OST

Eastern Switzerland
University of Applied Sciences

Noél Joost & Elena Gerber

Development of an LLM-first 2D
Videogame

Using Language Models to Create Dynamic
Game Worlds

Bachelor’s Thesis

OST - Eastern Switzerland University of Applied Sciences
Campus St. Gallen

Supervision

Prof. Dr. Mitra Purandare, Benjamin Plattner

13. June 2025

Abstract

In recent years, Large Language Models (LLMs) have grown in popularity due to their ability to under-
stand and generate human-like text. Their use has expanded far beyond traditional applications, with
growing interest in interactive media and game development. This project aims to explore how LLMs
can be integrated into video games to generate dynamic content that makes gameplay more engaging,
immersive, and interactive. To demonstrate this, a 2D top-down role-playing game (RPG) was developed,
serving as both a prototype and testing platform for LLM integration. At the start of each game, an LLM
generates a map, quests, Non-Playable-Characters (NPCs) and items. During the game, NPCs interac-
tions are generated by the LLM. The NPCs respond to natural input from the player with LLM-generated
answers. This results in a unique experience for each game played. Selected testers showed positive
reactions, though issues like inconsistent quests or misplaced items. Overall, the project shows the high
potential of using LLMs to make games more flexible and replayable.

Keywords: Game Design, Artificial Intelligence, Software.

Executive Summary

Initial Situation

Traditional role-playing video games (RPGs), where players assume the role of a character in a fictional
world, often rely on static dialogues and storylines. This can make replaying the game feel repetitive and
less engaging, as the story and conversations remain the same. In contrast, tabletop RPGs thrive on the
creativity of the human game master, who continuously invents new settings and stories and allows play-
ers to interact naturally with the world. With the rise of large language models (LLMs), new opportunities
are emerging for digital games. A key strength of modern LLMs is their ability to generate human-like
text in response to natural language input. Integrating LLMs into games enables live, context-sensitive
responses to player actions and dialogue, bringing some of the freedom and spontaneity of tabletop
RPGs into video games. This project aims to develop a 2D RPG with a top-down view that combines
traditional gameplay with the creative power of LLMs. At the start of each game, an LLM generates a
unique world. During gameplay, characters respond to the player in real time, meaning no playthrough is
the same. For developers, this moves focus away from scripting fixed content to designing systems and
prompts that enable the Al to take over parts of the storytelling.

Seraphine: Greetings, wanderer. The shadows loom
large, and treason whispers through the winds. Tread

Figure 1: Interaction with an NPC

Approach / Technology

The game is developed in Unity using a 2D pixel art style and includes typical RPG elements such as story,
exploration, non- playable characters (NPC), battles, items and quests. Game content is partly generated
using LLMs and partly built from predefined assets. For example, character parts like heads, bodies and
clothes are defined in advance, and the LLM selects from these to create NPCs. Similarly, the map is
built from predefined 30x30 tiles depicting elements like forests, plains and villages, which the LLM as-
sembles into a complete world. The generation process starts with a prompt defining the map, followed
by prompts for quests, NPCs and items. NPC appearance and battle skills are generated in separate
prompts to keep outputs manageable. For simpler tasks like NPC visuals, skills and interactions, we use
OpenAl's cost- efficient GPT-4o0-mini. For tasks requiring more consistency and depth, such as map and
quest generation, we use the 03-mini model.

Mal Quest NFC Style Battle St‘ats Game Start
Prompting Generation Eene;’ahnn Generation Generation
Pipeline

NPC Interactions

Prefabs —— Map Sprites —— Object

A
[y

(2]
2
~

Figure 2: Use of LLM in the game

Result

We built a functional top-down 2D RPG with LLM-supported elements that generates new content on
each play through. Our key finding is that the quality of generated content depends heavily on the con-
text provided. Without sufficient details, quests and characters often become repetitive or inconsistent.
For example, NPCs might block quest progression, or items can appear in incorrect locations. While
these issues occasionally caused confusion, the eight people we selected to test our game generally
responded positively, appreciating the dynamic nature of the experience. A major challenge we encoun-
tered was balancing the amount and complexity of prompts with system performance. Longer or more
detailed prompts improve output coherence but increase the risk of missing details. Splitting input into
smaller prompts helps but raises processing time. A promising approach is sending multiple prompts
simultaneously for parallel processing, which could improve content accuracy and reduce wait times.
Overall, this project indicates that a thoughtful combination of Al and traditional techniques can open
exciting new possibilities for creating more dynamic and imaginative games in the future.

Spells Items Team Flee

=%
HP EENSGII00

Mana 80/80

Figure 3: Combat

Contents

Abstract i
Management Summary i
I Technical Report 1
1 Introduction 2
1.1 Problemdefinition 2
1.2 Vision . . . e e 2

1.3 Goals e 2
1.4 Basiccondition. e 4

2 Existing solutions 5
2.1 Al-Assisted dialogue and narrative systems 5
2.2 Procedural contentgeneration 5
2.3 Alasgameengine components e e 6
2.4 LLMsin commercial developmenttools 6
2.5 Limitationsandopenchallenges o 6

3 Implementation Concept 7
3.1 Knowledge gathering e 7
3.2 Requirements specification 7
3.3 Evaluation e 7
3.4 Implementation L 8
3.471 Mapgeneration e 8

3.4.2 Combatsystemoverview o i i e e e e e 10

3.4.3 NPCageneration e e 14

3.44 Questsystem e 15

345 Itemsystem e 16

4 Technology Evaluation 18

7

471 Gameengine e e e e
4717 Godot . . . e
41.2 Unreal Engine e e
41.3 RPGMaKer e
A7.4 Unity . . . e e e e
471.5 DecCision e

4.2 Datapersistencemechanism. L
4.21 Relational database (PostgreSQL)
422 JSONiles e
4.2.3 Scriptableobjects
424 SQLite. e
4.2.5 DeCision e

4.3 Largelanguagemodel
4371 OVerview e
4.3.2 OpenAlGPTmodels e
4.3.3 AnthropicClaude e
4.3.4 Mistral
43.5 MetalLLaMA . . . e
4.3.6 Model selectionsummary e
437 DecCision e e e

4.4 Additional libraries and technologies,

Outlook

Project Documentation

Requirement Specifications

6.1 Usecasediagram e

6.2 Functionalrequirements e
6.2T EPICS e e
6.2.2 User-stories

6.3 Non-functional requirements

6.4 Landing zones for non-functional requirements

Analysis and evaluation

7.1 Domainanalysis
7.2 Classcatalog. e e
7271 Character e
7.22 NPC . . e
7.2.3 SKIN . .o e

vi

25

26
26
27
27
28
31
32

7.2.4 NPCInteraction e 35

7.2.5 Hemclasses e 35
726 QueSst . . . e 35
7.27 QuestStep e e 35
7.2.8 BattleData 35
7.2.9 BattleStats e 36
7.2100 Spell . .. e 36

7.3 Traditionalapproach. 36
7.3.1 Advantages of the traditionalapproach 36
7.3.2 Disadvantages of the traditional approach 37

7.4 Video games with LLMs: A new dimension of interactivity 37
7.41 Advantages of LLMintegration, 37
7.4.2 ChallengesofusingLLMs 37

7.5 Al asthe game engine: Oasisand GameNGen 38
7.51 OasisbyDecartandEtched 38

7.6 Conclusion: A turning point in game development 38
7.7 HowandwhyweuseAlinourgame. 38
771 WhyweuseAl e 38
7.7.2 USECASES . . o i i it i e e 39
7.7.3 Whyweavoid full Alengines 39
7.7.4 Finalthought e 39

8 Design 40
8.1 Architecture e 40
8. 1.1 C4-Diagrams e e e 40

8.2 Wireframes e 41
8.21 MainMenu L e 41
8.2.2 CharacterCreation 42
8.2.3 NPClnteraction e 43
8.2.4 ItemCollection. e 43
8.2.5 Inventory e e 44
8.2.6 QuestMenu 45
8.27 TeamMenu e 45
8.2.8 Combat e 46
8.2.9 Settings. e 47

9 Implementation und Testing 48
9.1 Implementation e 48
9.2 ManuelTests e e 52
9.21 Usertesting e e 53

vii

9.2.2 Usertestingfeedback
9.3 Non-functional requirements evaluation

10 Result and future developement
10T Results o e e e
10.1.1 Al-powered game functionality
10.2 Future development e
10.2.1 Integrationof other LLMs
10.2.2 Dedicated LLM forgamecontent,
10.2.3 Al-Generatedicons e
10.2.4 Update of the OpenAl for Unity Project
10.2.5 Maplegend. e
10.2.6 Languagesettings e
10.2.7 Extended quests with multiple objectives
10.2.8 Interactivetutorial
10.2.9 Algamecontroller e
10.2.10Dynamic map behavior L
10.2.11 Regenerating quests after completion
10.2.12Expandable maponexit
10.2.13More Prefabs for environmental variety
10.2.14 Achievements for milestones
10.2.15Smarter combat Al L e
10.2.16 Al-Generated music and sound effects
10.2.177NPC behaviorand actions e

11 Quality Measures
11.1 Quality assessmenttools e
TLT Linter e e e e
11.1.2 Guidelines e e
11.1.3 Gitbranchingandmerges e
11.2 Environment e e
T1.3 CI/CD . . e e e
11.3.1 Workflow o e
1.4 Communicationtools e

12 Software documentation
12.1 Technology stack e e
12.2 Toolstack. e e
12.3 Installation e e
12.3.1 Systemrequirements

viii

60
60
60
61
61
61
61
62
62
62
62
62
62
62
62
63
63
63
63
63
63

64
64
64
64
64
65
65
65
66

12.3.2 Development environment setup

12.3.3 Building and running the game
A Glossary
List of Figures
List of Tables

Bibliography

69

71

73

74

Part |

Technical Report

Chapter 1

Introduction

1.1 Problem definition

Traditionally, most games feature static dialogues and predefined sequences that players must follow.
This makes it difficult to incorporate elements that are not deterministic. By using large language models
(LLMs), we can design a game that adapts in real time to player input, creating a unique and immersive
gameplay experience.

1.2 Vision

Our vision is to explore the potential of integrating large language models (LLMs) into video games to en-
able truly dynamic and player-driven experiences. We aim to create a game world that is not only respon-
sive but also expressive—where every player interaction feels meaningful, and every NPC can become a
believable character with its own personality and story. Through this, we strive to push the boundaries
of narrative design and interactivity, laying the groundwork for a new generation of games that blur the
line between authored content and emergent storytelling.

1.3 Goals
1. Research and Evaluation: Survey existing technologies, LLM-based game approaches, and relevant
literature.
2. Prototype Development: Build a 2D video game.
+ The game includes:
— A quest system

- A combat system

Chapter 1. Introduction

- Items
- A map on which players can move their character
- An appealing and intuitive user interface
« The game will be tested by end users.
3. LLM Integration in Gameplay:
* NPC dialogues are generated using an LLM.
+ NPC personalities are created using an LLM.
+ Safeguards are implemented so that:
- Players cannot convince NPCs to complete quests automatically or break character.
- Malicious inputs are intercepted (optional).
« NPC attributes are output in a structured format by the model.
« NPCs use predefined sprite sheets.
4. LLM-Driven Combat System:
« Abilities are generated via LLM.
+ Abilities are output in a structured format.
5. Dynamic Item Generation:
+ Items are created using an LLM.
+ Icons for the items are generated using an image generation Al.
6. Map Creation:
+ The map includes interactable objects.
+ Map layout may be generated by an LLM (optional).
+ Environmental changes (e.g., weather effects) may be generated by an LLM (optional).
7. Al Game Controller (Optional):
« The Al knows the game state.
+ Can provide hints on request.
+ Can guide the player through the world.

+ Can assist the player in combat.

Chapter 1. Introduction 4

1.4 Basic condition

This project is a bachelor thesis with a total workload of 720 hours. The time is divided equally between
two team members, corresponding to 12 ECTS credits per person.

Chapter 2

Existing solutions

This chapter provides a brief overview of existing technologies and approaches that integrate Large
Language Models (LLMs) or similar Al techniques into video game development.

2.1 Al-Assisted dialogue and narrative systems

Several studios and research projects have started integrating LLMs to dynamically generate dialogues
and narratives. One prominent example is Latitude’s Al Dungeon, which uses OpenAl's GPT models to
create fully open-ended storytelling experiences based on player input [1]. The game demonstrates how
LLMs can respond flexibly to natural language input, though it also highlights challenges related to con-
tent control and coherence.

Similarly, Hidden Door, a startup focused on narrative Al, aims to provide safe, moderated interactive
storytelling using fine-tuned LLMs [2]. Their platform allows players to co-create stories with Al-driven
characters while maintaining narrative consistency and appropriateness.

2.2 Procedural content generation

Beyond dialogue, LLMs and generative Al are also being explored for broader content creation. OpenAl’s
GPT-4, for instance, has been tested for quest generation, item descriptions, and character backstories
in both hobbyist and experimental academic projects. Research by [3] explores how generative models
can enhance procedural content generation (PCG) by producing design elements that adapt to player
behavior and style.

Chapter 2. Existing solutions 6

2.3 Al as game engine components

Cutting-edge prototypes such as Oasis by Decart and GameNGen by Google Research push the bound-
aries further by using Al to simulate entire game states. These systems replace traditional game logic
with neural networks trained to predict visual and logical outcomes frame by frame. While still experimen-
tal and performance-intensive, they represent an emerging paradigm where Al acts not just as content
generator but as the core simulation engine [4, 5].

2.4 LLMs in commercial development tools

)

Large game engines like Unity and Unreal are also beginning to integrate Al-driven tools. Unity’s “Muse”
and “Sentis” toolkits provide generative capabilities and neural inference directly within the editor, al-
lowing developers to prototype or fine-tune dialogue and environment features more efficiently [6]. While
these are not full LLM integrations, they indicate a trend toward embedding intelligent tools into standard
development workflows.

2.5 Limitations and open challenges

Despite promising developments, the use of LLMs in games still faces several key challenges:

+ Control and safety: Ensuring generated content adheres to tone, lore, and ethical standards remains
a major concern.

+ Performance: LLM inference can be computationally expensive, especially in real-time settings.
+ Coherence: Maintaining long-term consistency in narrative and behavior is non-trivial.

Addressing these issues is critical for the widespread adoption of LLMs in mainstream game develop-
ment.

Chapter 3

Implementation Concept

This chapter describes how the implementation was approached and which steps were taken throughout
the development of the game.

3.1 Knowledge gathering

At the beginning of the project, it was important to build a solid knowledge base. We analyzed existing
solutions, technologies, and tools relevant for game development, with a particular focus on 2D RPGs.

3.2 Requirements specification

Before evaluating technologies or starting implementation, we defined both functional and non-functional
requirements. Functional requirements included core features such as dialogue systems, quest system,
combat system, and data persistence. Non-functional requirements focused on performance, and ease
of development.

3.3 Evaluation

Based on the defined requirements, various game engines, storage mechanisms, and LLM APIs were
evaluated. We focused on tools that matched our needs both for the current prototype and potential
future expansions. Unity was selected as the main engine due to its 2D capabilities and support for C#,
which simplifies HTTP API calls and tool integration.

Chapter 3. Implementation Concept 8

3.4 Implementation

3.4.1 Map generation

In the context of our game, it is imperative that we devise a world map that facilitates player exploration.
It is imperative that this map remains dynamic; however, it must exhibit consistency across the duration
of a single game session. This implies that the map should not be subject to alteration during game play.
To this end, a Large Language Model (LLM) is employed for procedural content generation.

TileMap structure

A TileMap constitutes a widely used method for map generation. It functions by placing tiles on a grid,
where each tile constitutes a predetermined graphic or sprite. The grid can consist of multiple layers,
allowing for visual and interactive complexity.

In the present project, the following layers are employed:
+ Ground - The base terrain layer.
+ Collision — Defines which tiles are walkable and which are blocked.
+ GroundTransition — Enables the creation of smooth transitions between different terrain types.
- Decoration — Visual additions such as trees, rocks, or flowers.

+ DecorationWalkBehind — Decorative elements that the player can walk behind, such as large trees
or cliffs.

The combination of these layers results in the creation of a rich, multi-dimensional map that evokes a
sense of vitality and dynamism.

Initial approach: Tile-by-tile generation

The initial approach adopted was to generate the map tile by tile. To this end, a 20x20x5 array was
constructed and value IDs were assigned to each tile (per layer). This array, along with a prompt, was then
sent to the LLM, which returned modified values. These values were then interpreted by an algorithm and
applied back to the map grid.

For this process, we employed GPT-4-mini, and while the outcomes were satisfactory, we encountered
multiple issues:

+ The 20x20 tiles were traversed at an accelerated rate, necessitating frequent additional API calls.
« Tile transitions (e.g., from grass to sand) were often visually inconsistent.
+ Frequent API calls lead to higher costs, which directly contradicts our non-functional requirements.

+ Visible loading times between generated tiles were not acceptable for a smooth player experience.

Chapter 3. Implementation Concept 9

Consequently, a decision was taken to revise the approach.

Improved approach: Generation via PreFabs

The approach was transitioned to a higher-level generation system utilising PreFabs. These are larger,
pre-designed tile chunks (e.g., 10x10 tiles) that are more visually coherent and reduce complexity.

The allocation of values to these prefabs is then facilitated, with the end goal of providing these values
to the LLM. Rather than generating individual tiles, the LLM now operates on a 20x20 array of prefab
values, which are then placed on the map using our placement algorithm.

Advantages:

+ The capacity for significantly larger worlds: Utilising 20x20 x 30x30 prefabs enables the generation
of maps that are, in effect, 900 times larger.

« Smoother transitions between areas.

+ Fewer API calls, reducing latency and cost.

Prefab creation

The following three options were considered for prefab creation:
1. Predefined manually
2. Generated by LLM ahead of time
3. Generated at game start

Runtime generation was ruled out due to the extended loading times (the generation of 30+ prefabs
requires numerous API calls).

Additionally, we dismissed the use of LLM-generated prefabs in advance due to their susceptibility to the
same transition issues and inconsistencies as the tile-by-tile method.

Consequently, we currently utilize manually created prefabs, which provide us with complete control over:
+ Layout
+ Visual quality
+ Logical consistency

This method offers the best combination of control, quality, and performance.

interactables

Generated maps include interactable elements such as:

Chapter 3. Implementation Concept 10

* NPCs
* Resources
* Items

Resources are placed randomly and can be collected by the player (see section: Items). NPCs and quest-
related items are placed according to quest logic (see section: Quests).
3.4.2 Combat system overview

The combat system is designed as an Active Time Battle (ATB) System. Each character has a set of core
stats that influence turn speed, damage, and defense. The player selects an attack and then chooses a
target. Enemies behave similarly and follow the same rules, taking actions when their turn is ready.

Objective
The goal is to strategically use your abilities and manage turns to reduce all enemy health to zero and

win the battle.

Example: Pokémon In Pokémon, the objective is to faint all opposing Pokémon. Each trainer can hold
up to six Pokémon, and the battle continues until one side has no remaining Pokémon.

Our implementation Our system shares a similar objective but supports simultaneous turn progression
through the ATB system, increasing urgency and requiring real-time strategy. Instead of a Team of six
Pokémon, our system uses up to four characters.

Al-Generated content

Both attacks and character stats are generated by the Al. These stats can be modified with items, which
can be collected. This allows for varied combat encounters and unique combinations of abilities for both
players and enemies.

Example: Pokémon In Pokémon, stats and moves are manually designed and balanced. Pokémon can
level up and learn new moves, but their combinations are fixed.

Our implementation Stats and attacks are procedurally generated using LLMs, which provides unique
encounters and dynamically balanced challenges.
Character stats overview

Each character in the game has a detailed set of stats that define their performance in combat, resource
management, and responsiveness.

Chapter 3. Implementation Concept 1

Example: Pokémon HP Attack, Defense, Special Attack, Special Defense, Speed.

Our implementation Health & Mana
+ maxHealth (Int) — The maximum amount of health the character can have
+ currentHealth (Int) — The current health of the character
+ maxMana (Int) - The maximum amount of mana
+ currentMana (Int) — The current mana available
Initiative & Precision
+ Initiative (Int) — Determines how quickly the character gains turns
+ Precision (Int) — Represents the chance of landing a critical hit
Element stats
+ PhysicalStats — Physical attacks
+ FireStats — Fire attacks
+ WaterStats — Water attacks
+ EarthStats - Earth attacks
+ AirStats — Air attacks
+ PoisonStats — Poison attacks
- DefenseStats — Defense against physical attacks
+ MagicDefenseStats — Defense against magic attacks
Stats type
- BaseAttackStat (Int) — Strength for the corresponding Element

« AttackStatBuff (Int) — Multiplier for the Strength

Turn order system
The turn order determines which character acts when. The dynamic system allows fast characters to act

more often.

Example: Pokémon Turn order is based on Speed stat. Higher Speed Pokémon move first. Ties are
broken randomly.

Chapter 3. Implementation Concept 12
Our implementation Turn order formula
Acti
Time — ctionCost (3.1)

Initiative x (1 + w) + TurnCount

Each character’s time is calculated and placed in a sorted list for action order.

Modifiers explained

« Stat Modifier: Each stage = +0.5 (e.g., +2 stages = +1.0)

If speed is altered mid-combat, the character’s turn is recalculated.

Example setup and turn calculation

Name | Initiative | Modifier | ActionCost
NPC 1 100 0 1000
NPC 2 50 0 1000
NPC 3 85 4 1000

Table 3.1: Turn calculation example

Name | Turn1 | Turn2 | Turn3 | Turn 4
NPC 1 10 20 30 40
NPC 2 20 40 60 80
NPC3 | 3.92 7.84 11.76 | 15.68

Table 3.2: Turn calculation example

NPC 3 has the highest effective initiative due to a +4 stage modifier, resulting in much faster actions. With
a calculated time of only ~ 3.92 units for their first turn, NPC 3 acts significantly more frequently than NPC
1and NPC 2. NPC 1 and NPC 2, with lower initiatives and no modifiers, follow at regular intervals of 10
and 20 time units, respectively. The characters are placed in a priority queue sorted by their accumulated
time, and the one with the lowest value acts next.

This system ensures dynamic and stat-dependent action order that updates continuously during combat.

Damage calculation

Example: Pokémon Damage is calculated based on level, attack, defense, and type effectiveness using

the following formula:

Damage = (

5

2 x Level)

Attack

X —
Defense

x BasePower x Modifier

(3.2)

+ Modifier includes type effectiveness, STAB (Same-Type Attack Bonus), critical hits, and a random

factor.

Chapter 3. Implementation Concept

13

Our implementation

AttackStat

Damage = BasePower x <DefemderStzﬂ

> x CritMultiplier x Variance

« CritMultiplier: 1.5 if critical, else 1.0
« Variance: Random between 0.85 and 1.0

With buffs/debuffs:

AttackStat x StateRaisepitacker
DefenderStat x StateRaisepefender

Damage = [PowerWithBuff + FlatRaise x (

x CritMultiplier x Variance] — FlatReduction

Attack definition
+ Name (String) — Display Name
+ Description (String) — Description of the attack
+ Power (Int) — Base damage
+ ManaCost (Int) — Resource cost
+ Element (Enum) - Air, Fire, Earth, Water, Poison, Physical
+ Accuracy (Float) — Between 0 and 1, modifies crit chance
+ AdditionalEffects (List) — Optional effects

Each character has 4 active attacks. New attacks can be learned with items.

Buffs and debuffs
Buffs and debuffs share the same structure, differing only in effect:
+ Name (String) — Effect name
* Icon (Image) - Display icon
+ Description (String) — Description of effect
« Strength (Int) — Effect strength
* Duration (Int) — Duration in turns
« isBuff (Bool) — True if Buff, false if Debuff
- BeforeAttackEffect — Trigger before attacking

+ AfterAttackEffect — Trigger after attacking

(3.3)

(3.4)

Chapter 3. Implementation Concept 14

+ BeforeTurnEffect — At the start of turn

- AfterTurnEffect — At the end of turn

Calculation order
1. Select Attack
2. Apply BeforeAttackEffect
3. Calculate Crit:
isCrit = Random < (Precisionagacker X ACCUraCyastack) (3.5
4. Modify Stats (Buffs/Debuffs)
effectiveAttackStat = BaseAttackStataacker X BUffattacker (3.6)

effectiveDefenseStat = BaseDefenseStatpefender X BUffpefender (3.7)

5. Calculate Raw Damage

6. Apply Damage to Target

7. Trigger Additional Effects

8. Apply AfterAttackEffect

9. Apply BeforeTurnEffect and AfterTurnEffect on turn end

10. Decrease Buff/Debuff durations

3.4.3 NPC generation

NPCs are procedurally generated in three main stages: personality, appearance, and battle data. This
multi-step generation ensures depth and variety for each character.

Personality generation

Each NPC is assigned a background story and a unique personality profile. An important attribute is the
Personality Affection value, which represents how much the NPC likes the player. This value can change
dynamically:

« Starts at a random base level.
* Increases through completed quests and positive interactions.

+ If the value exceeds 50, the NPC may be recruited into the player’s team.

Chapter 3. Implementation Concept 15

Personality also affects dialogue and quest logic, enabling unique storylines and emotional attachment.

Appearance generation

NPCs are visually composed using predefined presets, selected according to a generated profile. The
following modular categories define their look:

+ Gender

+ SkinColor

+ HairStyle, HairColor

+ ShirtType, ShirtColor

+ PantsType, PantsColor
+ SocksType, SocksColor
+ ShoesType, ShoesColor

This system allows for consistent but varied character appearances and supports layering and equip-
ment changes.

Battle data generation

The last step in NPC creation is defining their combat parameters. These include:
+ Base stats (e.g., Health, Mana, ElementStats)
+ Four active attacks from the available move pool
Additionally, each NPC receives a First Name and Last Name, which are randomly generated.

Together, these layers ensure that every NPC is context-aware, functionally integrated into the world, and
provides dynamic interaction potential.

3.4.4 Quest system

Quests provide structure, motivation, and narrative progression in the game world. Each quest is com-
posed of essential metadata and a sequence of steps that define the required actions for completion.
Quest metadata

Each quest contains the following attributes:
+ QuestName (String) — The title of the quest

+ QuestDescription (String) — A brief narrative or instruction describing the objective

Chapter 3. Implementation Concept 16

+ QuestGiver (NPC) — The NPC that assigns the quest
- IsStarted (Bool) — Indicates whether the player has accepted the quest
+ IsCompleted (Bool) — Indicates whether the player has completed all quest steps

+ QuestType (Enum) - Specifies the quest category (e.g., Main, Side, Faction, Timed)

Quest steps

Each quest consists of one or more ordered steps. A quest step represents a specific task that the player
must complete. The steps are defined as follows:

+ Questld (Reference) — The identifier of the parent quest

+ QuestStepNumber (Int) — The sequential order of the step

*+ QuestStepName (String) — A short name or title of the task

+ QuestStepDescription (String) — Detailed instruction or narrative for the step
+ NPCId (Optional) — ID of the NPC involved in the step (e.g., talk or fight target)
* Itemld (Optional) - ID of the required or resulting item

+ Action (Enum) - Type of interaction required: Battle, Item, or Talk

« Completed (Bool) — Marks whether this step has been fulfilled

Quests may branch, repeat, or trigger other quests. This flexible structure supports both linear and dy-
namic storytelling. These Quests are generated at the start of the game.

3.4.5 Item system

Items are used to support gameplay across exploration, combat, and character development. Items are
categorized into three main types with distinct usage contexts and effects.

Item structure
Each item includes the following core attributes:
+ Id (Int) — Unique identifier for the item
« Name (String) — Name of the item
+ Description (String) — Descriptive text explaining the item’s function
+ Category (Enum) — Defines item type: Questitem, Battleltem, or StatEnhancer

+ IconPath (String) — File path or reference to the item'’s icon

Chapter 3. Implementation Concept 17

« EffectJson (JSON) — Contains effect details (only applicable to Battleltems and StatEnhancers)

Item categories

Quest items Quest items are used exclusively for quest progression. They are placed in the world and
collected through interactions. These items do not affect stats or combat but serve as triggers in quest
steps.

Battle items Battle items can be used during combat and affect the current state of characters. Com-
mon effects include:

+ Healing health or mana
+ Raising stats temporarily (e.g., defense boost for 3 turns)

The actual effect logic is defined within the EffectJson field.

Stat enhancers Stat enhancers are applied outside of combat and alter the character’s base stats per-
manently. They can be used to strengthen a character’s attack, defense, or other attributes—or even apply
penalties. These effects are also defined in the Ef fectJson.

This structured item system enables dynamic inventory management and strategic use of resources
during and outside of battle.

Al-Generation The LLM is instructed to generate stronger and weaker items. Items can also have neg-
ative effects, but have stronger positive effects in return.

Chapter 4

Technology Evaluation

4.1 Game engine

4.1.1 Godot
Advantages:

+ Native 2D Support: The engine is primarily designed for 2D games, offering excellent performance
Disadvantages:

+ Uncommon Language: GDScript is not widely used outside of Godot

« Smaller Community: Fewer assets, tutorials, and forum discussions

4.1.2 Unreal Engine
Advantages:

+ Very Powerful: Suitable for high-end projects with advanced built-in tools
Disadvantages:

+ Focus on 3D: 2D projects are possible but not the engine’s main strength.

4.1.3 RPG Maker

Advantages:

+ Tailored for 2D RPGs: Comes with built-in systems (combat, dialogues, inventory), enabling a quick
start without programming.

Disadvantages:

+ Limited Flexibility: Custom systems or external API integration are difficult or not feasible.

18

Chapter 4. Technology Evaluation 19

4.1.4 Unity

Advantages:
+ Excellent 2D Support: Built-in support for sprites, tilemaps, animations, and Ul tools.
+ Popular Language (C#): Modern, object-oriented, and widely adopted

+ Large community and asset store: Extensive resources, ready-to-use tools, and support available
online.

Disadvantages:

+ Possibly overkill for simple games: Brings many 3D features that aren’t needed for 2D projects

4.1.5 Decision

After evaluating several engines, we decided Unity was the best fit for our project. Using C# makes it
easy to connect with LLM services via HTTP API calls, which lets us create dynamic dialogues and game
content. Unity’s powerful 2D tools match what we need for the game’s design. Plus, the large and active
community is a huge bonus, especially for developers like us who are new to game development. Having
access to tutorials, forums, and shared knowledge really helps smooth out the learning curve.

4.2 Data persistence mechanism

4.2.1 Relational database (PostgreSQL)
Advantages:

+ Powerful querying: Supports complex queries and maintains data integrity
Disadvantages:

* Requires server: Needs server setup and ongoing maintenance

+ Network overhead: Adds latency unsuitable for single-player games

« Complexity: More complicated than necessary for local game saves

4.2.2 JSON files

Advantages:
+ Simple format: Human-readable and easy to implement
+ Easy debugging: Straightforward to inspect and fix data issues.

Disadvantages:

Chapter 4. Technology Evaluation 20

+ Limited querying: No support for complex data relationships

4.2.3 Scriptable objects

Advantages:
+ Excellent 2D Support: Unity integration: Designed for easy use inside the Unity editor
* No dependencies: Does not require extra libraries or setups

Disadvantages:
* Not for runtime: Unsuitable for saving dynamic or player data

+ Limited scalability: Not good for complex or large data sets

4.2.4 SQLite

Advantages:
+ Lightweight: Embedded database stored in a single local file
« Efficient queries: Supports complex queries and relational data
+ No server needed: Runs fully locally on the user’s device
Disadvantages:

+ Integration required: Needs adding a database library to the project

4.2.5 Decision

After evaluating all options, we decided to use SQLite for our game. It offers the perfect balance be-
tween structure and simplicity. Unlike JSON or Scriptable Objects, SQLite supports complex queries and
relational data without requiring an external server like PostgreSQL.

4.3 Large language model

4.3.1 Overview

Large language models (LLMs) play a central role in this project by generating dynamic game content
such as maps, quests, NPCs, items, and dialogue. The goal was to reduce static scripting and instead cre-
ate a system that produces rich, variable content for each playthrough. To accomplish this, we evaluated
and used different LLMs accessible via APlIs.

Chapter 4. Technology Evaluation 21

4.3.2 OpenAl GPT models

Advantages:
+ High-quality outputs: Produces coherent, creative, and context-aware text.
+ Easy integration: Well-documented REST APIs with JSON-based responses.
+ Widely adopted: Large community, tutorials, and tooling support.
Disadvantages:
+ Usage costs: Frequent API calls can lead to high running costs.
+ Rate limits: Depending on subscription, throughput may be restricted.

+ Cloud-only: No local/offline use, which limits portability.

4.3.3 Anthropic Claude

Advantages:
+ Long context window: Ideal for generating or interpreting complex multi-part prompts.
« Safer outputs: Focus on avoiding offensive or harmful content.
Disadvantages:
+ Limited availability: Fewer API integrations and regional restrictions.
+ Less control: Slightly harder to steer output formatting compared to GPT.

Claude is well-suited for quests with multiple conditions or state changes, but integration in Unity is more
complex due to limited C# tooling.

4.3.4 Mistral

Advantages:

+ Open weights available: Can be self-hosted for offline use.

+ Fast and efficient: Optimized for inference and cost-efficient deployment.
Disadvantages:

+ No official API: Requires third-party hosting or self-deployment.

+ Weaker coherence: Slightly lower quality for longer or narrative-heavy prompts.

Mistral is a strong candidate for local generation or embedded use in the future (e.g., offline game ver-
sions).

Chapter 4. Technology Evaluation 22

4.3.5 MetalLLaMA

Advantages:
+ Open-source model family: Actively developed and available in many sizes.
+ Self-hosting possible: No reliance on commercial APls.
Disadvantages:
+ High hardware requirements: Running models locally needs GPUs and setup.
+ Less optimized for conversation: Requires careful fine-tuning for specific tasks.

LLaMA models could be used for future expansion if offline functionality or full Al control is required.

4.3.6 Model selection summary

+ OpenAl GPT: Best for fast prototyping, reliable outputs, and ease of use.
+ Claude: Useful for long and structured responses, with safer default behavior.
+ Mistral: Efficient and cost-effective for simpler tasks, ideal for self-hosting.

+ LLaMA: Good long-term option for fully local or customized setups.

4.3.7 Decision

For this project, OpenAl’s GPT models provided the best trade-off between quality, integration simplicity,
and performance. However, support for other LLMs is planned for the future using abstraction layers (e.g.,
via LLM Hub) to enable flexible backends, reduce costs, and allow offline use in later game versions. We
used:

+ GPT-40-mini for lightweight tasks (e.g., character names).

+ 03-mini for complex structures (e.g., maps, quest chains).

4.4 Additional libraries and technologies

SQLite4Unity3d

To integrate SQLite into Unity, we chose to use SQLite4Unity3d ’, a lightweight and Unity-friendly library
that simplifies working with SQLite databases. It allows us to map C# classes to database tables and
perform common operations like saving and loading player data with minimal overhead. While other
options exist, such as custom native plugins or raw SQLite wrappers, SQLite4Unity3d offers the best

"https://github.com/robertohuertasm/SQLite4Unity3d

https://github.com/robertohuertasm/SQLite4Unity3d

Chapter 4. Technology Evaluation 23

balance of ease of use, cross-platform support, and smooth integration with Unity’'s C# environment,
making it a practical choice for our project.

Chapter 5

Outlook

If more time had been available, some known bugs could have been fixed. Additionally, we identified
further features during development and based on user feedback, which could be implemented in the
future. Chapter 10 provides a detailed overview of these planned features.

24

Part Il

Project Documentation

25

Chapter 6

Requirement Specifications

6.1 Use case diagram

A Use Case Diagram was created to serve as the basis for the user stories.

26

Chapter 6. Requirement Specifications 27

Game Data Generation System

Customize own character,

Change the map-
generation prompt

Use custom prompt

Maove on a map Use Generated Data @‘1

: : ’@ - - @‘

Player Use Generated ltems
I
i
Pick up items Use G ted Data Generate items - |
H
R . |
H

LLM

Give items to NPC

“Use G fed Data----------------ssssTessseefesesss e Generate NPCs

elect up to 4 characters'

to join the team /| Use Generated Data™ ™~~~ "~~~

Use:learn ! /—\
H |
| e o W‘

@‘

Fight against NPC

Interact with NPC

Continue game after
restart

Figure 6.1: Use-Case-Diagram for the Al-Game

6.2 Functional requirements

This chapter briefly explains the epics and user stories, which serve as functional requirements.

6.2.1 Epics

This section describes the epics.

Data Persistency

Key AlG-1

Description This epic ensures game progress and player data are saved
and loaded reliably. Players can also delete all saved data
to reset the game and start fresh.

Status Done

Chapter 6. Requirement Specifications

28

Data Generation

Key

AlG-2

Descirption

This epic involves data generation using a large language
model (LLM). Each time the game is reset, new content is
generated dynamically. This includes creating new maps,
quests, items, battle skills, NPC appearances, and natu-
ral NPC responses. Players can also customize the map-
generation prompt to influence the generated content. The
goal is to provide a varied and highly replayable game world.

Status

Done

Gameplay

Key

AlG-3

Description

This epic includes all core mechanics through which the
player interacts with the game. It covers free player move-
ment, team formation, combat against NPCs, item collec-
tion and management, and character customization before
starting the game.

Status

Done

6.2.2 User-stories

This section describes the user

stories.

Save Game Data

Key

AlG-4

Beschreibung

As a player, | want my game progress to be saved so | can
continue from where | left off.

Status

Done

Delete Game Data

Key

AIG-5

Beschreibung

As a user, | want to be able to reset the game and delete all
game data.

Status

Done

Chapter 6.

Requirement Specifications

Map Generation Prompt

Key AIG-5
Description As a player, | want new to modify the map-generation
prompt.
Status Done
Map Generation
Schlissel AlG-6
Description As a player, | want a new map to be generated each time |
reset the game.
Status Done
Quest Generation
Key AlG-7
Description As a player, | want new quests to be generated each time |
reset the game.
Status Done
NPC Style Generation
Key AlG-8
Description As a player, | want NPCs to have varied appearances that
are different each time | reset the game.
Status Done
Item Generation
Key FWK-9
Description As a player, | want new items to be generated each time |
reset the game.
Status Done
Battle Skills Generation
Key AIG-10
Description As a player, | want each character to have generated skills

every time | reset the game.

Status

Done

Chapter 6.

Requirement Specifications

Generated NPC Responses

Key AIG-11
Description As a player, | want NPCs to respond dynamically to my ac-
tions so that interactions feel natural.
Status Done
Player Movement
Key AlG-12
Description As a player, | want to move my character freely in the game
world
Status Done
Team
Key AlIG-13
Description As a player, | want to choose up to four characters to create
a team, so that | can use them in combat.
Status Done
Combat
Key AlG-14
Description As a player, | want to fight against NPCs
Status Done
Items
Key AlIG-15
Description As a player, | want to collect items, see what items | col-
lected and give them to NPCs
Status Done
Character Creation
Key AlG-16
Description As a player, | want to customize my character’s appearance

before the game starts

Status

Done

Chapter 6. Requirement Specifications

31

6.3 Non-functional requirements

This chapter defines the non-functional requirements.

No. | Requirement Priority
General

NFR- | The map must load without visible loading times. Must
01

NFR- | The Al must be fair and challenging without being Must
02 | frustrating.

NFR- | The cost for the Ai should not exceed 0.1 CHF per Must
03 | apicall

Performance

NFR- | Loading times after generation must not exceed 5 Should
04 | seconds.

NFR- | Loading times for game generation must not Should
05 | exceed 30 seconds.

NFR- | Al decisions must be made within 3 seconds Must
06

NFR- | The frame rate (FPS) must remain stable above 30 Must
07 | FPS.

Security

NFR- | Player and game data must be stored securely. Must
08

NFR- | Anti-cheat mechanisms must prevent the Must
09 | bypassing of NPC personalities.

NFR- | The Al must not collect or store players’ personal Must
10 | data.

NFR- | The Al must not be used for other purposes. Must
1

Reliability

NFR- | The game must provide a readable error message Must

12 | in case of failure.
Usability

NFR- | The user interface must be intuitive. Must
13

NFR- | The controls and interaction with the game world Must
14 | must be intuitive.

Chapter 6. Requirement Specifications 32

No. | Requirement Priority
NFR- | Tutorials must clearly explain the game to the Should
15 | player.

Maintainability
NFR- | The Al should be modularly extendable or Should
16 | adjustable without restarting the game state.

NFR- | Logs and analytics must be accessible to Must

17 | developers for quick error resolution.

Table 6.1: Non-functional requirements of the game system

6.4 Landing zones for non-functional requirements
To ensure a structured approach to meeting the non-functional requirements, we define landing zones
for each category. These zones include:

+ Minimum (Acceptable) — The baseline level that must be met.

+ Target (Desired) — The expected level of performance.

+ Best Case (Optimal) — The ideal performance goal.

No. | Requirement Minimum Target Best Case
General

NFR- | The map must load without visible 2 sec 1sec Instant
01 | loading times.

NFR- | The Al must be fair and challenging Subjective Balanced Dynamically
02 | without being frustrating. testing across user adaptive Al

feedback

NFR- | The cost for the Al should not exceed 0.1 0.1 CHF 0.05 CHF 0.01 CHF

03 | CHF per API call.
Performance

NFR- | Loading times after generation must not 5 sec 3 sec 1sec
04 | exceed 5 seconds.

NFR- | Loading times for game generation must 30 sec 20 sec 10 sec
05 | not exceed 30 seconds.

NFR- | Al decisions must be made within 3 3 sec 1sec 500 ms
06 | seconds.

NFR- | The frame rate (FPS) must remain stable 30 FPS 60 FPS 120 FPS

07 above 30 FPS.

Chapter 6. Requirement Specifications 33
No. | Requirement Minimum Target Best Case
Security
NFR- | Player and game data must be stored Encrypted at Encrypted in Zero-trust
08 | securely. rest transit and at architecture
rest
NFR- | Anti-cheat mechanisms must prevent the Basic Advanced Al-driven
09 | bypassing of NPC personalities. detection detection adaptive
anti-cheat
NFR- | The Al must not be used for other None Policy Al governance
1 purposes. enforcement framework
Reliability
NFR- | The game must provide a readable error Generic error Specific Specific
12 | message in case of failure. messages user-friendly user-friendly
error handling | error handling
Usability
NFR- | The user interface must be intuitive. User Tests Meets Adaptive Ul
13 accessibility based on user
standards behavior
NFR- | The controls and interaction with the User Tests Meets industry Fully
14 | game world must be intuitive. best practices customizable
controls
NFR- | Tutorials must clearly explain the game Static guides Interactive Al-driven
15 | tothe player. tutorials tutorial
Maintainability
NFR- | Logs and analytics must be accessible to | Basic logging | Structured logs | Structured logs
17 | developers for quick error resolution. with filtering with filtering

Table 6.2: Non-functional landing zone

Chapter 7

Analysis and evaluation

7.1

Domain analysis

Here is the Domain Analysis.

Item

+id: int

+ name: string

+ description: string

+ category: ltemCategory
+ category: string

+icon: string

+ effects: string

Quest

+id: int
+ name: string
+ description: string

+ started: bool

+ completedl: bool

+ story: string
+ personality: string

+ affection: int

l

0.1

I
1

1.*

NPC —

+] NFClinteraction

Spell

+id: int
+ playerinput: string
+ AlResponse: string

QuestStep

+id: int

+ name: string

+ description: string
+ number; int

+ action: string

+ completed: bool

Skin

Character

+id: int

+ gender: siring
+ skin_color: string 1
+ hair_style: string

+ hair_color: string

PR

+ shirt_type: string

+id: int

+ firstname: string
+ lastname: string
+ positionX: float
+ positionY’: float

+ customized: bool

+ shirt_color: sfring

Worldltiem

+ pants_type: string

+id: int

+ position): float

+ position: float

+ pants_color: string
+ socks_type: string

+ socks_color: string

i

Inventoryltem

+ shoes_type: string

+ shoes_color: string

+id: int

+ quantity: int

Figure 7.1: Domain Analysis

34

+id: int

+name: string

+ description: string

+ base_element: int

+ base_damage: int

+ base_mana_cost: int

+ base_accuracy. int

BattleData

+ id: int
+ max_hp: int
+ max_mana: int

+ initiative: int

+ precision: int

-

H
]

BattleStats

+id: int
+ element: int

+ base_stat: int

Chapter 7. Analysis and evaluation 35

7.2 Class catalog

7.2.1 Character

The Character class is used for playable characters and serves as a base class for NPCs.

7.2.2 NPC

The NPC class represents a non-player character in the game.

7.2.3 Skin

The Skin class defines the appearance of a character or NPC. It specifies which sprites will be used to
visually represent them.

7.2.4 NPClinteraction

The NPCInteraction class defines an interaction between the player and an NPC. It holds the player’s
input (playerlnput) and the Al's response (AIResponse).

7.2.5 Item classes

The Itemclass is the base class representing any game item. Wor 1dI tem inherits from Item and repre-

sents items that exist in the game world at specific positions (positionX, positionY) onthe map. InventoryItem
also inherits from Item but represents items that have been collected by the player and stored in their
inventory, including an additional quantity attribute.

7.2.6 Quest

The Quest class represents a mission in the game. The goal of the game is to complete these quests.

7.2.7 QuestStep

The QuestStep class describes a single step within a Quest. A QuestStep always represents exactly
one specific action: either talking to an NPC, collecting an item, giving an item to an NPC, or defeating
an NPC.

7.2.8 BattleData

The BattleData class describes all relevant information that is required and exchanged during a battle.
These include, for example, health points (HP), attack power, defense, initiative, and magic resistance.
The class serves as the central data structure for the sequence and logic of the battle.

Chapter 7. Analysis and evaluation 36

7.2.9 BattleStats

The BattleStats class represents the basic values of a unit. Each entry describes an element (e.g.,
fire, water, etc.) and the corresponding base stat, i.e., the attribute value of the unit for this element. A unit
can have several such status entries, which determine its strengths and weaknesses against different
types of spells.

7.2.10 Spell

The Spell class describes a spell that a unit can cast in combat. A spell has a unique id, a name, and a
description that explains the spell’'s effect or function. The spell is assigned to a specific base element
and causes base damage by default. In addition, it costs a certain amount of mana (base mana cost)
and has a base accuracy, which indicates the probability of the spell applying critical damage. Each spell
can be used by multiple units.

7.3 Traditional approach
In traditional game development, much of the content, such as dialogue, explanations, hints, and back-
ground information, is written and programmed manually. This includes:
+ Conversations with characters
+ Help texts
+ Lore explanations
+ Reactions to player behaviour
These elements are typically static and predefined, with fixed structures and limited possibilities.

Even in sandbox games like Hitman 3, where players have significant freedom, responses are still tied
to predefined triggers and scripts. While the illusion of freedom is created, the underlying logic remains
rule-based.

7.3.1 Advantages of the traditional approach

+ High level of control over content: Developers define every line of dialogue and behaviour.
+ Consistent quality: Manual creation ensures coherent tone, style, and immersion.
+ Lower risk of errors: All scenarios are predefined, reducing surprises.

+ Performance: Static systems are more resource-efficient.

Chapter 7. Analysis and evaluation 37

7.3.2 Disadvantages of the traditional approach
+ High manual effort: Writing, testing, translating, and maintaining content is time-consuming.
+ Limited flexibility: Creative player input is often ignored.
+ Low dynamism: Content becomes predictable on repeated playthroughs.

+ Scalability issues: Manual scripting in vast open worlds becomes infeasible.

7.4 Video games with LLMs: A new dimension of interactivity

Large Language Models (LLMs) bring new possibilities to game design:
+ Natural language interaction with characters
+ Dynamic quest generation
+ Believable, context-aware dialogue
+ Adaptive world responses

LLMs enable richer interactions and greater immersion by replacing static systems with dynamic, Al-
driven content generation.

7.4.1 Advantages of LLM integration

+ Natural communication: Players express themselves freely and receive relevant responses.
+ Believable worlds: NPCs adapt based on player decisions.

+ Replayability: Content can vary on each playthrough.

+ Reduced workload: Routine tasks like filler dialogue generation are automated.

+ Scalability: Open worlds can be populated without manual scripting.

7.4.2 Challenges of using LLMs

+ Unpredictability: Responses can be off-topic or inappropriate.

+ Consistency issues: Maintaining internal logic and tone is difficult.
+ Performance demands: Large models require significant resources.
« Ethical concerns: Preventing offensive or biased output is crucial.

+ Lack of structure: Generated content is hard to integrate into fixed mechanics.

Chapter 7. Analysis and evaluation 38

7.5 Al as the game engine: Oasis and GameNGen

Traditional engines like Unity rely on scripted logic and handcrafted assets. In contrast, Al-driven engines
generate content in real time using neural networks.

7.5.1 Oasis by Decart and Etched

+ Open-world game without a traditional engine
+ Trained on Minecraft gameplay to predict and render frames
+ Features: Real-time generation, image-based world creation

+ Limitations: Stability and performance issues

GameNGen by Google Research
+ Simulates Doom using a diffusion model
* Predicts each frame from player input
+ Features: Neural simulation, real-time performance

+ Limitations: Narrow scope, potential inconsistencies

7.6 Conclusion: A turning point in game development
LLMs and neural simulation engines mark a paradigm shift. While traditional development ensures con-
trol and stability, Al allows for more dynamic, reactive, and immersive experiences.

Players gain agency, while developers shift to curating Al-driven systems. Despite current limitations,
the potential for transformation is evident.

7.7 How and why we use Al in our game

We use Al to support content generation, not as a full game engine. Traditional systems still handle
rendering, input, animation, and core logic. The Al is used to extend creativity and reduce the need for
static scripting, which is time-consuming and limits variability.

7.7.1 Why we use Al

There are several reasons why Al plays a central role in our game development process:

+ Replayability: Al-generated content ensures that each playthrough is different. This reduces repet-
itiveness and encourages exploration, even after multiple sessions.

Chapter 7. Analysis and evaluation 39

+ Scalability: Manually creating quests, NPCs, and dialogue for large game worlds is resource-intensive.
Al allows us to scale content without linear increases in development time.

+ Creativity boost: Al provides unexpected or novel ideas that can inspire or enrich the game world
in ways that static design may not achieve.

+ Faster iteration: Instead of writing and testing every piece of dialogue or quest manually, Al can
rapidly produce drafts that are context-aware and coherent.

+ Immersion and dynamism: Interactions with Al-generated NPCs feel more natural and personal-
ized, as their responses reflect the current game state and their unique personality.

+ Developer focus: By outsourcing repetitive or low-level writing tasks to Al, developers can focus on
higher-level game design, balancing, and user experience.

7.7.2 Use cases

* Quest generation: The Al proposes context-aware missions that are linked to specific characters
and locations within the generated world.

+ Dialogue creation: Conversations with NPCs are generated in real time based on personality traits,
past player choices, and current quest progress.

+ Item and lore generation: Items, equipment, and world lore are created by Al to add depth and
richness to the setting with minimal manual input.

« Map composition: The map is built using a predefined set of tiles (e.g., forest, mountain, village)
arranged by Al to create natural-looking worlds.

+ NPC design: Visual appearance, names, backstories, and battle attributes are generated to ensure
character diversity and consistency with world and quest logic.

7.7.3 Why we avoid full Al engines
* Need for control: Traditional logic offers reliability.
+ Player expectations: Consistency in mechanics is essential.
+ Al is best for creativity: Dialogue and quests benefit most.

+ Development constraints: Al engines are still hard to control.

7.7.4 Final thought

LLMs are not just a technical feature—they redefine how games are created and experienced. They offer
new opportunities, but also demand thoughtful integration.

Chapter 8

Design

8.1 Architecture

The game is developed using Unity and follows a component-based architecture, which is the default
architectural pattern encouraged by the engine. In this model, game objects are composed of modular,
reusable components (MonoBehaviours) that define their behavior and data. Each system in the game,
such as character customization or npc interaction, is implemented as a set of focused components that
work together to form complete functionality. This approach promotes flexibility, separation of concerns,
and ease of maintenance, making it well-suited for a 2D character-driven game.

8.1.1 C4-Diagrams

C4 modeling provides an easy-to-understand representation that still contains all the essential informa-
tion about an architecture. Not all possible C4 diagrams are shown. Below are the System Context Di-
agram and the Container Diagram. For more information about C4 modeling, see https://c4model.

com/.

Person

[Gamer]

Plays the Game

Unity Game Client LLM

[Sofiware System] [Software System]

Generates Map, Quests, NPCs,

Displays Ul, Calculates Game Logic Hems and Battle stats

Figure 8.1: C4 System Context-Diagramm

40

https://c4model.com/
https://c4model.com/

Chapter 8. Design 41

Generated Data.

Item Interaction Controller
[Container: c#]
Handle item inferactions Game Services

Game Generator [Container: c#]

[Container: c&]

Load Game Gontent (map, npcs, items)
Generate game data

NPC Interaction Controller
[Container. c#]
i 5 Load objects information
Handle NPC inf i
SIASESIEEEEE Game Managers
[Container: c#]
Save Inferastions Manage in-game menus and Ul logic

Return generated et data for interactior

Ask for generated conte PG answer

Ask for generated

Return generated content. NPG answer

Data Service
[Container: c#]

Communicate with the DB
Stores Information

Al Service ‘Stores player position
[Container: c#] on ';,;e ;:D Player Movement Controller

[Container: c#]

Communicates with LLM via APl Stores Information | | Loads Information
Handile player movement logic

Database

[Container: SQLite]
g Makes API calls
JSONHTT
e " Stores Game Information

Game
[Software System]

LLM
[Software System]

generates ltems, NPCs and Skills

Figure 8.2: C4 Container-Diagramm

8.2 Wireframes

This section provides an overview of the different screens within the game, illustrated using basic wire-
frames. Each subsection describes the functionality and layout of the key elements in detail.

8.2.1 Main Menu

Figure 8.3 shows the wireframe of the main menu, which is the first screen the player sees when launching
the game. It includes four buttons: Play starts a new game or continues an existing one, Settings opens a
screen for adjusting options like generation settings or keybinds, Quit exits the game, and Credits displays
acknowledgments for the used art assets.

Chapter 8. Design 42

Play

Settings
Quit
Credits

Figure 8.3: Wireframe: Main Menu

8.2.2 Character Creation

Figure 8.4 shows the character creation page, which is displayed the first time a new game is started.
The player can customize their own character by selecting options such as hairstyle, shirt, pants, and
skin color.

< Option1 >
< option2 >
‘< Option3 >
< Option4 >

Figure 8.4: Wireframe: Character Creation

Chapter 8. Design 43

8.2.3 NPC Interaction

Figure 8.5 shows how the player interacts with an NPC. When the player presses the interact key (stan-
dard: E) while in proximity to an NPC, a dialog window appears. The NPC responds with dynamically
generated text from a large language model (LLM), and the player can reply freely by typing their mes-
sage into the input field.

<User Input>

Figure 8.5: Wireframe: NPC Interaction

8.2.4 Item Collection

Figure 8.6 shows how the player can pick up items. Items are generated by the large language model
(LLM) and placed on the map. When the player interacts with an item, it is removed from the map and
added to the player’s inventory.

Chapter 8. Design 44

Player has aquired <item>

Figure 8.6: Wireframe: Item Collection

8.2.5 Inventory

Figure 8.7 shows the player’s inventory. As seen in the image, there are three item categories: materials
(used to craft other items), potions (which can be used on characters), and quest items. When an item
is selected, the player can view the item’s name, icon, and description.

Material Potions Quest items

Heal Potion Heal Potion
Damage Potion
lcon

Heals someone

Figure 8.7: Wireframe: Inventory

Chapter 8. Design 45

8.2.6 Quest Menu

Figure 8.8 shows the quest menu. In this interface, the player can view all quests they have started. By
selecting a quest, the player can read its description and see the current step that needs to be completed.

Quest 1

Quest 1 Description
Quest 2

Quest 3

Figure 8.8: Wireframe: Quest Menu

8.2.7 Team Menu

Figure 8.9 shows the team menu. In this interface, the player can choose up to four characters to partici-
pate in combat. Only NPCs with a certain level of affection toward the player can be selected. The menu
also allows the player to view detailed character information, including attributes and spells. Additionally,
the player can select a character as the target for using a potion.

Chapter 8. Design 46

Info

Items

Switch

Figure 8.9: Wireframe: Team Menu

8.2.8 Combat

Figure 8.10 shows a combat scene. When the player interacts with an NPC who has negative affection
toward them, the game switches to this combat scene. The player and their team are positioned on the
left, and the enemy on the right. Combat is turn-based, with turn order based on each character’s speed.
The turn order is displayed at the top-left of the screen. On the player’s turn, they can choose to attack,
cast a spell, use a potion, or flee. Spells consume mana points—the more powerful the spell, the more
mana it uses. The combat ends when the enemy’s health points reach zero, which means the player wins,
or when all team members’ health points drop to zero, resulting in the player’s defeat.

Chapter 8. Design 47

Figure 8.10: Wireframe: Combat

8.2.9 Settings

Figure 8.11 shows the settings page. Here, the user can change keybinds, edit generation prompts, set
the API key for the language model (LLM), or reset the game data to start fresh. In this figure, we see
how the player can modify the map generation prompt. This prompt is used at the very start of the game
to generate the map.

Keybinds Generation ApiKey Delete Game Data

First map generation prompt

Create a forest with a big village in
the center

Figure 8.11: Wireframe: Settings

Chapter 9

Implementation und Testing

9.1 Implementation

The game was developed using Unity, a popular game engine that provides a robust scene system. The
game consists of seven scenes: the Main Menu Scene, Character Creation Scene, Loading Scene, Game
Scene, Combat Scene, Settings Scene, and Credits Scene.

Main Menu

This is the first scene presented to the user. It features a single screen with four buttons: Play, Settings,
Credits, and Quit. This scene includes minimal logic and primarily serves as a navigation hub for access-
ing other parts of the game.

Figure 9.1: Main Menu

Character Creation Scene

In this scene, the player can customize their character by selecting from various hairstyles, skin colors,
and clothing options. This scene also contains hidden logic, as it is the starting point for generating
in-game content.

48

Chapter 9. Implementation und Testing 49

Gender [) [) PantsType

skincoor [, 7, PantsColor

Hairstyle [« T, socksTupe

HairColor [) [) SocksColor [
shirttype [, (T, shoesType

shirtcolor [' ShoesColor

Figure 9.2: Character Creation

Loading Scene

The loading scene is used when game content is still being generated or loaded. It informs the user
about the ongoing processes, ensuring they are aware of what is happening in the background before
gameplay continues.

Generating hap and Quests..

Figure 9.3: Loading Scene

Game Scene

This is the main interactive scene of the game. The player can explore the map, interact with NPCs, and
collect items.

Figure 9.4 shows how the player can communicate with an NPC by typing a message in the input field.
The NPC responds with an Al-generated answer.

Chapter 9. Implementation und Testing 50

Finn: &h, greetings! You're just in time to catch some D
juicy tidbits about the village. What can | help you

Figure 9.4: NPC Interaction

Figure 9.5 shows how the player can pick up items on the map. When collected, the items disappear and
are stored in the player’s inventory, as seen in Image Figure 9.6.

You picked up Draught of Shadows. Press Escape to U
cantinue.

Figure 9.5: Item Collection

Materials

Forge Iron

A rugged material that has been tempered in intense

heat, enhancing physical strength with a few
drawbacks.

Figure 9.6: Inventory

Figure 9.7 presents the team menu. Here, the player can select up to four characters for battle. By clicking
on “Info,” more details about each character can be viewed (Figure 9.8).

Chapter 9. Implementation und Testing 51

Figure 9.7: Team Menu

Lara Wood

Health: 92/92 tdana: 6464 Precision: 10
Initiative: 17 Physical Attack: 70 Air Attack: 83
Fire &ttack: &0 Foison Attack: 6f Earth Attack: 60
Water Attack: &3 Defense: 76 bagic Defenze: 10

Attacks

Narng: Inferno Blast Description: Releases a

' Damage: 38 devastating blast of fire.
| | Mana Cost: 22

Accuracy: 70
Elernent: Fire

Figure 9.8: Character Information

Figure 9.9 displays the quest menu, where players can see all currently started quests.

The Lost Pendant The Lost Pendant

Recover the lost pendant from the forest and return
it to the one who commissioned the quest.

Seek out Liam the Wanderer, who was the last to
see the pendant in the forest.

Figure 9.9: Quest Menu

Combat Scene

The combat scene is triggered when the player interacts with an NPC having a negative affinity toward
them. A battle begins with the player’s team on the left and the enemy team on the right. The combat
ends when one of the teams has no surviving characters.

Chapter 9. Implementation und Testing 52

Attack Items Team Flee

Claude [Clara 1 Milo
HP IOOMOON—— HP INGO/S0M—— HP

Mana 80/80 Mana 44/60 Mana 60/60

Figure 9.10: Combat Scene

Settings Scene

This scene allows the player to adjust game options. They can change keybindings, edit the prompt used
for map generation, enter or update their API key, or delete saved game data to start over.

Generation

First map generation prompt

Create a forestin the east and a lava land in the west. Create a village in the
center.

Save l

Figure 9.11: Settings

Credits Scene

The credits scene is dedicated to acknowledging the artists whose work was used in the game. All vi-
sual assets were sourced from OpenGameArt.org', and this scene lists the original contributors of those
assets.

9.2 Manuel Tests

Only manual tests were carried out for our game. We regularly checked various game mechanics directly
in the running game,in particular the combat system, the effects of spells, status changes of units, and
the user interface.

"https://opengameart.org

https://opengameart.org

Chapter 9. Implementation und Testing 53

Another important part of the testing was interaction with NPCs. Here, we checked whether dialogues
were triggered correctly, quest conditions were met, and markers were displayed correctly on the map.
The interplay between quest logic, game progress, and visual feedback was also taken into account.

In principle, it would have been possible to implement automated unit tests. However, due to the high
dynamics and strongly procedural structure of much of the game content, such as Al-generated spells,
random enemies, or varying events, this would have involved a disproportionately high amount of effort.
This content is difficult to test in isolation, as it is closely linked to the context and state of the entire
game.

To ensure a stable gaming experience nonetheless, we conducted numerous manual tests with different
constellations, game progressions, and extreme situations, paying particular attention to consistency,
game flow, and accuracy.

9.2.1 User testing

To evaluate the game demo, user tests were conducted with seven volunteer participants. The testers
represented a broad range of ages (22-62) and gaming experience levels, from beginners to hardcore
gamers. Feedback was collected using a structured questionnaire with both quantitative ratings and
qualitative comments. The results provided valuable insights into game clarity, balance, usability, and
technical stability.

Chapter 9. Implementation und Testing

54

9.2.2 User testing feedback

Participant 1

Age: 22

Experience: Hardcore Gamer

Visual Design: Good

Ease of Understanding: Okay

Gameplay Flow: 2

Combat Excitement: 3

Goal Clarity: Partially

Difficulty: Too easy

Controls: 4

Situations of Confusion: Quest could not be turned in
Story Interest: 1

NPC Interactions: 3

Bugs: Items spawned in houses, quest blocked
Overall Rating: 3

Favorite Aspects: -

Suggestions: Sound design

Comments: -

Chapter 9. Implementation und Testing

55

Participant 2

Age: 26

Experience: Experienced

Visual Design: Very good

Ease of Understanding: Okay

Gameplay Flow: 4

Combat Excitement: 2

Goal Clarity: Partially

Difficulty: Easy

Controls: 3

Situations of Confusion: Ul hints missing, unclear quest display
Story Interest: 4

NPC Interactions: 4

Bugs: Could not complete quests

Overall Rating: 3

Favorite Aspects: -

Suggestions: Ul hints, quest log, map legend
Comments: -

Participant 3

Age: 62

Experience: Beginner

Visual Design: Very good

Ease of Understanding: Somewhat hard
Gameplay Flow: 5

Combat Excitement: 4

Goal Clarity: Partially

Difficulty: Hard

Controls: 1

Situations of Confusion: Did not know how to move or talk
Story Interest: 4

NPC Interactions: 5

Bugs: —

Overall Rating: 4

Favorite Aspects: -

Suggestions: Language selection option
Comments: -

Chapter 9. Implementation und Testing

56

Participant 4

Age: 24

Experience: Hardcore Gamer

Visual Design: Very good

Ease of Understanding: Easy

Gameplay Flow: 5

Combat Excitement: 3

Goal Clarity: Yes

Difficulty: Too easy

Controls: 5

Situations of Confusion: What happens after finishing all quests?
Story Interest: 1

NPC Interactions: 4

Bugs: Combat bug, crash, API key issue on save
Overall Rating: 4

Favorite Aspects: -

Suggestions: More quests, higher difficulty
Comments: -

Participant 5

Age: 28

Experience: Casual Player
Visual Design: Very good
Ease of Understanding: Easy
Gameplay Flow: 4

Combat Excitement: 4

Goal Clarity: Yes

Difficulty: Too easy
Controls: 5

Situations of Confusion: What to do when finished?
Story Interest: 1

NPC Interactions: 5

Bugs: —

Overall Rating: 4

Favorite Aspects: -
Suggestions: -

Comments: -

Chapter 9. Implementation und Testing

57

Participant 6

Age: 28

Experience: Hardcore Gamer

Visual Design: Very good

Ease of Understanding: Very easy
Gameplay Flow: 4

Combat Excitement: 4

Goal Clarity: Partially

Difficulty: Too easy

Controls: 5

Situations of Confusion: Too many spells from the start, only 1v1 fights
Story Interest: 4

NPC Interactions: 5

Bugs: —

Overall Rating: 4

Favorite Aspects: -

Suggestions: Spell system, more variety
Comments: -

Participant 7

Age: 25

Experience: Beginner

Visual Design: Very good
Ease of Understanding: Okay
Gameplay Flow: 5

Combat Excitement: 3

Goal Clarity: Yes

Difficulty: Easy

Controls: 3

Situations of Confusion: -
Story Interest: 3

NPC Interactions: 5

Bugs: Long loading time, initial API bug
Overall Rating: 4

Favorite Aspects: -
Suggestions: -

Comments: -

Chapter 9. Implementation und Testing 58

9.3 Non-functional requirements evaluation

The implementation of the non-functional requirements was evaluated based on observed system behav-
ior, empirical measurements, and qualitative user feedback. Below is a summary of the current fulfillment
status:

NFR-01 (Map Loading Time): The map loads instantly with no visible delay, fulfilling the "Best" level of
this requirement.

NFR-02 (Al Fairness and Challenge): Based on subjective feedback from user tests, the Al is perceived
as fair and balanced, corresponding to the "Good" level.

NFR-03 (Al Cost per API Call): API costs vary: generation calls reach up to 0.1 CHF, while dialogue interac-
tions with NPCs typically remain below 0.1 CHF. Therefore, this requirement is fulfilled at the "Minimum"
level, with potential for optimization.

NFR-04 (Loading Time after Generation): Currently, loading time after generation is reported as X sec-
onds. If this is 5 seconds, the requirement is met at the "Minimum" level.

NFR-05 (Game Generation Time): Game generation can take up to one minute. This exceeds the defined
threshold of 30 seconds and therefore does not currently meet the requirement.

NFR-06 (Al Decision Time): NPC Al decisions are executed in under 1 second under good internet con-
ditions, fulfilling the "Good" level.

NFR-07 (Frame Rate): The system consistently runs at over 120 FPS, fulfilling the "Best" level.

NFR-08 (Data Security): Player and game data are stored in a database. However, no explicit mention of
encryption was made, which suggests this requirement is currently fulfilled at the "Minimum" level.

NFR-09 (Anti-Cheat): Anti-cheat mechanisms are implicitly provided by OpenAl's underlying systems,
meeting the "Minimum" requirement, though not yet tailored to in-game behavior.

NFR-11 (Al Usage Restriction): The Al is restricted to its intended in-game usage and not repurposed,
fulfilling this requirement at the "Minimum" level.

NFR-12 (Error Handling): Generic error messages are currently implemented, satisfying the "Minimum"
level. More specific, user-friendly messages could improve this.

NFR-13 (User Interface): The Ul has been described as intuitive by test participants, fulfilling the "Mini-
mum" usability requirement.

NFR-14 (Controls and Interaction): Controls were generally understood and intuitive, meeting the "Mini-
mum" level.

NFR-15 (Tutorials): No tutorial system is currently in place. As such, this requirement is not yet fulfilled.

Chapter 9. Implementation und Testing 59

NFR-17 (Logging and Analytics): Basic logging is available, fulfilling the "Minimum" requirement. Struc-
tured and filterable logs would improve maintainability.

Summary

Most non-functional requirements are fulfilled at least at the "Minimum" level, with several achieving
"Good" or even "Best" status (e.g. frame rate and map loading). Improvement potential exists particularly
in the areas of game generation speed, error handling, Al cost efficiency, and user onboarding through
tutorials.

Chapter 10

Result and future developement

10.1 Results

As a result of the development process, a fully functional game was created. The core mechanics work
as intended and demonstrate the successful integration of LLM-driven systems for content generation,
interaction, and game progression.

10.1.1 Al-powered game functionality

The core game features are built around the integration of OpenAl, enabling a dynamic and interactive
game play experience by automatically generating various types of content:

+ Map Generation: Individual maps are created based on text prompts, resulting in diverse structures
and visual styles that enhance replayability.

+ Quest: The LLM generates quests, including specifics actions the player must perform, involved
NPCs and required items. NPCs are generated with a backstory and a personnality.

+ NPC Style: NPC appearances are generated by a LLM using predefined components as hairstyles,
skin colors and clothing. The resulting styles align with each NPC’s story and personality.

+ Combat Data and Spells: Attacks and their respective effects are generated using predefined logic
combined with Al input, allowing for creative and varied combat scenarios.

+ Dialogue System with NPCs: The LLM enables natural conversations with NPCs, taking into ac-
count both their personality and the current game context.

Figure 10.1 shows how the LLM is used for the game.

60

Chapter 10. Result and future developement 61

Quest NPC Style Battle Stats
Generation generation Generation

Game Start
MPC Interactions

Map
Prompting Generation
Pipeline

Prefabs —— Map Sprites ——> Object

(=]
< ke

/.

Figure 10.1: LLM Use

Data Persistence: All relevant game data is stored using an SQLite database. This lightweight solution is
well-suited for small to medium-sized projects and provides fast and reliable storage for game progress,
character data, and map elements.

10.2 Future development

This chapter outlines features and improvements that are planned for future development to further
enhance functionality, user experience, and game depth.

10.2.1 Integration of other LLMs

An extension is planned to support additional large language models (LLMs), such as the OST LLM Hub.
This would allow for model flexibility and performance comparisons and could enable specific features
based on specialized models.

10.2.2 Dedicated LLM for game content

A custom fine-tuned LLM specifically tailored for the game world and its mechanics could be devel-
oped. This would enable faster responses, deeper contextual understanding, and unique in-game behav-
ior aligned with the game’s narrative and logic.

10.2.3 Al-Generated icons

To enhance the visual identity and variety of the interface, icons for categories or items could be gener-
ated dynamically using an image generation Al. This would allow for a more personalized and thematic
visual design.

Chapter 10. Result and future developement 62

10.2.4 Update of the OpenAl for Unity Project

The existing "OpenAl for Unity" GitHub project is planned to be updated to support the latest API features,
optimize performance, and ensure compatibility with newer Unity versions and tool-chains.

10.2.5 Map legend

A visual legend for the map is planned to help users understand the meaning of various symbols, colors,
and icons used in the interface. This would improve orientation, especially in complex maps.

10.2.6 Language settings

The addition of language settings would allow users to switch the Ul and in-game texts to their preferred
language. This would increase accessibility and usability for a broader audience.

10.2.7 Extended quests with multiple objectives

Support for longer quests with multiple objectives is planned. This would make the gameplay more en-
gaging and allow for deeper story progression, branching paths, and more complex mission structures.
10.2.8 Interactive tutorial

An in-game tutorial is planned to guide new players through basic mechanics, navigation, and interac-
tions. This tutorial will be structured, easy to follow, and fully integrated into the game flow.

10.2.9 Al game controller

A planned feature is an intelligent game controller NPC that players can ask for help. This controller could
explain mechanics, guide the player, move the character, or simulate a battle to demonstrate gameplay.
10.2.10 Dynamic map behavior

Future quests could dynamically alter the map environment. For example, weather conditions could
change based on quest progress, NPCs might disappear or appear, and regions of the map could be
locked or unlocked depending on story events.

10.2.11 Regenerating quests after completion

A planned feature is the automatic generation of new quests once all current quests have been com-
pleted. This would ensure continued game play and provide long-term engagement by dynamically ex-
panding the game content.

Chapter 10. Result and future developement 63

10.2.12 Expandable map on exit

When the player moves beyond the current boundaries of the map, the map will dynamically expand. This
would allow for exploration of new areas and the generation of fresh content without predefined limits.

10.2.13 More Prefabs for environmental variety

To increase visual and structural diversity in the game world, additional prefabs are planned for terrain,
buildings, and interactive objects. This would help make each play through feel more unique and immer-
sive.

10.2.14 Achievements for milestones

An achievement system is planned to reward players for reaching specific milestones, such as complet-
ing quests, discovering areas, or interacting with key NPCs. This would add an extra layer of motivation
and progression tracking.

10.2.15 Smarter combat Al

Improvements to the combat Al are planned to make enemy behavior more strategic and context-aware.
Smarter decision-making, varied tactics, and adaptive reactions to player actions would make battles
more challenging and engaging.

10.2.16 Al-Generated music and sound effects

A planned feature is the integration of a music Al that dynamically generates background music and
sound effects based on the current game situation. This would add an additional immersive layer to the
game by adapting audio atmospheres to the environment, player actions, or quest progress in real time.

10.2.17 NPC behavior and actions

A planned feature is to extend NPC behavior by allowing them to perform visible in-game actions such
as walking around the map, gathering items, or interacting with objects. This would make the world feel
more alive and increase immersion by giving NPCs autonomous, context-driven behavior beyond static
dialogue.

Chapter 11

Quality Measures

11.1 Quality assessment tools

11.1.1 Linter

SonarLint

SonarLint was used to improve code quality in the Unity project. It helped identify potential bugs, code
smells, and maintainability issues in the C# code. Most of the reported issues were fixed during devel-
opment.

11.1.2 Guidelines

Definition of Done
+ All code related to the user story has been implemented and adheres to the coding standards.
+ The code has been peer-reviewed and approved by another team member.
+ The functionality meets both functional and non-functional requirements.
+ All sub-tasks linked to the main task have been completed.

+ All necessary documentation has been created and updated.

11.1.3 Git branching and merges

To avoid errors, direct pushes to the main branch are not allowed. After ateam member has implemented
a feature, a merge request can be created on GitLab and assigned to a reviewer. The reviewer checks the
changes and ensures that they meet the Definition of Done. If everything is in order, the merge request
is approved by the reviewer.

64

Chapter 11. Quality Measures

65

11.2 Environment

This section describes the technical environment used during development to ensure consistent quality.

« IDE: JetBrains Rider’
JetBrains Rider was used as the primary integrated development environment (IDE) due to its
strong support for C# and Unity development.

+ Operating System: Windows 102 or Windows 11°

Development was carried out on machines running either Windows 10 or Windows 11 to ensure

compatibility with Unity and Rider.

* Unity Version: Unity 6*
A consistent Unity version was used across all development environments to prevent version-

related issues and maintain build stability.

+ Version Control:Git®

Git was used for version control.

11.3 CI/CD

11.3.1 Workflow

Main Branch @

Development Commit Merge Request Approve Merge
Request

v

Create Branch Merge

Figure 11.1: Workflow

Thttps:
2https:
Shttps:
“https:
Shttps:

//www.jetbrains.com/rider/
//www.microsoft.com/en-us/software-download/windows10
//www.microsoft.com/en-us/software-download/windows11
//unity.com/

//git-scm.com/

https://www.jetbrains.com/rider/
https://www.microsoft.com/en-us/software-download/windows10
https://www.microsoft.com/en-us/software-download/windows11
https://unity.com/
https://git-scm.com/

Chapter 11. Quality Measures 66

11.4 Communication tools

Discord

Discord is primarily used as a communication tool. It enables communication via voice and text chat and
is also used to share screens and discuss issues.

Teams

Teams is used to exchange information with the supervisors and to hold important meetings.

Chapter 12

Software documentation

12.1 Technology stack

This chapter summarizes the key technologies and tools used in the development of the game. It also
outlines important prerequisites that must be met in order to run and use the game effectively.

Area Technology Description
Game Engine Unity 2D game development, scene manage-
ment, animations, and Ul
Programming Language C# Main language for game logic, API calls,

and data processing

LLM Integration

OpenAl (GPT-40-mini, 03-mini)

Generates dynamic game content (dia-
logues, quests) via HTTP API

API Integration Tool

OpenAl-Unity (srcnalt)

Unity plugin for accessing OpenAl’'s API
(text and image generation) within the
game engine

Database SQLite Embedded relational database for save
data and persistent info
DB Framework SQLite4Unity3d Unity-compatible ORM for easy database

operations

Table 12.1: Key technologies used in the game development

67

Chapter 12. Software documentation 68

12.2 Tool stack

Tool Usage
JetBrains Rider IDE for code development
Unity Editor Integrated environment for game development

DB Browser for SQLite | Graphical tool used for debugging and managing
database files

ChatGPT Text generation, optimization, spell and grammar
checking, translation
DeepL Translation
GitHub Copilot Assistance with code creation

Table 12.2: Tool Stack

12.3 Installation

This section describes how to set up and run the game.

12.3.1 System requirements
+ Operating System: Windows 10 or later
* RAM: Minimum 8 GB

+ Storage: At least 4 GB free disk space

12.3.2 Development environment setup
1. Install Unity Hub from https://unity.com/download.
2. Clone the project repository from https://gitlab.ost.ch/llm-game/ai-game.
3. Open the project folder in Unity Editor.

4. Open JetBrains Rider or preferred IDE and open the project solution.

12.3.3 Building and running the game
1. Build the game using Unity’s build settings.

2. Run the built game.

3. When the game starts for the first time, open the Settings and enter your API key and Organization
name to enable Al-based features.

https://unity.com/download
https://gitlab.ost.ch/llm-game/ai-game

Appendix A

Glossary

Term Description

Al Artificial Intelligence refers to the capability of machines or software to per-
form tasks that typically require human intelligence, such as learning, reason-
ing, or language understanding.

LLM Large Language Model is a type of Al model trained on large text datasets to
generate human-like text and understand natural language input.

RPG Role-Playing Game is a game genre where players assume the roles of char-
acters in a fictional setting and participate in a narrative-driven experience.

NPC Non-Playable Character is a character in a game that is not controlled by the
player but is part of the game world, usually controlled by the game logic or
Al.

Top-Down A top-down perspective refers to a viewpoint in games where the player looks
at the game world from above, often used in strategy and 2D RPG games.

API Application Programming Interface is a set of routines, protocols, and tools
that allow software applications to communicate with each other.

FR Functional Requirement describes what a system should do to meet user
needs.

NFR Non-Functional Requirement describes how a system should perform its func-
tions, including aspects such as performance, security, and usability.

LaTeX Atypesetting system commonly used for academic and scientific documents.

Scrum Scrum is an agile project management framework that helps teams develop
complex projects through iterative and incremental steps.

RUP Rational Unified Process is an iterative software development process that

divides development into phases and defines best practices for software en-
gineering.

69

Appendix A. Glossary

70

Term

Description

GPT-40-mini / 03-mini

Two different language models by OpenAl. GPT-40-mini is optimized for cost
efficiency and speed, while 03-mini provides more consistent and deeper out-

puts.

Prefab A reusable game object in Unity that stores a preset configuration of compo-
nents and properties, often used for environments or NPCs.

Buff / Debuff Temporary effects that increase (buff) or decrease (debuff) a character’s com-

bat stats such as attack or defense or reduce health after rounds .

Crit / CritMultiplier

Critical hit — a combat mechanic where attacks deal increased damage. The
CritMultiplier defines the strength of this effect.

Variance A random factor applied to damage calculations, usually to introduce variabil-
ity and realism. Typically ranges between 0.85 and 1.0.

Tilemap A grid-based map structure used in 2D games where predefined tiles are ar-
ranged to form the game environment.

Turn Count The number of actions a character has taken in a turn-based system; it influ-

ences when they can act again.

FlatRaise / FlatReduction

Static values added to or subtracted from damage calculations to adjust the
outcome directly.

STAB Same-Type Attack Bonus — a damage multiplier applied when a character
uses an attack that matches their own element/type.

ActionCost The time cost of a combat action; affects how quickly the character can act
again.

StateRaise A multiplier applied to stats based on temporary status boosts or reductions
(e.g., increased attack or lowered defense).

Prompt A textual instruction sent to a language model to generate content such as
dialogue, quests, or map layouts.

Initiative A combat value determining how quickly a character acts in turn-based sys-
tems; higher initiative means earlier turns.

Hitman 3 A stealth-based video game developed by 10 Interactive, where players take

on the role of Agent 47 and complete missions using strategic planning, dis-
guises, and creative problem solving. It is often cited as an example of player
freedom and open-ended gameplay.

Sandbox Game

A game genre that offers players a high degree of freedom to explore, interact
with, and modify the game world, often with minimal structured objectives.
Examples include Minecraft, Garry’s Mod, and parts of Hitman 3.

List of Figures

6.1

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.1

Interactionwithan NPC i
Useof LLMinthegame e iii
Combat e e iv
Use-Case-Diagram forthe Al-Game 27
Domain Analysis e e 34
C4 System Context-Diagramm e 40
C4 Container-Diagramm e 41
Wireframe: MainMenu e 42
Wireframe: Character Creation e 42
Wireframe: NPC Interaction 43
Wireframe: Item Collection e 44
Wireframe: Inventory 44
Wireframe: Quest Menu e 45
Wireframe: Team Menu e e 46
Wireframe: Combat e 47
Wireframe: Settings e 47
Main Menu e e 48
Character Creation e 49
LoadingScene e e 49
NPC Interaction e e 50
ltem Collection e e 50
INVENTOTY e e e 50
Team Menu e e 51
Character Information 51
Quest Menu e 51
CombatScene e e 52
Settings e e 52

71

List of Figures

10.1 LLM Use

11.1 Workflow

List of Tables

3.1 Turncalculationexample e 12
3.2 Turncalculationexample e 12
6.1 Non-functional requirements of thegamesystem 32
6.2 Non-functionallandingzone 33
12.1 Key technologies used in the game development 67
12.2 Tool Stack e 68

73

Bibliography

[1] Latitude, “Ai dungeon,” 2019, accessed May 2025. [Online]. Available: https://play.aidungeon.io

[2] H. Door, “Hidden door — interactive storytelling with ai,” 2024, accessed May 2025. [Online].
Available: https://www.hiddendoor.co

[3] A. Tavakkoli and M. Lee, “Procedural content generation using large language models:
Opportunities and challenges,” Proceedings of the 2023 FDG Conference, 2023.

[4] Decart and Etched, “Oasis: An ai-generated open-world game,” 2023, accessed May 2025. [Online].
Available: https://www.decart.com/oasis

[5] G. Research, “Gamengen: Ai-powered game simulation from google research,” 2024, accessed May
2025. [Online]. Available: https://g.co/research/gamengen

[6] U. Technologies, “Unity muse and sentis: Ai tools for game development,” 2023, accessed May
2025. [Online]. Available: https://unity.com/products/unity-muse

74

https://play.aidungeon.io
https://www.hiddendoor.co
https://www.decart.com/oasis
https://g.co/research/gamengen
https://unity.com/products/unity-muse

	Abstract
	Management Summary
	I Technical Report
	1 Introduction
	1.1 Problem definition
	1.2 Vision
	1.3 Goals
	1.4 Basic condition

	2 Existing solutions
	2.1 AI-Assisted dialogue and narrative systems
	2.2 Procedural content generation
	2.3 AI as game engine components
	2.4 LLMs in commercial development tools
	2.5 Limitations and open challenges

	3 Implementation Concept
	3.1 Knowledge gathering
	3.2 Requirements specification
	3.3 Evaluation
	3.4 Implementation

	4 Technology Evaluation
	4.1 Game engine
	4.2 Data persistence mechanism
	4.3 Large language model
	4.4 Additional libraries and technologies

	5 Outlook

	II Project Documentation
	6 Requirement Specifications
	6.1 Use case diagram
	6.2 Functional requirements
	6.3 Non-functional requirements
	6.4 Landing zones for non-functional requirements

	7 Analysis and evaluation
	7.1 Domain analysis
	7.2 Class catalog
	7.3 Traditional approach
	7.4 Video games with LLMs: A new dimension of interactivity
	7.5 AI as the game engine: Oasis and GameNGen
	7.6 Conclusion: A turning point in game development
	7.7 How and why we use AI in our game

	8 Design
	8.1 Architecture
	8.2 Wireframes

	9 Implementation und Testing
	9.1 Implementation
	9.2 Manuel Tests
	9.3 Non-functional requirements evaluation

	10 Result and future developement
	10.1 Results
	10.2 Future development

	11 Quality Measures
	11.1 Quality assessment tools
	11.2 Environment
	11.3 CI/CD
	11.4 Communication tools

	12 Software documentation
	12.1 Technology stack
	12.2 Tool stack
	12.3 Installation

	A Glossary
	List of Figures
	List of Tables
	Bibliography

