data ingestion steps do not belong directly into the pipeline in the sense that these
steps do not need to be performed on every user request. These steps only need to be performed when
new data is added to the RAG system. This is indicated by the dashed arrow in the figure.
a) Dataset: The dataset contains all the data that is intended to be used in the RAG process to generate

responses based on it.
b) Data Pre-processing: Pre-processing in this context is the process of transforming the data from the

dataset into a suitable form that can be used by the retriever. The data in the appropriate form is then
stored in the retrieval datastore. A common procedure is to split the data into chunks and create a
vector representation for each chunk so that similar chunks can be quickly found later based on a
user prompt.

3) Retriever: The retriever searches for relevant data related to the user’s prompt and passes it to the
generator.
a) Retrieval Datastore: The retrieval datastore contains the dataset in an optimized form to support the

process of finding the most relevant documents. The retrieval datastore typically contains a vector
representation of the data.

b) Retrieve Most Relevant Documents: This step searches for the most relevant documents in the
retrieval datastore and returns them as “retrieved information”.

c) Re-Ranker: This step is labeled supplemental because re-ranking is not strictly necessary. Never-
theless, many RAG systems use this well-known step, which can lead to greatly improved results.
Re-ranking involves reordering the initial set of retrieved documents to make them more relevant
to the user’s prompt.

d) Create Query: In this step, the prompt and the retrieved information are merged and passed to the
generator as a “query”. More technically, this can be thought of as the following, where {} represents
a placeholder.
query = {prompt} + {retrieved documents}.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 5 / 126

Introduction

4) Generator: The generator creates the response using the prompt along with the data retrieved from the
retriever.
a) Generate Response (LLM): In this step, the response is generated based on the received query. This

is done using a Large Language Model (LLM).

Figure 1: Basic Structure of a RAG System - source: [9]

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 6 / 126

Introduction

3.2. Workflow
The basic workflow of a RAG system, as illustrated in Figure 2, can be divided into the following steps [13].

Figure 2: Basic RAG Workflow - adapted from [13]

1) Indexing: This step includes text normalization as well as text segmentation into sentences or para-
graphs. This step may include deep learning to generate a semantic vector representation of the text.

2) Retrieval: In this step, the most appropriate documents/paragraphs/phrases are retrieved and prepared
for generation. Traditional methods focus on term frequency and are therefore straightforward to
implement, but may overlook semantic information. More modern strategies use language models for
this task and can therefore capture the semantic meaning more accurately, but are also more complex.

3) Generation: This task generates the response text. This text should be relevant to the query and reflect
the information from the retrieved documents.

In a more detailed manner, RAG can also be broken down into the following steps called Pre-Retrieval,
Retrieval, Post-Retrieval and Generation [13]. Figure 3 shows some example tasks for each step, further
described below. However, these tasks may vary in each specific RAG implementation.

Figure 3: Extended RAG Workflow - adapted from [13]

Here is a brief introduction to each of the steps shown.

1) Pre-Retrieval: This step is essential for successful data and prompt preparation. It can include tasks
such as Indexing, Data Modification, and Prompt Manipulation, all of which prepare the system for
effective data access.

2) Retrieval: This step includes the search and ranking part. The goal is to search, select and prioritize
documents from the datastore. This step should help to improve the quality of the generator’s response.

3) Post-Retrieval: This step aims to refine the documents retrieved in the previous steps and to re-evaluate,
score and reorganize them. After this step, the documents should be ready for the generation step.
Tasks like Re-Ranking and Filtering belong to this step.

4) Generation: This step generates the response text based on the prompt and the retrieved data. It
includes steps such as Enhancing, where the retrieved information is merged with the user’s prompt,
and Customization, which aims to generate user-centric responses.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 7 / 126

Introduction

3.3. Benefits
Some general benefits of RAG systems are as follows. Note that this may vary depending on the exact
implementation:
• Improved accuracy: The accuracy of responses can be improved through more recent and domain-

specific knowledge. [29]
• Reduce hallucination: LLMs tend to hallucinate due to outdated information or lack of knowledge in a

domain. RAG can effectively counter this by passing specific information to the generator. [30]
• Cite sources: Since the information passed to the generator is known, the source can also be added to

the response, leading to higher trustworthiness. [30]
• Simpler maintenance: LLMs require retraining whenever new information is added to them. RAG

dramatically simplifies this process by only requiring new information to be added to the retriever.

3.4. Approaches
There are several different approaches to implementing a RAG system. Four different approaches are
shown in Figure 4 and briefly described below [11].

Figure 4: Implementation Approaches for RAG Systems - adapted from [11]

1) Query-based RAG: This is the simplest type of RAG implementation. The user’s prompt is concatenated
with the retrieved information to form the query (query = {prompt} + {retrieved documents}).
This query is then fed into the generator to generate the response. [11]

2) Latent Representation-based RAG: The retrieved information (based on the user’s prompt) is trans-
formed into latent representations and fed directly into the internal layers of the generator. This helps to
overcome limitations such as the context window, but requires additional training to match the hidden
state of the LLM. [11]

3) Logit-based RAG: The retrieval information is only integrated into the probability distribution (logits)
at the decoding stage. The logits (from the LLM) are compared against the retrieval information, and
the most relevant information is integrated into the response. [11], [31]

4) Speculative RAG: To save resources and minimize response time, retrieval is used instead of generation
in certain steps. The retriever and the generator are decoupled, allowing pre-trained models to serve as
modular components [11]. In some implementations, the LLM generates multiple hypotheses, which
are later evaluated against relevant retrieved information to support or refute each hypothesis. The
final response is then generated based on this information [31].

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 8 / 126

Introduction

3.5. Use Cases
There are numerous applications for RAG. The following examples are provided for inspiration.
• Question-answering based on internal documents
• Academic research including current literature
• Code generation based on existing code in your domain
• Fact-checking based on self-provided and actual facts
• Medical information systems using own patient data
• Legal information systems including recent court decisions
• and many more …

Sources: [11], [31]

3.6. Limitations
The following are some limitations of RAG systems:
• Lengthy context: Especially the Query-based RAG is heavily dependent on the context window of

the generator. The query plus the retrieved information must not exceed the context window of the
generator. [11]

{prompt} + {retrieved information} ≤ generators context window
• Increased complexity: The complexity of the system inevitably increases with the integration of RAG.

The number of hyperparameters increases and more expertise is needed to tune the generator. [11]
• Gap between Retriever and Generator: Implementing the interaction between the retriever and the

generator may require very precise design and optimization. [11]
• Overhead: In most cases, an overhead is introduced that leads to an increase in latency. [11]
• Bad/biased data: The quality of the results from the retriever is only as good as the data fed into it. If

the data is inaccurate, outdated, or biased, the RAG system will have a difficult time identifying and
improving it. This leads to poor retrieval results, which can lead to poor overall results. [11], [32]

• Multiple aspects of data: Traditional RAG systems do not focus on queries that may require the retrieval
of multiple documents with significantly different content. [33]

• Complex questioning: Traditional RAG systems may struggle to synthesize and provide comprehensive
answers because documents are retrieved and processed individually. [34]

• Imperfect retrieval: Irrelevant, misleading or conflicting information can degrade system performance.
[35]

• Hallucination: RAG systems can hallucinate. They may provide convincing yet incorrect answers. [36]
• Assessment: The evaluation and benchmarking of RAG systems is not a trivial matter. [37], [38]

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 9 / 126

Part II
Planning

Planning

1. Requirements
This chapter presents the functional and non-functional requirements for our Retrieval-Augmented
Generation (RAG) system. It defines the roles of the primary system actors and outlines the specific actions
that each actor performs. The goal is to formally capture the behavior and expectations of the system to
guide the subsequent design, implementation, and validation phases.

1.1. Actors
The system involves two primary actors: the User and the RAG System. The User initiates interactions
by performing actions such as uploading documents and prompting the chatbot, while the RAG System
handles background processes such as document processing, chunk retrieval, and response generation.

• User
‣ Login in to the RAG application.
‣ Upload PDF file(s).
‣ Ask chatbot questions about their PDF file(s).
‣ View passed chat messages (chat history).

• RAG System
‣ Chunk PDF file(s) and generate embeddings based on PDF chunks.
‣ Retrieve relevant chunks from the vector store.
‣ Generate responses using retrieved chunks.
‣ Provide citations for the generated responses.
‣ Store chat history for the user.
‣ Return generated responses.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 11 / 126

Planning

1.2. Use Case Diagram
Figure 5 visualizes the use cases in the form of a UML use case diagram. Further explanations of each use
case can be found in the following functional requirements section.

Figure 5: Use Case Diagram - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 12 / 126

Planning

1.3. Functional Requirements
This section describes the functional requirements for the RAG system. We will use the brief variant of
the use case description, as defined in Craig Larman’s template for briefly dressed use cases [39].

1.3.1. FR1: User Login
Main Success Scenario:
• User visits the webapp, sees the login page and can login with correct credentials.

Alternate Scenario:
• If the user has incorrect login credentials the user remains on the login page. An error message is

displayed.

1.3.2. FR2: Upload PDF File
Main Success Scenario:
• User opens the upload data function, selects a file, and uploads it. The user confirms the file for further

processing and loading it into the vector store with a button click. A success message is displayed.

Alternate Scenario:
• If the user is not logged in, this page is not available.
• If processing takes too long, an error is displayed.

1.3.3. FR3: Ask Chatbot Questions
Main Success Scenario:
• User opens the chatbot function, types in a question, and starts the generation process. The retrieval

system extracts the most relevant chunks based on the question and sends them to the LLM service for
response generation. The generated response is then presented to the user.

Alternate Scenario:
• If the user is not logged in, this page is not available.
• If a user asks a question unrelated to any of their uploaded PDF files, the system should inform them

that no related information exists.

1.3.4. FR4: Give Citation
Main Success Scenario:
• When a user receives a response from the chatbot, the chatbot includes a citation indicating which PDF

files(s) were used to generate the response.

Alternate Scenario:
• If the user is not logged in, this page is not available.
• If a user asks a question unrelated to any of their uploaded PDF files, the system should inform them

that no related information exists.

1.3.5. FR5: Admin View
Main Success Scenario:
• An authorized user can access the admin view interface and enter a query or word. The retrieval service

will then return the most relevant chunks based on the query or word.

Alternate Scenario:
• If the user is not logged in, this page is not available.
• If the user did not upload any PDF files yet, the response will be empty.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 13 / 126

Planning

1.4. Non-Functional Requirements
The following non-functional requirements are listed and categorized according to ISO/IEC 25010 [40].

1.4.1. NFR1: Horizontal Scaling
Category: Scalability
Description: The system infrastructure shall support horizontal scaling to accommodate increased user
load.
Acceptance Criteria:
• Replicas can be set up easily.
• System works as intended, despite the scaling.

Verification Process:
• Each service can be scaled independently and will continue to function as intended.

1.4.2. NFR2: Access Restriction
Category: Security
Description: A user can only retrieve his upload files. A user cannot access files uploaded by another user.
Acceptance Criteria:
• Each user can only retrieve chunks/responses for their own uploaded files.
• The system enforces authentication to ensure users can only access their own uploaded files.

Verification Process:
• User A uploads file X, user B must not be able to retrieve chunks/responses from file X.

1.4.3. NFR3: Implement Local Services
Category: Security
Description: Fully implement all services locally without the need for external API calls.
Acceptance Criteria:
• No external APIs used.

Verification Process:
• The system must function in an offline environment without requiring external API calls.

1.4.4. NFR4: API Documentation
Category: Maintainability
Description: The system includes API documentation for all backend endpoints.
Acceptance Criteria:
• Each endpoint must include at least one descriptive sentence.

Verification Process:
• API documentation is populated and available in the development environment.

1.4.5. NFR5: Modular Architecture
Category: Maintainability
Description: The system code base shall follow modular architectural principles to facilitate updates and
maintenance.
Acceptance Criteria:
• System components should be designed and set up to be loosely coupled and easily interchangeable.

Verification Process:
• Each module has well-defined interfaces and can be modified or replaced independently.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 14 / 126

Planning

2. Testing Concept
Our test concept is based on the four test quadrants from the Agile Testing Methodology [41]. Each
quadrant employs a different testing method, as illustrated in Figure 6.

Figure 6: Agile Testing Quadrants - source: [41]

2.1. Quadrant One
The first quadrant focuses on verifying individual code components and the integration of them into the
environment [42].

Although unit and automation testing would be ideal for products of any scale, the focus of this project is
on building a scalable and secure RAG system. Due to time constraints, setting up an automated testing
suite was deemed impractical, as it would require significant initial setup work. However, if anyone were
to use this RAG system in production, unit and automation testing would be highly recommended.

2.2. Quadrant Two
The second quadrant focuses on the evaluation of the system against business requirements or customer
expectations [42].

We will perform functional tests to ensure that all functional requirements are met, the components are
functioning properly, and the entire system is operating correctly. For details about these tests, refer to
the functional requirements part of the testing section (Part VII, Section 1.1.1.1.) and the test protocols in
the appendix (Part IX, Section 5.), (Part IX, Section 6.).

2.3. Quadrant Three
The third quadrant focuses on testing to ensure that user expectations are met [42].

We will conduct an end-user test with some CAS students at the beginning of June. Additionally, the
workshop at the SDS2025 Conference [10] will provide us with more user feedback. For details abut these
tests, refer to the user test part in the testing section (Part VII, Section 1.5.).

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 15 / 126

Planning

2.4. Quadrant Four
This quadrant focuses on non-functional testing, including security, performance, and scalability testing
[42].

We will conduct tests and review the requirements to ensure that the non-functional requirements are
met. Additionally, the performance tests (Part VII, Section 1.6.) and the load test (Part VII, Section 1.5.)
that are to be conducted fall within this quadrant. For details about this tests, refer to the non-functional
requirements part of the testing section (Part VII, Section 1.1.1.2.) and the test protocols in the appendix
(Part IX, Section 5.), (Part IX, Section 6.).

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 16 / 126

Planning

3. C4 Model
The C4 model is a framework for visualizing the architecture of software systems. It provides a hierarchical
approach to modeling, allowing for different levels of detail in the diagrams. The C4 model consists of
four levels: Context, Container, Component, and Code. Each level provides a different perspective on the
system’s architecture [43].

In this thesis, we will apply components of the C4 model as appropriate and meaningful. However, we
will not apply the entire C4 model, as doing so would unnecessarily inflate the scope of our work without
providing additional insight. We will primarily use the two levels of context and container to describe our
architecture at different levels of detail.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 17 / 126

Part III
Architecture

Architecture

1. Architectural Pattern
This section presents a utility analysis of various potential architectural patterns to aid in selecting the
most suitable option for our use case. It also highlights key considerations related to the selected archi-
tectural approach.

1.1. Utility Analysis
This section provides an overview of the utility analysis conducted.

1.1.1. Criteria
This section provides a description of each criterion for the utility analysis.

1.1.1.1. Scalability
Definition: Indicates how easily the architecture can be scaled to handle an increased workload.
Focus: How easily can the architecture scale horizontally (adding more nodes) or vertically (adding more
resources to existing nodes).
Possible values: Ranges from “Hard to scale” (1) to “Supports robust autoscaling” (5).

1.1.1.2. Ease of Deployment
Definition: Indicates how much effort and complexity is involved in setting up and deploying the RAG
system.
Focus: Installation steps, automation tools (CI/CD), required infrastructure, and ongoing maintenance.
Possible values: Ranges from “complex, high effort” (1) to “quick, push-button deployment” (5).

1.1.1.3. Adaptability
Definition: Reflects how straightforward it is to adapt, customize, or restructure the architecture.
Focus: Ease of reconfiguration, modular design, flexibility of adaptions to individual pipeline stages, and
ability to introduce new features or components.
Possible values: Ranges from “static, poorly customizable” (1) to “highly flexible and customizable” (5).

1.1.1.4. Data Security
Definition: Evaluates how well the architecture protects data — both at rest and in transit.
Focus: Encryption, access control, compliance with privacy/security standards, isolation of sensitive data.
Possible values: Ranges from “negligible or non-existent safeguards” (1) to “strong controls, end-to-end
security measures” (5).

1.1.1.5. Extensibility
Definition: Assesses how easy it is to add new functionality, integrate third-party services, or extend the
existing capabilities of the system.
Focus: Plug-in systems, well-defined interfaces/APIs, support for external libraries or extensions.
Possible values: Ranges from “very difficult, requires significant refactoring” (1) to “simple drop-in
modules and integrations” (5).

1.1.1.6. Hosting & Portability
Definition: Reflects the ease of running the pipeline in a variety of hosting environments (different cloud
providers, on-premises, hybrid) and how easily it can be moved or re-deployed elsewhere.
Focus: Vendor lock-in, portability of services (e.g., containerization, open standards), ability to run it on-
premise or in cloud environments.
Possible Values: “Locked-in, extremely difficult to switch environments” (1) to “Highly portable, can be
hosted almost anywhere with minimal effort” (5).

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 19 / 126

Architecture

1.1.2. Approaches
For this RAG system, three architectural approaches - namely microservices, event-driven, and serverless
- were evaluated to determine how well they met our key requirements. These requirements included
scalability, ease of deployment, adaptability, data security, extensibility and portability. The comparison
table summarizing the findings can be seen below. It provides a basis for choosing an architectural style.
The reasoning behind each number can be found below the table.

1.1.3. Comparison Table
Table 1: Classification and Comparison of Defined Criteria Across Architectural Patterns

Microservices Event-Driven Serverless

Scalability 5 4 5

Ease of Deployment 3 3 5

Adaptability 4 4 2

Data Security 4 3 3

Extensibility 4 4 3

Hosting & Portability 5 4 2

Total 25 22 20

1.1.4. Reasoning
This section explains the reasoning behind each number listed in Table 1.

1.1.4.1. Microservices
• Scalability: 5, Highly scalable due to independent services that can handle increased load by adding more

instances of specific services without impacting the rest of the system.
• Ease of Deployment: 3, Deployment can be complex (many moving parts) and requires coordination

between teams, tools, and environments to ensure smooth updates and minimal downtime.
• Adaptable Architecture: 4, Generally flexible, but still requires well-defined boundaries to prevent service

overlap, ensure maintainability, and allow for clear ownership of responsibilities.
• Data Security: 4, Good if services are secured properly using techniques such as strong authentication,

encryption, and strict network segmentation to protect data in transit and at rest.
• Extensible: 4, Easy to add new microservices for new features without disrupting existing services, which

allows teams to introduce functionality incrementally and iterate rapidly.
• Hosting & Portability: 5, Containerized microservices (e.g., Docker + Kubernetes) are extremely portable

and can run on any public cloud or on-premises, and can be optimized with continuous integration and
continuous deployment (CI/CD) pipelines for seamless updates across environments.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 20 / 126

Architecture

1.1.4.2. Event-Driven
• Scalability: 4, Scales well, but depends on robust messaging systems that must handle high throughput

and ensure reliable delivery to maintain overall performance.
• Ease of Deployment: 3, Deployment can be intricate (managing event brokers) and can require special-

ized knowledge of messaging protocols and infrastructure to ensure event consistency.
• Adaptable Architecture: 4, Highly adaptable, new consumers/publishers can be added on demand with

minimal disruption.
• Data Security: 3, Security can be fine but depends on secure messaging/event channels and the correct

configuration of access controls, encryption, and monitoring to prevent unauthorized data access or
message tampering.

• Extensible: 4, Extensible by adding new event streams or handlers that can process and route data
efficiently, allowing for easy integration with additional services or modules.

• Hosting & Portability: 4, An event-driven system can be quite portable if an open-source solutions for
messaging is chosen (e.g., Apache Kafka, RabbitMQ), and can be deployed on various infrastructures,
from on-premises to cloud environments, providing great flexibility.

1.1.4.3. Serverless
• Scalability: 5, Built-in auto-scaling automatically adjusts resources based on workload, eliminating the

need for manual provisioning.
• Ease of Deployment: 5, Often easy to deploy (function-based) with minimal operational overhead,

allowing developers to focus on code rather than managing containers or servers.
• Adaptable Architecture: 2, Various options but probably also constraints on customization (depends on

vendor). Those can limit architectural flexibility and may require creative workarounds to meet specific
requirements.

• Data Security: 3, Security largely managed by the provider (depends on trust) and requires careful con-
figuration of identity management, access management, and compliance settings for robust protection.

• Extensible: 3, Extending across multiple functions/services can get complex because each function may
require separate configuration, orchestration, and monitoring to maintain overall system coherence.

• Hosting & Portability: 2, Managed serverless platforms (e.g., AWS Lambda, Azure Functions, Google
Cloud Functions) often introduce tight vendor lock-in (proprietary runtimes, function triggers, logging,
etc.), limiting direct migration between cloud providers and sometimes necessitating significant refac-
toring when changing environments.

1.1.5. Decision
In a series of discussions and with reference to the comparison table, the decision was made to adopt a
microservices architecture. Microservices provide fine-grained control, allowing teams to adapt or update
individual services without disrupting the overall system. They also offer significant flexibility in technol-
ogy choices, which helps minimize vendor lock-in. Moreover, since each service operates independently,
debugging and monitoring become simpler because potential issues can be isolated to a single component.
This combination of adaptability, independence, and clarity ultimately makes microservices the most
suitable choice.

Summarized in form of Y-Template [44]
In the context of the RAG pipeline, facing the need to create a environment which is easily adaptable and
scalable, we decided for the architectural pattern microservices and against event-driven or serverless to
achieve scalability and adaptability, accepting that this may create extra effort to deploy.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 21 / 126

Architecture

1.2. Further Considerations
This section outlines additional considerations related to the selected architectural pattern.

1.2.1. Microservice Orchestration
To orchestrate the microservices, a dedicated tool is required. Kubernetes was chosen for this purpose due
to its widespread adoption in production environments, high extensibility, and robust scalability features.
These strengths make it a natural fit for managing microservice architectures. Further details can be found
in the infrastructure section.

1.2.2. Communication
The different microservices need to communicate with each other. To enable interaction among the various
microservices, communication is established via HTTP messages using FastAPI (further detailed in the
Tools section Part III, Section 6.7.1.). Most of the endpoints are implemented as POST endpoints, as they
facilitate the transmission of JSON payloads within the request body. These endpoints are intentionally
designed to be as generic and reusable as possible, ensuring consistency throughout the system.

A notable exception is the /remove-history endpoint, which uses the DELETE method. With the exception
of this endpoint, all HTTP interfaces provided via FastAPI employ the POST method, and no further
distinction is made between different HTTP verbs. This design choice is motivated by several considera-
tions [45]:

• It ensures a consistent communication pattern across all microservices and endpoints.
• It supports the transmission of large payloads without size limitations.
• It allows unrestricted use of characters in the transmitted data.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 22 / 126

Architecture

2. RAG Framework
From the outset of the Bachelor’s project, it was clear that a framework for the RAG system would be
essential, as starting from scratch would be too complex and time-consuming. These two frameworks aim
to provide a set of tools and libraries to simplify the development of RAG systems. This section describes
the process of comparing the two candidates and reaching a decision.

2.1. LlamaIndex vs. LangChain
The two candidates selected are LlamaIndex and LangChain. The following comparison ensures that the
correct tool is used for each task. Note that LangChain is the company name and thus encompasses all of
their tools, including LangGraph and LangSmith.

2.1.1. Feature Comparison
Table 2: Comparison Between LlamaIndex and LangChain

Feature Description LlamaIndex LangChain

1) Document Ingestion & Split-
ting

Reading and splitting docu-
ments (PDFs, text files, etc.)
into chunks for processing.

✓ ✓

2) Custom Indexing Strategies
Tree, graph, keyword, or list-
based structures for organizing
data.

✓ ✗

3) Vector Store Integrations

Ability to use external vec-
tor databases (e.g. FAISS,
Pinecone, Weaviate) for re-
trieval.

✓ ✓

4) Retrieval QA
Out-of-the-box retrieval-based
question-answering (end-to-
end).

✓ ✓

5) Prompt Templates
Built-in methods to manage
prompt templates for LLM
calls.

Basic ✓

6) Multi-Step Prompt Chaining
Composing multiple prompts
(or LLM calls) into a single, or-
chestrated workflow.

Basic ✓

7) Agents & Tools
Let an LLM dynamically select
and call external tools (e.g.,
web search, calculators).

✗ ✓

8) Conversation Memory Storing and referencing steps
in a conversation. Basic ✓

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 23 / 126

Architecture

Feature Description LlamaIndex LangChain

9) Advanced Reasoning /
Branching Logic

Complex chain-of-thought or
conditional branching in LLM
applications.

✗ ✓

10) Hierarchical / Structured
Retrieval

Leveraging nested document
structures for more precise re-
trieval.

✓ Partial

11) Graph-Based Linking
Linking document chunks in
a directed graph for more nu-
anced retrieval paths.

✓ ✗

12) Data Loading Ecosystem
Wide variety of pre-defined
loaders for different file types,
APIs, or data sources.

Basic ✓

13) Community & Ecosystem
Size

Scale of community-driven ex-
tensions, documentation, and
integration examples.

Growing Large

14) Setup of a minimal QA
pipeline

The setup of a minimal QA
pipeline is easily possible. ✓ ✓

Legend: ✓ = fully supported, ✗ = not supported, Basic / Partial = basically / partially supported

2.2. Decision
Table 2 shows that each tool has its own strengths and weaknesses depending on the area of application.
For this reason, it was decided to use both in the area where they have their strongest capabilities.
So LlamaIndex is used for ingestion and retrieval, and LangChain for the rest, including prompt logic,
agentic behavior, advanced chaining, and more. Together, they enable us to create a powerful LLM-driven
application.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 24 / 126

Architecture

3. Vector Store
As described in the planning section, we need a local vector store for our RAG system. This local vector
store needs to be persistent, flexible, and work within our hosting setup. Based on several criteria, we
compared two state-of-the-art options: ChromaDB and Weaviate.

3.1. ChromaDB vs. Weaviate
Weaviate is a vector database that combines object and vector storage to provide semantic search capabil-
ities. It is designed to handle large-scale data and offers features like horizontal scaling, persistence, and
user-based access control [46]. ChromaDB is a lightweight, open-source vector database that is easy to set
up and use. It is designed for smaller-scale applications and provides basic functionality for storing and
retrieving data, including vectors [46].

3.1.1. Feature Comparison
Table 3: Feature Comparison Between ChromaDB and Weaviate

Vector
Store

Metadata
Filtering

User-Based
Access

Control
Persistence

Horizontal
Scaling

Kubernetes
Support

(out-of-the-
box)

ChromaDB ✓ Yes ✗ No ✓ Yes ✗ No ✗ No

Weaviate ✓ Yes ✓ Yes ✓ Yes ✓ Yes ✓ Yes

3.2. Decision
Based on the comparison shown in Table 3, Weaviate was selected primarily for its superior scalability,
production readiness, and out-of-the-box Kubernetes compatibility. A key advantage of Weaviate is its
robust horizontal scaling support, which enables efficient handling of large-scale deployments by distrib-
uting data across multiple nodes [46]. This makes it ideal for applications that require high availability and
consistent performance under heavy workloads. Weaviate’s out-of-the-box Kubernetes support is provided
through official Helm charts, making it ideal for Kubernetes environments.

ChromaDB, by contrast, is better suited for prototyping and simpler data structures [46]. ChromaDB is
ideal for users seeking a simple, straightforward implementation without special requirements.

For this project, Weaviate’s scalability, security, and Kubernetes support made it the preferred vector
database.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 25 / 126

Architecture

4. Embeddings
One requirement of the RAG system is the local generation of embeddings. These embeddings serve two
functions within the system. First, they represent each PDF file chunk as a vector for semantic searches.
Second, they are used to find chunks with a given prompt. To accomplish the latter, a vector representation
of the prompt is generated and compared to the vector representations of the chunks in the vector store.

Weaviate, as decided in the previous section, supports several ways to generate embeddings:

• Use a third-party provider, such as OpenAI via an API, to generate the embeddings for you. However,
this is not an option for this project, since it is no longer local.

• Use the t2v-transformer (text-to-vector) service offered by Weaviate. With this approach, a separate
container runs a model that automatically generates embeddings as needed.

• Generate the embeddings independently and then manually pass them to Weaviate.

For this project, we investigated and tested options two and three. A key feature of option two is the
internal use within Weaviate. This setup consists of a separate service, and an inline configuration that
instructs Weaviate to use this service for embedding generation. In this setup, the retriever sends plain
text chunks to Weaviate, which then generates embeddings using the transformer service.

The third option - manually generating embeddings - is implemented using Hugging Face. Hugging
Face provides a sentence transformer setup that includes some pre-defined models. The selected model
is downloaded on startup and then executed completely locally. The generated embeddings are then
manually passed to Weaviate.

Both approaches are functional and represent valid implementation choices. However, the third approach
- manual creation of embeddings - was selected based on the performance evaluations detailed in the
performance test section (Part VII, Section 1.6.) due to its superior performance.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 26 / 126

Architecture

5. State Management
In a microservices architecture, containers should ideally remain stateless to ensure that each instance of a
given service type can process each incoming request. However, certain stateful data, such as chat history,
requires some form of state to be maintained. For this reason, this section reviews different methods for
managing application state and evaluates the most appropriate approach.

5.1. Strategies
In the context of the RAG system presented in this thesis, two viable strategies for handling states are
worth considering.

5.1.1. Strategy 1
“Let the frontend handle the states and send all the necessary data within each request.”

Moving the state management to the frontend results in a lighter backend. However, this adds complexity
to the frontend, especially since it is no longer stateless. There are two primary options with this strategy:

1) Bind each user or session to a specific frontend instance (sticky sessions), which hurts scalability and
flexibility.

2) Build a centralized state management solution directly into the frontend, which adds significant
complexity.

The first option is particularly risky because it makes your application dependent on a single frontend
instance, increasing the chance of errors and system instability. The second option is also not ideal, as it
goes against the principle that logic and state should be managed in the backend whenever possible. For
these reasons, this approach is not considered viable.

Finally, it should also be pointed out that this strategy introduces some new possibilities to manipulate
the system by providing the option to directly manipulate states within the frontend.

5.1.2. Strategy 2
“Implement a state store solution within the backend to manage states centrally.”

The second strategy introduces a high degree of flexibility and adaptability along with great scalability
options.

5.1.3. Decision
Based on the problems with strategy one, the bright prospects of strategy two, and to keep the logic in the
backend and the frontend as lightweight as possible, the second strategy will be pursued further.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 27 / 126

Architecture

5.2. State Store
Based on the decision above, this section defines the state storage requirements, compares viable solutions,
and identifies the solution to proceed with.

5.2.1. Requirements
The state store should store state information such as chat histories, user IDs, and other information
needed to respond to requests. However, this data is not critical in the sense that it needs to be protected
from loss on any instance. Rather, it is important that the data be available on a fast instance.

5.2.2. Database Products
There are many options to handle state storage in a microservice environment. Two popular approaches
often used in production systems are Redis and Apache Cassandra. Both are NoSQL databases designed for
scalability and high workloads, they have overlapping use cases, but they differ significantly in architecture
and focus. They are briefly described and compared below.

Redis is an in-memory data structure store optimized for performance and low latency, making it ideal for
caching, session management, and real-time analytics [47]. In contrast, Apache Cassandra is a distributed
database emphasizing availability and fault tolerance, suitable for large-scale transactional systems [48].

Following the CAP theorem, a database can only guarantee two out of the three following guarantees [49]:
• Consistency: Every read operation returns the most recent write or an error if consistency cannot be

guaranteed.
• Availability: Every request gets a response, even if some nodes are down.
• Partition Tolerance: The system continues to operate despite network failures.

In this sense, Redis guarantees consistency and partition tolerance (CP), while Apache Cassandra guaran-
tees availability and partition tolerance (AP) [50]. This impressively shows the different use cases that both
databases are designed to handle. However, bear in mind that the interpretation of a database in terms of
the CAP theorem can vary depending on the argumentation and configuration settings used. This should
only provide an initial understanding of the main differences.

5.2.3. Decision
Based on the requirements, Redis is pursued as a better fit because low latency is more important than
preventing data loss at any instance. Redis achieves this by storing data in-memory, but also provides
several options for persistence. Still, both options have their advantages and disadvantages, so both can
be argued as valid approaches.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 28 / 126

Architecture

5.3. Redis
Redis provides several options related to availability and persistence. These options are particularly
important because proper configuration of these settings ensures both high availability and persistence of
data. In the corresponding subsection, both are explained and discussed in more detail, and appropriate
decisions are made for their use within our system.

5.3.1. Availability
One major concern of a state store is the availability. To ensure this, Redis provides several different archi-
tectural approaches to address different availability requirements. The different architectural approaches
[51] are briefly described below and show in Figure 7.

• Simple Database: a single primary node that handles all operations by itself
• HA¹ Database: one primary node to handle reads and writes, plus one or more replica node(s) to handle

reads only
• Clustered Database: multiple primary nodes, each managing a subset of data
• HA Clustered Database: multiple pairs of primary and replica nodes, each managing a subset of data

Figure 7: Redis Architecture Approaches - source: [51]

In the context of managing replicated Redis systems, the following Redis approaches exists [52]:
• Redis Sentinel: Supports high availability in Redis by automatically detecting master node failures and

replacing them with a replica node. In Redis Sentinel, there is only one master node that handles writes.
• Redis Cluster: Provides a distributed version of Redis by automatically sharding data across multiple

master nodes.

Note that in both approaches, the application interacting with Redis must be aware of the underlying
architecture (master, replicas, potential sharding). The application is responsible for sending read and write
operations to the correct node. For this thesis the Redis Cluster approach is used, as it supports better
scaling and performance.

¹High Availability

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 29 / 126

Architecture

5.3.2. Persistence
Redis is designed to be an in-memory database. This means that the data is kept in memory. However,
persistence options can be added as needed. The following options are available [53]:

• RDB (Redis Database): Takes point-in-time snapshots of your dataset at specified intervals.

• AOF (Append Only File): Logs each write operation received. At startup, the database can be recon-
structed using these entries. The following option can be applied:
‣ appendfsync always: append to the AOF at every new command (very slow, very safe)
‣ appendfsync everysec: append to the AOF every second (loose at most one second of data)
‣ appendfsync no: never fsync, rely on the operating system (in linux normally every 30s)

• No persistence: Persistence can be turned off completely.

• RDB + AOF: Any combination of RDB and AOF is possible.

In summary, RDB is better for backup purposes because it creates snapshots that can be used for disaster
recovery. AOF, on the other hand, is better if you do not want to lose data accidentally. In general, it is
advisable to use both approaches together.

5.3.3. Decision
The Redis cluster approach is used for this pipeline because of its availability and scalability advantages.
Since the system is already set up with a clustered approach, scaling can be done later by simply adjusting
the appropriate Helm configuration without any code changes. In addition, speed, especially when writing
data, is better compared to the Sentinel approach because more nodes are running to handle requests.

For persistence, only AOF is adopted, so that the current state of the system is retained even if the system
is restarted. RDB is not adopted, but can be retrofitted at any time by simply changing the appropriate
Helm configuration. This setting is not adopted because backup is beyond the scope of this work. If the
system is to be used in production, this must be taken into account.

In summary, a minimal Redis Cluster architecture with three master and three replica nodes is used
together with AOF to keep the state of the database persistent. The resulting cluster architecture is
described in more detail in the according implementation section (Part V, Section 2.2.6.).

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 30 / 126

Architecture

6. Tools
This chapter identifies and briefly describes the key tools used in this thesis.

6.1. GitLab
GitLab is a popular web-based platform designed to streamline the entire software development lifecycle
by integrating tools for version control, collaboration, and automation [54]. Built on top of Git, a distributed
version control system, GitLab provides a comprehensive solution for source code management, project
planning, workflow automation and application deployment.

6.2. Docker
Docker is an open-source platform that automates the deployment of applications within lightweight,
portable containers [55]. These containers encapsulate an application and all its dependencies, ensuring
consistent behavior across various environments, from development to production. Unlike traditional
virtual machines, Docker containers share the host system’s kernel, making them more resource-efficient
and faster to start.

6.2.1. Docker Compose
Docker Compose is a tool that simplifies the definition and management of multi-container Docker setups
[56]. It allows developers to configure application services, networks, and volumes using a single YAML
file. With the command “docker compose up” one can build, start, and manage all the services defined in
the configuration file.

6.3. Kubernetes (K8s)
Kubernetes is an open-source container orchestration platform designed to automate the deployment,
scaling, and management of containerized applications [57]. Kubernetes has been developed by Google and
is now maintained by the Cloud Native Computing Foundation (CNCF). Over the past years, Kubernetes
has become the industry standard for the provision and operation of container applications, including
microservices architectures and cloud-native applications.

Key features of Kubernetes include the following [58]:
• Container Orchestration: Kubernetes automates the deployment, management, scaling, and networking

of containers across a cluster of machines.
• Scalability: Kubernetes enables applications to scale seamlessly to match the current workload by adding

or removing container instances.
• Self-healing: Kubernetes automatically restarts failed containers, replaces and reschedules them on

healthy nodes, and kills containers that do not respond to defined health checks.
• Load Balancing: Kubernetes distributes network traffic evenly across deployed containers.
• Automated Rollouts and Rollbacks: Kubernetes can manage application updates by incrementally rolling

out changes, while monitoring and responding to application health.
• Storage Orchestration: Kubernetes can automatically attach storage systems to containers for seamless

data management.

6.3.1. Minikube
Minikube is a lightweight tool for running a single node Kubernetes cluster locally on a single machine
[59]. The focus is on developing and testing Kubernetes deployments without the need for a fully sized
Kubernetes environment.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 31 / 126

Architecture

6.3.2. Kustomize
Kustomize is an open source configuration management tool that is built directly into kubectl, allowing it
to be used natively with Kubernetes [60]. Kustomize offers a template-free, declarative approach to cus-
tomizing, managing, and bundling Kubernetes configuration files without altering the original ones. This
provides the benefit of easy deployment and management of multiple environments while maintaining
reusability and consistency.

6.3.3. Helm
Helm is an open source package manager for Kubernetes that simplifies the deployment and management
of applications [61]. The packaging format, called Helm charts, bundles all necessary Kubernetes resources
(such as deployments, services, and ConfigMaps) into reusable templates. These templates can be parame-
terized using a values.yaml file, allowing users to customize configurations based on their needs without
having to deal with the underlying configurations. Helm simplifies application lifecycle management by
supporting version control, rollbacks, and upgrades.

6.3.4. K9s
K9s is a terminal-based user interface tool designed to simplify the management of Kubernetes clusters.
K9s provides an intuitive and efficient way to interact with Kubernetes resources, providing a visual and
user-friendly extension to the kubectl command line tool [62].

6.3.5. Ingress NGINX
Ingress NGINX is a Kubernetes ingress controller that manages external access to cluster services, using
NGINX as a reverse proxy and load balancer [63]. It implements ingress resources by dynamically config-
uring NGINX to route HTTP/HTTPS traffic based on host names, paths, or TLS settings.

6.3.6. Cert Manager
Cert Manager is a Kubernetes native certificate management tool that automates the issuance, renewal,
and injection of TLS certificates from trusted Certificate Authorities (CAs) such as Let’s Encrypt [64]. In
doing so, Cert Manager ensures secure communication for ingress resources, services, and workloads.
Furthermore, it monitors certificate expiration and proactively handles renewals, reducing downtime and
manual intervention.

6.3.7. Let’s Encrypt
Strictly speaking, Let’s Encrypt is not a tool in the sense of an application. However, an introduction to
the product makes sense in this chapter because it is used within Cert Manager.

Let’s Encrypt is a non-profit certificate authority that provides free TLS certificates to make it easy for
websites to encrypt over HTTPS and thus secure their applications [65].

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 32 / 126

Architecture

6.4. RAG Frameworks
Throughout the project, different RAG frameworks have been used. These frameworks are briefly
described below.

6.4.1. LlamaIndex
LlamaIndex is a lightweight AI framework designed to streamline the loading, structuring, and querying
of large text datasets [66]. LlamaIndex enables the creation of specialized indexes — such as list-based,
tree-based, or graph-based — that optimize document retrieval for the use in LLM-powered applications.
By simplifying document ingestion, chunking, and retrieval strategies, LlamaIndex is particularly effective
for building document-focused applications like question answering and summarization.

6.4.2. LangChain
LangChain is a powerful AI framework designed for building applications incorporating Large Language
Models (LLMs) [67]. It offers modular components — such as Chains, Agents, Tools, and Memory — that can
be seamlessly combined to create complex language-driven workflows. LangChain simplifies integration
with document loaders, vector databases, and external APIs, while also supporting multi-step reasoning,
conversation memory, and dynamic tool usage. All of this is orchestrated through flexible and robust
prompt templates, making LangChain a comprehensive solution for developing and deploying advanced
LLM-powered applications.

6.5. Data Storage
This section briefly describes the tools used for state management and data storage.

6.5.1. Weaviate
Weaviate is an open-source, AI-native vector database specifically designed for storing and searching
high-dimensional data, such as embeddings generated by machine learning models [46], [68]. It supports
efficient similarity and offers native integration with popular embedding models. This makes it well-suited
for use cases like semantic search, recommendation systems, and generative AI applications.

6.5.2. Redis
Redis (Remote Dictionary Server) is an open-source, in-memory data store optimized for performance and
low latency, making it ideal for caching, session management, and real-time analytics [47]. In this project,
Redis is used to store management information in a centralized but scalable way to ensure that containers
remain interchangeable because they do not have to manage states themselves.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 33 / 126

Architecture

6.6. Authentication
This section briefly describes the tools used for authentication purposes.

6.6.1. Keycloak
Keycloak is an open source identity and access management solution that provides centralized authenti-
cation, single sign-on (SSO), and authorization services [69]. It supports multiple authentication standards
including OpenID Connect, OAuth 2.0 and SAML. This provides the ability to federate users with LDAP/
Active Directory, social login (e.g. Google, GitHub), and fine-grained authorization policies. Keycloak
simplifies security implementation with customizable login themes, session management, and token
mapping for applications.

6.6.2. OAuth2 Proxy
OAuth2 Proxy is a reverse proxy that adds OAuth2/OpenID Connect authentication to applications [70]. It
intercepts requests, redirects users to an identity provider (e.g. Keycloak) for login, and forwards validated
sessions with user attributes (e.g. roles, email). OAuth2 Proxy supports multiple OIDC providers and can
be integrated as middleware or a standalone proxy, ideal for securing applications without native OAuth2/
OIDC support.

6.7. Python Modules
This section briefly describes some special Python modules that were used during this project.

6.7.1. FastAPI
FastAPI is a modern, high-performance web framework for building APIs [71]. Designed for speed and
ease of use, it provides automatic interactive documentation and strong data validation.

6.7.2. Streamlit
Streamlit is an open-source framework for building interactive web applications, particularly for data
science and machine learning projects [72]. It is designed to enable quick and easy creation of data-driven
front-end applications, allowing developers to focus on logic and functionality rather than underlying web
development complexities.

6.7.3. Pip-compile
Pip-compile is a command-line tool from the pip-tools package that helps Python developers to manage
dependencies more reliably [73]. It reads a requirements.in file containing direct dependencies and gener-
ates a fully resolved requirements.txt file with pinned versions, including transitive dependencies. This
improves traceability and prevents errors relating to the release of new versions and version clashes.

6.7.4. Faker
Faker is a Python library that generates fake data for various purposes, such as testing, development, and
data anonymization [74]. It provides a wide range of data types, including names, addresses, dates, and
more, allowing developers to create realistic datasets without using real user information.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 34 / 126

Architecture

6.8. Code Quality Tools
This section briefly describes the tools used to ensure code quality.

6.8.1. Black
Black is a Python code formatter that enforces PEP 8-compliant styling by automatically restructuring
code, eliminating manual formatting decisions, and ensuring consistency across the codebase [75].

6.8.2. Flake8
Flake8 is a Python linter that combines PEP 8-style checking and code error detection into a single tool
that promotes readability and reduces logical errors through static analysis [76].

6.8.3. MyPy
MyPy is a static type checker for Python that validates type hints (PEP 484) at compile time, catching type
inconsistencies before execution and improving code reliability [77].

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 35 / 126

Part IV
Infrastructure

Infrastructure

1. Environment
This chapter describes the tools and environment used to develop and host our RAG system.

1.1. Docker Compose
For development purposes, we use a local Docker Compose environment. This allows us to easily create
and run the individual Docker containers, including the network connection between them. This saves
us a lot of time as we can develop and test our system without having to deploy anything. We also have
the ability to override options from the Docker files and enable development specific options such as “hot
reloading” of our code base.

This approach allows us to have a development-specific configuration for our containers in our Docker
Compose environment, while keeping the original Docker file production-specific. This enables us to build
the Docker files in a production-ready way from the beginning, without having to have multiple of them.

The following is an excerpt of the file structure used for the Docker Compose environment. Below that is
an excerpt of the Docker Compose file showing the enabled development settings for the manager service.

1 . file-structure
2 ├── llm-service/
3 │ └── Dockerfile
4 ├── manager-service/
5 │ └── Dockerfile
6 ├── ...
7 └── docker-compose.yml

1 services: YAML
2 manager-service:
3 build: ./manager-service
4 environment:
5 - REDIS_PASSWORD=${REDIS_PASSWORD}
6 ports:
7 - "5000:5000"
8 volumes:
9 - ./manager-service:/app
10 networks:
11 - shared_net
12 command:
13 - "uvicorn"
14 - "manager-service:app"
15 - "--host"
16 - "0.0.0.0"
17 - "--port"
18 - "5000"
19 - "--reload"

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 37 / 126

Infrastructure

1.2. Kubernetes Cluster
This chapter provides an in-depth overview of the Kubernetes-based hosting environment, an essential
component of our infrastructure.

1.2.1. Development
For local testing and development purposes, we run a self-hosted Minkube instance. The advantage of this
is that we have full control over the entire setup, including installation and execution. This allows us to
easily make adjustments to the system where needed and have better debugging capabilities.

1.2.2. Deployment
In order to test and run our pipeline in a real-world manner and to have more computing power available,
we use a three-node Kubernetes setup hosted by the Eastern Switzerland University of Applied Sciences
in Rapperswil. This setup is very similar to the one shown in Figure 8.

Node 1 Node 2

kube-scheduler kube-controller-manager

CLOUD PROVIDER API

CRI CRI

CONTROL PLANE

CLUSTER

etcd kube-api-server

scheduler controller manager

cloud-controller-manager

kubelet kube-proxy kubelet kube-proxy

pod pod

pod

pod

Figure 8: Kubernetes Cluster - source: [78]

The different types of nodes and components are briefly described below.

One of the three nodes in our cluster is dedicated to the control plane and its associated components. This
node is responsible for managing global decisions across the cluster and for detecting and responding to
cluster events [79]. The key components running on this node include:
• kube-apiserver: exposes the Kubernetes API and thus serves as the frontend of the control plane
• etcd: consistent and high-available key-value store used to store all cluster data
• kube-scheduler: watches for newly created pods and selects a node to run them on based on various

factors
• kube-controller-manager: runs various controllers to ensure the desired state of the cluster
• cloud-controller-manager: typically used only in cloud-hosted environments, embeds cloud-specific

control logic to connect the cluster to the cloud provider’s API

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 38 / 126

Infrastructure

The remaining two nodes are responsible for executing the actual workload of our pipeline. The smallest
deployable units on these nodes are the pods, which represent the services within our microservice
architecture. The components running on these nodes include:
• kubelet: agent that makes sure that containers are running in a pod and ensures that those pods

are healthy
• container runtime: enables Kubernetes to run containers
• kube-proxy (optional): maintains the network rules on the nodes

1.2.3. Configuration File Management
Deploying applications on Kubernetes often involves managing numerous configuration files. Kustomize
offers a state-of-the-art solution to streamline this process by enabling efficient organization, customiza-
tion, and bundling of these files, thereby simplifying both configuration management and deployment.

In our use case, we only have one environment on Kubernetes (prod), so we do not need the overlays folder
structure. For the sake of completeness, the overlays folder is created anyway. A snippet of the resulting
file structure looks like the following.

1 k8s/ file-structure
2 ├── base/
3 │ ├── deployments/
4 │ │ ├── kustomization.yaml
5 │ │ ├── xyz.deployment.yaml
6 │ │ └── ...
7 │ ├── secrets/
8 │ │ ├── kustomization.yaml
9 │ │ ├── xyz.secret.yaml
10 │ │ └── ...
11 │ ├── services/
12 │ │ ├── kustomization.yaml
13 │ │ └── xyz.service.yaml
14 │ └── ...
15 ├── kustomization.yaml
16 ├── xyz.nampespace.yaml
17 ├── ...
18 └── overlays

The following subsections provide brief descriptions of each configuration type.

1.2.3.1. Deployments
Deployments describe the hosting details of each service in the RAG system. It includes configurations
such as the deployment name, container image, number of replicas, environment variables, resources,
ports, and more.

1.2.3.2. Ingress
The ingress is the only component of the RAG system that directly communicates with the outside world.
As such, its configuration defines how services are exposed externally. The ingress also handles encryption
settings and acts as the termination point for TLS connections. Since all incoming requests must pass
through the ingress, it also serves as the entry point for the authentication workflow. Depending on the
outcome of this workflow, the ingress either forwards the request to the RAG system or rejects it.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 39 / 126

Infrastructure

1.2.3.3. Issuer
Strictly speaking, the issuer configuration file contains two different configurations, the issuer and the
certificate. Since these configurations are closely related, including them in the same configuration file
makes the configuration more convenient and easier to understand.

The issuer defines the details of the Certificate Authority (CA) to receive valid certificates from. In our
system, this is Let’s Encrypt (for more information about Let’s Encrypt, see the according Tools section
(Part III, Section 6.3.7.)).

The certificate configuration, on the other hand, defines details about the certificate itself. For example,
which issuer to use, how long the certificate is valid, and after how many days the certificate should be
renewed.

1.2.3.4. Secrets
Some services require secrets for security reasons or to function properly. These secrets can be API
keys or passwords, for example. Of course, these secrets are never pushed directly to the repository for
security reasons. For this reason, the corresponding folder in the repository contains only one Kustomize
configuration file and no other configuration files. All secrets must be base64 encoded to work properly.

1.2.3.5. Services
Each deployment also has a service configuration. This configuration defines the exposed port within the
Kubernetes system, as well as the destination port inside each container.

1.2.3.6. Namespace
Kubernetes has namespaces to logically separate different systems or components. In our case, the three
most important namespaces are the following:
• RAG pipeline (mvp, basic): contains all the microservices used within the deployed pipeline
• Authentication (auth): contains the components used within the authentication workflow (except the

ingress)
• Ingress (ingress-nginx): contains the components used for the ingress to work properly

There are other namespaces, of course, but only these three are directly affected by our configuration.

1.2.3.7. Kustomize
The kustomization configuration file belongs to Kustomize and bundles all the configuration files together
for easy deployment. This configuration specifies each file that needs to be deployed to Kubernetes. In
addition, some settings, such as the version of the Docker images to deploy, are overridden at the top level
of the kustomization configuration. This makes it easier to change the version to deploy.

Each folder containing configuration used for deployment has a separate kustomization configuration file.
This keeps the structure clean.

To deploy the system to Kubernetes using Kustomize, all you need is the following command. The -k
options stand for Kustomize. Of course, you must be in the correct directory for the command to work
properly.

1 kubectl apply -k ./base cli

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 40 / 126

Infrastructure

1.2.4. Tag Management
It is highly recommended to deploy container images based on version tags rather then with the “latest”
tag, as this ensures reproducibility and simplifies debugging. This approach prevents many problems from
occurring in the first place.

Kubernetes deployments often involve numerous configuration files, making tag management cumber-
some. Kustomize simplifies this by allowing you to define image tags in a central kustomization.yaml file.
Using the newTag field, you can override image tags from the original files. This creates a single point of
control for updating image versions during deployment, streamlining the process.

The following is an excerpt of the described configuration structure:

1 images: YAML
2 - name: <image name>
3 newTag: <tag>

1.2.5. Ingress Setup
To make the system publicly accessible, an ingress controller is required. This system uses ingress-nginx,
which functions as both a reverse proxy and load balancer. The ingress is configured using the following
command, as recommended by Jan Untersander from the Eastern Switzerland University of Applied
Sciences.

Note: The ingress-nginx version was updated to the latest version during the thesis due to a critical security
vulnerability. More information can be found under the following CVE ID: CVE-2025-1974.

1 helm \ cli

2
 upgrade -i --atomic --cleanup-on-fail --timeout 10m0s --create-namespace --repo

https://kubernetes.github.io/ingress-nginx \
3 ingress-nginx \
4 ingress-nginx \
5 --version 4.11.2 \
6 --namespace ingress-nginx \
7 -f helm-nginx-ingress-values.yaml

1.2.6. Certificate Manager Setup
To enable issuer configuration, a certificate manager is required. This system uses cert-manager from
Jetstack, following the recommendation of Jan Untersander from the Eastern Switzerland University of
Applied Sciences. It is set up using the following command.

Note: The appropriate repository must be added to Helm before the Helm chart can be used. This process
is not described here.

1 helm upgrade -i \ cli
2 cert-manager jetstack/cert-manager \
3 --namespace cert-manager \
4 --create-namespace \
5 --version v1.17.0 \
6 --set crds.enabled=true

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 41 / 126

https://www.cve.org/CVERecord?id=CVE-2025-1974

Infrastructure

1.2.6.1. Container Registry Access
Since the container registry is private, a secret is required to access it. The secret is created using the
following command, along with an access token issued via GitLab.

1 kubectl create secret docker-registry gitlab-token-auth \ cli
2 --docker-server=registry.gitlab.ost.ch:45023 \
3 --docker-username=<token_username> \
4 --docker-password=<token>

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 42 / 126

Infrastructure

1.3. Repository
Each pipeline increment (MVP, basic) has its own GitLab repository. This avoids confusion between
increments and simplifies the management of code, pipelines, and container images. It also makes it easy
to treat increments as standalone systems.

1.3.1. Access
Access to the repositories is via an SSH key, which simplifies the authentication process, particularly when
working with multiple repositories.

1.4. Container Registry
Kubernetes requires a container registry to retrieve the images needed for deployment. For simplicity and
scalability, we use GitLab’s container registry, as our project is already hosted on GitLab and it provides a
wide range of integration and extension options.

1.4.1. Tag Convention
The following two tags are added to each container image upon build for the stated purpose:
• latest: always represents the latest container and is overwritten when a new container image is pushed
• <version>: represents the version of the container as described in the GitLab tag, and remains in the

registry until deleted (does not get overwritten)

This concept ensures easy container image management and version control. It allows for easy system
updates and rollbacks to previous versions during hosting.

1.4.2. Naming Convention
As our RAG system is built up incrementally, we potentially have many different container images. To
ensure clarity and avoid mix-ups, we enforce a strict naming convention for our containers. GitLab defines
the initial part of the container name as follows [80]:

1 <registry server>/<namespace>/<project> filename-template

Building on this, our naming convention defines the last part of the container names as follows:

1 /<service type>-service:<tag> filename-template

An example using our naming convention for the retrieval service is shown below:

1 <gitlab naming convention>/retrieval-service:latest filename-template

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 43 / 126

Infrastructure

1.4.3. Build
The entire build process is managed via a GitLab pipeline. The process is as follows:
1. login to the container registry
2. build the container image (using the version tag)
3. tag the container image with “latest”
4. push both container images to the registry

This process only starts if a tag exists on GitLab. Otherwise, it is ignored. This approach prevents the
unnecessary use of resources and ensures that updates or new versions are created intentionally. Further-
more, this makes the process more predictable, which is beneficial for hosting.

The following snippet illustrates the GitLab CI build pipeline, which builds a container image and pushes
it to the registry. The placeholder <service_type> should be replaced with the specific service being built.

1 build_<service_type>-service: YAML
2 image: docker:24.0.5
3 stage: build
4 services:
5 - docker:24.0.5-dind
6 variables:
7 SERVICE_NAME: "<service_type>-service"
8 IMAGE_TAG_VERSION: $CI_REGISTRY_IMAGE/$SERVICE_NAME:$CI_COMMIT_TAG
9 IMAGE_TAG_LATEST: $CI_REGISTRY_IMAGE/$SERVICE_NAME:latest
10 script:

11
 - echo "$CI_REGISTRY_PASSWORD" | docker login $CI_REGISTRY -u $CI_REGISTRY_USER

--password-stdin
12 - docker build -t $IMAGE_TAG_VERSION ./$SERVICE_NAME
13 - docker tag $IMAGE_TAG_VERSION $IMAGE_TAG_LATEST
14 - docker push $IMAGE_TAG_VERSION
15 - docker push $IMAGE_TAG_LATEST
16 only:
17 - tags

A successful build process on GitLab looks like shown in Figure 9: first, linting and type checking are
performed, and then the container images are built.

Figure 9: GitLab CI Pipeline - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 44 / 126

Infrastructure

1.4.4. Access Token
The container registry must remain private and inaccessible to the public. To allow secure access, authen-
tication is required. This is achieved using an access token that is limited to pushing and pulling images
from the registry, ensuring minimal necessary permissions.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 45 / 126

Infrastructure

1.5. Code Quality Tooling
To support the writing of high-quality Python code, the following tools were used throughout the project
to highlight potential errors and enforce the writing of clean code.

1.5.1. Mypy
Mypy is employed as a static type checker to verify return types, parameter types, and other type
annotations. It is used both locally on each developer’s environment and within the GitLab pipeline,
ensuring comprehensive type checking across the entire codebase. The project follows Mypy’s default
configuration.

1.5.2. Black
Black is used as an automatic code formatter to enforce Python coding standards. However, it is only
applied locally, as formatting changes within the GitLab pipeline are not recommended as they can lead
to unintended and unpredictable behavior.

1.5.3. Flake8
Flake8 is used as a linter to enforce consistent coding style by issuing warnings when style rules are
violated. It runs both locally in developer environments and globally within the GitLab pipeline to ensure
coding standard compliance throughout the codebase. The Flake8 configuration includes the following
customizations to ensure compatibility with Black to enable an automated formatting approach.

1 [flake8] config-file
2 extend-ignore = E203, E704, E501

• E203 (Whitespace before ‘:’) - Ignored due to conflicts with Black’s formatting, especially in slicing (e.g.,
a[1: 5] vs. a[1:5]).

• E704 (Multiple statements on one line (def)) - Allowing single-line function definitions as Black does on
occasion.

• E501 (Line too long (> 88 characters)) - Disabled because enforcing this policy within Black is currently
marked as a preview feature and may result in unintended behavior. Also, wrapping long lines in e.g.
templates can result in less readable code.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 46 / 126

Infrastructure

2. Authentication
The authentication component is a critical part of the overall system because it protects all subsequent
components and processes. This section describes each component of the authentication system and how
they interact.

2.1. Fundamentals
This section identifies and explains the key standards used in the authentication process.

2.1.1. OAuth2
OAuth2 (Open Authorization 2.0) is an authorization framework which enables third-party applications to
access user resources hosted on a service without exposing credentials [81]. The following types of tokens
are involved in the OAuth2 framework:
• Access Token: Grants temporary access to a protected resource (short-lived)
• Refresh Token: Obtains new access tokens without requiring re-authentication (long-lived)

2.1.2. OpenID Connect
OpenID Connect (OIDC) is an identity layer based on OAuth2 that enables secure authentication and
exchange of user profile information between applications [82]. The following token and core functions
are involved in OIDC:
• ID Token: JSON Web Tokens (JWTs) that contains verified user identity claims (e.g. email, name)
• UserInfo Endpoint: A RESTful API to retrieve additional user attributes using the OAuth2 access tokens
• Single Sign-On (SSO): Enables seamless authentication across applications

2.1.3. Tokens
In this section the different tokens used within the authentication process are described in a more detailed
manner.

2.1.3.1. Access Token
An access token is a credential that grants the client temporary access to a protected resource on behalf of
a user [83]. Typically, it is a JWT or opaque string issued by an authorization server, such as Keycloak, after
the user grants permission. This token contains information about the granted permissions and scope,
and is presented to the resource server to access specific APIs or services. These tokens are short-lived to
minimize the security risks associated with token compromise.

2.1.3.2. Refresh Token
A refresh token is a credential used to obtain new access tokens without requiring the user to re-authen-
ticate [84]. This token is issued along with the access token and has a longer lifetime. When the access
token expires, the client application can use the refresh token to request a new access token from the
authorization server. Refresh tokens are intended for use only with the authorization server and should
be stored securely to prevent unauthorized access.

2.1.3.3. ID Token
An ID token is a JSON Web Token (JWT) that serves as a proof of authentication [83]. This token is issued
by the identity provider (e.g. Keycloak) upon successful user authentication. It contains information about
the user’s identity, such as their name and email address. The ID token is intended for the application
and should not be used to access protected resources. It is primarily used to convey information about the
authenticated user to the application, enabling a personalized user experience.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 47 / 126

Infrastructure

2.2. Security Considerations
Since authentication is a broad topic, there are many possible security considerations. This chapter
identifies and describes the most important security considerations associated with our RAG system.

2.2.1. Access Token Lifespan
The lifespan of the access token is a critical security aspect. As long as the access token is valid, successful
requests can be made to the corresponding protected resource without entering any credentials. This is
possible even if the session on the identity provider (Keycloak) has been revoked. Therefore, this lifespan
must be short enough to prevent misuse. In general, values between 5 and 10 minutes are recommended.
Our system uses 10 minutes.

2.2.2. Refresh Token Lifespan
Another critical security consideration is the lifespan of the refresh token. A refresh token is used to
generate a new access token once the previous one has expired. In other words, as long as the refresh
token is valid, more access tokens can be issued. However, if the session has been revoked by the identity
provider, no more access tokens can be issued with the refresh token, and access to the resource is
withdrawn.

Our system uses an idle time of 8 hours. After this time a new cookie must be generated as shown in the
description of workflow 4 (Part IV, Section 2.4.4.). Further, the session maximum time is set to 24 hours.
This means that the identity provider will invalidate the session after one day, regardless of whether any
requests have been made in the meantime. After this time a complete new session must be initiated as
shown in the description of workflow 1 (Part IV, Section 2.4.1.).

The refresh token lifespan is the shorter of the two times introduced above. In this case, it is 8 hours.

2.2.3. Refresh Token Revocation
Refresh token revocation is an option to harden the system against refresh token abuse. This is done by
revoking refresh tokens after they have been used and issuing a new one. The old token can no longer be
used. This option is used in our RAG system to enhance security.

2.2.4. Session Validation
Session validation checks each request to see if the token has been invalidated by the identity provider.
This happens, for example, when a session is revoked. This option is not currently used in our system due
to time limitations, but should be carefully considered in a production system.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 48 / 126

Infrastructure

2.3. Components
The three main components involved in the authentication process are identified and briefly described
below. In addition, the interaction of the components is shown in Figure 10.

2.3.1. Ingress
In technical terms the ingress is a reverse proxy. It is the only point of the system with direct contact to
the outside world. All requests to the system must go through this component. Consequently, it is the first
component involved in the authentication process.

2.3.2. Keycloak
Keycloak is our identity provider (IdP). It is responsible for handling the user accounts with their creden-
tials, the groups, the login workflow, as well as providing the login functionality including the login page.
This component is a fully self-hosted state-of-the-art identity provider.

2.3.3. OAuth2 Proxy
The OAuth2 Proxy is the intermediary between the ingress and Keycloak. It handles the session manage-
ment and sets and validates the needed cookies for the client. The great advantage of this component is
that the RAG system does not need to be aware of any authentication measures and steps. The only thing
the RAG system needs is the user information via the x-header option to distinguish different users. This
makes the system less error-prone and as lean as possible.

2.3.4. Components Diagram

Figure 10: Authentication Architecture - own presentment

Note: OAuth2 Proxy uses Redis to store session information and Keycloak uses Postgresql to store user
information and other configuration. Both components are omitted in Figure 10 because they do not add
any valuable information to the understanding of the authentication workflow.

Disclaimer: Unfortunately, the workflow of the OAuth2 Proxy is not documented in great detail. The
following workflows are thus assembled based on the information found and conducted experiments. The
real workflow can thus slightly vary.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 49 / 126

Infrastructure

2.3.4.1. Interaction between the Components
The ingress is the only point of the system that is accessible from the outside. Therefore, every request
must go through it. The ingress is instructed to authenticate every request going to the RAG system. This
authentication request is then further handled by the OAuth2 Proxy.

The OAuth2 Proxy receives all authentication requests. If a client sends a session cookie along with the
request, it is forwarded to the OAuth2 Proxy. Based on this information, it decides whether the session is
still active and access to the RAG system can be granted, or whether the session is no longer active and
re-authentication via Keycloak must be performed. If no session cookie is sent to the OAuth2 Proxy, it will
also initiate an authentication via Keycloak.

When an authentication via Keycloak is initiated, the user is redirected to the Keycloak service. Keycloak
presents the user with a login page where he can authenticate himself to the system.

After successful authentication, a valid session is created in both Keycloak and the OAuth2 Proxy. The
OAuth2 Proxy then generates a session cookie and sends it to the browser. Until the session is expired (or
revoked), requests with this session cookie can be authenticated directly within the OAuth2 Proxy.

Of course, this is a simplified description of the workflow. The various stages of the authentication
workflow are described in more detail in the following section.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 50 / 126

Infrastructure

2.4. Workflow
In this section, the following authentication workflows are shown and described in detail (titles are
sometimes abbreviated later):
• Workflow 1: Initial Login / Resource Access with Expired Session
• Workflow 2: Resource Access with a valid Access Token
• Workflow 3: Resource Access with an expired Access Token but a valid Refresh Token (token refresh)
• Workflow 4: Resource Access with expired Access and Refresh Tokens
• Workflow 5: Logout Procedure

Note: Each request is terminated at the ingress. To keep the figures as readable as possible, this fact is
omitted in the following figures.

Disclaimer: All of these workflows are shown as successful procedures. In most cases, if something goes
wrong, a simple re-authentication is all that is needed.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 51 / 126

Infrastructure

2.4.1. Workflow 1: Initial Login / Expired Session
This workflow covers the initial login scenario, when a session is created for the first time, as well as
when a session has expired or been revoked in both the OAuth2 Proxy and Keycloak. Each step is briefly
described below and illustrated in Figure 11.

1. A user sends a HTTPS request to a protected resource (RAG system) via a browser.
2. The request is intercepted by the ingress and forwarded to the OAuth2 Proxy for authentication

purpose.
3. The OAuth2 Proxy checks the request for an existing session cookie. As no cookie is found (initial

access / expired session) the OAuth2 Proxy initiates the authorization workflow.
4. The browser is redirected to the Keycloak login page.
5. The user enters his credentials and authenticates himself within Keycloak.
6. Upon successful login, Keycloak issues an authorization code and redirects the browser back to the

OAuth2 Proxy including the authorization code.
7. The OAuth2 Proxy now directly communicates with Keycloak to exchange the authorization code for

an access token, a refresh token and an ID token.
8. The OAuth2 Proxy validates the received token and extracts the user information.
9. The OAuth2 Proxy generates and sets the session cookie in the browser, stores the necessary informa-

tion in its database, and redirects the browser to the originally requested URL.

Addition: If a user enters an incorrect password, they will receive an error message and be able to try
logging in again. This is not explicitly shown in the figure below for simplicity.

Figure 11: Authentication Workflow of Initial Login / Expired Session - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 52 / 126

Infrastructure

2.4.2. Workflow 2: Valid Access Token
This workflow applies to most user requests, as the access token remains valid for a specified period
following successful authentication or token refresh. As long as the token is valid, this workflow is
followed. Each step is briefly described below and illustrated in Figure 12.

1. A user sends a HTTPS request to a protected resource (RAG system) via a browser.
2. The request is intercepted by the ingress and forwarded to the OAuth2 Proxy for authentication

purpose.
3. The OAuth2 Proxy checks the request for an existing session cookie. Since a session was previously

established and is still active, a session cookie was sent with the request.
4. The session cookie is checked and found to be valid and not expired.
5. The OAuth2 Proxy responds with a 200 OK response.
6. Based on this response, the ingress knows that the request from the user has been successfully authen-

ticated and forwards it to the RAG system.
7. The RAG system performs its intended function and sends the response back to the browser.

Figure 12: Authentication Workflow of Resource Access with a Valid Access Token - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 53 / 126

Infrastructure

2.4.3. Workflow 3: Token Refresh with Valid Refresh Token
When a session or token expires, there are different ways to handle it. The concrete handling depends
heavily on the configuration. Our configuration uses refresh tokens. This means that the OAuth2 Proxy
tries to refresh the session with Keycloak periodically on request after a certain amount of time. If
everything is still okay, this happens without any user interaction. If something has changed or the token
is no longer valid within Keycloak, the user will need to re-authenticate. Using refresh tokens has several
advantages, including fewer redirects for better performance and potentially faster detection of revoked
sessions for better security.

In this project, the OAuth2 Proxy is configured to validate and renew access and refresh tokens. After
ten minutes, once the access token expires, the proxy uses the refresh token to renew these tokens. This
ensures that, if a user or session is revoked or deactivated, access to protected resources is withdrawn
within ten minutes at most. Validation is automatically triggered on any request if more than ten minutes
have passed since the last check.

This workflow is illustrated and described in Figure 13. However, it will not be described in detail because
it is largely the same as workflow 2 (Part IV, Section 2.4.2.). The only difference from workflow 2 is that
the OAuth2 Proxy requests a new access token and, in our configuration, a new refresh token with the
existing refresh token. It also restarts the timer for the access token until the next refresh. Of course, this
is only the successful case. If the refresh token were not valid, a re-authentication would be requested.

Figure 13: Authentication Workflow of Resource Access with a Token Refresh - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 54 / 126

Infrastructure

2.4.4. Workflow 4: Expired Access and Refresh Token
If the access and refresh tokens within the OAuth2 Proxy have expired, the system must start the authen-
tication workflow from scratch as described in workflow 1 (Part IV, Section 2.4.1.). However, if the user is
still authenticated within the identity provider, the login page will not be displayed and the user will only
see some redirects. The rest is handled automatically. Since the steps are mostly the same as in workflow
1, they will not be described in detail here again, but only the differences will be highlighted. Furthermore,
the entire workflow is illustrated in Figure 14.

The only difference to workflow 1 is that the user does not have to enter his credentials because the
browser already has a valid session cookie for Keycloak. Since this session is still active, the authentication
works without any user interaction.

Figure 14: Authentication Workflow of Resource Access with Expired Tokens - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 55 / 126

Infrastructure

2.4.5. Workflow 5: Logout
The logout process starts when a user clicks the logout button on the RAG system’s webpage. This sends
a logout request to the OAuth2 Proxy, which removes the corresponding session cookie and redirects
the browser to the Keycloak logout endpoint. Keycloak then destroys the SSO session and invalidates all
tokens associated with that session. After that, Keycloak sends a redirect request to the base URL and the
whole process starts over from scratch as described in workflow 1 (Part IV, Section 2.4.1.).

The entire workflow is illustrated in Figure 15.

Figure 15: Authentication Workflow of Logout - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 56 / 126

Part V
Implementation

Implementation

1. MVP Pipeline
In order to gain practical experience in building a Retrieval-Augmented Generation (RAG) pipeline, the
first iteration of the project focuses on developing a Minimal Viable Product (MVP). This MVP represents
a fully functional, but simplest version of the pipeline. All of the relevant architectural decisions for the
MVP have been made and documented in Part III, Section 1.1.5..

Since this pipeline is an incremental step in the project, not all aspects are covered in detail here. Additional
information can be found in the descriptions of subsequent development increments.

1.1. System Architecture
Figure 16 visualizes the different components of the MVP pipeline and how they interact. This diagram
provides a high-level overview of the components and their interactions. Details such as scaling have been
intentionally omitted to keep the diagram concise. Descriptions of the components and their interactions
can be found below the figure.

Figure 16: Architecture Diagram of the MVP Pipeline - own presentment

To clarify the role and interaction of each component within the pipeline, a brief description of each is
provided below. In addition, the custom components are described in more detail in the corresponding
components section (Part V, Section 1.3.).

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 58 / 126

Implementation

1.1.1. Components
Interface:
• Ingress: The ingress component is the sole point of contact between the system and the user. Implemen-

tation-wise, it is a reverse proxy that handles, redirects, and distributes user requests accordingly.

Internal:
• Web Service: A user interface that allows interaction with the system. Functionality includes uploading

PDF files, retrieving data, and answering questions based on the uploaded data.
• Manager Service: The central component of the pipeline that orchestrates all the actions required to

generate responses.
• Retrieval Service: Responsible for handling file uploads, extracting relevant chunks, vectorizing and

storing data, and retrieving the most relevant data.
• LLM Service: Processes requests to the Large Language Model (LLM).

Cloud:
• Vector Store: Stores vectorized data and retrieves data based on queries.
• Language Model: Generates a response based on the given query.

1.1.2. Connections
Internal:
• Ingress / web-service: Forwards user requests to the web-service.
• web-service / manager-service: Requests to query the RAG system are sent to the manager-service.
• web-service / retrieval-service: Sends PDF files for ingestion purpose to the retrieval-service.
• manager-service / llm-service: Requests to query the language model are sent to the llm-service.

External:
• retrieval-service / Vector Store: Add new data to the vector store and retrieve data based on search

queries.
• llm-service / Language Model: Request generation of LLM based response based on a query.

User:
• User / Ingress: Interactions with the system by sending requests and receiving responses.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 59 / 126

Implementation

1.2. Workflow
In this section, the two different workflows regarding the MVP pipeline are visualized as a sequence
diagram in Figure 17 and described further below.

Figure 17: Sequence Diagram of the MVP Pipeline - own presentment

1.2.1. Workflow 1: File Upload
The file upload process begins when the user selects and uploads a file through the frontend interface. Once
uploaded, the file is transmitted to the retrieval service, which is responsible for processing the data. This
includes splitting the file into smaller segments (chunks), vectorizing the content for efficient retrieval,
and storing the processed data in a vector database.

1.2.2. Workflow 2: Prompt Processing
When a user submits a prompt to the chatbot through the web interface, it is first sent to the manager
service. The manager service then interacts with the retrieval service to get the most relevant chunks of
stored data. The retrieval service then retrieves these chunks from Pinecone, a cloud-based vector store
(omitted in the figure). The retrieved data, along with the user’s prompt, is then sent to the LLM service.
Using the capabilities of OpenAI, the LLM service generates a contextually relevant response, which is
then returned to the user via the web interface.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 60 / 126

Implementation

1.3. Components
In this chapter the different components of the MVP pipeline are described in a more detailed manner.

1.3.1. Web Service
The web service, which was built using Streamlit, provides a web interface for interacting with the system.
It offers the following features:

• Upload File: Allows users to upload a PDF file, which is then processed into chunks and stored in the
vector database.

• Chatbot: Enables users to ask questions about an uploaded document and receive context-aware
responses.

• Admin View: Provides insight into the retrieval process by displaying the most relevant chunks for a
given query.

This simple yet effective frontend makes it easy for users to interact with the system while also providing
transparency into how data is being processed.

1.3.2. Manager Service
The manager service is responsible for bringing the various services together and handling the entire
RAG process. This starts with accepting requests, retrieving documents via the retrieval service, creating
a query for the LLM, generating a response via the llm service, and returning the response. All of these
steps together make up the most basic RAG pipeline.

Combining these steps into a pipeline is achieved through the LangGraph framework. The workflow is
illustrated in Figure 18.

Figure 18: LangChain Graph of the MVP Pipeline - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 61 / 126

Implementation

1.3.3. Retrieval Service
The retrieval service manages document chunking, embedding generation, interaction with the vector
store, and document retrieval. It processes PDF files by extracting their text and dividing it into meaningful
chunks. Embeddings for these chunks are generated using OpenAI services. The resulting data is stored
in a cloud-based vector database provided by Pinecone, which offers a free tier suitable for small-scale
applications, making this solution cost-effective. As the project progresses, the plan is to transition the
vector storage to an in-house system.

The retrieval service exposes two endpoints:

1. Upload Endpoint: Accepts a PDF file, processes it into chunks, and stores them in the vector database.
2. Query Endpoint: Retrieves the most relevant chunks from the vector store based on a query provided

by the user.

Figure 19 shows an example of retrieving the most relevant chunks for a given word using the Postman
tool.

Figure 19: Retrieve the Most Relevant Chunks for “uhr” - own presentment

1.3.4. LLM Service
The LLM Service is responsible for managing queries to a Large Language Model (LLM). In this most basic
pipeline, the service receives incoming queries and forwards them to OpenAI’s API for processing. The
generated response from the LLM is then returned to the requester.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 62 / 126

Implementation

2. Basic Pipeline
The basic pipeline is an incremental development built upon the MVP pipeline. There are several major
improvements to the basic pipeline over the MVP pipeline, as noted and described below.

• Authentication: Each request to the system is now authenticated before being passed to the pipeline.
See the authentication section (Part IV, Section 2.) for more details.

• User awareness: The system is now aware of the logged-in user. In this sense, it can distinguish between
different users and handle requests accordingly.

• Local vector store: The storage, processing, and retrieval of documents are now handled completely
locally, without any request to an external service.

• Chat message history: The system is now able to handle chat histories. These histories are included in
the whole RAG process and are independent for each user.

In order to implement these enhancements, several new services and modifications to existing services
had to be implemented. These changes are described in the following sections.

2.1. System Architecture
Figure 20 visualizes the different components of the Basic pipeline and how they interact. This diagram
is intended to give a high-level overview of the components and how they interact. Further details, such
as scaling, are intentionally omitted to keep the diagram clear. Each component and their interactions are
described below the figure.

Figure 20: Architecture Diagram of the Basic Pipeline - own presentment

To clarify the role and interaction of each component within the pipeline, a brief description of each is
provided below. For completeness and to facilitate a comprehensive understanding of the overall archi-

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 63 / 126

Implementation

tecture, all components are described - even those that remain unchanged from the MVP setup. In addition,
the custom components are described in more detail in the corresponding components section (Part V,
Section 2.2.).

2.1.1. Components
Interface:
• Ingress: The ingress component is the sole point of contact between the system and the user. Implemen-

tation-wise, it is a reverse proxy that handles, redirects, and distributes user requests accordingly. In
addition, the ingress is now responsible for initiating and responding to the authentication workflow.

• Auth: The auth container, including several components, is responsible for handling the entire authen-
tication workflow, as described in detail in the corresponding section (Part IV, Section 2.).

Internal:
• Web Service: A user interface that allows interaction with the system. Functionality includes uploading

PDF files, retrieving data, and answering questions based on the uploaded data. It now also includes chat
history functionalities.

• Manager Service: The central component of the pipeline that orchestrates all the actions required to
generate responses. Now, the service also manages each user’s chat history and incorporates it into the
process as needed.

• Retrieval Service: Responsible for handling file uploads, extracting relevant chunks, storing data, and
retrieving the most relevant data. The service now interacts directly with the local vector store instead
of an external API.

• LLM Service: Processes requests to the Large Language Model (LLM).
• Embedding Service: Generates all the embeddings needed within the system. This includes data chunks

during the ingestion process, as well as user prompts during RAG querying and use of the admin view.
• State Store: Stores the user’s chat history.
• Vector Store: Stores the user’s documents, including a vector representation for each chunk of data.

Cloud:
• Language Model: Generates a response based on the given query.

2.1.2. Connections
Interface:
• Ingress / Auth: Manages the communication required for the authentication.

Internal:
• Ingress / web-service: Forwards authenticated user requests to the web service.
• web-service / manager-service: Requests to query the RAG system are sent to the manager-service.

Additionally, the manager-service can be used to retrieve or remove a specific user’s chat history.
• web-service / retrieval-service: Sends PDF files for ingestion purpose and requests to retrieve appropriate

chunks for the admin view (debugging).
• manager-service / llm-service: Requests to query the language model are sent to the llm-service.
• manager-service / state-store: Add, retrieve, and remove message data.
• retrieval-service / embedding-service: Retrieve embeddings for prompts or batches of data.
• retrieval-service / vector-store: Add new data to the vector store and retrieve data based on embedded

search queries.

External:
• llm-service / Language Model: Request generation of LLM-based response based on a query.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 64 / 126

Implementation

User:
• User / Ingress: Interactions with the system by sending requests and receiving responses, including

completing authentication actions.

2.1.3. API Endpoints
The four microservices manager-, retrieval-, llm- and embedding-service provide different API endpoints
for interacting with each service. The web service also provides endpoints, but since the focus is on API
endpoint and the web endpoints are easily accessible through a web page, they are not discussed further
here.

Table 4 lists all API endpoints, including the path, the related service, the method, and a brief description
of each endpoint. This table provides only a brief overview of the endpoints. For more details, refer to the
Swagger documentation for each service. The Swagger documentation is available at each service URL
under the /docs path. Screenshots of the Swagger documentation for each API endpoint are also included
in the appendix (Part IX, Section 7.).

Table 4: API Endpoints in the Basic Pipeline

Path Service Method Description

/query_rag Manager Service POST Query the RAG (Retrieval-Augmented Gener-
ation).

/get_history Manager Service POST Get the message history for a defined
owner_id.

/remove_history Manager Service DELETE Remove the message history for a defined
owner_id.

/upload_file Retrieval Service POST Upload a file to the system. The file is pre-
processed and stored in the vector store.

/retrieve_chunks Retrieval Service POST Retrieve the most relevant chunks based on a
user prompt.

/query_llm LLM Service POST
Get a response from the LLM based on a
query (user prompt + chat history + retrieved
chunks).

/get_embedding Embedding Service POST Get an embedding vector for a single prompt/
query.

/get_embeddings Embedding Service POST Get a list of embedding vectors for multiple
chunks of data.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 65 / 126

Implementation

2.2. Components
The following subsections describe the components of the basic pipeline in more detail.

2.2.1. Web Service
The web service provides the user interface of the system. It allows users to upload files, retrieve chunks,
ask questions, and receive answers based on the uploaded documents. The web service is built using
Streamlit, a Python library that makes it straightforward to create interactive web applications.

2.2.1.1. Chat History
An enhancement introduced in the transition from the MVP to the basic pipeline is the addition of chat
history support within the frontend. When a user accesses the chat page, the chat history is retrieved from
the manager services and displayed accordingly. A dedicated button in the sidebar allows users to delete
their chat history and start with a new chat.

Figure 21 illustrates an example of a search query using the chat history feature of the chatbot.

Figure 21: Chat History (excerpt of web service) - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 66 / 126

Implementation

2.2.2. Manager Service
The manager service is the central component of the pipeline. It orchestrates the entire process, from
receiving user queries to generating responses. This section highlights and describes the major changes in
the manager service. Three major improvements to the manager service have been adopted. These are the
ability to handle chat message histories, user awareness, and the implementation of the citation feature.

2.2.2.1. Chat Message History
The ability to handle chat message histories means that the manager is now able to store message histories
and also to include the entire chat message history in the query process so that follow-up questions can
be handled and answered in a meaningful way. The chat message history is stored in a Redis database,
which is described in the vector store section (Part V, Section 2.2.6.).

2.2.2.2. User Awareness
The term user awareness means that the manager service is now able to distinguish between requests
from different users. This results in the ability to retrieve only chunks of documents uploaded by that user.
In addition, chat message histories are also user-aware and can only be received by the specific logged-
in user.

2.2.2.3. Citation Support
An additional enhancement is the citation feature, which allows the system to reference the source of
retrieved content. Specifically, the filename of each document chunk is included in the request sent to the
LLM. The LLM is then instructed to incorporate these filenames as citations, indicating the sources used
to generate the response.

2.2.2.4. Workflow
In connection with these improvements, several steps of the workflow had to be adapted and some
completely new steps had to be added. Each step is briefly described below and the relationship between
them is illustrated in Figure 22.

• create_history_aware_retrieval_query: Takes the user prompt and the entire chat history for the specific
logged-in user and generates a single retrieval query via an LLM to retrieve the most promising chunks
from the system regarding the user query and the chat history.

• retrieve_documents: Based on the retrieval query created, the most promising chunks for the specific
logged-in user are retrieved from the vector store via the retrieval service.

• create_query: Creates the query for the LLM to answer the user prompt, including system instruction,
the user prompt itself, the retrieved documents, and the chat history of the specific user.

• generate_response: The LLM service is queried to generate the response.

• get_formatted_message_history: Formats the chat message history for use in the frontend.

• add_to_chat_history: Stores the user prompt and the response from the LLM in the state store.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 67 / 126

Implementation

Figure 22: LangChain Graph of the Basic Pipeline - own presentment

2.2.2.5. Endpoints
Two new endpoints have been added to the service. These are the /get_history endpoint and the /
remove_history endpoint. The first is used to get the chat history for a specific user for use within the
frontend, the second is used to remove the chat history for a specific user to start a new chat from scratch.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 68 / 126

Implementation

2.2.3. Retrieval Service
The retrieval service is responsible for processing incoming requests and interacting with the underlying
vector store.

The functionalities of the retrieval service include:
• Handling file uploads.
• Extract text from PDFs.
• Chunk the text into smaller, manageable pieces.
• Store the chunks and their corresponding embeddings in the vector store.
• Retrieve filtered results based on metadata from the vector store. The filter includes the owner_id to

ensure that users can only access their own documents.

2.2.3.1. Owner-Based Filtering
To ensure data isolation, each stored document chunk includes an owner_id in the metadata. During the
retrieval process, the results are filtered to retrieve only documents where the owner_id matches the user
ID of the logged-in user. This ensures that users can only access their own documents, maintaining privacy
and security.

2.2.3.2. Citation Support
In order to determine which document a chunk belongs to, the original filename of each document chunk is
stored in the vector store. This is accomplished by adding a property field to the vector store that contains
the original filename. Thus, when a chunk is retrieved, it can be traced back to its original file.

2.2.3.3. Workflow
The following subsections describe the workflows of the two API endpoints, and illustrate them with a
figure.

2.2.3.3.1. File Upload
As illustrated in Figure 23, the process starts with a user uploading a PDF via the /upload_file endpoint.
The file is temporarily saved and processed by a PDF extractor, which extracts information from the PDF.
The text is then split into smaller, more manageable pieces, called chunks.

These text chunks are then passed to the embedding service to generate vector embeddings. The resulting
embeddings, along with their associated text and metadata, including the associated filename and a user-
specific owner_id, are sent to the vector store via the Weaviate connector.

The metadata of document chunks is stored to support secure retrieval and features such as document
citation.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 69 / 126

Implementation

Figure 23: Workflow of Uploading a File - own presentment

2.2.3.3.2. Chunk Retrieval
As shown in Figure 24, the process starts with the client submitting a textual prompt to the /
retrieve_documents endpoint.

Upon receiving the request, the retrieval service uses the embedding service to generate the embedding
representation of the prompt. This embedding vector is then passed to the Weaviate connector. The
connector constructs a query that searches for the top-k most similar vector representations stored in the
vector store.

To enforce data privacy, the query includes a filter condition that restricts results to chunks associated
with the same owner_id as the requesting user. It also specifies the desired number of chunks to search.
The vector store performs a semantic similarity search using the provided prompt embedding, number
of chunks, and filter, and returns the filtered top-k matching chunks. The retrieval service then forwards
these results to the client.

Figure 24: Workflow of Retrieving Chunks - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 70 / 126

Implementation

2.2.4. LLM Service
The LLM Service remained exactly the same as in the MVP pipeline, as we did not have the time to set up
and experiment with local hosting of the LLM, nor did we have the hardware to host the system. For this
reason, the service is not discussed again in this section.

2.2.5. Embedding Service
The embedding service was added to the system during the implementation of the basic pipeline. This
ensures a strict division of responsibilities regarding the microservices. The implementation allows us to
scale the system in a more fine-grained manner, resulting in better utilization of the hardware. It also
resulted in significant speed improvements to the overall RAG system.

The service introduced two new endpoints to the system. The first (/generate_embedding) is responsible
for generating an embedding representation of a single prompt or query to search the vector store. The
second (/generate_embeddings) is responsible for generating the embedding representation of an entire
batch of data during data ingestion.

As an embedding model, the sentence transformer model, all-MiniLM-L6-v2, from the Hugging Face
platform was used. This model uses a 384-dimensional vector space [85] to map sentences or paragraphs.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 71 / 126

Implementation

2.2.6. State Store
As reasoned in the architecture section (Part III, Section 5.2.) Redis is used to store state information.
Furthermore, the corresponding Redis section (Part III, Section 5.3.) argues for a minimal six-node archi-
tecture. The concrete implementation of this architecture is described in more detail below.

2.2.6.1. Architecture
The aforementioned six-node cluster architecture is shown in Figure 25. As there are three master nodes,
the data within the database is sharded across these three nodes. Each of the three master nodes is
responsible for keeping the current state of the data for the slots it is responsible for [86]. The three replicas,
on the other hand, contain a replication of the data from the corresponding master node. Write operations
can only be performed on master nodes, while read operations can be performed on both master and
replica nodes.

This architectural approach results in higher read performance and ensures that data is available even if
a master node fails. In the event of a master node failure, the appropriate replica can take over the master
role to enable write operations. All of this coordination is done through the so-called gossip protocol,
where each node communicates with every other node. All nodes collectively decide how to establish or
change the role of each node.

Figure 25: State Store Architecture - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 72 / 126

Implementation

2.2.6.2. Client
Under the hood, Redis uses a system of hash slots. Each master node is responsible for a subset of these
hash slots. The client knows which node is responsible for which hash slot and can thus compute the
correct master to send the data to. On the other hand, it can compute which master or replica has the
desired data and send the read request to the appropriate node. For this project, the Python client redis-
py is used to handle this logic.

Figure 26 provides a visual representation of the aforementioned description.

Figure 26: Redis Client - source: [87]

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 73 / 126

Implementation

2.2.7. Vector Store
The vector store is implemented using a local instance of Weaviate, an open-source vector database that
supports both internal and external vectorization. Both approaches have been evaluated and compared
(Part III, Section 3.). Weaviate provides a robust and flexible platform for storing data, including high-
dimensional vector representations and the ability to efficiently search the dataset.

2.2.7.1. Design and Configuration
• Vector Source: The system uses pre-generated vectors that are created by the embedding service during

document ingestion.
• Schema: Each document chunk in Weaviate includes the fields text, owner, filename and of course the

vector representation.
• Filtering: Queries can include conditions using Weaviate’s filter option to limit results based on the

owner_id, for example.

2.2.7.2. Architecture
In our system, we use a two-node Weaviate cluster running on Kubernetes. Weaviate is leaderless, meaning
that all nodes can accept writes and reads from the client [88]. It also allows for sharding and replication
of data, resulting in high performance and availability.

Each Weaviate node is represented by a pod in the Kubernetes cluster. Data is organized into collections,
each of which is internally divided into shards. A shard represents a portion of the data in a collection.
Weaviate uses consistent hashing to distribute these shards across the nodes. By default, a collection has at
least one shard. In the current deployment, data is sharded between the two nodes. In addition to sharding,
replication can be enabled. When a replication factor is configured, the same shards are replicated across
multiple nodes [89].

When data is ingested into the vector store, the Weaviate connector sends the data to one of the nodes.
Internally, Weaviate determines the appropriate shard and routes the data to the correct node, ensuring
proper data placement. Each object consists of both semantic vector representations and structured
metadata (e.g. owner, filename, text).

During query operations, the node contacted by the Weaviate connector performs a distributed vector
search. It sends the corresponding embedding vector to all nodes that hold a relevant shard of the target
collection. Each node computes its local similarity scores against the data and returns the top-k candidates,
which are then merged and ranked by the initiating node before being returned to the caller.

This architecture allows for:
• Horizontal scaling by adding more nodes.
• Fault tolerance through replication.
• Efficient vector-based retrieval across distributed data.

Figure 27 illustrates the interactions between the retrieval service, using the Weaviate client SDK, and the
Weaviate cluster.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 74 / 126

Implementation

Figure 27: Weaviate Component Diagram - own presentment

2.2.7.3. Performance Notes
As described in detail in the performance testing section (Part VII, Section 1.6.), using externally generated
embedding vectors improves data storage speed compared to relying on Weaviate’s built-in vectorization
service (although using the same embedding model). For this reason, we generate the embeddings using
our embedding service and pass them to the vector store instead of letting Weaviate generate them directly.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 75 / 126

Part VI
Further Topic

Further Topic

1. Shared Hosting
This section deals with the use case where multiple RAG systems that should be completely isolated (e.g.
different companies) are hosted in a single Kubernetes environment. There are several considerations in
this case.

Figure 28 shows a scenario where three different RAG systems - each serving a different company - are
deployed within a single shared Kubernetes environment. Despite the shared infrastructure, the systems
are completely isolated from each other, with no cross-system access allowed. However, there are three
specific components where consolidation across system boundaries is found to be beneficial. These
common components are identified and discussed in detail below.

• Auth: The authentication component can be effectively shared across all three companies. Separation
between organizations is maintained within the authentication system itself by assigning a distinct realm
to each company. This design enables each company to operate with its own dedicated authentication
endpoint and configuration, thereby preserving strict isolation while enabling resource sharing. Consol-
idating this component leads to resource savings without compromising the security or autonomy of
individual systems.

• Large Language Model (LLM): Consolidating the LLM across systems offers substantial benefits,
primarily due to the high computational and memory demands associated with these models. Hosting
separate instances for each company would result in considerable resource consumption and increased
operational costs. However, for such a shared setup to be viable, it is essential that the LLM does not
retain request data beyond what is strictly necessary, and that strong isolation mechanisms are in place
to separate client requests. When these conditions are met, consolidation of the LLM is not only feasible,
but highly recommended from a resource and cost efficiency perspective.

• Embedding Model: The argumentation for consolidating the embedding model is exactly the same as for
the LLM, except that the embedding model usually requires much fewer resources than an LLM. While
the performance and cost gains from consolidation are less pronounced, sharing this component still
provides measurable benefits in most scenarios. As a result, consolidation is generally recommended,
although with a lower priority than the LLM.

Figure 28: Architecture of Three RAG Systems Hosted in a Shared Environment - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 77 / 126

Further Topic

In conclusion, this shared hosting strategy enables significant resource and cost savings compared to
deploying fully independent systems for each organization.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 78 / 126

Further Topic

2. Security Considerations
Since this thesis focuses solely on developing the core functionality of a RAG system, not every risk in the
following RAG Risk and Mitigation Matrix (Figure 29) is addressed by an appropriate mitigation strategy.
Additionally, not every risk requires a mitigation for every use case.

Security was a top priority throughout the planning and development processes of this thesis. The system
was designed to be easily adaptable. For this reason, appropriate mitigation strategies can be easily added
to the system. Nevertheless, some major mitigations have been incorporated into the core system. This
section discusses these strategies.

Figure 29: RAG Risks and Mitigation Matrix - source: [9]

2.1. Risks
This section uses the RAG Risk and Mitigation Matrix (Figure 29) to discuss the risks in our core system.

• General: The newest versions of tools and best practices (where applicable) were used during implemen-
tation to prevent general risks from happening. However, a production-ready system requires several
additional measures, such as proper patch management, vulnerability analysis, and system evaluation.

• Vectorization and Retrieval: The entire vectorization process and storage of vectorized data is handled
entirely locally. Thus, a significant step has been taken to mitigate these risks. Furthermore, a restriction
is in place that only allows users to retrieve their own documents, which also helps counteract some of
these risks effectively.

• Operational Risks: Our system does not currently address this risk because the LLM that generates
responses is hosted by a third party. However, the system can easily be adapted to incorporate a locally
hosted LLM. This has not yet been implemented due to time and hardware restrictions.

• Data Manipulation: A restrictive authentication system ensures that only authorized individuals can
access the system, thereby counteracting these risks. Furthermore, users can only retrieve their own
documents, which also helps mitigate these risks.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 79 / 126

Further Topic

2.2. Mitigation Strategies
This section uses the RAG Risk and Mitigation Matrix (Figure 29) to discuss the mitigation strategies
applied to our core system.

• Secure Retrieval: Since only the core functionality of the system has been implemented, it is unclear what
data will be used later on. For this reason, mitigations M0-M2 cannot be properly implemented because
this information is lacking. However, M4 access limitation is implemented through an authentication
system to restrict users to retrieving only their own documents.

• System Hardening: System instructions are in place, but they are not properly hardened. However, these
instructions need to be adapted to each use case, as there is no one-size-fits-all solution. For this reason,
it made no sense to harden this step yet. The other two mitigations (M5 and M6) are not currently in
place, but they can easily be added.

• Disclosure Prevention: The embedding model is hosted completely locally, which implements this
mitigation strategy. However, due to time and hardware constraints, the LLM used to generate responses
is still hosted by a third party. Thus, this mitigation strategy is not fully implemented.

• Other Mitigations: The disclosure threshold and exposure minimization are in place to a certain degree,
as only the top k documents are retrieved, and access to the system is restricted to authorized users. The
other mitigations are not currently in place, but they can easily be added.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 80 / 126

Further Topic

3. Workshop
As mentioned in the task definition, another goal of this thesis is that the RAG system built can be used for
our workshop Hacking RAG: Exploring Risks and Implementing Mitigations at the IEEE Swiss Conference
on Data Science (SDS2025) [10].

3.1. Hosting Setup
The hosting setup for this workshop is very similar to the shared hosting setup described in the shared
hosting section (Part VI, Section 1.). The main considerations are briefly described below, and the hosting
setup is shown in Figure 30.

• The language model is hosted by a third party for various reasons, including time and hardware
constraints.

• All three instances use the same embedding system to save resources. This design choice was already
mentioned in the shared hosting section.

• Each of the tasks is located in a different Kubernetes namespace and is therefore logically isolated. Each
of them runs all of the necessary components of the RAG system, with the exception of the embedding
system, which is hosted in a consolidated fashion. For this reason, we can tailor each system to the
purpose of the specific task without interfering with the other systems.

• The same authentication system is used by all three tasks, but with different realms, one for each
task system. This, along with a separate OAuth2 proxy instance, keeps the authentication handling
completely isolated.

Figure 30: Architecture of the Workshop Infrastructure - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 81 / 126

Further Topic

3.2. Synthetic Data
Throughout the workshop, data is needed for various tasks. We decided to use synthetic patient data to
simulate sensitive and thus critical data. Several approaches were considered to create this data.

The first option was to use an existing pre-generated synthetic dataset. One interesting dataset we found
was Synthea from the Mitre Corporation [90]. It contains synthetic information about U.S. patients,
including demographics, medical history, and insurance information. This dataset has a wide range of
attributes that are suitable for testing and developing corresponding applications. However, since the
workshop is being held in Switzerland, we would prefer to use Swiss data structures. During our research,
we could not find any pre-generated synthetic datasets based on these structures.

Given the reasons above, the decision was made to create our own synthetic patient data. The Faker library,
a Python package for generating fake data, was used to produce realistic-looking information, including
names, addresses, phone numbers, blood type and insurance details.

The following is an example of the generated data:

Patient Name: Simona Bucher
Date of Birth: 1980-10-15
Patient ID: 578046874
Address: Itenstrasse 93, 8610 Uster
Phone Number: +41 77 683 41 84
AHV Number: 756.9091.6998.54
Emergency Contact: Samuel Bucher, +41 63 833 50 40
Blood Type: AB+
Allergies: Nickel
Current Medications: Paracetamol
Past Medical History: Anxiety
Primary Physician: Dr. Joav Ferreira
Insurance Provider: Atupri Versicherung

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 82 / 126

Further Topic

3.3. Workshop Procedure
This section describes the procedure for the workshop, including the three different tasks.

The workshop begins with an introduction to Retrieval-Augmented Generation (RAG) to ensure all partic-
ipants have a solid foundational understanding of RAG. It then provides a brief overview of the key risks
associated with RAG systems and their potential mitigations. Participants will then apply what they’ve
learned by completing three practical tasks. The workshop concludes with a short wrap-up session to
summarize the key takeaways.

3.3.1. Introduction
To ensure that all participants start with a shared foundational understanding, the workshop begins with
a basic overview of Retrieval-Augmented Generation (RAG), similar to the content provided in Part I,
Section 3..

In addition, a Jupyter notebook demonstrating a simple RAG pipeline is provided. This interactive resource
allows attendees to explore the individual components and see the workflow in action, offering a hands-
on introduction to the concept.

Together, these elements are designed to equip participants with the necessary background knowledge for
the upcoming theoretical section and practical tasks.

3.3.2. Risks and Mitigations
The workshop briefly touches on the key risks and mitigation strategies associated with RAG systems,
as researched in our study thesis and elaborated on in our published paper. These insights provide a
foundation for understanding the challenges of deploying RAG in real-world scenarios.

Both sources are introduced during the session, and direct links are provided so that participants can
explore them further, even after the workshop ends. This enables continued learning and reference beyond
the scope of the event.

Referenced materials:
• Paper (Securing RAG: A Risk Assessment and Mitigation Framework): [9]
• Study Thesis (Analysis of Risks and Mitigation Strategies in RAG): [8]

3.3.3. Tasks
The hands-on portion of the workshop consists of three tasks designed to give participants practical expe-
rience with various RAG-related attacks and corresponding mitigation strategies. The tasks are structured
progressively — Task 1 involves minimal security considerations, while Task 3 introduces more complex
and layered challenges.

To simulate realistic scenarios for Tasks 1 and 2, the system requires pre-existing data. The impact of the
tasks is heightened when this data is treated as sensitive. To support this, we generated synthetic patient
data, described in detail in the Synthetic Data section (Part VI, Section 3.2.).

Each task is briefly outlined in the following subsections. Complete details and step-by-step instructions
can be found in the following Git repository: https://gitlab.ost.ch/sds_workshop/hacking-rag. Note that
these files will be updated after this thesis is submitted.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 83 / 126

https://gitlab.ost.ch/sds_workshop/hacking-rag

Further Topic

3.3.3.1. Task 1 - Retrieval Data Leakage
Task 1 serves as an entry-level challenge accessible to all workshop participants. The goal is to simulate a
retrieval data leakage attack on a RAG system that lacks specific security measures.

To facilitate this exercise, synthetic patient data is preloaded into a shared vector store. Participants are
tasked with probing the system to extract as much information as possible from the data — mirroring a
real-world scenario where sensitive information could be inadvertently exposed.

This task introduces the concept of information leakage via retrieval mechanisms and sets the stage for
more advanced attacks and mitigations in the subsequent exercises.

3.3.3.2. Task 2 - Membership Inference Attack (MIA)
In Task 2, the RAG system employs the fundamental mitigation strategy of reinforcing system instructions
to minimize the disclosure of unintended information. Consequently, the data leakage approach from Task
1 becomes ineffective.

The focus now shifts to a Membership Inference Attack (MIA). Instead of extracting explicit data, partic-
ipants must determine which data entries were used to populate the retrieval store. To facilitate this,
attendees are provided with a set of candidate data samples and are challenged to identify which ones are
present in the system and which are not.

This task introduces a more subtle and sophisticated type of privacy threat, encouraging participants to
think critically about how even indirect signals can compromise data confidentiality.

3.3.3.3. Task 3 - Knowledge Corruption Attack
In Task 3, the RAG system introduces a second layer of defense named access control. This mitigation
strategy ensures that each user can only retrieve documents they have personally uploaded, creating a
degree of data isolation across users. Consequently, the data inferring approach from Task 2 becomes
ineffective.

Despite these protections, the system is still vulnerable to knowledge corruption attacks. In this task,
participants are challenged to manipulate the system’s understanding of a topic by introducing specially
crafted documents. These documents can target the LLM’s general knowledge, reinterpret meanings
introduced via system instructions, or override existing information in the retrieval datastore.

Participants are provided with multiple sub-tasks of varying difficulty, which allow them to explore
different techniques for subtly or overtly altering the system’s responses.

This final task highlights a different aspect of RAG security. Not the leakage of existing data, but the
manipulation of the system’s knowledge and behavior. While the attack is demonstrated in an isolated
environment with user-specific access, it can just as easily be envisioned in a less controlled setting, where
malicious inputs could alter shared knowledge, potentially impacting responses for a wide range of users.
This scenario underscores the risk of knowledge corruption in collaborative or multi-user RAG systems.

3.4. Conclusion
To wrap up the workshop, the key concepts and takeaways are briefly summarized to reinforce what
participants have learned. This includes a recap of RAG fundamentals, the explored security risks, and the
practical experience gained through the hands-on tasks.

Finally, participants are once again directed to the provided resources for further study and exploration,
enabling them to deepen their understanding and apply these insights beyond the workshop setting.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 84 / 126

Part VII
Evaluation

Evaluation

1. Testing
As described in the test concept, several tests were performed. This section documents the various types
of tests, as well as their findings and results.

1.1. Preparation
To ensure high quality testing, the following sections define the policy and strategy by which testing
should be planned and executed. It also defines the actions to be taken if the tests do not perform as
intended.

1.1.1. Software Requirement Specification
The requirements for the thesis are defined in the corresponding requirements section (Part II, Section 1.).
For this reason, the requirements are not listed in detail here, but in tabular form to be used throughout
the testing phase and to achieve good test coverage.

The last column “Tests” in the following two tables describes whether the requirement is tested with
specific test cases or not. If not, the requirement is simply reasoned about, but not tested in the sense of a
test case. This may be the case if there is no trivial way to test the case, or if the reasoning simply makes
more sense.

1.1.1.1. Functional Requirements
Table 5: Overview of Functional Requirements and Corresponding Test Coverage

Name
Requirement
Defintion

Description Tests

FR1: User Login Part II, Section
1.3.1. User login works as intended. Yes

FR2: Upload PDF
File

Part II, Section
1.3.2. User can upload a PDF file. Yes

FR3: Ask Chatbot
Questions

Part II, Section
1.3.3.

User can ask the chatbot questions and get
meaningful answers related to the uploaded
documents.

Yes

FR4: Give Citation Part II, Section
1.3.4.

The chatbot response includes the source of
the information. Yes

FR5: Admin View Part II, Section
1.3.5.

It is possible to get more insight through an
admin view. Yes

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 86 / 126

Evaluation

1.1.1.2. Non-Functional Requirements
Table 6: Overview of Non-Functional Requirements and Corresponding Test Coverage

Name
Requirement
Defintion

Description Tests

NFR1: Horizontal
Scaling

Part II, Section
1.4.1.

Increased workload can be addressed
through successful horizontal scaling. No

NFR2: Access Re-
striction

Part II, Section
1.4.2.

A user can only access his own uploaded
files and no others. Yes

NFR3: Implement
Local Services

Part II, Section
1.4.3.

The services are fully implemented locally
and do not interact with external APIs to
accomplish their task.

No

NFR4: API Docu-
mentation

Part II, Section
1.4.4. Endpoint APIs are documented. Yes

NFR5: Modular Ar-
chitecture

Part II, Section
1.4.5.

The system is built using a modular archi-
tecture. No

1.1.2. Test Strategy
There are two types of tests that are performed to verify that the functional and non-functional require-
ments are implemented and work as intended.

The first is functional testing, where individual functionalities are tested to see if they work as intended.
The second is end-to-end testing, where the system, including all components and their interactions, is
tested as a whole. Both are considered final testing in our case. Of course, we have tested our product
extensively during implementation. However, only the final tests are documented in detail.

As noted already, for some requirements, reasoning makes more sense than enforcing a strict test case.
These cases are described in the reasoning section.

In addition, a combined load and end-user test is conducted to assess the system’s overall usability and
performance under load conditions. These test is less constrained and more freely described.

Lastly, some performance tests are conducted without regard to functional and non-functional require-
ments. These tests are also less constrained and more freely described.

In summary, the following tests are conducted, along with a link to the associated section.
• Functional Tests: Part VII, Section 1.2.
• End-to-End Tests: Part VII, Section 1.3.
• Reasoning: Part VII, Section 1.4.
• Load and End-User Test: Part VII, Section 1.5.
• Performance Tests: Part VII, Section 1.6.

Note: Unless otherwise stated, the basic pipeline is used for all tests.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 87 / 126

Evaluation

1.1.3. Test Policy
For each test of functional and non-functional requirements, the following information and results shall
be provided, at minimum::
• Number (F: Functional, E: End-to-End)
• Name
• Preconditions (if applicable)
• Test Scenario
• Expected Result
• Was result as expected?
• Date
• Findings
• Success (Yes/No)
• Improvements/Reasoning (not strictly necessary if Success is yes)

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 88 / 126

Evaluation

1.2. Functional Tests
Functional testing in this thesis refers to the testing of individual functionalities. Each functionality of the
system is tested individually to show that each works as intended. Since these tests are heavily based on
the requirements, the naming is also based on the requirements.

Table 7 lists the functional tests that were performed. The table only lists whether the tests were successful
and the main results. The detailed test protocols can be found in the appendix (Part IX, Section 5.). If more
than one test has been run for the same scenario, only the most recent test will appear in this list. All tests
performed are listed in the appendix.

Table 7: Overview of Functional Test Cases and Their Outcomes

Name Protocol Note Success

F1: User Login
with Valid Cre-
dentials

Part IX, Section
5.1. Worked as intended. Yes

F2: User Login
with Invalid Cre-
dentials

Part IX, Section
5.2. Worked as intended. Yes

F3: User Logout Part IX, Section
5.3. Worked as intended. Yes

F4: Upload PDF
File

Part IX, Section
5.4.

An AxiosError sometimes occurred dur-
ing file uploads (F4.1). This issue was
resolved by implementing sticky sessions
(F4.2). More information can be found in
the following subsection.

Yes

F5: Ask Chatbot
Question - Typical
Case

Part IX, Section
5.5. Worked as intended. Yes

F6: Ask Chatbot
Question - No Re-
lated Information

Part IX, Section
5.6. Worked as intended. Yes

F7: Give Citation Part IX, Section
5.7. Worked as intended. Yes

F8: Admin View Part IX, Section
5.8. Worked as intended. Yes

F9: API Documen-
tation

Part IX, Section
5.9. Worked as intended. Yes

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 89 / 126

Evaluation

1.2.1. Fix F4 Sticky Sessions
As briefly mentioned in Table 7, test F4 revealed a problem with streamlit’s file upload implementation on
distributed systems like we use. To solve this problem, sticky sessions were introduced for the web service.
The rest of the web service was originally designed to be completely stateless and does not require sticky
sessions. But since we are using this streamlit component, we are forced to introduce sticky sessions.

In any case, the stateless implementation results in a more stable system, since the failure of a single pod
can only affect the file upload function, which typically takes only a few seconds to a few minutes. All
other functions continue to work on another pod without any problems or interruptions.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 90 / 126

Evaluation

1.3. End-to-End Tests
End-to-end testing focuses on the functionality of the entire system. These tests can be used to show
whether or not the entire system works as intended.

Table 8 lists the end-to-end tests that were performed. The table only lists the main results and whether
the tests were successful. The detailed test protocols can be found in the appendix (Part IX, Section 6.). If
more than one test has been run for the same scenario, only the most recent test will appear in this list.
All tests performed are listed in the appendix.

Table 8: Overview of End-to-End Test Cases and Their Outcomes

Name Protocol Note Success

E1: Access Re-
striction

Part IX, Section
6.1. All steps worked as intended. Yes

E2: Chat History Part IX, Section
6.2. All steps worked as intended. Yes

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 91 / 126

Evaluation

1.4. Reasoning
This section justifies whether or not each functional and non-functional requirement that cannot be tested
in a meaningful way based on functional or end-to-end tests is satisfied. Whether or not tests are performed
for the requirement is described in the software requirement specification section (Part VII, Section 1.1.1.).
Table 9 summarizes the reasoning conducted and the results obtained.

Table 9: Overview of Reasoning Scenarios and Their Outcomes

Name Reasoning Note Success

R1: Horizontal
Scaling

Part VII, Section
1.4.1. This requirement is fully met. Yes

R2: Implement Lo-
cal Services

Part VII, Section
1.4.2.

This requirement is not fully met because
the LLM is still hosted by a third-party. 80-90%

R3: Modular Ar-
chitecture

Part VII, Section
1.4.3. This requirement is fully met. Yes

As shown in Table 9, the reasoning R2: Implement Local Services is not fully satisfied. However, this
does not conflict with the original task definition but rather with the additional requirements we defined
ourselves. For this reason, the implementation of a locally hosted LLM is not included in this thesis due to
time constraints, but it is proposed as a future step in the corresponding chapter.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 92 / 126

Evaluation

1.4.1. R1: Horizontal Scaling
This section argues whether or not the horizontal scaling requirement is met, as it is more useful to show
and to argue that it works than to perform strict test scenarios.

Horizontal scaling affects the entire system, including all components. Therefore, each system component
is tested separately and the results are described here.

Given that Kubernetes is used to orchestrate our microservice containers, the system inherently supports
horizontal scaling. Since our microservices are designed to be stateless or manage states appropriately
using external stores or session handling mechanisms, scaling should be straightforward and reliable.
However, correctly implementing these patterns can be challenging in practice. Therefore, this test is
designed to validate the system’s correct behavior under horizontal scaling conditions.

1.4.1.1. Test Setup
In order to provide a concise justification, a small test setup is still necessary to determine whether the
requirement is met.

The testing process is different for the components that we designed and developed than for third-party
components. See below for more details.

1.4.1.1.1. Proprietary Components
The test for each custom component will be as follows:
1. Verify that the component has only one replica and scale it to one replica if not.
2. Perform actions on the system that depend on this component.

a. Verify that the action is performed in the expected manner.
b. Check if the log contains any errors.

3. Scale the component to two replicas.
4. Perform actions on the system that rely on this component.

a. Verify that the action is performed in the expected manner.
b. Check if the log contains any errors.
c. Check that each replica has been used at least once during the execution of the action.

In the test setup above, if everything works as intended for each component and no errors are shown, the
requirement for this component is considered to be met.

1.4.1.1.2. Third-Party Components
The third-party components, are not tested in as much detail as the self-developed components. All third-
party systems were installed using Helm charts, which support horizontal scaling out of the box. Therefore,
the horizontal scaling requirement is only reasoned, but not explicitly tested. Since all products are used
extensively by many people, they are thoroughly tested during production.

• Weaviate: For Weaviate we use a sharded two replica approach. The system is scaled horizontally. Due to
the sharding, any problems with scaling would be quickly noticed. The requirement for this component
is met.

• Redis: For Redis we use a minimal six node architecture with three master nodes and three replica nodes.
The system is scaled horizontally. Due to the sharding, any problems with scaling would be quickly
noticed. The requirement for this component is met.

• Keycloak: For Keycloak we tested a two replica approach. The system worked as intended, including the
horizontal scaling.

• OAuth2 Proxy: For the OAuth2 Proxy we tested a two replica approach. The system worked as intended,
including the horizontal scaling.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 93 / 126

Evaluation

1.4.1.2. Results
Table 10: Reasoning Results for Each Component

Name Type Note Success

LLM Service Proprietary Worked as intended. Yes

Manager Service Proprietary Worked as intended. Yes

Retrieval Service Proprietary Worked as intended. Yes

Web Service Proprietary Worked as intended. Yes

Redis Third-Party See reasoning above. Yes

Weaviate Third-Party See reasoning above. Yes

Keycloak Third-Party See reasoning above. Yes

OAuth2 Proxy Third-Party See reasoning above. Yes

Based on the results shown in Table 10, the horizontal scaling requirement is met.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 94 / 126

Evaluation

1.4.2. R2: Implement Local Services
As shown in the description of the basic pipeline (Part V, Section 2.), all services are fully implemented
locally, except for one, the language model. First, some specialties about the locally implemented services
are mentioned, then it is explained why the language model is not yet implemented locally.

Notable local implementations:
• Vector Store: The vector store has shifted from an externally hosted alternative to a local one, from the

MVP to the basic pipeline. It took some effort, but it works pretty well in the end.
• Embedding creation: The embedding model is hosted and used entirely locally. This means that all

embeddings are created locally and no data needs to be sent to an external source.

As mentioned above, the language model was not changed from externally hosted to internally hosted
throughout the project. There are several reasons for this. The first is that there was not enough time to
set up the local language model. The second is that the cluster on which the system currently runs does
not have the resources to host a reasonably good language model.

For this reason, the requirement to implement all services locally is not fully met. However, as noted above,
all but one service is successfully implemented locally. Thus, the requirement is met for about 80 to 90
percent.

1.4.3. R3: Modular Architecture
As shown in the description of the basic pipeline (Part V, Section 2.), the whole system is implemented
using a modular microservices approach. Each microservice can be easily adapted, extended and replaced.
This is proven by the transition from the MVP pipeline to the basic pipeline, where some components
were adapted and some completely new ones were added to the system. Therefore, this requirement is
fully met.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 95 / 126

Evaluation

1.5. Load and End-User Test
The load and end-user test is conducted in a combined manner, using a single test scenario as outlined
below.

The test takes place during a lecture by Prof. Dr. Marco Lehmann at the Eastern Switzerland University
of Applied Sciences, involving a group of CAS students. After a brief introduction to the system, the
participants are asked to complete workshop task three (Part VI, Section 3.3.3.3.). This task is specifically
chosen because it utilizes most of the system’s features, generating a higher system load, which is ideal
for testing purposes.

The goal of this test is to determine whether the system can handle concurrent user requests without
issues, whether users are able to complete the tasks successfully, and whether they understand how to use
the system.

1.5.1. Results
The test was conducted on June 3, 2025, with 10 participants. The results and findings are detailed below.

1.5.1.1. Load Results
During the test, the Kubernetes system was continuously monitored to observe its behavior under
increased user load. Simultaneously, several manual system tests were carried out to verify that the system
functioned as intended. Throughout these tests, the system performed flawlessly, with no noticeable
delays.

Additionally, the Kubernetes metrics did not indicate any unusual spikes in user load; all values remained
within expected parameters. This suggests that the system is well-prepared to handle higher workloads
during our upcoming workshop.

The visualizations Figure 31 and Figure 32 illustrate the system in idle mode and under load, respectively.
As shown, the metrics stayed within the normal range.

Figure 31: Consolidated Pods in Idle Mode - own presentment

Figure 32: Consolidated Pods under Load - own presentment

1.5.1.2. End-User Results
The users were able to understand and navigate the system effectively, with no major issues encountered
related to the system or the task. While a few minor uncertainties or problems arose, none were significant.
This outcome indicates that both the system and the task are well-prepared for the upcoming workshop,
and no substantial redesign is necessary.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 96 / 126

Evaluation

1.6. Performance Tests
In order to improve the RAG system and gain insight into speed improvements from code changes, and to
compare embedding options, several manual performance tests were conducted.

1.6.1. Test Setup
The performance tests were done during the basic pipeline implementation. In general, a timeout of 120s
was set, since 2 minutes is a long time for a user to wait. An exception was test three, which involved a
detailed comparison of large files. The tests were performed using both the web frontend and postman.

The following durations were recorded during the tests:

• time_create_temporary_pdf: The time taken to create a temporary PDF file from the uploaded document.

• time_extract_text_from_pdf: The duration needed to extract text from the PDF file.

• time_generate_embeddings: The time required to generate the embeddings.

• time_write_to_vector_store: The time taken to store the processed data into the vector database.

• time_total: The total time taken for the whole process.

Figure 33 shows an example of a test conducted via the frontend.

Figure 33: Recorded Test Durations per Method - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 97 / 126

Evaluation

1.6.2. Performance Test 1: Comparison of Performance With and Without Batching
Weaviate, the local vector store, offers several methods for sending data to the database. This test uses files
of different sizes to compare two approaches:

• Variant A: Batch processing - 100 chunks are sent together to the vector store.
• Variant B: Single chunk processing - Each chunk is sent individually to the database.

Note: This test is solely intended to compare these two approaches. The timing results should not be used
to estimate the overall system performance, as significant enhancements have since been made that greatly
improve overall performance. See subsequent tests for more information.

Table 11: Results of Performance Test 1

File Size
Variant A

(Batch_size = 100)
Variant B

(No Batch_size)

0.8MB 9.58s 5.77s

4.6MB 43.37s 40.95s

10.4MB 113.28s, 102.89s Timeout (> 120s)

15.8MB Timeout (> 120s) Timeout (> 120s)

The test results shown in Table 11 indicate that Variant B performs slightly more efficient on smaller files.
However, as the file size increases, Variant A proves to be the better choice. Further analysis revealed
that dynamic batching (the .dynamic() function in Weaviate) determines the optimal batch size based on
factors such as memory usage and latency. This means that the batch size is not fixed at 100, but rather is
determined automatically to optimize performance.

In conclusion, batch processing is generally more efficient than sending chunks individually. Thus, this
approach has been adopted.

1.6.3. Performance Test 2: Comparison of PDF File Readers
This test compares two types of file readers. Specifically, pdfplumber and PyMuPDFReader. Both extract
text from PDFs. This test measures the time it takes to do so.

Table 12: Results of Performance Test 2

File Size
Variant A

(pdfplumber)
Variant B

(PyMuPDFReader)

10.4MB 80.58s, 83.08s 2.77s, 3.54s

Table 12 indicates that pdfplumber is much slower than PyMuPDFReader. This is because it analyzes tables,
footers, headers, etc., in much greater detail. PyMuPDFReader does not analyze these elements with such
detail and is thus more than twenty times faster. Since performance is more important than very high
extraction accuracy for our purposes, we decided to use PyMuPDFReader.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 98 / 126

Evaluation

1.6.4. Performance Test 3: T2V-Transformer Service vs. Hugging Face Setup
This test compares the performance of embedding creation. Two options are compared: One option is
to generate embeddings using the T2V-Transformer service, which is managed by Weaviate. The other
option is to manually generate the embeddings using a Hugging Face embedding model and pass them to
the vector store. The results of the comparison are shown in Table 13.

Note: Both options use the same embedding model to create the embeddings.

Table 13: Results of Performance Test 3

File Size
Variant A

(T2V-Transformer Service)
Variant B

(Hugging Face Embeddings)

15.8MB 291.27s, 287.90s 52.73s, 55.13s

Although the T2V-Transformer service is directly integrated into Weaviate and used as an “in-house”
vectorizer, it is significantly slower. Manually creating the embeddings with the Hugging Face embedding
model and passing them to Weaviate is much faster. This is somewhat surprising since the T2V-Trans-
former service is directly integrated into Weaviate. For this reason, the option to generate the embeddings
via the Hugging Face setup was chosen. More implementation details can be found in the architecture
section (Part III, Section 4.).

1.6.5. Performance Test 4: Outsource Embedding Generation
This test evaluates the impact on performance of decoupling the embedding generation process from the
retrieval service. Specifically, it compares two configurations.

• Variant A: Embeddings are generated by a dedicated, external service.
• Variant B: Embeddings are generated internally as part of the retrieval service.

Table 14: Results of Performance Test 4

File Size
Variant A

(Separate Embedding Service)
Variant B

(Integrated in Retrieval Service)

15.8MB 24.79s, 25.63s 52.73s, 55.13s

As shown in Table 14, substantial performance improvements are indicated when generation is offloaded
to a separate service. In variant A, processing time was approximately halved compared to variant B, so
variant A was chosen. Although this significant performance boost cannot be conclusively explained, it is
likely due to the parallelism or other optimization techniques enabled by decoupling. This architectural
separation is especially advantageous when handling larger files or scaling the system.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 99 / 126

Evaluation

2. Limitations / Next Steps
As stated in the statement of task, this thesis involves the development of some core functionalities of
a scalable and secure RAG-as-a-Service infrastructure, as the time for this thesis is limited. However,
the system can be adapted and extended in many different ways. This chapter identifies limitations and
suggests appropriate next steps to extend and refine the work started in this thesis.

2.1. Implement Local LLM
As previously discussed, the LLM is not currently implemented locally. However, deploying a locally
hosted LLM is a recommended next step for developing a secure RAG system, as it allows data to remain
within internal system boundaries. Keep in mind, though, that hosting a capable LLM requires substantial
computational resources.

2.2. Implement Patch Management
The infrastructure and its components rely on numerous dependencies that need regular updates, partic-
ularly when security vulnerabilities are identified. Effective patch management is complex and demands
careful planning. It involves maintaining a record of current dependency versions and regularly checking
for available updates. The logging system should generate alerts when critical vulnerabilities are detected
that require immediate action. Additionally, it’s essential to verify that all dependencies remain compatible
after updates. To achieve this, a robust testing solution must be in place, as described in the next section.

Currently, there is no patch management in place. However, it is highly recommended that one be intro-
duced for a production system.

2.3. Implement Automated Testing
Automated testing is essential in environments where the system or its dependencies are frequently
updated. At a minimum, tests should be run before deploying any changes to the production environment
to ensure expected behavior and identify any deviations. Currently, however, only manual testing is in
place, as outlined in the testing section. For a production environment, the introduction of automated
testing to improve reliability, efficiency, and the early detection of potential issues is highly recommended.

2.4. Implement Logging Solution
Currently, components are logged to the console using basic print statements. While this may suffice
during development, it is not suitable for a production environment. A proper logging solution should be
implemented to enable more effective monitoring and troubleshooting. This would allow for structured
logging, log level management, and centralized log aggregation, making it easier to quickly identify and
respond to errors in the production system.

2.5. Improve API Error Messages
The API endpoints currently provide functional error messages, but they lack sufficient detail. Enhancing
these messages with more specific and descriptive information would improve transparency, making it
easier for developers to understand the cause of errors and streamline the debugging process.

2.6. Improve System Prompts
The initial prompts were created with a primary focus on functionality and have not undergone thorough
optimization due to time constraints. However, prompt optimization plays a vital role in building AI

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 100 / 126

Evaluation

systems that are reliable, predictable, and secure. Therefore, allocating time and effort to systematically
refine and improve these prompts is highly recommended.

2.7. Improve Document Chunking
The current document chunking method is based on a simple heuristic that splits documents into chunks
of a fixed size. While this approach is straightforward, it may not be the most effective for all types of
documents. More sophisticated chunking methods, such as those based on semantic analysis or natural
language processing techniques, could be explored to improve the quality of the chunks and enhance the
overall performance of the system.

A test conducted during workshop preparation revealed that the current chunking method can lead to
misleading information. For instance, when a document containing patient information was uploaded,
some of the patient’s information was split into two chunks. As a result, the LLM could not answer
questions about the patient correctly. Therefore, it is recommended to implement a more sophisticated
chunking method that takes into account the context and semantics of the text. This would help ensure
that the chunks are meaningful and coherent, leading to better performance in information retrieval and
question answering.

2.8. Implement UBAC (User-Based Access Control) in the Vector Store
Weaviate supports User-Based Access Control (UBAC). Introducing this feature would allow for more
granular control over who can access specific data within the vector store. This would enhance security
and ensure that sensitive information is only accessible to authorized users. Due to time constraints,
however, this feature was not included in the current version of the system. Implementing it in a production
environment is recommended to enhance security and data protection.

2.9. Implement Secret Management
Currently, secrets are managed locally on each developer’s machine as well as in the Kubernetes secret
store for the hosting. While this approach is sufficient for development purposes, a production environ-
ment requires a more centralized and secure solution. In order to properly handle and protect sensitive
information, it is highly recommended that a robust secret management system is implemented.

2.10. Enhance Kubernetes Hardening
Hardening Kubernetes is essential for securing the system. While there are many areas to consider, the
two below highlight important measures for our use case. Note that this is not an exhaustive list, and there
are many more options and best practices.

2.10.1. Implement Network Isolation for Shared Hosting
In the current shared hosting environment, systems are only isolated at the logical level. However, from
a network standpoint, components remain accessible to one another. This means that if an attacker
escapes a container, they could access systems belonging to other hosted environments. To prevent such
lateral movement and enhance overall security, strict network-level isolation is highly recommended in a
production setting.

2.10.2. Implement Internal Network-Level Encryption
Currently, internal network traffic within the system is not encrypted. To enhance security and harden the
overall system, it is recommended to implement network-level encryption for all internal communication.
It is important to note, however, that this would increase resource consumption within the Kubernetes
environment.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 101 / 126

Part VIII
Conclusion & Outlook

Conclusion & Outlook

1. Conclusion
The objective of this thesis was to design and develop a secure and scalable RAG-as-a-Service
infrastructure. This included designing and describing the system’s overall architecture, implementing
its core functionalities, and analyzing a related topic of interest in greater depth rather than focusing
on supplementary features. Finally, the resulting infrastructure was intended to be ready for use during
our workshop at the IEEE Swiss Conference on Data Science (SDS2025) on June 26, 2025, at the Circle
Convention Center, Zurich Airport.

To support our decision-making process and ensure reasonable design and tool choices, we performed an
extensive evaluation of different architectural approaches, existing frameworks, and tools. Based on this
evaluation, we designed a microservice architecture that builds on Kubernetes and separates responsibil-
ities into different containers. Regarding RAG frameworks, we used LangChain and LlamaIndex based on
their respective strengths.

Subsequently, the infrastructure, including all the containers, was developed based on this design. The core
components of the RAG pipeline were implemented in a scalable and modular manner. This means that
they are either stateless or handle states accordingly, and their interfaces are well-defined. Throughout the
process, we incorporated insights from our previous research, which was conducted as part of our study
thesis and accompanying paper, to ensure a secure foundation. We implemented a robust authentication
system that uses state-of-the-art protocols, such as OAuth 2.0 and OpenID Connect, to establish a critical
layer of security. Additionally, all external communication is encrypted to protect data in transit. Thanks
to its microservice architecture, the system is flexible and can be expanded with features tailored to specific
use cases.

As the chosen related topic, the preparation of our workshop, including its supporting infrastructure, was
addressed. This involved implementing a three-system approach that demonstrates the system’s ability to
operate in an as-a-Service manner. Additionally, tasks focusing on security-related topics and mitigation
strategies were planned for the workshop participants. The RAG infrastructure was also analyzed for
potential risks and corresponding mitigation measures, which further underscores the security focus of
this thesis.

Based on the given description, the RAG infrastructure developed, along with all supplementary tasks,
fulfills the objectives of this thesis. Moreover, the infrastructure is fully operational and suitable for use
in the workshop setting. As a result, all primary and supplementary objectives have been successfully
achieved.

2. Outlook
This thesis focused on implementing the core functionalities of the RAG infrastructure. As a result, the
system remains open to future extensions and adaptations, depending on specific use cases and require-
ments. Known limitations and recommended next steps are outlined in the relevant chapter and will not
be repeated here.

The upcoming workshop is expected to provide valuable insights and direct feedback, offering an oppor-
tunity to assess the infrastructure’s readiness and its potential for real-world application.

Further developments are on the horizon — stay tuned.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 103 / 126

Part IX
Appendix

Appendix

1. Bibliography
[1] H. Naveed et al., “A Comprehensive Overview of Large Language Models.” [Online]. Available:

https://arxiv.org/abs/2307.06435

[2] J. Kaplan et al., “Scaling Laws for Neural Language Models.” [Online]. Available: https://arxiv.org/
abs/2001.08361

[3] E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” [Online]. Available: https://
arxiv.org/abs/2106.09685

[4] N. Lambert, L. Castricato, L. von Werra, and A. Havrilla, “Illustrating Reinforcement Learning from
Human Feedback (RLHF),” Hugging Face Blog, 2022.

[5] P. G. Sessa et al., “BOND: Aligning LLMs with Best-of-N Distillation.” [Online]. Available: https://
arxiv.org/abs/2407.14622

[6] Z. Ji, T. Yu, Y. Xu, N. Lee, E. Ishii, and P. Fung, “Towards Mitigating LLM Hallucination via Self
Reflection,” in Findings of the Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J.
Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Dec. 2023, pp. 1827–
1843. doi: 10.18653/v1/2023.findings-emnlp.123.

[7] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” [Online].
Available: https://arxiv.org/abs/2005.11401

[8] L. Ammann and S. Ott, “Analysis of Risks and Mitigation Strategies in RAG.” [Online]. Available:
https://eprints.ost.ch/id/eprint/1255/

[9] L. Ammann, S. Ott, C. R. Landolt, and M. P. Lehmann, “Securing RAG: A Risk Assessment and
Mitigation Framework.” [Online]. Available: https://arxiv.org/abs/2505.08728

[10] S. 2025, “Hacking RAG: Exploring Risks and Implementing Mitigations.” Accessed: Apr. 17, 2025.
[Online]. Available: https://sds2025.ch/hacking-rag-exploring-risks-and-implementing-mitigations/

[11] P. Zhao et al., “Retrieval-Augmented Generation for AI-Generated Content: A Survey.” [Online].
Available: https://arxiv.org/abs/2402.19473

[12] Y. Gao et al., “Retrieval-Augmented Generation for Large Language Models: A Survey.” [Online].
Available: https://arxiv.org/abs/2312.10997

[13] Y. Huang and J. Huang, “A Survey on Retrieval-Augmented Text Generation for Large Language
Models.” [Online]. Available: https://arxiv.org/abs/2404.10981

[14] M. Anderson, G. Amit, and A. Goldsteen, “Is My Data in Your Retrieval Database? Membership
Inference Attacks Against Retrieval Augmented Generation,” in Proceedings of the 11th International
Conference on Information Systems Security and Privacy, SCITEPRESS - Science, Technology Publi-
cations, 2025, pp. 474–485. doi: 10.5220/0013108300003899.

[15] W. Zou, R. Geng, B. Wang, and J. Jia, “PoisonedRAG: Knowledge Corruption Attacks to Retrieval-
Augmented Generation of Large Language Models.” [Online]. Available: https://arxiv.org/abs/2402.
07867

[16] Z. Chen et al., “Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of
Large Language Models.” [Online]. Available: https://arxiv.org/abs/2407.13757

[17] Y.-H. Huang, Y. Tsai, H. Hsiao, H.-Y. Lin, and S.-D. Lin, “Transferable Embedding Inversion Attack:
Uncovering Privacy Risks in Text Embeddings without Model Queries,” in Proceedings of the 62nd

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 105 / 126

https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2407.14622
https://arxiv.org/abs/2407.14622
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://arxiv.org/abs/2005.11401
https://eprints.ost.ch/id/eprint/1255/
https://arxiv.org/abs/2505.08728
https://sds2025.ch/hacking-rag-exploring-risks-and-implementing-mitigations/
https://arxiv.org/abs/2402.19473
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2404.10981
https://doi.org/10.5220/0013108300003899
https://arxiv.org/abs/2402.07867
https://arxiv.org/abs/2402.07867
https://arxiv.org/abs/2407.13757

Appendix

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association
for Computational Linguistics, 2024, pp. 4193–4205. doi: 10.18653/v1/2024.acl-long.230.

[18] S. Zeng et al., “The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented Generation
(RAG).” [Online]. Available: https://arxiv.org/abs/2402.16893

[19] J. X. Morris, V. Kuleshov, V. Shmatikov, and A. M. Rush, “Text Embeddings Reveal (Almost) As Much
As Text.” [Online]. Available: https://arxiv.org/abs/2310.06816

[20] G. Deng, Y. Liu, K. Wang, Y. Li, T. Zhang, and Y. Liu, “Pandora: Jailbreak GPTs by Retrieval Augmented
Generation Poisoning.” [Online]. Available: https://arxiv.org/abs/2402.08416

[21] Z. Wang, J. Liu, S. Zhang, and Y. Yang, “Poisoned LangChain: Jailbreak LLMs by LangChain.” [Online].
Available: https://arxiv.org/abs/2406.18122

[22] Z. Xu, Y. Liu, G. Deng, Y. Li, and S. Picek, “A Comprehensive Study of Jailbreak Attack versus Defense
for Large Language Models.” [Online]. Available: https://arxiv.org/abs/2402.13457

[23] K. Hu et al., “Efficient LLM Jailbreak via Adaptive Dense-to-sparse Constrained Optimization.” [On-
line]. Available: https://arxiv.org/abs/2405.09113

[24] Y. Zeng, Y. Wu, X. Zhang, H. Wang, and Q. Wu, “AutoDefense: Multi-Agent LLM Defense against
Jailbreak Attacks.” [Online]. Available: https://arxiv.org/abs/2403.04783

[25] European Parliament, Council of the European Union, “The EU Artificial Intelligence Act (EU AI
Act).” 2024.

[26] J. R. B. Jr., “Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial
Intelligence.” Oct. 30, 2023.

[27] “NIST Artificial Intelligence Risk Management Framework (AI RMF 1.0).” 2023. doi: https://doi.org/
10.6028/NIST.AI.100-1.

[28] Open Worldwide Application Security Project (OWASP), “OWASP Top 10 for Large Language Model
Applications (2025).” Accessed: Jan. 06, 2025. [Online]. Available: https://genai.owasp.org/resource/
owasp-top-10-for-llm-applications-2025/

[29] P. AI, “Unlocking the Power of Retrieval Augmented Generation with Added Privacy: A Compre-
hensive Guide.” Accessed: Sep. 20, 2024. [Online]. Available: https://www.private-ai.com/en/2024/05/
23/rag-privacy-guide/

[30] J. G. @ Merge, “5 benefits of retrieval-augmented generation (RAG).” Accessed: Sep. 20, 2024.
[Online]. Available: https://www.merge.dev/blog/rag-benefits

[31] CloudCraft, “What is RAG (Retrieval Augmented Generation)?.” Accessed: Sep. 20, 2024. [Online].
Available: https://www.cloudraft.io/what-is/retrieval-augmented-generation

[32] S. Besen, “The Practical Limitations and Advantages of Retrieval Augmented Generation (RAG).”
Accessed: Sep. 20, 2024. [Online]. Available: https://towardsdatascience.com/the-limitations-and-
advantages-of-retrieval-augmented-generation-rag-9ec9b4ae3729

[33] M. Besta et al., “Multi-Head RAG: Solving Multi-Aspect Problems with LLMs.” [Online]. Available:
https://arxiv.org/abs/2406.05085

[34] D. Edge et al., “From Local to Global: A Graph RAG Approach to Query-Focused Summariza-
tion.” [Online]. Available: https://arxiv.org/abs/2404.16130

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 106 / 126

https://doi.org/10.18653/v1/2024.acl-long.230
https://arxiv.org/abs/2402.16893
https://arxiv.org/abs/2310.06816
https://arxiv.org/abs/2402.08416
https://arxiv.org/abs/2406.18122
https://arxiv.org/abs/2402.13457
https://arxiv.org/abs/2405.09113
https://arxiv.org/abs/2403.04783
https://doi.org/https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/https://doi.org/10.6028/NIST.AI.100-1
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/
https://www.private-ai.com/en/2024/05/23/rag-privacy-guide/
https://www.private-ai.com/en/2024/05/23/rag-privacy-guide/
https://www.merge.dev/blog/rag-benefits
https://www.cloudraft.io/what-is/retrieval-augmented-generation
https://towardsdatascience.com/the-limitations-and-advantages-of-retrieval-augmented-generation-rag-9ec9b4ae3729
https://towardsdatascience.com/the-limitations-and-advantages-of-retrieval-augmented-generation-rag-9ec9b4ae3729
https://arxiv.org/abs/2406.05085
https://arxiv.org/abs/2404.16130

Appendix

[35] F. Wang, X. Wan, R. Sun, J. Chen, and S. Ö. Arık, “Astute RAG: Overcoming Imperfect Retrieval
Augmentation and Knowledge Conflicts for Large Language Models.” [Online]. Available: https://
arxiv.org/abs/2410.07176

[36] C. Niu et al., “RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented
Language Models.” [Online]. Available: https://arxiv.org/abs/2401.00396

[37] J. Saad-Falcon, O. Khattab, C. Potts, and M. Zaharia, “ARES: An Automated Evaluation Framework
for Retrieval-Augmented Generation Systems.” [Online]. Available: https://arxiv.org/abs/2311.09476

[38] P. Laban, A. R. Fabbri, C. Xiong, and C.-S. Wu, “Summary of a Haystack: A Challenge to Long-Context
LLMs and RAG Systems.” [Online]. Available: https://arxiv.org/abs/2407.01370

[39] C. Larman, “UML and Patterns - Use Cases.” Accessed: Apr. 02, 2025. [Online]. Available: https://
craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf

[40] “ISO/IEC 25010.” Accessed: Apr. 02, 2025. [Online]. Available: https://iso25000.com/index.php/en/iso-
25000-standards/iso-25010

[41] “Testing quadrants.” Accessed: Apr. 02, 2025. [Online]. Available: https://tryqa.com/what-are-test-
pyramid-and-testing-quadrants-in-agile-testing-methodology/

[42] T. Team, “Agile Testing Methodology: Life Cycle, Techniques, & Strategy.” Accessed: May 20, 2025.
[Online]. Available: https://www.testrail.com/blog/agile-testing-methodology/

[43] C4 Model, “C4 Model.” Accessed: Jan. 06, 2025. [Online]. Available: https://c4model.com/

[44] OST, “ Modulbeschreibung - Application Architecture .” Accessed: Feb. 26, 2025. [Online]. Available:
https://studien.ost.ch/allModules/public/28236_M_AppArch.html

[45] IONOS Redaktion, “GET vs. POST – die beiden wichtigsten HTTP-Requests im Vergleich.” Accessed:
May 01, 2025. [Online]. Available: https://www.ionos.de/digitalguide/websites/web-entwicklung/
get-vs-post/

[46] Zilliz, “Weaviate vs. Chroma.” Accessed: Mar. 24, 2025. [Online]. Available: https://zilliz.com/
comparison/weaviate-vs-chroma

[47] IBM, “What is Redis Explained?.” Accessed: Mar. 17, 2025. [Online]. Available: https://www.ibm.com/
think/topics/redis

[48] Apache, “Apache Cassandra Documentation.” Accessed: Mar. 17, 2025. [Online]. Available: https://
cassandra.apache.org/_/index.html

[49] S. Gilbert and N. Lynch, “Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services,” SIGACT News, vol. 33, no. 2, pp. 51–59, Jun. 2002, doi: 10.1145/564585.564601.

[50] M. Abu Kausar, M. Nasar, and A. Soosaimanickam, “A study of performance and comparison of
nosql databases: Mongodb, cassandra, and redis using ycsb,” Indian J. Sci. Technol, vol. 15, pp. 1532–
1540, 2022.

[51] Redis, “Redis Enterprise Cluster Architecture.” Accessed: Mar. 20, 2025. [Online]. Available: https://
redis.io/technology/redis-enterprise-cluster-architecture/

[52] C. Kong, “Redis Sentinel vs Redis Cluster: A Comparative Overview.” Accessed: Mar. 20,
2025. [Online]. Available: https://medium.com/@chaewonkong/redis-sentinel-vs-redis-cluster-a-
comparative-overview-8c2561d3168f

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 107 / 126

https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2410.07176
https://arxiv.org/abs/2401.00396
https://arxiv.org/abs/2311.09476
https://arxiv.org/abs/2407.01370
https://craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://tryqa.com/what-are-test-pyramid-and-testing-quadrants-in-agile-testing-methodology/
https://tryqa.com/what-are-test-pyramid-and-testing-quadrants-in-agile-testing-methodology/
https://www.testrail.com/blog/agile-testing-methodology/
https://c4model.com/
https://studien.ost.ch/allModules/public/28236_M_AppArch.html
https://www.ionos.de/digitalguide/websites/web-entwicklung/get-vs-post/
https://www.ionos.de/digitalguide/websites/web-entwicklung/get-vs-post/
https://zilliz.com/comparison/weaviate-vs-chroma
https://zilliz.com/comparison/weaviate-vs-chroma
https://www.ibm.com/think/topics/redis
https://www.ibm.com/think/topics/redis
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://doi.org/10.1145/564585.564601
https://redis.io/technology/redis-enterprise-cluster-architecture/
https://redis.io/technology/redis-enterprise-cluster-architecture/
https://medium.com/@chaewonkong/redis-sentinel-vs-redis-cluster-a-comparative-overview-8c2561d3168f
https://medium.com/@chaewonkong/redis-sentinel-vs-redis-cluster-a-comparative-overview-8c2561d3168f

Appendix

[53] Redis, “Redis persistence: How Redis writes data to disk.” Accessed: Mar. 20, 2025. [Online]. Available:
https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/

[54] GitLab Inc., “GitLab - Software.Faster..” Accessed: Mar. 07, 2025. [Online]. Available: https://about.
gitlab.com/

[55] I. Docker, “Docker: Accelerated Container Application Development.” Accessed: Jun. 02, 2025.
[Online]. Available: https://www.docker.com/

[56] I. Docker, “Docker Compose.” Accessed: Jun. 02, 2025. [Online]. Available: https://docs.docker.com/
compose/

[57] The Kubernetes Authors, “kubernetes.” Accessed: Feb. 25, 2025. [Online]. Available: https://
kubernetes.io/

[58] The Kubernetes Authors, “Kubernetes - Overview.” Accessed: Feb. 25, 2025. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/

[59] The Kubernetes Authors, “Minikube Documentation.” Accessed: Feb. 27, 2025. [Online]. Available:
https://minikube.sigs.k8s.io/docs/

[60] Kustomize, “Kubernetes native configuration management.” Accessed: Mar. 07, 2025. [Online]. Avail-
able: https://kustomize.io/

[61] Red Hat, “What is Helm?.” Accessed: Mar. 14, 2025. [Online]. Available: https://www.redhat.com/en/
topics/devops/what-is-helm

[62] Imhotep Software LLC, “k9s - Kubernetes CLI To Manage Your Clusters In Style!.” Accessed: Mar. 07,
2025. [Online]. Available: https://k9scli.io/

[63] Kubernetes Community, “Ingress-NGINX Controller for Kubernetes.” Accessed: Apr. 23, 2025.
[Online]. Available: https://github.com/kubernetes/ingress-nginx

[64] Jetstack, “cert-manager: Kubernetes Certificate Management.” Accessed: Apr. 23, 2025. [Online].
Available: https://cert-manager.io/docs/

[65] Let's Encrypt, “Let's Encrypt: Free SSL/TLS Certificates.” Accessed: Apr. 23, 2025. [Online]. Available:
https://letsencrypt.org/

[66] LlamaIndex, “LlamaIndex: The framework for context-augmented LLM applications.” Accessed: Apr.
23, 2025. [Online]. Available: https://docs.llamaindex.ai/

[67] LangChain, “LangChain: Build context-aware reasoning applications.” Accessed: Apr. 23, 2025.
[Online]. Available: https://www.langchain.com/

[68] Weaviate, “Weaviate.” Accessed: Apr. 23, 2025. [Online]. Available: https://weaviate.io/

[69] Keycloak Project, “Keycloak: Open-Source Identity and Access Management.” Accessed: Apr. 23,
2025. [Online]. Available: https://www.keycloak.org/

[70] OAuth2 Proxy Contributors, “OAuth2 Proxy: Authentication Reverse Proxy.” Accessed: Apr. 23, 2025.
[Online]. Available: https://github.com/oauth2-proxy/oauth2-proxy

[71] Tiangolo, “FastAPI.” Accessed: May 01, 2025. [Online]. Available: https://fastapi.tiangolo.com/

[72] Streamlit, “Streamlit: The fastest way to build and share data apps.” Accessed: May 28, 2025. [Online].
Available: https://streamlit.io/

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 108 / 126

https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/
https://about.gitlab.com/
https://about.gitlab.com/
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/
https://minikube.sigs.k8s.io/docs/
https://kustomize.io/
https://www.redhat.com/en/topics/devops/what-is-helm
https://www.redhat.com/en/topics/devops/what-is-helm
https://k9scli.io/
https://github.com/kubernetes/ingress-nginx
https://cert-manager.io/docs/
https://letsencrypt.org/
https://docs.llamaindex.ai/
https://www.langchain.com/
https://weaviate.io/
https://www.keycloak.org/
https://github.com/oauth2-proxy/oauth2-proxy
https://fastapi.tiangolo.com/
https://streamlit.io/

Appendix

[73] Jazzband, “pip-compile CLI — pip-tools documentation.” Accessed: May 30, 2025. [Online]. Available:
https://pip-tools.readthedocs.io/en/latest/cli/pip-compile/

[74] Faker, “Faker: A Python package that generates fake data.” Accessed: Jan. 06, 2025. [Online]. Avail-
able: https://faker.readthedocs.io/en/master/

[75] Black Development Team, “Black: The uncompromising code formatter.” Accessed: Apr. 23, 2025.
[Online]. Available: https://github.com/psf/black

[76] Trunk.io, “Flake8: The Python Linter for Code Quality and Style.” Accessed: Apr. 23, 2025. [Online].
Available: https://trunk.io/linters/python/flake8

[77] Mypy Development Team, “Mypy 1.15.0 documentation.” Accessed: Apr. 23, 2025. [Online]. Available:
https://mypy.readthedocs.io/

[78] Kubernetes Authors, “Kubernetes - Cluster Architecture.” Accessed: May 16, 2025. [Online]. Avail-
able: https://kubernetes.io/docs/concepts/architecture/

[79] The Kubernetes Authors, “Kubernetes - Cluster Architecture.” Accessed: Feb. 27, 2025. [Online].
Available: https://kubernetes.io/docs/concepts/architecture/

[80] GitLab, “Use container images from the container registry.” Accessed: Feb. 28, 2025. [Online]. Avail-
able: https://docs.gitlab.com/user/packages/container_registry/

[81] Auth0, “What is OAuth 2.0?.” Accessed: Apr. 09, 2025. [Online]. Available: https://auth0.com/intro-
to-iam/what-is-oauth-2

[82] OpenID, “How OpenID Connect Works.” Accessed: Apr. 09, 2025. [Online]. Available: https://openid.
net/developers/how-connect-works/

[83] A. Chiarelli, “ID Token vs Access Token: What is the Difference?.” Accessed: Apr. 14, 2025. [Online].
Available: https://auth0.com/blog/id-token-access-token-what-is-the-difference/

[84] IBM, “OAuth 2.0 refresh tokens.” Accessed: Apr. 14, 2025. [Online]. Available: https://docs.verify.ibm.
com/verify/docs/oauth-20-refresh-tokens

[85] H. Face, “sentence-transformers/all-MiniLM-L6-v2.” Accessed: May 06, 2025. [Online]. Available:
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

[86] P. Boteju, “Deep dive into Redis Clustering.” Accessed: Mar. 28, 2025. [Online]. Available: https://
medium.com/@pubuduboteju95/deep-dive-into-redis-clustering-1d71484578a9

[87] Redis, “Redis Cluster and Client Libraries.” Accessed: Apr. 29, 2024. [Online]. Available: https://redis.
io/learn/operate/redis-at-scale/scalability/redis-cluster-and-client-libraries

[88] Weaviate, “Cluster Architecture.” Accessed: Apr. 30, 2025. [Online]. Available: https://weaviate.io/
developers/weaviate/concepts/replication-architecture/cluster-architecture

[89] Weaviate, “Replication Architecture.” Accessed: Apr. 30, 2025. [Online]. Available: https://weaviate.
io/developers/weaviate/concepts/replication-architecture

[90] MITRE Corporation, “Synthea: An Open Source Synthetic Patient Generator.” Accessed: Jan. 06, 2025.
[Online]. Available: https://synthea.mitre.org/downloads

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 109 / 126

https://pip-tools.readthedocs.io/en/latest/cli/pip-compile/
https://faker.readthedocs.io/en/master/
https://github.com/psf/black
https://trunk.io/linters/python/flake8
https://mypy.readthedocs.io/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://docs.gitlab.com/user/packages/container_registry/
https://auth0.com/intro-to-iam/what-is-oauth-2
https://auth0.com/intro-to-iam/what-is-oauth-2
https://openid.net/developers/how-connect-works/
https://openid.net/developers/how-connect-works/
https://auth0.com/blog/id-token-access-token-what-is-the-difference/
https://docs.verify.ibm.com/verify/docs/oauth-20-refresh-tokens
https://docs.verify.ibm.com/verify/docs/oauth-20-refresh-tokens
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://medium.com/@pubuduboteju95/deep-dive-into-redis-clustering-1d71484578a9
https://medium.com/@pubuduboteju95/deep-dive-into-redis-clustering-1d71484578a9
https://redis.io/learn/operate/redis-at-scale/scalability/redis-cluster-and-client-libraries
https://redis.io/learn/operate/redis-at-scale/scalability/redis-cluster-and-client-libraries
https://weaviate.io/developers/weaviate/concepts/replication-architecture/cluster-architecture
https://weaviate.io/developers/weaviate/concepts/replication-architecture/cluster-architecture
https://weaviate.io/developers/weaviate/concepts/replication-architecture
https://weaviate.io/developers/weaviate/concepts/replication-architecture
https://synthea.mitre.org/downloads

Appendix

2. List of Figures
Figure 1 Basic Structure of a RAG System - source: [9] . 6
Figure 2 Basic RAG Workflow - adapted from [13] . 7
Figure 3 Extended RAG Workflow - adapted from [13] . 7
Figure 4 Implementation Approaches for RAG Systems - adapted from [11] . 8
Figure 5 Use Case Diagram - own presentment . 12
Figure 6 Agile Testing Quadrants - source: [41] . 15
Figure 7 Redis Architecture Approaches - source: [51] . 29
Figure 8 Kubernetes Cluster - source: [78] . 38
Figure 9 GitLab CI Pipeline - own presentment . 44
Figure 10 Authentication Architecture - own presentment . 49
Figure 11 Authentication Workflow of Initial Login / Expired Session - own presentment 52
Figure 12 Authentication Workflow of Resource Access with a Valid Access Token - own

presentment . 53
Figure 13 Authentication Workflow of Resource Access with a Token Refresh - own presentment 54
Figure 14 Authentication Workflow of Resource Access with Expired Tokens - own presentment 55
Figure 15 Authentication Workflow of Logout - own presentment . 56
Figure 16 Architecture Diagram of the MVP Pipeline - own presentment . 58
Figure 17 Sequence Diagram of the MVP Pipeline - own presentment . 60
Figure 18 LangChain Graph of the MVP Pipeline - own presentment . 61
Figure 19 Retrieve the Most Relevant Chunks for “uhr” - own presentment . 62
Figure 20 Architecture Diagram of the Basic Pipeline - own presentment . 63
Figure 21 Chat History (excerpt of web service) - own presentment . 66
Figure 22 LangChain Graph of the Basic Pipeline - own presentment . 68
Figure 23 Workflow of Uploading a File - own presentment . 70
Figure 24 Workflow of Retrieving Chunks - own presentment . 70
Figure 25 State Store Architecture - own presentment . 72
Figure 26 Redis Client - source: [87] . 73
Figure 27 Weaviate Component Diagram - own presentment . 75
Figure 28 Architecture of Three RAG Systems Hosted in a Shared Environment - own presentment . . 77
Figure 29 RAG Risks and Mitigation Matrix - source: [9] . 79
Figure 30 Architecture of the Workshop Infrastructure - own presentment . 81
Figure 31 Consolidated Pods in Idle Mode - own presentment . 96
Figure 32 Consolidated Pods under Load - own presentment . 96
Figure 33 Recorded Test Durations per Method - own presentment . 97
Figure 34 Swagger Documentation of the Retrieval Service - own presentment . 125
Figure 35 Swagger Documentation of the LLM Service - own presentment . 125
Figure 36 Swagger Documentation of the Manager Service - own presentment . 126
Figure 37 Swagger Documentation of the Embedding Service - own presentment . 126

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 110 / 126

Appendix

3. List of Tables
Table 1 Classification and Comparison of Defined Criteria Across Architectural Patterns 20
Table 2 Comparison Between LlamaIndex and LangChain . 23
Table 3 Feature Comparison Between ChromaDB and Weaviate . 25
Table 4 API Endpoints in the Basic Pipeline . 65
Table 5 Overview of Functional Requirements and Corresponding Test Coverage . 86
Table 6 Overview of Non-Functional Requirements and Corresponding Test Coverage 87
Table 7 Overview of Functional Test Cases and Their Outcomes . 89
Table 8 Overview of End-to-End Test Cases and Their Outcomes . 91
Table 9 Overview of Reasoning Scenarios and Their Outcomes . 92
Table 10 Reasoning Results for Each Component . 94
Table 11 Results of Performance Test 1 . 98
Table 12 Results of Performance Test 2 . 98
Table 13 Results of Performance Test 3 . 99
Table 14 Results of Performance Test 4 . 99
Table 15 Test Protocol for Functional Test F1 . 113
Table 16 Test Protocol for Functional Test F2 . 114
Table 17 Test Protocol for Functional Test F3 . 115
Table 18 Test Protocol for Functional Test F4.1 . 116
Table 19 Test Protocol for Functional Test F4.2 . 117
Table 20 Test Protocol for Functional Test F5 . 118
Table 21 Test Protocol for Functional Test F6 . 119
Table 22 Test Protocol for Functional Test F7 . 120
Table 23 Test Protocol for Functional Test F8 . 121
Table 24 Test Protocol for Functional Test F9 . 122
Table 25 Test Protocol for End-to-End Test E1 . 123
Table 26 Test Protocol for End-to-End Test E2 . 124

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 111 / 126

Appendix

4. Use of AI Tools
The following AI tools were used throughout the project for the stated purposes in accordance with the
actual AI regulations of the Eastern Switzerland University of Applied Sciences.
• ChatGPT: ChatGPT has been used for inspiration, research, rewriting text passages, and as a source of

inspiration for coding and prototyping.
• PerplexityAI: PerplexityAI has been used for research and as a source of inspiration for coding and

prototyping.
• DeepL: DeepL has been used to rewrite and refine text passages.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 112 / 126

Appendix

5. Functional Test Protocols

5.1. F1: User Login with Valid Credentials
Table 15: Test Protocol for Functional Test F1

Type Note

Number F1

Name User Login with Valid Credentials

Preconditions User has valid credentials for the RAG system.

Test Scenario

1. Tester opens a Chromium-based browser and switches to incognito mode.
2. Tester goes to the RAG system URL.
3. The login page should be displayed.
4. Tester logs in with valid credentials.
5. Browser redirects to the RAG system website.

Expected Result User is logged in and the RAG system website is displayed.

Was result as ex-
pected?

Yes, as expected. Since this was the first login of this user and not already
defined within the identity provider, the user had to enter email, first name
and last name.

Date 07.05.2025

Findings Worked as expected.

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 113 / 126

Appendix

5.2. F2: User Login with Invalid Credentials
Table 16: Test Protocol for Functional Test F2

Type Note

Number F2

Name User Login with Valid Credentials

Preconditions None

Test Scenario

1. Tester opens a Chromium-based browser and switches to incognito mode.
2. Tester goes to the RAG system URL.
3. The login page should be displayed.
4. Tester enters invalid credentials in the login field.

Expected Result An error message should appear and the login page should still be displayed.

Was result as ex-
pected?

As expected, the error message "Invalid username or password." was
displayed.

Date 07.05.2025

Findings Worked as expected.

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 114 / 126

Appendix

5.3. F3: User Logout
Table 17: Test Protocol for Functional Test F3

Type Note

Number F3

Name User Logout

Preconditions F1 - User Login with Valid Credentials (user is logged in).

Test Scenario 1. Tester clicks on the logout button on the main page of the RAG system
website.

Expected Result A redirect should be started and the browser should eventually return to the
login page.

Was result as ex-
pected?

As expected, the redirect was started and the browser returned to the login
page.

Date 07.05.2025

Findings None

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 115 / 126

Appendix

5.4. F4: Upload PDF File

5.4.1. First Attempt
Table 18: Test Protocol for Functional Test F4.1

Type Note

Number F4.1

Name Upload PDF File

Preconditions • F1 - User Login with Valid Credentials (user is logged in).
• PDF file is available for upload.

Test Scenario

1. Tester goes to the “Upload Data” section of the RAG system website.
2. Tester clicks the “Browse Files” button and uploads a test pdf file.
3. Tester clicks the “Load PDF in Vector Store” button.
4. The system should successfully confirm that the action is complete.
5. Tester goes to the “Retrieve Data” section and makes sure that the file is

properly added to the system and accessible via an appropriate query.

Expected Result
• The system should successfully confirm that the action is complete.
• The file should be properly added to the system and accessible via an

appropriate query.

Was result as ex-
pected?

No, when choosing a file to upload, the system displayed an error message:
AxiosError: Request failed with status code 400. The file had to be chosen
again. The system then displayed the success message with the number of
chunks, owner_id, filename and timestamps. The file was correctly added to
the system and could be accessed via an appropriate query.

Date 07.05.2025

Findings
Research told us that this is a known open issue of streamlit when using
distributed systems like Kubernetes. The problem is that the request is not
always handled by the same pod, and then this error can occur.

Success No

Improvements /
Reasoning We will use sticky sessions for the web service to avoid this issue.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 116 / 126

Appendix

5.4.2. Second Attempt
Table 19: Test Protocol for Functional Test F4.2

Type Note

Number F4.2

Name Upload PDF-File

Preconditions • F1 - User Login with Valid Credentials (user is logged in).
• PDF file is available for upload.

Test Scenario

1. Tester goes to the “Upload Data” section of the RAG system website.
2. Tester clicks the “Browse Files” button and uploads a test pdf file.
3. Tester clicks the “Load PDF in Vector Store” button.
4. The system should successfully confirm that the action is complete.
5. Tester goes to the “Retrieve Data” section and makes sure that the file is

properly added to the system and accessible via an appropriate query.

Expected Result
• The system should successfully confirm that the action is complete.
• The file should be properly added to the system and accessible via an

appropriate query.

Was result as ex-
pected? Yes, worked as expected.

Date 12.05.2025

Findings None

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 117 / 126

Appendix

5.5. F5: Ask Chatbot Question - Typical Case
Table 20: Test Protocol for Functional Test F5

Type Note

Number F5

Name Ask Chatbot Question - Typical Case

Preconditions
• F1 - User Login with Valid Credentials (user is logged in).
• F4 - Upload PDF-File successfully completed (chunks are in the vector

store).

Test Scenario

1. Tester goes to the “Ask Chatbot” section of the RAG system website.
2. Tester asks a question about the uploaded PDF file.
3. The system should display the generated response in a chat manner.
4. Tester asks a follow-up question about the uploaded PDF file.
5. The system should display a meaningful generated response in a chat

manner.
6. Tester goes to the Home section and returns to the “Ask Chatbot” section.
7. The system should load the chat history. The previously asked question

and their response should be displayed.

Expected Result
• The system should display the generated response in a chat manner.
• The system should load the chat history. The previously asked question

and their response should be displayed.

Was result as ex-
pected?

The steps worked as expected. The system displayed the generated response
in chat manner. The system loaded the chat history and displayed the previ-
ously asked question and their response.

Date 07.05.2025

Findings None

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 118 / 126

Appendix

5.6. F6: Ask Chatbot Question - No Related Information
Table 21: Test Protocol for Functional Test F6

Type Note

Number F6

Name Ask Chatbot Question - No Related Information

Preconditions • F1 - User Login with Valid Credentials (user is logged in).
• Chatbot history is empty.

Test Scenario 1. Tester goes to the “Ask Chatbot” section of the RAG system website.
2. Tester asks a question unrelated to the uploaded PDF file.

Expected Result The system should inform the user that no related information is available
therefore no response can be generated.

Was result as ex-
pected?

Yes, as expected. The bot responded: I cannot provide an answer about ...
as the context and chat history do not contain relevant information on that
topic.

Date 07.05.2025

Findings None

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 119 / 126

Appendix

5.7. F7: Give Citation
Table 22: Test Protocol for Functional Test F7

Type Note

Number F7

Name Give Citation

Preconditions

• F1 - User Login with Valid Credentials (user is logged in).
• F4 - Upload PDF-File successfully completed (chunks are in the vector

store).
• Chatbot history is empty.

Test Scenario 1. Tester goes to the “Ask Chatbot” section of the RAG system website.
2. Tester asks a question about the uploaded PDF-file.

Expected Result • The system should show the generated response in a chat manner. The
response contains the citation of used the PDF-file.

Was result as ex-
pected?

Yes, as expected. The system displayed the generated response in chat
manner. The response contained the citation of the PDF-file used. At the end
there is the citation in brackets, e.g. (Source: climate_zurich.pdf).

Date 07.05.2025

Findings None

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 120 / 126

Appendix

5.8. F8: Admin View
Table 23: Test Protocol for Functional Test F8

Type Note

Number F8

Name Admin View

Preconditions
• F1 - User Login with Valid Credentials (user is logged in).
• F4 - Upload PDF-File successfully completed (chunks are in the vector

store).

Test Scenario
1. Tester goes to the “Retrieve chunks (admin view)” section of the RAG

system website.
2. Tester asks for chunks about a certain word.

Expected Result The system should show the top 5 relevant chunks with their metadata.

Date 07.05.2025

Was result as ex-
pected?

Yes, as expected. The system showed the top 5 relevant chunks with their
data (text, owner, filename, score).

Findings None

Success Yes

Improvements /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 121 / 126

Appendix

5.9. F9: API Documentation
This test is done locally (dev environment) as API documentation is not available on the deployed version
of the system.

Table 24: Test Protocol for Functional Test F9

Type Note

Number F9

Name Give Citation

Precondition None

Test Scenario

1. Tester opens a chromium-based browser and switches to incognito mode.
2. Tester opens the different urls with /docs.

a. Tester opens the manager swagger API under localhost:5000/docs.
b. Tester opens the retrieval swagger API under localhost:5001/docs.
c. Tester opens the LLM swagger API under localhost:5002/docs.

Expected Result The system should display the API documentation for each.

Was result as ex-
pected? Yes, as expected. The system displayed the API documentation for each.

Date 07.05.2025

Findings None

Success Yes

Improvements /
Reasoning -

5.9.1. Reasoning
Since API documentation reveals details about service endpoints, it should not be publicly accessible. As
a security measure, the API documentation is not reachable in the production deployment of the system.

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 122 / 126

Appendix

6. End-to-End Test Protocols

6.1. E1: Access Restriction
Table 25: Test Protocol for End-to-End Test E1

Type Note

Number E1

Name Access Restriction

Preconditions • User has valid credentials for the RAG system.
• Empty chat history.

Test Scenario 1. Tester opens a chromium-based browser and switches to incognito
mode.

2. Tester logs in as described in C1 (Part IX, Section 5.1.).
3. Tester goes to the “Upload File” section of the RAG system website.
4. Tester uploads a PDF-file.
5. Tester opens the Home screen and loges out of the system.
6. Tester opens a chromium-based browser and switches to incognito

mode.
7. Tester logs in (with a different user) as described in C1.
8. Tester goes to the “Ask Chatbot” section of the RAG system website.
9. Tester asks a question about the uploaded PDF-file.

10. The system should inform the user that no related information is avail-
able (for this user), therefore no response can be generated.

11. Tester goes to the “Retrieve Data” section of the RAG system website.
12. Tester types in a reasonable query related to the uploaded file.
13. The system cannot retrieve information from the PDF-file uploaded by

the other user.
14. Tester opens the home screen and loges out of the system.

Expected Results • Every step of the test scenario could be successfully completed.
• The system should inform the user that no related information is available

(for this user), therefore no response can be generated.
• The system cannot retrieve information from the PDF-file uploaded by the

other user.

Was result as ex-
pected?

Yes, every step of the test scenario could be successfully completed. The
system informed the user that no related information is available.

Date 07.05.2025

Findings No issues were found.

Success Yes

Improvments /
Reasoning

-

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 123 / 126

Appendix

6.2. E2: Chat History
Table 26: Test Protocol for End-to-End Test E2

Type Note

Number E2

Name Chat history

Preconditions • User has a valid credentials for the RAG system.
• Empty chat history.

Test Scenario

1. Tester opens a chromium-based browser and switches to incognito
mode.

2. Tester logs in as described in C1 (Part IX, Section 5.1.).
3. Tester goes to the “Upload File” section of the RAG system website.
4. Tester uploads a PDF-file.
5. Tester opens the Chatbot section of the RAG system website.
6. Tester asks a question about the uploaded PDF-file.
7. Tester opens the Home screen and loges out of the system, closes the

browser.
8. Tester opens a chromium-based browser and switches to incognito

mode.
9. Tester logs in again with a the same user as described in C1.

10. Tester goes to the “Ask Chatbot” section of the RAG system website.
11. The system should load the previous chat history. The questions and

response earlier generated should be displayed.
12. Tester asks a follow-up question about the uploaded PDF-file.
13. The system should display the chat history, including the newly gener-

ated response, in a chat-like manner.
14. Tester opens the Home screen and loges out of the system.

Expected Results
• Every step of the test scenario could be successfully completed.
• The system should load the previous chat history. The questions and

response earlier generated should be displayed.

Was result as ex-
pected?

Yes, every step of the test scenario could be successfully completed. The
system loaded the previous chat history after the user logged in again.

Date 07.05.2025

Findings The citation was not only at the end of the response, but also in the middle
of the response. This is not a problem, of course.

Success Yes

Improvments /
Reasoning -

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 124 / 126

Appendix

7. Swagger Documentation Screenshots
According to the documentation, the API endpoints for the retrieval, manager, embedding, and LLM
services are automatically documented using Swagger. This provides a clear overview of the available
features, making it easy to explore and interact with the endpoints. The screenshots below display the
Swagger documentation for each service, all captured from the basic pipeline.

7.1. Retrieval Service

Figure 34: Swagger Documentation of the Retrieval Service - own presentment

7.2. LLM Service

Figure 35: Swagger Documentation of the LLM Service - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 125 / 126

Appendix

7.3. Manager Service

Figure 36: Swagger Documentation of the Manager Service - own presentment

7.4. Embedding Service

Figure 37: Swagger Documentation of the Embedding Service - own presentment

Development of a scalable and secure
RAG-as-a-Service infrastructure
Lukas Ammann, Sara Ott

Page: 126 / 126

	Introduction
	Initial Situation
	Preliminary Work
	Resulting Steps

	Related Work
	Capabilities
	Security

	Retrieval-Augmented Generation (RAG)
	General Architecture
	Workflow
	Benefits
	Approaches
	Use Cases
	Limitations

	Planning
	Requirements
	Actors
	Use Case Diagram
	Functional Requirements
	FR1: User Login
	FR2: Upload PDF File
	FR3: Ask Chatbot Questions
	FR4: Give Citation
	FR5: Admin View

	Non-Functional Requirements
	NFR1: Horizontal Scaling
	NFR2: Access Restriction
	NFR3: Implement Local Services
	NFR4: API Documentation
	NFR5: Modular Architecture

	Testing Concept
	Quadrant One
	Quadrant Two
	Quadrant Three
	Quadrant Four

	C4 Model

	Architecture
	Architectural Pattern
	Utility Analysis
	Criteria
	Scalability
	Ease of Deployment
	Adaptability
	Data Security
	Extensibility
	Hosting & Portability

	Approaches
	Comparison Table
	Reasoning
	Microservices
	Event-Driven
	Serverless

	Decision

	Further Considerations
	Microservice Orchestration
	Communication

	RAG Framework
	LlamaIndex vs. LangChain
	Feature Comparison

	Decision

	Vector Store
	ChromaDB vs. Weaviate
	Feature Comparison

	Decision

	Embeddings
	State Management
	Strategies
	Strategy 1
	Strategy 2
	Decision

	State Store
	Requirements
	Database Products
	Decision

	Redis
	Availability
	Persistence
	Decision

	Tools
	GitLab
	Docker
	Docker Compose

	Kubernetes (K8s)
	Minikube
	Kustomize
	Helm
	K9s
	Ingress NGINX
	Cert Manager
	Let's Encrypt

	RAG Frameworks
	LlamaIndex
	LangChain

	Data Storage
	Weaviate
	Redis

	Authentication
	Keycloak
	OAuth2 Proxy

	Python Modules
	FastAPI
	Streamlit
	Pip-compile
	Faker

	Code Quality Tools
	Black
	Flake8
	MyPy

	Infrastructure
	Environment
	Docker Compose
	Kubernetes Cluster
	Development
	Deployment
	Configuration File Management
	Deployments
	Ingress
	Issuer
	Secrets
	Services
	Namespace
	Kustomize

	Tag Management
	Ingress Setup
	Certificate Manager Setup
	Container Registry Access

	Repository
	Access

	Container Registry
	Tag Convention
	Naming Convention
	Build
	Access Token

	Code Quality Tooling
	Mypy
	Black
	Flake8

	Authentication
	Fundamentals
	OAuth2
	OpenID Connect
	Tokens
	Access Token
	Refresh Token
	ID Token

	Security Considerations
	Access Token Lifespan
	Refresh Token Lifespan
	Refresh Token Revocation
	Session Validation

	Components
	Ingress
	Keycloak
	OAuth2 Proxy
	Components Diagram
	Interaction between the Components

	Workflow
	Workflow 1: Initial Login / Expired Session
	Workflow 2: Valid Access Token
	Workflow 3: Token Refresh with Valid Refresh Token
	Workflow 4: Expired Access and Refresh Token
	Workflow 5: Logout

	Implementation
	MVP Pipeline
	System Architecture
	Components
	Connections

	Workflow
	Workflow 1: File Upload
	Workflow 2: Prompt Processing

	Components
	Web Service
	Manager Service
	Retrieval Service
	LLM Service

	Basic Pipeline
	System Architecture
	Components
	Connections
	API Endpoints

	Components
	Web Service
	Chat History

	Manager Service
	Chat Message History
	User Awareness
	Citation Support
	Workflow
	Endpoints

	Retrieval Service
	Owner-Based Filtering
	Citation Support
	Workflow
	File Upload
	Chunk Retrieval

	LLM Service
	Embedding Service
	State Store
	Architecture
	Client

	Vector Store
	Design and Configuration
	Architecture
	Performance Notes

	Further Topic
	Shared Hosting
	Security Considerations
	Risks
	Mitigation Strategies

	Workshop
	Hosting Setup
	Synthetic Data
	Workshop Procedure
	Introduction
	Risks and Mitigations
	Tasks
	Task 1 - Retrieval Data Leakage
	Task 2 - Membership Inference Attack (MIA)
	Task 3 - Knowledge Corruption Attack

	Conclusion

	Evaluation
	Testing
	Preparation
	Software Requirement Specification
	Functional Requirements
	Non-Functional Requirements

	Test Strategy
	Test Policy

	Functional Tests
	Fix F4 Sticky Sessions

	End-to-End Tests
	Reasoning
	R1: Horizontal Scaling
	Test Setup
	Proprietary Components
	Third-Party Components

	Results

	R2: Implement Local Services
	R3: Modular Architecture

	Load and End-User Test
	Results
	Load Results
	End-User Results

	Performance Tests
	Test Setup
	Performance Test 1: Comparison of Performance With and Without Batching
	Performance Test 2: Comparison of PDF File Readers
	Performance Test 3: T2V-Transformer Service vs. Hugging Face Setup
	Performance Test 4: Outsource Embedding Generation

	Limitations / Next Steps
	Implement Local LLM
	Implement Patch Management
	Implement Automated Testing
	Implement Logging Solution
	Improve API Error Messages
	Improve System Prompts
	Improve Document Chunking
	Implement UBAC (User-Based Access Control) in the Vector Store
	Implement Secret Management
	Enhance Kubernetes Hardening
	Implement Network Isolation for Shared Hosting
	Implement Internal Network-Level Encryption

	Conclusion & Outlook
	Conclusion
	Outlook

	Appendix
	Bibliography
	List of Figures
	List of Tables
	Use of AI Tools
	Functional Test Protocols
	F1: User Login with Valid Credentials
	F2: User Login with Invalid Credentials
	F3: User Logout
	F4: Upload PDF File
	First Attempt
	Second Attempt

	F5: Ask Chatbot Question - Typical Case
	F6: Ask Chatbot Question - No Related Information
	F7: Give Citation
	F8: Admin View
	F9: API Documentation
	Reasoning

	End-to-End Test Protocols
	E1: Access Restriction
	E2: Chat History

	Swagger Documentation Screenshots
	Retrieval Service
	LLM Service
	Manager Service
	Embedding Service

