Bachelor Thesis

Infrahub meets K8s

Semester FS 2025

Version 1.0
June 12, 2025

Students: Simon Linder
Ramon Stutz

Advisors: Urs Baumann
Jan Untersander
Expert: Damien Garros

I N S Institute for
Network and Security

Eastern Switzerland

University of Applied Sciences

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

1. Abstract

As part of the “Infrahub meets K8s” project, an automated system for configuration and
deployment management in Kubernetes environments was designed and implemented. At its
core, the system utilizes Infrahub as a centralized inventory system and authoritative source
of truth, where the desired state of Kubernetes resources is defined. A custom Kubernetes
Operator, VIDRA, continuously monitors this desired state and ensures its reconciliation by
automatically deploying the corresponding resources into the Kubernetes cluster. With this
approach, it becomes feasible to manage the entire infrastructure of a company declaratively and
consistently through Kubernetes, enabling streamlined operations and improved scalability.

System Components

e Infrahub: Central inventory system and source of truth for all Kubernetes configurations.

o VIDRA Operator: A custom Kubernetes Operator written in Go (using the Operator
SDK), responsible for continuously reconciling the desired state from Infrahub and applying
changes to the cluster.

e« Python Transformers: Modules that convert Infrahub’s structured infrastructure data
into valid, deployable Kubernetes manifests.

o Flask Web Interface: A lightweight, user-friendly frontend that allows self-service infras-
tructure requests.

« VIDRA CLI: A terminal-based command-line interface built with Cobra for interacting
with the VIDRA Operator.

Key Features

e Automated Deployment: Enables streamlined and hands-off provisioning of infrastruc-
ture and configuration.

o State Reconciliation: Ensures that the actual state in the Kubernetes cluster always
matches the declared state in Infrahub, detecting and resolving configuration drift auto-
matically.

e Centralized Management: Offers unified visibility and control over infrastructure re-
sources through a single, authoritative source of truth.

Conclusion

The “Infrahub meets K8s” project presents a modern, extensible framework for infrastruc-
ture automation in Kubernetes-based environments. By unifying centralized configuration man-
agement in Infrahub with continuous deployment and reconciliation via the custom VIDRA
Operator, the system embodies core GitOps principles.

1. Abstract i

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

2. Vision
Vision

The vision of this project is to revolutionize the way we manage and deploy Kubernetes resources
by bridging the gap between infrastructure modeling and deployment. By leveraging Infrahub as
a centralized inventory system, we aim to automate the generation of Kubernetes manifests in a
way that is easy to use for everyone, even those who are not familiar with Kubernetes. Infrahub
will serve as the source of truth for all infrastructure configurations, allowing us to model our
infrastructure in a way that is both user-friendly and declarative.

Vidra is a continuous deployment Kubernetes Operator created to automatically reconcile the
desired state with the cluster environment based on the configuration stored in Infrahub.

Vidra was designed to be a lightweight, efficient, and reliable operator that integrates seamlessly
with Infrahub and Kubernetes. We have built it to be as modular and extensible as possible,
allowing for easy addition of other tools and systems as sources of truth. That is why we have
chosen to open-source Vidra, so that it can be used and extended by the community. We believe
that by sharing our work, we can help others build better and more efficient cloud-native GitOps
workflows.

Goals

e Centralize infrastructure modeling and configuration management

o Automate the generation and deployment of Kubernetes manifests

Continuously reconcile the desired state with the cluster environment

Streamline infrastructure operations and improve efficiency

Provide full traceability and auditability of deployment actions

Technology stack

e Infrahub — as the inventory system and source of truth

e Vidra, our Operator written in Go on Operator SDK — for continuous reconciliation and
deployment

e Kubernetes — as the deployment and runtime platform
e KubeVirt — for managing virtual machines on Kubernetes
o flask - for a self-service web interface

e cobra - for a Vidra CLI interface

2. Vision i

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

3. Management Summary

Initial Situation

In modern cloud-native environments, continuous deploymant and declarative configuration are
critical for achieving scalable, consistent, and reliable operations. Popular tools such as ArgoCD
and FluxCD automate the deployment of Kubernetes manifests, enabling clusters to continuously
reconcile with their defined state. However, these workflows generally require teams (mostly only)
to manually create and maintain YAML files for each deployment. As infrastructure grows in
scale and complexity, organizations increasingly prefer to define their systems using higher-level
inventory systems and domain-specific models that capture relationships, intent, dependencies,
configuration details, and the current state of infrastructure components.

This shift introduces a gap between abstract infrastructure modeling and automated deploy-
ment. While higher-level, custom schemas reflect inventory, business logic and system relation-
ships, there is often no direct bridge to generate deployable resources dynamically. Without this
bridge, organizations face friction between infrastructure design and cluster operations, often re-
lying on brittle, custom-built pipelines that are hard to maintain and do not scale well across
environments. Bridging this gap by automatically generating manifests from these infrastructure
models would significantly streamline operations, reduce manual technical effort, and improve
scalability and ease of use for other teams.

Objective

The goal of the project was to close this gap and enable a fully automated path from infrastructure
modeling to Kubernetes deployments.

That is where Infrahub and our custom Kubernetes Operator, Vidra, come into play. In-
frahub serves as a centralized inventory system that allows teams to model their infrastructure
declaratively in a easy to use user interface, capturing the relationships and intent of their sys-
tems in a structured way. It provides a source of truth for infrastructure configuration, enabling
teams to define their desired state in a way that is both human-readable for everyone in the
team and machine-processable. Vidra, our continuous deployment Kubernetes Operator, then
bridges this gap by enabling fully automated deployment from infrastructure modeling to cluster
deployment. Vidra continuously monitors the desired state defined in Infrahub—a centralized,
version-controlled infrastructure graph—and ensures that the corresponding manifests are gener-
ated and applied to the Kubernetes cluster. This approach brings GitOps principles directly into
the cluster, providing a seamless, reliable, and traceable deployment workflow without relying on
external CD tools. Vidra empowers teams to focus on strategic improvements and innovation
by reducing manual intervention and operational friction, by beeing able to just spinn up new
infrastructure components like containers or virtual machines with a few clicks in the Infrahub

UL

3. Management Summary iif

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

A GO

python

Frontend Vidra CLI
e gt [Container] —Oprraragurar__ [Container]
frest Enables easy interaction with Enables easy interaction with

Custom Resources

Infrahub
Operator Admipistrator 777 Infrastructure
tUsen [eer
B Components: Custom code in Infrahub
Sync Configuratio I Components: GO code
fiuibet] [l Kubernetes Manifest

Operator Cormguranon Up-ramr Managnmm
Approve Proposed Change / [kubect] [kubactl]
Change Advanced Settings
[HTTPS] Infrahub Credentials
kuhcct\
——————————————— proposes change— — —/— — — — — — — — — L R B B T T e

4 kubernetes [RESTHuI]

/" [Infrastructure]
! Reliable Orchestration System

Target Kubernetes Cluster
[External System]

GO
INFRAHUB

: r r
@ . = = ‘Secret:
. — |Custom Resource: | | [=—
[Software System] : II;!I o ahuES, UIJ;L Infrahub- ”

Triggers Reconciliation

[kes]

Login Credéntials
[k8s]

" Download
Creats ' . Custom R
TR : Login f Run GraphQL create / update: I;-% Target Glusm_r for resouirce
e m e [s deployment; same a5 or
(RSl Triggers Rmnmnamon : separate from the
— Download Artfact | :
Uses : [RESTHuI] infrastructure cluster.

. Apply Manifests.
Template Schema E : Kes APl |
[VAML] : :

\ : Event-based f
Monitoring ,
k8s Informers] .

Figure 3.1.: C4 Component Diagram, showing the Infrastructure and Code components

Results

Vidra enables automated deployment of manifests from Infrahub to Kubernetes, ensuring config-
uration changes are promptly and consistently applied across the cluster. This reduces manual
intervention and significantly improves operational reliability. By following GitOps principles,

Vidra guarantees continuous reconciliation and full traceability of all deployment actions.

3. Management Summary

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

4. Acknowledgments

We sincerely express our deepest gratitude to our advisors, Urs Baumann and Jan Untersander,
for their professional support and expert guidance throughout the course of this project. Their
insightful advice and constructive feedback have been valuable and helpfull.

We are also grateful to the OpsMill - Infrahub team for their prompt and helpful support during
technical challenges, as well as for the opportunity to present our work at their internal Otto’s
Tech Talks; connecting with people from around the world working on Infrahub and receiving
valuable insights and discusscuss our project afterward was a pleasure.

Finally, we thank our friends and family for proofreading and providing valuable feedback.

4. Acknowledgments v

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

Contents
1. Abstract i
2. Vision i
3. Management Summary il
4. Acknowledgments v
Contents vi
I. Technical Documentation 1
1. Overview 2
2. Requirements 3
2.1. Functional Requirementso 3
2.1.1. Persona e e e e e e e 3
2.1.2. User Stories o e e 3
2.2. Non-Functional Requirements L. 5
2.2.1. Approach 5
3. Preliminary Work 7
4. Initial Project Analysis 8
4.1, Flux e 8
4.1.1. Lab Setup 8
4.1.2. Result o 9
4.1.3. Conclusion e 9
4.2. ArgoCD oL 10
4.2.1. Hypothesis and Testing Lo 10
4.2.2. Community Feedback 10
4.2.3. Solution and Conclusion 11
4.3. Kubernetes Operator L 12
5. Architecture 13
5.1. Introduction and Goals 13
5.2. Context Diagram (Level 1) 14
5.3. Container Diagram (Level 2) 15
5.4. Component Diagram (Level 3) 16
5.5. Architectural Decision Records L. 17
6. Quality Measures 22
6.1. Organizational Measures e 22
6.2. Guidelines e 22
6.3. Tools Used to Assess Product Quality in CI/CD 22
6.4. Manual Testing e 23
6.4.1. User Tests o e 23

CONTENTS vi

OOST Infrahub meets K8s v 1.0

Eastern Switzerland
University of Applied Sciences

6.5. Code Review s

7. Infrahub
7.1, Schema e
7.1.1. UML Diagram e
7.1.2. Generics - Resource
7.1.3. Nodes e
7.2. Python Transformation L
7.2.1. Transform Function
7.2.2. Helper Functionso
7.2.3. YAML Templates.
7.3. Graph QL Queries e
7.4. .nfrahub.yml00 oo
7.5. Resource Manager e
7.6. Users, Groups, Roles, and Permissions
T7.6.1. Users 0 e e e e
7.6.2. Roles e
7.6.3. Permissions e
7.6.4. User Groups . . . v v v v v v i i e e e e e
T7.7. Service Groups i e
7.8. Git Integration e
7.9. Object Templates e

8. Self-service Frontend
8.1. Architecture e
8.2. HTML Interface e
8.3. Flask e e
8.3.1. Python Libraries
8.3.2. index function
8.3.3. Python Script
8.4. Python - CreateObjects e
8.4.1. Python Script e
8.5. Python - HelperFunctiono

9. Technical Issues and Obstacles
9.1. Infrahub e
9.1.1. Resource Manager via Template
9.1.2. Web Browser API Calls
9.1.3. General GraphQL File oo
9.1.4. Calling YAML File
9.2. Vidra Operator e
9.3. General Issues. e

Il. Project Documentation
1. Results

2. Conclusion

CONTENTS

24
24
24
25
26
28
29
30
33
34
35
36
37
37
38
38
38
39
39
40

41
41
42
42
42
43
43
44
44
45

47
47
47
47
48
48
49
49

50
51

52

vii

O

OsST

Eastern Switzerland
University of Applied Sciences

Infrahub meets K8s v 1.0

3. Project Planning

3.1.
3.2.
3.3.
3.4.

3.5.

3.6.

List of

List of

Processes
Architectural Roles
Meetings
Phases
3.4.1. Time Table
Risk Management
3.5.1. Risks
3.5.2. Risk Countermeasures
3.5.3. Risk Matrix
3.5.4. Risk summary
Planning Tools
3.6.1. JIRA

3.6.2. Clockify
3.6.3. Overleaf

Tables

Figures

Acronyms

Glossary

l1l. Appendix

1. Quality Attribute Scenarios

2. Detailed Architecture Decisions

2.1.
2.2.

What is Infrahub used for?
Do we need Profiles or Templates in Infrahub?

3. Detailed HTML and CSS Code

3.1.
3.2.

HTML
CSS Styling

Bibliography

CONTENTS

61

62
63

74
74
77

79
79
80

82

viii

Part |I.

Technical Documentation

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

1. Overview

This project is composed of several integrated components designed to streamline and simplify
the creation and management of Kubernetes resources. The primary components developed or
enhanced with custom automations include:

o Frontend Application: A web-based user self-service interface that allows users (who do
not need to manage resources) to easily create resources in Infrahub.

o Infrahub: An inventory system that we enhanced to manage the lifecycle of Kubernetes
resources. It provides a central repository for modeling and managing resources, as well as
representing our desired state.

e Vidra: A continuous deployment Kubernetes operator that automates the provisioning
and management of Kubernetes resources, ensuring they always reflect the desired state
defined in Infrahub.

e Vidra CLI: A tool that makes it easy to interact with Vidra. It provides a command-line
interface for configuring Vidra and managing its resources.

In this document, we focus on the Infrahub side of the project and how it integrates with the
other components. The Infrahub side of the project can ultimately be populated with different
resources and use cases. We showcase the use cases of creating app deployments and virtual
machines in the following chapters.

Since we decided to open-source Vidra, we have chosen to publish the technical documentation
of Vidra alongside it on GitHub Pages. This approach ensures broader accessibility, and we hope
it encourages community contributions.

Vidra Documentation

1. Overview 2 of 82

https://infrahub-operator.github.io/vidra/

OOST Technical Documentation v1.0
o e Scnces Infrahub meets K8s

2. Requirements

This chapter outlines the requirements of this project, structured into two main categories:
functional and non-functional requirements.

At the beginning, we analyzed the stakeholders involved to determine for whom the project is
being built. For a detailed discussion of the stakeholder analysis and our decision, please see the
resulting architectural decision in section 2.1.

2.1. Functional Requirements

Functional requirements specify the core capabilities and behaviors the system must provide to
meet stakeholder needs. These requirements are primarily derived from the perspectives and
objectives of two key personas: (1) the Admin (Kubernetes Cluster Administrator / Cloud Engi-
neer), who is responsible for developing, maintaining, and managing Kubernetes-based solutions
and templates; and (2) the User (Developer / Operator), who interacts with the system to deploy
and manage resources without deep Kubernetes expertise. The functional requirements are ar-
ticulated as user stories, ensuring that the system design and implementation are closely aligned
with real-world usage scenarios and stakeholder expectations. Collectively, these requirements
establish a comprehensive foundation for the project and guide the subsequent development pro-
cess.

2.1.1. Persona

¢ Admin (Kubernetes Cluster Administrator / Cloud Engineer): This persona repre-
sents a technically proficient individual responsible for the setup, configuration, and ongoing
management of the Kubernetes cluster. The Admin designs, implements, and maintains de-
ployment templates (e.g., for virtual machines), ensures the security and reliability of the
cluster, manages resource allocation, and oversees all Kubernetes resources.

o User (Developer / Operator): This persona represents an individual with limited or
no expertise in Kubernetes who requires the ability to deploy virtual machines or other
resources on the cluster. The User seeks a simplified interface and workflow that abstracts
away the complexities of Kubernetes, enabling them to accomplish their tasks efficiently
without deep technical knowledge of the underlying infrastructure.

2.1.2. User Stories

In this section, we outline the user stories from each persona’s perspective. They are categorized
into two scopes: (1) In Scope — user stories that will be addressed by this project; (2) Out of
Scope — user stories not immediately required but potentially implementable given sufficient time
or in future work.

In Scope

e U-1: As a User, I want a simple and easy-to-use interface to self-deploy a virtual machine
or other Kubernetes resources on the Kubernetes cluster.

e U-2: As a User, I want to be able to deploy a virtual machine or other resources on the
Kubernetes cluster without having to know Kubernetes.

2. Requirements 3 of 82

OOST Technical Documentation v1.0

o e Scnces Infrahub meets K8s

Out

U-3: As a User, I want to select from pre-configured templates for common deployments
to save time and reduce complexity.

U-4: As a User, [want to get access to the virtual machine or other resources I deploy on
the Kubernetes cluster.

U-5: As an Admin, I want to define and manage what resources can be deployed by the
User on the Kubernetes cluster.

U-6: As an Admin, I want to define templates for common deployments that can be used
by the User.

U-7: As an Admin, I want to specify basic resource limits (such as CPU and memory) for
my virtual machines without dealing with low-level Kubernetes settings.

U-8: As an Admin, I want to be able to delete the virtual machine or other resources easily
via infrahub.

U-9: As an Admin, I want to be able to determine which image (e.g., Docker image) is
used for the virtual machine or other resources deployed on the Kubernetes cluster.

U-10: As an Admin, I want the tool to reconcile the state of the cluster with the state of
infrahub automatically.

U-11: As an Admin, I want to see errors easily when deployments fail or exceed resource
limits, to quickly respond to issues.

U-12: As an Admin, I want to be able to steer which artifact in infrahub should be used
for the resources deployed on the Kubernetes cluster.

U-13: As an Admin, I want to be able to roll back deployments to a previous state in case
of issues or failures, by syncing to an older artifact.

U-14: As an Admin, I want the tool to follow the GitOps principles!, ensuring that the
state of the Kubernetes cluster is always in sync with the state defined in infrahub. Even
if a User changes the resource manually in the Kubernetes cluster, the tool should detect
this and overwrite the change again.

of Scope

U-15: As a User, I want to see the status of my virtual machine deployment (e.g., pending,
running, failed) and receive feedback on its success or failure.

U-16: As a User, I want to be able to deploy multiple virtual machines or other resources
at once.

U-17: As an Admin, I want to deploy resources to multiple Kubernetes clusters to support
different environments (e.g., development, staging, production).

U-18: As an Admin, I want to enforce resource quotas and limits for different users to
prevent resource exhaustion.

U-19: As an Admin, I want to audit and track user activity related to virtual machine
deployments for security and compliance.

"https://opengitops.dev

2. Requirements 4 of 82

https://opengitops.dev

O OST Technical Documentation v1.0
Eastorn Switzerand Infrahub meets K8s

University of Applied Sciences

e U-20: As an Admin, I want the tool to immediately detect and correct configuration
drift between the desired state in infrahub and the actual state in the Kubernetes cluster.
(Event-based reconciliation)

e U-21: As an Admin, I want to automate the cleanup of unused or expired virtual machines
to optimize resource utilization.

e U-22: As an Admin, I want to roll back faulty deployments quickly to maintain system
stability.

2.2. Non-Functional Requirements

2.2.1. Approach

The non-functional requirements were identified through collaborative discussions within the
project team and with guidance from our advisor. These requirements are formulated to be
SMART (Specific, Measurable, Achievable, Relevant, and Time-bound), ensuring clarity and
traceability throughout the project. For systematic classification, we adopt the ISO/IEC 25010
quality model?, which provides a comprehensive framework for software quality. Furthermore, we
specify the non-functional requirements using Quality Attribute Scenarios (QAS) to make them

actionable and verifiable.
SOFTWAREPRODUCT
QUALITY

1 L | 1

Figure 2.1.: Non-Functional requirements

Y 1

Maintainability

—
unctional
Suitability

Portability

L T
Ferformance e

e Performance Efficiency: The system should optimize resource usage on the Kubernetes
cluster and in the network. It should be lightweight and efficient, only downloading the
necessary resources from infrahub.

o Compatibility: The system should be compatible with existing Kubernetes tools and tech-
nologies, allowing for seamless integration and interaction with other cloud-native solutions.

e Usability: The system should be user-friendly, providing an intuitive interface for Users to
deploy resources without needing deep Kubernetes knowledge. It should also provide clear
error messages and guidance for troubleshooting.

o Reliability:

— Maturity: The system should be stable and reliable, with a low rate of defects and
issues. It should be able to handle a high volume of deployments without significant
performance degradation.

2ISO/IEC 25010 model https://is025000.com/index.php/en/iso-25000-standards /iso-25010

2. Requirements 5 of 82

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

— Fault Tolerance: The system should be able to recover from failures and continue
operating without data loss or significant disruption.

— Scalability: The system should be able to handle an increasing number of deployments
and users without significant performance degradation.

e Maintainability:

— Modularity: The system should be modular, allowing for future enhancements and
modifications without significant rework.

— Testability: The system should be designed to facilitate unit testing, allowing for
eagy verification of functionality and performance.

— Reusability: The system should allow for the reuse of components and templates,
enabling efficient development and deployment of resources.

o Portability:

— Adaptability: The system should be adaptable to different Kubernetes environments
and configurations, allowing for easy deployment in diverse scenarios.

— Installability: The system should be easy to install and configure, with clear docu-
mentation and minimal dependencies.

Out of Scope

e Security: Access to the system should be restricted based on user roles and permissions.
All other aspects of security are considered out of scope.

The detailed Quality Attribute Scenarios that specify the non-functional requirements are pro-
vided in chapter 1 in the appendix. Not all non-functional requirements can be fully validated
through comprehensive testing—particularly those related to performance—within the scope of
this project. Nevertheless, we will design the system with these requirements in mind, to the point
where we can confidently say they are fulfilled. Additionally we are aiming to address as much
of them as possible through unit and integration tests. We believe it is preferable to document
and consider these performance requirements throughout development, rather than limiting the
scope of non-functional requirements and risking their omission.

2. Requirements 6 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

3. Preliminary Work

Several open-source projects, such as Infrahub and Kubernetes, are widely used in the in-
dustry. Kubernetes operators and controller frameworks, including Kubebuilder, are mature and
well-documented, and there are well-known CD operators such as ArgoCD and Flux. However,
to date, there has been no direct integration between Infrahub and Kubernetes. Existing ap-
proaches, if any, must rely on intermediary tools like Git, which cannot achieve the same level of
seamless integration and automation as a native Kubernetes operator.

3. Preliminary Work 7 of 82

OOST Technical Documentation v1.0
o e Scnces Infrahub meets K8s

4. Initial Project Analysis

In this chapter, we look into FluxCD, ArgoCD, and Kubernetes Operators as continuous deploy-
ment solutions to retrieve manifests from Infrahub and automatically deploy them to Kubernetes.

4.1. Flux

Flux is a GitOps toolset for Kubernetes that automates the deployment of configuration files
(YAML) stored in Git repositories, S3 buckets, or other OCI-compatible registries. It relies on
two types of repositories: a source repository, which stores the YAML files and configurations
(such as Helm charts and Kustomize files), and a target repository that manages the deployment
configurations.

flux bootstra ; < >
. P > Kubernetes APl ——————> NG Soturc"e
'Q &s controller

o Kustomize
S controller

i

E tenant
tenant
A
Loy Helm
| RBAC L Hf‘l:(M Releases < &% controller
i N ' € Notification
e e |
. Policies _ -%— Alerts S5 controller

Figure 4.1.: Diagram of the Flux Workflow
1

4.1.1. Lab Setup

In our test setup, we utilized one GitLab repository as a bootstrap file and an S3 Bucket from
MinlO, which stores the artifacts from Infrahub. Our goal was to test automated deployment
from an Infrahub artifact via Flux to the Kubernetes cluster.

'Source: FluxCD Documentation, August 24, 2023, https://fluxcd.io/flux/components/

4. Initial Project Analysis 8 of 82

https://fluxcd.io/flux/components/

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

@ nFraHuB MIINIO < flux © git

—— Define —
Creates Service and, N Source Storage

Merge Request —Pulls Artifacts
- Approves)

Metwork " Merge Request) —Pulls Arfifacts

User | Python Transformation
Stores Artifact on Bucket)
@ —Pulls Arfifacts On Change:
Deploy Arifacts
Network
Admin —Pulls Arfifacts

Figure 4.2.: Description Workflow Setup Flux Testing

4.1.2. Result

In our test scenario, we wanted to create a Kubernetes manifest in Infrahub, which would be
automatically fetched by Flux and deployed on Kubernetes.

Advantages

e Can use an S3 Bucket as a source.
e It’s mature and CNCF graduated.

e There is a large community.

Disadvantages

e Needs its own plugin written in Go to fit our use case.

e Needs a kustomization.yaml or Chart.yaml in the repository, which Infrahub doesn’t pro-
vide.

e Doesn’t recognize YAML files that don’t have a .yml extension. Infrahub doesn’t put any
extensions on its artifacts.

4.1.3. Conclusion

Flux is easy to deploy and use, making it an excellent tool for automating Kubernetes deploy-
ments. The integration with Kustomize for managing YAML files is also straightforward and
efficient. Using separate repositories can even be an advantage, as it allows an S3 bucket to be
used as a source.

However, a major drawback of Flux is its limited flexibility in defining the source storage. In our
use case, we need to specify exactly which file should be used, especially since it changes after every
merge request. Infrahub, for instance, stores its artifacts using a storage-ID that updates with each
deployment, while requiring a Kustomization or HelmChart file named kustomization.yaml or
Chart.yaml. To accommodate this, we need a custom script or plugin that dynamically generates
and updates this file whenever changes occur. To address this limitation, we would need to develop
a custom plugin that extends the source storage definition to meet our specific requirements.

4. Initial Project Analysis 9 of 82

OOST Technical Documentation v1.0
o e Scnces Infrahub meets K8s

4.2. ArgoCD

ArgoCD is a widely used GitOps tool for automating Kubernetes deployments. Like Flux, it
uses a Git repository as the source of truth for configuration files, but distinguishes itself with a
user-friendly interface and advanced features for application management and monitoring.

Integration with Infrahub: ArgoCD’s capability to integrate with Infrahub was tested using
the Config Management Plugin (CMP)2. The CMP allows ArgoCD to use custom scripts or
tools—written in any language—to generate Kubernetes manifests from external sources. Once
configured, the plugin enables ArgoCD to fetch and render manifests from Infrahub or other
systems, extending beyond native Git, Helm, or OCI sources.

4.2.1. Hypothesis and Testing

We hypothesized that a custom CMP could directly pull Infrahub artifacts, for example, using a
Python script with the Infrahub SDK or API.

In testing, we implemented a simple CMP that generated a static ConfigMap (see Figure 4.3).
The CMP successfully rendered Kubernetes resources from any valid input, but it does not trigger
ArgoCD syncs—updates only occur when a new commit is detected in the Git repository.

oee 0 00 W0

plugin-demo - Application Deta X @ x

@ EXPLORER $ C
1 o a 080/ plugin-der ¥¥
ya

BA
cMP
1-ConfigMap.yam!
12

Applications Q plugin-demo

00000
argoCD-ingress.yam|

Docker-compose.yml ha n Applications i Log out
¥ dok.md <
@ $ scriptsh " i @ etting APP HEALTH SYNC STATUS = LASTSYNC
n

0 temp " i Healthy @ Synced

temp1

* @ argo

2-re
3-app.yaml

nabled. Suce inute ago
slinder <120310879+SimLi1333@. inder <120310879+SimLi
Comment: Update README.md Comment: Update README.md

= E + - a a [

3-appyaml X
plugin-demo . plugin-demo
CMP > ! 3-appyam H

SYNC STATUS
(]
© outof

HEALTH STATUS

O Prc

Figure 4.3.: CMP Test: ConfigMap Deployment

4.2.2. Community Feedback

To clarify integration options, we consulted the ArgoCD and Infrahub communities. An ArgoCD
developer explained that ArgoCD is designed to sync only with Git repositories to maintain focus:
“ArgoCD intentionally avoids supporting a wide variety of sources. We risk doing a lot of stuff
poorly and nothing extremely well.”[1]

2ArgoCD Config Management Plugin: March 21, 2024 https://argo-cd.readthedocs.io/en/stable/
operator-manual /config-management-plugins/

4. Initial Project Analysis 10 of 82

https://argo-cd.readthedocs.io/en/stable/operator-manual/config-management-plugins/
https://argo-cd.readthedocs.io/en/stable/operator-manual/config-management-plugins/

OOST Technical Documentation v1.0

Eastern Switzerl;

o e Scnces Infrahub meets K8s

[1] Slack.com, “Discussion on ArgoCD Design,” Slack channel: https://app.slack.com/
client/TO8PSQ7BQ/CO1TSERGOKZ, Accessed on March 25, 2024.

Infrahub developers recommended a hybrid approach using ArgoCD, Infrahub, and Git. They
suggested pulling artifacts from Git via pipelines or using a custom script/operator to fetch
artifacts from the Infrahub API. "Committing the artifact back to a git repository makes sense,
it has come up a few times but this is not something Infrahub can do today. Some customers are
managing that outside of Infrahub with a GH Action like a script that will pull the artifacts from
Infrahub and commit them to git."[2]

[2] Discord.com, “Discussion on Infrahub Integration with Kubernetes,” Discord chan-
nel: https://discord.com/channels/1212332642801025064,/1301914405176475729, Ac-
cessed on March 25, 2024.

4.2.3. Solution and Conclusion

After considering all options, we concluded that a combination of ArgoCD, Infrahub, and Git
would be a valid solution in two scenarios. The first scenario could be that the YAML files are
generated using a Python-based transformer in Infrahub, and an artifact ID is committed to Git
to trigger the CMP. This is illustrated in Figure 4.4.

I_Infrastructure
[lcomponents with Custem code / data in Infrahub
[Components: GO code

Kubernetes Manifest
Opefator

[Uger]

vrovnm;g?m approveproposedchange/ ______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ __ _ ___ ________________

o “change advanced seftings T ~
e kubernetes [HTTPS]

;" Uinfrastructure]
Provides a reliable

orchestration system .
v ArgoCD %‘
@ INFRANUB Gy | " ;

[Software System)] Ingress Target Kubernetes Cluster

PREFECT

[External System]

Create Arlefact Config

reate Arifa {FretectEvent Apply Maniests. =7 Target cluster for resource
[Prefect fiow] Esmgs Ks] deployment; same as or
: separate from the
[YAML] : : infrastructure cluster.
“<—GraphQl- :
— Result rirahub el :
b DB . : K
\ N N ’
N Sync Commit / : . -
S — - == YAML Manifest — — — = — — — — — = — = & — — — - — — — — — Bynel = — = — - m e m s s s s s s s s s s s s s s s e e e -

8@"‘“ GitLab

Administrator
[User]

Figure 4.4.: ArgoCD and Infrahub Integration Workflow

Alternatively, the artifact could be pushed or pulled to the Git repository, allowing ArgoCD
(or Flux) to sync as usual (second scenario).

Another option is to use Infrahub only to manage key values and generate a Helm ‘values.yaml‘
file for Git.

However, both scenarios present drawbacks, as they require maintaining Infrahub in parallel
with Git. This approach effectively turns Infrahub into a graphical interface for managing Helm
or YAML values within a traditional GitOps workflow, undermining the objective of having a
single, unified source of truth.

4. Initial Project Analysis 11 of 82

https://app.slack.com/client/T08PSQ7BQ/C01TSERG0KZ
https://app.slack.com/client/T08PSQ7BQ/C01TSERG0KZ
https://discord.com/channels/1212332642801025064/1301914405176475729

OOST Technical Documentation v1.0
o e Scnces Infrahub meets K8s

4.3. Kubernetes Operator

A custom Operator is the most advanced and customizable solution for integrating Infrahub with
Kubernetes. Operators are Kubernetes controllers that automate the management of complex
applications and services. They extend the Kubernetes API to create, configure, and manage
custom resources. Operators use the Kubernetes client library to interact with the Kubernetes
APL

Integration with Infrahub: We could write a custom Operator that pulls the Infrahub artifact
and creates the necessary Kubernetes resources. The Operator would watch for changes in the
Infrahub artifact and automatically update the Kubernetes resources accordingly.

We would need to identify the Infrahub artifacts that are present in Infrahub and need to be
deployed. For that, we could use the Infrahub API to execute a predefined GraphQL query to list
all artifact IDs and their hashes of a particular branch and time, as seen in Figure 4.5. With that
information, we could pull the artifact from the Infrahub API using /api/artifact/{artifact_id}

/api/query/{query_id} Graphal Query Post & A
Name Description
query_id * ID or Name of the GraphQL query to execute
string
(path)
subscribers List of subscribers to attach to the CoreGraphQLQueryGroup
array[string] Default value : List []
(query)
update_group When True create or update a CoreGraphQLQueryGroup with all nodes related to this query.
boolean Default value : false ‘
(query) | false v
branch Name of the branch to use for the query
string
(query)
at Time to use for the query, in absolute or relative format

string
(query)

Figure 4.5.: Infrahub API - Post GraphQL query

The big advantage of this solution is that we can tailor the Operator to our specific needs. We
can define the logic for pulling the Infrahub artifact, parsing the YAML files, and simply applying
them to the Kubernetes cluster.

But writing a custom Operator is a complex and time-consuming task. We would need to
learn the Go programming language and the Kubernetes client library, as well as the Operator
Framework. Additionally, a custom Operator is not as established, proven, and tested as ArgoCD
or Flux, and we might need to solve the same problems that ArgoCD and Flux already master
perfectly.

4. Initial Project Analysis 12 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

5. Architecture

This chapter provides an overview of the high-level architecture for the integrated solution,
encompassing all four software containers. For an in-depth, code- and component-level (C4)
description of the Vidra and Vidra CLI architecture, refer to the Vidra documentation and Vidra
CLI documentation. Component and code-level details about the Infrahub Frontend architecture
can be found in Section 8.1.

5.1. Introduction and Goals

The main goal is to demonstrate how integrating Infrahub with Kubernetes simplifies and au-
tomates application and infrastructure deployment. Infrahub serves as a central management
platform, while Vidra, a Kubernetes operator, synchronizes infrastructure artifacts (e.g., mani-
fests, configurations) from Infrahub to Kubernetes.

Continuous Deployment Workflow: Changes in Infrahub are automatically propagated to the
Kubernetes cluster, ensuring the actual state matches the desired state.
The architecture aims to:

e Provide a user-friendly interface for Kubernetes application management via Infrahub.

¢ Automate synchronization of infrastructure definitions from Infrahub to Kubernetes using
Vidra.

e Support continuous deployment by applying Infrahub changes directly to the cluster.
« Enable use of reusable templates for streamlined deployments.

o Offer a scalable and adaptable architecture for diverse requirements.

5. Architecture 13 of 82

https://infrahub-operator.github.io/vidra/topics/architecture
https://infrahub-operator.github.io/vidra/cli/topics/architecture
https://infrahub-operator.github.io/vidra/cli/topics/architecture

OOST Technical Documentation v1.0
o e Scnces Infrahub meets K8s

5.2. Context Diagram (Level 1)

The context diagram provides a high-level overview of the system and its interactions with ex-
ternal entities, such as users and other systems.

User inisirator
[Uger]

approve proposed change/
change advanced settings

Adds Resource Request HTTPS] Manage

[HTTPS] [kubectl]

@ INFRAHUB

Target Kubernetes Cluster

Infrahub meets K8s Watches and modifies [EXternaI SyStem]
[Software System] _ Resources
[client-go sdk, kBs AFI]
Allows easy definition and continuous Target cluster for resource
delivery of Kubernetes solutions. deployment; same as or separate

from the infrastructure cluster.

Figure 5.1.: C4 Context Diagram

The diagram illustrates:

e Infrahub and Vidra: The core elements of the software system, where Infrahub serves as
the management interface and Vidra acts as the Kubernetes operator, working together in
harmony to synchronize infrastructure definitions with the real running state.

e Target Cluster: The target environment where applications are deployed. It can be the
same cluster as the one where Infrahub and Vidra are running, or a separate cluster.

e Users: Individuals interacting with Infrahub to manage deployments and configurations.
They typically have some understanding of the infrastructure and deployment processes.

¢ Administrator: The individual responsible for managing the Kubernetes cluster, ensuring
its health, security, and availability, and providing the necessary resources for application
deployment.

5. Architecture 14 of 82

Eastern Switzerland

University of Applied Sciences

Technical Documentation v1.0

Infrahub meets K8s

5.3. Container Diagram (Level 2)

The container diagram breaks down the system into its main containers, illustrating how each
part collaborates to deliver overall functionality.

Uger
[User]

Adds Request
[HTTPS]

Frontend
[Container]

Enables easy interaction with Infrahub

proposes change
[HTTPS,

/ [Infrastructure]
Provides a reliable
orchestration system

@ INFRAHUB
[Software System]

Serves as a user interface and
maintains the inventory and desired
state of Kubernetes resources.

Transforms resources to manifest
packages for Vidra.

Adrfiniskator
[User
Manage

[CL])

Approve Proposed Change/ Vidra CLI
Change Advanced Settings

[Container]

jirast | Enables easy interaction with Custom
Resources

2a
: Vidra :
Gets Kas Nanifests [Container] Walches and modifies

_ 1 L Resources
[Infrahub RE§T|uI APl [client-go sdk, kBs API]

Enables continuous delivery of any
Kubernetes resource definition
retrieved from Infrahub.

Figure 5.2.: C4 Container Diagram

The diagram illustrates the following containers:

Target Kubernetes Cluster
[External System]

Target cluster for resource
deployment; same as or separate
from the infrastructure cluster.

e Frontend: The self-service interface for users with no prior knowledge to interact with the
system, providing a user-friendly GUI for creating requests for Kubernetes resources.

e Infrahub: The inventory software system with a GUI for users and administrators to
manage Kubernetes resources, providing a central management platform for an abstract
representation of the desired state of the Kubernetes cluster.

e Vidra Operator: The Kubernetes operator responsible for synchronizing infrastructure
definitions from Infrahub to the target cluster.

e Vidra CLI: A command-line interface for interacting with Vidra, allowing administra-
tors to manage Vidra configuration and handle continuous deployment directly from the

terminal.

5. Architecture

15 of 82

OOST Technical Documentation v1.0
Eestorm Switzerand Infrahub meets K8s

University of Applied Sciences

5.4. Component Diagram (Level 3)

python
Frontend Vidra CLI
U— [Container] — prsr arsgomars__, [Container]
[HTTPS] . .) . . .
Enables easy interaction with Enables easy interaction with
Infrahub Custom Resources N
Operator M"“ 'f“ tor 77 Infrastructure
[User]
. Components: Custom code in Infrahub
Sync Configuratios [l Components: GO code
Tkubect] I Kubernetes Manifest
Operator Cunhgumnnn Un-ravur Managsmem
Approve Proposed Change / [kubectl] [kubactl]
Change Advanced Settings
[HTTPS] Infrahub Credentials

kubect
777777777777777 proposeschange— — -/~ - — — — — — — — 1 _ _Meedl B e e

Py -

-3 kubernetes RESTHU
[Infrastructure]
Reliable Orchestration System

@ INFRAHUB c r
. = = Secret:
. ——] Custom R i | L=
[Software System] : II;‘I “fn;’r:'m:;"“m ulj;,b Infrahub- H

Triggers Reconciliation

/

Target Kubernetes Cluster
[External System]

Login Credentials
ki
fkes] O

" Download__

Creates

: Login / Run GraphQL
[RESTHI]
An ifactiDs
Transformation uHsms:-ns Infrahub AP1 [H‘Esmf
—Download Artifact »|
Uses : [RESTHI]

: Apply Manifests.
Template Schema E : lkesAP] |
VAML] : :

Target cluster for resource
deployment; same as or
separate from the
infrastructure cluster.

Triggers Reconciliation
[k8s]

\ : Eventbased f
Monitoring P
[k8s Informers] P

Figure 5.3.: C4 Component Diagram

The component diagram provides a detailed view of the components within the Infrahub and
Vidra system, illustrating how they interact to deliver functionality. It includes:

e Infrahub API: The API that allows interaction with Infrahub, enabling users to run
GraphQL queries and download artifacts containing Kubernetes manifests.

¢ GraphQL Queries: Used to interact with Infrahub’s Neo4j database, enabling retrieval,
transformation, and configuration of data as required for managing and deploying Ku-
bernetes resources. GraphQL is used because it is the intended way for automations by
Infrahub.

o Transformations: Python code that generates structured data artifacts from data it gath-
ers using GraphQL queries and, in our case, YAML templates.

e Artifact: The structured data artifacts generated by the transformations, which contain
Kubernetes manifests.

o Templates: YAML templates used to generate Kubernetes manifests, allowing for reusable
and customizable configurations.

e Vidra Operator: Detailed information about the Vidra Operator can be found in the
Vidra Operator Documentation - Section Data Flow and Interaction.

All components that we added to the software system Infrahub reside in a Git repository, which
is synced with Infrahub using the Infrahub Git Sync' feature. This allows us to version control
our changes and collaborate effectively on the Infrahub data model.

More detailed information about the supporting components "Frontend" and "Vidra CLI" can
be found in Section 8.1 and Vidra CLI Documentation.

Unfrahub Documentation Concept: 12.6.2025 https://docs.infrahub.app/getting-started /concepts#
integration-with-git

5. Architecture 16 of 82

https://infrahub-operator.github.io/vidra/topics/architecture/#3-data-flow-and-interaction
https://infrahub-operator.github.io/vidra/cli/
https://docs.infrahub.app/getting-started/concepts##integration-with-git
https://docs.infrahub.app/getting-started/concepts##integration-with-git

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

5.5. Architectural Decision Records

During the prototype setup to test components and their interactions, we made key decisions
influencing the overall architecture. The decisions influencing Infrahub and its use cases are doc-
umented in the following sections. The decisions influencing the Vidra Operator are documented
in the Vidra Operator Documentation - Section Decisions.

Choosing a Kubernetes Operator over ArgoCD CMP or Extending Flux

Context and Problem Statement

We needed a solution to automatically deploy Kubernetes manifests generated by Infrahub to
a Kubernetes cluster. The main options considered were: (1) using ArgoCD with a Config
Management Plugin (CMP), (2) extending Flux with a custom plugin, or (3) developing a custom
Kubernetes Operator. As this was a major decision, we conducted a detailed analysis of the
options and their implications.

Considered Options

e ArgoCD with CMP: Use ArgoCD’s Config Management Plugin to fetch and render
manifests from Infrahub artifacts.

¢ Flux with Custom Plugin: Extend Flux to support Infrahub artifacts as a source,
possibly via S3 or custom scripts.

¢ Custom Kubernetes Operator: Develop a dedicated operator that pulls artifacts di-
rectly from Infrahub and applies them to the cluster.
Decision Outcome

Chosen option: Custom Kubernetes Operator. The decision was made to implement a
dedicated operator for the following reasons:

e Direct Integration: The operator can interact directly with the Infrahub API, eliminating
the need for intermediate Git repositories or additional transformation steps.

o Full Flexibility: The operator can be tailored to our exact requirements, including artifact
selection, authentication, and custom deployment logic.

o Reduced Complexity: Avoids maintaining parallel Git repositories or writing/maintain-
ing custom plugins for third-party tools.

e Single Source of Truth: Keeps Infrahub as the authoritative source for infrastructure
state, rather than duplicating state in Git.

Consequences

e Good: The solution is purpose-built for our workflow, providing maximum flexibility and
direct integration with Infrahub.

¢ Good: It enables real-time synchronization and reduces operational overhead.

e Bad: Developing and maintaining a custom operator requires significant engineering effort
and expertise in Go and Kubernetes APIs.

5. Architecture 17 of 82

https://infrahub-operator.github.io/vidra/topics/desicions/use-markdown-architectural-decision-records/

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

e Bad: The operator lacks the maturity, ecosystem, and community support of established
tools like ArgoCD and Flux.

A detailed analysis of the considered options can be found in Chapter 4.

Split of Work
Context and Problem Statement

To efficiently progress with the project, we needed to allocate responsibilities based on each
teammate’s strengths and interests, while ensuring collaborative decision-making and shared code
ownership.

Considered Options

« Divide work by technical expertise and interest: Each teammate focuses on areas
where they have the most experience or motivation, but all major decisions and code reviews
are done together.

« Divide work by feature or component: Assign specific features or components to each
teammate, with less overlap and potentially less shared understanding.

« Work together on all tasks: Both teammates work on all aspects together, which may
slow progress but maximizes shared knowledge.

Decision Outcome

Chosen option: Divide work by technical expertise and interest. Simon took responsi-
bility for developing the operator, leveraging his experience with Go and interest in the challenge.
Ramon focused on adapting Infrahub to fit our use cases, including generating YAML manifests
and creating an easy-to-use frontend. Despite this division, all major decisions were made collab-
oratively, and we conducted code reviews of each other’s work to maintain shared understanding
and code quality.

Consequences

e Good: Efficient use of individual strengths, faster progress, and maintained high code
quality through collaboration and reviews.

e Bad: Potential for knowledge silos, mitigated by regular code reviews and shared decision-
making.

Infrahub User Focus and Resource Modeling
Context and Problem Statement

We needed to decide whether Infrahub should primarily serve administrators (with granular
Kubernetes control) or developers/users (with simplified deployment workflows). The goal was to
balance user-friendliness with the need for advanced Kubernetes management capabilities. This
decision majorly impacts how resources are modeled and presented in Infrahub, and whether
Infrahub creates one artifact for each Kubernetes kind or if the whole solution (e.g., Kubernetes
manifest) lives in one artifact.

5. Architecture 18 of 82

OOST Technical Documentation v1.0

Eastern Switzerland
University of Applied Sciences

Infrahub meets K8s

Considered Options

Administrator-focused model: Full Kubernetes kind mapping, high flexibility in In-
frahub, as the user can pick and choose the resources they need for their custom solution,
but complex as all Kubernetes Kinds need to be present in Infrahub and almost redundant
with existing tools like the Kubernetes Dashboard. For this approach, it would make the
most sense if an artifact is created for each Kubernetes Kind.

Developer/user-focused model: Simplified interface with predefined templates, reduc-
ing complexity for non-experts. For this approach, we would create one artifact for the
whole solution, like a webserver manifest, which includes all necessary resources such as
Deployments, Services, and Ingresses. This approach focuses on deployment rather than
detailed resource management, allowing users to deploy applications with personalized con-
figuration.

Decision Outcome

Chosen option: Developer/user-focused model with predefined templates because:

It simplifies the user experience, allowing users to deploy applications without deep Kuber-
netes knowledge.

It reduces management complexity and data volume in Infrahub, as users interact with a
limited set of templates rather than individual Kubernetes resources.

It avoids duplicating the Kubernetes Dashboard, focusing on deployment rather than de-
tailed resource management.

It allows for fast, consistent, and safe deployments using templates, which can be easily
maintained by administrators.

It enables users to deploy applications with minimal configuration, using a fixed set of
exposed parameters in templates.

It provides a scalable solution that can adapt to various user needs without overwhelming
them with complexity.

Consequences

Good: Users have limited customization; only exposed parameters can be changed, making
the interface simpler and less error-prone.

Good: Administrators can maintain and provide templates for common use cases, ensuring
consistency and best practices.

Bad: Advanced configurations require administrator intervention, which may slow down
complex or custom deployments.

Bad: The Infrahub artifact will represent a deployment template rather than individual
Kubernetes resources, potentially resulting in larger artifacts and less granular control.

As it was quite a big decision, a detailed decision document was created, which can be found
in Section 2.1.

5. Architecture 19 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

Use of Templates for Application Deployment

Context and Problem Statement

We needed to determine how to enable users to deploy applications to Kubernetes clusters via
Infrahub in a way that balances flexibility, usability, and maintainability. Two options
were considered: using Profiles, which share attribute values across multiple objects, and using
Templates, which are reusable blueprints with default values.

Considered Options

« Profiles?: Share attribute values across multiple objects.
« Templates3: Reusable object templates that provide predefined defaults, enabling stream-
lined application deployment.
Decision Outcome

Chosen option: Templates for application deployment, because:

o Templates simplify the deployment process for users by providing sensible defaults and
hiding unnecessary complexity.

e They support the definition of every attribute without limitation.

o Templates are easier to maintain and test over time.

Consequences

e Good: Users can deploy applications quickly and safely without deep Kubernetes knowl-
edge.

¢ Good: Administrators can curate and update templates to reflect organizational standards.

o Bad: Administrators must manually update the default value for each object if changes
are needed.

A detailed decision document was created, which can be found in the Appendix Section 2.2.

Creation of a Frontend for Infrahub

Context and Problem Statement

As we wanted to provide a user-friendly interface for requesting new infrastructure to interact
with Infrahub, we needed to decide whether to create a custom frontend or build an easy-to-use
Infrahub section. There are several steps that need to be completed before a new Kubernetes
resource actually creates a correct artifact, such as adding the resource to the correct group and
re-generating the artifact. The artifact is automatically created if a proposed change is merged,
but then a user needs to know how to create a proposed change in Infrahub and the main branch
needs to be protected. This is not user-friendly and requires knowledge about Infrahub, which
we wanted to avoid for users with no prior knowledge about the solution.

2Infrahub Documentation Profiles: 8.6.2025 https://docs.infrahub.app/topics/profiles
3Infrahub Documentation Templates: 8.6.2025 https://docs.infrahub.app/topics/object-template

5. Architecture 20 of 82

https://docs.infrahub.app/topics/profiles
https://docs.infrahub.app/topics/object-template

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

Considered Options

e Custom Frontend: Develop a custom frontend application tailored to the specific needs
of users with no knowledge about the solution (self-service portal). This comes with the
benefit of being able to automate the creation of new resources and relationships in Infrahub
with one click, but requires additional development and maintenance effort.

e Infrahub Frontend: Use the existing Infrahub frontend, which provides a user interface
for managing Kubernetes resources, but documentation is needed to explain the steps of
creating a request for Kubernetes resources. This option leverages the existing Infrahub
infrastructure and provides a consistent user experience, but may not be as tailored to the
specific needs.

Decision Outcome

Chosen option: Custom Frontend, because:
o It provides an easy-to-use self-service interface for users to interact with Infrahub.

o It will create all resources and relationships in Infrahub, so users do not need to know how
to add new resources to the correct group and create proposed changes.

o It allows the creation of a branch for each request, enabling administrators to review and
approve changes before they are applied to the cluster.

o We can control which values are exposed to users, ensuring they can only change parameters
that are safe and necessary for their deployments.

e We can create more advanced values in Infrahub so an administrator can change the values
in Infrahub and the users will not see them.

Consequences

e Good: Users can deploy applications without needing to understand the underlying Ku-
bernetes resources.

¢ Good: Administrators can manage and maintain the resource requests and created re-
sources in Infrahub.

e« Bad: Users may have limited control over advanced configurations, which could require
administrator assistance for complex deployments.

e Bad: The frontend may not cover all use cases, requiring additional work or development
for specific needs.

5. Architecture 21 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

6. Quality Measures

Some quality measures, such as coding conventions and continuous integration practices, are
documented in the publicly accessible Vidra documentation. These guidelines support open source
contributions and ensure transparency. Additional quality measures specific to this bachelor thesis
are detailed in this document, providing internal standards.

6.1. Organizational Measures

Merge Requests enforce code review and the Four-Eyes Principle, ensuring collaboration, early
issue detection, and main branch stability.

Definition of Done A task is done when:
1. Code is committed and pushed.
2. Code is reviewed and passes CI/CD.

3. Documentation is updated.

4. Acceptance criteria are met.

6.2. Guidelines

Python - PEP8: We follow PEPS for consistent, readable, and maintainable Python code.

Four-Eyes Principle: All changes require review and approval by another team member to ensure
quality and adherence to standards.

6.3. Tools Used to Assess Product Quality in CI/CD

Our continuous integration (CI) processes are powered by GitLab CI/CD, ensuring efficient and
reliable product builds, tests, and releases. This automation streamlines our development work-
flow, maintaining high standards of quality and consistency across all code repositories.

We employ a unified CI/CD pipeline logic for all repositories, utilizing GitLab CI/CD or GitHub
Actions. This standardization ensures that every repository adheres to the same rule set. Our
Python CI pipeline includes:

A shared before script which installs Poetry and the necessary development dependencies.

Ruff is used to ensure that the code consistently conforms to the PEP8 standard'. Ruff is
configured in the pyproject.toml to enforce coding style guidelines, detect potential issues, and
maintain uniformity.

MyPy is utilized as a type checker to ensure type correctness throughout our Python codebase.
By enforcing static type checking, MyPy helps detect type-related errors early in the development
process, improving code reliability and reducing runtime issues. We incorporate type hints to
enhance code readability and comprehension.

'PEPS guidelines: December 11, 2024 https://peps.python.org/pep-0008/

6. Quality Measures 22 of 82

https://infrahub-operator.github.io/vidra/
https://peps.python.org/pep-0008/

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

YAMLIint is used to validate the syntax and formatting of YAML files, which are used for
creating the Kubernetes manifests. YAMLIint helps catch common errors such as indentation
issues, duplicate keys, or malformed syntax, ensuring configuration reliability and preventing
deployment failures.

Bandit is employed to identify security vulnerabilities in our Python code. It scans the codebase
for common security issues, such as hardcoded passwords, insecure function calls, and potential
vulnerabilities. By integrating Bandit into our CI/CD pipeline, we proactively address security
concerns and maintain a secure codebase.

6.4. Manual Testing

Manual testing played a crucial role in our project, particularly in validating the correctness of
the generated Kubernetes manifests. Since the manifests were created programmatically, it was
necessary to manually verify that they could be successfully applied to a Kubernetes cluster and
function as intended.

6.4.1. User Tests

We also conducted manual user testing of the webserver interface. The goal was to ensure that
the platform is intuitive and accessible, even for users with limited technical background. These
tests helped us identify usability issues and refine the user experience to make the creation of
Kubernetes resources as straightforward as possible.

6.5. Code Review

We conducted code reviews at critical points in the project to ensure a comprehensive under-
standing of the entire project and to maintain high code quality. We utilized GitLab Merge
Requests for this purpose. Once a feature was completed on a feature branch, a merge request
to the protected main branch was created. This merge request was then reviewed by the other
team member before being merged.

6. Quality Measures 23 of 82

OOST Technical Documentation v1.0
Eestem Switzo Infrahub meets K8s

University of Apphed Sciences

7. Infrahub

Infrahub defines our Kubernetes infrastructure as structured data and generates deployable
manifests. This chapter covers schema definitions, Python-based transformations, template usage,
artifact generation, GraphQL Queries and Git integrations.

glNFRAHUB

GrathL Querles
Creates Object Get Object

API Call
Use predeﬁmed Get Ressource — -r# A
Template Create - _ Wiite
= Arfifact - Artifact—* YML
=i =

1 -
Infrahub API Objects defined in PythonTranformations Artifacts
Infrahub Schema

Get Ttlmplate
=[] —
- —
-— —

Object Templates Ressource Manger YAML

YAML Templates

Figure 7.1.: Infrahub Resources

7.1. Schema

In Infrahub, the schema specifies the structure of the infrastructure data, specifying the Kuber-
netes resources to be deployed.

7.1.1. UML Diagram

The UML diagram illustrates the defined schema structure. The two nodes, Webserver and
VirtualMachine, each have their own unique attributes while inheriting shared attributes from
the generic Resource. Additionally, they both incorporate relationships defined by the Core-
ArtifactTarget.

Each node maintains a dependency on the Template class, as the template relies on these
nodes to function meaningfully. Notably, the VirtualMachine node includes an attribute called
Port, defined as a number. However, this attribute is read-only and its value is dynamically
assigned by an external Resource Manager.

7. Infrahub 24 of 82

Eastern Switzerland

University of Applied Sciences

Technical Documentation v1.0

Infrahub meets K8s

Ressource

%]

+ name: Text
+ namespace: Text
+ description: Text

CoreArtifaciTarget E

L

Extends

Webserver

%]

Extends

+id: Text

+ port: Mumber

+ containerport: Mumber
+ replicas: Number
+version: Number

VirtualMachine E

+id: Text

+ cores: Number

+ url: Dropdown

+ operating_system: Text
+ port: Mumber

+image: Dropdown A
i

"'T"' Ulse
Use !
i

TemplateWebserver E Templalevinuall‘.'lachin@ PortNumberPool E

+id: Text +id: Text +id: Text

+template_name: Text + template_name: Text + name: Text

+ description: Text

+ node: KubernetesVirtualMachine
+ node_attribute: port

+ start_range: Mumber

+ end_range: Number

Figure 7.2.: Infrahub Schema UML Diagram

7.1.2. Generics - Resource

Generics represent reusable data structures that can be attached to multiple nodes. Each generic
is defined by its own set of attributes, such as name, namespace, and description

generics:
- name: Resource
namespace: Kubernetes
description: Generic Device Data

We also define the attribute branch: aware to ensure that changes made to this object are
scoped only to the branch in which they are created. This allows for isolated modifications and
safer collaboration across different development or deployment contexts.

branch: aware

The following attributes specify how the nodes will be presented. The display_label attribute
determines which property is used as the identifier shown to the user and dictates the value
displayed in the GUI.

Meanwhile, the order_by attribute defines the sorting order of the node objects. In this
example, the nodes are sorted alphabetically based on their name attribute.

display_labels:

- name__value
order_by:

- name__value

7. Infrahub 25 of 82

OOST Technical Documentation v1.0
o e Scnces Infrahub meets K8s

The unique constraints define the uniqueness of an element. In our case, the combination of
name and namespace must be unique within the entire Infrahub setup. This constraint ensures
that no two objects can share the same name within the same namespace.

uniqueness_constraints:
- ["name__value", "namespace__value"]

Generics can be treated as nodes, allowing users to see them in the menu. For our use case,
we disable this feature so that users only see the nodes we have defined, and not the generic tab.

include_in_menu: false

In the Attributes section, we define which attributes are inherited by the children. This
generic definition provides common attributes to all nodes, so the attributes name, namespace,
and description will be present in all objects.

All of these attributes are of type Text and follow a fixed order. Additionally, namespace and
name are required fields.

attributes:

- name: name
kind: Text
description: Name of your Webservice
order_weight: 1

- name: namespace
kind: Text
description: Namespace name - Default ns-namespace
order_weight: 2

- name: description
kind: Text
description: Additional Information about the Webservice
optional: true
order_weight: 3

7.1.3. Nodes
General Attributes

The objects are identified by their name and share the same namespace as the generic definition.
The icon represents the Webserver and the node will be visible in the menu.

- name: Webserver | VirtualMachine
namespace: Kubernetes
icon: mdi:hand-extended | mdi:linux
include_in_menu: true

The node definition includes a directive to generate a template. This setting establishes a
relationship with CoreTemplate and CoreProfiles, which are required for creating a template.

Using inherit_from, we generalize the node by linking it to two parent objects, thereby
inheriting their attributes. The inclusion of CoreArtifactTarget is necessary to enable artifact
creation, as it provides the required relationships to the nodes CoreArtifact and CoreGroup.

generate_template: true
inherit_from:
- KubernetesResource
- CoreArtifactTarget

7. Infrahub 26 of 82

OOST

itzerland
University of Applied Sciences

Technical Documentation v1.0
Infrahub meets K8s

Webserver Attributes

The attribute port and containerport are
validated using a regular expression to ensure
they falls within the range of 1 to 65535.

attributes:
- name: port

kind: Number

regex: >
~(6553[0-5] |
655[0-2] [0-9] |
65[0-4] [0-9]{2}|
6[0-4] [0-9]1{3}]
[1-9]1[0-91{0,3})$

The attributes replicas and version are de-
fined as numbers, with input validated us-
ing a regular expression to ensure values are
within the range of 1 to 5.

- name: replicas
kind: Number
regex: ~[1-5]$

The attribute host defines the ingress URL
where the webserver is reachable. It is a com-
puted attribute based on the name and the
DNS of our Kubernetes server.

- name: host
kind: Text
description: URL of the Webserver
x.cldop-test-0.network.garden
read_only: true
optional: false
computed_attribute:
kind: Jinja2
jinja2_template: "{{ name__value
}}.cldop-test-0.network.garden"

The attribute image is a Dropdown allowing
the user to select the desired image. Since
this value is sensitive for Kubernetes, we pre-
defined the available options.

- name: image
kind: Dropdown
choices:
- name: httpd:latest
description: Image for the Apache
Webserver
color: "

7. Infrahub

Virtual Machine Attributes

For a Virtual Machine, different attributes
are required, such as cores, which is simply
defined as a number.

attributes:
- name: cores
kind: Number

The user can select a predefined image URL.
A Dropdown is used for this attribute, as the
value is sensitive to Kubernetes requirements
and must be accurate.

- name: url
kind: Dropdown
choices:
- name: |
docker://quay.io/
containerdisks/ubuntu:24.04

The attribute operating_system is auto-
matically derived from the attribute url.
This attribute was added to provide a clearer
overview of the operating system in use.

- name: operating_system
computed_attribute:
kind: Jinja2
jinja2_template: "{{
url__description|lower }}-vm"

The last attribute, port, defines the SSH ser-
vice port for the VM. It is a number without
regex validation, as the resource manager as-
signs it. This relationship is set up in the
resource manager’s creation script and is not
shown in the schema.

- name: port
kind: Number
description: Port used for ssh
optional: false

27 of 82

Eastern Switzerland

University of Applied Sciences

Technical Documentation v1.0

Infrahub meets K8s

7.2. Python Transformation

The Python transformation function generates an artifact for each object based on the artifact
definition. We use this transformation to create our Kubernetes manifests. The files are separated
into “Transform” and “Helper Function” parts.

Each transform file corresponds to a specific node, such as one for Webserver and another

for VirtualMachine.

Transform

found” Error

.| Raise Value Error r'-:

Trigger Python
Function

Python Transformation ﬂ

Helper Functions ‘

¥
Get Data from
GraphQL Query

¥

Open YAML
Template

Call Function
“filternesteddict”

false Is there a

Return Single false ey value loop ove
Dictionary /\ nested Dictionary.

Is the value a
a Dictionary?

Talse

Write the key and
value as new entry in

“~Single Dictionary?

true

Return the
resultstring

Add the line to the
"resultstring”

Loop over File

Is there a ™"
in the line

Split at ":"

l

Call Function "process line"
with right Part of the Line and
the singel Dictionary

Call Function
"filternesteddict with
the child

Is the value a
a list and its first ™~ frue
element a list or
dictionary?.

Call Function
"filternesteddict with
the first element

the global single
Dictionary

Add the line to the

Return the line

Qne? (Search via
Regex Entry’

frue

Exist the Key in the false

Replace the key
with the value

resultstring with left

A

7. Infrahub

part of the split

Figure 7.3.: Infrahub Python Transformations

The Helper Function is a separate class used generally by all transform
functions. We designed this architecture to keep it as general and reusable as possible.

INFRAHUB

28 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

7.2.1. Transform Function
Python Libraries

We use the following Python Libraries in our Code:

Library Module Description
typing Dict, Any Used for type annotations and flexible
typing

infrahub_sdk.transforms InfrahubTransform Provides the core transformation meth-
ods used in the pipeline

helperfunction helperfunctions Custom utility methods developed in-
house

pathlib Path Used to handle file paths, especially for
YAML files

Table 7.1.: Python libraries used in the transformation scripts

Class and Modul definition

We use the class TransformWebserver, which inherits from the interface InfrahubTransform.
This allows us to implement the asynchronous method transform for processing the transforma-
tion.

The query variable defines the GraphQL query used to retrieve the data stored in Infrahub.
The name used in the query must match the one defined in the .infrahub.yml file located in
the root directory of the Git repository.

class TransformWebserver (InfrahubTransform) :
query = "GetWebserver"
async def transform(self, data: Dict[str, Any]) -> str:

Variables

currentpath resolves the path of the current Python file, allowing reliable access to YAML files.
Since each Infrahub connection uses a uniquely identified Git copy, this ensures path validity
despite changing directory names.

pathfile is the result of combining currentpath with the relative path to a specific YAML
file. This value differs for each transformation, as each node (e.g., Webserver or VirtualMachine)
requires its own YAML template.

resultstring stores the final result of the transformation. We accumulate the output within
this variable and return it at the end. It must be initialized outside the loop because we only
want to define it once, but append data to it within the loop.

The following example shows how the path to a YAML template is defined. The VirtualMachine
templates follow the same pattern.

currentpath = Path(__file__).resolve()
pathfile = str(currentpath.parents[1]) + "/YAML_Templates/webserver.yaml"
resultstring = ""

7. Infrahub 29 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

Open File and get Single Dictionary Value

We open the YAML file within a with block and then call our custom filternesteddict function.
This function takes a nested dictionary and returns a single dictionary containing the required
key-value pair. As a control step, we check whether the returned dictionary is empty; if it is, we
raise a ValueError.

try:
with open(pathfile, "r") as yamlfile:
customizedkeyvalue = HelperFunctions.filternesteddict(data)
if not customizedkeyvalue:
raise ValueError("No matching keys found in the input data.")

Loop over File

We now loop over the YAML lines and process each line. We split the line by the : character (if
it exists) and call our custom function process_line with the right-hand side of the first : in
the line, along with our single dictionary.

Since we receive a list from the function containing the modified value, we need to convert it
into a string by joining all elements without including the brackets ([J).

If no : exists in the line, we add the line unchanged to the result string.

After the loop finishes, we return the string containing the modified YAML content.

for line in yamlfile:
if ":" in line:
lineprefix = line.split(":")
lineresult = HelperFunctions.process_line(
"". join(str(element) for element in lineprefix[1:]), customizedkeyvalue

)

resultstring += lineprefix[0] + ":" + lineresult
else:

resultstring += line

return resultstring

Error Handling

We handle errors using a try and except block. Since the code above is inside a try block, we
catch the FileNotFoundError separately from other exceptions to provide more specific error
messages.

7.2.2. Helper Functions

Libraries

From the typing library, we use the types Dict, Any, and cast. The re module is used to
interpret and apply regular expressions (regex).

from typing import Dict, Any, cast
import re

7. Infrahub 30 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

Variables

We only need one class variable, singledict, for the filternesteddict function. This is nec-
essary because we recursively traverse the dictionary and require the result dictionary to be
initialized and consistent throughout the recursion.

class HelperFunctions:
singledict: Dict[str, str] = {}

filternesteddict()

The goal of this function is to take a nested dictionary and transform it into a single (flat)

dictionary. We need this function because the GraphQL query returns a nested dictionary that

mirrors the structure of the query itself, but we require a flat dictionary for further processing.
Example:

nesteddict = { singeldict = {
KubernetesWebserverCreate: { name= "MyWebsrv",
edges: [Il
node: {
name: {

value: "MyWebsrv"

T,

}

We define this function as @staticmethod because it does not operate on an instance of a class.
The function takes two arguments: the nested dictionary (nesteddict) and a key of type str,
which defaults to an empty string. We require the key argument because, in order to build the
singledict, we need both the attribute name (as the key) and its value. Unfortunately, this key-
value pair is not located at the same level in the nested dictionary. Therefore, during recursive
calls, we pass the key as an argument to preserve it across different levels of the structure.

@staticmethod
def filternesteddict(nesteddict: Dict[str, Anyl, key: str = "") -> Dict[str, str]:

First, we start at the top level and iterate over the nested dictionary. To determine whether
recursion is needed, we check the type of each value. If the value itself is a dictionary, we call the
same function recursively, passing the value as the new dictionary and the key argument set to
the current nested key.

Once the recursive call is complete, we continue with the next element at the same level.

for nestedkey, value in nesteddict.items():
if isinstance(value, dict):
HelperFunctions.filternesteddict(value, nestedkey)
continue

If the value is a list, we need to determine the type of its elements. For our use case, it is
sufficient to check only the first element, since our artifacts are defined per object and we always
expect a single element in the list.

We check for the presence of logical operators such as and and or, and verify whether the
type of the first element is either a dictionary or another list. If so, we call the same function
recursively with the child element and its associated key.

7. Infrahub 31 of 82

OOST Technical Documentation v1.0

Eastern Swit:

o e Scnces Infrahub meets K8s

To satisfy the mypy linter, we perform an explicit cast on the list element before further
processing.

if isinstance(value, list) and (
isinstance(value[0], dict) or isinstance(value[0], list)
DK
HelperFunctions.filternesteddict(
cast(Dict[str, Anyl, valuel[0]), nestedkey
)

continue

If all of the checks are false, we know that the type of the value is either an int or a str, which
indicates that we have reached the lowest level of the nested structure. At this point, we add a
new entry to our singledict using the provided key argument and the corresponding value.

Both the key and the value are converted to lowercase to ensure consistency throughout the
dictionary.

As soon as the loop is finished, we return the singledict.

HelperFunctions.singledict[key.lower()] = str(value).lower ()
return HelperFunctions.singledict

process_line()

The function "Process_ line" replaces the value in the yaml if required. We divided the functional-
ity into two functions, "process_ line" and "match_key in_line". "Process_line" iterates over the
single dictionary and changes the value, "match_key in_line" checks if the key from the single
dictionary is in the given line.

process__line This method takes two arguments: the line in which we search for a key, and
the customizedkeyvalue dictionary (our single dictionary). While we could use a class variable
for the dictionary, doing so would increase the risk of unintended side effects. In our use case,
the line typically represents the right-hand side of a : from the YAML input.

def process_line(line: str, customizedkeyvalue: Dict[str, Any]) -> str:

Next, we iterate over the entries in the single dictionary and use the match_key_in_line
function to check whether a key is present in the line. If a match is found, we replace the key
with its corresponding value. Otherwise, we continue the loop.

At the end of the function, we return the (potentially modified) line.

for key, value in customizedkeyvalue.items():
if HelperFunctions.match_key_in_line(line, key):
line = line.replace(key, value)
return line

match_ key_ in_ line This function takes a given line and a key, and checks whether the
key appears in the line. Since we want to avoid partial matches (e.g., matching name inside
namespace), we use a regular expression for more precise control.

The regular expression ensures that the key is surrounded by non-word characters (such as
hyphens, spaces, or punctuation), making sure we only match complete words. The search is
case-insensitive to account for variations in capitalization.

The function returns a boolean indicating whether the key exists in the line.

def match_key_in_line(line: str, key: str) -> bool:
pattern = rf"\W{re.escape (key) }\W"
return bool(re.search(pattern, line, re.IGNORECASE))

7. Infrahub 32 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

7.2.3. YAML Templates

Since the focus of this Bachelor thesis is not on the optimal setup of a web server, we do not
describe the entire YAML file but only those parts that are essential for the transformation and
our deployment.

Kinds
For our Webserver, we are creating the fol- For our Virtual Machine, we are creating
lowing Kind to run. the following Kind to run.

o Namespace o Namespace

e Deployment ¢ Kubevirt VirtualMachine

e Service e Persistent Volume

o Ingress e Service

Naming Convention

In our YAML configuration files, we follow a specific naming convention for Kubernetes kinds.
The prefixes are used to easily identify the type of each resource:

Kind Naming Prefix Example
Namespace ns- ns-test

Deployment dep- dep-test
Service svc- svc-test
Ingress ing- ing-test
VirtualMachine vm- vm-test

Persistent Volume pvc- pvc-test

Table 7.2.: Naming conventions for Kubernetes kinds

Replacement with Infrahub Values

The transformation process is designed to substitute placeholder keys in the YAML file with
corresponding values from a single dictionary. Below is an example of how the replacement logic
works:

YAML Before Dictionary Key YAML After
Namespace: mns-namespace namespace: test Namespace: ns-test
Name: svc-service service: servicetest Name: svc-servicetest
replicas: replicas replicas: 2 replicas: 2

Table 7.3.: Example of key-based value replacement in a YAML file

7. Infrahub 33 of 82

OOST Technical Documentation v1.0

tern Swit:

o e Scnces Infrahub meets K8s

7.3. Graph QL Queries

Graph QL Queries are used to mutate and get the Objects defined in Infrahub. We define the
queries in the Git repository and call it via API or via Transformation. Here’s an example of how
our GraphQL Query looks:

Create Object Get Object
mutation CreateWebserver query GetWebserver ($webserver:
($name:String!, String!) {
$description:String!, KubernetesWebserver (name__value:
$namespace:String!, $image:String!) { $webserver) {
KubernetesWebserverCreate(edges {
data: { node {
object_template: {hfid: name {
"tem-webserver"}, value
name: {value: $name}, }
description: {value: port {
$description}, value
namespace: {value: $namespacel}, }
image: {value: $imagel, containerport {
member_of _groups: {hfid: value
"g_webserver"} }
T replicas {
) o value
object { }
host { image {
value value
} }
} namespace {
} value
Ik }
host {
value
}
3
3
}
}

7. Infrahub 34 of 82

OOST Technical Documentation v1.0

tern Swit:

o e Scnces Infrahub meets K8s

We use the following GraphQL Queries in our implementations:

Mutation GraphQL Name Variables
Create CreateBranch branchname: str
Create CreateProposedChange sourcebranch: str,

name: str,
description: str

Create Webserver name: str,
description: str,
namespace: str,
image: str

Create VirtualMachine name: str,
description: str,
namespace: str,
url: str

Get Webserver webserver: str

Get VirtualMachine virtualmachine: str
Get ArtifactIDs artifactname: 1listl[str]
Upsert Group

Upsert Object Template

Upsert Role

Upsert ObjectPermission

Upsert UserGroup

Upsert User

Upsert GitIntegration

Upsert Password Credentials

Upsert Numbers Pool

Table 7.4.: GraphQL mutations used in Infrahub

7.4. .infrahub.yml

At the root of our Git repository, the .infrahub.yml file defines the structure and logic for
Infrahub resources. It is essential that this file resides in the root directory, as it specifies where
Infrahub should locate the various components.

Queries

GraphQL query files are stored in the GraphQL folder of the repository with the .gql extension.
Each query is defined by its name and the path to the corresponding file:

queries:
- name: GetWebserver
file_path: "GraphQL/GetWebserver.gql"

7. Infrahub 35 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

Schemas

The GraphQL schema is also placed in a dedicated folder. Since our schema is relatively simple,
we define the complete structure in a single file rather than splitting it into multiple parts:

schemas:
- "Schema/service-schema.yaml"

Python Transformations

For each Python transformation, we specify its internal name, the name of the Python class to
execute, and the path to the Python source file:

python_transforms:
- name: TransformWebserver
class_name: TransformWebserver
file_path: "python_transform/transform_webserver.py"

Artifact Definitions

Artifact definitions are declared directly within the .infrahub.yml file rather than in a separate
one. Each artifact definition specifies how the artifact should be created, including:

The parameters used as input variables for the GraphQL query

The content type of the resulting artifact

The associated Python transformation

The target group of objects for which artifacts will be generated

For each object in the target group, Infrahub will generate a corresponding artifact:

artifact_definitions:

- name: "Webserver Artifact Definition"
artifact_name: "Webserver_Manifest"
parameters:

webserver: '"name__value"
content_type: "application/yaml"
targets: "g_webserver"
transformation: "TransformWebserver"

7.5. Resource Manager

The Resource Manager is initialized by our start script. We use it as a dynamic number pool
to allocate port numbers in the range of 30000 to 32767, which are used for the SSH service in
Virtual Machine deployments.

The main advantage of the Resource Manager is its ability to automatically assign an available
port to each newly created object, ensuring there are no conflicts or manual assignments required.

Our query returns both the hfid and id of the newly created object, but we currently do not
store this output.

While we could use the returned id to specify the target resource pool in a subsequent GraphQL
mutation for creating a VirtualMachine, this approach would significantly increase the complexity
of the deployment. This is because the GraphQL queries are defined in separate files and preloaded
into Infrahub, making dynamic value injection across queries more difficult to manage.

7. Infrahub 36 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

mutation {
CoreNumberPoolCreate(data: {
name: {value: "portpool"},
node: {value: "KubernetesVirtuellMaschine"},
node_attribute: {value: "port"},
start_range: {value: 30000},
end_range: {value: 32767}
1)
{
ok
object {
hfid
id
}
}
}

7.6. Users, Groups, Roles, and Permissions

Permissions in Infrahub define access rights and are assigned to roles. A role can be associated
with multiple user groups, and likewise, a user group can have multiple roles. Each group can
contain one or more users, and users must authenticate to Infrahub in order to perform actions
according to their assigned roles.

7.6.1. Users

Users must authenticate using a username and password and can be assigned to one or more user
groups.

In our setup, we use a predefined user named admin, who acts as the system administrator
with full access rights. In addition, we use a restricted user called g_createservice, which is
assigned to a group with limited permissions scoped to the Kubernetes namespace.

admin

The admin user is a predefined system account with full administrative privileges. It has unre-
stricted access to all Infrahub resources and operations. We use this user in our start script to
initialize the environment and perform privileged actions, such as setting up GitLab integration
or creating service users.

g_ createservice

The g_createservice user is designed for controlled access. It is allowed to perform full CRUD
operations on objects within the Kubernetes namespace, except for those in the main branch.
This user is primarily used to create infrastructure objects.

The user is created using the following GraphQL mutation:

mutation {
CoreAccountUpsert (
data: {
name: {value: "g_createservice"},
password: {value: "g_createservice"},
member_of _groups: {hfid: "g_createkubernetesobjects"}

}
7. Infrahub 37 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

) Ao
ok

7.6.2. Roles

Roles are abstract definitions of permissions. They are assigned to user groups to grant specific
capabilities. The following mutation creates the role used for Kubernetes-related permissions:

mutation {
CoreAccountRoleUpsert (
data: {
name: {value: "role_createkubernetes"}
¥
) {
ok
}
I

7.6.3. Permissions

Permissions are linked to roles and define what actions can be taken on which objects. The
following example grants the role_createkubernetes role the ability to create any object within
the Kubernetes namespace:

mutation {
CoreObjectPermissionUpsert(
data: {

namespace: {value: "Kubernetes"},
name: {value: "x"},
action: {value: "create"},
decision: {value: 4 },
roles: [{hfid: "role_createkubernetes"}]

7.6.4. User Groups

Object groups are used to associate roles with users via group membership. In the following
mutation, the group g_createkubernetesobjects is assigned the role_createkubernetes role:

mutation {
CoreAccountGroupUpsert (
data: {
name: {value: "g_createkubernetesobjects"},
roles: [{hfid: "role_createkubernetes"}]
}
) {
ok
}
Iy

7. Infrahub 38 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

7.7. Service Groups

Service groups allow logical grouping of objects such as VirtualMachines and Webservers. These
groups are referenced in the artifact definition to determine for which objects Infrahub should
generate artifacts.

For each node, we define a service group: g_webserver and g_virtuellmachine. The associ-
ation of objects with their respective service groups is handled via GraphQL mutations, where
the objects are explicitly added to the correct group.

The following example creates the g_webserver group:

mutation {
CoreStandardGroupUpsert (
data: {
name: {value: "g_webserver"}
}
) {
ok

}
7

7.8. Git Integration

The Git integration in Infrahub is used to load schemas, Python transformation scripts, GraphQL
queries, and artifact definitions. All related files are stored in our Git server repository, and
the Infrahub server clones the entire branch—this includes files not explicitly specified in the
.infrahub.yml configuration file.

We have chosen to configure the Git repository as a read-only repository, targeting a specific
branch without automatic updates on new commits. This decision was made to avoid importing
test branches into the Infrahub environment and to prevent every single commit from being
applied immediately.

Authentication

Authentication is handled using a GitLab deployment token, which we created at the project
level. This token has sufficient permissions to access the repository and does not expire.

name: { value: "gitlab-deployment-token" 1},
username: { value: "gitlab+deploy-token-infrahub" },
password: { value: "No the Password!" }

Read-Only Repository Setup

We configure the read-only repository in Infrahub using the following mutation. The ref refers
to the branch that should be used (e.g. Corrected-Pipeline):

CoreReadOnlyRepositoryUpsert (

data: {
name: { value: "Gitlab Inventory" 1},
location: { value:
"https://gitlab.ost.ch/ins-stud/sa-ba/ba-fs25-infrahub/infrahubintegration.git" },
ref: { value: "Corrected-Pipeline" 7,
credential: { hfid: "gitlab-deployment-token" }

}

7. Infrahub 39 of 82

Eastern Switzerland

University of Applied Sciences

Technical Documentation v1.0

Infrahub meets K8s

) Ao
ok

7.9. Object Templates

Infrahub object templates predefine default values for object attributes, reducing required user
input to only essential fields such as name, namespace, description, and image (or url for
Virtual Machines). All other attributes are set by the template or computed automatically.

Webserver Template

Virtual Machine Template

Attribute ‘ Value Input

name User Input
namespace User Input
description User Input

port Template
containerport | Template

replicas Template

version Template

host Computed Attribute
image User Input

Attribute Value Input
name User Input
namespace User Input
description User Input
cores Template

url User Input

operating system
port

Computed Attribute
Resource Manager

Webserver Template Creation

The GraphQL mutation is used to creates a template for a webserver, with predefined values:

mutation {

TemplateKubernetesWebserverUpsert (

data: {

template_name: {value: "tem-webserver"},

port: {value: 803},
containerport: {value: 80},
version: {value: 1},
namespace: {value: "default"},
replicas: {value: 1}

7. Infrahub

40 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

8. Self-service Frontend

Our Frontend — also referred to as the "web shop" or "self-service portal" — provides users with
a simple interface to request resources. We deliberately chose to implement a frontend because
neither letting users create objects directly via generics nor using Infrahub generators met our
requirements.

The main goal was to provide a user-friendly way to request infrastructure resources while
ensuring that each user can only view and fill in the attributes relevant to them. Furthermore,
access control was essential: each user should only be able to view their own virtual machines
and related data.

Hii, please fill out to request your Ressource

Ressource:

|Webserver ~|
Name:

| e |
Description:

\ |
Namespace:

| |
Image:

|Apache |

Send

INFRAHUB

Figure 8.1.: Architecture of the self-service frontend

8.1. Architecture

The architecture of the frontend, along with its components, is illustrated in Figure 8.2. Below
is an overview of the main components:

e Frontend: Developed using HTML, CSS, and JavaScript to provide an interactive form.
e Backend: A Python Flask application that handles requests and implements the logic.

e Python: Handles the Infrahub API calls to create the objects.

8. Self-service Frontend 41 of 82

OOST Technical Documentation v1.0

Infrahub meets K8s

User

Eastern Switzerland
University of Applied Sciences

Gets the
Response

Fills out Form
on Webshop

-

Webserver

Runs the
Webserver on
Port 5000

carwams o5 INFRAHUB

CreateObject. py

Flask Webshop

Figure 8.2.: Architecture of the self-service frontend

8.2. HTML Interface

The HTML interface forms the visual component of the self-service frontend. It provides a form
where users can request either a webserver or a Virtual Machine (VM), depending on their needs.
For the full documentation of the code, please go to Appendix 3.

8.3. Flask

This Flask application serves a web interface that allows users to request the deployment of
webservers or virtual machines. Based on form inputs, the app calls backend Python scripts to
process the deployment.

8.3.1. Python Libraries

The following code snippet shows the imported Python libraries necessary for the application:

from flask import Flask, render_template, request
import sys

import os

from typing import Optional

sys.path.append(os.path.abspath(os.path. join(os.path.dirname(__file__), "..")))
from python_scripts.createobjects import createwebserver, createvirtuellmaschine

8. Self-service Frontend 42 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

8.3.2. index function

The index () function defines the main route of the web application. It handles both GET and
POST requests. User input is retrieved via form labels defined in the HTML template.

The variables name and namespace are used to generate a new branch name. Since these branch
names are used in URLs for API requests, they must be valid and URL-safe. Therefore, spaces
in user inputs are replaced using the replace() function, as spaces are not allowed in URLs.

@app.route("/", methods=["GET", "POST"])
def index() -> str:

if request.method == "POST":
deployment_type = request.form.get("deployment_type")
name = request.form.get("name", "").replace(" ", "_")
description = request.form.get("description", "").replace(" ", "_")
namespace = request.form.get("namespace", "").replace(" ", "_")

url = request.form.get("url")
image = request.form.get("image")

result = run_python_script(deployment_type, name, description, namespace, url,
image)
return render_template(”index.html”, result=result)

return render_template("index.html", result=None)

8.3.3. Python Script

The function run_python_script() processes the deployment logic based on the user’s form
input.

Variables

This snippet shows the function signature with typed parameters, including optional fields:

def run_python_script(
deployment_type: str,
name: str,
description: str,
namespace: str,
url: Optional([str],
image: Optional[str],

) —> str:

Match Deployment Type

A match statement is used to route the request based on the deployment type:

try:
match deployment_type:
case '"Webserver":
result = createwebserver (name, description, namespace, image)

case "VM":
result = createvirtuellmaschine(name, description, namespace, url)

case _
return "Invalid deployment type."

8. Self-service Frontend 43 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

Exception

The function is wrapped in a try-except block to catch and handle runtime errors:

except Exception as e:
print (f"Error while processing the request: {e}")
return £

8.4. Python - CreateObjects
8.4.1. Python Script

This Python script defines two core functions for creating either a erver or a virtual machine by
sending GraphQL requests to an infrastructure backend. It also handles path adjustments and
uses helper functionality.

Variables

The script begins by importing necessary libraries and adjusting the system path to ensure local
modules like helperfunctions.py can be imported. The helper class _HelperFunctions is then
used to send GraphQL requests.

import sys
import os
from typing import Any

sys.path.append(os.path.abspath(os.path. join(os.path.dirname(__file__), ".")))
from helperfunctions import _HelperFunctions

Match Deployment Type

The function createwebserver () is responsible for creating a webserver. It prepares a GraphQL
payload with the required parameters such as name, description, namespace, and image, and
sends it using a helper method.

The branch name is generated by concatenating namespace and name, ensuring uniqueness
within the system. The response from the server contains the computed attribute host, which
includes the full URL where the deployed webserver can be accessed. Since the host field in
Infrahub is a computed attribute, it returns the entire accessible URL directly.

def createwebserver(name: str, description: str, namespace: str, image: str) -> Any:

graphgql = "CreateWebserver"
payload = {
"variables": {
"name'": name,
"description": description,
"namespace'": namespace,
"image'": image,

}

json_data = _HelperFunctions._send_graphql(

8. Self-service Frontend 44 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

graphgql, payload, branch=namespace + name
)

return json_data["data"] ["KubernetesWebserverCreate"] ["object"] ["host"] ["value"]

Similarly, the createvirtuellmaschine () function sends a request to create a virtual machine.
After deployment, it returns an SSH command that can be used to access the machine.

def createvirtuellmaschine(
name: str, description: str, namespace: str, url: str
) => Any:

graphggl = "CreateVirtuellMaschine"
payload = {
"variables": {
"name": name,
"description": description,
"namespace': namespace,
"url": url,

b
json_data = _HelperFunctions._send_graphql(
graphgqgl, payload, branch=namespace + name

return f"ssh {name}©10.8.36.20 -p
{json_data['data'] ['KubernetesVirtuellMaschineCreate'] ['object'] ['port'] ['value']}"

8.5. Python - HelperFunction

The HelperFunctions class provides static methods to support the webserver and VM creation
process. Its primary responsibilities include sending GraphQL requests, creating branches in the
version control system, and proposing infrastructure changes. All API interactions are secured
with authentication and include error handling for failed operations.

_send_graphql Method

This method handles the full workflow for sending a GraphQL request to the backend. It first
ensures the necessary branch exists, sends the main query, and then creates a proposed change
to document the infrastructure update. The method throws errors if any API request fails.

@staticmethod
def _send_graphql(
graphql: str, payload: Dict[str, Any], branch: str = "main"
) -> dict[str, Any]:
responsebranch = _HelperFunctions._createbranch(branch)
if responsebranch != 200:
raise ValueError("An error occurred in the creation of the branch.")

graphqlurl = f"http://localhost:8000/api/query/{graphql}?&branch={branch}"
headers = {"X-INFRAHUB-KEY": "06438eb2-8019-4776-878c-0941b1fldlec"}
response = requests.post(

graphqlurl,

auth=HTTPBasicAuth("g_createservice", "g_createservice"),

headers=headers,

data=json.dumps (payload),

8. Self-service Frontend 45 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

if response.status_code != 200:
raise ValueError("An error occurred in the creation of the branch.")

if "name" in payload["variables"]:

name = f"New Proposed Change for a Webserver {payload['variables']['name']2}"
description = f"{payload['variables']}"
responseproposedchange = _HelperFunctions._createproposedchange (

branch, name, description

)
if responseproposedchange != 200:
raise ValueError("An error occurred in the creation of the proposed change.")

return response.json()

__createbranch Method

This method issues a GraphQL mutation to create a new branch in the infrastructure repository.
A branch is required to isolate configuration changes. The request uses admin user credentials
because the service account lacks sufficient permissions (e.g., write:repo). A successful response
returns HT'TP status code 200, indicating that the branch was created successfully.

__createproposedchange Method

This method sends a GraphQL mutation to register a proposed infrastructure change. It takes
the target branch, a change name, and a description as parameters. Its called at the end, and
is used to associate metadata with the configuration change. This enables backend systems to
process the change (e.g., validation, approval).

8. Self-service Frontend 46 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

9. Technical Issues and Obstacles

This chapter discusses the technical issues and obstacles we encountered during the development
of our project. Each section describes a specific problem, its implications, and the solutions we
implemented to overcome it.

0.1. Infrahub

9.1.1. Resource Manager via Template
Description

The Resource Manager assigns a port to virtual machines for SSH access. Our goal was to define
this association within the template, so that each time an object is created from the template, it
automatically receives a port from the Resource Manager.

Unfortunately, Infrahub does not currently support this feature. Infrahub treats the template
as a separate object, so when the Resource Manager assigns a port to the template, this port is
then copied to all newly created objects—rather than generating a new, unique port for each one.

Solution

After consulting the community, we confirmed that this feature is not yet implemented. As a
workaround, we adjusted our setup so that the Resource Manager assigns a port directly during
the object creation process, rather than through the template.

9.1.2. Web Browser API Calls

Description

We encountered an issue when making API calls through a URL such as:
http://localhost:8000/api/query/{graphql}?&branch={branch}

In this case, the branch variable is constructed using user input that includes the name and
namespace. However, certain characters—such as spaces, colons (:), and other special sym-
bols—are not permitted in URLs and would cause the API call to fail.

Solution

To resolve this, we implemented input restrictions both in the HTML frontend and the Flask
backend:

e Minimum length: 4 characters

Maximum length: 15 characters

Spaces are automatically replaced with underscores (_)

Only commonly accepted special characters (e.g., hyphens, underscores) are allowed

This ensures that all user-generated branch names are valid for use in API calls, avoiding
malformed URLs and request errors.

9. Technical Issues and Obstacles 47 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

9.1.3. General GraphQL File
Description

To maintain a general and reusable structure, our initial goal was to use a single GraphQL query
to fetch the desired object. This would simplify the process when introducing new resources such
as a Deployment, as we would not need to create a new GraphQL query for each resource type.

Issue

However, GraphQL is designed to be explicit in defining the exact data requirements. This means
that we must specify every attribute and its value individually—across all nodes in the schema.
As a result, a general query is not feasible using standard GraphQL functionality.

Solution

We received a suggestion from the Infrahub developers to use their custom extension to GraphQL,
which introduces an @extend directive at the node level. This allows retrieval of all attributes
and their values without manually listing each one.

Despite this, we were unable to use the @extend directive effectively, as the GraphQL query
still requires specifying the node name at the top level. Therefore, we ultimately decided to define
a full GraphQL query for each node individually.

9.1.4. Calling YAML File
Description

As part of our Python transformation process, we needed to read from a predefined YAML
template file. This template is stored within the same Git repository used by Infrahub. The goal
was to reference and load this YAML file reliably during execution.

Issue

Infrahub copies the entire Git branch into its internal folder structure when executing the trans-
formation. However, this structure includes dynamically generated folders, specifically one whose
name is the Git Integration ID. Since this ID changes with every installation or Git integration,
using an absolute path to locate the YAML file is not a viable solution.

Additionally, referencing the file with a relative path does not work as expected within the
Infrahub execution environment, due to the altered internal path structure.

Solution

We solved this by using Python’s os and pathlib libraries to dynamically determine the location
of the current script, and then derive the path to the YAML file based on that. Since both the
Python script and the YAML template are within the same Git repository, this method ensures
consistent and correct path resolution.

Below is the relevant code snippet:

from pathlib import Path

currentpath = Path(__file__).resolve()
pathfile = str(currentpath.parents[1]) + "/YAML_Templates/virtuellmaschine.yaml"

This approach avoids hardcoding paths and allows the code to remain portable and functional
across different environments.

9. Technical Issues and Obstacles 48 of 82

OOST Technical Documentation v1.0
Infrahub meets K8s

Eastern Switzerland
University of Applied Sciences

9.2. Vidra Operator

There were several technical challenges related to the Vidra Operator. The most important
solutions were documented in architectural decision records.

Event-Driven vs. Owns-Based Reconciliation for Managed Resources is an example of a
technical issue that resulted in an architectural decision. In this architectural decision record, we
discussed the challenges of using an event-based approach for monitoring managed resources in
Kubernetes.

Storing Resource State is another example of a technical issue that led to an architectural
decision. In this record, we explored the benefits and challenges of storing resource state directly
in the Custom Resource (CR).

Other Architectural Decisions related to issues we encountered during the development of the
Vidra Operator can be found in Vidra’s architectural decision section of the Vidra Operator
documentation.

9.3. General Issues

While the Operator and its CLI tool grew in size and complexity, we encountered several Operator
SDK-, Go-, or Kubernetes-related issues. These issues were not specific to our project, but rather
general challenges. We deemed them not important enough to document all of them.

Solution was mostly to consult the kubebuilder!, operator sdk?, kubernetes®, and go client or
k8s package* documentation.

"Kubebuilder documentation: June 8, 2025 https://book.kubebuilder.io

20perator SDK documentation: June 8, 2025 https://sdk.operatorframework.io/docs/
3Kubernetes documentation: June 8, 2025 https://kubernetes.io/docs/home/

“Go package documentation: June 8, 2025 https://pkg.go.dev/k8s.io/client-go

9. Technical Issues and Obstacles 49 of 82

https://infrahub-operator.github.io/vidra/topics/desicions/eventbased-k8s
https://infrahub-operator.github.io/vidra/topics/desicions/resource-state
https://infrahub-operator.github.io/vidra/
https://infrahub-operator.github.io/vidra/
https://book.kubebuilder.io
https://sdk.operatorframework.io/docs/
https://kubernetes.io/docs/home/
https://pkg.go.dev/k8s.io/client-go

Part II.

Project Documentation

OOST Project Documentation v1.0

o e Scnces Infrahub meets K8s

1.

Results

Key Achievements

The Infrahub meets K8s project successfully delivered a comprehensive and automated system
for Kubernetes resource management. The key achievements are as follows:

1.

10.

11.

Automated Deployment of Kubernetes Manifests: Developed Vidra, a custom Ku-
bernetes Operator, to continuously monitor the desired state and fetch manifests for auto-
mated deployment.

. Multicluster Support: Vidra supports multi-cluster environments by utilizing kubeconfig

contexts (stored in Kubernetes Secrets) to read from and write to multiple clusters. It
reconciles resources consistently across environments and maintains unique identity and
ownership tracking for each cluster.

Event-Driven Reconciliation: Vidra employs an event-driven model to trigger reconcil-
iation, responding immediately to resource changes. It dynamically adds Informers only for
managed resources, minimizing overhead while supporting any Kubernetes resource type.
This approach reduces latency in updates and syncs, and can be enabled per InfrahubSync
or globally.

Integration with Infrahub: Utilized Infrahub as the single source of truth for managing
and versioning manifests, ensuring consistency and centralized oversight of infrastructure
and system states.

. Webserver and Virtual Machine Deployment: Implemented support for deploying

various services, including ervers and virtual machines, through the platform.

Vidra CLI Tool: Created a CLI tool for Vidra to simplify operations such as creating
and updating secrets, managing configuration files, and syncing with Infrahub.

User-Friendly Frontend for Resource Requests: Developed a frontend interface al-
lowing users to easily create and submit Infrahub objects, minimizing the need for technical
expertise.

Automated Workflow: Leveraged Python and the Infrahub API to automate the resource
request process, significantly reducing the manual workload for administrators.

Scalability and Compatibility: Designed the system to support multiple Kubernetes
resource kinds and ensured extensibility of the Infrahub model for future use cases.

Adherence to GitOps Principles: Architected Vidra to fully comply with GitOps prin-
ciples, enabling declarative configuration, versioned source control, and automated recon-
ciliation.

Security: Implemented role-based access by using distinct users to interact with Infrahub,
adhering to the Principle of Least Privilege and minimizing the potential attack surface.

1. Results 51 of 82

OOST Project Documentation v1.0
Uneray o Spghed sciences Infrahub meets K8s

2. Conclusion

We have successfully integrated Infrahub with Kubernetes (K8s) and developed the open-
source Kubernetes Operator Vidra as part of this project. This demonstrates a modern approach
to managing cloud-native infrastructure through Infrahub—an infrastructure modeling-driven
inventory management system. By leveraging Operator SDK capabilities, we have created a
solution that allows for the dynamic lifecycle management of any Kubernetes resource.

Additionally, we created supporting tools such as a CLI for Vidra and a self-service frontend
for Infrahub.

Features of Vidra

The overall architecture is designed to be as generic as possible to support a wide range of
continuous integration workflows and to be easily extensible for future needs.

o Advanced CRDs: Vidra has the potential to manage complex Custom Resources (CRs),
such as:

— Network configurations (e.g., Kubenet!, SDC): Infrahub artifacts could define network
policies and configurations.

— Cloud-native infrastructure (e.g., Crossplane): Infrahub artifacts could define Cross-
plane resources for cloud services.

— Other Kubernetes resource types: Both CRDs and built-in resources can be managed.

These capabilities require further testing and validation before being considered production-ready.

Possible Future Improvements

As we look forward to maintaining and enhancing Vidra, several improvements and features are
possible:

Webhook-Based Reconciliation (Planned) Vidra will support webhooks to trigger immediate
reconciliation on Infrahub changes, reducing update latency and reliance on periodic resyncs, and
enabling faster feedback and state syncing.

Sync to Other Platforms The VidraResource abstraction is independent of Infrahub, enabling
future support for Helm (managing resources via Helm charts), Git (enabling -style syncing from
repositories), and other platforms that provide Kubernetes manifests.

Enhanced Observability Planned improvements include metrics and logging for operational
insights, as well as tracing to follow resource lifecycle events.

User Interface Resource status and dependencies could be visualized in a Ul, enabling real-time
monitoring and management dashboards.

Overall, this project lays the groundwork for scalable, automated, and cloud-native infrastruc-
ture management and opens up new possibilities for further research and development in this
area.

"Kubenet: 10.06.2025 https://learn.kubenet.dev

2. Conclusion 52 of 82

https://learn.kubenet.dev

OOST Project Documentation v1.0
Uneray o Spghed sciences Infrahub meets K8s

3. Project Planning
3.1. Processes

Our project is structured using an agile project management framework. This approach is partic-
ularly suitable for our needs, as we work with Epics and have meetings with our advisor every two
weeks. This allows us to remain flexible for changes. We have organized our project into Phases
(in our Jira called Epics), which help us manage our tasks and maintain clarity throughout the
project lifecycle. Each Phase represents a significant component of our work and is further broken
down into Tasks and Subtasks. This structured approach enables us to effectively track progress
and ensure that all aspects of the project are addressed.

3.2. Architectural Roles

We designated Architecture Agents to leverage each team member’s expertise in different
technologies, fostering knowledge sharing throughout the project. Initially, we held a meeting
to discuss the architecture and assign specific responsibilities. A later chapter will detail the
reasoning behind our architectural decisions.

1. Simon Linder: Implements and manages the Kubernetes Deployment, handling and de-
veloping the Kubernetes Operators including the principles.

2. Ramon Stutz: Responsible for the Infrahub instance, including schema, Python transfor-
mations and API calls. Developing the self-service frontend for requesting a resource.

This distribution leverages each member’s strengths while promoting collaborative decision-
making within our team. It’s essential that everyone contributes their technical expertise with-
out feeling overruled, collectively shaping the project’s architecture. Although primary tasks
are assigned based on experience (Simon with Kubernetes, Ramon with Infrahub), we work
closely together. This vertical slicing allows efficient domain-specific development while ensuring
individual systems integrate seamlessly. We update each other weekly on current statuses and
challenges, ensuring mutual support and meaningful contributions, especially in architectural
decisions or cross-domain challenges.

3.3. Meetings

We conduct biweekly check-ins with our supervisor to address any challenges, deviations, or
uncertainties that may arise. Additionally, our team aims to meet at least once a week to foster
collaboration and support one another. If necessary, we can hold more frequent meetings to
ensure we stay aligned and address any pressing issues promptly.

3.4. Phases

In our project, we have established a structured approach to planning by defining Phases as
overarching goals, complemented by high-level tasks. Each phase is further decomposed into
specific tasks and subtasks, facilitating a clear path toward project completion. The timeline
allocated for each phase ranges from 1 to 3 weeks, with each phase assigned to a designated team
member responsible for its execution.

3. Project Planning 53 of 82

Eastern Switzerland

University of Applied Sciences

Project Documentation v1.0

Infrahub meets K8s

Phase-ID Name Description Due Date Assignee
Documentation | Documentation | 13.06.2025 Simon Linder
IMK-2 of the project
Project Keep Jira and 13.06.2025 Ramon Stutz
IMK-3 Organisation the tools up to
date
Project Start our thesis, | 06.03.2025 Ramon Stutz
IMK-13 Initialisation set up the
project tools
Set up Set up the tools | 13.03.2025 Simon Linder
IMK-4 Infrastructure and our
environment
Tooling Analyze the 03.04.2025 Ramon Stutz
IMK-5 Evaluation and | GitOps tools
Selection for our project
Container via Create 24.04.2025 Simon Linder
IMK-6 Infrahub container via
Infrahub
VM via Extend our 15.05.2025 Ramon Stutz
IMK-7 Infrahub applications to
perform
deployment of
VMs
Feature and Implementation | 31.05.2025 Simon Linder
IMK-53 Deployment for some
features and
deployments
Absence Absence of 13.06.2025 Simon Linder /
IMK-34 team members Ramon Stutz

3.4.1. Time Table

ltems

> 4 IMK-2 Documentation

> 4 IMK-3 Project Organisation
> ¢ IMK-13 Project Initialization

> 44 IMK-4 Setup Infrastructure

> 4+ IMK-5 Tooling Evaluation and Selection

> 4> IMK-6 Container via Infrahub
> 4¢ IMK-7 VM via Infrahub
4+ IMK-53 Feature and deployment

> 4 IMK-34 Absence

3. Project Planning

Table 3.1.: Project Phases Overview

March April May
|
|
.

L
I
.
L
I

Figure 3.1.: Time Plan of the project

J

54 of 82

OOST Project Documentation v1.0

Eastern Switzerland
University of Applied Sciences

Infrahub meets K8s

3.5.

Risk Management

Like in every other project, risks are always part of it. Our job is to assess, analyze, manage,
and if possible, minimize as many risks as possible. Undetected risks could pose a major threat
to the success of the project.

3.5.1. Risks

1. Scope Creep: Uncontrolled changes or additions to project requirements can lead to scope
creep, causing delays or overruns.

2. Team member falls out: A team member is absent and isn’t capable of working on the
project.

3. Team dynamics: Poor communication, collaboration issues, or lack of cohesion within
the project team can hinder progress and affect project morale.

4. Quality assurance challenges: Ineffective testing practices or inadequate quality assur-
ance measures can result in undetected defects, leading to product failures or customer
dissatisfaction.

5. Project management challenges: Inadequate processes for updating our team project
status or updating the timetable can lead to misunderstandings and hinder progress.

6. Poor Requirements Management: Inadequate gathering, documentation, or manage-
ment of project requirements can lead to misunderstandings, rework, and dissatisfaction
with the final product.

7. Technical challenges: Complex technical requirements, dependencies, or limitations can

pose challenges during development, leading to delays or compromised quality.

3.5.2. Risk Countermeasures

Scope Creep

1.

2.

Define clear project requirements and objectives from the outset.

Regularly review project scope with stakeholders to ensure alignment.

Poor Requirements Management

1.
2.

3.

Establish a shared requirements document accessible to all team members.
Regularly revisit and refine requirements as the project evolves.

Encourage team members to raise ambiguities or uncertainties early for clarification.

Technical challenges

1.

2.

3.

4.

Break down complex tasks into smaller, manageable components.
Seek input from subject matter experts and consider alternative solutions.

Implement a light version of our desired architecture first to ensure functionality between
the versions.

Allocate sufficient resources and time for addressing technical challenges.

3. Project Planning 55 of 82

OOST Project Documentation v1.0
Infrahub meets K8s

University of Applied Sciences

5. Conduct a comprehensive technical feasibility study before project initiation.
Team dynamics
1. Foster open communication and collaboration within the team.
2. Address conflicts and misunderstandings promptly and constructively.
3. Provide opportunities for team-building activities and training.
4. Assign roles and responsibilities clearly to avoid ambiguity.
5. Meet weekly to discuss the tasks and issues.
Quality assurance challenges
1. Develop a comprehensive testing strategy and plan.
2. Don’t review your own work; review each other’s work.
3. Plan enough time for testing.
4. Do reviews during the project, not all at the end.
Project management challenges

1. Assign a role to a team member who takes time to update the project management tool

(Jira).
2. Hold weekly meetings to discuss and assign active and new tasks.
Team member falls out
1. Open conversation and weekly updates on the status of tasks so someone can take over.

2. Properly and up-to-date documentation of the tasks.

3.5.3. Risk Matrix

w1 Scope Creep: s} Team mem ber falls out 3. Team dynamics
4. Quality assurance challenges w5 Project management challenges ssss=f. Poor Requirements Management

wmmmm 7. Technical challenges

SEVERITY * PROBABILITY

WEEK
Figure 3.2.: Risk Management

3. Project Planning 56 of 82

OOST Project Documentation v1.0
ftern Suize Infrahub meets K8s

zerland
University of Applied Sciences

3.5.4. Risk summary

In the first weeks of the project, we identified and assessed potential risks. We took some risk
measures to minimize them, but unfortunately one risk occurred in week 3 - team member falls
out. In our case, both team members got sick for a week, Ramon for almost 3 weeks. We had to
adapt our time plan to finish our project on time.

3.6. Planning Tools
3.6.1. JIRA

We use Jira because all team members are familiar with it, allowing us to manage our projects
effectively using Epics, Tasks, and Subtasks. Jira also enables us to create timetables, ensuring
clear visibility into project timelines and responsibilities. This familiarity and structured approach
enhance collaboration and streamline our project management processes.

3.6.2. Clockify

We use Clockify because it integrates seamlessly with Jira, providing us with easy time tracking
on our tasks. Its graphical reports and filter functions allow us to analyze how time is spent on
various tasks and promote accountability.

3.6.3. Overleaf

Overleaf is an online collaborative platform that simplifies the process of writing and publish-
ing documents using LaTeX. It allows multiple authors to work simultaneously on a document,
making it ideal for academic and technical writing. Overleaf’s built-in templates and real-time
preview features streamline the formatting process, enabling us to focus on content creation while
ensuring high-quality output suitable for publication.

3. Project Planning 57 of 82

OOST Project Documentation v1.0
Uneray o Spghed sciences Infrahub meets K8s

List of Tables

7.1. Python libraries used in the transformation scripts 29
7.2. Naming conventions for Kubernetes kinds 33
7.3. Example of key-based value replacement in a YAML file 33
7.4. GraphQL mutations used in Infrahub 0000 35
3.1. Project Phases Overview e 54
1.1. Scenario Refinement Table for Performance Efficiency 63
1.2. Scenario Refinement Table for Compatibility 64
1.3. Scenario Refinement Table for Usability 65
1.4. Scenario Refinement Table for Maturity 66
1.5. Scenario Refinement Table for Fault Tolerance 67
1.6. Scenario Refinement Table for Scalability 68
1.7. Scenario Refinement Table for Testability 69
1.8. Scenario Refinement Table for Reusability 70
1.9. Scenario Refinement Table for Portability 71
1.10. Scenario Refinement Table for Adaptability 72
1.11. Scenario Refinement Table for Installability 73

LIST OF TABLES 58 of 82

O

OST Project Documentation v1.0
Unarsyof e Sciences Infrahub meets K8s

List of Figures

3.1.

2.1.

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.
5.3.

7.1
7.2.
7.3.

8.1.
8.2.

3.1.
3.2.

2.1.
2.2.

C4 Component Diagram, showing the Infrastructure and Code components iv
Non-Functional requirements 5
Diagram of the Flux Workflow, 8
Description Workflow Setup Flux Testing 9
CMP Test: ConfigMap Deployment 10
ArgoCD and Infrahub Integration Workflow 11
Infrahub API - Post GraphQL query 12
C4 Context Diagram 14
C4 Container Diagram L Lo 15
C4 Component Diagram e 16
Infrahub Resources L 24
Infrahub Schema UML Diagram 25
Infrahub Python Transformations 28
Architecture of the self-service frontend 41
Architecture of the self-service frontend 42
Time Plan of the project 54
Risk Management e 56
Description option 1 for Infrahub Schema 74
Description option 2 for Infrahub Schema 76

LIST OF FIGURES 59 of 82

OOST Project Documentation v1.0

Eastern Switzerland
University of Applied Sciences

Infrahub meets K8s

Acronyms

APl Application Programming Interface. vii, 10, 11, 12, 16, 17, 34, 41, 43, 45, 47, 53

CD Continuous Deployment. iii, 7

Cl Continuous Integration. 22

Cl/CD continuous integration and continuous deployment. vi, 22, 23, 75
CLI Command Line Interface. 2, 49, 75, 77

CR Custom Resource. 52

CRD Custom Resource Definition. 52

CRUD Create, Read, Update, Delete. 37

CSS Cascading Style Sheets. viii, 80

GUI Graphical User Interface. 15, 25, 75, 76

HTML Hypertext Markup Language. vii, viii, 42, 43, 47, 79, 80
K8s Kubernetes. 52

OCI Open Container Initiative. 8

QAS Quality Attribute Scenarios. 6

SDK Software Development Kit. 10, 49, 52
SSH Secure Shell. 45, 47

Ul User Interface. iii, 52

URL Uniform Resource Locator. 43, 44, 47, 79, 80

VM Virtual Machine. 42, 45, 79, 80

YAML YAML Ain’t Markup Language / Yet Another Markup Language. vii, 8, 9, 11, 16, 29,

30, 32, 33, 48, 58, 74, 75, 76

Acronyms

60 of 82

OOST Project Documentation v1.0
ftern Suize Infrahub meets K8s

zerland
University of Applied Sciences

Glossary

CMP ArgoCD plugin system to build custom kubernetes manifests with a plugin that can do
anything.. 10, 11

DevOps DevOps is a set of practices that combines software development (Dev) and IT opera-
tions (Ops). It aims to shorten the systems development lifecycle and provide continuous
delivery with high software quality.. iii

GitOps GitOps is a set of practices that uses Git pull requests to manage infrastructure and

8, 10, 11, 52, 53

infrastructure Infrastructure in our context refers to any Kubernetes native resource or custom
resource. These resources can deploy or manage virtual infrastructure like virtual machines,
Kubernetes networks, or storage, but also applications and services running on top of that
infrastructure. It can even be used to manage physical infrastructure like network devices
or servers with projects like kubenet or SDC. The possibilities are huge.. i, ii, iii, 20

PEP8 PEPS is a style guide for Python code. It is a set of rules that specify how to format
Python code for maximum readability.. 22

Glossary 61 of 82

Part IIl.

Appendix

OST

Eastern Switzerland
University of Applied Sciences

Appendix v1.0
Infrahub meets K8s

1. Quality Attribute Scenarios

This chapter presents the quality attribute scenarios for the project, focusing on ISO/IEC
25000 quality attributes. Each scenario is refined to provide a clear understanding of the system’s

behavior under specific conditions.

Scenario(s)

Business Goals

Relevant Quality Attributes

Operator synchronizes resources from In-
frahub, filtering only the necessary data

based on the current cluster state.
Minimize compute and network overhead to

reduce cost and improve scalability.
Performance Efficiency, Scalability,
source Optimization

Re-

Stimulus

Stimulus Source
Environment

Artifact
Response

Response Measure

Synchronization of a large number of In-
frahub Artifacts is triggered.
Reconciliation loop and a change in only one

Infrahub Artifact.
Normal operational state in a constrained

Kubernetes cluster.
Vidra operator and Infrahub client logic.

The operator only fetches required artifacts
and applies only the diffs.

CPU/memory /network usage per sync
stays under threshold (<1% RAM in-
crease, <50MB transferred). Sync com-
pletes within 10s.

What is the minimum data subset required for a successful reconciliation? How can

diffing and filtering be optimized?

Infrahub Artifact might not support fine-grained queries; risk of over-fetching data.
However, this can be mitigated in Kubernetes by applying only the changed resources.

Table 1.1.: Scenario Refinement Table for Performance Efficiency

1. Quality Attribute Scenarios

63 of 82

OST

Eastern Switzerland
University of Applied Sciences

Appendix v1.0
Infrahub meets K8s

Relevant Quality Attributes

Stimulus Source

Environment

Artifact

Response

Response Measure

The system integrates with Kubernetes and
Infrahub API, enabling seamless interaction
and interoperability.

Ensure seamless integration and interoper-
ability with Kubernetes and Infrahub API.
Compatibility, Interoperability, Extensibil-
ity

Integration with a new version of Kuber-
netes or Infrahub API is required.
Update or change in Kubernetes or Infrahub

API.
Normal operational state in a Kubernetes

cluster using Infrahub API.

Vidra operator and Infrahub client logic.
The system continues to interoperate with
Kubernetes and Infrahub API without re-
quiring major changes.

Integration is achieved with minimal to no
configuration and no disruption to existing
functionality.

How easily can the system be integrated with new versions of Kubernetes or Infrahub
API? Are there any compatibility issues?

Kubernetes and Infrahub API do not change frequently, so compatibility issues are rare.
However, monitoring for upstream changes is still necessary.

Table 1.2.: Scenario Refinement Table for Compatibility

1. Quality Attribute Scenarios 64 of 82

OST Appendix v1.0
o e Scnces Infrahub meets K8s

Scenario(s) A user deploys resources using the system’s
interface without prior Kubernetes exper-

tise and encounters an error.
Business Goals Lower the barrier to entry for resource de-

ployment and reduce support overhead by
making the system intuitive and reporting
errors clearly.

Relevant Quality Attributes Usability

A user attempts to deploy a resource and
makes a configuration mistake.

End user with limited Kubernetes knowl-
edge.

Normal operational state, accessed via the
system’s user interface.

Artifact User interface, error handling in the Kuber-
netes resource, and feedback mechanisms
for admin.

Response The system displays a clear, actionable error

message and logs detailed error information
in the Kubernetes resource for the admin,
enabling easy administrative troubleshoot-
ing.

The admin can easily access detailed logs
for troubleshooting.

How intuitive is the deployment workflow for new users? Are error messages under-
standable and actionable?

Users may still require some domain knowledge for complex deployments. Continuous
user feedback is needed to improve usability and error guidance.

Table 1.3.: Scenario Refinement Table for Usability

1. Quality Attribute Scenarios 65 of 82

OST

Eastern Switzerland
University of Applied Sciences

Appendix v1.0
Infrahub meets K8s

Scenario(s)

Business Goals
Relevant Quality Attributes

Stimulus Source

Artifact

Response

Response Measure

The system processes a high volume of de-
ployment requests over an extended period,
with continuous deployment triggered only
when actual changes are detected.

Achieve high stability and reliability, min-
imize defects, and ensure efficient resource
usage by avoiding unnecessary deployments.
Maturity, Reliability, Performance Effi-
ciency

A large number of deployment requests are
received, but only a subset involve actual
changes to resources.

User-initiated deployment triggers (such as
new synchronization to Infrahub with mul-
tiple Artifacts).

Normal and peak operational states in a Ku-

bernetes cluster.
Deployment controller and change detection

logic.

The system only initiates deployments when
changes are detected, maintains stable op-
eration, and logs any errors or failures for

review.
Defect rate remains below 0.5% per deploy-

ment; unnecessary deployments avoided; no

significant performance degradation under
load.

How does the system detect and avoid redundant deployments? What mechanisms are

in place to ensure stability and low defect rates during high-volume operations?

False positives in change detection could trigger unnecessary deployments. Monitoring

and robust error handling are required to maintain maturity and reliability.

Table 1.4.: Scenario Refinement Table for Maturity

1. Quality Attribute Scenarios

OST

Eastern Switzerland
University of Applied Sciences

Appendix v1.0
Infrahub meets K8s

Scenario(s)

Business Goals

Relevant Quality Attributes

Stimulus Source

Environment

Artifact

Response

Response Measure

How does the system detect and recover from failures? Are retry and backoff strategies

The system encounters a failure during syn-
chronization with Infrahub or while apply-
ing resources to Kubernetes.

Ensure continuous operation and prevent
data loss or significant disruption in the
event of transient or persistent failures.
Fault Tolerance, Reliability

A network partition, Infrahub API outage,
or Kubernetes API error occurs during a
sync or deployment operation.

External system failures, network interrup-
tions, or transient errors in Infrahub or Ku-

bernetes.
Normal and degraded operational states in

a Kubernetes cluster with Infrahub integra-

tion.
Vidra operator, Infrahub client, and Kuber-

netes controllers.
The system automatically retries failed op-

erations using Kubernetes retry logic and
exponential backoff for Infrahub API calls,
ensuring eventual consistency and recovery

without data loss.
No data loss; operations are retried up to a

defined limit; system resumes normal oper-
ation within 1 minute after transient failure
resolution.

sufficient to prevent data loss and minimize disruption?

Persistent failures may require manual intervention. Excessive retries could delay re-
covery or cause resource contention.

Table 1.5.: Scenario Refinement Table for Fault Tolerance

1. Quality Attribute Scenarios

OST Appendix v1.0
o e Scnces Infrahub meets K8s

Scenario(s) The system experiences a rapid increase in
the number of deployments and concurrent
users.

Business Goals Maintain consistent performance and re-
sponsiveness as the number of deployments
and users grows.

Relevant Quality Attributes Scalability, Performance Efficiency, Re-
source Optimization

Stimulus A spike in deployment requests or user ac-
tivity occurs, such as during a massive syn-
chronization of Infrahub Artifacts or a large
number of users accessing the system simul-
taneously.

Multiple users or automated systems initi-
ating deployments simultaneously.
Normal and peak operational states in a Ku-
bernetes cluster.
Artifact Deployment controller, resource manager,
_ and supporting infrastructure.

Response The system dynamically allocates resources
and manages workloads to handle increased
demand without significant performance
degradation.

Response Measure Throughput and response times remain
within acceptable thresholds (e.g., <10% in-
crease in latency, <5% error rate) as load
increases.

How does the system scale with increased deployments and users? Are there bottlenecks

that limit scalability?

Resource contention or architectural bottlenecks may limit scalability. Monitoring and

autoscaling strategies are required to ensure consistent performance.

Table 1.6.: Scenario Refinement Table for Scalability

1. Quality Attribute Scenarios

68 of 82

osT Appendix v1.0
Eastern Switzerland Infrahub meets K8s

University of Applied Sciences

Scenario(s) Developers write unit tests for the opera-
tor’s reconciliation logic and API interac-
tions.

Business Goals Facilitate rapid, reliable verification of func-
tionality and performance to support main-
tainability and reduce defects.

Relevant Quality Attributes Testability, Maintainability

Stimulus A new feature or bug fix is implemented, re-

quiring validation through automated tests.
Stimulus Source Developer or CI/CD pipeline.
Environment Local development or CI/CD test environ-
ment.
Artifact Operator logic, API client, and test harness.
Response The system supports isolated, repeatable
unit tests with clear pass/fail outcomes.
Response Measure >80% code coverage; tests execute in <2

minutes; failures are easily diagnosed.

How easily can new features be tested? Are tests reliable and fast?

Complex dependencies on Kubernetes may make some logic hard to test in isolation.
Mocking, modularization, and envtest are required.

Table 1.7.: Scenario Refinement Table for Testability

1. Quality Attribute Scenarios 69 of 82

OST Appendix v1.0
o e Scnces Infrahub meets K8s

Scenario(s) Developers create reusable templates or
modules for common resource types and de-
ployment patterns.

Business Goals Accelerate development and reduce dupli-
cation by enabling reuse of components and
templates.

Relevant Quality Attributes Reusability, Maintainability, Efficiency

Stimulus A new project or resource is created that

can leverage existing templates or modules.
Stimulus Source Developer or DevOps engineer.
Environment Development or deployment environment.
Artifact Templates, modules, or shared libraries.
Response Existing components are reused with min-

imal modification, reducing development

time and errors.
Response Measure >50% of new resources use shared tem-

plates; time to deploy is reduced by >30%.

How often are components reused? How easy is it to adapt templates for new use cases?

Overly generic templates may be hard to maintain; a balance between flexibility and
simplicity is needed.

Table 1.8.: Scenario Refinement Table for Reusability

1. Quality Attribute Scenarios 70 of 82

OST

Eastern Switzerland
University of Applied Sciences

Appendix v1.0
Infrahub meets K8s

Scenario(s)

Business Goals

Relevant Quality Attributes

Stimulus Source

Artifact

Response

Response Measure

How portable is the system across clusters and clouds? What changes are required for
deployment in a new environment?

Environment-specific dependencies may hinder portability; use of standard APIs and

configuration is recommended.

The system is deployed to a new Kubernetes
cluster or cloud environment with minimal
changes.

Enable deployment in diverse environments
without significant code changes, support-
ing multi-cloud and hybrid strategies.
Portability, Flexibility

A customer or team requests deployment to
a new cluster or cloud provider.

Customer, DevOps, or platform engineer.
New Kubernetes cluster or cloud environ-

ment.
Deployment manifests, configuration files,

and operator code.

The system is deployed successfully with
only environment-specific configuration
changes.

Deployment to a new environment requires
<1 hour of effort and no code changes.

Table 1.9.: Scenario Refinement Table for Portability

1. Quality Attribute Scenarios

OST Appendix v1.0
o e Scnces Infrahub meets K8s

Scenario(s) The system is deployed in a Kubernetes en-
vironment with custom configurations.
Business Goals Support diverse deployment scenarios

and customer requirements without code
changes.

Relevant Quality Attributes Adaptability, Flexibility, Maintainability

Stimulus A customer requests deployment in a Ku-
bernetes cluster with non-standard configu-
ration or policies.

Customer, DevOps, or platform engineer.

Kubernetes clusters with varying configura-
tions and policies.

Deployment manifests, configuration files,
and operator code.

Response The system is configured and deployed suc-
cessfully by adjusting only configuration
files or manifests, without code changes.

Response Measure Deployment in a new environment requires

<30 minutes of configuration work and no

code changes.
How easily can the system be adapted to different Kubernetes configurations? Are there
any hardcoded dependencies?

Overly rigid configuration or hardcoded values may limit adaptability. Documentation
and parameterization are essential.

Table 1.10.: Scenario Refinement Table for Adaptability

1. Quality Attribute Scenarios 72 of 82

OST

Eastern Switzerland
University of Applied Sciences

Appendix v1.0
Infrahub meets K8s

Scenario(s)

Business Goals

Relevant Quality Attributes

Stimulus Source

Artifact

Response

Response Measure

A new user installs the system in a fresh Ku-
bernetes cluster following the provided doc-

umentation.
Minimize installation time and errors, en-

abling rapid onboarding and adoption.
Installability, Usability, Maintainability

A user attempts to install the system using
the official documentation and installation
scripts.

New user, DevOps, or administrator.

Fresh Kubernetes cluster with standard pre-
requisites.

Installation scripts, manifests, and docu-

mentation.
The system is installed and operational with

minimal manual steps and no errors.
Installation completes in <10 minutes; user
reports no blocking issues; documentation
is rated as clear and sufficient.

How easy is the installation process for new users? Are all dependencies and steps
clearly documented?

Missing or outdated documentation and complex dependencies may hinder installability.
Regular updates and user feedback are needed.

Table 1.11.: Scenario Refinement Table for Installability

1. Quality Attribute Scenarios 73 of 82

O oST Appendix v1.0
Eastom wite Infrahub meets K8s

zerland
University of Applied Sciences

2. Detailed Architecture Decisions
2.1. What is Infrahub used for?

We had to decide if Infrahub should be a place for an Administrator to manage the Kubernetes
Cluster or if it should be a place for a Developer to deploy their applications. A solution for an
Administrator would include many small components (one for each kind in Kubernetes) which
could be custom-fitted to the needs of any application. A solution for a Developer would include
predefined templates for common applications like a web app, VM, or database with only the
most important values to customize a predefined solution.

Option 1 - Infrahub for Administrators In this approach, every Kubernetes Kind, such as
Deployments, Services, and Ingress, is represented as a distinct entity within Infrahub, generating
a separate YAML file as an artifact for each object. This method offers significant flexibility,
particularly for administrators, as they retain full control over the structure and configuration
of deployments. It allows for precise customization of each Kubernetes Kind, ensuring that
individual requirements can be met with ease.

However, this granular approach comes with notable challenges. The sheer volume of generated
data within Infrahub may become substantial, potentially leading to increased complexity in
management. Additionally, a dedicated script or plugin would be required to establish clear
associations between the various YAML files and their respective manifests, ensuring seamless
integration and maintainability.

Deployment? (-
H&Lcha‘;cs Deployment2 [
pp“‘-H Python E WebApp
Generator / haon i
User Ingresst |—_ rrvamL] Manifest
Template | ™~ & Transformations
e Manual \ Servicel |
| |Customization—— >
©_ _ Namespace |~
Admin
Figure 2.1.: Description option 1 for Infrahub Schema
Pros:

e The Administrator can customize the Cluster to their needs.

e Small components can be used in different solutions, like one component for an nginx
Ingress, one for a deployment, and one for a service for a web application.

e The Administrator can use Infrahub to manage Kubernetes and always see the current state
of the Cluster and each Kubernetes kind.

e This approach offers granular control, enabling tailored modification of each individual
Kubernetes kind as needed.

2. Detailed Architecture Decisions 74 of 82

O oST Appendix v1.0
Eastom wite Infrahub meets K8s

zerland
University of Applied Sciences

e It promotes a modular structure, simplifying maintenance and updates for individual com-
ponents.

o It supports advanced configurations and custom solutions, granting administrators deep
insight into the underlying infrastructure.

Cons:

o Each component needs to generate its own YAML artifact and we need a way to stitch them
together into one bigger solution later on. This could be done with Helm or Kustomize or
by registering the different components together as one application in the CI/CD tool which
we utilize (Flux, ArgoCD, or a custom Operator).

¢ Infrahub would be full of many small components which could be hard to manage, maintain
and could lead to a lot of artifact files and a messy artifact section in Infrahub.

e We need to map many or almost all fields of the Kubernetes API to the GUI and the
YAML artifact, which could be difficult. One could try to generate pydantic models from
the Kubernetes API and try to use them to generate the Infrahub schema, but this could
lead to a lot of conflicts and manual work as there is no standardized way to generate the
schema from the Kubernetes API or pydantic models yet.

¢ Infrahub would be more complex and harder to use for a Developer who just wants to deploy
their application as they probably do not know what kind of Ingress, Service, Deployment,
etc. they need.

¢ We would basically build a GUI for YAML files, where the Administrator can click together
their solution. But the GUI could actually be less powerful and customized than YAML
files and the Administrator who already knows Kubernetes would probably prefer to use
the CLI or the Kubernetes Dashboard.

¢ Kubernetes Dashboard is already a good tool for Administrators to manage the Cluster
and see the current state of the Cluster and each Kubernetes kind. So Infrahub would be a
duplicate of the Kubernetes Dashboard with a GUI for YAML files. And it would be hard
to compete with a tool that is already integrated in Kubernetes and is actively developed
by the Kubernetes community, which is perfectly adapted and integrated into Kubernetes.

Option 2 - Infrahub for Developers and Users This approach fundamentally shifts the re-
sponsibility of defining Kubernetes configurations from Infrahub to the administrator. Instead
of storing all deployment details within Infrahub, the administrator creates a set of predefined
YAML manifest templates for common services such as databases or web applications. These tem-
plates include fixed parameters, such as the number of services, deployments, and other structural
elements, that remain unchanged across instances.

However, certain configurable parameters, such as container images or hardware limitations,
are stored within Infrahub, allowing for customization where necessary. When generating a final
manifest, a Python-based transformation process selects the appropriate YAML template and
injects the required dynamic values from Infrahub, ensuring that each deployment is tailored to
its specific context.

One key advantage of this method is that Infrahub does not need to store complete manifest
information, reducing complexity and data volume. Additionally, the Python transformation
process is relatively simple to implement, streamlining deployment automation.

On the downside, this approach limits flexibility, as a new template must be created for every
unique service deployment. Furthermore, the rigid structure of predefined manifests means that
administrators have less freedom to fine-tune individual Kubernetes resources dynamically.

2. Detailed Architecture Decisions 75 of 82

O oST Appendix v1.0
Eastom wite Infrahub meets K8s

zerland
University of Applied Sciences

=]
— —>
Webserver2 — — %_

Webserveri

© INFRAHUB

“—_Creates
Wehhpp,_hh
User ~—a Infrahub

Template Databasei |— Python =
as€ Transformations

Manual Database? |— —»
Customization —

©

Admin

Figure 2.2.: Description option 2 for Infrahub Schema

Pros:

The Developer / User can deploy their application with only a few clicks and does not need
to know Kubernetes or what kind of Ingress and other resources they need for their web
application.

Infrahub would be small and easy to use. The User would only need to select a template,
fill in the values, and deploy the application. It minimizes the risk of misconfiguration by
restricting editable parameters to safe and proven values.

Each solution would be tested and work out of the box. The User is only given configuration
which would not break the solution (web application, VM, etc.).

Each solution would generate only one YAML artifact file which would be easy to manage
and maintain as everything is in one file.

It enables faster iteration and prototyping of solutions as standardized templates can be
easily replicated.

It supports consistency by ensuring each deployment follows the same structure, reducing
errors.

It encourages a user-friendly interface where essential configurations are exposed while hid-
ing complex details. More advanced or critical values (like CPU, RAM limitations) could
be exposed just to the Administrator role within Infrahub.

We develop a tool with benefits for the User and not a duplicate of the Kubernetes Dash-
board.

Cons:

The User cannot customize the solution as much as they could with the Administrator
solution. The User can only fill in the values which are exposed in the GUI.

The User cannot deploy their own solutions, only predefined solutions which are provided
by the Administrator.

2. Detailed Architecture Decisions 76 of 82

O oST Appendix v1.0
Eastern Switzerland In frah Ub mee tS K85

University of Applied Sciences

e The Administrator needs to create a template for each solution which the User can deploy
like a web app, VM, or database.

e The User may face limitations if their application requires non-standard Kubernetes con-
figurations not covered by existing templates.

e Troubleshooting issues needs to be done on Kubernetes and could be harder since deeper
Kubernetes knowledge is abstracted away.

e Adding new application types requires Administrator intervention to create or maintain
templates.

Decision We decided that Infrahub should be a place for a Developer or other User with little
knowledge about Kubernetes to deploy their own applications. The Administrator should use the
Kubernetes Dashboard or the Kubernetes CLI to manage the Cluster.

Justification We do not want to build a duplicate of the Kubernetes Dashboard and want to
keep Infrahub small and organized. We want to provide a tool that solves a problem that is not
solved yet.

Future Enhancements An additional approach could involve blending administrator and devel-
oper needs by offering both granular control for advanced users and simplified presets for typical
use cases. This might include:

e A parameter switch for toggling between a guided template mode and a comprehensive
configuration mode.

e Role-based access that displays or hides complex settings based on user permissions.

¢ Reusable components stored in a dedicated library to speed up new template creation.

Implementation Outline In order to realize the chosen option, a few steps are required:

1. Identify reusable application templates (web app, VM, database).
2. Define key configuration parameters for each template.

3. Streamline the user interface to expose only these parameters.

4. Verify compatibility with the existing Kubernetes environment.

5. Provide documentation for further customization and troubleshooting.

Next Steps Future updates should focus on:
¢ Adding more application templates based on user feedback.
e Improving validation for critical parameters.

o Enhancing observability and logs for production deployments.

2.2. Do we need Profiles or Templates in Infrahub?

We had to decide if we should use Profiles or Templates in Infrahub.

2. Detailed Architecture Decisions 77 of 82

O oST Appendix v1.0
Eastern Switzerland In frah Ub mee tS K85

University of Applied Sciences

Option 1 - Template Profiles on the other hand store the value of certain attributes, and
objects that are using this profile inherit its value.
Pros:

o Profiles allow shared attributes, making it easy for the Admin to change a value for multiple
objects.

e Profiles are allowed to be used by multiple objects defined individually.

o Profiles can be added after the object is already created.
Cons:

e Profiles can’t define attributes that are required.
e Profiles can’t be set on attributes that have to be unique.
Option 2 - Object Template feature allows creating a reusable blueprint for any object. We

could use templates with default values for the User to deploy their application.
Pros:

o FEasy to use to create one object.
e Easy to create in Infrahub with a GraphQL query.

e Can define every attribute.
Cons:
e Can’t use Resource Manager in the template.
e Doesn’t support shared attributes. On a change, the Admin has to change the value on

each object.

Decision We decided to use Templates instead of Profiles, because our schema defines most
attributes to be required and as well the combination of the name and namespace needs to be
unique. Therefore, Profiles can’t be used for our use case.

Future Enhancements An additional approach could use both Templates and Profiles, so for
the object creation we use a Template with links to some attributes in the Profile.

o A Template to use for object creation.

e Profiles which define default values, easy for the admin to change.

Implementation Outline In order to realize the chosen option, a few steps are required:
1. Identify reusable application templates (web app, VM, database).
2. Define key configuration parameters for each template.
3. Streamline the user interface to expose only these parameters.
4. Verify compatibility with the existing Kubernetes environment.

5. Provide documentation for further customization and troubleshooting.

Next Steps Future updates should focus on:

o Adding more flexibility in the creation of the objects.

e Improving validation for critical parameters.

2. Detailed Architecture Decisions 78 of 82

O oST Appendix v1.0
Eastom wite Infrahub meets K8s

zerland
University of Applied Sciences

3. Detailed HTML and CSS Code
3.1. HTML

Metadata

At the beginning of the document, essential metadata is defined—including character encoding,
responsive design settings, and a link to the CSS file:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Resource Request</title>
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">

JavaScript Logic

JavaScript is used to dynamically adapt the form fields depending on the selected resource type.

Dynamic Fields The toggleFields() function ensures that only the relevant fields for the
selected deployment type are displayed. If "VM" is selected, the form shows the container image
URL field; if “Webserver” is selected, it shows a Docker image selection instead.

<script>
function toggleFields() {
const deploymentType = document.getElementById("deployment_type").value;
const urlField = document.getElementById("url_field");
const imageField = document.getElementById("image field");

urlField.style.display = "none";
imageField.style.display = "none";

if (deploymentType === "VM") {
urlField.style.display = "block";
} else if (deploymentType === "Webserver") {

imageField.style.display = "block";
b
b

window.onload = toggleFields;

Button Deactivation To prevent multiple submissions during processing, the submit button is
disabled once clicked:

function disableButton() {
const btn = document.getElementById("submit-btn");
btn.disabled = true;
btn.innerText = "Please wait...";

}
</script>

3. Detailed HTML and CSS Code 79 of 82

O oST Appendix v1.0
Eastom wite Infrahub meets K8s

zerland
University of Applied Sciences

Form Structure

The form is submitted via POST and contains the following fields:

¢ Resource Type: A dropdown menu to choose between Webserver and VM.
o Name: A text input with validation (e.g., character length).

o Description: An optional text field (max 50 characters).

o Namespace: Kubernetes namespace (required).

« VM URL Field: Shown only when “VM?” is selected—allows choosing a container image
(e.g., Ubuntu, Fedora).

e Webserver Image Field: Shown only when “Webserver” is selected—allows choosing
between Docker images like Apache or Nginx.

Form Excerpt (HTML)

The following snippet shows a part of the request form:

Listing 3.1: Excerpt from the HTML Form

<form method="POST" onsubmit="disableButton()">
<label for="deployment_type'">Resource:</label>
<select name="deployment_type" id="deployment_type" onchange="toggleFields()">
<option value="Webserver" selected>Webserver</option>
<option value="VM">VM</option>
</select>

</form>

3.2. CSS Styling

The visual appearance of the web interface is defined in a separate CSS file. It ensures a clean,
modern, and responsive design that improves the user experience and aligns with the functionality
of the dynamic form.

Global Styles

The body tag is styled to use a sans-serif font and centers all content both vertically and hori-
zontally using Flexbox. It also sets a soft background color to maintain a clean look.

Listing 3.2: Global Body Styling

body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: #f4f7f8;
color: #333;
display: flex;
justify-content: center;
align-items: center;
flex-direction: column;

3. Detailed HTML and CSS Code 80 of 82

O oST Appendix v1.0
Eastom wite Infrahub meets K8s

zerland
University of Applied Sciences

Form Layout

The form element is given a fixed width and height (both set to 60% of the container) to keep it
centered and well-proportioned on most screens.

form {
width: 60%;
height: 60%;
}

Inputs and Form Controls

All input elements, buttons, dropdowns, and labels share consistent styling to ensure visual
harmony. They are sized for high readability and accessibility.

input, button, select, label {
width: 100%;
font-size: 30px;
height: auto;

I

input {
padding: 5px;
Iy

Headings

To emphasize titles and section headers, the font size for <h1> and <h2> elements is significantly
increased:

hi, h2 {

font-size: 40px;
7
Buttons

The submit button is styled with a soft blue background and padding for better interactivity. On
hover, it changes color to provide visual feedback to the user.

button {
margin-top: 5%;
width: 100%;

padding: 5px;
background-color: lightskyblue;
s

button:hover {
background-color: lightblue;
Iy

Paragraphs

Paragraph text is displayed in a larger font for better readability:

3. Detailed HTML and CSS Code 81 of 82

Eastern Switzerland
University of Applied Sciences

OOST Infrahub meets K8s v 1.0

p{
font-size: 30px;

}

Image Container and Styling

The container used for displaying images (e.g., logos) uses Flexbox to align images side by side
horizontally. Images are resized and spaced evenly with rounded corners.

container {
display: flex;
flex-direction: row;
width: 100%;
align-items: center;

}

img {
width: 25%;
margin-left: 15%;
margin-right: 10%;
border-radius: 5%;

Ir

3. Detailed HTML and CSS Code 82

	Abstract
	Vision
	Management Summary
	Acknowledgments
	Contents
	Technical Documentation
	Overview
	Requirements
	Functional Requirements
	Persona
	User Stories

	Non-Functional Requirements
	Approach

	Preliminary Work
	Initial Project Analysis
	Flux
	Lab Setup
	Result
	Conclusion

	ArgoCD
	Hypothesis and Testing
	Community Feedback
	Solution and Conclusion

	Kubernetes Operator

	Architecture
	Introduction and Goals
	Context Diagram (Level 1)
	Container Diagram (Level 2)
	Component Diagram (Level 3)
	Architectural Decision Records

	Quality Measures
	Organizational Measures
	Guidelines
	Tools Used to Assess Product Quality in CI/CD
	Manual Testing
	User Tests

	Code Review

	Infrahub
	Schema
	UML Diagram
	Generics - Resource
	Nodes

	Python Transformation
	Transform Function
	Helper Functions
	YAML Templates

	Graph QL Queries
	.infrahub.yml
	Resource Manager
	Users, Groups, Roles, and Permissions
	Users
	Roles
	Permissions
	User Groups

	Service Groups
	Git Integration
	Object Templates

	Self-service Frontend
	Architecture
	HTML Interface
	Flask
	Python Libraries
	index function
	Python Script

	Python - CreateObjects
	Python Script

	Python - HelperFunction

	Technical Issues and Obstacles
	Infrahub
	Resource Manager via Template
	Web Browser API Calls
	General GraphQL File
	Calling YAML File

	Vidra Operator
	General Issues

	Project Documentation
	Results
	Conclusion
	Project Planning
	Processes
	Architectural Roles
	Meetings
	Phases
	Time Table

	Risk Management
	Risks
	Risk Countermeasures
	Risk Matrix
	Risk summary

	Planning Tools
	JIRA
	Clockify
	Overleaf

	List of Tables
	List of Figures
	Acronyms
	Glossary

	Appendix
	Quality Attribute Scenarios
	Detailed Architecture Decisions
	What is Infrahub used for?
	Do we need Profiles or Templates in Infrahub?

	Detailed HTML and CSS Code
	HTML
	CSS Styling

	Bibliography

