OST

Ostschweizer
Fachhochschule

BA 2025

Wi-Fied

An Educational Platform for Hands-On Wi-Fi Security

[N W / I/ | /

| 88 /7 \ | $8 \$% $8338888/ 88/ ______ ____$%
I 83/ S$\I 88 | \ ______ $$ 1__ /7 N/ $$
| $3 $33\ 83 | $$ | | $3 I $8 | /338888 | /3333333
| 38 $E\$$ $8 | 33 \$$$33%/ $8833%/ 88 | $3 $$ 1 88 | 39
| $$88 \$388 | $3 $3 | $8 | $$E8833%/ 83 __$$
| $$$ \3 | $$ $3 | $$ | $3 | $$ $8
\$$ \$3 \$$ $8/ $8/ $888338/ 8333888/

Version 1.0
June 12, 2025
Mario Burger, Alice Glaus

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Abstract

Wi-Fi networks are as popular as ever and find daily use in private households as well as in
corporate environments. Awareness around vulnerabilities and dangerous exploits in wireless
communication networks is vital to understand the security implications of operating such in-
frastructure securely. The Wi-Fied Platform is a modular, Python-based demonstration tool
developed to support and enhance the practical education of Wi-Fi security concepts. This work
presents the design and implementation of the platform as a complementary tool to existing the-
oretical content, enabling learners and IT professionals to gain hands-on experience with wireless
network vulnerabilities and exploits, utilizing Raspberry Pi’s for physical lab-setups.

Inspired by prior research into the classification and impact of Wi-Fi security threats, Wi-Fied
supports a controlled, extensible environment for experimenting with attacks within an isolated
lab setup. The architecture of the platform follows a structured design, aiming to facilitate future
development. Rather than offering a standalone or comprehensive solution, the Wi-Fied Platform
is intended to enrich existing curricula by bridging the gap between academic study and applied
understanding of Wi-Fi threat scenarios and mitigation techniques.

The architecture of the Wi-Fied Platform evolved iteratively alongside its implementation,
enabling flexible adaptation to specific requirements; such as the generation and transmission of
Wi-Fi packets. As a result the Wi-Fied Platform project produced a base for future expansion,
already providing central functionalities like packet creation, automation of lab-device setups,
and a unified CLI-based user interface. Many of the challenges encountered during the project
stemmed from library-specific implementation details, ambiguities in Wi-Fi standard definitions,
or evolving requirements driven by feature progression.

In conclusion, building a robust but simultaneously flexible and extensible tool with critical
dependencies towards physical hardware, Wi-Fi standards, and dissimilar runtime environments
is not trivial. However, the practical benefits of an auxiliary tool to enrich existing curricula
by bridging the gap between academic study and applied understanding of Wi-Fi security are
advantageous. Future work may include but not be limited to the expansion of exploit scenarios
and feature sets for packet manipulation, the support of more complex exploit demonstrations
with real-time actions, and the addition of a graphical user interface.

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Management Summary

Wi-Fi networks are as popular as ever and find daily use in private households as well as in
corporate environments. Awareness around vulnerabilities and dangerous exploits in wireless
communication networks is vital to understand the security implications of operating such in-
frastructure securely. The Wi-Fied Platform is a lightweight, modular tool designed to facilitate
practical education in Wi-Fi security. It supports a hands-on environment for demonstrating com-
mon vulnerabilities and attack techniques in IEEE 802.11 networks, with particular emphasis on
reproducibility and controlled experimentation.

This platform was developed with three primary stakeholder groups in mind: Educators, stu-
dents, and developers or maintainers. Each group brings distinct interests, ranging from instruc-
tional integration of hands-on learning into existing curricula and long-term codebase evolution,
while also sharing several important interests. The following diagram in Figure 1 illustrates the
relationships and overlapping interests among these target audiences:

Educators Students
Lesson integration Simple setup Exploratory learning
Reproducibility Structured guidance Hands-on practice
Clarity Understandable scenarios

Open, modular design

Extensibility
Documentation
Maintainability

CLI usability
Hardware experimentation

Clean architecture
Code quality

Developers / Maintainers

Figure 1.: Interests of Primary Stakeholder Groups

Developed for use in academic and lab-based training, the platform integrates familiar tools
like Ansible, Scapy, and hostapd into a cohesive CLI that enables instructors and students to
set up and run Wi-Fi security scenarios with minimal effort. The platform leverages affordable
hardware, such as Raspberry Pi boards and compatible Wi-Fi adapters, making it accessible to
educational institutions without requiring costly infrastructure. The modular codebase allows
further development and adaptation to emerging threats or learning objectives. The project lays
foundational groundwork for a growing suite of Wi-Fi exploit demonstrations and can evolve into
a broader learning and testing platform over time.

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Key technical challenges, such as hardware compatibility and software fragility, are acknowl-
edged transparently and mitigated where possible. While the platform prioritizes maintainability
and extensibility over short-term feature completeness, it already supports the necessary steps
to demonstrate a Key Reinstallation Attack (KRACK) or a Deauthentication Attack (refer to
Figure 2).

xchanges persistent data witl
Database
[Container: SQLite]

Exploit Database Connector

Stores persistent data like exploit data, packet i i
p pl p: App Logic Coordinator [Container: Gif

data, application config, etc. [Container: Python]

Provides Git pull functionality from shared exploit
repository.

Local Filesystem Manages main program flow of Wi-Fied

[Software System]

Provides exploit & packet data to

Provides config data to

Exchanges commands and results

Wi-Fi Packet-Manipulator
[Container: IEEE 802.11]

Linux Terminal
[Software System]

Ansible

[Container: Python Library: ansible-runner]

Provides Wi-Fi packet capturing and

Provides lab setup functionalities. g Fon
manipulation capabilities.

Local terminal of u;

Wi-Fied Platform
[Software System]

~ < . [Wi-Fied Platform runs on Student Device in the Terminal] . -

Student Device

e Runs Attack
N

Victim Device to Wi-Fi AP Connection

Raspberry Pi Victim Device
[acts as AP] [attack target]
Wi-Fi Range
Deployment - Lab Setup Wireless Connections:
----- Blue: Legit Connection
This diagram depicts a possible deployment for the physical = == === Red: Attacker Packets

lab-setup and each devices role and how it connects or

interacts with the Wi-Fied Platorm. "7 °~% Green: Management/Lab-Setup

(not related to attack)
Example scenario: Deauthentication attack. Disruption: Deauthentication

Figure 2.: Conceptual Lab Setup for Deauthentication Attack

In conclusion, building a robust but simultaneously flexible and extensible tool with critical
dependencies towards physical hardware, Wi-Fi standards, and dissimilar runtime environments
is not trivial. However, the practical benefits of an auxiliary tool to enrich existing course material
by bridging the gap between academic study and applied understanding of Wi-Fi security are
advantageous. Future work may include but not be limited to the expansion of exploit scenarios
and feature sets for packet manipulation, the support of more complex exploit demonstrations
with real-time actions, and the addition of a graphical user interface.

iii

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Disclaimer - Intended Use

Wi-Fied is intended exclusively for educational use. It complements existing Wi-Fi security
courses and materials by offering a practical tool for demonstrations and experimentation. Its
purpose is to help learners and professionals better understand Wi-Fi security risks. Any malicious
or unauthorized use is strictly prohibited and not supported by the authors.

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Introduction

Understanding the security of wireless communication systems is an increasingly relevant topic,
as Wi-Fi continues to serve as the backbone for both personal and professional connectivity. This
report introduces the Wi-Fied Platform, a tool designed to support hands-on experimentation
with Wi-Fi vulnerabilities in an educational context. The project combines prior academic insights
with practical implementation efforts and follows a structured development approach to ensure
modularity, usability, and future extensibility. The following sections provide background on the
motivation and context of the work, before detailing its architectural and technical foundations.

Background and Motivation

Wireless networking is a cornerstone of modern connectivity, enabling access to digital services
in homes, businesses, schools, and public spaces. While convenient and widely adopted, Wi-Fi
networks are susceptible to various security vulnerabilities due to legacy protocols, misconfigu-
rations, and evolving attack techniques. As these threats become more complex, the need for
practical education in Wi-Fi security increases.

This project is motivated by the desire to close the gap between theoretical knowledge and
real-world experimentation in this domain. The idea emerged from the team’s earlier academic
work titled “Wi-Fi Security Threats - an Integrative Review” [1], in which the project team
systematically examined and categorized vulnerabilities in Wi-Fi networks. That literature review
contributed a structured understanding of attack types, their technical impacts, and mitigation
strategies, while also exposing a lack of accessible tools for hands-on learning.

The Wi-Fied Platform was developed to address this gap: providing a modular, reproducible lab
environment that supports educational exploration of Wi-Fi attacks and defenses in a controlled
setting. By building directly on the team’s own research, the project translates conceptual insight
into tangible, actionable learning experiences.

Project Aim and Scope

The Wi-Fied Platform was developed to address this gap by creating a modular, extensible toolkit
that enables controlled experimentation with Wi-Fi exploits in a local, lab-based environment.
The platform supports some common attack scenarios out of the box, such as deauthentication
or key reinstallation (KRACK), and is specifically designed to be extensible and easily used in
educational settings.

The primary stakeholders include educators, learners, and developers. Educators benefit from
the tools integration potential into courses and labs, students gain hands-on experience with
realistic network behaviors, and developers or maintainers can extend the platform with new
tools, features, and learning modules.

While the Wi-Fied Platform focuses on a specific hardware and software setup to reduce com-
plexity, it is built with extensibility in mind. It does not aim to replace existing security frame-
works or enterprise-grade simulation environments, but to provide a didactic tool for security
education in a self-contained, reproducible way.

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Methods

At the beginning of the project, an initial evaluation phase was conducted to establish founda-
tional knowledge in Wi-Fi packet capturing and manipulation using Python. This phase built
upon the team’s prior academic work on Wi-Fi vulnerabilities [1], and aimed to assess the practical
feasibility of implementing low-level operations such as packet injection.

Key tools evaluated included Scapy for packet-level control and initially Nornir (later switched
to Ansible) for automation of system-level configuration tasks. The insights gained during this
period informed an early architectural vision, initially shaped by principles from Robert C. Mar-
tin’s Clean Architecture [2]. While this model provided valuable guidelines regarding modularity
and separation of concerns, strict adherence to its layered structure proved impractical in the
face of rapid prototyping and evolving requirements.

As a result, the team adopted a dynamic, iterative development strategy. Features were first
built in self-contained, experimental prototypes to ensure viability and feasibility. Subsequently,
these proof-of-concept implementations were formalized; typically by wrapping system interac-
tions in structured automations and gradually integrating them into the main codebase. Finally,
new additions were tested, refined, and aligned with the platform’s architectural direction.

This cyclical approach (prototype, formalize, integrate, refactor) allowed the project to re-
main agile and responsive, especially when dealing with evolving technical constraints or newly
discovered user needs. Though the architecture underwent significant revisions during develop-
ment, this flexible methodology ultimately led to a coherent, purpose-built design that balanced
maintainability with practical usability.

Results and Lessons Learned

The Wi-Fied Platform demonstrates that a hands-on, modular toolkit for exploring Wi-Fi secu-
rity threats is both feasible and valuable in educational settings. Throughout development, the
project revealed important lessons about balancing extensibility with simplicity, especially when
operating in constrained environments such as Raspberry Pi hardware and limited time budgets.

Working with existing technologies like Python, Scapy, and Nornir (later switched to Ansible)
allowed for faster iteration and a lower entry barrier for learners.

The user testing phase confirmed that the current CLI-based interface is understandable, rea-
sonably usable, and offers sufficient guidance for achieving meaningful results. Minor usability
feedback was collected and implemented, but no critical flaws or design revisions were required.

Overall, the project delivered a foundational platform that can be integrated into practical
Wi-Fi security courses and lays the groundwork for future, more feature-rich iterations. Addi-
tionally, an instructional lab document was written, aiming to be used in a cryptography module
introducing key derivation and KRACK, utilizing the Wi-Fied Platform.

Outlook

While the current implementation fulfills its intended role as a prototype platform for educational
Wi-Fi exploit demonstrations, several enhancements and future directions have been identified.
Enhanced Lab Scenarios and Instructions: Future work may involve refining the instruc-
tional materials and lab exercises to include preconfigured scenarios, sandboxed environments,
and even automated assessment or logging of student results. Scenario-based learning could be
expanded to simulate real-world security audits or Red Team vs. Blue Team activities.
Improved User Interface: While the current CLI is sufficient for early adopters and techni-
cally proficient users, adding an optional graphical interface could improve accessibility, especially

vi

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

for students unfamiliar with command-line workflows. Such an interface could visualize attack
flows, capture results in real time, or assist in scenario configuration.

Hardware Compatibility and Deployment Flexibility: At present, the platform targets
a narrow set of tested hardware. Future development could extend support for a broader range
of USB Wi-Fi adapters and platforms (including virtualized environments or cloud-hosted simu-
lation) to improve scalability and ease of adoption. Integrating hardware checks or compatibility
tests could also reduce setup friction for instructors.

Open Source and Community Involvement: Eventually, the project could be made avail-
able as an open-source resource, inviting contributions from educators, students, and researchers.
This would not only promote sustainability and reuse, but also help in continuously expanding
attack coverage and pedagogical utility.

In conclusion, the Wi-Fied Platform provides a solid starting point for Wi-Fi security education
and experimentation, but its greatest potential lies in future iterations, guided by classroom
experience, evolving threat landscapes, and community feedback.

Structure of This Report

This report is divided into three main parts: An architectural and product-focused documentation
based on the arc42 methodology (Part I), a comprehensive project documentation (Part II),
and various supplementary materials; lab-exercise document, user test protocols (appendix). It
begins with a high-level overview of constraints, goals, and decisions made during the design
and implementation of the platform, and later reflects on lessons learned, evaluation results, and
future directions.

vii

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Acknowledgements

We want to thank our advisor Dr. Daniel Tschudi for his guidance and support throughout the
project, Dr. Olaf Zimmermann for his valuable inputs on architectural design, and Dr. Bernhard
Tellenbach for kindly offering his time and expertise.

Further, we would also like to extend our thanks to the people who supported us during our
project. Special thanks go to our proofreaders; Dr. Arno Wagner and Jan Untersander, as well
as to the test candidates, who helped us improve our tool: Urs Baumann, Ramon Bister, Stefanie
Jager, Dominic Klinger, Fabio Marti, Laura Thoma.

Additionally, we thank the Institute for Network and Security for supporting us with the
acquisition of lab-devices and other hardware.

viii

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Contents
Abstract i
Management Summary i
Disclaimer - Intended Use iv
Introduction v
Background and Motivation Lo Lo v
Project Aim and Scope v
Methods e vi
Results and Lessons Learned vi
Outlook vi
Structure of This Report e vii
Achknowledgements viii
I. Product Documentation 1
1. Introduction and Goals 3
1.1. Quality Goals o e 3
1.2. Stakeholders. 3
1.3. Requirements Overview e 6
2. Constraints 12
2.1. Organizational Constraints 12
2.2. Technical Constraints e 12
2.3. Legal and Ethical Constraints 13
3. Context and Scope 14
3.1. Business Context 14
3.2. Technical Context e 15
3.3. Scope & Minimum Viable Product (MVP) 17
3.4. Out of Scope L e 18
4. Solution Strategy 19
4.1. Technology Selection 19
4.2. TIterative Approach to Implementation 22
5. Building Block View 23
5.1. Whitebox Overall System 23
5.2. Containers (arc42 level 1) 24
5.3. Components (arc42 level 2) 26
5.4. Code e 29

Contents ix

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

6. Runtime View 30
6.1. Runtime Scenario 1 — Pulling Exploits 31
6.2. Runtime Scenario 2 — Lab-Devices Setup, 32
6.3. Runtime Scenario 3 — Sending Packet o0 33

7. Deployment View 34
7.1. Deployment Diagram of a Lab Setup 34
7.2. Hardware Deployment 35
7.3. Internet Connectivity L L 35

8. Crosscutting Concepts 36
8.1. Extensibility Mechanisms Lo 36
8.2. Tooling Integration e 36
8.3. Persistence Strategy 36

9. Architectural Decisions 37
9.1. Y-Statement 1 — Python as Implementation Language 37
9.2. Y-Statement 2 — Standalone CLI Architecture 37
9.3. Y-Statement 3 — Ansible for Automated Setup 38
9.4. Y-Statement 4 — Scapy for Packet Manipulation 38
9.5. Y-Statement 5 — SQLite for Persistent Storage 39

10. Quality Requirements 40
10.1. Non-Functional Requirements (NFR) 40
10.2. Quality Scenarios 41
10.3. Quality Tree L o 43
10.4. Quality Assuranceo 44

11.Risks and Technical Debt 45
11.1. Technical Risks 45
11.2. Technical Debts o 46

12.Glossary 47

Il. Project Documentation 49

1. Bachelor Project Assignment 50

2. Project Plan 51
2.1. Target Group Declarationo 51
2.2. Project Resources L 51
2.3. Rough Planning e 53
2.4. Project Achievements 54

3. Project Risks 55
3.1. Risk Management 95
3.2. Risk Matrix 56
3.3. Precautionary Actions 56
3.4. Risk Occurrence and Mitigationo 57

Contents X

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

4. Quality Measures 58
4.1. Code Quality 58
4.2. Usability Testing through User Tests 59

5. Team & Project Organization 61
5.1. Project Management Methods oL 61
5.2. Tools and Resources e e 62
5.3. Task Allocation, Meetings and Communication 62
5.4. Time Tracking e 63
5.5. Roles e 64

6. Conclusion 65
6.1. Results and Lessons Learned oL 65
6.2. Outlook e 65

List of Figures 67

List of Tables 68

References 69

Contents Xi

Part |I.

Product Documentation

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Architectural Documentation Approach

This product documentation outlines the architecture of the Wi-Fied Platform based on the well-
established arc42 template [3], by Dr. Peter Hruschka, Dr. Gernot Starke and contributors.
All twelve chapters of the template were adapted accordingly to fit the educational scope and
technical scale of the project. Given Wi-Fied’s focused domain, some architectural views are
treated with less depth to maintain clarity and relevance.

This pragmatic use of arc42 supports the platform’s goal: To educate users about Wi-Fi vul-
nerabilities through a modular, extensible, Python-based system.

Note: The product documentation is self-contained and serves as a standalone reference for the
architectural design of the Wi-Fied Platform.

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

1. Introduction and Goals

The primary goal of the project around Wi-Fied Platform is to develop an educational tool
that complements existing Wi-Fi security courses and materials by adding a practical tool for
demonstrations and experimentation. Its purpose is to help learners and professionals better
understand Wi-Fi security risks.

By following a modular and extendable design approach, the Wi-Fied Platform aims to sup-
port practical cybersecurity awareness using accessible, open-source technologies on affordable
hardware like the Raspberry Pi while being adaptable and extendable in future settings.

1.1. Quality Goals

The top three quality goals are briefly described in Table 1.1. These have the highest importance
for the success of the project and are distilled from the project assignment and requirements. For
more details refer to chapter 10.

Prio Quality Description

1 Usability & The educational context for the Wi-Fied Platform defines the most
Learnability important quality goal: Ease of use and focus on learning.
Functionalities of the Wi-Fied Platform should be comprehensive and
students familiar with CLI-tools should be able to use it within 10
minutes.

2 Extensibility = The architecture of the platform should follow design principles to
support future extension.

3 Modularity The platform should follow a modular design, allowing future
modification.

Table 1.1.: Top quality goals

1.2. Stakeholders

All the important stakeholders of the Wi-Fied Platform project are listed in Table 1.2. Further-
more, prior to implementation of the project proto personas were defined to further specify the
needs and requirements of users in more details.

1. Introduction and Goals 3

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

1.2.1. Stakeholder Overview

List of all relevant stakeholders with their respective role, interests, goals, and requirements.

Stakeholder Role / Description Interests / Goals

Educators / Use the tool to teach Hands-on tool to demonstrate attacks with integration

Instructors Wi-Fi security topics into teaching plans (simplicity, reproducibility, clear

documentation)

Students / Learners Target audience for Practical experience, easy setup, exploratory learning
education on Wi-Fi (usability, understandable scenarios, potential for
vulnerabilities and experimentation)
defenses

Tool Maintainers / Extend or maintain the Code quality, extensibility, maintainability (clean
Developers * codebase architecture, modularity, documentation)

Table 1.2.: Stakeholder Overview

*Tool Maintainer / Developer roles may also be taken up by Educators / Instructors or Students
/ Learners, when they adapt or change the tool to suit their needs.

1.2.2. Proto Personas

The following proto personas describe the main target users of the Wi-Fied Platform. These
complement the overview of the stakeholders. The first proto persona in Table 1.3 characterizes
a standard user.

Proto Persona 1 — Learner

Name Steve Smith
Role/Occupation Student or course participant with I'T background
Goals Persona wants to run their own experiments with real hardware and

receive instructions on how to do so.

Challenges/Pain-points Persona is interested to learn more about Wi-Fi security but struggles
to find praxis-oriented resources encouraging experimentation with
realistic scenarios.

Learning preferences Prefers experiment-like, hands-on learning and concise, structured
instructions.

Usage context Studies or takes part in a course with high information density over a
short time.

1. Introduction and Goals 4

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Proto Persona 1 — Learner (continued)

Table 1.3.: Proto Persona 1

A more specialized user is characterized by the second proto persona in Table 1.4.

Proto Persona 2 - Educator

Name Danny Davis
Role/Occupation Lecturer or course instructor at educational institution
Goals Persona wants to complement their theoretical course materials with

experiment-like, hands-on exercises.

Challenges/Pain-points To conduct realistic and insightful exercises requires a lot of time and
preparation.

Work preferences Prefers to have a collection of ready-to-run scenarios at their disposal,
with the ability of easy modification and flexible future extension.

Usage context Works in a fast-paced institution in need of multi-modal teaching aids.

Table 1.4.: Proto Persona 2

1. Introduction and Goals 5

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

1.3. Requirements Overview

Use cases were specified to describe key features of the Wi-Fied Platform project. Each describes a
specific need of a user. The projects Context and Scope which also outlines the Scope & Minimum
Viable Product (MVP) is based on those use cases.

Note: The use cases were defined at the beginning of the project and were gradually updated to
reflect the evolution of the project.

1.3.1. Use Case Diagram

The use case diagram in Figure 1.1 shows the user interaction with the application and how it
should respond.

Show Exploit

- << extend >>- -)
' exten Settings

Customize Exploit
Data

Send Packets to

Execute an Exploit

Configure
Lab-Devices

Load Exploit

*r<<include >>- Settings

>io

Student

Get Exploit
Settings Locally

Y

|
<<include >>
;

Settings

Q Add Exploit

Instructor Wi-Fied Platform

Figure 1.1.: Use Case Diagram

1. Introduction and Goals 6

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

1.3.2. Fully Dressed Use Cases

All use cases were defined as fully dressed use cases. They describe the basic user interactions
with the application and define the criteria for the minimum viable product.

Fach use case describes the main success scenario in the form of a step-by-step flow. Some
require specific pre-conditions. Alternative flows are additionally formulated in use cases, where
the main success scenario might not always be expected to work out. In those cases, the alternative
flows are intended to provide alternate ways to fulfil (possibly via detour) the user needs.

Use Case 1 - Basic Use of the Wi-Fied Platform

Applies to Wi-Fi Educational Platform
Level User goal
Primary actor Student

Stakeholders & Interests

Student: Wants to launch the Wi-Fied Platform and learn about its features.

Pre-conditions

None.

Success guarantee (post-
conditions)

Help command intuitively guides the user.

Main success scenario

1. Student launches the Wi-Fied Platform.
2. CLI shows up.
3. The help-command is used by the student.

4. Student learns about the possible commands.

Special requirements

None.

Open issues

None.

Table 1.5.: UC1

Use Case 2 - Enable Monitor Mode

Applies to Wi-Fi Educational Platform
Level User goal
Primary actor Student

Stakeholders & Interests

Student: Wants to configure a Wi-Fi interface in monitor mode.

Pre-conditions

The platform is running (UCT).

Success guarantee (post-
conditions)

A Wi-Fi interface is set up in monitor mode and able to send raw IEEE 802.11
traffic.

Main success scenario

1. Introduction and Goals

1. User provides a monitor mode capable interface.
2. User uses the command to set the interface in monitor mode.

3. The system processes the config and sends it to the devices.

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

Use Case 2 - Enable Monitor Mode (continued)

4. The devices apply the config and return the result to the system.
5. The system provides the result of the tasks to the user.

Alternative flows

Alt3a: The config does not exist:

1. An error message is shown to the user explaining the issue.

2. The user identifies the problem and possibly returns to step 1 or 2 of the

main success scenario.
Alt3b: A connection error occurs:

1. An error message is shown to the user explaining the issue.

2. The user identifies the problem and possibly returns to step 1 or 2 of the

main success scenario.
Altda: The config is invalid or cannot be applied:
1. An error message is shown to the user explaining the issue.

2. The user corrects the config and returns to step 2 of the main success
scenario.

Special requirements

Wi-Fi adapter that supports monitor mode.

Open issues

Check if the Wi-Fi adapter supports monitor mode.

Table 1.6.: UC2

Use Case 3 - Distribution of Exploits

Applies to

Wi-Fi Educational Platform

Level

User goal

Primary actor

Instructor & Student

Stakeholders & Interests

Instructor: Wants to distribute predefined exploits through a centralized
system.

Student: Wants to have new exploits.

Pre-conditions

The platform is running (UC1I).

Success guarantee (post-
conditions)

Exploits can be distributed.

Main success scenario

1. Instructor uploads exploits to a centralized system.
2. User issues a command in Wi-Fied to get exploits.

3. The system connects to the centralized system and downloads exploits
locally.

Alternative flows

1. Introduction and Goals

Alt3a: Connection fails:

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

Use Case 3 - Distribution of Exploits (continued)

1. The system informs the user about the issue and returns to await further
commands by the user.

Special requirements

Device on which student runs Wi-Fied Platform has internet access.

Open issues

None.

Table 1.7.: UC3

Use Case 4 - Configure Lab-Devices

Applies to Wi-Fi Educational Platform
Level User goal
Primary actor Student

Stakeholders & Interests

Student: Wants to set up the experiment and configure the devices.

Instructor: Wants to create a new setup and test it beforehand.

Pre-conditions

Exploits were downloaded locally (UCS8) and an exploit was selected to load.

Success guarantee (post-
conditions)

The experiment is set up and configured.

Main success scenario

. User sets up the experiment and connects all devices.

. User uses the command to start the setup.

1
2
3. The system processes the config and sends it to the connected devices.
4. The devices apply the config and return the result to the system.

5

. The system provides the result of the tasks to the user.

Alternative flows

Alt3a: The config does not exist:
1. An error message is shown to the user explaining the issue.

2. The user identifies the problem and possibly returns to step 1 or 2 of the
main success scenario.

Alt3b: A connection error occurs:
1. An error message is shown to the user explaining the issue.

2. The user identifies the problem and possibly returns to step 1 or 2 of the
main success scenario.

Altda: The config is invalid or cannot be applied:
1. An error message is shown to the user explaining the issue.

2. The user corrects the config and returns to step 2 of the main success
scenario.

Special requirements

The hardware required for the experiment setup is available.

1. Introduction and Goals

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Use Case 4 - Configure Lab-Devices (continued)

Open issues Incompatibilities with hardware, drivers, service- or OS-versions. Raspberry Pi
recommended, others are out of scope.

Table 1.8.: UC4

1. Introduction and Goals 10

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

Use Case 5 - Send Packets

Applies to Wi-Fi Educational Platform
Level User goal
Primary actor Student

Stakeholders & Interests

Student: Wants to execute an exploit.

Pre-conditions

Exploits were downloaded locally (UCS8) and an exploit was selected to load
which contains packet data.

Success guarantee (post-
conditions)

The packets are sent out, possibly executing an exploit.

Main success scenario

1. User uses the command to send packets including the packets’ id.

2. The system loads the packets from the database, builds them and sends
them out.

3. The system reports to the user that the packets were sent successfully.

Alternative flows

Alt2a: Packet ids do not exist:

1. The system ignores the ids which do not exist and only continues with the
ones that do.

Alt3b: The packets cannot be built:
1. An error message is shown to the user explaining the issue.

2. The user corrects the packet data and returns to step 1 of the main success
scenario.

Alt4a: The packets cannot be sent:
1. An error message is shown to the user explaining the issue.

2. The user identifies the problem and returns to step 1 of the main success
scenario.

Special requirements

Root privileges are needed to send packets.

Open issues

Sending of raw Wi-Fi packets on Windows is very limited and therefore not
supported by Wi-Fied Platform (out of scope).

1. Introduction and Goals

Table 1.9.: UC5H

11

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

2. Constraints

This chapter outlines boundary conditions that significantly influenced architectural decisions
throughout the project. These include both organizational factors and technical limitations that
were either externally imposed or emerged during development.

2.1. Organizational Constraints

This section describes non-technical conditions that impacted the project, such as institutional
requirements, collaboration structures, and time or resource limitations. These factors were often
outside the development team’s control but shaped the scope and pace of the work.

2.1.1. Educational Scope

The tool is designed strictly for educational purposes, not for offensive or production use. The
main focus is on didactic value and low barriers of entry. Wi-Fied Platform should enable junior
IT professionals or students to easily familiarize themselves with the tool’s usage.

The platform should also be focussing on extensibility. The number and complexity of prede-
fined exploits may be limited, because targeting the future expansion as the overreaching goal is
prioritized.

2.1.2. Time and Resource Limitations

The project is developed by a two-person team, each with a time budget of around 360 hours.
As a bachelor thesis, the project is bound by academic scope and requirements. In addition to
implementation work, it involves substantial non-technical tasks such as presentations, supple-
mentary hand-ins (e.g., brochure abstract, poster), and written self-reflection. Limited time and
team size naturally restrict the overall project scope.

Due to those limitations, the team focuses on creating a platform that is extendable in the
future.

2.2. Technical Constraints

Here, we detail technology-related limitations such as library or protocol constraints, and avail-
ability of supported hardware. These technical boundaries restricted design choices and affected
implementation decisions directly.

2.2.1. Programming Language and Feature-Set

A commonly known ecosystem, actively maintained and equipped with strong functional abilities
(or given appropriate extensibility of such through purpose-made libraries) should be chosen for
the project. Exotic, highly specialized tools should be avoided, since the project is set out to
minimize barriers for learners using the Wi-Fied Platform, or educators who intend to expand its
features.

More details on the selected tools and their benefits as well as drawbacks are listed in chap-
ter 4, Solution Strategy.

2. Constraints 12

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

2.2.2. Supported Hardware

To reduce complexity and ensure a manageable development scope, the project team has de-
liberately limited hardware support to a predefined set of lab devices. This artificial constraint
focuses the initial implementation on cost-effective, widely available hardware (such as Raspberry
Pi boards and compatible Wi-Fi adapters) commonly used in educational setups. While the tool
is designed to be extensible and not inherently tied to specific hardware, broader compatibility
across different devices, operating systems, or platforms was not evaluated or tested within the
scope of this first iteration.

For details on the supported hardware refer to the described hardware in chapter 4, Solution
Strategy.

2.3. Legal and Ethical Constraints

The project is considered to take place in an educational and non-malicious context only and
adheres to these rules:

e No Malicious Use: Wi-Fied Platform must not be used outside controlled lab environ-
ments.

e Compliance with Laws: Wi-Fied Platform must not violate Wi-Fi communication laws
or ethical guidelines.

Wi-Fied is intended exclusively for educational use. It complements existing Wi-Fi security
courses and materials by offering a practical tool for demonstrations and experimentation. Its
purpose is to help learners and professionals better understand Wi-Fi security risks. Any malicious
or unauthorized use is strictly prohibited and not supported by the authors.

2. Constraints 13

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

3. Context and Scope

3.1. Business Context

The business context of the application is depicted in Figure 3.1 with external systems and
interactors. The scope of the system and any interacting neighboring systems are shown. Users
and their interactions with the system complete the context diagram. In general, the system
is isolated from any critical outside factors (such as existing legacy-systems or adjacent prod-
environments), due to the nature of being an experimental, controlled lab-environment in which
it operates.

Student

[Person]

User of the Wi-Fied Platform

Loads and runs
exploits using

Network Devices (Lab

Wi-Fied Platform .
[Software System] Environment)

[Software System]

Allows user to load and run Wi-Fi exploits in a . . .
Prepares new labs lab environment Devices which can be configured by the user to
using create a test environment.

Instructor

[Person] Pulls exploits from
Maintainer of the Wi-Fied Platform

Pushes new
exploits to

Exploit Database (Git)
[Software System]

Stores the exploits which can be run by the user.

[System Context] Wi-Fied Platform

The system context diagram for the Wi-Fied Platform, an educational platform to run Wi-Fi related exploits.

Figure 3.1.: System Context Diagram - C4 model diagram-style, level 1

The interactors and external systems as seen in the diagram are described in more detail in
the following Table 3.1.

3. Context and Scope 14

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Neighbor Description

Student Uses Wi-Fied Platform to experiment with Wi-Fi exploits and
vulnerabilities. Wants to try out new exploits in a controlled environment.

Instructor Extends the available exploits and adjusts configurations as necessary. Is
able to push new exploits to the Exploit Database. Wants to have an
extendable platform.

Exploit Database = Provides a set of predefined exploits to the Wi-Fied Platform.

Network Devices Provides the necessary hardware-infrastructure for the controlled
environment in which the Wi-Fied Platform executes exploits and
experiments.

Table 3.1.: Interactors and External Systems of the Business Context

3.2. Technical Context

Apart from the inner workings of the Wi-Fied Platform, the context with the lab-setup including
physical devices is important to mention when highlighting the technical context. In the following
an exemplary lab-setup for the Wi-Fied Platform is described.

The setup is heavily influenced by the exploit scenario that is being experimented on, which
can require different devices and configurations. For the understanding of the technical context
of the Wi-Fied Platform it is sufficient to illustrate the lab-setup without every specific detail.
Because of that, the diagram only hints towards the lab-setup depicted as a black box.

The following Table 3.2 provides an overview of the different items depicted in Figure 3.2 below.

Neighbor Description

Internet Services Wi-Fied Platform requires an internet connection on the system it is used.
The Exploit Repository (Git-based) and package managers may be used in
certain scenarios.

Student Device A computer which is Linux-based to run the tool on. Root privileges are
required to use all features.

Example of a Raspberry Pi computers fulfill the roles required for the experiments.

Lab-Setup They need to be reachable from the Student Device via SSH. The involved

physical devices vary depending on the given scenario.

Table 3.2.: Exemplary Technical Lab-Setup Context

3. Context and Scope 15

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Figure 3.2 illustrates how the context of the Wi-Fied Platform may look like, when deployed in
a lab constellation.

Wi-Fied Platform
[Software System]
Allows user to load and run Wi-Fi exploits in a
Internet Access lab environment.
® for Student Device
Ap =
= * Runs the Wi-Fied Platform locally
Internet Access:
- Exploit repository (git)
- Package managers (e.g. apt, uv)
Student Device
* [Linux]
Internet Connectivity ™, IP connectivity WLAN/LAN to lab-devices:
for Lab-Devices N - Sends configurations [SSH]
(if required) Y - Captures Wi-Fi traffic and/or sends forged packets
‘\‘ [USB Wi-Fi adapter, monitor mode]
. - Management connections [SSH]
v

Raspberry Pi
[Acting as Access

Point] WET

WiFi

Wi-Fi

Raspberry Pi's - D Personal Computer

[Acting as Client] [Acting as Client]

Mobile Device
[Acing as Client]

Lab-Setup with Physical Hardware
[Example illustration]

Figure 3.2.: Lab-Setup Context Diagram

3. Context and Scope 16

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

3.3. Scope & Minimum Viable Product (MVP)

The initial release of the Wi-Fied Platform is considered feature-complete and usable once the
following Minimum Viable Product (MVP) criteria are met. These criteria reflect a baseline of
functional and architectural capabilities required to support the educational goals of the project
and form the foundation for future extensibility.

3.3.1. MVP Criteria

1. User Interaction

o The Wi-Fied Platform must provide a user-friendly user interface (e.g., CLI) allowing
users to set up lab-devices, run exploits, and manage configurations.
o Interaction must support guided help (e.g., —help) and structured argument input.

2. Lab-Setup Automation

o Users must be able to define custom scripts / instructions to automatically set up
lab-devices (e.g., Nornir / Anisble).

o The Wi-Fied Platform must support executing these setup scripts / instructions di-
rectly against connected lab hardware, with success/failure feedback visible to the
user.

3. Assistance for Monitor Mode Support

e The Wi-Fied Platform must assist the user in enabling monitor mode on supported
interfaces.

4. Predefined Exploit Scenarios

e One working exploit scenarios must be available out-of-the-box.
e These scenarios must be executable with minimal configuration and serve demonstra-
tive educational purposes.

5. Extensibility for Custom Exploits

o Users must be able to define and integrate new exploit scenarios without modifying
core application code (e.g., dynamic packet building).

e The tool must support pulling externally maintained exploit configurations from a Git
repository and loading them for use in the app.

6. Extensible and Modular Architecture

e The system architecture must follow a modular and loosely coupled design to support
future enhancements.

o Each major functional domain (e.g., packet manipulation, and setup automation) must
be encapsulated in a separate, well-defined module or component.

o The architectural structure must be documented (e.g., via arc42 and C4 Model dia-
grams).

3. Context and Scope 17

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

3.3.2. Related Use Cases

The aforementioned criteria for MVP can be linked directly to use cases derived from the re-
quirements. In the following Table 3.3 this mapping is completed by also adding relevant related
quality attributes to each entry.

For details on use cases refer to section 1.3, or for quality attributes refer to column Quality in
Table 10.5.

MVP Criterion Related Use Cases Related Quality
Attributes
1. User Interaction (CLI UC1: Basic Use of Wi-Fied Ease of Use, Learnability,
Interface) Platform Consistency
2. Lab-Setup Automation UC4: Configure Lab-Devices Idempotence, Scriptability,
Portability
3. Monitor Mode UC2: Enable Monitor Mode Reliability, Performance
4. Predefined Exploit UC5: Execute Exploit Extensibility, Simplicity
Scenarios
5. Custom Exploits via Git UC3: Pull from Exploit Extensibility,
Repository Maintainability
6. Modular Architecture Cross-cutting (all use cases) Modularity, Reusability

Table 3.3.: MVP Criteria Mapping

3.4. Out of Scope

The project primarily confines itself to the criteria listed in section 3.3.

Out of scope are:

e Hardware for lab-setups, other than mentioned in subsection 4.1.8, and subsection 4.1.9.
Due to the project constraints as well as due to the challenging nature of the environment,
which the Wi-Fied Platform operates in (hardware proximity), no guarantees regarding
compatibility or feature-availability are covered by the project.

e Host systems, other than Debian or Ubuntu based Linux, to run the Wi-Fied Platform
on. This is because of limitations of available package managers required by the Wi-Fied
Platform.

e All-in-one solution for teaching, experimenting, and execution of exploits. Wi-Fied Platform
serves as a helpful tool to complement existing teaching materials. It is not expected to
provide a rich catalog of ready-to-go lab experiences for experimenting with exploits, because
the project mainly aims to build an extensible platform.

3. Context and Scope 18

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

4. Solution Strategy

High level summary of the fundamental technological decisions and an explanation of the general
approach to the project’s implementation, with broad architectural consequences.

4.1. Technology Selection

The selection of technologies for the Wi-Fied Platform was guided by practical considerations and
prior experience. Whenever feasible, tools and languages already familiar from earlier coursework
(such as Python and the Scapy library) were preferred to reduce overhead and speed up prototyp-
ing. This allowed the team to focus on solving domain-specific challenges rather than spending
time learning new frameworks. On the hardware side, technology choices were shaped by the con-
straints outlined earlier in subsection 2.2.2, prioritizing accessible, well-documented components
to ensure reproducibility in educational lab environments.

4.1.1. Programming Language Python

The project requires a programming language with libraries that support packet creation and
capturing. Python [4] was chosen due to its regular update cycles and wide community supported
libraries.

Benefits

o Accessibility for learners:
The target audience is likely familiar with Python programming. This lowers the barrier
of entry and allows users to focus on understanding security concepts rather than language
quirks.

o Wide adoption and rich ecosystem:
Users benefit from learning in a widely-used ecosystem. Several key functionalities of the
project depend on specialized libraries, for example Scapy for packet manipulation (more
details below).

e Strong community and resources:
Documentation and community support are abundant, which helps when extending the tool
in the future.

Drawbacks

e Performance limitations:
Python is slower than compiled languages like Go. This might be noticeable in time-critical
operations, though it is unlikely to be a major issue in an educational setup.

o Packaging and deployment complexity:
Native dependencies (installed packages on target system) or privileged operations like
monitor mode might be challenging to predict, due to limited control over target system
hardware. Although, project and dependency managers (such as UV) greatly simplify the
setup.

4. Solution Strategy 19

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

4.1.2. Scapy

Scapy [5] is required to capture, decode, and forge packets. In the context of the Wi-Fied Platform,
it handles all interactions with actual Wi-Fi packets.

Benefits

o Supports 802.11 (Wi-Fi):
Full control over packets down to the byte level, which is ideal to demonstrate vulnerabilities.
Native support for crafting and parsing 802.11 frames makes it suitable for Wi-Fi exploits
and attack simulations.

o Flexible and extensible:
Existing layers can be modified to explore advanced network behavior. Integrates seamless
into Python workflows, allowing automation.

Drawbacks

o Requires root privileges:
Sending and sniffing raw packets usually needs elevated permissions, which can be an ad-
ditional hurdle.

¢ Inconsistent support for complex Wi-Fi setups:
Some features or encrypted frames require manual effort or external tools (e.g., aircrack-ng).
Differences between Scapy and Wireshark interpretations can lead to trial and error when
analyzing packet fields.

4.1.3. Ansible Runner

The anisble-runner [6] library offers a stable and consistent interface abstraction for Ansible. See
subsection 4.1.6 for details.

4.1.4. SQLAIchemy

SQLAlchemy [7] is a Python library that abstracts database interactions. In the Wi-Fied Plat-
form, it is used to manage entity storage and retrieval utilizing a SQLite database. For details
see subsection 4.1.5.

4.1.5. SQLite

To persist data inside the application, a simple file-based database system with low overhead like
SQLite [8] proofed to be a sufficient solution.

Benefits

e Lightweight and self-contained:
No server setup required and easy to integrate (just a file, no services to manage). Ideal for
simple deployment on local machines.

o Sufficient for small-scale use:
Perfect for local state, configs, or storing exploits and user settings in a lab setup.

e Good Python support:
Comes with the standard library (sqlite3) and works well with ORMs like SQLAlchemy.

Drawbacks
¢ Unsuited for concurrent access, limited scalability, fewer advanced features, all data is local:
All drawbacks are outweighed by the benefits for this specific application in the Wi-Fied
Platform. Performance may be impacted on bigger scales, but this should not be a relevant
factor in this project.

4. Solution Strategy 20

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

4.1.6. Ansible

Ansible [9] automates the configuration, deployment, and management of systems using agent-
less playbooks. In the context of the Wi-Fied Platform, it handles the setup and configuration of
the associated hardware components.

Benefits
e Agent-less:
Requires no software to be installed on the managed devices, SSH connectivity is enough.
e Idempotent:
Ensures that tasks can be run multiple times without changing the system unless necessary.
o Extensible and well-integrated:
Supports custom modules and plugins, suitable for tailored educational setups. It is Python-
based and uses the declarative markup language YAML to describe the desired state of
devices, which is both readable and again familiar to the target audience.

Drawbacks
o Debugging:
Troubleshooting can be hard, especially with complex custom playbooks.
e Limitations:
Some native features may not be directly available because of the use of Python library
ansible-runner.

4.1.7. Git and GitLab

Distributed source code management with git [10], utilizing GitLab instance of OST [11].

Git was used to version control code and pull playbooks and exploit configurations from GitLab.
This integration supports easy extensibility and a clear separation between application logic and
content.

Benefits
o Distributed version control:
Supports powerful workflows (e.g., branching and merging) and integrations (CI/CD pipelines)
both during development and for the exploit repository.
o Well-established and widely adopted:
Git is a well established tool for version control, ensuring broad compatibility and developer
familiarity. The target audience is expected to be familiar with it.

Drawbacks
e Not ideal for large binary files:
Should pose no problems for the Wi-Fied Platform currently, because all exploit configs are
text-based files (e.g., YAML). May become relevant with future expansion, depending on
features (e.g., deploying different revisions of PDF guides through the exploit repository).

4.1.8. Raspberry Pi 5

Raspberry Pi 5 for hardware lab-devices [12].

Chosen for their affordability, availability, and strong community support. Their small form
factor and Linux-based OS make them ideal for flexible, reproducible lab setups involving low-
level networking tasks.

4. Solution Strategy 21

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

Benefits
o Cost-effective:
Raspberry Pi 5 is an affordable hardware solution, making it ideal for educational projects.
e Compact form factor:
Its small size allows for easy deployment in tight spaces or mobile setups.
e Community support:
A large user community provides a wealth of resources, guides, and troubleshooting help.
The target audience is likely to be familiar with Raspberry Pi as well.

Drawbacks
e Lack of enterprise-level features:
Not suitable for large-scale, enterprise-level Wi-Fi security testing. Network or Wi-Fi spe-
cific features not natively supported requires software substitution of such functionalities.

4.1.9. Linksys AE3000 Wireless USB adapter

Wi-Fi USB-adapters from Linksys (model AE3000) [13] are used for traffic capture and monitor
mode.

For the lab setup with Raspberry Pi’s some additional Wi-Fi interfaces are required (e.g., when
configured as access point or in monitor mode).

Benefits
o Availability:
Linksys AE3000 is already in stock at the network lab of OST. Because of this availability
it is suited well for this educational purpose.
e Specifications:
Supports 802.11 a/b/g/n wireless standards and operates on 2.4 or 5 GHz frequencies.
Works in monitor mode.

4.2. lterative Approach to Implementation

As a precursor to the implementation of the project an evaluation period was held to work out
the basics of Wi-Fi packet capture and manipulation in Python. This evaluation was based on
prior research which the team already had a chance to familiarize themselves with in a previous
work [1]. After the completed evaluation a rough idea of a suited software architecture for the
project was formed based on the book 'Clean Architecture: A Craftsman’s Guide to Software
Structure and Design’ by Robert C. Martin [2].

However, as the project evolved and the architecture changed drastically multiple times, the
team developed a more dynamic iterative approach. In the case of the Wi-Fied Platform it was
found, that the general ideas of architecture design are a good guideline. But in order to keep
rapid prototyping and continuous improvement of the Wi-Fied Platform codebase viable, the
attempt to follow strict patterns was abandoned.

Many of the features where implemented in a few rudimentary steps; First, getting the thing up
and running in a standalone / prototype(-ish) setting. Then formalization (e.g., creating repeat-
able automations through Ansible) of the ingredients and integration into the Wi-Fied Platform.
Finally, testing and refactoring of the new additions.

This approach proved its value over time. An initially high effort of getting the project off the

ground and intense refactoring of core components have lead to a purpose-built and well-suited
architecture.

4. Solution Strategy 22

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

5. Building Block View

The building block view describes the architecture of the Wi-Fied Platform in more detail. Here
the decomposition of the overall system is documented, breaking it up in layers.

For the visual representation of the architecture in the form of diagrams the style of the
C4 model [14] was chosen, because it offers a clean design template. Due to this choice the dif-
ferent levels of the architecture diagrams primarily follow the naming notation of the C4 model.
However, since this documentation is oriented alongside the arc42 template, references to the
corresponding nomenclature in arc42 are given consistently.

The container- (level 1 in arc42) and component-diagrams (level 2 in arc42) follow in their
hierarchical order.

5.1. Whitebox Overall System

The top-level Context view (or Scope & Context in arc42) has already been addressed with
the diagram in Figure 3.1, which for readers convenience is here shown again (Figure 5.1). It
contains the Wi-Fied Platform software system as a blackbox and shows its external software
system dependencies.

Student

[Person]

User of the Wi-Fied Platform.

Loads and runs
exploits using

Network Devices (Lab

Environment)
[Software System]

Wi-Fied Platform

[Software System]

Allows user to load and run Wi-Fi exploits in a . .
Prepares new labs lab environment. Devices which can be configured by the user to
using create a test environment.

Instructor
[Person] Pulls exploits from

Maintainer of the Wi-Fied Platform

Pushes new
exploits to

Exploit Database (Git)
[Software System]

Stores the exploits which can be run by the user.

[System Context] Wi-Fied Platform

The system context diagram for the Wi-Fied Platform, an educational platform to run Wi-Fi related exploits.

Figure 5.1.: System Context Diagram (repetitive) - C4 model diagram-style, level 1

5. Building Block View 23

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

The overall system whitebox contains the following blackboxes. External software systems (gray
boxes in Figure 5.1) will not be covered in more details.

Blackbox Name Responsibility
Wi-Fied Platform/Software Extensible platform for educational Wi-Fi security learning.
System]

Network Devices/ext. Software Physical hardware setup for lab-devices.
System]

Exploit Database/ext. Software Git repository stores predefined exploits.
System]

Table 5.1.: Contained Blackboxes in the Overall System

5.2. Containers (arc42 level 1)

The containers (or building block view level 1 in arc42) of the Wi-Fied Platform are shown in
the following diagram, styled according to the C4 model. It is a zoomed-in view into the Wi-Fied
Platform software system as depicted in Figure 3.1 and reveals it as a whitebox.

Linux Terminal Lab-Hardware Configurator

[Software System] Exchanges commands and results with [Container: Ansicie] Contigures

ninal Provides lab setup functionalities.

Network Devices (Lab
Environment)
[Software System]

Provides config data to

App Logic Coordinator
[Container: Python]
Exchanges persistent data wit

Manages main program flow of the Wi-Fied
Provides exploit & packet data to

Wi-Fi Packet-Manipulator
Instructor [Container: IEEE 802.11] Conducts experiments with
Database [SSH]

[Container: SQLite] Accesses.

P Wi-Fi packet capturing and
ipulation capabilities.

Stores persistent data like ata, packet
ata, application c.

Local Filesystem

|Software System] Exploit Database Connector

[Container: Gif]

Provides Git pull functionality from shared exploit|

Wi-Fied Platform
[Software System]

Pushes new
exploits to
Exploit Database (Git)

[Software System] Fetches exploits from
(Git)

exploits by

[Containers] Wi-Fied Platform

The container diagram for the Wi-Fied Platform.

Figure 5.2.: Container Diagram - C4 model diagram-style, level 2

5. Building Block View 24

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

The container diagram (level 1 in arc42) Figure 5.2 contains the following containers as blackboxes.
External software systems (gray boxes) will not be covered in more details.

Blackbox Name Responsibility

App Logic Coordinator Essential central container of Wi-Fied.

Lab-Hardware Configurator Controls and configures physical hardware (Ansible).
Wi-Fi Packet-Manipulator Provides Wi-Fi packet capture and manipulation (Scapy).
Exploit Database Connector Stores predefined exploits (GitHub/GitLab).

Linux Terminal/ext. Software Host where the Python app runs and user interacts.
System/

Local Filesystem/ext. Software On the host where the Python app runs.
System]

Table 5.2.: Blackboxes in Wi-Fied Platform Software System

5.2.1. App Logic Coordinator

The App Logic Coordinator container is the most important part of the Wi-Fied Platform software
system and is broken up further into its components in section 5.3.

Purpose/Responsibility: The App Logic Controller is responsible for the processing of user
inputs, the controlling of program flows, the management of configurations, and the interac-
tions with neighboring containers (such as the Lab-Hardware Configurator or the Wi-Fi Packet-
Manipulator).

5.2.2. Lab-Hardware Configurator
The Lab-Hardware Configurator interfaces with the physical hardware for the lab-setup.

Purpose/Responsibility: The Lab-Hardware Configurator is responsible for automated config-
uration and setup of the devices. It sends configs and controls matching the desired behavior/roles
of the devices depending on the selected exploits/usecases. This is achieved with Ansible (see
subsection 4.1.6).

Because this container builds up on Ansible features and mechanisms (such as playbooks, invento-
ries), there will be no further breaking up into components in this documentation. See Ansible [9]
and ansible-runner [6] documentations for further technical details.

5.2.3. Wi-Fi Packet-Manipulator
The Wi-Fi Packet-Manipulator interacts with Wi-Fi (IEEE 802.11) packets.

Purpose/Responsibility: The Wi-Fi Packet-Manipulator is responsible for capturing, manip-
ulating, and sending Wi-Fi packets on the lab wireless network. It utilizes Scapy (see subsec-
tion 4.1.2) to fulfill its Responsibilities.

Because this container builds up on Scapy, there will be no further breaking up into components
for it in this documentation. See the Scapy documentation [5] for further technical details.

5. Building Block View 25

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

5.2.4. Exploit Database Connector

The Exploit Database Connector provides Git pulling abilities to download predefined exploits
from a shared repository.

Purpose/Responsibility: The Exploit Database Connector is responsible for pulling existing
exploits from a repository. It utilizes Git (see subsection 4.1.7) and the GitPython library.
Because this container builds up on Git and GitHub/GitLab technology, it will not be broken
down into components for this documentation. See Git [10] and GitPython [15] for technical
details.

5.3. Components (arc42 level 2)

All the components (or building block view level 2 in arc42) of the Wi-Fied Platform are shown
in the following diagram, styled according to the C4 model. Zooming further into the App Logic
Coordinator container of the previous diagram Figure 5.2 reveals it as a whitebox.

The App Logic Coordinator is the functionally most important and architecturally interesting
container of the Wi-Fied Platform software system. Because of its central position it was broken
down into its components in this section. All distinct parts of the Wi-Fied Platform functionalities
become visible at this level and an overview is given. The components and their respective
interactions within Wi-Fied Platform and to external software systems are explained.

Linux Terminal Lab-Hardware Configurator
[Software System] [Container: Ansi

Proy set s Configures.
(SSHI

Makes API calls to Makes AP calls to

CLI Handler Ansible Handler
[Component: Python Library ‘prompt-toolkit] o [Component: Python Library ‘ansible-runner]

Allows user to interact with the application. Handles playbook execution for setups.

Network Devices (Lab

Command Controller Envi
[Component: Python Library 'typer] nvironment)
[Software System]

Processes user input and controls the program
flow. ured by th

SQLite Handler

[Component: Python Library 'SQLAIchemy’] Scapy Handler

[Component: Python Library ‘scapy]

(= D G S Ty Handles packet sniffing, creation and execution.

PEIELELTY
[Container: SQLite]

nt data like

File Handler Git Handler

el AL [Component: Python Libraries ‘0s', 'yaml] [Component: Python Library ‘GitPython]

[Software System]

Handles file readinglwriting for configs and data. Handles cloning of the exploits repository.
Makes AP calls to

i i Conduct: iments with
App Logic Coordinator Fetches exploits from onducts u[)éw;;mun s wi
[Container] e
\

Exploit Database (Git) Exploit Database Connector
[Software System]

Wi-Fi Packet-Manipulator

[Container: IEEE 802.11]

[Container: Git]

[Components] Wi-Fied Platform - App Logic Coordinator
The component diagram of the App Logic Coordinator.

Figure 5.3.: Component Diagram - C4 model diagram-style, level 3

5. Building Block View 26

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

The component diagram (level 2 in arc42) contains the following components as blackboxes from
the App Logic Coordinator container.

Blackbox Name Responsibility

CLI Handler Enables user interactions.

Ansible Handler Handles playbook execution.

Command Controller Process user input and controls program flows.
SQLite Handler Handles database connections and queries.
Scapy Handler Handles packet sniffing, creation and sending.
File Handler Handles file I/0O.

Git Handler Handles cloning of Exploits.

Table 5.3.: Components as Blackboxes in the Component Diagram

5.3.1. CLI Handler

The CLI Handler component controls the commands in the CLI and enables user interactions
with the Wi-Fied Platform.

o Purpose/Responsibility: The CLI Handler is responsible for the processing of user in-
puts. Providing autocompletion, handling session states, parsing commands. It is built
with the Python library ‘prompt-toolkit® [16].

« Directory/File Location: Located in app/handlers/ from the projects root.

o Fulfilled Requirements: Helps with UC1, by enabling CLI interaction with help texts
and meaningful warnings/errors.

5.3.2. Ansible Handler

The Ansible Handler component controls the automated device setup and configuration for the
lab-devices required by the Wi-Fied Platform.

o Purpose/Responsibility
The Ansible Handler is responsible for automated setup of lab-devices. Allowing the user to
specify target hosts in an inventory file and defining (or reusing existing) roles and configs
for the lab-devices. It utilizes the Python library ‘ansible-runner* [6].

» Directory/File Location
Located in app/handlers/ from the projects root.

o Fulfilled Requirements
Helps with UCY4, by supporting the automated setup of lab-devices and idempotent updating
of their configurations.

5.3.3. Command Controller

The Command Controller component controls the processing of user inputted commands and
coordination of related actions.

5. Building Block View 27

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

o Purpose/Responsibility
The Command Controller is responsible for mapping user commands and inputs to fea-
tures/actions of the Wi-Fied Platform. It keeps track of the program flow and exchanges
results of other handlers. The Python library ‘typer‘ [17] is essential here.

o Directory/File Location
Located in app/cli_contexts/ from the projects root.

e Fulfilled Requirements
Helps with most usecases, since Command Controller component plays a key role in man-
aging the various program flows.

5.3.4. SQLite Handler

The SQLite Handler component handles actions related to persistent data.

o Purpose/Responsibility
The SQLite Handler is responsible for the file-based database. It is required to store cus-
tomized configurations persistently. It utilizes the Python library ‘SQLAlchemy* [7].

o Directory/File Location
Located in app/handlers/ from the projects root.

o Fulfilled Requirements
Helps with UC5 and UCS, because configuring and running exploits as well as pulling
predefined exploits requires local persistent storage of data.

5.3.5. Scapy Handler
The Scapy Handler component handles all Wi-Fi packet related actions.

o Purpose/Responsibility
The Scapy Handler is responsible for capturing, creating, manipulating, and sending of
Wi-Fi packets. It utilizes the Python library ‘scapy‘ [5].

o Directory/File Location
Located in app/handlers/ from the projects root.

e Fulfilled Requirements
Helps with UC$5, because it enables creating and executing exploits.

5.3.6. File Handler

The File Handler component handles local files relative to app/data/.

o Purpose/Responsibility
The File Handler is responsible verifying file paths and reading/writing file contents.

o Directory/File Location
Located in app/handlers/ from the projects root.

5. Building Block View 28

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

5.3.7. Git Handler
The Git Handler component handles cloning of the Exploit repository.

o Purpose/Responsibility
The Git Handler is responsible for pulling predefined exploits from the Exploit repository.
It utilizes the Python library ‘GitPython* [15].

» Directory/File Location
Located in app/handlers/ from the projects root.

o Fulfilled Requirements
Helps with UCS3, by supporting the cloning of predefined exploits.

5.4. Code

The Code view (or building block view level 3 in arc42) will be omitted for the Wi-Fied Plat-
form, because it would not add value to this documentation and to the understanding of the
architecture.

5. Building Block View 29

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

6. Runtime View

This chapter outlines selected runtime scenarios of the Wi-Fied Platform to illustrate the dynamic
behavior of its components during execution. Rather than exhaustively documenting all possible
interactions, it focuses on representative sequences that highlight key architectural responsibili-
ties, such as executing Ansible playbooks, capturing wireless traffic, or running exploit scenarios.
These interactions correspond to the most important use cases, include interactions with critical
external interfaces, and represent central program flows.

The scenarios listed in Table 6.1 help clarify how components collaborate at runtime. The
described interactions serve both as architectural validation and as a foundation for further re-

finement or troubleshooting.

ID Scenario Name Description

RS1 Lab-Devices Setup Focuses on lab-device setup and configuration, central
component is Ansible Handler.

RS2 Pulling Exploits Showcases cloning of predefined content for use in
Wi-Fied Platform, central component is Git Handler.

RS3 Running Exploit Demonstrates an attack via execution of exploit in

Wi-Fied Platform, central component is Scapy Handler.

6. Runtime View

Table 6.1.: List of Runtime Scenarios

30

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

6.1. Runtime Scenario 1 — Pulling Exploits

This runtime scenario describes the flow of pulling exploits from the Exploit Database (GitHub/Git-
Lab repository) into the Wi-Fied Platform.

The relevant components used for this scenario are:
o CLI Handler
e Command Controller
o Git Handler

The following steps define this runtime scenario. The flow diagram in Figure 6.1 visualizes the
program flow below:

1. User launches Wi-Fied Platform and interacts with the CLI (CLI Handler involved).
2. User selects commands to pull exploits from the Exploit Database.

3. The CLI Handler receives the command and sends it to the Command Controller which
then processes it.

4. The Command Controller determines the Git Handler is responsible and calls it.

5. The Git Handler pulls the Exploit Database repository into local storage (SQLite Handler
and File Handler omitted from this flow for simplicity).

6. A pull status is reported back and displayed to the user.

i Wi-Fied Platform i
@ Exploit Database

User CLI Handler Command Controller Git Handler (GitHub/GitLab Repo) Instructor
@ @ @ ! creates exploits and pushes !
H H H ! them into repo !
> exploit pull : : N :
plotpu? i processes command ! ! !
p >! connects to repo '
5 : lls changes from r i
H show pull status < pulls changes from repo

@ i § @

Figure 6.1.: Pulling Exploits Runtime Scenario

6. Runtime View 31

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

6.2. Runtime Scenario 2 — Lab-Devices Setup

This runtime scenario describes the flow of setting up lab-devices through the Wi-Fied Platform.
It requires a loaded exploit from which the relevant configuration details for the lab-devices can
be accessed.

The relevant components used for this scenario are:
o CLI Handler
e Command Controller
o Ansible Handler

The following steps define this runtime scenario. The flow diagram in Figure 6.2 visualizes the
program flow below:

1. User launches Wi-Fied Platform and interacts with the CLI (CLI Handler involved).

2. User selects commands to run the setup (customization of configs omitted for simplicity,
assume they are predefined).

3. The CLI Handler receives the command and sends it to the Command Controller which
then processes it.

4. The Command Controller determines the Ansible Handler is responsible and calls it.

5. The Ansible Handler runs the specified playbooks on the specified hosts and configures the
lab-devices.

6. A task status is reported back and displayed to the user.

%@ ,— Wi-Fied Platform —\

. Lab
User CLI Handler Command Controller Ansible Handler Access Point
> setup run : : | : :
—_— processes command

; runs predefined ansible pléybooks (lab-device setup)

I S

®

: reports tasks status
shows tasks status < P .

O

Figure 6.2.: Lab-Devices Setup Runtime Scenario

AT

6. Runtime View 32

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

6.3. Runtime Scenario 3 — Sending Packet

This runtime scenario describes the flow of sending a packet with the Wi-Fied Platform. It re-
quires a loaded exploit from which the packet data can be accessed. In this specific instance a
deauthentication attack is being conducted.

The relevant components used for this scenario are:
o CLI Handler
e Command Controller
e Scapy Handler

The following steps define this runtime scenario. The flow diagram in Figure 6.3 visualizes the
program flow below:

1. User launches Wi-Fied Platform and interacts with the CLI (CLI Handler involved).

2. User selects commands to run the exploit (customization of configs omitted for simplicity,
assume they are predefined).

3. The CLI Handler receives the command and sends it to the Command Controller which
then processes it.

4. The Command Controller determines the Scapy Handler is responsible and calls it.

5. The Scapy Handler loads the specified Wi-Fi packet from the database and sends it to the
specified address to deauthenticate the victim.

6. Successful sending of packet is reported back and displayed to the user.

The Wi-Fied Platform does not indicate whether this was successful. However, users may observe
the victim device being disconnected from the Wi-Fi network.

i @ ’7 Wi-Fied Platform —‘

Lab Lab Victim
User CLI Handler Command Controller Scapy Handler Access Point Device
. : @ : : : exchange data 5
> exploitrun | : . « >
> processes command : : - i

N...

shows packet sent status

®

Figure 6.3.: Running Exploit (deauthentication attack) Runtime Scenario

'€
<€

; N builds packet : : .
@ : ’: P > sends packet - - - - __ >
: ; reports packet sent : : iy |

6. Runtime View 33

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

7. Deployment View

This section describes the technical infrastructure involved and how the hardware components of

the lab setup interact with each other.

7.1. Deployment Diagram of a Lab Setup

The diagram in Figure 7.1 shows an exemplary setup of lab-devices and how the interaction with

the Wi-Fied Platform works.

Database
[Container: SQLite]

Stores persistent data like exploit data, packet
data, application config, etc.

Local Filesystem
[Software System]

Provides config data to

Ansible

[Container: Python Library: ansible-runner]

Provides lab setup functionalities.

Raspberry Pi
[acts as AP]

Deployment - Lab Setup

This diagram depicts a possible deployment for the physical
lab-setup and each devices role and how it connects or
interacts with the Wi-Fied Platform.

Example scenario: Deauthentication attack.

Figure 7.1.: Deployment Diagram — Lab Setup for deauthentication attack

7. Deployment View

:xchanges persistent data witl

App Logic Coordinator

[Container: Python] [Container: Git]

Manages main program flow of Wi-Fied repository.

Provides exploit & packet data to

Exchanges commands and results

Linux Terminal

[Software System] [Container: IEEE 802.11]

Provides Wi-Fi packet capturing and

Local terminal of us manipulation capabilities

Student Device

e Runs Attack

Exploit Database Connector

Provides Git pull functionality from shared exploit

Wi-Fi Packet-Manipulator

Victim Device to Wi-Fi AP Connection

Victim Device
[attack target]

Wi-Fi Range

Wireless Connections:
----- Blue: Legit Connection
----- Red: Attacker Packets
————— Green: Management/Lab-Setup

(not related to attack)
Disruption: Deauthentication

34

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

7.1.1. Deployment Diagram Explained

Figure 7.1 depicts a lab setup (lower half) in which one Raspberry Pi acts as an access point
and a Victim Device is connected to that access point will be targeted by the Student Device.
It also maps relevant components of the Wi-Fied Platform (upper half) to their respective use
cases in this attack scenario.

7.1.2. Setup and Attack-Phase

There are 2 phases combined in this diagram, which in practice will often be executed by a user
in sequence:

1. Setup phase (green box and arrow from the Student Device): Allows to configure the
access point Raspberry Pi with the help of Ansible playbooks (SSH connectivity between
Student Device and Raspberry Pi required).

2. Attack phase (red box and arrow from the Student Device): Student Device runs the
attack and effectively disrupts the Wi-Fi connectivity of the Victim Device.

7.2. Hardware Deployment

The Wi-Fied Platform will be deployed in an educational lab setup, and the CLI tool itself runs
locally on the users system. Deployment is done with a shell script, which installs prerequisites
and clones the repository from GitLab. Python’s project management tool ‘uv’ is utilized to cre-
ate a virtual Python environment with all dependencies for the Wi-Fied Platform. Lab-devices
can vary in number depending on the desired experiment scenario.

Additional hardware components which might be needed for a lab setup can be:
o Raspberry Pi: Fulfill different roles, depending on selected exploit/vulnerability (e.g.,
configured as access point).
o Victim devices, such as smartphones or tablets: Targeted by attack and/or to vali-
date/demonstrate effectiveness (e.g., deauthentication attack).
« USB Wi-Fi adapters: Used to monitor or capture Wi-Fi traffic.

Other attacks, exploits, or vulnerability demonstrations may have different requirements towards
the amount, configuration, and build versions of services or software on the lab-devices. Sim-
ilar to this example, lab-devices would always have to be prepared first (Phase 1) before the
demonstration can be performed (Phase 2). The design of the Wi-Fied Platform allows users to
accommodate their specific requirements for an experiment with the flexibility of creating custom
Ansible playbooks. Educators are able to prepare setup configurations ahead of time. Without
the need to understand the technical details of those setup configurations, students are able to
pull them from the exploit repository of the Wi-Fied Platform. This allows quick and easy setup
of the lab-devices.

7.3. Internet Connectivity

The Wi-Fied Platform due to its nature could very well be used in a standalone configuration
without any outside connection. In order to utilize some features, a basic internet connectivity
from the user device (on which the Wi-Fied Platform runs) is required. Pulling exploits with
Git from an exploit database, or configuring lab-devices with Ansible playbooks are examples for
such features that require internet access.

7. Deployment View 35

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

8. Crosscutting Concepts

This chapter is dedicated to overarching (crosscutting) patterns, rules, and decisions affecting
multiple building blocks. Focus is on technical decisions.

8.1. Extensibility Mechanisms

The Wi-Fied Platform is built with extensibility in mind. This lead to a plugin-like design for
the content (i.e., exploits) allowing easy expansion. Exploits are defined in YAML-files. These
contain all information necessary for an exploit to be loaded, configured, and executed. Packet
information for crafting a custom Wi-Fi packet is also included in YAML-files, should an exploit
require specific packets.

In order to cater towards the lab-devices requirements for each exploit, file structures of Ansible
(e.g., hosts files, playbooks) are also paired with each exploit. This greatly reduces the workload
of preparing and configuring the lab-setup before each experiment. Exploits obtained through
the Exploit Repository (refer to section 8.3), or ones that have been created manually can be
loaded through Wi-Fied Platform’s CLI-commands and customized for the local environment.

Wi-Fied in summary provides a uniform structure to store and load exploits and related infor-
mation. User interactions with the Wi-Fied Platform, as well as interactions of the platform with
interfacing systems like physical hardware and wireless networks are streamlined and consistent.

8.2. Tooling Integration

The Wi-Fied Platform is designed to abstract invocations of third-party tools behind Python
code to provide a streamlined and consistent user experience. Although commands are simplified
through the Wi-Fied Platform’s command line, tools like Ansible (see subsection 4.1.6) or Scapy
(see subsection 4.1.2) are still integrated according to their respective mechanisms in the back-
ground. This ensures flexibility and preserves the reliability of those established tools, while also
enabling the aforementioned separation of content (exploit data and Ansible instructions) into
separate YAML-files.

8.3. Persistence Strategy

For all data that is loaded into or configured within Wi-Fied Platform through the CLI-commands
are stored in a local, file-based SQLite database. SQLite has characteristics that perfectly fulfill
the requirements towards persisting data in the context of the Wi-Fied Platform. All benefits
and drawbacks of SQLite are described in more details in subsection 4.1.5.

Git is utilized for the distribution of the exploit definitions (YAML-files) and the associated
Ansible instructions for the lab-devices. A separate Exploit Repository is used to collect, store,
and provide exploits. The Wi-Fied Platform as a tool allows pulling from that Exploit Repository,
saving a local copy.

8. Crosscutting Concepts 36

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

9. Architectural Decisions

This chapter is concerned with architectural decisions. We decided to integrate Y-statements [18]
to justify and explain certain central architectural decisions.

9.1. Y-Statement 1 — Python as Implementation Language

This Y-Statement justifies the choice of using the Python ecosystem for the implementation.

Justifying the Decision to Use Python:
In the context of selecting a programming language for the Wi-Fied Platform,
facing the challenge to make the tool accessible to students and the need to make it modular
and extensible,

we decided to use Python for the implementation of a local CLI-based tool
and not a statically typed, compiled language or a browser-centric framework

because Python supports rapid prototyping, has a low entry barrier for learners, and of-
fers mature libraries for packet manipulation and networking tasks,

accepting certain drawbacks*, such as lower runtime performance and limited type safety, in
favor of development speed and educational accessibility.

*Python (list of benefits and drawbacks) is covered in subsection 4.1.1.

0.2. Y-Statement 2 — Standalone CLI Architecture

This Y-Statement justifies the choice of opting for a standalone CLI architecture without reliance
on any backend server infrastructure.

Justifying the Decision to Use a Standalone CLI Architecture:
In the context of deciding on the architectural infrastructure for the Wi-Fied Platform,
facing the challenge to make the tool flexible, educational, and portable,

we decided to go with serverless by design
and not rely on any backend server infrastructure

because this reduces operational complexity and eliminates costs and effort associated with
remote services,

accepting to have no central shared state and to require manual distribution of the software.

As a result, the tool is especially suited for lightweight environments and scenarios where minimal
infrastructure overhead is a priority.

9. Architectural Decisions 37

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

9.3. Y-Statement 3 — Ansible for Automated Setup

In this Y-Statement the selection of Ansible for automated lab-devices setup is covered.

Note: At first we planned for an implementation with nornir, based on previous knowledge of the
tool. Oversights regarding shortcomings of its capabilities have been discovered in early stages of
implementation. This Y-Statement clarifies the decision to move away from nornir.

Justifying the Decision to Integrate Ansible:
In the context of requiring a solution to automate lab-device setup with the Wi-Fied Plat-
form,
facing the challenge of making the process user-friendly, repeatable, and agent-less,

we decided to run Ansible via ansible-runner*
and not nornir (as first envisioned and implemented in the evaluation phase),

because nornir lacks idempotence (nornir netmiko [19]) and we cannot use nornir napalm [20]
on plain Linux OS,

accepting limitations in Ansible’s features due to ansible-runner limitations.

*Ansible Runner (list of benefits and drawbacks) is covered in subsection 4.1.3.

9.4. Y-Statement 4 — Scapy for Packet Manipulation

We decided to use Scapy for packet manipulation, in order to have full control over IEEE 802.11
frames and implement flexible attack scenarios.

Justifying the Decision to Integrate Scapy:
In the context of adding features for capturing, crafting, and manipulating of Wi-Fi packets
to the Wi-Fied Platform,
facing the challenge to work closely at the IEEE 802.11 standard specifications,

we decided to utilize Scapy™
instead of looking at other libraries,

because it has been introduced in module exercises, and it also sufficed in our evaluation,
accepting the (subjectively) hard to read and sometimes spotty documentation and commu-
nity support of it.

*Scapy (list of benefits and drawbacks) is covered in subsection 4.1.2.

No alternatives to Scapy were considered, because the teams’ familiarity with the library was
prioritized.

9. Architectural Decisions 38

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

9.5. Y-Statement 5 — SQLite for Persistent Storage

We decided to store configuration in SQLite, in order to provide a lightweight, file-based persis-
tence layer without requiring external services.

Justifying the Decision to Persist Data in SQLite:

In the context of requiring persistent storage of some sort to save configurations of the Wi-
Fied Platform,

while aiming to keep the overhead of the locally running tool low,

we decided to persist local data in a SQLite* file-based database
and not to use a database system that required a background-service and credentials,

because no concurrent, multi-origin database transactions will occur,
accepting the drawbacks of file-based databases and not being able to run concurrent app

instances.

*SQLite (list of benefits and drawbacks) is covered in subsection 4.1.5.

9. Architectural Decisions 39

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

10. Quality Requirements

This chapter lists the measures that ensure code and project quality and efficiency. In addition,
these measures indirectly reduce the listed risks: High code quality ensures code maintainability
and expendability.

10.1. Non-Functional Requirements (NFR)

The following non-functional requirements where chosen with a school environment in mind. The
application should meet the users’ and instructors needs.

NFR-1 - Extensibility

Description The application should have a modular structure so that it can be easily
expanded.

Measurability = The architecture will be designed accordingly and reviewed in team sessions.
Priority High

Review During the creation of the architecture with periodic verification during
development.

Table 10.1.: NFR1

NFR-2 - Usability

Description The user interface should be designed user-friendly, this includes (but is not
limited to):

1. Comprehensive user manual (e.g., help page),

2. Clear progress indication,

3. Detailed error messages.
Measurability Wil be tested through user tests at the end of the development phase.
Priority High

Review See user tests in appendix.

Table 10.2.: NFR2

10. Quality Requirements 40

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

NFR-3 - Maintainability

Description The used libraries should be up-to-date and well maintained to make sure that
the application can be maintained and updated easily.

Measurability ~ Will be verified when choosing the library.
Priority Medium

Review During development.

Table 10.3.: NFR3

10.2. Quality Scenarios

Quality scenarios are concrete examples that describe how the Wi-Fied Platform should respond
to specific situations related to non-functional requirements. They help clarify abstract quality
attributes like performance, extensibility, or usability by turning them into actionable, testable
statements.

ID Scenario

SC1 Change Scenario The architectural design should allow extensions without affecting
(see NFR1) current functionality or requiring rebuilding core components.

SC2 Usage Scenario An untrained user should be able to understand and use the Wi-Fied
(see NFR2) Platform with the help command provided in the CLI within a

lab-setting.

SC3 Change Scenario The modular architecture should enable flexibility in adapting to
(see NFR3) other environments or making replacing 3rd-party libraries possible
without requiring changes to other components.

Table 10.4.: Quality Scenarios (SC = Scenario)

10.2.1. Change Scenario SC1

This change scenario (SC1) supports NFRI:
o Context/Background: Given the limited project resources, future extension should be
as simple as possible. Wi-Fied Platform will be used in an educational context and shall
be reflective of an extensible architectural design.

o Source/Stimulus: Future work may include extension of the Wi-Fied Platform’s func-
tionalities. This could be initiated by other students in the form of a project or by the
advisors/tutors of modules utilizing Wi-Fied Platform in their curriculum.

o Metric/Acceptance Criteria: The architectural design should allow extensions without
affecting current functionality or requiring rebuilding core components. Specifically the
existing features should not be impacted by changes not affecting their modules directly.
No full-scale refactoring should be required to make an extension work.

10. Quality Requirements 41

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

10.2.2. Usage Scenario SC2

This usage scenario (SC2) supports NFR2:

o Context/Background: Wi-Fied Platform is targeted to an educational context for Wi-Fi
security in a lab-setting for learning IT professionals and/or students. It is important to
enable users to quickly operate the Wi-Fied Platform without much background knowledge.
Although users can ask questions in such an environment, it is expected from Wi-Fied
Platform to be as simple to use as possible.

o Source/Stimulus: Any user (learning IT professionals or students, and tutors) interacting
with the Wi-Fied Platform. Usually first-time users of the Wi-Fied Platform with limited
experience in the field of Wi-Fi security will fall under this usage scenario.

o Metric/Acceptance Criteria: An untrained user should be able to understand and use
the Wi-Fied Platform with the help command provided in the CLI within a lab-setting.
It is aimed towards users who previously operated other CLI-based tools. For users with
no prior experience with CLI-based tools, personal instructions or further handouts are
expected to be required.

10.2.3. Change Scenario SC3

This change scenario (SC3) supports NFR3:

o Context/Background: Adaption of Wi-Fied Platform’s features of the initial release may
be desired in the future, given the limited project scope regarding supported hardware, pre-
defined exploits and user interface. Wi-Fied Platform should aim towards an architectural
design that is maintainable and can be approached and understood by other coders.

o Source/Stimulus: Tutors or advisors of a lecture/module may want to implement future
changes to make Wi-Fied Platform better fit into their curriculum. Future student projects
may be another scenario in which changes to Wi-Fied Platform may occur.

o Metric/Acceptance Criteria: The modular architecture should enable flexibility in
adapting to other environments or making replacing 3rd-party libraries possible without
requiring changes to other components.

10. Quality Requirements 42

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

10.3. Quality Tree

The projects main quality goals (1), (2), (3) in the following table refer to the top level quality
requirements from Table 1.1. The following Table 10.5 lists and categorizes quality attributes
to give an overview in form of a quality tree. Where applicable, separate specialized quality

scenarios are referenced.

Category Quality

Description

Scenario

Usability Ease of Use (1)

Learnability

Simplicity

Wi-Fied Platform’s functionalities should be
comprehensive and students familiar with
CLI-tools should be able to use it within 10
minutes.

The CLI-interface should be intuitive and
adhere to familiar practices (e.g., help
command).

The platform and its features should be easy
to use and complexity should be simplified for
a novice user without deep understanding of
Wi-Fi security.

SC2

Extensibility Extensibility (2)
& Main-
tainability

Modularity (3)

Reusability

Maintainability

The architecture of the platform should follow
design principles to support future extension.

The platform should follow a modular design,
allowing future modification.

Code and configuration should aim to be
flexibly reusable for different (future)
scenarios.

The platform should aim to be low
maintenance, without unnecessary hard
dependencies.

SC1

SC3

Automation Scriptability

Portability

Idempotence

Reoccurring setup tasks and configurations
should be automated and safe the users time.

Lab- and test-devices should be
interchangeable.

Configurations consistently should only be
applied once or if parameters changed.

Performance Robustness

Consistency

Reliability

Wi-Fied Platform should work reliable under
all specified use cases and produce
comprehensive outputs (e.g., error handling).

Operations should perform consistently in
time (progress indication).

Functionalities should be working as expected
and yield dependable results.

10. Quality Requirements

Table 10.5.: Quality Tree

43

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

10.4. Quality Assurance

This section discusses the measures to achieve quality goals and methods to verify the achievement
of quality goals.

10.4.1. Code Quality

Measures were put in place to try and keep a certain code quality standard. Ruff was used as a
Python code formatter and linter, ensuring uniform code formatting. It was implemented using
a pre-commit hook.

Python pytests were added for important modules to help verify feature compatibility between
iterations throughout the project. The tests are run in the CI&CD pipeline and their results can
be viewed in GitLab.

Additionally, the code gets analyzed by SonarQQube, which scans for bugs, security vulnerabil-
ities, bad practices and more. It also evaluates the test coverage; although, complete coverage is
not achieved due to the team’s prioritization of research, focus on usability, and proof of concept
through the creation of an instructional lab. SonarQube is also part of the CI/CD pipeline.

10.4.2. User Tests

User tests were conducted to validate the implementation and confirm that the platform’s us-
ability meets the expectations of its intended audience; primarily students. Six participants
with professional IT backgrounds, spanning roles from network infrastructure administration to
frontend development, took part in the evaluation.

The special emphasis on user tests aligns with the project’s primary quality goal (Table 1.1) to
achieve high usability & learnability standards. Usage scenario SC2 defines the general direction
of the user tests.

All feedback gathered through the user tests did not reveal any critical issues affecting the
architecture or core design of the Wi-Fied Platform. While minor usability suggestions were
collected, they led only to small refinements that did not require architectural adjustments.
The tests therefore served as a confirmation of both the tool’s usability and the stability of its
architectural decisions.

10. Quality Requirements 44

https://sonar.whereisbob.ch

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

11. Risks and Technical Debt

This chapter is concerned with identified technical risks or technical debts in descending priority.

11.1. Technical Risks

The following technical risks have been identified. Priority is descending, starting with the highest
priority technical risk.

11.1.1. Toolchain Fragility

Reliance on external tools like hostapd, dnsmasq, and wpa_ supplicant could break with OS up-
dates. Also, tools and libraries such as ansible-runner pose similar risks when functionality may
change with updates.

Mitigation: Many exploits require specific versions of tools like hostapd to be effectively vul-
nerable, because fixes have been applied. In order to reduce the risk of breaking Wi-Fied exploits
with changing software releases, specific versions may be pinned or built from an archived source
to ensure compatibility with the desired vulnerabilities for the demonstration purpose inside the
Wi-Fied Platform. Ansible supports not only automation of current releases through apt, but
also allows automating custom installations from different sources through direct shell commands.
With strategies like this, and less reliance on individual packet distributors definition of ‘latest’
or different versioning schemes, the Wi-Fied Platform ensures a certain degree of autonomy.

11.1.2. Hardware Compatibility

Raspberry Pi models or Wi-Fi chipsets may behave inconsistently (e.g., monitor mode support
varies).

Mitigation: A strict recommendation regarding hardware selection is given, where tested hard-
ware during development is limited (refer to subsection 4.1.8 and subsection 4.1.9). This risk was
an early concern and broader hardware support was considered out of scope for this project.
Future work may involve automated compatibility checks (e.g., whether and USB Wi-Fi adapter
supports monitor mode) or a wider test envelope to verify additional hardware models.

11.1.3. Security of Local Execution

Executing CLI-based tools from user-controlled environments may be abused or tampered with.
Inexperienced users could also accidentally damage their system by misconfiguring the environ-
ment.

Mitigation: This risk is not mitigated, because of impracticalities. The tool is not considered
to be presented to complete beginners. Also, not restricting the local execution can be viewed
as a necessity for the effectiveness of the tools features. In the educational context, it should be
possible to provide sandboxed / imaged lab-computers for students, which greatly weakens this
risk.

11. Risks and Technical Debt 45

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

11.2. Technical Debts

Table 11.1 lists technical debts that have been identified. Priority is descending, starting with

the highest priority technical debt.

Description

Future Direction

Limited Immediate Utility*: The current version
primarily establishes a structured, extensible
foundation for future capabilities. Limited advantages
over direct use of Ansible or Scapy are presently
offered. This initial design prioritizes architectural
groundwork over short-term feature completeness.

No (Central) Persistent State or Logging:
Current CLI design may not persist useful run-time
data (e.g., session logs, telemetry). The reason for this
are simplicity, serverless constraints.

Missing Automated Tests for
Hardware-Dependent Code: Most testing is
manual due to hardware requirements.

Scalability Assumptions: The Wi-Fied Platform
assumes single-user, single-device environments.

Incrementally expand the platform’s
functionality, usability, and exploit
scenario coverage to deliver
increasing value to users over time.

Optional local state caching or
remote logging.

Future work may involve automated
compatibility checks and a wider
test envelope to verify additional
hardware models.

Consider support for concurrent
testing setups or remote execution
agents.

Table 11.1.: Technical Debts

* More on Foundational Phase with Limited Immediate Utility:

Although the current version of the Wi-Fied Platform offers only limited advantages compared
to directly using existing tools such as Ansible or Scapy, this is an intentional and strategic
decision made during the project’s early development phase. The primary focus has been to
design and implement a flexible, modular architecture that can serve as a solid foundation for
future expansion.

By emphasizing extensibility and maintainability over immediate utility, the project has laid
the groundwork for a more comprehensive and user-friendly tool. This foundational approach
enables the platform to evolve organically, allowing new features, scenarios, and integrations to be
added with minimal refactoring effort. However, this architectural focus introduces a temporary
trade-off: The platform’s current user-facing value may appear limited in scope.

To address this, future development should concentrate on incrementally building out high-
value features, improving usability, and demonstrating clear benefits through practical use cases.
As the platform matures, these enhancements will progressively increase its appeal and relevance
to target users.

11. Risks and Technical Debt 46

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

12. Glossary

List of Terms

access point A device or software service that provides wireless network access to clients. In this
project, a Raspberry Pi acts as a software-based access point. 22, 35

ansible An automation tool used for system configuration and deployment. In this project, it
automates setup of access points and services for the lab-devices. 20, 21, 22, 25, 27, 30,
32, 35, 36, 38, 45, 46

deauthentication attack A denial-of-service technique in Wi-Fi networks that sends forged deau-
thentication frames to forcibly disconnect clients from an access point. 33, 34, 35, 67

KRACK Key Reinstallation Attack (KRACK) is a vulnerability in WPA2 that exploits key re-

installation during the 4-way handshake to decrypt and manipulate Wi-Fi traffic. v, vi,
63

monitor mode A wireless network interface mode that enables passive capture of all 802.11
frames in range, including management and control frames. 7, 8, 17, 19, 22, 45

scapy A Python-based packet manipulation tool used for crafting, sending, sniffing, and dissecting
network packets. 19, 20, 25, 28, 30, 33, 36, 38, 46

12. Glossary 47

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

References of Part Product Documentation

1]

A. Glaus and M. Burger, Wi-fi security threats - an integrative review, https://eprints.ost.
ch/id/eprint/1241/, Accessed: 2025-05-03, 2024.

R. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design
(Robert C. Martin series). Prentice Hall, 2017, 1SBN: 9780134494272.

D. G. S. Dr. Peter Hruschka et al., Arc42 - architecture documentation template, https:
//arc42.org, Accessed: 2025-05-03, 2025.

Python Software Foundation, Python language reference, version 3.11, https://docs.python.
org/3/reference/, Accessed: 2025-05-04, 2023.

Scapy documentation, python library, https:/ /scapy.readthedocs.io/en /latest/, Accessed:
2025-05-11, 2025.

Ansible runner documentation, python library, https://ansible.readthedocs.io /projects/
runner/en/latest/, Accessed: 2025-05-11, 2025.

Sqlalchemy documentation, python library, https://docs.sqlalchemy.org/en/20/, Accessed:
2025-05-11, 2025.

Sqlite documentation, https://www.sqlite.org/docs.html, Accessed: 2025-05-27, 2025.
Ansible community documentation, https://docs.ansible.com/, Accessed: 2025-05-11, 2025.
Git documentation, https://git-scm.com/doc, Accessed: 2025-05-11, 2025.

Gitlab instance of ost, https://gitlab.ost.ch/, Accessed: 2025-05-27, 2025.

Raspberry pi website, https://www.raspberrypi.com/, Accessed: 2025-05-27, 2025.

Linksys ae3000, usb wi-fi adapter, page 73, https://downloads.linksys.com /downloads/
userguide/AE3000 UG 3425-01611A_ Web.pdf, Accessed: 2025-05-27, 2025.

The c4 model for visualising software architecture, https://cdmodel.com/, Accessed: 2025-
05-11, 2025.

Gitpython documentation, python library, https://gitpython.readthedocs.io /en /stable/,
Accessed: 2025-05-11, 2025.

Prompt toolkit documentation, python library, https://python-prompt-toolkit.readthedocs.
io/en/master/, Accessed: 2025-05-11, 2025.

Typer documentation, python library, https:/ /typer.tiangolo.com /tutorial /, Accessed: 2025-
05-11, 2025.

Architecture decision record template: Y-statements | zio’s blog, https:/ /medium.com /
olzzio/y-statements-10eb07b5al77, Accessed: 2025-05-13, 2020.

Nornir netmiko documentation, python library, https://ktbyers.github.io /netmiko /docs/
netmiko/index.html, Accessed: 2025-06-01, 2025.

Nornir napalm documentation, python library, https://nornir.tech /nornir__napalm /html/
api/index.html; Accessed: 2025-05-18, 2025.

References of Part Product Documentation 48

https://eprints.ost.ch/id/eprint/1241/
https://eprints.ost.ch/id/eprint/1241/
https://arc42.org
https://arc42.org
https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
https://scapy.readthedocs.io/en/latest/
https://ansible.readthedocs.io/projects/runner/en/latest/
https://ansible.readthedocs.io/projects/runner/en/latest/
https://docs.sqlalchemy.org/en/20/
https://www.sqlite.org/docs.html
https://docs.ansible.com/
https://git-scm.com/doc
https://gitlab.ost.ch/
https://www.raspberrypi.com/
https://downloads.linksys.com/downloads/userguide/AE3000_UG_3425-01611A_Web.pdf
https://downloads.linksys.com/downloads/userguide/AE3000_UG_3425-01611A_Web.pdf
https://c4model.com/
https://gitpython.readthedocs.io/en/stable/
https://python-prompt-toolkit.readthedocs.io/en/master/
https://python-prompt-toolkit.readthedocs.io/en/master/
https://typer.tiangolo.com/tutorial/
https://medium.com/olzzio/y-statements-10eb07b5a177
https://medium.com/olzzio/y-statements-10eb07b5a177
https://ktbyers.github.io/netmiko/docs/netmiko/index.html
https://ktbyers.github.io/netmiko/docs/netmiko/index.html
https://nornir.tech/nornir_napalm/html/api/index.html
https://nornir.tech/nornir_napalm/html/api/index.html

Part II.

Project Documentation

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

1. Bachelor Project Assignment

The following section provides a partially summarized overview of the bachelor project assign-
ment for the Wi-Fied Platform - An Educational Platform for Wi-Fi Security. The full original
bachelor project assignment document is included in the Appendix 77, 77.

Problem Description
The goal of this project is to develop a modular platform that allows students to practically learn
about different attack vectors on Wi-Fi protocols.

Task Description
The proposed tasks are as follows: Find a didactically meaningful approach for students to learn
more about the vulnerabilities, e.g. in the form of exercises using the platform to execute an
attack step by step.
Make the platform easily extendable, e.g., by providing a structure to add a UL
o Identify a set of relevant Wi-Fi vulnerabilities and list the necessary hardware components.
o Build the necessary software components to manage the target and attacker systems of the
platform.
Find a didactically meaningful approach for students to learn more about the vulnerabilities.
For example:
— Define exercises that students can do with the platform.
— For each exercise provide a how-to-guide and explanations.
— Overall, this could come in the form of a book (presented as a webpage).
e Document your project.

Project Results

The documents mentioned in §5.5 of “Leitfaden fiir Bachelor- und Studienarbeiten, v1.3” must be
submitted as part of the results. Note the requirements on the report mentioned in the Leitfaden.
In addition, the results include the educational platform mentioned above.

Involved Parties

This project is as a Bachelorarbeit conducted by Alice Glaus and Mario Burger. The project is
supervised by Daniel Tschudi. The expert is Bernhard Tellenbach. ‘Gegenleser’ is Olaf Zimmer-
mann.

1. Bachelor Project Assignment 50

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

2. Project Plan

Due to limited team size and the scope of this project, a flexible approach inspired along SCRUM
was used. Iterative sprints allowed the team to explore technical options and to react to evolving
requirements. This flexible approach enabled project progress to be managed efficiently.

2.1. Target Group Declaration

The Wi-Fied Platform is developed for use in educational settings, focusing on practical expo-
sure to Wi-Fi vulnerabilities and exploits. The project prioritizes architecture and extensibility
over feature completeness. It should address the core needs of three target groups: Educators,
students, and tool maintainers. The list of stakeholders in subsection 1.2.1 of the architecture
documentation also reflects this target groups.

Educators / Instructors

Educators may use the platform as a lightweight teaching aid for introducing wireless security
concepts. Rather than offering a polished lab framework or all-in-one suite, it should provide ba-
sic exploit scenarios and helpful tooling that could support lessons or demonstrations. Setup and
compatibility may require preparation effort, and some exercises may depend on specific hardware
or software versions. The tool is expected to be most useful where flexibility and openness are
valued more than full stability or automation.

Students / Learners

Students are the primary audience. The platform aims to provide guided experimentation with
real Wi-Fi attack techniques in controlled settings. It assumes some prior technical familiarity
and is not aimed at complete beginners. The focus is set on clarity, simplicity, and hands-on
understanding, rather than polished user interfaces or error-proof workflows. With suitable su-
pervision or documentation, the platform may encourage exploration, failure, and learning by
doing.

Tool Maintainers / Developers

Developers extending or maintaining the platform will find a modular codebase. As much of the
platform interacts with hardware and external tools, some testing might remain manual, and
state persistence or error handling can still be minimal. Nonetheless, the project aims to deliver
a clean architectural foundation intended for gradual improvement. Its design should support
contributions and future expansion without needing major rewrites.

2.2. Project Resources

The Wi-Fied Platform is developed as a student-led project with limited but focused time re-
sources, approximately 360 hours per person (two people = 720 hours total) over 17 weeks. It
operates without a formal budget, relying entirely on open-source software. Four Raspberry Pi’s
are purchased for this project via the university’s procurement, further hardware components
such as USB Wi-Fi adapters are already available at the INS [21] lab.

2. Project Plan 51

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

The student team is free to contact the dedicated advisor or other educators at OST for
guidance at any time during the project.

2. Project Plan 52

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

2.3. Rough Planning

This section outlines the overall project timeline (see Table 2.1). The bold horizontal lines mark
the end of a sprint in Scrum and the beginning of a new one. Dark-colored cells indicate the
current work focus, while light-colored cells are secondary.

Presentation Preparation

Date of Mon.
Comments
Requirements Analysis
Architecture

Tooling / Infrastructure
Evaluation of Python
Implementation

Risk Buffer*

Usability Testing

Delivery

=
-
—_
=~
Z

W2 24. Feb.
W3 | 03. Mar.
W4 | 10. Mar.
W5 | 17. Mar.
W6 | 24. Mar.
W7 | 31. Mar.
W8 | 07. Apr. | Spring Break
W9 14. Apr. Fri. holiday
W10 | 21. Apr. | Mon. holiday -l
W11 | 28. Apr.
W12 | 05. May
W13 | 12. May
W14 | 19. May
W15 | 26. May
W16 | 02. Jun.
W17 | 09. Jun. | Mon. holiday
Hour Estimates | Total 720h | 56h | 77h | 14h | 84h | 300h | 48h | 42h | 84h | 15h

Table 2.1.: Rough Planning Project Timeline

*A buffer in case one or multiple risks occur. In case that no risk (see section 3.4) needs to be
mitigated, this time can be used for bug-fixing or further feature implementation.

2. Project Plan 53

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

2.4. Project Achievements

The following achievements highlight key progression and deliverables that heavily influenced the

development of the Wi-Fied Platform.

ID | Name or Description Achieved | Phase Completion & Remarks
1 | Project setup, initial planning, | 02. Mar. | Foundation established, risks and
and requirements definition hardware constraints identified
2 | Evaluation of tools 23. Mar. | Decision regarding tools that will be
used to realize the project was made
Reach MVP 2. May Minimal Viable Product reached
4 | Usability testing 6. Jun. Scenario walkthroughs validated with
test users; identified guidance gaps
5 | Research exploits and create a lab 9. Jun. Suitable exploit for lab-exercise found,
and described
6 | Final delivery and documentation | 13. Jun. | Submission complete; documentation

includes risks, usage, and further direc-
tions

Table 2.2.: Project Achievements Overview

2. Project Plan

54

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

3. Project Risks

This chapter is concerned with risks associated with the project and its implementation. Technical
risks are described in chapter 11 of the product documentation.

3.1. Risk Management

The following risks where determined at the beginning of the project, if not stated otherwise.

R.1 Technical Risks

R.1.1 Hardware Compatibility Issues: The app may not work consistently across
different hardware models, leading to unexpected failures.

R.1.2 Unexpected Hardware Behavior: Unforeseen behavior of software components
in used Hardware could lead to delay in the time plan.

R.1.3 No Vulnerable Firmware Available: Latest firmware of access points and clients
were patched, and old vulnerable ones are not available anymore.

R.1.4 Latency & Performance Issues: Real-time Wi-Fi testing could be affected by
delays in data collection or processing.

R.1.5 Infrastructure Disruptions: Important infrastructure becomes degraded or un-
available leading to delays or workarounds.

R.1.6 Idempotence not Guaranteed*: Reaching the goal of making automated lab-
setups idempotent is recognized to be impossible with Nornir (risk added 7. April 2025).

*The risk R.1.6 was added on 7. April 2025, because this marks the realization of its lack of
idempotence support on plain Linux OS. Switch to Ansible.

R.2 Project Objective Risks

R.2.1 Extensibility Challenges: Ensuring the application remains easily extendable
could be difficult if the architecture is not well-designed.

R.2.2 Data Privacy Risks: As we sniff network traffic, we might be confronted with
complaints regarding the privacy law.

R.2.3 Difficulties in Finding Suitable Exploits for Proof of Concept**: Research-
ing a didactically valuable and doable exploit to formalize into instructional lab exercises
for a proof of concept (risk added 18. May 2025).

**The risk R.2.3 was added on 18. May 2025, because at that time much effort went into research

suitable exploits without acceptable results. Because of time restrictions, the risk was added to
be documented.

3. Project Risks 55

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

R.3 Project Member related Risks

R.3.1 Limited Team Size: With only two people, workload distribution and expertise
gaps could slow down development.

R.3.2 Miscommunication: Miscommunication in team syncs could lead to delays in the
time plan.

R.3.3 Absence: If a team member is absence for a longer period of time (due to e.g.,
sickness, injury) the time plan might not be adhered.

3.2. Risk Matrix

The risks were graded regarding the two properties ‘likelihood of occurrence’ and ‘impact on the
time plan’ by assigning an integer between one (lowest) and five (highest) as show in Table 3.1.
The score is calculated by multiplying these integers. Depending on this score the risks can be
categorized in three sections:
o Scores up to 4 (green zone): Moderate impact, can be dealt with in a reasonable amount
of time.
e Scores up to 9 (yellow zone): Medium impact, can still be dealt with but need more
time to adhere to especially when more than one risk of this category occurs.
o Scores up to 25 (red zone): High impact, should be mitigated ahead of time if possible.

irir;{z?i(;foogi — — t&ssigniﬁcant 2 Minor (8h) ?lgilg)niﬁcant é(lzi\;ll?jor ?4(8)(:1\)/ere
5 Almost Certain R.1.6 R.2.3

4 Likely R.14

3 Moderate R.1.5 R.1.2 R.1.1, R.1.3 R.2.1

2 Unlikely R.3.1 R.3.2 R.2.1-M*

1 Rare R.2.2 R.3.3

Table 3.1.: Risk Matrix

*M = Mitigated, original risk-matrix severity changed.

3.3. Precautionary Actions

Risk R2.1 needs to be treated with caution, since it scores 12 on the Risk Matrix and is therefore
in the red zone. In order to reduce the likelihood of this risk, the following measures were taken.
R2.1-M* Mitigation Strategy - Ensuring Extensibility and Solid Architecture

1. Reevaluate central design decisions before any major changes to the architecture. Cross-
checks within project meetings.

2. Enforce adherence to good architectural principals throughout development. Code reviews
will be an integral part of the implementation phase.

3. Add supportive tools, such as SonarQube, to automate and simplify code quality checks.

3. Project Risks 56

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

3.4. Risk Occurrence and Mitigation

Of the defined risks, two became a concern (and one that was previously not accounted for)
during the development and one had to be revisited in time to plan adequate mitigation action
in the risk-buffer phase:

e R1.2 Unexpected Hardware Behavior: Ansible was used to set up the labs, which
means handling errors related to the tool. The time needed for this kind of error handling
was included in the time calculated for implementing the Ansible handler. Unexpectedly,
the Raspberry Pi’s did not always behave as anticipated. After running a setup successfully,
running it a second time to check idempotence exited in an error, as writing to the device was
suddenly not possible anymore. This issue still persists, as we were not able to determine
its source.

Risk revision during risk-buffer phase: The team was able to fix the issue during the
allocated time in the risk-buffer phase. The cause was a faulty configuration in one of the
Ansible tasks, that lead to broken environments on the configured lab-devices.

« R1.5 Infrastructure Disruptions: Due to a scheduled maintenance OST’s GitLab was
down for two days, but complication occurred, and the service was unreliable for two more
days. The impact was not critical, but we were losing time, as we first looked for the issue
on our side.

¢« R.1.6 Idempotence not Guaranteed: Switch to Ansible was undertaken, allowing in-
dempotence to be guaranteed for the lab-setups, accepting spending additional time for
refactoring.

o« R.2.3 Difficulties in Finding Suitable Exploits for Proof of Concept: Extra time
was allocated to the research and implementation of a suitable exploit, cutting short the
priority to achieve high test coverage.

3. Project Risks 57

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

4. Quality Measures

The following sections describe the measures taken to ensure the quality and usability of the
written code.

4.1. Code Quality

Good code structure and adherence to best practices promotes maintainability and extensibility
of the codebase.

4.1.1. Ruff

Ruff is used as a Python code formatter and linter, helping to verify and enforce that code is clean,
consistent, and adheres to best practices. It is implemented as a pre-commit hook, which means
it automatically checks and formats code before it is committed to version control, reducing the
chances of style issues or errors being introduced. This integration into the development workflow
promotes a higher standard of code quality by catching issues early. Using Ruff helps maintain a
uniform coding style, making the codebase easier to read, understand, and maintain in the future.

4.1.2. SonarQube

To ensure the code quality, the code gets also evaluated by SonarQube. As part of the CI/CD
pipeline, changes get synced to a SonarQube instance which scans for bugs, security vulnerabil-
ities, bad practices and more. The feedback can be checked by team members and improved in
the next update.

4.1.2.1. Quality Goals

SonarQube defines ‘Quality Gates’ to assess if the code provides sufficient quality. The built-
in one, called ‘Sonar way’, is used for this project. It requires the code to align with certain
measures:

e New code has 0 issues.

e All new security hotspots are reviewed.

e New code has sufficient test coverage: Coverage is greater than or equal to 80.0%.

o New code has limited duplications: Duplicated Lines (%) is less than or equal to 3.0%.

4.1.2.2. Final State

Figure 4.1 shows SonarQube’s evaluation at the end of the project.

¢ Wi-Fied pugLic X Failed

Last analysis: 17 hours ago * 1.7k Lines of Code * Python

A 0 A0 A0 A — () 5a.9% . 0.0%

Security Reliability Maintainability Hotspots Reviewed Coverage Duplications

Figure 4.1.: SonarQube Final Evaluation

4. Quality Measures 58

https://sonar.whereisbob.ch

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

The code coverage is rated around ~50% therefore the Quality Gate is marked as ‘Failed’. As
the project had a significant research part which entailed many code refactors, keeping the tests
up to date was challenging. After reaching the MVP the team focused on usability tests and
adding a proof of concept in form of a lab.

4.2. Usability Testing through User Tests

Usability tests were conducted, serving both as a validation of the implementation and confirma-
tion of usability by the target group most involved with the tool; students and learners. A total
of six test candidates were asked to take part and kindly offered their time. All testers work in
the IT sector but in different fields reaching from network infrastructure administration to front
end engineering.

4.2.1. Test Execution Strategy

Note: The team initially revealed very little information about features, in order to gain data
based on truly inexperienced user actions. This decision helped to test the usability under extreme
conditions that would normally not occur. In real scenarios, e.g., in a lab-session, users would
always have access to instructional materials and an advisor.

Prior to the practical tasks, participants were asked some questions targeting their general
know-how of Wi-Fi networking, preference and usage of CLI tools, and which CLI tools they
would regularly use. These general questions helped the team to better comprehend the actions
and thinking of candidates, and how to guide them through tasks in case they require support.
After the questionnaire, the following four tasks were given to the testers to determine, whether
the flows are intuitive and the correct commands and options can be found without additional
inputs:

e Discover how to list all available commands.
e You want to load an exploit, but you do not have any exploits on your system yet. How
would you proceed?
e You want to set a connected Wi-Fi adapter in monitor mode on channel 1. How would you
proceed?
e You want to execute a deauthentication attack. The hardware is already connected. Set up
the hardware and execute the attack to deautheticate the client from the network.
After completing these tasks, all candidates were consulted with a second questionnaire to state
their overall opinion of the tool, steps that felt unintuitive, and suggestions for improvement.
There was also sufficient time planned to follow up on specific circumstances the team wanted to
investigate deeper.
All tests were documented in test protocols, which are fully disclosed in Appendix 77.

4.2.2. Test Results Summary

No critical issues or shortcomings that would severely impact the usability or core functionality
of the tool were raised during the user tests. Participants were generally able to navigate the CLI
and complete typical tasks without requiring extensive assistance or documentation. While a few
minor suggestions were made — such as enhancing the clarity of certain help messages, improving
error feedback, or refining command naming — these were considered quality-of-life improvements
rather than essential fixes. As a result, no significant changes had to be implemented following
the tests, and the overall structure and logic of the tool remained intact. The feedback primarily
confirmed that the platform was already in a stable and usable state, especially within its in-
tended lab and educational context.

4. Quality Measures 59

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

The following items were condensed from all test feedbacks and deemed possible to improve:

1. Help message not automatically printed when unknown / bad command is entered.

2. Imprecise or misleading wording in help messages confused users, especially when looking
for the exploit pull command.

3. Unintuitive use of positional and optional arguments (count and interval), especially for
sending packets with send command in exploit mode.

4. Ctrl+c in exploit mode quits the tool entirely, instead of just exiting exploit mode.

5. Command setup mon stood out with abbreviated sub command ‘mon’, and the default value
of the channel argument was unintuitive.

Only one minor bug was found: The tools custom autocompletion would continue suggesting the
same filename for the exploit load <file> and setup edit <file> indefinitely. While having no
critical impact, this could lead to confusion and presents a nuisance.

The changes prompted by the feedback and discoveries of the user tests are discussed in the next
section.
4.2.3. Implemented Changes

The implementation of the following minor changes are the result of the most relevant feedbacks
compiled from the user tests:

1. Help message now shows automatically when an unknown / bad command is entered.

2. Wording of help messages is now improved, especially for the exploit command, which now
clearly indicates the option for pulling exploits.

3. The previous positional arguments count and interval can now be passed as options, like
send --count 3.

4. Ctrl4c in exploit mode now just exits the mode, instead of quitting the tool entirely.

5. Command setup monitor is now spelled out, and the channel argument is now required.

4.2.4. Test Conclusion

Feedback gathered from the tests revealed a fairly matured tool with good usability. The test
validated that most core functionalities could be completed with minimal guidance; such as setting
up lab-devices, loading and running attack scenarios. Users appreciated the clear command
structure and help messages, although some suggestions were made for improving minor details,
none of which being critical. Overall, the results confirmed that the CLI is well-suited for its
educational purpose, while also identifying minor areas for refinement in future iterations.

4. Quality Measures 60

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

5. Team & Project Organization
This chapter discusses tools and methods to aid with project management and organization.

5.1. Project Management Methods

In this section we go into detail how the project itself was organized, how work items have been
tracked and updated throughout the project, and which rules, standards, and conventions were
followed.

5.1.1. Task Management

The tracking of todos and assignment of active work items to project team members is managed
with Jira. The word ticket is used in the following listings, a ticket is a task or a bug created in Jira.

Definition of Ready (DoR)
The following properties must be satisfied by a ticket:
e The ticket has a title.
e The ticket was discussed in the team.
o If the ticket is of type bug, it also requires a description.

Definition of Done (DoD)
A ticket can be marked as "done" in Jira when:
e The ticket has been resolved; either through a feature implementation in the product, or a
change in documentation.
o If the ticket concerns a change to the code: A corresponding merge request must be opened
and reviewed by the other team member. An exception to this rule is if the ticket was
realized through pair programming.

5.1.2. GitLab Workflow

The project is divided into several repositories on the OST GitLab with dedicated purposes:
e Repo ‘documentation’: Primary project documentation written in IATEX*.
e Repo ‘Wi-Fied’: Source code for the Python-based CLI-tool Wi-Fied Platform.
« Repo ‘Wi-Fied-Exploits’: Collection of exploits to be pulled with git through the Wi-
Fied Platform.
« Repo ‘lab’: Lab instructions / exercises for a predefined exploit scenario written in IWTEX*.
« Repo ‘project’: Pathfinder project for tooling evaluation and testing.

*Based on Institute of Network and Security at OST (INS) KTEX templates.

CI/CD pipelines automatically create the PDF from the IXTEX source in the ‘documentation’ and
‘lab’ repos. For the ‘Wi-Fied’ repo, pytest and SonarQube checks are automated in the pipeline.

Merge requests should be used in the ‘Wi-Fied’ repository, ensuring proper reviews through
the other team member before merging into main. In the ‘documentation’ repo, merge requests
are optional, depending on the current work distribution and potential for conflicts.

5. Team & Project Organization 61

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

5.2. Tools and Resources

Important tools and resources that were used for the project management and implementation
of the product are listed below.

e Course Materials: Slides, scripts, and exercise handouts from previous modules and
courses, in the field of network and security related ones were used for reference. Especially
previous work from ‘Studienarbeit’ [1] and SE Project were valuable in regard to project
management, planning, and documentation guidelines.

e Technical documentations, web research: References and relevant web resources were
cited when referred to them. Research required for the understanding or implementation
of the project was carried out online with search engines or relevant forums. Use of Al like
OpenAl ChatGPT [22] (e.g., troubleshooting help, research and brainstorming) was used in
compliance with OST’s ‘Leitlinie zum Umgang mit KI-basierten Hilfsmitteln in Lehre und
Weiterbildung’.

o Project Management: Jira [23] was used for the task backlog and progress tracking
during the sprints.

o IDE: Source code and most of the documentation (latex) were written using Visual Stu-
dio Code [24].

e Drawing and Diagrams: Diagrams and drawings for the figures in the documentation
were created using Drawio [25] (where not stated otherwise).

5.3. Task Allocation, Meetings and Communication

The project team is responsible for planning, allocating and monitoring tasks and results. All
work is equally assigned to both team members.

Regular sync meetings within the project team are negotiated on a daily basis on workdays.
Meetings with the advisor are scheduled weekly, however it is up to the project team whether
each occurrence is desired. It is possible to skip meetings if no relevant talking points come up.
A meeting with the advisor serves primarily as a status call, giving all parties an update on the
progress of the project. If a pressing situation should arise, ad-hoc meetings can be scheduled.

All involved parties (e.g., advisor, expert) are to be invited to the mandatory presentations.
The project team is responsible for the coordination and communication. MS Teams and email /
calendar invites shall be used for formal inquiries and invites. Communication within the project
team is not regulated.

5. Team & Project Organization 62

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

5.4. Time Tracking

This section is dedicated to documenting the targeted timeframe for the project and explaining
deviations from the original target time. Each team member initially committed to contributing
approximately 360 hours to the project, as mandated by the university’s requirements. The
following provides an overview of the actual time spent, broken down by contributor and key
activity areas.

5.4.1. Target and Actual Timeframe

The Wi-Fied Platform project was scoped with an intended workload summing up to 720 hours
total. Due to the project’s exploratory and prototype-driven nature, both contributors exceeded
the target time. In total, the team invested roughly 820 hours, reflecting an overrun of 40-60
hours per person:

900
800
700
600
500
400
300
200

100

«
N n@i’

v

el el \el o ¥l “ el
Q) o Q) ’»Qv 6\/ ”9’) ’\9’\/ K
o b‘A v‘ ‘jA ‘)A ‘). 6, 'bA o ‘o

> > P PP P P

NN N N N O S U N AN B S\ N

—e—Cumulative Effort ~—e—Linear Effort

Figure 5.1.: Total Cumulative Effort

5.4.2. Causes of Overrun

The additional time can be attributed to several critical factors:

e Prototype-Driven Development: Early project phases involved frequent evaluation of
tools, libraries, and platform architectures. This iterative process, while time-consuming,
was essential to identify reliable components and technical feasibility.

e Tool and Technology Evaluation: Extensive time was spent researching and testing Wi-
Fi packet manipulation, embedded system suitability (e.g., Raspberry Pi configurations),
and automated lab setup.

¢ Refactoring and Code Stabilization: As requirements matured, significant refactor-
ing efforts were needed to ensure code maintainability, modularity, and alignment with
educational goals.

e Educational Material Development: Special effort went into crafting a didactically
structured lab instruction document, including a theoretical prestudy and a practical lab
that demonstrates a KRACK attack (CVE-2017-13082) using the Wi-Fied Platform. This
material aims to support hands-on student engagement while grounding exercises in tech-
nical context.

5. Team & Project Organization 63

OST

Ostschweizer
Fachhochschule

Wi-Fied v 1.0

5.4.3. Workload Distribution

The workload was collaboratively split but not strictly symmetrical.

Both contributors were

involved in all major tasks (evaluation, architectural design, coding, testing, documentation),
with periodic pair sessions and individual focus areas.

Contributor Target Hours Actual Hours Overrun
Alice 360 ~420 +60
Mario 360 ~400 +40
Total 720 ~820 +100

Table 5.1.: Workload Distribution Among Team Members

The following diagram (see Figure 5.2) presents an overview of time spent by each team member
across key project activities. These include efforts related to requirements engineering, software
architecture, infrastructure and tooling, evaluation, implementation, user testing, lab scenario
development, documentation, and final presentation. This breakdown highlights how work was
distributed and which activities required particular focus during the course of the project:

Requirements Analysis - %g
Architecture -135
Tooling & Infrastructure E 8
Evaluation of Python ‘ 60
Implementation * 150

Usability Tests

Lab Scenario F 32

. 92
Presentation]
14
0 20 40 60 80 100 120 140 160 180

m Alice ®Mario

Figure 5.2.: Effort by Activity and Person

5.5. Roles

No discrete roles were defined due to the small size of the project team.

5. Team & Project Organization 64

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

6. Conclusion

This chapter summarizes the key outcomes and insights gained throughout the project. It reflects
on the results and challenges encountered, and outlines perspectives for the platform’s future
development.

6.1. Results and Lessons Learned

The Wi-Fied Platform demonstrates that a hands-on, modular toolkit for exploring Wi-Fi security
threats is both feasible and valuable in educational settings. Its development provided important
insights into how to balance extensibility and simplicity, especially when working with limited
hardware capabilities such as those of the Raspberry Pi and under tight time constraints.

Using technologies already known from previous academic experience, including Python, Scapy,
and Ansible, helped accelerate development. This also ensured that the tool remains accessible
to students with varying levels of technical proficiency.

One key lesson was the complexity involved in researching, implementing, and formalizing a
Wi-Fi exploit like KRACK for educational purposes. Understanding the exploit at a technical
level, reproducing it reliably in a lab setting, and designing meaningful exercises around it re-
quired significant effort. Creating an instructional lab document that supports learning without
oversimplifying the content proved especially challenging. The goal was to encourage student en-
gagement and critical thinking, rather than providing step-by-step instructions that limit deeper
understanding.

Despite these challenges, the project successfully delivered a functional platform and lab mate-
rial that can be used in Wi-Fi security or cryptography courses. It serves as a starting point for
future improvements, such as expanding the range of scenarios, refining exercises, and enhancing
usability through additional features.

6.2. Outlook

As a foundational platform, Wi-Fied opens the door to many promising extensions and refine-
ments. A central direction for future work lies in the development of additional exploit scenarios.
Such additions could deepen the educational value of the platform by supporting more interactive
and challenging lab exercises. In parallel, user interface improvements are envisioned to better
visualize attack flows and packet sequences.

Enhanced Lab Scenarios and Instructions:
e Research WPA3 related exploits, to highlight the successor of WPA2.
o Create lab scenarios that support Man-in-the-Middle, as these would enable more dynamic
and realistic demonstrations of vulnerabilities.
e More variation of exploit types, regarding different cryptographic cyphers and Wi-Fi stan-
dard amendments.

Improved User Interface:
o More visualization of attack flows, packet capture results (e.g. Wireshark-like) integrated
into the platform.

6. Conclusion 65

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

o Integrated lab descriptions may improve usability and make the platform more accessible
and interactive to learners.

Hardware Compatibility and Deployment Flexibility:
e Support for real hardware designated for Wi-Fi, such as access points and vulnerable clients.
o Extend support for a broader range of USB Wi-Fi adapters.
o Integrating hardware checks or compatibility tests.

Open Source and Community Involvement:
¢ Considering opening the Wi-Fied Platform to a broader community, making it open source.
e Strengthening the utility through more contribution.

6. Conclusion 66

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

List of Figures

Part I

1.1.

3.1.
3.2.

5.1.
5.2.
9.3.

6.1.
6.2.
6.3.

7.1.

Interests of Primary Stakeholder Groups ii
Conceptual Lab Setup for Deauthentication Attack iii

Product Documentation (arc42)

Use Case Diagram e 6
System Context Diagram - C4 model diagram-style, level 1 14
Lab-Setup Context Diagram 16
System Context Diagram (repetitive) - C4 model diagram-style, level 1. 23
Container Diagram - C4 model diagram-style, level 2 24
Component Diagram - C4 model diagram-style, level 3 26
Pulling Exploits Runtime Scenario 31
Lab-Devices Setup Runtime Scenario 32
Running Exploit (deauthentication attack) Runtime Scenario 33
Deployment Diagram — Lab Setup for deauthentication attack 34

Part IT Project Documentation

4.1.

5.1.
5.2.

SonarQube Final Evaluation 58
Total Cumulative Effort 63
Effort by Activity and Person 64

LIST OF FIGURES 67

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

List

Part I

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

3.1.
3.2.
3.3.

5.1.
5.2.
5.3.

6.1.

10.1.
10.2.
10.3.
10.4.
10.5.

11.1.
Part I1

2.1.
2.2.

3.1.

5.1.

of Tables

Product Documentation (arc42)
Top quality goals e 3
Stakeholder Overview L e 4
Proto Persona 1. 5
Proto Persona 2.)
UCT . . e 7
UC2 . o e 8
UC3 . 9
UCA . . e 10
UCH . o 11
Interactors and External Systems of the Business Context 15
Exemplary Technical Lab-Setup Context 15
MVP Criteria Mapping o o e 18
Contained Blackboxes in the Overall System 24
Blackboxes in Wi-Fied Platform Software System 25
Components as Blackboxes in the Component Diagram 27
List of Runtime Scenarios 30
NFRI . . e 40
NFR2 . . o e 40
NFR3 . . o e 41
Quality Scenarios (SC = Scenario) 41
Quality Tree. e 43
Technical Debts 46
Project Documentation
Rough Planning Project Timeline 53
Project Achievements Overview 54
Risk Matrix o o o e 56
Workload Distribution Among Team Members 64

LIST OF TABLES 68

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

References

1]

A. Glaus and M. Burger, Wi-fi security threats - an integrative review, https://eprints.ost.
ch/id/eprint/1241/, Accessed: 2025-05-03, 2024.

R. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design
(Robert C. Martin series). Prentice Hall, 2017, 1SBN: 9780134494272.

D. G. S. Dr. Peter Hruschka et al., Arc42 - architecture documentation template, https:
//arc42.org, Accessed: 2025-05-03, 2025.

Python Software Foundation, Python language reference, version 3.11, https://docs.python.
org/3/reference/, Accessed: 2025-05-04, 2023.

Scapy documentation, python library, https:/ /scapy.readthedocs.io/en /latest/, Accessed:
2025-05-11, 2025.

Ansible runner documentation, python library, https://ansible.readthedocs.io/projects/
runner/en/latest/, Accessed: 2025-05-11, 2025.

Sqlalchemy documentation, python library, https://docs.sqlalchemy.org/en/20/, Accessed:
2025-05-11, 2025.

Sqlite documentation, https://www.sqlite.org/docs.html, Accessed: 2025-05-27, 2025.
Ansible community documentation, https://docs.ansible.com/, Accessed: 2025-05-11, 2025.
Git documentation, https://git-scm.com/doc, Accessed: 2025-05-11, 2025.

Gitlab instance of ost, https://gitlab.ost.ch/, Accessed: 2025-05-27, 2025.

Raspberry pi website, https:/ /www.raspberrypi.com/, Accessed: 2025-05-27, 2025.

Linksys ae3000, usb wi-fi adapter, page 73, https://downloads.linksys.com /downloads /
userguide/AE3000__UG_3425-01611A_ Web.pdf, Accessed: 2025-05-27, 2025.

The c4 model for visualising software architecture, https://cdmodel.com/, Accessed: 2025-
05-11, 2025.

Gitpython documentation, python library, https://gitpython.readthedocs.io /en /stable/,
Accessed: 2025-05-11, 2025.

Prompt toolkit documentation, python library, https://python-prompt-toolkit.readthedocs.
io/en/master/, Accessed: 2025-05-11, 2025.

Typer documentation, python library, https://typer.tiangolo.com /tutorial /, Accessed: 2025-
05-11, 2025.

Architecture decision record template: Y-statements | zio’s blog, https:/ /medium.com /
olzzio /y-statements-10eb07b5al77, Accessed: 2025-05-13, 2020.

Nornir netmiko documentation, python library, https://ktbyers.github.io/netmiko/docs/
netmiko/index.html, Accessed: 2025-06-01, 2025.

Nornir napalm documentation, python library, https://nornir.tech /nornir_napalm /html/
api/index.html, Accessed: 2025-05-18, 2025.

Institute for network and security, ost, https://www.ost.ch/en/research-and-consulting-
services / computer- science / ins- institute- for- network- and- security, Accessed: 2025-05-31,
2025.

References 69

https://eprints.ost.ch/id/eprint/1241/
https://eprints.ost.ch/id/eprint/1241/
https://arc42.org
https://arc42.org
https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
https://scapy.readthedocs.io/en/latest/
https://ansible.readthedocs.io/projects/runner/en/latest/
https://ansible.readthedocs.io/projects/runner/en/latest/
https://docs.sqlalchemy.org/en/20/
https://www.sqlite.org/docs.html
https://docs.ansible.com/
https://git-scm.com/doc
https://gitlab.ost.ch/
https://www.raspberrypi.com/
https://downloads.linksys.com/downloads/userguide/AE3000_UG_3425-01611A_Web.pdf
https://downloads.linksys.com/downloads/userguide/AE3000_UG_3425-01611A_Web.pdf
https://c4model.com/
https://gitpython.readthedocs.io/en/stable/
https://python-prompt-toolkit.readthedocs.io/en/master/
https://python-prompt-toolkit.readthedocs.io/en/master/
https://typer.tiangolo.com/tutorial/
https://medium.com/olzzio/y-statements-10eb07b5a177
https://medium.com/olzzio/y-statements-10eb07b5a177
https://ktbyers.github.io/netmiko/docs/netmiko/index.html
https://ktbyers.github.io/netmiko/docs/netmiko/index.html
https://nornir.tech/nornir_napalm/html/api/index.html
https://nornir.tech/nornir_napalm/html/api/index.html
https://www.ost.ch/en/research-and-consulting-services/computer-science/ins-institute-for-network-and-security
https://www.ost.ch/en/research-and-consulting-services/computer-science/ins-institute-for-network-and-security

OST Wi-Fied v 1.0

Ostschweizer
Fachhochschule

[22] Openai chatgpt, https://openai.com/chatgpt/overview/, Accessed: 2025-05-31, 2025.
[23] Atlassian jira, https://www.atlassian.com /software/jira, Accessed: 2025-05-31, 2025.
[24] Visual studio code, https://code.visualstudio.com/, Accessed: 2025-05-31, 2025.

[25] Drawio, https://www.drawio.com/, Accessed: 2025-05-31, 2025.

References 70

https://openai.com/chatgpt/overview/
https://www.atlassian.com/software/jira
https://code.visualstudio.com/
https://www.drawio.com/

	Abstract
	Management Summary
	Disclaimer - Intended Use
	Introduction
	Background and Motivation
	Project Aim and Scope
	Methods
	Results and Lessons Learned
	Outlook
	Structure of This Report

	Achknowledgements
	Product Documentation
	Introduction and Goals
	Quality Goals
	Stakeholders
	Requirements Overview

	Constraints
	Organizational Constraints
	Technical Constraints
	Legal and Ethical Constraints

	Context and Scope
	Business Context
	Technical Context
	Scope & Minimum Viable Product (MVP)
	Out of Scope

	Solution Strategy
	Technology Selection
	Iterative Approach to Implementation

	Building Block View
	Whitebox Overall System
	Containers (arc42 level 1)
	Components (arc42 level 2)
	Code

	Runtime View
	Runtime Scenario 1 — Pulling Exploits
	Runtime Scenario 2 — Lab-Devices Setup
	Runtime Scenario 3 — Sending Packet

	Deployment View
	Deployment Diagram of a Lab Setup
	Hardware Deployment
	Internet Connectivity

	Crosscutting Concepts
	Extensibility Mechanisms
	Tooling Integration
	Persistence Strategy

	Architectural Decisions
	Y-Statement 1 — Python as Implementation Language
	Y-Statement 2 — Standalone CLI Architecture
	Y-Statement 3 — Ansible for Automated Setup
	Y-Statement 4 — Scapy for Packet Manipulation
	Y-Statement 5 — SQLite for Persistent Storage

	Quality Requirements
	Non-Functional Requirements (NFR)
	Quality Scenarios
	Quality Tree
	Quality Assurance

	Risks and Technical Debt
	Technical Risks
	Technical Debts

	Glossary

	Project Documentation
	Bachelor Project Assignment
	Project Plan
	Target Group Declaration
	Project Resources
	Rough Planning
	Project Achievements

	Project Risks
	Risk Management
	Risk Matrix
	Precautionary Actions
	Risk Occurrence and Mitigation

	Quality Measures
	Code Quality
	Usability Testing through User Tests

	Team & Project Organization
	Project Management Methods
	Tools and Resources
	Task Allocation, Meetings and Communication
	Time Tracking
	Roles

	Conclusion
	Results and Lessons Learned
	Outlook

	List of Figures
	List of Tables
	References

