
Bachelor thesis
Documentation

Finteam - A React Native App for
Fiduciaries and their clients

Semester: Spring 2025

Version: 1.0
Date: 19-06-2025

Project Team: Noah Fleischmann (noah.fleischmann@ost.ch)
Dominik Rüegg (dominik.rueegg@ost.ch)

Project Advisor: Dr. Marco Lehmann (marco.lehmann@ost.ch)
External Expert: Kirusanth Poopalasingam (kiru@veemg.com)

School of Computer Science
OST Eastern Switzerland University of Applied Sciences



Abstract

Introduction

In Switzerland, tax filing is often perceived as a cumbersome process, which leads many
individuals to delegate this responsibility to fiduciaries. However, this delegation introduces
its own inefficiencies, particularly in the form of unstructured communication and incomplete
documentation, which impair the ability of fiduciaries to work efficiently.

Approach and technology

This thesis presents the development of Finteam, a Minimum Viable Product (MVP) designed
to streamline document exchange and communication between clients and fiduciaries. Starting
from a basic prototype, the project improved the architecture, added core features, and
developed a scalable backend to support future growth. The system consists of three main
components: first, a mobile app (built with React Native and Expo) for clients to upload
tax documents and interact with an AI assistant. Second, a web app (React + TypeScript)
for fiduciaries to manage client submissions and provide feedback. Third, a modular backend
(Express.js + TypeScript) that handles authentication, data storage, and an RAG-based tax
assistant.

Conclusion

During this thesis, the team successfully developed an MVP for the Finteam application. The
system replaces unstructured communication with a digital workflow that reduces administra-
tive overhead on both sides. The mobile application enables clients to upload tax documents,
while the web platform provides fiduciaries the ability to review submissions and send feedback
to the client. This approach eliminates the typical back-and-forth email exchanges that currently
affect fiduciaries.

As a secondary but notable feature, the system incorporates an AI-powered tax assistant
built on Retrieval-Augmented Generation (RAG) technology integrated into the mobile app.
It combines vector- and keyword-based search with reranking and query rewriting techniques
to improve response quality. An empirical evaluation of various configurations showed that
reranking significantly enhanced the accuracy of responses. While this came with a latency
trade-off of approximately 38% compared to vector-only retrieval, which served as a baseline.
With this tradeoff, the overall user experience benefited from more relevant answers. Key
evaluation criteria included helpfulness, correctness, clarity, and fluency.

Key limitations include the absence of a scalable fiduciary onboarding flow and restricted iOS
deployment due to the lack of access to Apple’s Developer Program. Future work should focus
on automating onboarding, enabling administrative oversight, integrating document parsing to
prefill tax forms, and at-rest encryption of user documents to enhance security.

I



Management Summary

Initial Situation

In today’s fast-paced and highly connected world, many individuals in Switzerland lack a clear
overview of their personal tax situation. As a result, tax filing is often perceived as a frustrating
and complex task—one that is postponed for as long as possible. To avoid dealing with the
intricacies of tax filing, many people choose to delegate the task to a fiduciary. However, this
solution introduces its own set of challenges.

Fiduciaries rely on timely and complete documentation from their clients to carry out their
work efficiently. In practice, clients are frequently unaware of which specific documents are
required. This leads to lengthy email exchanges or repeated phone calls for clarification. Such
inefficiencies result in wasted time, increased workload, and reduced profitability for fiduciaries.

This is where the digital solution proposed in this thesis comes into play. The goal was to
develop Finteam, a system designed to optimize communication between clients and fiduciaries
by providing a structured interface with clear instructions on which documents need to be
submitted. The primary objective was to create a user-friendly communication platform that
minimizes unnecessary interaction and increases efficiency on both sides.

The project focused on improving an existing prototype and developing a Minimal Viable
Product (MVP). The solution consists of a mobile app for clients to upload and manage their
tax documents, and a web-based application for fiduciaries to view and process the submissions
in a structured and efficient manner.

Furthermore, a chatbot should be integrated into the system, supported by a Retrieval-
Augmented Generation (RAG) approach, to answer common tax-related questions.

Procedure and Technologies

At the beginning of the project, the system architecture was analyzed and three main compo-
nents were identified for development:

Mobile Application for Clients A cross-platform mobile application developed using React
Native [1]. This application enables clients to upload their tax documents, access a structured
overview of required documents, and communicate efficiently with their fiduciary or the chatbot.

An initial [2] design was provided, which defined the basic user interface and user experience
principles. The existing design language was adopted and adapted as necessary to meet technical
requirements and improve usability where needed.

Backend API, RAG Chatbot and Database A backend system responsible for handling
core functionalities such as authentication, data management, and document storage. It serves
as the communication layer between the client application and the fiduciary interface. In
addition to that, it hosts a RAG chatbot.

II



The backend is built using TypeScript [3] and Express.js [4], utilizing a layered architecture
with controllers, services, and models. It is connected to two PostgreSQL [5] databases through
the Drizzle ORM [6]. One storing the application data, the other the vector embeddings for the
chatbot.

Web Application for Fiduciaries A web-based platform designed for fiduciaries to manage
clients, review submitted documents, and interact with clients by providing comments or
feedback through the system. It is built using React.js [7] and TypeScript [8], with Tailwind
CSS [9] for styling.

Results

Over the course of the project, a fully functioning MVP of the Finteam platform was successfully
developed. The solution comprises a mobile application for clients, a web-based platform for
fiduciaries, and a modular backend infrastructure with an integrated RAG-based AI chatbot.

Mobile Application

The mobile app allows clients to effortlessly upload tax documents, track their submitted
documents, and communicate directly with their fiduciary or the integrated AI chatbot to clarify
tax-related questions. This reduces uncertainty about required documents and minimizes the
need for follow-up communication.

Figure 1: Prototype (left) to MVP (middle, right) transformation

III



Web Application for Fiduciaries

The web platform provides fiduciaries with a structured interface to manage clients, review
submitted documents, and communicate within the system. This optimizes document manage-
ment, reduces administrative effort, and helps trustees maintain a clear overview of their work.

Figure 5: Web app chat interface

Backend and Chatbot The backend follows a modular, layered architecture to support
scalability and maintainability. Input validation is handled, and data is stored in PostgreSQL
databases. A Retrieval-Augmented Generation (RAG) chatbot is integrated into the system to
answer common tax-related questions. Various retrieval configurations were implemented and
evaluated, with the Rerank setup achieving the highest response quality based on a structured
metric evaluation.

Together, these components form a modern, scalable foundation for a production-ready tax
support platform.

Conclusion

The Finteam project has clearly demonstrated that a modern, digital solution can optimize
communication between fiduciaries and their clients. The developed platform effectively com-
bines best practices in full-stack development with state-of-the-art AI integration. By using
TypeScript, modular design, and structured workflows, the team has delivered a robust and
extensible MVP.

Key areas for improvement include implementing a secure, self-service onboarding process for
fiduciaries, developing an administrative dashboard for system oversight, and automating the
pre-filling of tax forms using structured document data. Additionally, enabling iOS deployment
remains a priority once access to the Apple Developer Program is available.

IV



In summary, the project shows that with the right combination of modern technology, AI
capabilities, and structured development processes, significant efficiency gains can be achieved
in traditionally manual and communication-intensive areas such as tax consulting.

V



Contents
Part I 1

1. Introduction 2
1.1. Project Goal 2
1.2. Background 2
1.3. General Conditions 3

2. Requirement Analysis 4
2.1. Flowcharts 4
2.2. Functional Requirements 8
2.3. Non-Functional Requirements 12

3. Architecture 13
3.1. C4 - Level 1 System Context Diagram 14
3.2. C4 - Level 2 Container Diagram 15
3.3. Domain Model 16
3.4. Mobile Architecture 18
3.5. Web Architecture 22
3.6. API Architecture 26

4. Tools & Technologies 32
4.1. Mobile Application 32
4.2. Backend API 33
4.3. Web Application 34

5. Implementation 36
5.1. Mobile App UI Overview 37
5.2. Invite and Connection Management System 38
5.3. Fiduciary Access Control System 40
5.4. File Uploads 42
5.5. API Authentication System 44
5.6. Web Client Authentication 45
5.7. Mobile Client Authentication 46
5.8. AI Chatbot 48
5.9. AI Chat Evaluation 56
5.10. Deployment 59

6. Results 61
6.1. AI Chat Evaluation Results 61

7. Conclusion and Further Work 66
7.1. New Achievements 66



7.2. Challenges and Unresolved Issues 66
7.3. Future Directions 67
7.4. Final Reflection 67

Part II 68

8. Quality Measures 69
8.1. Git Workflow 69
8.2. Code Quality 70

9. General Project Management 79
9.1. Roles and Team Organization 79
9.2. Method 79
9.3. Project Plan 79
9.4. Collaboration Workflow 79
9.5. General Project Technologies 80
9.6. Risk Management 81

Part III 85

10. Glossary 86

11. List of Figures 88

12. List of Tables 90

13. Directory of Resources 91

14. Bibliography 92

15. Requirements and decisions 96
15.1. Functional Requirements 96
15.2. Non-functional Requirements 108
15.3. Architectural Decision Records 114

16. Entity Relationship Diagrams 122

17. Initial Project proposal 125



Part I

Documentation

1



Chapter 1

Introduction

1.1. Project Goal

The primary objective of this project is to develop a cross-platform mobile application using
React Native [1] that facilitates the seamless transfer of tax documents and tax-related data
from individual users to fiduciaries. This application will enable users to conveniently capture
and submit their tax information via their smartphones. On the fiduciary side, a complementary
web application will provide access to the submitted data, allowing fiduciaries to download
documents and add comments, thereby enhancing communication efficiency and reducing
processing time between the fiduciary and the client.

In addition to the core data exchange functionality, this project aims to design and implement a
RAG-based chatbot to assist users by answering common questions related to taxation. Various
RAG approaches will be explored and systematically evaluated to determine the most effective
method for integrating knowledge retrieval and natural language generation in the context of
tax advisory support.

1.2. Background

The digitalization of financial and administrative processes has become increasingly important
in recent years, particularly in the domain of tax management. Traditional methods of
exchanging tax documents and information between taxpayers and fiduciaries often involve
manual handling, physical paperwork, and inefficient communication channels. These factors
can lead to delays, errors, and increased workloads for both parties.

Mobile applications have the potential to streamline this interaction by enabling users to
capture and submit tax data directly from their smartphones in a secure and user-friendly
manner. Cross-platform development frameworks such as React Native [1] facilitate the creation
of applications that can operate on both iOS and Android devices, ensuring broad accessibility
and ease of use for a diverse user base.

Moreover, advancements in artificial intelligence and natural language processing have opened
new possibilities for automated support through chatbots. RAG is an emerging technique that
combines the retrieval of relevant documents from a knowledge base with generative language
models to produce accurate and contextually relevant responses. Applying RAG to tax advisory
services greatly enhances user support by providing instant answers to complex tax-related
questions.

In this context, the development of a mobile application integrated with a RAG-based chatbot
presents an innovative approach to modernizing tax communication workflows. Evaluating

2



different RAG methodologies within this project aims to identify the most effective solutions
for providing the best answers.

1.3. General Conditions

This documentation references multiple code files from a GitHub repository [10]. Access to the
repository is restricted and only available to members of the organization. The project advisor
can be asked to grant access.

The work was carried out as part of a bachelor thesis with a time budget of 360 hours per person,
i.e., a total of 720 working hours. Participants are awarded 12 ECTS credits for their work.

3



Chapter 2

Requirement Analysis

The requirements engineering process was based on initial swimlane flowcharts created in Miro
[11]. These diagrams served as a conceptual starting point and were analyzed and refined to
create structured and clearly defined requirements.

Based on this analysis, both Functional Requirements (FRs) and Non-Functional Requirements
(NFRs) were identified. These requirements form the basis for the design and implementation
of the system and ensure that both the expected functionalities and quality characteristics are
taken into account.

2.1. Flowcharts

To support the development of the core functionalities, several flowcharts were designed.
These visual representations served to identify and structure the fundamental processes of
the application’s behavior. It is important to mention that the user always interacts with a
mobile app, while the fiduciary exclusively uses the web application. This distinction reflects
the assumption that users primarily manage their tasks on mobile devices, whereas fiduciaries
typically work in an office environment using a laptop or desktop computer.

The key processes identified during this phase include:

1. User registration – enabling private individuals to create an account and access the
platform.

2. Fiduciary registration – allowing fiduciaries to register and gain access to the platform.

3. Fiduciary invites customer (user) – allowing fiduciaries to invite customers (users) to
see and review their data.

4. Document scanning and forwarding – allowing users to scan or upload tax-related
documents via the mobile application and forward them to their assigned fiduciary.

5. Communication between fiduciary and user – enabling fiduciaries to request changes
or additional documents and allowing users to respond accordingly.

4



User registration

Figure 6: User Registration

The user registration process follows a standard industry practice, utilizing a login system
based on a username and password. Due to the limited scope of the project, the registration
does not require an email address. This design choice avoids the need for integrating external
email services, which would introduce additional complexity and infrastructure requirements
for sending verification or confirmation emails. There is also no self-service password reset, as
this functionality would require the use of an external communication method like email to
verify user identity.

Fiduciary registration

Figure 7: Fiduciary registration

5



In the initial phase of the platform, the project team decided to manually create accounts for
fiduciaries. This approach offers several advantages. Most importantly, it allows the platform
operator to verify the legitimacy of each fiduciary individually. By requesting appropriate
documentation or credentials, the operator can ensure that only verified fiduciaries gain access
to the system. This controlled onboarding helps keep the number of fiduciaries manageable
during the early stages and significantly enhances security. It reduces the risk of unauthorized
individuals posing as fiduciaries to gain access to sensitive client data.

Fiduciary invites customer (user)

Figure 8: Fiduciary invites customer (user)

Regarding the connection process between fiduciaries and customers, the project team assumes
that the app will initially be used primarily with existing clients of fiduciaries. In such cases,
the customer and fiduciary are already in contact outside the application. To establish a digital
connection within the app, the fiduciary can generate a unique connection string via the web
application. This string can then be shared with the customer through external communication
channels such as email or messaging apps. Upon receiving the connection string, the customer
can enter it into the mobile application, where the fiduciary’s profile information will be
displayed. The customer can then choose to confirm or deny the connection request. Once the
connection is accepted, the fiduciary gains access to the customer’s data.

6



Document scanning and forwarding

Figure 9: Document scanning and forwarding

The document scanning process has been designed to be simple and user-friendly. Customers
can either scan physical documents using their smartphone camera or upload existing files stored
on their device. Once uploaded, the data is securely stored in the backend of the system. If
the customer is already connected to a fiduciary, the uploaded documents immediately become
accessible to the fiduciary through the web application. However, the fiduciary is not actively
notified since email integration is not part of the MVP.

7



Communication between fiduciary and user

Figure 10: Communication between fiduciary and user

Communication between fiduciaries and customers is enabled through an integrated messaging
system. Once a connection is established, fiduciaries can send messages to their customers via
the web application. Each message can optionally include a reference to a specific document
previously uploaded by the customer. These messages are transmitted through the backend and
delivered to the customer’s mobile application. Customers can respond directly through the
app, with replies again routed via the backend to the fiduciary’s web interface.

2.2. Functional Requirements

With the above basic processes visualized, User Stories and Epics are use to document FRs.

2.2.1. Use Case Diagram

Figure 11 represents a visual overview of the requirements in the system, than can be explored
further in Section 2.2.4.

8



Figure 11: Use Case Diagram

9



2.2.2. Roles

There are 2 relevant roles in the system:

• User: Someone filing their taxes. Typically, the customer of a fiduciary. This role can
autonomously sign up for an account and start uploading their tax files. They can accept
linking requests from a fiduciary to share their personal documents with said fiduciary.

• Fiduciary: The person or company responsible for advising and representing for filing their
taxes. Can invite a user to connect, so that the user becomes their client and they can see
all documents. Fiduciaries cannot sign up to the platform themselves. They must onboard
manually.

There is no administrator role because the developed system has no administrator interface
or other provision to manage it. All administrative tasks, such as approving a new fiduciary,
will have to be done by an engineer with access to the production database. Of course, such a
management system can be added at a later time without any architectural changes. But it is
not in the scope of this thesis.

2.2.3. Epics

Foundation: Building up the fundamental system, initiating the codebases, writing the neces-
sary boilerplate code, and deploying a first version of the backend and web application. This
epic does not contain any user facing functionality, but it’s a necessary base for further epics.

User account management: Allow users to create accounts, securely log in, manage their
profile information, and related functionalities. This includes the mobile app for registration
and login, the backend API for user authentication and authorization, and the data model for
storing user profiles.

Document management: Allows users to scan, upload, and manage documents. This includes
the necessary components in the mobile app and backend API endpoints, including a storage
layer on the server.

Fiduciary Client onboarding and Management: User-invite system for fiduciaries and the
tools to effectively manage their client relationships. This includes the one-way invite system
for connecting fiduciaries and users, the initial setup and configuration of the fiduciary web
app, and the core features for managing client lists and accessing basic client information.

Enhanced fiduciary-user Interaction: Enhance the interaction between fiduciaries and
users by providing secure data access, document viewing, and a robust messaging system within
the fiduciary web application. This includes access control measures for protecting user data,
the document viewing capabilities of the fiduciary web app, and the messaging system for
facilitating communication.

Tax advisor chatbot: Develop a chatbot utilizing RAG to provide users with accurate and
relevant information based on the tax document. This includes the implementation of the RAG
architecture for document retrieval and response generation, the ingestion and processing of
the tax guidance content, and the user interface for interacting with the chatbot.

10



2.2.4. User and Developer Stories

User and developer stories describe the desired features and functionalities of the system from
the perspective of its users and developers. Below is an example of a user story. The full set of
user and developer stories can be found in Chapter 15. The testing protocol evaluating these
stories can be found in Chapter 8.2.5.

The stories within the Foundation Epic are technical in nature and cannot be expressed
meaningfully from a user’s perspective. Therefore, Developer Stories are used instead.

User Scans Documents with Camera

ID FR-011

Name User Scans Documents with Camera

User Story
As a user, I want to be able to scan docu-
ments using my mobile device’s camera so
that I can easily upload paper documents.

Epic Document Management

Acceptance Criteria

• Users can initiate the scanning process
from within the mobile app.

• The app utilizes the device’s camera to
capture images of documents.

• Users can preview the scanned document
before saving it.

Table 1: FR-011

11



2.3. Non-Functional Requirements

The Non-functional requirements describe quality attributes of the system, such as performance,
security, and usability. Below is an example of a Non-functional requirement. The full list can
be found in Chapter 15.2. The testing protocol evaluating the requirements can be found in
Chapter 8.2.6.

Usability

ID NFR-01

Description
The application should be easy to use for
new users. A new user can use the applica-

tion effortlessly.

Requirement Usability - Ease of Use

Priority High

Verification Process
Conduct usability testing with two new
users to assess their ability to complete key

tasks without assistance.

Measures

• Task completion rate: >90% of new users
can complete key tasks successfully with-

out external guidance.
• Time on task: New users can complete

key tasks in under 5 minutes.

Table 2: NFR-01

12



Chapter 3

Architecture

This chapter describes the design decisions behind all aspects of the application in detail.
Key design decisions are documented using Architectural Decision Record (ADR) and can be
found in Section 15.3. The basic architecture is visualized using the C4 Notation (C4), and for
the detailed architectural visualization of the mobile app, website, and API, layered diagrams
are used.

13



3.1. C4 - Level 1 System Context Diagram

The System Context Diagram Figure 12 illustrates the external systems that the Finteam
application interacts with. In this case, the application has a single external dependency: the
OpenAI API [12]. This API is used to generate embeddings and handle chat completions, which
are core to the functionality of the integrated chatbot.

Figure 12: C4 system context diagram

14



3.2. C4 - Level 2 Container Diagram

The Container Diagram Figure 13 shows that two standalone applications are being developed:
a mobile application for iOS and Android, intended for users, and a web application used
exclusively by fiduciaries. Both applications interact with a shared Backend API, which serves
as the central communication layer. This backend is responsible for handling client requests,
enforcing business logic, and connecting to a PostgreSQL database to persist and retrieve data.

Figure 13: C4 container diagram

15



3.3. Domain Model

The domain model shown in Figure 14 provides a visual representation of the core entities
within the application’s domain and their relationships. This model serves as a fundamental
blueprint for understanding the structure and functionality of the system.

The model includes both business-relevant attributes (such as fullName or content) and techni-
cal implementation details (including id primary keys, createdAt/updatedAt audit timestamps,
and system-specific fields like storageKey and hashedPassword). This provides a comprehensive
view of the domain entities as they will be implemented in the system. This serves as a bridge
between the conceptual business domain and the actual database schema design.

Figure 14: Domain model

16



The system involves several key components and their interactions as illustrated in the diagram:

• The Fiduciary represents a user with specific roles and permissions, interacting with the
system. Fiduciaries can issue Invites.

• An Invite is a mechanism for granting access or inviting users. It has attributes like code,
username, and expiresAt. An Invite is used by a User.

• A User is a central entity in the system. Users own Documents. Users also participate
in Chats.

• A Document represents a piece of content within the system. Documents have attributes
like filename, category, and subcategory. Documents can have associated DocumentFiles.

• A DocumentFile represents the actual file associated with a Document.

• A Chat facilitates communication between a user and a fiduciary. Users participate in
Chats. Chats contain Messages.

• A Message is a unit of communication within a Chat. Messages have attributes like
senderId, senderType, and content. Messages can have associated MessageDocuments.

• A MessageDocument links a Message to a Document, allowing for documents to be shared
within messages.

17



3.4. Mobile Architecture

The mobile application’s architecture is designed with a clear separation of concerns, organized
into three primary layers: Presentation, Business Logic, and Data Layer. The Cross-Cutting
Concerns Layer is an additional layer that spans all three core layers. It represents shared
functionality that is used across the entire application hierarchy.

Figure 15: Mobile Architecture

18



3.4.1. Project Directory Structure Overview

The main directories at the root of the project include:

• app: Contains all files related to the Presentation Layer, specifically screens and navigation
setup using Expo Router.

• components: Houses reusable UI components utilized across various screens.
• hooks: Stores custom React hooks that encapsulate reusable business logic and stateful

operations.
• lib: A general-purpose directory containing core logic, including API clients, authentication

services, data models/schemas, polyfills, and static data definitions.
• translations: Manages localization files and internationalization (i18n) setup.
• constants: Holds application-wide constant values, such as color palettes and configuration

settings.

3.4.2. Presentation Layer

This layer is responsible for everything the user sees and interacts with. It is built using React
Native components and Expo Router for navigation.

Screens/Pages

These are the individual views of the application, such as the main category overview, document
display pages, user authentication forms (sign-in, sign-up), and settings panels. These are
located within the app directory, where Expo Router parses routes based on file structure. For
example:

• index.tsx represents the main (root) screen within a tab-based layout.
• view.tsx is a screen for viewing a specific document.

UI Components

To maintain consistency and reusability, common visual elements are encapsulated as React
Native components. These include:

• Cards for displaying information (e.g., CategoryCard)
• Chat interfaces (AiChat, Chat)
• Input controls like image pickers (ImagePickerButton)

These components are stored in the components directory and imported into screens as needed.

Navigation

The application uses Expo Router to manage transitions between different screens. This
includes:

• Stack navigation for hierarchical flows
• Tab navigation for primary sections (configured in files like _layout.tsx)

19



The routing system supports parameterized routes, which means inserting dynamic values such
as an ID or user name directly into the URL. This allows screens to receive and use data passed
via the navigation path, enabling more flexible and context-sensitive navigation.

3.4.3. Business Logic Layer

This layer acts as an intermediary between the Presentation Layer and the Data Layer,
containing the application’s core logic, state management, and data processing.

Custom Hooks

Reusable logic is extracted into custom React hooks in the hooks directory. Examples include:

• useTranslation for internationalization
• useCategories for category data
• useAuthenticatedQuery for authenticated API requests

State Management

Application state is managed using:

• React Query [13] for server state: fetching, caching, updating
• React’s built-in useState and useReducer for local UI state

Authentication

User authentication and session management are handled via an auth context in the lib
directory (e.g., auth.tsx), including:

• AuthProvider for global auth state
• useAuth for accessing user data and auth functions like login/logout
• Token management

3.4.4. Data Layer

Responsible for all data-related operations, including external API interaction and local persis-
tence.

API Client

Located in the api directory, the API client includes modules for:

• Authentication
• Documents
• Files
• Chat and AI services

These modules handle HTTP requests and responses.

20



Data Models

Data structures are defined using schemas (Zod) for consistency and validation. Schemas like
Document, User, Chat are located in files like schemas.ts.

Local Storage

Uses AsyncStorage to persist:
• Authentication tokens
• Cached data (e.g., recent documents or messages)

3.4.5. Cross-Cutting Concerns

Functionality is used across multiple layers of the application.

Localization

Internationalization (i18n) is implemented using:

• JSON translation files in locales (e.g., de.json)
• Initialization in files like index.ts
• Hooks/functions for accessing translations

Configuration

Constants and static data are stored in:

• constants directory (e.g., colors.ts)
• lib directory (e.g., categories-data.tsx for static categories or FAQs)

21



3.5. Web Architecture

The web application’s architecture follows the same patterns as the mobile application. It is
designed with a clear separation of concerns, organized into three primary layers: Presentation,
Business Logic, and Data Layer. The Cross-Cutting Concerns Layer is again used over all layers.

Figure 16: Web Architecture

3.5.1. Project Directory Structure Overview

The main directories at the root of the project include:

• pages: Contains all page components that represent different routes/screens in the appli-
cation, including home, login, chats, documents, invites, and user management pages using
wouter [14] for routing.

• components: Houses reusable UI components utilized across various pages, including chat
interfaces, document viewers, navigation, forms, and authentication components.

• hooks: Stores custom React hooks that encapsulate reusable business logic, including
authentication (use-auth.ts) and internationalization (use-translation.ts) functionality.

22



• lib: A general-purpose directory containing core logic, including API clients (api/), authen-
tication services (auth.ts, auth-context.tsx), and utility functions (utils.ts).

• i18n: Manages internationalization setup with react-i18next, including translation configu-
ration and locale files for multi-language support.

• types: Contains TypeScript type definitions and data models for different entities like chats,
documents, users, invites, posts, and authentication.

3.5.2. Presentation Layer

This layer is responsible for everything the user sees and interacts with. It is primarily built
using React components and wouter for navigation.

3.5.3. Screen/Pages

These are the individual views of the application, such as the home page, document display
pages, user authentication forms (login), chat interfaces, and invite management panels. These
are located within the pages directory, where wouter routing conventions define routes based
on component imports and path configuration [14]. For example:

• home-page.tsx represents the main dashboard screen.
• chats-detail-page.tsx is a screen for viewing and interacting with specific user chats.
• document-detail-page.tsx handles document viewing and file management.

Components

To maintain consistency and reusability, common visual elements are encapsulated as React
components. These include:

• Cards for displaying information (e.g., ChatListCard, DocumentList)
• Chat interfaces (ChatInput, ChatList, ChatOverviewList)
• Form controls and dialogs (LoginForm, CreateInvite, DeleteUserDialog)
• File management components (FileContentViewer, FileList)

These components are stored in the components directory and imported into pages as needed.
A ui subdirectory contains base design system components built with Tailwind CSS.

Navigation

The application uses wouter to manage transitions between different screens. This includes:

• Route-based navigation for hierarchical flows (using <Route> and <Switch>)
• Responsive navigation bar with mobile sheet drawer (configured in navigation.tsx)
• Protected routes that require authentication
• Modal dialogs using sheet components

Dynamic routes allow data to be passed between screens during navigation, such as user IDs
and document IDs extracted from URL parameters using the useParams() hook.

23



3.5.4. Business Logic Layer

This layer acts as an intermediary between the Presentation Layer and the Data Layer. It
contains the application’s core logic, state management, and data processing.

Custom Hooks

Reusable logic is extracted into custom React hooks in the hooks directory. Examples include:

• useTranslation for internationalization with react-i18next
• useAuth for authentication state and token management
• API-specific hooks like useChatMessages, useSendChatMessage for chat functionality

State Management

Application state is managed using:

• React Query [13] for server state: fetching, caching, updating, and synchronization
• React Context (AuthProvider) for global authentication state
• React’s built-in useState and useReducer for local UI state

Authentication

User authentication and session management are handled via an auth context in the lib
directory (auth-context.tsx), including:

• AuthProvider for global auth state management
• useAuth hook for accessing user data and auth functions like login/logout
• Token management using localStorage with automatic session expiry handling

3.5.5. Data Layer

Responsible for all data-related operations, including external API interaction and local persis-
tence.

API Client

Located in the lib/api directory, the API client includes modules for all necessary API
endpoints. Multiple individual endpoints are grouped, such as:

• Authentication (auth-routes.ts)
• Documents (document-routes.ts)
• Invite system (invite-routes.ts)

These modules handle HTTP requests and responses with built-in error handling and unautho-
rized response management.

24



Data Models

Data structures are defined using Zod schemas for runtime validation and type safety. Schemas
like ChatMessage, Document, User, Invite are located in the types directory with files like chat-
types.ts, document-types.ts, user-types.ts.

Local Storage

Uses browser localStorage to persist:

• Authentication tokens
• User session state
• No cached data persistence (relies on React Query for caching)

3.5.6. Cross-Cutting Concerns

Functionality used across multiple layers of the application.

Localization

Internationalization (i18n) is implemented using react-i18next:

• JSON translation files in i18n/locales (e.g., de.json for German)
• Configuration and schema validation in i18n/i18n.ts with Zod validation
• Custom useTranslation hook for type-safe access to translations

Configuration

Environment variables and configuration are managed using:

• env.ts file using @t3-oss/env-core with Zod validation for type safety
• Environment variables like VITE_API_URL for API endpoints

25



3.6. API Architecture

The API application’s architecture also follows a layered approach. It is organized into four
primary layers: Presentation, Business Logic, Service, and Data, with Cross-Cutting Concerns
spanning across all layers.

26



Figure 17: API Architecture

27



3.6.1. Project Directory Structure Overview

The main directories within the src folder include:

• routes: Contains all route definitions that map HTTP endpoints to controller functions,
including authentication (auth-routes.ts), document management (document-routes.ts),
chat functionality (chat-routes.ts), trustee operations (trustee-routes.ts), file handling
(file-routes.ts), invite system (invite-routes.ts), and AI completion (completion-
routes.ts).

• controllers: Houses request handlers that process HTTP requests, validate input using
Zod schemas, and coordinate responses, including authentication logic, document processing,
chat management, and AI completion orchestration.

• services: Stores business logic functions that handle core operations independently of
HTTP concerns, including user management, document operations, AI retrieval, completion
processing, and reranking algorithms.

• middleware: Contains Express middleware for cross-cutting concerns like JWT authen-
tication (auth-middleware.ts), file uploads (upload-middleware.ts), and rate limiting
(ratelimit-middleware.ts).

• models: Defines Drizzle ORM database schemas for all entities including users, documents,
chats, trustees, and invites with proper relationships and constraints.

• types: Contains TypeScript type definitions and Zod validation schemas for different
domains like authentication, documents, chats, and completion requests.

• lib: General-purpose utilities including authentication helpers (auth.ts), document pro-
cessing utilities (document-utils.ts), LLM tools (llm-tools.ts), and retrieval algorithms
(retreival.ts).

3.6.2. Presentation Layer

This layer handles all HTTP communication and serves as the entry point for client requests.
It is built using Express.js with structured routing and middleware.

API Routes

RESTful endpoints organize the API into logical domains. These include:

• /api/auth handles user authentication with sign-in, sign-up, and session management.
• /api/documents manages tax document CRUD operations with categorization and search.
• /api/invites facilitates user invitation and connection workflows.

Middleware

Incoming requests are passed through Express middlewares:

• Authentication middleware (auth-middleware.ts) validates JWT tokens and distin-
guishes between user and trustee access levels.

• File upload middleware (upload-middleware.ts) processes multipart form data using
Multer for document storage.

28



• Rate limiting middleware (ratelimit-middleware.ts) protects against API abuse using
express-rate-limit.

• CORS and logging handled through cors and morgan packages for cross-origin support
and request logging.

Authentication middleware includes specialized variants for user-only access
(userAuthVerification), trustee-only access (trusteeAuthVerification), and combined access
(combinedAuthVerification).

3.6.3. Business Logic Layer

Controllers act as the main entry point for business operations, handling request validation,
service coordination, and response formatting.

Request Processing

Controllers in the controllers directory process all requests. These controllers include:

• auth-controller.ts handles user registration, authentication, and session management with
JWT token generation.

• document-controller.ts processes tax document operations, including categorization,
search, and metadata management.

• invite-controller.ts manages invitation workflows and connection establishment between
users and trustees.

Input Validation

All controllers implement input validation using Zod schemas defined in the types directory.
For example:

• SignInSchema and SignUpSchema in auth.ts validate authentication requests.
• DocumentSchema in document.ts ensures proper document metadata structure.
• ChatMessageSchema in chat.ts validates message content and formatting.

Controllers use safeParse() to validate request bodies and return appropriate error responses
for invalid input, ensuring type safety throughout the request processing pipeline.

3.6.4. Service Layer

The service layer is closely tied to the business logic. It contains pure business logic functions
that operate independently of HTTP concerns, which enables reusability across different
contexts. Services follow functional programming patterns without class-based architecture.

29



Business Operations

Services in the services directory handle core application logic. These include:

• document-service.ts handles document persistence, categorization logic, and search oper-
ations.

• retrieval-service.ts performs vector similarity search and full-text search across document
embeddings.

• rerank-service.ts improves search result relevance using machine learning models.

AI Integration

The completion service implements the RAG pipeline:

• Document Assembly: Combines vector search and full-text search results with config-
urable weights.

• Reranking: Applies ML-based relevance scoring to improve result quality.
• Context Preparation: Formats retrieved documents for LLM consumption with proper

context management.
• Streaming Responses: Supports real-time AI completion streaming for improved user

experience.

3.6.5. Data Layer

Responsible for all data persistence, retrieval, and external service integration.

Database Management

The application uses a dual-database approach:

• PostgreSQL with Drizzle ORM for relational data including users, documents, chats,
trustees, and invites.

• pgvector extension for vector embedding storage with HNSW indexing for efficient simi-
larity search.

Database schemas are defined in the models directory with proper relationships:
• user-model.ts defines user entities with trustee relationships and authentication data.
• document-model.ts handles tax documents with categorization and file associations.
• chat-model.ts manages conversation entities with participant tracking.

Vector Storage

Document embeddings are stored in a specialized schema (vector-db/schema.ts) optimized for
similarity search:

• Embeddings table stores 1536-dimensional vectors with text content and metadata.
• HNSW indexing enables efficient cosine similarity search.
• Full-text search integration using PostgreSQL’s built-in text search capabilities.

30



External Services

Integration with external APIs is abstracted through the data layer:

• OpenAI API for text completions using GPT-4.1-mini and embedding generation.
• File system storage for uploaded documents with configurable upload destinations.

3.6.6. Cross-Cutting Concerns

Functionality that spans multiple layers and provides foundational capabilities.

Type Safety and Validation

Comprehensive type safety is enforced throughout the application:

• Zod schemas in the types directory provide runtime validation and TypeScript type
generation.

• Environment validation using @t3-oss/env-core ensures required configuration is present.
• Database types automatically generated from Drizzle schemas ensure type consistency.

Configuration Management

Centralized configuration through environment variables:

• Database connections for both PostgreSQL and vector database.
• AI service configuration including OpenAI API keys and model selection.
• Application settings for rate limiting, file upload paths, and JWT configuration.
• RAG pipeline parameters for retrieval counts, reranking settings, and search weights.

Configuration is validated at startup using Zod schemas in env.ts to prevent runtime errors.

Utilities and Tools

Supporting functionality organized in the lib directory:

• Authentication utilities (auth.ts) for JWT generation, password hashing, and verifica-
tion.

• Document utilities (document-utils.ts) for file processing and metadata extraction.
• LLM tools (llm-tools.ts) for AI model integration and prompt management.
• Retrieval algorithms (retrieval.ts) for combining search results and relevance scoring.

Scripts and Processing

Specialized scripts in the scripts directory handle data processing:

• Document chunking (chunking/chunker.ts) splits large documents into processable
segments.

• Embedding generation (chunking/embed.ts) creates vector representations of document
content.

• Evaluation frameworks (eval/) for testing and improving AI response quality.

31



Chapter 4

Tools & Technologies

This chapter provides an overview of the technologies used in this thesis. All architecturally
relevant decisions are elaborated on and justified in the Architecture chapter 3. General project
management technologies and tools can be found in Section 9.5.

4.1. Mobile Application

The mobile application is developed using React Native [1] and the Expo framework [15].
React Native enables a single, shared codebase for both iOS and Android. The React Native
documentation [1] recommends Expo due to its ease of use, especially for cross-platform
development on both Windows and Mac. For example, it allows Windows users to deploy apps
to iOS devices. Without Expo, the Mac-exclusive Xcode [16] would be required. Furthermore,
Expo comes with built-in support for various dependencies, such as camera access, which
simplifies dependency management. As is standard with all Expo setups, TypeScript [8] is used
to enhance the standard feature set of JavaScript and improve maintainability through type
safety. The development environment relies on Node.js [17] for its runtime and pnpm [18] for
efficient package management. Navigation within the application is managed by Expo Router
[19], which offers a file-system-based routing solution, simplifying the definition of screens and
navigation paths.

4.1.1. Additional Libraries

• Data Handling and Persistence: The application does not use a local database for per-
sistent storage. Instead, all relevant data is fetched and managed via Representational State
Transfer Application Programming Interface (REST API). State management and caching
are handled on the client side using React Query [13], which ensures efficient data retrieval,
caching, and synchronization with the backend. This approach simplifies the architecture
and reduces the complexity associated with maintaining a local database while still providing
a responsive user experience through effective caching and background updates.

• Remote State Management: All application data is retrieved from and synchronized with
a backend REST API. To manage asynchronous data fetching, caching, and background
updates, the application uses React Query.

• Data Validation: To ensure type safety and data integrity, all responses from the backend
API are validated using Zod [20]. Zod schemas define the expected structure and types of
API responses, and every response is checked against these schemas before being processed in
the frontend. This guarantees that only valid and expected data shapes are used throughout
the application.

32



• Internationalization: To support multiple languages, the application utilizes i18n-js [21].
This setup allows for easy management of translations. Initially, the application does,
however, only support German.

4.2. Backend API

The backend of the initial prototype was entirely powered by Supabase [22], a Platform as
a Service (PaaS) powered by PostgreSQL [5]. The Supabase instance communicated directly
with the React Native client. With this setup, there was no need for a dedicated backend as
all server functionality is handled by the Supabase platform. For this thesis, it was decided to
depart from this model and adopt a traditional client-server-database setup with a dedicated
backend API. The reasons for this are:

• Custom Postgres Hosting: If Supabase is used in a client-to-database mode, it cannot
be replaced without extensive code modifications. And while Supabase supports Switzerland
as a hosting region [22], it might not be sufficient for future data protection requirements
of the Finteam project. Using a regular Postgres database allows switching to any Postgres
provider or self-hosted Postgres database without changing any application code.

• Authorization Management: The Row-Level Security (RLS) of Supabase is a powerful
feature for enforcing access controls directly within the database, but it falls short compared
to traditional server-side authorization. RLS policies are limited in flexibility, as they operate
within SQL constraints and cannot easily accommodate complex business logic or external
authorization sources. Moreover, debugging and maintaining RLS policies can be cumber-
some, especially in large applications where access rules are dynamic or require conditional
evaluation beyond simple SQL expressions. By handling authorization on the server side, the
application retains full control over authentication, permission checks, and logging, ensuring
a more scalable and auditable security model. This is particularly relevant for the Finteam
domain model as there are both trustees and regular users with different access requirements.

• Server-side Compute Workloads: Having a dedicated backend enables offloading some
computation tasks to the server. For example, it might become necessary to process uploaded
documents with an external Large Language Model (LLM), which would be more cumber-
some in a direct client-to-database architecture.

With this in mind, it was decided to instead use a custom backend with the technologies
described in Section 4.2.1.

4.2.1. Libraries

Using a regular Postgres database instead of Supabase necessitates a dedicated backend, as the
client can no longer access the database directly. This backend is powered by a Node.js [17]
server with Express.js [3], written in TypeScript [8] for improved maintainability and type safety.

• Database: As already established, a Postgres database will be used. To communicate with
this database, the Drizzle ORM [6] is utilized, just as it is on the client for reading the local
SQLite database.

33



• Authentication: Authentication is handled directly on the dedicated API server using a
username/password mechanism, with credentials securely stored in the Postgres database.
This approach ensures full sovereignty over user management without the need for a hosted
authentication solution. To securely provision authentication, Passport.js [23] and JWT [24]
are used. Both the web and mobile clients can sign in and sign up through the backend API.

• Bundler: As the backend is written in TypeScript, it cannot be directly executed by Node.js.
To create an executable production build, tsc along with tsc-alias [25] is used to transpile
TypeScript with import aliases (such as ~/controllers/auth) into valid JavaScript. For local
development, tsx [26] is used to automatically refresh the development server on every code
change.

4.3. Web Application

Trustees use the web application to manage their customers’ filings. This is built as a conven-
tional React Single Page Application (SPA) [7] without any server components. All server
interaction is handled through the backend API. TypeScript [8] is used to ensure type safety
within the code and therefore improve maintainability.

4.3.1. Additional Libraries

• Bundling: A React application needs to be bundled for both development and production.
For this, Vite is used. Vite provides a Command Line Interface (CLI) that enables the initial
setup of a React application. It also comes with TypeScript by default.

• Routing: As already described in the architecture chapter, the frontend is a single-page
application SPA. To handle client-side routing, Wouter [14] is used. This is a minimalist
routing library for React. It allows defining various routes, such as /events or /login, directly
in the program code. Wouter was chosen because it is a simple and straightforward routing
library. Other routing libraries come with a server component by default, which is not needed
for this simple SPA.

• State Management: A React application is entirely based on states. To manage these
globally within the application, React Query [13] is used. This enables a global state store
to manage application state across multiple files.

• Data Fetching: To interact with the backend API, the browser’s built-in Fetch API is
utilized for HTTP calls. To efficiently manage asynchronous state within the application,
React Query [13] is used. This state manager facilitates the synchronization of asynchronous
states while also providing caching and revalidation helpers to optimize data fetching.

• Validation: The responses received from the backend must be validated and typed to
ensure full type safety in the frontend. Zod [20] is used for this purpose. To validate user
inputs in forms, React Hook Form is combined with Zod, ensuring a robust and type-safe
validation process.

34



4.3.2. Hosting

Portability is the number one factor when it comes to hosting. All parts of this full-stack
application can be hosted on various platforms or in a self-hosted Linux environment. For the
duration of this project, both the website and the backend are hosted on Railway [27]. The
platform makes it easy for developers to deploy code, which is built in an automated manner
as soon as code is pushed to a GitHub repository.

Railway operates as a Platform-as-a-Service (PaaS) solution that abstracts away infrastructure
complexity typically associated with application deployment. The platform provides automatic
provisioning of resources, including compute instances, databases, and networking components,
without requiring manual server configuration. The deployment pipeline integrates seamlessly
with GitHub through webhook-based triggers, automatically initiating build processes that
include dependency installation, compilation, and deployment to production environments when
code changes are committed to the designated repository branch.

4.3.3. AI Chatbot

The chatbot relies on multiple LLM and an embedding model from OpenAI [12]. The Vercel AI
SDK [28] was used to interact with the OpenAI models. The AI SDK Client library was used
to implement client-side chat stream handling in the mobile app.

35



Chapter 5

Implementation

This chapter describes notable aspects of the implementation from the mobile app, web app,
and API. While it is not intended to be a complete log for all aspects of the application, it does
discuss all important components.

36



5.1. Mobile App UI Overview

The following figures illustrate the user interface of the mobile app to provide context for the
implementation details discussed below.

The first figure on the left shows the app’s start screen. It is divided into categories based on
the official tax form from the Canton of Zurich and the project team’s practical experience in
filing taxes. To help users track their progress, tags under each category light up green when a
document has been uploaded. Both categories and tags are currently developer-defined, but in
the future, fiduciaries may be able to customize them on a per-user basis.

The middle figure displays a tooltip for a specific subcategory, designed to reduce confusion
about which documents should be uploaded. In this example, the Swiss salary statement form
is shown along with a brief description. This feature aims to reduce miscommunication between
users and fiduciaries.

The last figure on the right demonstrates the document upload process from the user’s perspec-
tive. Users can upload multi-page documents and attach notes to clarify specific details. These
documents and notes then become visible to the connected fiduciary in their web application.

Figure 18: Mobile app start
screen

Figure 19: Mobile app tips Figure 20: Mobile app document
upload

37



5.2. Invite and Connection Management System

Finteam’s user-fiduciary connection is invitation-based. The connection uses a mechanism that
enables fiduciaries to establish secure relationships with users through randomly generated
invite codes. This workflow makes sure that connections are established through explicit
invitation and acceptance processes, so that no unintended pairings can occur.

5.2.1. Invite Flow

Figure 21: Invite Flow

The invitation system operates through a dedicated database table that manages the complete
lifecycle of connection requests from creation through acceptance. Each invitation contains a
unique invite code, expiration timestamp, and specific user targeting information.

• code: varchar(32)
• trusteeId: integer (references trusteesTable.id)
• userName: varchar(255), not binding but helps with identification
• isUsed: boolean (default false)
• usedById: integer (references usersTable.id)
• expiresAt: timestamp for expiration date

38



5.2.2. Cryptographic Code Generation

Invitation codes are generated using the Node.js cryptographic function
randomBytes(8).toString(hex). The system generates 16-character hexadecimal codes derived
from 8 bytes of cryptographically secure random data. This is sufficient entropy to prevent
brute force attacks while maintaining user-friendly code lengths.

Figure 22: Web app invitation generation

To create a secure invitation code, the fiduciary presses the “Einladung erstellen” button in the
web application. With that, the code is generated with the previously described method. As
outlined in Figure 21, the generated code then needs to be transmitted to the user through an
external communication channel of the fiduciary’s choice (e.g., email).

5.2.3. Connection Establishment Process

When users accept valid invitations, the system simultaneously marks the invitation as used
and establishes the fiduciary relationship in a single database transaction. This transactional
approach ensures data consistency. In addition to that, the system validates invitation status,
expiration, and user eligibility before proceeding with the connection establishment.

In the app, this process is visualized as follows.

39



Figure 23: Mobile app fiduciary connect workflow

First, the user enters the code received from the fiduciary into the app. Then, the fiduciary’s
details are loaded so the user can review and verify that it is the correct fiduciary. Once accepted,
the connection is established, granting the fiduciary access to the user’s data.

5.2.4. Connection Termination and Management

The system allows both users and fiduciaries to terminate relationships through dedicated
endpoints. Connection revocation immediately removes access permissions and updates all
relevant database relationships. Such an endpoint can be seen in the last step of Figure 23.

Connection termination is immediate and irreversible. Once disconnected, it requires a new
invitation process to re-establish relationships. This design ensures clear boundaries and
prevents accidental or unauthorized relationship restoration.

5.3. Fiduciary Access Control System

The system implements an access control mechanism that enables fiduciaries to securely access
and manage client documents while maintaining authorization boundaries. This occurs through
a relationship-based permission model that makes sure fiduciaries can only access documents
belonging to users who have explicitly granted them access through established connections.

40



Figure 27: Web app client file access

This access system is built upon a foreign key relationship within the user model, where each
user can optionally be associated with a single fiduciary through the trusteeId field. This one-
to-many relationship allows fiduciaries to manage multiple clients. Users, however, can only be
connected to a single fiduciary.

• username: varchar(255)
• trusteeId: integer (references trusteesTable.id)

5.3.1. Authentication and Authorization Frame-
work

The backend API uses a dual-authentication approach that distinguishes between regular users
and fiduciary professionals through JWT token claims. Fiduciary tokens include an isTrustee
flag that enables the middleware to apply appropriate access controls and routing logic.

// Check if a user is connected to a trustee
export async function isUserConnectedToTrustee(userId: number, trusteeId: number) {
  const user = await db.query.usersTable.findFirst({
    where: eq(usersTable.id, userId),
    columns: {
      trusteeId: true,
    },
  });

  return user?.trusteeId === trusteeId;
}

41



5.3.2. Document Access Patterns

Every document access request from a fiduciary triggers a connection verification process that
validates the relationship between the requesting fiduciary and the document owner. This
fiduciary access pattern differs from standard user access patterns. When a fiduciary requests
a document, the system first retrieves the document to identify its owner, then validates the
fiduciary-user relationship before granting access.

The system performs this operation by querying the database to find the document’s owner
and then cross-referencing the fiduciary’s permissions to ensure the connection is valid. If the
document is not found or if the fiduciary does not have an established relationship with the
user, access is denied.

This approach makes sure that fiduciaries cannot enumerate or access documents through direct
ID manipulation, as each access attempt requires explicit relationship validation.

5.3.3. Security Considerations

The system enforces strict separation between user and fiduciary contexts through middleware-
level authentication checks that prevent cross-usage of access permissions. Fiduciaries cannot
access user-specific endpoints, and users cannot access fiduciary management functions, main-
taining clear operational boundaries. Within controllers, there are additional authorization
checks to make sure that users can only access data they own, and fiduciaries can only access
data of connected users.

5.4. File Uploads

The backend implements file storage by combining local filesystem storage with PostgreSQL
metadata management. This means that binary files are stored efficiently on disk while file
metadata still benefits from the relational database patterns.

Figure 28: File Upload Workflow

42



5.4.1. Multer Middleware

File uploads are handled through a dedicated middleware layer built on Multer, a Node.js
library specialized for handling multipart/form-data. This layer handles file naming through
UUIDs to avoid collisions from user-provided filenames. Original filenames are preserved in the
database.

const storage = multer.diskStorage({
  destination: (req: Request, file: Express.Multer.File, cb) => {
    cb(null, env.UPLOAD_DESTINATION);
  },
  filename: (req: Request, file: Express.Multer.File, cb) => {
    const extension = path.extname(file.originalname).toLowerCase();
    cb(null, `${randomUUID()}${extension}`);
  },
});

5.4.2. Type Validation and Constraints

As shown in Section 5.4.1, MIME type filtering restricts uploads to specific document formats.
The current implementation supports PNG images, JPEG images, and PDF documents, which
are all relevant formats for tax-related documents. There is a 5MB size limit per file.

5.4.3. Database Schema and Relationships

Document metadata is stored separately from binary files, directly in the application database.
The documentsTable contains business logic attributes such as categories, subcategories, and
user associations, while the documentFilesTable maintains the mapping between documents
and their physical storage locations.

• documentId: integer (references documentsTable.id)
• storageKey: varchar(255) (UUID)

This structure supports multiple files per document. The storage key field contains the UUID-
based filename that corresponds to the physical file location.

5.4.4. Access Control and Retrieval

File retrieval is secured through user authentication and ownership verification, with special
provisions for fiduciary access. The system validates that users can only access files belonging to
their documents or documents they are authorized to view through user-fiduciary relationships.

Served files include content headers to enable inline viewing of PDFs and images while serving
original filenames instead of UUIDs in the user interface. This approach maintains the user
experience while making sure that the underlying storage remains organized.

43



5.5. API Authentication System

The system implements authentication based on JSON Web Tokens (JWT) [24] and crypto-
graphic password hashing, without the use of an external authentication provider. The
authentication architecture supports role-based access patterns while maintaining a unified
token-based approach for client integration.

5.5.1. Cryptographic Foundation

The authentication system uses cryptographic primitives for password security and token
generation. Password storage uses PBKDF2 (Password-Based Key Derivation Function 2) with
SHA-512 hashing. Each user password is combined with a unique 16-byte salt generated using
Node.js crypto primitives. This approach ensures that identical passwords produce different
hashes across users. This is robust protection against rainbow table and brute-force attacks [29].

5.5.2. JWT Token Architecture

The use of JWTs enables stateless session management without server-side session storage. The
signed tokens contain essential user identification and role information, allowing middleware to
make authorization decisions without database queries.

• userId: string
• username: string
• isTrustee: boolean

Tokens are signed using a configurable secret key and include automatic expiration handling
with a default seven-day validity period. The optional isTrustee flag enables role-based routing
and access control throughout the application without requiring additional database lookups.

5.5.3. Middleware Authentication

The authentication system provides three distinct middleware functions that handle different
access patterns:

• user-only authentication
• fiduciary-only authentication
• combined authentication for shared resources

The middleware architecture enforces strict separation between user and fiduciary contexts,
preventing cross-contamination of access permissions. Each middleware variant validates token
authenticity, checks role appropriateness, and injects user context into the request object for
downstream processing. Fiduciary tokens are explicitly rejected from user-only endpoints, while
user tokens cannot access fiduciary-specific resources.

44



5.5.4. Registration and Sign-In

User registration is implemented such that each username may only exist once. Therefore, on
every registration, this uniqueness is checked. For the password, the system enforces minimum
security requirements including a four-character minimum for usernames and an eight-character
minimum for passwords, with a 128-character maximum limit.

During sign-in, credentials are validated through constant-time comparison operations to
prevent timing attacks. Successful authentication generates JWT tokens containing user
identification and role information, enabling immediate access to protected resources without
additional authentication steps.

5.5.5. Rate Limiting and Security Controls

The authentication endpoints implement rate limiting to prevent brute-force attacks and
credential stuffing attempts. The system limits authentication attempts to five requests per
minute per IP address. This allows a few tries for legitimate users but prevents a single actor
from brute-forcing passwords.

5.5.6. Client Integration

The authentication system follows standard Bearer token patterns for HTTP authorization
headers, ensuring compatibility with modern web and mobile development frameworks. Clients
receive tokens upon successful authentication and include them in subsequent requests using
the Authorization header format:

Authorization: Bearer YOUR_JWT_TOKEN

5.6. Web Client Authentication

The web client implements a React Context-based authentication system with localStorage
persistence.

5.6.1. Token Storage and Persistence

The web client uses the browser’s localStorage API for JWT token persistence. This allows
users to maintain authenticated sessions across page reloads. This is then passed into React
Context to provide global authentication state management.

To keep the session state up-to-date across tabs, the browser’s storage event API is used. This
ensures that authentication state changes in one browser tab are immediately reflected in all
other open tabs.

// Listen for storage events (in case another tab changes auth state)
globalThis.addEventListener("storage", checkAuth);

45



5.6.2. Protected Route Implementation

The client implements route protection through a ProtectedRoute component that automati-
cally redirects unauthenticated users to the login page. Protected routes monitor authentication
state and redirect users when authentication is lost.

All API requests include JWT tokens through the standard Authorization header, using Bearer
token format. API functions consistently check for token availability before making requests,
ensuring fail-fast behavior when authentication is unavailable.

Session Expiration Handling

If the API responds with a 401 Unauthorized error or the user manually signs out, the client
automatically clears local authentication state and redirects to the sign-in route.

5.7. Mobile Client Authentication

The mobile client implements a React Native authentication system using AsyncStorage for
token persistence and React Context for state management. This approach provides a seamless
user experience across app sessions while maintaining security through JWT token manage-
ment. The architecture leverages Expo Router for navigation and React Query for API state
management.

5.7.1. Token Storage and Persistence

The mobile client utilizes React Native’s AsyncStorage for JWT token persistence, enabling
users to maintain authenticated sessions across app restarts. Tokens are stored using a consistent
key, AUTH_TOKEN_KEY. AsyncStorage is a mobile API that offers secure storage, helping protect
tokens against unauthorized access.

An AuthProvider component, using React Context, synchronizes authentication state between
AsyncStorage and the UI. The context provides the token, loading status, user data, and
authentication methods.

type AuthContextType = {
  token: string | null;
  isLoading: boolean;
  isSignedIn: boolean;
  user: any;
  signIn: (username: string, password: string) => Promise<{ success: boolean; error?:
string }>;
  signUp: (username: string, password: string) => Promise<{ success: boolean; error?:
string }>;
  signOut: () => Promise<void>;
};

The provider loads stored tokens on app initialization and fetches user data when a token is
present, ensuring the authentication state is readily available.

46



5.7.2. Automatic User Data Fetching

User data is automatically fetched when the authentication token changes. This ensures that
user context is always available for personalization and authorization without requiring manual
API calls after login. This is typically handled within a useEffect hook in the AuthProvider
that observes changes to the token state.

5.7.3. Navigation-Based Route Protection

Route protection is managed via Expo Router. The root layout component checks the authen-
tication state and redirects unauthenticated users to the sign-in screen.

// Inside RootLayoutNav component
useEffect(() => {
  if (!isLoading && !isSignedIn) {
    router.replace("/sign-in"); // Redirect to sign-in if not authenticated
  }
}, [isSignedIn, isLoading]);

This ensures that protected sections of the app are not accessible without a valid session.

5.7.4. HTTP Request Authentication

Authenticated API requests include the JWT token in the Authorization header (Bearer token
format). A centralized function, createHeaders, ensures tokens are consistently applied.

export function createHeaders(token?: string): Record<string, string> {
  const headers: Record<string, string> = { /* ... */ };
  if (token) {
    headers.Authorization = `Bearer ${token}`;
  }
  return headers;
}

5.7.5. Session Expiration Handling

Session expiration is handled within custom React Query hooks. A handleUnauthorizedResponse
function detects 401 errors, triggers a sign-out, and clears the session. With this, users are
gracefully logged out when their session is no longer valid.

47



5.8. AI Chatbot

The AI chatbot is built as a custom retrieval-augmented gener-
ation RAG system that uses a separate PostgreSQL database
dedicated exclusively to vector embeddings and full-text search
capabilities, as described in Section 3.6. The entire RAG pipeline
is designed with modularity in mind, so that each component can
be toggled on or off independently from the configuration. This
enables detailed benchmarking of different retrieval strategies
and evaluation of how individual improvements impact overall
system performance.

Figure 29: Mobile app AI
chat implementation

5.8.1. Configuration

The system combines multiple retrieval techniques in a hybrid approach. It utilizes both
semantic vector search and PostgreSQL’s native full-text search capabilities. Parameters such
as retrieval count, reranking, query rewriting, and the weight distribution between vector and
full-text search can all be configured through the configuration file src/config.ts.

export const INITIAL_RETRIEVAL_COUNT = 20; // k1
export const FINAL_CONTEXT_COUNT = 5; // k2
export const RERANKING_ENABLED = true;
export const FULL_TEXT_SEARCH_ENABLED = true;
export const QUERY_REWRITER_ENABLED = true;

5.8.2. Database

The vector database uses a dedicated PostgreSQL instance with the pgvector extension [30].
This is completely separate from the main application database. This maintains clean architec-
tural boundaries between application data and chatbot data.

The database only contains the documentEmbeddings table, which stores document chunks with
their corresponding vector embeddings, contextual information, and metadata:

• text: content of the chunk

48



• context: LLM-generated chunk summary, situating it within the entire document
• embedding: VECTOR(1536) (vector of 1536 dimensions)
• identifier: VARCHAR(255), allowing for segmentation

The table includes two indexes: a Hierarchical Navigable Small World Graph (HNSW) index on
the embedding column using cosine distance for vector similarity search (vector_cosine_ops),
and a Balanced Tree Index (B-tree) index on the identifier column for efficient filtering by
document source.

Full-text search capabilities are implemented using PostgreSQL’s native text search function-
ality, using the to_tsvector and websearch_to_tsquery functions. However, there is an
important limitation: the full-text search is currently optimized specifically for German language
content, as configured through the FULL_TEXT_SEARCH_LANGUAGE parameter set to “german”. This
language-specific optimization affects the Word Root Reduction (Stemming), Common Word
Exclusion (Stop Word Filtering), and ranking algorithms.

The identifier field enables segmentation of documents within the database. It is currently set
to “zh” for Zürich Wegleitung documents, and there are no other documents in the database.
However, this design allows for future expansion to include tax guidance documents from other
cantons. A user from Zurich, for example, would have no interest in receiving information based
on Geneva tax guidance documents; therefore, segmentation is needed.

5.8.3. Ingestion Flow

The document ingestion process is implemented as a series of command-line scripts executed
through pnpm run parse and pnpm run embed. This manual execution approach is intentional,
as the current use case involves processing a single, stable document (the Zurich tax guidance
document) that doesn’t require automated ingestion workflows. Even if multiple other cantons
were added, their respective guidance documents could be ingested manually without the need
for fully automated processing.

Figure 30: Document Ingestion Flow

1. Parsing

The parsing phase transforms PDF documents into markdown format using Docling [31], an
open-source document parsing library developed by IBM Research Zurich. Docling provides
advanced PDF understanding capabilities including layout analysis, reading order detection,

49



and table structure recognition. Docling parsing is executed through a Docker container to
ensure a consistent execution environment without the need for Python Virtual Environments.

A significant limitation of the current parsing setup is that Docling does not extract and
annotate images from the PDFs. In the final markdown, they are represented by a placeholder
comment. This limitation has minimal impact on the Zurich tax guidance document use case, as
the images in these tax guidance documents don’t contain critical textual information necessary
for the AI chatbot’s functionality. The vast majority of images just highlight the field of the
physical tax declaration.

2. Chunking

The chunking implementation uses an overlapping strategy optimized specifically for large PDF
documents. The chunking logic splits documents based on paragraph boundaries, which aligns
well with the structured nature of tax guidance documents.

Key chunking parameters are configured through the centralized config system:
• Maximum chunk size: 1,800 characters (MAX_CHUNK_SIZE_CHARS)
• Minimum chunk size: 200 characters (MIN_CHUNK_SIZE_CHARS)
• Overlap size: 300 characters (CHUNK_OVERLAP_CHARS)

This chunking algorithm is inspired by research from Chroma, balancing between optimal per-
formance for long-form, high-density PDFs and simplicity [32]. The chunking algorithm ensures
that content at chunk boundaries is preserved through the overlap mechanism, preventing
information loss stemming from arbitrary split points. This is in addition to the paragraph-based
splitting strategy, which also respects the document’s semantic structure, avoiding mid-sentence
breaks that could compromise context.

3. Contextualization

Each chunk undergoes AI-powered contextualization using GPT-4.1 Mini with the full document
content as context [33]. This is made possible by the 1M token context window capability of
this model, which the entire tax guidance document fits into. This contextualization helps each
chunk gain an understanding of the full document context. This approach has been studied by
Anthropic and has been shown to significantly increase retrieval accuracy. This implementation
follows the concept outlined by Anthropic [34]. How the contextualization implementation
described here affects this system is discussed in Chapter 6.

50



Figure 31: Contextualization pipeline. Source: Anthropic [35].

The contextualization prompt specifically instructs the model to:
1. Provide a concise summary of the chunk’s content
2. Generate synonyms for key phrases to improve search retrieval
3. Respond in German to maintain language consistency (this would have to be changed to

French or Italian to support other regions)

const systemPrompt = `You must give a short, succinct context to situate this chunk
within the overall document for the purposes of improving search retrieval of the chunk. 
Your response should include:
1. A concise summary of the chunk's content
2. Synonyms for key phrases or concepts found in the chunk (to improve search retrieval).
Just give the synonyms.

- Answer only with the succinct context and nothing else.
- You MUST write your response in German.`;

The main benefits of this approach are: it improves semantic search accuracy by providing
additional context clues, enhances keyword matching through synonym generation, and main-
tains document coherence by situating each chunk within the broader document structure. The
processing is performed in parallel batches of 10 chunks to optimize API usage while maintaining
reasonable processing speed. [35], [36]

4. Embedding

The final step generates vector embeddings for both the original chunk content and the AI-gen-
erated contextualization. The combined text (${chunk.text} ${chunk.context}) is embedded
using OpenAI’s text-embedding-3-small model. It outputs 1536-dimensional vectors.

The embeddings are stored in the PostgreSQL vector database alongside the original text,
context, and metadata. This enables the hybrid retrieval system to perform both semantic
vector search and traditional full-text search operations on the same content [30].

51



5.8.4. Retrieval

The retrieval system implements a multi-stage approach that begins with basic semantic search
and progressively applies more advanced techniques, if enabled in the configuration. At its core,
the system generates vector embeddings from user queries and performs similarity searches
against the pre-computed document embeddings stored in the PostgreSQL vector database.

Figure 32: Complete Retrieval Flow

The basic system starts by embedding the user question using OpenAI’s text-embedding-3-
small model. This query embedding is then compared against all document embeddings in the
database using cosine similarity:

const similarity = sql<number>`1 - (${cosineDistance(documentEmbeddings.embedding,
queryEmbedding)})`;

The system applies a configurable similarity threshold (default 0.3) to filter out irrelevant results
and returns documents ordered by similarity score. The vector search uses the HNSW index
for fast approximate nearest neighbor search.

Hybrid Retrieval

The system uses an early fusion approach to combine vector and full-text search. This hybrid
strategy utilizes the strengths of both retrieval methods: vector search excels at semantic
similarity and conceptual matching, while full-text search provides precise keyword matching
and handles exact terminology queries.

The retrieval configuration operates with a two-stage approach:

• Initial Retrieval (k1): 20 results retrieved from each method (INITIAL_RETRIEVAL_COUNT)
• Final Selection (k2): 5 results selected for LLM context (FINAL_CONTEXT_COUNT)

52



• Hybrid Weighting: 70% vector search, 30% full-text search (VECTOR_SEARCH_WEIGHT = 0.7)

When both search methods are enabled, the system executes parallel queries and combines
results using score normalization. The combineSearchResults function performs min-max nor-
malization on both similarity and full-text scores, then computes a weighted hybrid score:

const hybridScore = alpha * vectorScore + (1 - alpha) * fullTextScore;

The system handles document deduplication when the same document appears in both result
sets, merging their scores and marking the retrieval source as “both.” This early fusion approach
ensures that documents benefiting from strong performance in either retrieval method are
properly prioritized.

Reranker

The reranking system performs intelligent relevance filtering using GPT 4.1 Nano, OpenAI’s
fastest and most cost-effective model. It assesses document relevance on a scale of 0-10
and applies a binary relevance filter to eliminate irrelevant documents before ranking. Each
document is individually assessed in parallel, so that multiple candidates can be assessed
simultaneously. This LLM-based reranking addresses the limitations of pure similarity scoring
by understanding query context and document content.

The reranker processes each retrieved document individually, providing the model with:

• The original user query
• Document text and contextual information
• Retrieval source and confidence scores
• A binary relevance decision (relevant/not relevant)
• A numerical relevance score (0-10 scale)

const { object } = await generateObject({
  model: openai("gpt-4.1-nano"),
  system: "Determine how relevant the document is to the user query on a scale of 0-10,
where 10 is extremely relevant and 0 is not relevant at all.",
  schema: z.object({
    relevanceScore: z.number().min(0).max(10),
    isRelevant: z.boolean(),
  }),
});

Documents marked as irrelevant are filtered out. Relevant documents are ranked by their LLM-
assigned relevance score. In cases of tied relevance scores, the system falls back to hybrid
scores or original similarity scores for secondary ranking. The final selection respects the
FINAL_CONTEXT_COUNT limit, so that the context fed into the LLM generation stage is limited.

The reranking feature can be toggled via RERANKING_ENABLED. When disabled, the system only
selects the top K documents based on their hybrid or similarity scores. This enables consistent
system behavior regardless of the reranking setting, so that the same final document is used no
matter the current configuration.

53



Query Rewriter

The query rewriter tries to improve retrieval effectiveness through query reformulation using
the entire conversation context. When enabled, the LLM uses the ragSearchTool to analyze
user input and conversation history and generate an optimized search query.

The query rewriter handles several retrieval challenges:

• Conversational Context: Resolves pronouns and implicit references using conversation
history

• Ambiguity Resolution: Converts vague queries into specific, keyword-rich search terms
• Synonym Generation: Adds alternative terminology and synonyms
• Technical Precision: Maintains domain-specific terminology while improving searchability

In detail, the rewriting tool calls are structured as follows:

1. Step 0: Forced tool execution to generate an optimized query and perform the search with it
2. Step 1: Regular completion with retrieved context

experimental_prepareStep: async ({ stepNumber }: { stepNumber: number }) => {
  if (stepNumber === 0) {
    return {
      toolChoice: { type: "tool" as const, toolName: "ragSearch" as const },
      experimental_activeTools: ["ragSearch"] as ["ragSearch"],
    };
  }
  if (stepNumber === 1) {
    return {
      experimental_activeTools: [],
    };
  }
}

5.8.5. Chat

The chat system consists of the retrieval pipeline and a GPT 4.1 Mini model instructed to
act as a Swiss tax assistant. This model generates the final response for the user. The system
prompt defines this persona:

system: `You are a knowledgeable Swiss tax assistant that helps answer questions about
filing taxes (Steuererklärung) in the canton of Zurich, Switzerland.
Answer concisely and accurately based ONLY on the context provided. Do not give out
information which does not exist in the context.
Do NOT give a disclaimer about not being a tax professional since you just repeat
information from the context which is an official document.
Never reference the document which you got the information from (Bad: "siehe Dokument
5").
If the context doesn't contain relevant information to answer the tax-related question,
admit that you don't know and suggest consulting with a qualified tax professional or
the local tax authority.
Do not make up information or use knowledge outside of the provided context. Answer in
the language of the question, which might differ from the language of the context.

54



Important: Make it clear that you provide general information only and not personalized
tax advice.`

The prompt instructs the model to provide definitive answers based on official documentation.
The completion service formats retrieved documents for optimal LLM comprehension using the
formatDocumentsToStringForLLMContext function:

function assembleMessagesWithContext(messages: Message[], documents:
RetrievedDocument[]) {
  const context = formatDocumentsToStringForLLMContext(documents);
  return [
    {
      role: "system" as const,
      content: `Context from documents:\n\n${context}`,
    },
    ...messages,
  ];
}

Documents are passed in a structured format with clear delineation:

[DOCUMENT 1]
Text: [document content]
Context: [AI-generated chunk context]

[DOCUMENT 2]
Text: [document content]
Context: [AI-generated chunk context]

The system handles edge cases, including scenarios where no relevant documents are found. In
that case, it provides a fallback system message instructing the model to acknowledge knowledge
limitations.

Streaming

The completion service implements chat features through two distinct approaches: traditional
REST API responses and HTTP streaming responses. In production environments, only the
streaming endpoint is utilized, while the non-streaming variant serves primarily as a develop-
ment and testing tool for simpler debugging scenarios.

The streaming implementation uses the Vercel AI SDK’s streamText function and
pipeDataStreamToResponse method to transfer data from the server to clients [28]. When a
user submits a query through the /chat-stream endpoint, the system processes the request
identically to the non-streaming variant but returns responses as incremental chunks rather
than waiting for complete generation.

// Generates a streaming completion response and pipes it to the Express response
export async function generateCompletionStream(
  messages: Message[],
  documentIdentifier: string | undefined,
  response: Response
) {
  const completionData = await prepareCompletionData(messages, documentIdentifier);

55



  const result = streamText(completionData);
  return result.pipeDataStreamToResponse(response);
}

The pipeDataStreamToResponse method handles the complex HTTP streaming protocol, setting
appropriate headers (Content-Type: text/plain; charset=utf-8) and managing chunk bound-
aries. This creates a standardized data stream format that includes not only text deltas but
also metadata such as token usage, tool calls, and completion status.

The streaming format follows the AI SDK’s data stream protocol, which is designed to be
compatible with client-side libraries like @ai-sdk/react with the useChat hook. This standard-
ization means that mobile applications using the corresponding React Native or Expo libraries
can consume these streams without custom parsing logic. The useChat hook handles stream
parsing, message reconstruction, and state management.

The end result is that users see responses flow in in real time and won’t have to wait until the
entire response has been generated. However, there is still an initial delay until the RAG pipeline
has completed, since the response won’t start generating before completion of the retrieval.

5.9. AI Chat Evaluation

In order to assess the efficacy of the different retrieval optimizations (full-text search, query
rewriter, reranker), an automated evaluation pipeline had to be developed. This evaluation
framework makes it possible to benchmark different RAG configurations.

The evaluation system combines multiple assessment approaches: LLM-as-a-Judge evaluation,
semantic similarity scoring, and performance latency measurement. This multi-faceted approach
ensures that improvements are measured not only in terms of answer quality but also system
responsiveness.

5.9.1. Synthetic Test Data Generation

The evaluation framework uses a synthetically generated dataset. This is because it would
have taken a lot of time to manually generate a large question-answer dataset. Therefore, the
generation process uses an LLM to create the question-answer evaluation corpus. It processes
the full Zurich tax guidance document through a pipeline that chunks the content into 4,000-
character segments with 400-character overlaps. For each document chunk, GPT 4.1 Mini
generates between 2-5 realistic question-answer pairs based only on the content within that
chunk. The generation prompt specifically instructs the model to create questions that typical
Swiss taxpayers would ask. It is tasked to avoid overly technical or obscure queries that don’t
reflect real-world usage patterns:

const prompt = `You are an expert question generator for RAG evaluation. 
The topic is the tax code in the Swiss Canton of Zurich. Users are citizens 
looking for information when filing their tax return. Your question-answer 
pairs should match what such a user might ask.

IMPORTANT GUIDELINES:
1. Focus on questions a real user would ask

56



2. Questions must be answerable using ONLY the information in the provided text
3. Answers must be direct quotes or closely paraphrased from the text
4. Avoid trivial or simple yes/no questions
5. Each answer should be concise but complete`;

After generating the questions, a deduplication mechanism using embedding-based similarity
detection is run. Each generated question is embedded using OpenAI’s text-embedding-3-small
model, and cosine similarity calculations identify near-duplicate questions above a 0.9 threshold.
This ensures a diverse dataset and prevents evaluation bias from repetitive content, which could
occur due to the overlapping chunks.

After running this pipeline, the final synthetic dataset contains 157 unique question-answer
pairs. This scale enables robust evaluation of retrieval optimizations.

5.9.2. Evaluation Metrics

The evaluation framework uses a dual-judge approach that combines objective semantic simi-
larity measurements with subjective quality assessments from an LLM judge. The setup is based
on information found in [37], [38].

LLM Judge Evaluation

The primary evaluation mechanism utilizes OpenAI’s o4 Mini model as a judge to assess answer
quality across four dimensions. The LLM judge evaluates each model response against the
ground truth answer using a 1-5 scale:

• Correctness (1-5): Factual accuracy of the information compared to the ground truth.
• Helpfulness (1-5): How directly and comprehensively the answer addresses the user’s

question.
• Clarity (1-5): Answer clarity, phrasing quality, and appropriate conciseness.
• Overall Quality (1-5): Holistic assessment considering all factors above.

The evaluation prompt instructs the model to provide objective assessments while including
explanatory reasoning for each score.

const SYSTEM_PROMPT = `You are an objective evaluator for question-answering systems. 
Evaluate the model's answer on the following criteria on a scale from 1-5:
- Correctness: Is the information factually correct according to the ground truth?
- Helpfulness: Does the answer directly and comprehensively address the user's question?
- Clarity: Is the answer clear, well-phrased, and appropriately concise?
- Overall Quality: Overall quality score considering all above factors.

Provide a brief explanation justifying your scores.`;

Semantic Similarity Scoring

In addition to the LLM judge, the system implements embedding-based semantic similarity
evaluation using cosine similarity between ground truth and model answer embeddings. Both
texts are embedded using OpenAI’s text-embedding-3-small model, which produces 1536-
dimensional vectors.

57



The cosine similarity score ranges from 0 to 1, with values closer to 1 indicating higher semantic
alignment between the model answer and ground truth. This metric is more objective and
reproducible than the subjective LLM evaluation, so they complement each other well.

Performance Metrics

The evaluation framework tracks response latency for each question. It measures the complete
pipeline from query input to final answer generation. This measurement covers all stages,
including network time from the laptop to the server, database access, retrieval, reranking
overhead, and LLM generation latency. This comes with the caveat that the network communi-
cation overhead from the benchmark client to the backend server is also included. However, this
is considered negligible compared to the time required for LLM generation, which dominates
the overall response time.

Latency measurements enable evaluation of the practical implications of each optimization:
while reranking may improve answer quality, it introduces additional processing time that affects
user experience. By measuring both quality and performance, the evaluation can track these
tradeoffs.

5.9.3. Evaluation Runner

During evaluation, each configuration undergoes 5 complete evaluation runs. Each with all 157
synthetic quesitons, in random order. This makes it possible to provide statistically significant
results even with the non-deterministic nature of LLM responses.

For reference, these are the 8 options evaluated:

1. Base: Vector search only (baseline)
2. Full Text: Vector + full-text search hybrid
3. Rerank: Vector search + LLM reranking
4. Rewriter: Vector search + query rewriting
5. Full Text + Rerank: Hybrid search + reranking
6. Full Text + Rewriter: Hybrid search + query rewriting
7. Rerank + Rewriter: Vector search + reranking + query rewriting
8. Full Text + Rerank + Rewriter: All optimizations enabled

Concurrency and Rate Limiting

The evaluation pipeline uses concurrency to balance execution speed with API rate limits.
Questions are processed in batches of 15 concurrent evaluations with 250ms throttling between
requests. This aims to prevent being rate limited by OpenAI while maintaining reasonable
evaluation throughput.

The system processes both model answer generation and LLM judge evaluation in parallel.
Error handling ensure that individual question failures don’t compromise entire evaluation runs.

58



Result Summarization

For each metric, the system calculates mean scores and standard deviations across the 5
evaluation runs. The system calculates a composite “Total Combined Score” that normalizes
and weights all evaluation metrics:

const normalizedSimilarity = 1 + avgRunScores.similarity * 4;
const totalScore =
  (avgRunScores.correctness +
    avgRunScores.helpfulness +
    avgRunScores.clarity +
    avgRunScores.overallQuality +
    normalizedSimilarity) /
  5;

This metric serves as a single performance indicator that balances semantic similarity with
LLM judge assessments. This way, the different configurations can be compared against each
other through a single value.

5.10. Deployment

The entire application stack is hosted on the PaaS cloud provider Railway [27]. The server
location is eu/amsterdam as they do not offer Switzerland as a location. This location is
acceptable for the MVP phase, as no real user data is involved. For a production setup, a server
location in Switzerland would have to be considered. As discussed in Chapter 3, the entire
application is built in a provider-agnostic way so that moving it across hosting solutions is
straightforward.

Figure 33: Railway Screenshot: Hosting Setup

59



5.10.1. Containers

As shown in Figure 33, the hosting consists of 4 components, each running as its own Docker
container [39].

• finteam-api: Hosts the Express.js API backend. To store the tax documents that users
upload, a 5GB volume is mounted to the server as /app/data. The application can read
and write to this volume to access documents. The average idle memory utilization for the
backend is 89 MB.

• finteam-web: Hosts the static React Vite frontend through a Caddy server. There is no
compute involved other than serving the static assets. The average idle memory utilization
is 21 MB.

• database: PostgreSQL database that hosts all user data, other than the binary files uploaded
by users. The average idle memory utilization is 25 MB.

• pgvector: PostgreSQL database with the pgvector extension enabled. It solely serves the
chunked document for retrieval. The average idle memory utilization is 26 MB.

5.10.2. Build system

The build system uses Nixpacks, a tool designed to simplify deployment and environment
consistency by generating Docker build environments by automatically detecting the tech
stack used by the codebase. In most cases, this results in developers not having to write any
configuration to get the project hosted [40].

The deployment process is fully automated via GitHub integrations: whenever a developer
pushes changes to the main branch of either the frontend or backend repository, a GitHub
Action is triggered. This action initiates the build process using Nixpacks, compiles the code,
runs tests, and upon successful completion, deploys the updated application to the hosting
platform. This workflow enables continuous delivery with minimal manual intervention and
maintains up-to-date production environments with every commit.

5.10.3. Environment Variables and Secrets

The backend API has multiple environment variables provided through Railway’s secure secret
management system:

• DATABASE_URL (application DB)
• VECTOR_DATABASE_URL (vector DB)
• JWT_SECRET

• OPENAI_API_KEY

• UPLOAD_DESTINATION (path to attached volume)

60



Chapter 6

Results

6.1. AI Chat Evaluation Results

As described in Chapter 5.9, the evaluation involved a comprehensive assessment of 157
questions, each tested across 5 separate runs and 8 unique system configurations. This structure
enabled a robust comparison of various retrieval and optimization methods—including vector
search, full-text search, reranking, and query rewriting—under consistent conditions. The
primary aim was to determine which configurations provide the best balance between answer
quality, semantic similarity, and response latency, and to assess the variability across multiple
test iterations. Below are the results from this evaluation:

Configuration LLM Judge
Avg

Semantic Sim Latency (ms) Combined
Score

Vector Only 3.96 ± 0.016 0.847 ± 0.003 4605 ± 239 4.04 ± 0.021
Full Text 3.97 ± 0.015 0.849 ± 0.003 3933 ± 20 4.06 ± 0.023
Rerank 4.04 ± 0.032 0.846 ± 0.003 6348 ± 1108 4.11 ± 0.049
Rewriter 3.35 ± 0.020 0.796 ± 0.003 5489 ± 164 3.52 ± 0.030
Full Text +
Rerank

4.03 ± 0.019 0.850 ± 0.003 6997 ± 1769 4.11 ± 0.029

Full Text +
Rewriter

3.42 ± 0.015 0.797 ± 0.003 5038 ± 139 3.58 ± 0.021

Rerank +
Rewriter

3.53 ± 0.018 0.803 ± 0.003 6630 ± 396 3.67 ± 0.025

Full Text +
Rerank +
Rewriter

3.52 ± 0.036 0.802 ± 0.004 5893 ± 158 3.66 ± 0.055

Table 3: AI chat evaluation results

Overall, the results demonstrate that combining multiple retrieval enhancements generally
improves answer quality, albeit with increasing latency trade-offs. For example, the Full Text +
Rerank configuration achieved the highest combined score, but with variability similar to that
of Rerank, suggesting both configurations perform comparably when considering their spread.
Pure vector search yielded the fastest response times but lower overall quality, while adding full-
text search produced a modest improvement in semantic similarity and judge scores with only a
small latency increase. Reranking introduced a larger latency penalty but significantly boosted
clarity and overall quality, while query rewriting alone provided minimal gains except when
paired with reranking. These findings, along with the variability seen in standard deviations,

61



will be explored further in the following sections, where each configuration’s contributions and
trade-offs will be analyzed in detail.

6.1.1. Charts

LLM Judge vs Sematic Similarity

Figure 34: LLM Judge vs Semantic Similarity Normalized

Figure 34 reveals a pattern where semantic similarity consistently remains high across
configurations, but judge scores exhibit greater variability, particularly for Rewriter and
Rerank + Rewriter. This suggests that while automated metrics align closely across methods,
human evaluators discern more nuanced differences in content quality.

62



Latency Bar Chart

Figure 35: Response time analysis

Figure 35 illustrates that response times increase predictably with added retrieval features,
but the variability across runs (as shown by blue error bars) varies dramatically. For instance,
Rerank and Full Text + Rerank exhibit not only the highest mean latencies (6348 ms and
6997 ms, respectively) but also the widest variability (SD ≈ 1108 ms and 1769 ms) shown in red,
indicating performance inconsistency under load. In contrast, configurations such as Full Text
and Vector Only display both lower mean latencies and much tighter standard deviations
(e.g., Full Text with 3933 ms ± 20 ms), suggesting predictable, reliable response times. This
pattern emphasizes a trade-off: while adding features like reranking can improve quality, they
introduce greater variability and latency costs, potentially challenging for real-time systems.

63



Latency vs Score

Figure 36: Latency vs Overall Score

Figure 36 offers valuable insights into the trade-offs between system performance and quality as
perceived by the LLM judge. The scatter plot reveals that configurations like Vector Only and
Full Text achieve both lower latencies (4605 ms and 3933 ms, respectively) and high combined
scores (4.04 and 4.05). Conversely, Full Text + Rerank and Rerank show higher latencies
(6997 ms and 6348 ms) but slightly improved scores (4.11 and 4.10), reflecting the additional
processing required for reranking.

Interestingly, Rewriter and Full Text + Rewriter exhibit a noticeable drop in scores
(3.52 and 3.58) despite moderate latency values (5489 ms and 5038 ms). This suggests that
while rewriting may increase processing time, it does not guarantee higher perceived quality.
The variability in Rerank + Rewriter (latency 6630 ms, score 3.67) further supports this
observation.

Overall, the plot illustrates that incorporating advanced features such as Reranking can lead
to higher overall scores, indicating improved semantic relevance. However, configurations that
combine multiple enhancements (e.g., Rerank + Rewriter or Full Text + Rerank +
Rewriter) often result in increased latency without a proportional gain in quality. This suggests
that beyond a certain point, additional complexity may not yield meaningful improvements.
When choosing a configuration for production, it’s important to consider both response time
and retrieval effectiveness to ensure a balanced and efficient user experience.

6.1.2. Recommendation

Based on the quantitative evaluation, the Rerank configuration achieves the highest Total
Combined Score of 4.1098. Its detailed judge metrics are:

• Correctness: 4.04

64



• Helpfulness: 4.04
• Clarity: 4.04
• Overall Quality: 4.04
• Semantic Similarity: 0.8468

In contrast, the baseline Vector Only configuration shows a combined score of 4.0446 with a
mean latency of 4605 ms. The Rerank setup incurs a mean latency of 6348 ms—an increase
of 1743 ms (≈38% longer)—but delivers a +0.0652 improvement in combined score.

While the Rerank configuration introduces a noticeable latency penalty, this extra processing
time may be acceptable in scenarios where answer quality is paramount. For use cases such as
tax‐related inquiries or situations where users expect the most accurate, contextually relevant
results, the improved correctness and clarity justify the increased response time. However,
if the application must support strict real‐time requirements (e.g., live chat with sub‐second
feedback), one might consider the Full Text configuration instead, since it already outperforms
the baseline in both speed (3933 ms) and combined score (4.0546), offering a lightweight trade‐
off when minimal latency is crucial.

In summary, for applications prioritizing maximum answer quality, adopt the Rerank
configuration. If predictable low latency is equally critical, choose Full Text as a balanced
alternative.

65



Chapter 7

Conclusion and Further Work

7.1. New Achievements

This project successfully delivered a fully functioning MVP of Finteam, a cross-platform
application that bridges the gap between fiduciaries and their clients. Among the key accom-
plishments:

• Mobile app: Developed using React Native and Expo, the mobile application enables
clients to effortlessly upload tax documents, communicate directly with their trustee via
chat, and manage their fiduciary relationship. This streamlined experience helps users
maintain an organized overview of their submissions while minimizing uncertainty about
which documents are required.

• Web application for fiduciaries: Built with React, Tailwind CSS, and React Query, the
web application offers fiduciaries a clear overview of submitted documents, efficient client
management, and integrated communication tools. By reducing client confusion and the need
for clarifying calls or emails, fiduciaries can spend less time on administrative overhead and
more time focusing on their core responsibilities.

• Backend API: Engineered with Express.js and TypeScript, the backend features a layered,
modular architecture designed for scalability, maintainability, and ease of testing. Type
safety and rigorous input validation are ensured through Zod schemas, enabling robust and
predictable API contracts.

• RAG-based AI Chatbot: A sophisticated Retrieval-Augmented Generation (RAG)
pipeline was designed and integrated to provide precise, context-aware responses to tax-
related queries. Multiple retrieval strategies—including hybrid vector and keyword search,
reranking, and query rewriting—were evaluated to optimize answer accuracy and relevance
based on real-world Swiss tax guidance documents.

These milestones enabled the creation of a solid foundation that can be used with minimal
changes in production.

7.2. Challenges and Unresolved Issues

The implementation and evaluation phases of the RAG system were quite time-consuming and
challenging. Ultimately, the true value of the AI chat feature will only become apparent once
it is deployed in a real production environment, as the responses generated by large language
models can sometimes be unpredictable.

Regarding the fiduciary onboarding process, it remains manual at this stage due to security
concerns. This manual approach ensures that every fiduciary can be thoroughly checked and

66



reviewed. Developing a scalable and secure onboarding interface is still pending and will be
necessary for future growth.

Finally, there were limitations on the mobile platform side. The iOS deployment and review
process could not be validated because of the lack of access to the Apple Developer Program,
which restricted testing and certification on Apple devices.

7.3. Future Directions

One important step is the development of a secure, self-service onboarding process for fiducia-
ries. By implementing a document-verified onboarding flow, fiduciaries can register and be
validated without requiring manual intervention from administrators. This will significantly
reduce operational overhead and enable the platform to scale more efficiently.

Additionally, an administrative interface is needed to provide oversight and control. This
dashboard would allow admins to manage fiduciary accounts, monitor platform activity, and
resolve exceptional cases as they arise. It would also support auditing and compliance tasks by
offering visibility into system interactions and user behavior.

Another major improvement involves the automatic pre-filling of tax forms. Since many tax-
related documents follow standard formats or contain recurring structures, it is feasible to
extract relevant data from uploaded files and populate tax forms directly. This feature would
streamline the process further, reducing manual effort for both clients and fiduciaries and
minimizing the risk of data entry errors.

Another improvement that could be implemented is end-to-end encryption for all user docu-
ments. By encrypting documents both in transit and at rest and ensuring only authorized
parties can decrypt and access them, the platform would significantly enhance data privacy
and security. This measure is especially critical given the sensitive nature of tax and financial
documents, and it would help build trust with users by ensuring their information is protected
at all times.

7.4. Final Reflection

The Finteam project demonstrated the feasibility and value of optimizing tax-related commu-
nication through a well-designed digital solution. It combined best practices in modern full-stack
development, AI integration, and mobile-first design. Project members successfully collaborated
using agile principles, version control workflows, and CI/CD pipelines while exploring cutting-
edge AI technologies.

Although some compromises were necessary to meet the given timeframe and constraints, the
resulting MVP forms a solid technical and conceptual foundation for a real product. This work
not only provided practical experience across the entire software stack, but also deepened the
team’s understanding of secure system design, AI evaluation, and the challenges of building
scalable platforms.

67



Part II

Project Management

68



Chapter 8

Quality Measures

8.1. Git Workflow

In this section, the Git workflow across all repositories of this project is described.

8.1.1. Polyrepo

The project is structured as a polyrepo setup, with separate repositories for the mobile appli-
cation, web application, and API. This separation facilitates clear code organization, autonomy
between modules, and simplified access control. The reasons for this configuration are explained
in more detail under Section 15.3.8.

8.1.2. Workflow

Figure 37: Git Workflow

1. Create a new branch using the pre-defined branch name of the Linear task.
2. Develop the feature as described in the Linear task and commit new changes.
3. Open a pull request on GitHub from the feature branch to the main branch.
4. Assign the pull request to the other team member for review and commit new changes on

request.
5. Push final changes.
6. Merge the feature branch into the main branch.

69



8.2. Code Quality

8.2.1. Linter and Prettier

To ensure a consistent coding style and reduce formatting errors across all three repositories
(web, mobile and API), ESLint and Prettier were integrated into the development workflow.
ESLint is configured with modern settings and extends recommended rulesets from @eslint/
js and @typescript-eslint. This is complemented by selected custom rules to enforce best
practices while allowing necessary flexibility. Prettier handles automatic code formatting based
on clearly defined style guidelines, including specific import ordering.

8.2.2. Static Analysis

The project uses the TypeScript compiler (tsc) [8] for static analysis across all codebases.
It enforces strict type safety by enabling settings such as strict mode. These settings help
identify potential type inconsistencies and runtime errors during development. By integrating
TypeScript’s static typing system, the project maintains high code quality and robustness in
all components of the application.

8.2.2.1. GitHub Actions

A comprehensive Continuous Integration (CI) pipeline was implemented across all three reposi-
tories using GitHub Actions, ensuring code quality and consistency throughout the development
process. The workflow automation provides multiple layers of validation that execute automat-
ically on every push and pull request, creating a robust quality gate before code integration.

The CI pipeline consists of several critical stages that run in parallel to optimize execution time:

• TypeScript Type Checking: The tsc compiler performs static type analysis without
emitting JavaScript files, catching type errors and ensuring TypeScript compliance across
the entire codebase. This step is particularly crucial given the project’s emphasis on type
safety and prevents runtime errors caused by type mismatches.

• Build Process Validation: Each repository undergoes a complete build process to verify
that all dependencies resolve correctly and the application can be successfully compiled.
This step catches integration issues, missing dependencies, and build configuration problems
before they reach production environments.

• ESLint Static Analysis: Comprehensive linting rules enforce code style consistency and
identify potential bugs, security vulnerabilities, and maintainability issues. The ESLint
configuration includes TypeScript-specific rules, React hooks dependencies validation, and
custom rules aligned with the project’s coding standards.

The workflow configuration ensures that all checks must pass before code can be merged into
the main branch, maintaining high code quality standards and preventing the introduction of
breaking changes. Failed CI runs provide detailed feedback to developers, including specific line
numbers and error descriptions, facilitating rapid issue resolution.

70



The standardized CI pipeline across all three repositories (backend API, frontend web appli-
cation, and mobile application) ensures consistent quality standards regardless of the technology
stack, while the parallel execution of checks minimizes the time developers spend waiting for
validation results.

8.2.2.2. Railway Auto Deploy

The backend API and static website employ automated deployment pipelines through Railway’s
integrated deployment platform, enabling continuous delivery from the development environ-
ment to production. This automation eliminates manual deployment steps and reduces the
potential for human error during the release process.

Backend API Deployment: The Node.js Express server automatically deploys to Railway’s
cloud infrastructure following successful completion of the GitHub Actions CI pipeline. The
deployment process includes:

• Automatic dependency installation using pnpm
• Environment variable configuration for production settings
• Database migration execution for schema updates
• Health check validation to ensure successful deployment
• Zero-downtime deployment through Railway’s blue-green deployment strategy

Static Website Deployment: The frontend React application has an automated build and
deployment process, with Railway handling the static file serving and CDN distribution. The
deployment pipeline includes build optimization, asset minification, and cache invalidation to
ensure users receive the latest application version.

The Railway integration monitors the main branch of both repositories, triggering deployments
automatically when new commits are pushed after passing CI validation. This approach ensures
that the production environment always reflects the latest stable code while maintaining
deployment consistency and reliability.

Mobile Application Deployment Strategy: Unlike the web-based components, the mobile
application requires manual submission processes to Apple App Store and Google Play Store,
which involve platform-specific review processes and compliance checks. For this reason, no
automated deployment workflow was implemented for the mobile repository.

8.2.3. Unit Tests

Vitest [41] is used as the testing framework for the Node.js Express API due to its modern
architecture and TypeScript-first approach.

8.2.3.1. Test Objects

Unit tests focus specifically on crucial business logic within the API, particularly complex
algorithms and data processing functions that require validation of their correctness. The testing
strategy deliberately excludes frontend components, as the application architecture separates

71



business logic from presentation concerns, with the frontend primarily handling user interface
interactions rather than complex computational tasks.

A prime example is the retrieval system’s combineSearchResults function, which implements a
sophisticated hybrid search algorithm combining vector similarity and full-text search results.
This function requires comprehensive testing due to its critical role in the application’s search
functionality and the complexity of its scoring algorithm. The tests validate multiple scenarios
including:

• Result combination logic: Ensuring proper merging of vector and full-text search results
• Hybrid scoring algorithm: Verifying the weighted combination of similarity scores
• Edge case handling: Testing behavior with empty inputs, single-source results, and various

alpha parameter values
• Sorting correctness: Confirming results are properly ordered by computed hybrid scores

The test suite demonstrates thorough coverage of the function’s behavior across different input
combinations and parameter configurations, ensuring the hybrid search algorithm performs
correctly under all expected conditions.

8.2.3.2. Test Implementation and Type Safety

All tests are implemented with strict TypeScript compliance, ensuring type safety throughout
the testing process. During development, TypeScript compiler errors in test files are addressed
immediately to maintain code quality standards. For instance, the retrieval tests required
fixes for potential undefined object access and adherence to linting rules regarding number
formatting.

The testing approach emphasizes readable assertions and comprehensive scenario coverage. Each
test case includes descriptive names and detailed comments explaining the expected behavior,
making the test suite serve as both validation and documentation of the system’s functionality.

8.2.3.3. Test Coverage and Strategy

While the current test coverage is selective rather than comprehensive, this approach reflects
a pragmatic testing strategy focused on high-value, high-risk components. The emphasis on
testing crucial business logic rather than achieving arbitrary coverage metrics ensures that
testing efforts are concentrated where they provide the most value in terms of preventing critical
failures.

The testing strategy recognizes that not all code requires the same level of testing investment.
Simple CRUD operations, basic routing logic, and straightforward data transformations are
considered lower risk and are primarily validated through integration testing and manual testing
during development. This approach allows for more thorough testing of complex algorithms and
business logic that would be difficult to debug if errors occurred in production.

72



8.2.4. End-to-End Tests

End-to-end tests validate the complete system workflow from the user interface through to the
backend data services, ensuring that all components interact correctly under realistic conditions.
A manual test flow was executed to simulate real user actions across both web and mobile
clients.

8.2.4.1. Test Flow

User Onboarding
• Launch mobile app and register
• Create an account
• Login

Document Upload and Processing
• Access mobile app; initiate camera scan of a sample document
• Preview captured image; submit for upload
• Verify document appears in web application with correct metadata

Fiduciary Connection
• In web application, generate connection code for a user
• In mobile app, enter code and confirm link establishment
• Validate that both parties see shared document list

Data Retrieval and Display
• Navigate through document categories in web client
• Open individual document entries; confirm correct rendering

Session Termination and Logout
• Perform logout on web client.
• Repeat logout on mobile client.

73



8.2.5. Protocol for Functional Requirements

Here, the functional requirements listed in Section 15.1 are validated to see if they have been
met.

ID Name Status Explanation

FR-001 Setup Backend Fulfilled

FR-002 Configure Database Fulfilled

FR-003 Configure File System Fulfilled

FR-004 Setup Mobile App
Framework Fulfilled

FR-005 Setup Web App Fulfilled

FR-006 Setup Lint and Format
Rules Fulfilled

FR-007 Create User Account Fulfilled

FR-008 User Account Login Fulfilled

FR-009 Update Profile Infor-
mation

Not ful-
filled

Not necessary since fiduciary holds
data, could be added later on.

FR-010 Account Security Fulfilled

FR-011 User Scans Documents
with Camera Fulfilled

Table 4: Protocol Functional Requirements (Part 1)

74



ID Name Status Explanation

FR-012 User Deletes Docu-
ment Fulfilled

FR-013 User Categorizes Doc-
uments Fulfilled

FR-014 Fiduciary Invites User
to Connect

Partially
fulfilled

To avoid usage of third party email
services the fiduciary has to send the

code to the user.

FR-015 Fiduciary Views Con-
nected Users List Fulfilled

FR-016 Fiduciary Revokes
User Access Fulfilled

FR-017 User Revokes Fidu-
ciary Access Fulfilled

FR-018 Fiduciary Accesses
User Data Fulfilled

FR-019 User Notifies Fiduciary
Documents Ready Fulfilled

FR-020 Fiduciary Requests
More Information Fulfilled

FR-021 User Asks Fiduciary
Questions Fulfilled

FR-022 User Asks Fiduciary
Questions Fulfilled

Table 5: Protocol Functional Requirements (Part 2)

75



8.2.6. Protocol for Non-functional Requirements

ID Name Status

NFR-01 Usability - Ease of Use Fulfilled

NFR-02 Maintainability & Extensibility - Clean Ar-
chitecture Fulfilled

NFR-03 Performance Efficiency - Responsiveness Fulfilled

NFR-04 Performance Efficiency - Capacity Fulfilled

NFR-05 Compatibility - Browser Compatibility Fulfilled

NFR-06 Security - Data Integrity and Confidential-
ity Fulfilled

NFR-07 Cost Optimization Fulfilled

NFR-08 Portability - Vendor Independence Fulfilled

Table 6: Protocol Non-functional Requirements

NFR-1: Usability

A usability test was conducted for both the mobile and web apps, with 2 end users each. Each
participant had to complete the same series of events.

User tasks:

In the mobile app, tested on an iPhone 12 Pro through the Expo Go simulator.

• Register
• Connect to fiduciary with code
• Scan and upload a new document
• Find 2 specific user documents
• Send chat message to fiducary

Fiduciary tasks:

In the web app, tested on a MacBook Pro 14 inch.

• Sign in
• Issue user connection invite code
• Find 2 specific user documents
• Send chat message referencing a document

76



Outcome

All sessions were completed in under 5 minutes with more than 90% of the tasks successful.
Participants most struggled with finding specific documents in the mobile application. Note:
This test was conducted to gain a quick overview of whether the application is logically
structured and to obtain new ideas for possible changes to the design. To conduct a genuine
usability study, more people would need to be surveyed.

NFR-2: Maintainability & Extensibility

The architecture of all three codebases are documented in detail in Chapter 3. The meeting
minutes show that all features were developed and completed within the allocated timeframe.

NFR-3: Performance

This benchmark was done through the web app, but it relies on the backend API. Therefore
it is relevant to both the web and mobile app. All benchmarks were conducted using Google
Chrome Browser Dev Tools. Each measurement was taken 5 times. The numbers shown here are
the average. The page loading time was measured at 1.2 seconds, which includes the duration
until all necessary API calls to fetch and display event data were completed. Mutations (POST
or DELETE calls to the server) averaged 780 milliseconds. It is important to note that these
benchmarks do not account for variabilities such as the latency between a user’s home internet
connection and the server, which can vary significantly for different users. All results fulfill the
requirements.

NFR-4: Capacity

This benchmark was done directly against the backend API. Therefore it is relevant to both the
web and mobile app. This test was conducted using the wrk HTTP benchmarking tool [42]. It
was run on the GET documents endpoint with the JWT token of an authenticated user. At the
target concurrency of 50 parallel requests, the system achieved a throughput of 105.9 requests
per second, exceeding the required minimum. The average latency recorded at this load was
330 ms, within the acceptable limit of 1 second.

NFR-5: Browser Compatibility

As the development browser for the web application, Google Chrome was used. Additionally,
every member of the team works with Google Chrome, which is why our web application has
already been extensively tested. Same goes for the screen size of 12 to 15 inches, as both team
members use screens in that size range. This is relevant only to the web app.

NFR-6: Security

Data in transit is encrypted using Transport Layer Security (TLS) protocols across all network
communication. Access to user data within the application is controlled through a role-based
access control (RBAC) [43] system. User authentication is enforced via the use of JSON Web

77



Tokens (JWTs). Upon successful login, a JWT is issued to the user, which is then used to
authenticate subsequent requests to protected resources.

The system was developed with a focus on resisting common web vulnerabilities as outlined
by OWASP [44]. Input validation and sanitization is applied to user-provided data to mitigate
risks such as SQL injection and cross-site scripting (XSS). Tthe sign-in endpoints are rate-
limited to prevent brute-force attacks. Regular code reviews and adherence to secure coding
practices were employed throughout the development lifecycle to identify and address potential
security flaws proactively.

NFR-7: Cost

The infrastructure on Railway is able to automatically scale vertically in order to minimize
resource usage. During this project with no production usage the hosting cost amounted to
approximately 2 US-Dollars per month. This makes the project inexpensive to host, fulfilling
the requirement.

NFR-8: Portability

The system is designed to facilitate deployment across various environments. The application
is running in Docker containers on Railway, which allows for consistent deployment on different
hosting providers or in a self-hosted environment with minimal configuration changes. No
vendor-specific code was written. Data is stored in standard PostgreSQL databases, and local
file storage is utilized for document management. This avoids the reliance on vendor-specific
solutions and makes data sovereignty possible.

78



Chapter 9

General Project Management

9.1. Roles and Team Organization

Noah Fleischmann and Dominik Rüegg are equal collaborators in the project. There are no
specialized roles. Both are responsible for all aspects of the project.

Furthermore, there is the following stakeholder:

• OST Advisor: Marco Lehmann

9.2. Method

The project will follow an agile methodology, with the work divided into 2-week cycles. At the
end of each cycle, the team reviews the progress made and plans the tasks for the upcoming
cycle.

Due to the agile and exploratory nature of the project, it is not feasible to define all tasks
from the outset. Instead, a set of clear milestones is outlined in the next section. This approach
ensures the project stays on track while allowing for flexibility and iterative development.

The team operates entirely remotely, with members located in Switzerland, Mexico, and Taiwan.
Collaboration across three different time zones requires effective asynchronous communication
and careful coordination.

9.3. Project Plan

The project runs dynamically and without predefined phases. Key milestones are set in advance
at meetings to ensure progress stays on track. These milestones are integrated into the linear
task management system, with each task being assigned a specific milestone for completion.

9.4. Collaboration Workflow

9.4.1. Review Meetings

The review meetings with the advisor are scheduled every other Wednesday from 15:30 to
16:30 (UTC +1). Before the meeting, the project team shares the current version of the project
documentation, Linear task tracker, and code base.

The purpose of the meeting is to present the current progress, address potential issues, and
receive valuable feedback.

79



9.4.2. Team Meetings

Following the review meeting on Wednesday, an internal team meeting takes place.

The meeting agenda is:

• Revisiting advisor feedback and turning it into actionable tasks
• Reviewing the last cycle
• Planning the next cycle
• Addressing potential problems

Progress throughout the cycle will be shared through chat. Additional meetings for collaboration
will take place whenever deemed necessary.

9.5. General Project Technologies

9.5.1. Linear

Linear [45] task management is utilized to organize project workflows. Tasks are categorized,
prioritized, and assigned specific milestones to ensure timely completion and alignment with
project goals.

9.5.2. Microsoft Teams

The project communication and file sharing have been conducted through Microsoft Teams.

9.5.3. Typst

The documentation is written in Typst [46]. It is a typesetting system similar to LaTeX, using a
markup-based syntax to create structured and formatted documents. Like LaTeX, it allows for
precise control over the layout and formatting of text, but with a first-party web-based editor
that enables collaborative real-time editing.

9.5.4. Time tracking

Each team member used their preferred time tracking tool. At the end of each week, the
recorded hours were consolidated and manually entered into a table in timetracking to maintain
a collective overview of the time spent.

The team logged a total of 701 hours, compared to the approximately 720 hours planned for the
bachelor thesis. Completing the project slightly under the planned time is considered a success.
The workload was distributed very evenly among the team members.

Noah Fleischmann contributed 352 hours.

Dominik Rüegg contributed 349 hours.

80



9.5.5. AI Systems

LLM from providers such as OpenAI [12], Anthropic [35], and Google [47] were utilized as coding
assistants through Integrated Development Environment (IDE) integration. The AI Chatbot
exclusively uses OpenAI models. Additionally, these tools were employed to refine and improve
documentation. Their use significantly reduced the time required for both development and
documentation tasks.

9.6. Risk Management

The following risks were identified for the Finteam project.

Figure 38: Risk matrix

9.6.1. R1 - Cloud Provider Downtime

There is a possibility that the cloud provider Railway will become unavailable due to downtime,
removal of essential features, or other incidents that prevent their use. Their hosted services are

81



used during development. Such as accessing the API from the Finteam mobile app. Or using
the hosted database during local development of the API.

Mitigation: The software is built in a cloud provider agnostic way. Meaning, everything
could be deployed on a different provider or self-hosted without changing the source code. For
a temporary downtime incident during development, both developers could provision a local
PostgreSQL instance and run everything locally.

Assessment: Before mitigation: Critical, Unlikely. After mitigation: Marginal, Unlikely.

Result: The risk did not materialize.

9.6.2. R2 - Apple Review prevents app release

For the Finteam iOS app to be published in the App Store it must be manually approved by
Apple. During this process, Apple checks that each app meets the App Review Guidelines [48].
This process applies to both regular App Store and TestFlight releases, although review for
TestFlight is less stringent. Without this, the App cannot be tested on any iOS device other
than those of the project members.

Mitigation: The project team will carefully review Apple’s App Store Guidelines before and
during development to ensure compliance. Further, app releases will be submitted with ample
time for the review process to go through, including potential revisions, before any potential
deadline.

Assessment: Before mitigation: Marginal, Likely. After mitigation: Marginal, Possible.

Result: Due to the Apple Developer account not being provided on time, the project team was
unable to proceed with the App Store deployment. This risk is therefore now considered out
of scope.

9.6.3. R3 - Team member gets sick

A team member may fall ill, briefly or for an extended period. This could result in tasks assigned
to that team member not being completed on time.

Mitigation: For brief sickness, tasks can be rescheduled for later. Since the project spans many
weeks and there are no hard deadlines before the final hand-in, missed work can be performed
later. In the event of prolonged illness (more than two weeks), the team will consult the advisor
and study administration to determine how to proceed. Precedents exist within the university
for such cases.

Assessment: Before mitigation: Critical, Possible. After mitigation: Marginal, Possible.

Result: The risk did not materialize.

82



9.6.4. R4 - Tax Regulation Complexities

None of the team members are experts in Swiss tax law. Therefore it is challenging to model all
intricacies of Swiss tax law in the app. There is also the threat of showing incorrect information
in the app.

Mitigation: The goal of this project is not to encode the entirety of the Swiss tax law. Instead,
the focus will be on building a simple version focusing on things that are constant between all
Swiss cantons. If anything needs to be canton specific, Zurich will be used.

Assessment: Before mitigation: Critical, Likely. After mitigation: Marginal, Possible.

Result: The risk did not materialize.

9.6.5. R5 - Data Security Breach

A security vulnerability in the Finteam mobile application or API server could lead to a data
breach, exposing sensitive user information. This is a particularly severe risk on this project,
as Finteam is dealing with sensitive financial documents of users.

Mitigation: Follow security best practices, such as encrypting sensitive data, implementing
proper authentication and authorization, rate limiting and staying updated on security patches.

Assessment: Before mitigation: Catastrophic, Possible. After mitigation: Critical, Unlikely.

Result: The project team followed best practices, and no security vulnerabilities were known
at the time of handover to the stakeholder. The system was thoroughly tested, and therefore no
risks materialized during the project period. However, encryption of data at rest was deemed
out of scope. But data in transit is always encrypted.

9.6.6. R6 - Progress on API implementation block-
ing other developers work

The developers rely heavily on functions from the backend API. However, development must
happen in parallel. It must not happen that client development has to be paused because certain
backend functionalities are still missing.

Mitigation: API mocking allows the backend functionality to be imitated - even if it has not
yet been implemented. This allows development to proceed independently of each other. In the
end, only the integration via the API needs to be checked.

Assessment: Before mitigation: Critical, Likely. After mitigation: Negligible, Likely.

Result: The risk did not materialize. Development was able to proceed.

83



9.6.7. R7 - Lack of expertise regarding Mobile
development

The project team is experienced in writing backend APIs and Web applications. However, the
team members only have minimal experience developing Mobile Applications. This could lead
to slowdowns in development speed and failing to reach the defined milestones in time.

Mitigation: The team has extensive experience developing React Web applications. By using
React Native to build the mobile apps, this experience translates well. There is minimal native-
specific knowledge needed, all of which can be easily acquired on demand.

Assessment: Before mitigation: Marginal, Likely. After mitigation: Negligible, Possible.

Result: The risk did not materialize. This is largely thanks to React Native with Expo, which
leverages web technologies that the project team was already familiar with. Expo abstracts
mobile APIs through easy-to-use interfaces.

84



Part III

Appendix

85



Chapter 10

Glossary

ADR – Architectural Decision Record: “A document that captures an important archi-
tectural decision made along with its context and consequences. ADRs help teams record,

communicate, and justify decisions over time.” 13

B-tree – Balanced Tree Index: “A standard indexing structure in relational databases for
efficient lookups and sorting.”, “Ensures low-latency filtering even as the number of documents

grows.” 49

C4 – C4 Notation: “A hierarchical modeling technique for visualizing the static structure
of software systems. C4 stands for Context, Container, Component, and Code, representing

different levels of abstraction in software architecture diagrams.” 13

CLI – Command Line Interface: “A text-based interface that allows users to interact with
a computer or software by entering commands, often used for automation, scripting, and

administrative tasks.” 34

FRs – Functional Requirements: “A specification that defines the expected behavior,
features, and functions of a system, describing what the system should do.” 4, 8

HNSW – Hierarchical Navigable Small World Graph: “An efficient indexing structure
for high-dimensional vector similarity search.”, “Optimized for fast and scalable retrieval of

semantically similar document chunks.” 49

i18n – Internationalization: “The process of designing software applications so that they
can be adapted to various languages and regions without engineering changes.” 21

IDE – Integrated Development Environment: “A software application that provides com-
prehensive facilities to computer programmers for software development, typically including

a source code editor, build automation tools, and a debugger.” 81

LLM – Large Language Model: “The technology used to parse extracted text into structured
JSON output.” 33, 35, 81

MVP – Minimal Viable Product: “The smallest functional version of a product that can
be released to early users for feedback and validation.” II

NFRs – Non-Functional Requirements: “A specification that defines the quality attributes,
system constraints, or operational characteristics of a system.” 4

PaaS – Platform as a Service: “A cloud computing model that provides a complete devel-
opment and deployment environment, including infrastructure, runtime, and tools, allowing
developers to build, test, and deploy applications without managing underlying hardware or

software.” 33, 59

86



RAG – Retrieval-Augmented Generation: “A technique that combines information
retrieval with text generation, where a model retrieves relevant documents from a knowledge
base and uses them as context to generate more accurate and informed responses.” II, 2, 10,

30, 48, 56

REST API – Representational State Transfer Application Programming Interface:
“Principles allowing clients to interact with resources using standard HTTP methods like

GET, POST, PUT, and DELETE.” 32

RLS – Row-Level Security: “A data access control mechanism that restricts users to only
view or manipulate specific rows in a database based on their roles, permissions, or attributes,

enhancing security and compliance.” 33

SPA – Single Page Application: “A web application that dynamically updates content
on a single page without requiring full page reloads, providing a smoother and faster user

experience.” 34

Stemming – Word Root Reduction: “Reduces words to their root form to improve search
matching across grammatical variations.” 49

Stop Word Filtering – Common Word Exclusion: “Ignores frequently used words (like
‘und’, ‘der’) to focus search on meaningful terms.” 49

87



Chapter 11

List of Figures

Figure 1: Prototype (left) to MVP (middle, right) transformation III

Figure 5: Web app chat interface IV

Figure 6: User Registration 5

Figure 7: Fiduciary registration 5

Figure 8: Fiduciary invites customer (user) 6

Figure 9: Document scanning and forwarding 7

Figure 10: Communication between fiduciary and user 8

Figure 11: Use Case Diagram 9

Figure 12: C4 system context diagram 14

Figure 13: C4 container diagram 15

Figure 14: Domain model 16

Figure 15: Mobile Architecture 18

Figure 16: Web Architecture 22

Figure 17: API Architecture 27

Figure 18: Mobile app start screen 37

Figure 19: Mobile app tips 37

Figure 20: Mobile app document upload 37

Figure 21: Invite Flow 38

Figure 22: Web app invitation generation 39

Figure 23: Mobile app fiduciary connect workflow 40

Figure 27: Web app client file access 41

Figure 28: File Upload Workflow 42

88



Figure 29: Mobile app AI chat implementation 48

Figure 30: Document Ingestion Flow 49

Figure 31: Contextualization pipeline. Source: Anthropic [35]. 51

Figure 32: Complete Retrieval Flow 52

Figure 33: Railway Screenshot: Hosting Setup 59

Figure 34: LLM Judge vs Semantic Similarity Normalized 62

Figure 35: Response time analysis 63

Figure 36: Latency vs Overall Score 64

Figure 37: Git Workflow 69

Figure 38: Risk matrix 81

89



Chapter 12

List of Tables

Table 1: FR-011 11

Table 2: NFR-01 12

Table 3: AI chat evaluation results 61

Table 4: Protocol Functional Requirements (Part 1) 74

Table 5: Protocol Functional Requirements (Part 2) 75

Table 6: Protocol Non-functional Requirements 76

Table 7: Directory of Resources 91

90



Chapter 13

Directory of Resources

Task Area Tools

Literature Research and Management Google, Perplexity, ChatGPT, Anthropic
Claude

Data Analysis and Visualization Google Sheets

Text Generation and Translation ChatGPT, DeepL, Google Translate, Typst

Coding GitHub, Visual Studio Code, GitHub Copilot,
Cursor

Design Figma, Draw.io

Project Management and Collaboration Linear, Teams, Miro

Presentation Creation PowerPoint

DevOps Railway

Table 7: Directory of Resources

91



Chapter 14

Bibliography

[1] Meta Platforms, Inc., “React Native.” Accessed: May 17, 2025. [Online]. Available: https://
reactnative.dev/

[2] Figma, Inc., “Figma.” Accessed: May 17, 2025. [Online]. Available: https://www.figma.
com/

[3] T. Team, “Typescript documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://www.typescriptlang.org/docs

[4] “Express.js.” Accessed: Feb. 17, 2025. [Online]. Available: https://expressjs.com/

[5] P. G. D. Group, “PostgreSQL Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://www.postgresql.org/docs/

[6] D. Team, “Drizzle ORM Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://orm.drizzle.team/docs

[7] I. Meta Platforms, “React Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://react.dev/

[8] Microsoft, “TypeScript Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://www.typescriptlang.org/docs/

[9] “Tailwind CSS.” Accessed: Feb. 17, 2025. [Online]. Available: https://tailwindcss.com/

[10] “Finteam OST · GitHub.” Accessed: Jun. 04, 2025. [Online]. Available: https://github.
com/orgs/finteam-ost/repositories

[11] Miro, Inc., “Miro.” Accessed: May 17, 2025. [Online]. Available: https://miro.com/

[12] “OpenAI.” Accessed: May 19, 2025. [Online]. Available: https://openai.com/

[13] “React Query.” Accessed: Feb. 17, 2025. [Online]. Available: https://tanstack.com/query/
latest/docs/framework/react/overview

[14] Molefrog, “Wouter: A minimalist-friendly ~2.1KB routing for React and Preact.” Accessed:
Feb. 12, 2025. [Online]. Available: https://github.com/molefrog/wouter

[15] “React Native Expo.” Accessed: Feb. 17, 2025. [Online]. Available: https://expo.dev/docs

[16] Apple Inc., “Xcode.” Accessed: May 17, 2025. [Online]. Available: https://developer.apple.
com/xcode/

[17] O. Foundation, “Node.js Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://nodejs.org/en/docs

92

https://reactnative.dev/
https://reactnative.dev/
https://www.figma.com/
https://www.figma.com/
https://www.typescriptlang.org/docs
https://expressjs.com/
https://www.postgresql.org/docs/
https://orm.drizzle.team/docs
https://react.dev/
https://www.typescriptlang.org/docs/
https://tailwindcss.com/
https://github.com/orgs/finteam-ost/repositories
https://github.com/orgs/finteam-ost/repositories
https://miro.com/
https://openai.com/
https://tanstack.com/query/latest/docs/framework/react/overview
https://tanstack.com/query/latest/docs/framework/react/overview
https://github.com/molefrog/wouter
https://expo.dev/docs
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://nodejs.org/en/docs


[18] pnpm Contributors, “pnpm.” Accessed: May 19, 2025. [Online]. Available: https://pnpm.
io/

[19] Expo Team, “Expo Router.” Accessed: May 19, 2025. [Online]. Available: https://expo.
dev/router

[20] “Zod Validator.” Accessed: Feb. 17, 2025. [Online]. Available: https://zod.dev/

[21] fnando, “i18n-js.” Accessed: May 19, 2025. [Online]. Available: https://www.npmjs.com/
package/i18n-js

[22] Supabase, “Supabase Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://supabase.com/docs

[23] “Passport.js Documentation.” Accessed: Feb. 17, 2025. [Online]. Available: https://www.
passportjs.org/docs/

[24] “JSON Web Tokens (JWT).” Accessed: Feb. 17, 2025. [Online]. Available: https://jwt.io/

[25] “TSC Alias.” Accessed: Feb. 17, 2025. [Online]. Available: https://www.npmjs.com/
package/tsc-alias

[26] “TSX.” Accessed: Feb. 17, 2025. [Online]. Available: https://github.com/privatenumber/
tsx

[27] “Railway.” Accessed: Feb. 17, 2025. [Online]. Available: https://railway.app/

[28] “Vercel AI SDK.” Accessed: Feb. 17, 2025. [Online]. Available: https://ai-sdk.dev/docs/
introduction

[29] “PBKDF2: Password Based Key Derivation.” Accessed: Feb. 17, 2025. [Online]. Available:
https://www.ssltrust.com.au/blog/pbkdf2-password-key-derivation

[30] “pgvector.” Accessed: Feb. 17, 2025. [Online]. Available: https://github.com/pgvector/
pgvector

[31] “Docling.” Accessed: Feb. 17, 2025. [Online]. Available: https://docling-project.github.io/
docling/

[32] “Evaluating Chunking Strategies for Retrieval.” Accessed: Feb. 17, 2025. [Online]. Avail-
able: https://research.trychroma.com/evaluating-chunking

[33] “Introducing GPT 4.1 Generation.” Accessed: Feb. 17, 2025. [Online]. Available: https://
openai.com/index/gpt-4-1/

[34] “Introducing Contextual Retrieval.” Accessed: Feb. 17, 2025. [Online]. Available: https://
www.anthropic.com/news/contextual-retrieval

[35] “Anthropic.” Accessed: May 19, 2025. [Online]. Available: https://www.anthropic.com/

[36] D. Rau, S. Wang, H. Déjean, and S. Clinchant, “Context embeddings for efficient answer
generation in rag,” arXiv preprint arXiv:2407.09252, 2024.

[37] C.-Y. Lin and F. Och, “Looking for a few good metrics: ROUGE and its evaluation,” in
Ntcir workshop,  2004, pp. 1–8.

93

https://pnpm.io/
https://pnpm.io/
https://expo.dev/router
https://expo.dev/router
https://zod.dev/
https://www.npmjs.com/package/i18n-js
https://www.npmjs.com/package/i18n-js
https://supabase.com/docs
https://www.passportjs.org/docs/
https://www.passportjs.org/docs/
https://jwt.io/
https://www.npmjs.com/package/tsc-alias
https://www.npmjs.com/package/tsc-alias
https://github.com/privatenumber/tsx
https://github.com/privatenumber/tsx
https://railway.app/
https://ai-sdk.dev/docs/introduction
https://ai-sdk.dev/docs/introduction
https://www.ssltrust.com.au/blog/pbkdf2-password-key-derivation
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://docling-project.github.io/docling/
https://docling-project.github.io/docling/
https://research.trychroma.com/evaluating-chunking
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/


[38] S. Liu et al., “Judge as A Judge: Improving the Evaluation of Retrieval-Augmented
Generation through the Judge-Consistency of Large Language Models.” [Online]. Available:
https://arxiv.org/abs/2502.18817

[39] “Docker.” Accessed: Feb. 17, 2025. [Online]. Available: https://www.docker.com/r

[40] “Nixpacks.” Accessed: Feb. 17, 2025. [Online]. Available: https://nixpacks.com/docs/
getting-started

[41] “Vitest.” Accessed: Feb. 17, 2025. [Online]. Available: https://vitest.dev/

[42] “wrk - a HTTP benchmarking tool.” Accessed: Feb. 17, 2025. [Online]. Available: https://
github.com/wg/wrk

[43] “What is role-based access control (RBAC)?.” Accessed: Feb. 17, 2025. [Online]. Available:
https://www.ibm.com/think/topics/rbac

[44] “OWASP Top Ten.” Accessed: Feb. 17, 2025. [Online]. Available: https://owasp.org/www-
project-top-ten/

[45] L. Team, “Linear.” Accessed: Jan. 24, 2025. [Online]. Available: https://linear.app/

[46] T. Team, “Typst.” Accessed: Jan. 24, 2025. [Online]. Available: https://typst.app/

[47] “Google.” Accessed: May 19, 2025. [Online]. Available: https://www.google.com/

[48] Apple, “App Review Guidelines.” Accessed: Mar. 04, 2025. [Online]. Available: https://
developer.apple.com/app-store/review/guidelines/

[49] “OpenAPI.” Accessed: Feb. 17, 2025. [Online]. Available: https://www.openapis.org/

[50] “Swagger.” Accessed: Feb. 17, 2025. [Online]. Available: https://swagger.io/

[51] “tRPC.” Accessed: Feb. 17, 2025. [Online]. Available: https://trpc.io/

[52] “Vite.” Accessed: Feb. 17, 2025. [Online]. Available: https://vite.dev/guide/

[53] “Next.js.” Accessed: Feb. 17, 2025. [Online]. Available: https://nextjs.org/

[54] “Angular.” Accessed: Feb. 17, 2025. [Online]. Available: https://angular.dev/

[55] “Java Spring Boot.” Accessed: Feb. 17, 2025. [Online]. Available: https://spring.io/
projects/spring-boot/

[56] “Flutter.” Accessed: Feb. 17, 2025. [Online]. Available: https://flutter.dev/

[57] “Swift Language.” Accessed: Feb. 17, 2025. [Online]. Available: https://www.swift.org/

[58] “Kotlin Language.” Accessed: Feb. 17, 2025. [Online]. Available: https://kotlinlang.org/

[59] “Session Based Authentication.” Accessed: Feb. 17, 2025. [Online]. Available: https://
supertokens.com/blog/session-based-authentication

[60] “Clerk Authentication.” Accessed: Feb. 17, 2025. [Online]. Available: https://clerk.com/

[61] “Amazon AWS S3.” Accessed: Feb. 17, 2025. [Online]. Available: https://aws.amazon.com/
s3/

94

https://arxiv.org/abs/2502.18817
https://www.docker.com/r
https://nixpacks.com/docs/getting-started
https://nixpacks.com/docs/getting-started
https://vitest.dev/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.ibm.com/think/topics/rbac
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://linear.app/
https://typst.app/
https://www.google.com/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://www.openapis.org/
https://swagger.io/
https://trpc.io/
https://vite.dev/guide/
https://nextjs.org/
https://angular.dev/
https://spring.io/projects/spring-boot/
https://spring.io/projects/spring-boot/
https://flutter.dev/
https://www.swift.org/
https://kotlinlang.org/
https://supertokens.com/blog/session-based-authentication
https://supertokens.com/blog/session-based-authentication
https://clerk.com/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/


[62] S. Consortium, “SQLite Documentation.” Accessed: Feb. 12, 2025. [Online]. Available:
https://www.sqlite.org/docs.html

[63] GitHub, Inc., “GitHub.” Accessed: May 17, 2025. [Online]. Available: https://github.com/

95

https://www.sqlite.org/docs.html
https://github.com/


Chapter 15

Requirements and decisions

This chapter contains the complete list of user, developer stories and architectural decisions. The
stories within the Foundation Epic are technical in nature and cannot be expressed meaningfully
from a user’s perspective. Therefore, developer stories are used instead.

15.1. Functional Requirements

Setup Backend

ID FR-001

Name Setup Backend

Description Initialize the backend application with the
chosen framework and tools.

Epic Foundation

Acceptance Criteria

• The backend codebase is initialized using
Express.js.

• The codebase is written in TypeScript.
• Data validation is implemented using

Zod.
• The backend application is successfully

deployed to Railway.
• Basic API endpoints are defined and

functional.
• Logging and error handling are imple-

mented.

Configure Database

ID FR-002

Name Configure Database

96



Description Set up the database connection and ORM
for data persistence.

Epic Foundation

Acceptance Criteria

• A PostgreSQL database is provisioned
on Railway.

• Drizzle ORM is configured to interact
with the PostgreSQL database.

• The application can successfully connect
to and perform basic CRUD (Create,
Read, Update, Delete) operations on the
database.

• Database schema changes can be applied
using Drizzle Push.

Configure File System

ID FR-003

Name Configure File System

Description Set up file storage mechanisms for the ap-
plication.

Epic Foundation

Acceptance Criteria

• A Railway Volume is configured for per-
sistent file storage.

• The application can successfully connect
to and interact with the Railway Vol-
ume.

• The system can store and retrieve files of
various types (e.g., images, PDFs, docu-
ments).

• The system implements appropriate file
size limits.

Setup Mobile App Framework

ID FR-004

97



Name Setup Mobile App Framework

Description Initialize the mobile application codebase
with React Native Expo.

Epic Foundation

Acceptance Criteria

• The mobile app codebase is initialized
using React Native.

• The project is configured to use Expo for
development and deployment.

• The codebase is written in TypeScript.
• The app can be successfully built and

run on both iOS and Android emulators/
simulators.

• Basic routing navigation is implemented.

Setup Web App

ID FR-005

Name Setup Web App

Description Initialize the web application codebase with
the chosen technologies.

Epic Foundation

Acceptance Criteria

• The web app codebase is initialized using
React and Vite.

• Routing is configured using Wouter.
• Data validation is implemented using

Zod.
• The codebase is written in TypeScript.
• Data fetching and caching are imple-

mented using React Query.
• The web app can be successfully built

and deployed to a staging environment.
• Deployed on Railway as a Static Site

through Caddy.

Setup Lint and Format Rules

98



ID FR-006

Name Setup Lint and Format Rules

Description Establish consistent code style and quality
standards across the project.

Epic Foundation

Acceptance Criteria

• A linter ESLint) is configured for Type-
Script

• Formatting rules are defined and en-
forced using a code formatter (Prettier).

• The linting and formatting rules are in-
tegrated into the development workflow
(CI/CD pipeline).

• The linting and formatting rules are
documented and communicated to the
development team.

• The linting and formatting rules are reg-
ularly reviewed and updated as needed.

Create User Account

ID FR-007

Name Create User Account

User Story
As a user, I want to be able to create an
account with my username and password so
that I can access the application.

Epic User Account Management

Acceptance Criteria

• Users can access a registration page to
create a new account.

• Users are required to provide a unique
username and a strong password.

• The system validates the username and
password according to predefined rules.

• The system securely stores the user’s
credentials (password hashing with salt).

99



• Users can access the application after
successfully creating and verifying their
account.

User Account Login

ID FR-008

Name User Account Login

User Story
As a user, I want to be able to log in to my
account with my username and password so
that I can access the application.

Epic User Account Management

Acceptance Criteria

• Users can enter their registered user-
name and password to log in.

• The system validates the username and
password against the stored credentials.

• The system authenticates the user and
grants access to their account upon suc-
cessful login.

• The system displays an error message
if the login fails due to incorrect creden-
tials.

• The system implements security mea-
sures to protect against brute-force at-
tacks (rate limiting).

Update Profile Information

ID FR-009

Name Update Profile Information

User Story

As a user, I want to be able to update
my profile information (e.g., name, address,
phone number) so that my information is
always current.

Epic User Account Management

100



Acceptance Criteria

• Users can access a profile editing page
from their account settings.

• Users can modify their name, address,
phone number, and other relevant profile
fields.

• The system validates the input data to
ensure it is in the correct format.

• The system saves the updated profile
information to the database.

• Users receive a confirmation message af-
ter successfully updating their profile.

• The updated profile information is im-
mediately reflected throughout the ap-
plication.

Account Security

ID FR-010

Name Account Security

User Story
As a developer, I want to ensure account
security to protect user data and prevent
unauthorized access.

Epic User Account Management

Acceptance Criteria

• Passwords are securely hashed using a
strong hashing algorithm (e.g., bcrypt).

• Rate limiting is implemented on login
attempts to prevent brute-force attacks.

• Access control mechanisms are in place
to restrict access to sensitive data based
on user roles and permissions.

• JWT (JSON Web Tokens) are used for
secure authentication and authorization.

• Regular security audits are conducted to
identify and address potential vulnera-
bilities.

User Scans Documents with Camera

101



ID FR-011

Name User Scans Documents with Camera

User Story
As a user, I want to be able to scan docu-
ments using my mobile device’s camera so
that I can easily upload paper documents.

Epic Document Management

Acceptance Criteria

• Users can initiate the scanning process
from within the mobile app.

• The app utilizes the device’s camera to
capture images of documents.

• Users can preview the scanned document
before saving it.

User Deletes Document

ID FR-012

Name User Deletes Document

User Story
As a user, I want to be able to delete a
document so that I can remove it from the
application.

Epic Document Management

Acceptance Criteria

• Users can easily delete a document from
the document list or preview screen.

• The system displays a confirmation
prompt before permanently deleting the
document.

• The system provides a visual indication
that the document has been deleted.

• The deletion process is secure and pre-
vents unauthorized access to the deleted
document.

User Categorizes Documents

102



ID FR-013

Name User Categorizes Documents

User Story As a user, I want to categorize my docu-
ments into tax related areas

Epic Document Management

Acceptance Criteria

• Users can assign predefined categories to
their uploaded documents.

• The system provides a list of relevant
tax-related categories (e.g., Income, Ex-
penses, Deductions, Credits).

• Users can easily change the category of
a document.

• Users can filter and sort their documents
by category.

Fiduciary Invites User to Connect

ID FR-014

Name Fiduciary Invites User to Connect

User Story
As a fiduciary, I want to be able to invite
a user to connect with me through the app
so that I can manage their tax information.

Epic Fiduciary Client Onboarding and Manage-
ment

Acceptance Criteria

• Fiduciaries can easily initiate an invita-
tion to a user through the fiduciary web
app.

• The system tracks the status of the invi-
tation (open, used).

• Fiduciaries can resend invitations if nec-
essary.

Fiduciary Views Connected Users List

103



ID FR-015

Name Fiduciary Views Connected Users List

User Story
As a fiduciary, I want to be able to view
a list of my connected users so that I can
easily see all of my clients.

Epic Fiduciary Client Onboarding and Manage-
ment

Acceptance Criteria

• Fiduciaries can easily access a list of
their connected users from the fiduciary
web app.

• The list displays key information about
each user (e.g., name, connection sta-
tus).

• The list is paginated to handle a large
number of connected users efficiently.

Fiduciary Revokes User Access

ID FR-016

Name Fiduciary Revokes User Access

User Story
As a fiduciary, I want to be able to revoke
a user’s access to my account so that I can
terminate the relationship.

Epic Fiduciary Client Onboarding and Manage-
ment

Acceptance Criteria

• Fiduciaries can easily remove a user
through a clear and intuitive interface.

• The system provides a confirmation
message to the fiduciary after revoking
access.

• The user is notified that their access has
been revoked.

User Revokes fiduciary Access

104



ID FR-017

Name User Revokes fiduciary Access

User Story
As a user, I want to be able to revoke a
fiduciary’s access to my account so that I
can terminate the relationship.

Epic Fiduciary Client Onboarding and Manage-
ment

Acceptance Criteria

• Users can easily revoke a fiduciary’s ac-
cess to their account through a clear and
intuitive interface.

• Revoking access immediately prevents
the fiduciary from accessing the user’s
data.

• The system provides a confirmation mes-
sage to the user after revoking access.

• The fiduciary is notified that their access
has been revoked.

Fiduciary Accesses User Data

ID FR-018

Name Fiduciary Accesses User Data

User Story
As a fiduciary, I want to be able to access
a user’s documents and tax data so that I
can provide them with tax advice.

Epic Enhanced fiduciary Interaction

Acceptance Criteria

• Fiduciaries can easily navigate to a
user’s profile and access their documents
and tax data.

• The system displays the user’s docu-
ments and tax data in a clear and
organized manner.

• Access to user data is controlled by
appropriate access control measures to
ensure data security and privacy.

105



• Fiduciaries can view different categories
of tax data (e.g., income, expenses, de-
ductions).

User Notifies Fiduciaries Documents Ready

ID FR-019

Name User Notifies fiduciary Documents Ready

User Story

As a user, I want to be able to notify my
fiduciary that my documents are ready for
review so that they know when to take
action.

Epic Enhanced fiduciary-user Interaction

Acceptance Criteria

• Users can easily indicate that their doc-
uments are ready for review.

• Fiduciaries receive a clear and timely
notification when a user marks their
documents as ready.

• Users can optionally add a message to
the fiduciary when notifying them.

Fiduciary Requests More Information

ID FR-020

Name Fiduciary Requests More Information

User Story As a fiduciary, I want to be able to request
more documents or information from a user

Epic Enhanced fiduciary-user Interaction

Acceptance Criteria

• Fiduciaries can send a request for spe-
cific documents or information to a user.

• Fiduciaries can provide a clear explana-
tion of why the additional information
is needed.

106



• Users receive a notification when a fidu-
ciary requests more information.

• Users can respond to the request by
uploading the requested documents or
providing the requested information.

User Asks fiduciary Questions

ID FR-021

Name User Asks fiduciary Questions

User Story
As a user, I want to be able to ask a fidu-
ciary questions about my tax situation so
that I can get help with my taxes.

Epic Enhanced fiduciary-user Interaction

Acceptance Criteria

• Users can send text-based questions to
their assigned fiduciary.

• Users can view a history of their ques-
tions and the fiduciary’s responses.

• The system provides a clear and intuitive
interface for asking questions.

• Fiduciaries receive timely notifications
when a user asks a question.

Chatbot Answer Question

ID FR-022

Name Chatbot Answer Question

User Story

As a user, I want to be able to ask the
chatbot questions about the tax guidance
document so that I can get quick answers
to my tax-related inquiries.

Epic Steuerwegleitung RAG Chatbot

Acceptance Criteria • Users can type questions into a chat
interface to interact with the chatbot.

107



• The chatbot utilizes the tax guidance
document as its exclusive knowledge
source.

• The chatbot provides relevant and accu-
rate answers to user questions based on
the document’s content.

• The chatbot handles questions that are
outside the scope of the tax guidance
document by indicating that it does not
have that information.

15.2. Non-functional Requirements

Below the complete list of Non-functional requirements.

Usability

ID NFR-01

Description
The application should be easy to use for
new users. A new user can use the applica-
tion effortlessly.

Requirement Usability - Ease of Use

Priority High

Verification Process
Conduct usability testing with two new
users to assess their ability to complete key
tasks without assistance.

Measures

• Task completion rate: >90% of new users
can complete key tasks successfully with-
out external guidance.

• Time on task: New users can complete
key tasks in under 5 minutes.

Maintainability & Extensibility

ID NFR-02

108



Description

The codebase should follow clean architec-
ture principles to allow easy modifications,
future extensions, and long-term maintain-
ability by HL developers after the comple-
tion of this project.

Requirement Maintainability & Extensibility - Clean Ar-
chitecture

Priority Medium

Verification Process

Maintain regular communication with all
developers to discuss technology choices
and architectural decisions. Conduct code
reviews to ensure adherence to clean archi-
tecture principles and assess the ease of
making modifications and adding new fea-
tures. Additionally, assess documentation
completeness.

Measures

• Codebase adheres to defined architec-
tural principles (e.g., separation of con-
cerns, dependency inversion).

• Time to implement a new feature: A
new feature can be implemented within
a reasonable timeframe (under 1 week).

• Effort to modify existing code: Modifi-
cations to existing code require minimal
effort and have minimal impact on other
parts of the system.

• Comprehensive documentation of the
development process, including design
choices, architectural decisions, and
codebase organization.

Performance

ID NFR-03

Description
The system must deliver fast response
times, with key actions occurring within a
reasonable timeframe. The user experiences

109



virtually no waiting times while navigating
the application.

Requirement Performance Efficiency - Responsiveness

Priority High

Verification Process Measure the average loading time for indi-
vidual pages during normal business hours.

Measures

• Average page load time: The average
loading time for individual pages must
not exceed 3 seconds during normal op-
erating hours.

Capacity

ID NFR-04

Description

The application must function properly
even under high load. The system should be
able to handle at least 50 parallel requests
per second.

Requirement Performance Efficiency - Capacity

Priority Low (for prototype)

Verification Process
Conduct load testing to simulate a high
volume of concurrent users and measure the
system’s throughput and response times.

Measures

• Throughput: The system can handle at
least 50 parallel requests per second
without significant performance degra-
dation.

• Average response time: The average re-
sponse time remains within acceptable
limits (sub 1 second) even under high
load.

Browser Compatibility

110



ID NFR-05

Description

Ensure browser compatibility and optimiza-
tion for Google Chrome as the primary
client. All functions and elements of the ap-
plication must function fully and correctly
in the Google Chrome browser without per-
formance or display issues. Assumes normal
usage on an average monitor between 12
and 15 inches.

Requirement Compatibility - Browser Compatibility

Priority High

Verification Process

Perform cross-browser testing in Google
Chrome on monitors between 12 and 15
inches to verify functionality, performance,
and display accuracy.

Measures

• All core functionalities are fully func-
tional in Google Chrome.

• No display issues (e.g., broken layouts,
overlapping elements) are present in
Google Chrome.

• The application renders correctly on
monitors between 12 and 15 inches in
Google Chrome.

Security

ID NFR-06

Description

The system must ensure data confidential-
ity, integrity, and availability. User authen-
tication and authorization should be imple-
mented to restrict access.

Requirement Security - Data Integrity and Confidential-
ity

Priority High

111



Verification Process

Conduct regular security audits and pen-
etration testing to identify and address
potential vulnerabilities. Implement and
monitor access control mechanisms.

Measures

• Data is encrypted in transit.
• Access to sensitive data is restricted

based on user roles and permissions.
• The system is resistant to common web

vulnerabilities as defined by OWASP
(e.g., SQL injection, cross-site scripting).

Cost

ID NFR-07

Description The system should optimize resource usage
to minimize Railway costs.

Requirement Cost Optimization

Priority Medium

Verification Process

Check that chosen solutions were selected
with cost in mind. Verify that deployments
are properly cleaned up and resources are
released when no longer needed.

Measures

• Utilize Railway’s cost management tools
to identify the costs of resource configu-
rations.

• Implement scaling mechanisms to provi-
sion and de-provision resources based on
demand, optimizing resource utilization
and reducing costs.

Portability

ID NFR-08

Description The system should be designed for portabil-
ity to minimize vendor lock-in and facilitate

112



deployment on various providers or self-
hosting, enabling data sovereignty (ideally
hosted within Switzerland later).

Requirement Portability - Vendor Independence

Priority High

Verification Process

Verify that the system can be deployed
and run on different hosting providers (e.g.,
AWS, Google Cloud, self-hosted) with min-
imal configuration changes. Assess the re-
liance on vendor-specific services and tech-
nologies.

Measures

• The system supports using Docker for
easy deployment across different envi-
ronments.

• Data is stored in a standard PostgreSQL
database, avoiding vendor-specific data-
base solutions.

• Local file storage is used for document
management, avoiding reliance on ven-
dor-specific storage services.

• The application can be deployed and run
in a self-hosted environment.

113



15.3. Architectural Decision Records

This chapter documents the essential architectural decisions that have shaped the design of
this project. Following the ADR (Architectural Decision Record) template, each decision is
documented to provide reasons and context for the choices made. Each ADR contains the
following categories: Title, Context, Decision Drivers, Options, Decision, and Consequences.
Status and Date for the decision have been omitted since they are not widely applicable to a
project of this relatively narrow scope.

15.3.1. ADR 01 – Database

Context

The initial prototype of Finteam used Supabase in a client-direct-to-database setup, because
it offered a hosted PostgreSQL instance together with authentication, storage and row-level-
security (RLS) rules.

Decision Drivers

• Portability & vendor independence: The project must remain movable to any cloud or
an on-prem installation in Switzerland without code architecture changes.

• Fine-grained authorisation and future business logic: RLS alone is not flexible enough
for complex fiduciary / client rules; a server layer allows arbitrary logic, external identity
providers and audit logging.

• Server-side compute workloads: Features such as document OCR, LLM–based enrich-
ment and RAG require CPU/GPU time that should not run on the client.

Options

• Continue with hosted Supabase [22]
• Self-host Supabase
• Dedicated PostgreSQL instance [5]

Decision

It was decided to use a managed PostgreSQL instance on Railway, accessed exclusively through
an Express/TypeScript backend that exposes a REST API. Database access in the API is
implemented with Drizzle ORM; clients never talk to the database directly.

Consequences

• Positive
‣ Data can be moved to another cloud or to an on-prem server without touching client code.
‣ Security model is clearer: all requests pass one gateway; complex fiduciary/user rules are

easy to enforce.
‣ Enables future features (AI document analysis, background jobs) on the server side.
‣ Database schema and migrations are fully under version control.

• Negative

• Additional backend to design, implement and operate.

114



15.3.2. ADR 02 – Data Transmission Standard

Context

The API handles communication between clients (both mobile and web) and the backend.
Consistency and reliability of data exchange are crucial, especially in a system dealing with
sensitive tax documents and fiduciary communications. The API must enforce type safety and
ensure that the data exchanged matches the expected structures.

Decision Drivers

• Type safety and validation: The system must enforce strict data validation and type
safety for all communications between client and server.

• Developer experience: The approach should integrate smoothly with the development
process and provide clear guidance for future developers.

• Maintainability: The chosen method should minimize overhead and complexity while
allowing future extensions.

• Portability: The solution should be portable to different environments and not rely heavily
on specific tools or configurations.

Options

• OpenAPI/Swagger [49], [50]
• tRPC [51]
• Zod [20]

Decision

It was decided to use Zod for validating and typing API responses. Zod is simple to implement,
provides runtime validation, and integrates directly with TypeScript types for a seamless devel-
opment experience. This decision ensures that the system enforces consistent data structures
and avoids the overhead of OpenAPI or tRPC while retaining strong type safety.

Consequences

• Positive
‣ Enforces consistent and correct data structures across client and server.
‣ Simplifies development by integrating type safety and validation without external tooling.
‣ Enhances maintainability and reduces the risk of runtime errors.

• Negative
‣ Requires manual definition of schemas and validation in both client and server.
‣ Does not provide automatic documentation or client generation like OpenAPI/Swagger.

15.3.3. ADR 03 – Platform for Fiduciaries

Context

The application required a platform for fiduciaries to access and manage client tax documents,
communicate with clients, and oversee submissions. The decision focused on whether this
platform should be implemented as a mobile application or a web application.

115



Decision Drivers

• User environment: The platform must be accessible from environments where fiduciaries
typically perform their work.

• Usability and productivity: The interface should support complex tasks with multiple
data points.

• Device compatibility: Consideration of the range of devices and screen sizes used by
fiduciaries in professional settings.

• Development efficiency: The platform should be maintainable and extensible with
minimal overhead.

Options

• Mobile app
• Web app

Decision

It was decided to implement a web application for fiduciaries, as they typically perform their
work in office settings using desktops or laptops.

Consequences

• Positive
‣ Offers a larger workspace suitable for document review, communication, and data man-

agement.
‣ Simplifies deployment and access through common browsers.
‣ Reduces complexity by focusing development efforts on a single web platform.

• Negative
‣ Limited mobile access for fiduciaries, though not deemed critical.

15.3.4. ADR 04 – Frontend Framework

Context

The frontend framework was a key decision to support the development of the client-facing
interfaces of the system, both for the mobile and web applications.

Decision Drivers

• Performance: The framework should provide fast load times and efficient rendering.
• Developer experience: It should be easy to learn, use, and integrate with existing tooling.
• Maintainability and extensibility: The solution should support a modular codebase that

can grow with the project.
• Ecosystem and community support: A mature and widely adopted framework ensures

long-term viability.

Options

• Vite React [7], [52]
• React Next.js [53]

116



• Angular [54]

Decision

It was decided to use Vite React as the frontend framework for both mobile and web
applications.

Consequences

• Positive
‣ Provides fast build times and efficient development workflows.
‣ Leverages React’s component-based structure and mature ecosystem.
‣ Simplifies setup with minimal configuration.

• Negative
‣ Lacks some features of Next.js, such as built-in SSR.
‣ Not a full framework like Angular, but sufficient for the project’s scope.

15.3.5. ADR 05 – Backend Framework

Context

The system architecture required a backend to handle API requests, business logic, authenti-
cation, and data management. This decision considered the trade-offs between building a custom
backend or using Supabase exclusively.

Decision Drivers

• Control and flexibility: The backend should allow for implementing custom business logic
and integrations.

• Scalability and maintainability: The solution should be able to scale with increased
usage and remain manageable.

• Developer productivity: The framework should integrate well with the existing tech stack
and be easy for the team to work with.

• Portability: The backend should not depend on a specific vendor or platform.

Options

• Next.js (API routes) [53]
• Express.js with TypeScript [4], [8]
• Supabase only [22]
• Java Spring Boot [55]

Decision

It was decided to use Express.js with TypeScript for the backend.

Consequences

• Positive
‣ Provides a flexible and scalable architecture for handling complex business logic.
‣ Integrates seamlessly with the chosen PostgreSQL database and authentication mech-

anisms.

117



‣ Maintains full control over the backend with clear separation from the frontend.

• Negative
‣ Requires more development effort compared to using Supabase directly.
‣ Does not include built-in tools like Supabase’s authentication and storage features.

15.3.6. ADR 06 – Mobile Framework

Context

The mobile framework selection focused on the client-facing application for users to upload and
manage tax documents, communicate with fiduciaries, and interact with the system.

Decision Drivers

• Cross-platform support: The framework should enable development for both iOS and
Android.

• Developer productivity: Should allow rapid development and debugging with minimal
setup.

• Ecosystem and community support: Must have strong adoption and long-term viability.
• Integration with existing tooling: Should integrate well with the chosen backend and

frontend technologies.

Options

• Expo React Native [1], [15]
• Pure React Native
• Flutter [56]
• Native development with Swift and Kotlin [57], [58]

Decision

It was decided to use Expo React Native for the mobile application.

Consequences

• Positive
‣ Simplifies cross-platform development with shared codebase for iOS and Android.
‣ Provides built-in modules and managed workflow for rapid development.
‣ Reduces setup complexity compared to pure React Native or native development.

• Negative
‣ Slightly limited flexibility compared to pure React Native or native development.
‣ Performance may not match fully native applications in complex use cases.

15.3.7. ADR 07 – Authentication Strategy

Context

118



The system required an authentication mechanism to manage user access and protect sensitive
tax data. The decision centered around how to implement authentication while balancing
security, privacy, and ease of use.

Decision Drivers

• Security: The system must protect against unauthorized access and ensure data confiden-
tiality.

• Privacy and self-hosting: The solution should not introduce external dependencies or
data privacy concerns.

• Scalability: Should be able to handle increased user load without significant changes.
• Developer experience: Should integrate well with the existing backend framework and

technology stack.

Options

• Stateless JWT authentication [24]
• Session-based authentication [59]
• 3rd-party authentication with Clerk [60]

Decision

It was decided to implement stateless JWT authentication for the system.

Consequences

• Positive
‣ Simplifies scaling as authentication is stateless and does not rely on server-side session

management.
‣ Enhances privacy and control by avoiding reliance on third-party authentication providers.
‣ Easily integrates with the chosen Express.js backend.

• Negative
‣ Requires careful management of token lifetimes and refresh strategies.
‣ Stateless nature can make revoking tokens more challenging compared to session-based

approaches.

15.3.8. ADR 08 – Repository Structure

Context

The system’s codebase includes the backend API, web application, and mobile application. The
repository structure needed to support collaborative development while balancing simplicity
and maintainability.

Decision Drivers

• Simplicity: Should allow straightforward project management without introducing complex
tooling or dependencies.

• Separation of concerns: Each application component should be manageable and deploy-
able independently.

• Scalability: The structure should accommodate project growth and new components.

119



• Ease of collaboration: Supports clear boundaries between components for multiple devel-
opers.

Options

• Monorepo
• Polyrepo

Decision

It was decided to use a polyrepo structure for the system.

Consequences

• Positive
‣ Each component (backend, web, mobile) is isolated and can be managed independently.
‣ Simpler initial setup and fewer dependencies compared to a monorepo.

• Negative
‣ Harder to share code and types between repositories.
‣ Requires more effort to maintain consistency across multiple codebases.

15.3.9. ADR 09 – File Upload Strategy

Context

The system needed a mechanism for uploading and storing files such as tax documents. This
decision focused on balancing complexity, cost, and control.

Decision Drivers

• Simplicity: The solution should be easy to integrate and maintain without introducing
unnecessary dependencies.

• Self-hosting and control: The system should avoid reliance on third-party services for
privacy and data sovereignty reasons.

• Performance and scalability: Should provide acceptable upload and retrieval performance
for expected usage levels.

Options

• Direct file storage with attached volume
• Amazon S3 or equivalent third-party storage provider [61]

Decision

It was decided to use direct file storage with an attached volume on the backend server.

Consequences

• Positive
‣ Simple setup with minimal dependencies.
‣ Full control over file storage and easy portability to self-hosted environments.

• Negative
‣ No built-in scalability or redundancy compared to third-party storage providers like S3.

120



‣ Potentially higher operational overhead if scaling beyond a single server.

15.3.10. ADR 10 – Deployment Platform

Context

The system needed a deployment strategy for the backend, web application, and supporting
services. This decision considered trade-offs between managing self-hosted infrastructure and
using a managed Platform-as-a-Service (PaaS).

Decision Drivers

• Ease of deployment and management: Minimize operational overhead and streamline
CI/CD workflows.

• Scalability and reliability: The platform must support scaling with project growth and
ensure high availability.

• Cost-effectiveness: Consider the total cost of ownership, including setup, maintenance,
and resource utilization.

• Portability: Maintain flexibility to move to different platforms if needed in the future.

Options

• Self-hosting on Linux
• Railway (PaaS) [27]

Decision

It was decided to deploy on Railway for hosting the backend, web application, and database.

Consequences

• Positive
‣ Provides automatic resource provisioning, CI/CD integration, and monitoring tools.
‣ Reduces deployment complexity and operational burden compared to managing Linux

servers.
‣ Streamlines deployment with GitHub integration and auto-deploys on code push.
‣ While tied to Railway for hosting, the code can also be deployed on a self-hosted Linux

environment without any code changes.

• Negative
‣ Ties the system to a third-party PaaS provider for hosting.
‣ Less granular control over infrastructure compared to self-hosting.

121



Entity Relationship Diagrams

Application DB

122



123



Vector DB

124



Initial Project proposal

SmartFin ist eine App, welche die Anwender unterstützt, Dokumente rund um die Finanzen
und die Steuererklärung einfach und strukturiert zu sammeln.

Die App ist eine digitale Weiterentwicklung von Papier-“Checklisten” wie sie von Treuhändern
an ihre Kunden abgegeben werden um die Steuererklärung vorzubereiten. Dieser Prozess, sowie
die Kommunikation zwischen Treuhänder und Kunde soll mit einer App effizienter gemacht
werden. Ausserdem lassen sich Dokumente mit ML klassifizieren und auswerten.

Im Rahmen dieser BA soll ein existierender Prototyp analysiert und verbessert werden.
Insbesondere stehen folgende Aspekte im Fokus

• Software Architektur: eine zweckmässige, erweiterbare Architektur soll erarbeitet werden.
Dabei müssen Anforderungen an die Smartphone App, an ein Service-Backend, sowie eine
Web-App analysiert werden und in die Architektur einfliessen.

• Entwicklung ausgewählter Funktionen auf dem Smartphone (React-Native) inklusive der
dazugehörigen Server Endpoints und Persistence Layer.

• optional/Idee: integration von einfachen ML Modellen zur Prüfung von Eingaben und
Dokumenten (z.B. ein Photo als “Lohnausweis” klassifizieren)

Der genaue Inhalt und Schwerpunkt der Entwicklung kann im Rahmen der Arbeit diskutiert
werden und orientiert sich auch an den Interessen der Studierenden.

125


	Introduction
	Project Goal
	Background
	General Conditions

	Requirement Analysis
	Flowcharts
	Functional Requirements
	Use Case Diagram
	Roles
	Epics
	User and Developer Stories

	Non-Functional Requirements

	Architecture
	C4 - Level 1 System Context Diagram
	C4 - Level 2 Container Diagram
	Domain Model
	Mobile Architecture
	Project Directory Structure Overview
	Presentation Layer
	Business Logic Layer
	Data Layer
	Cross-Cutting Concerns

	Web Architecture
	Project Directory Structure Overview
	Presentation Layer
	Screen/Pages
	Business Logic Layer
	Data Layer
	Cross-Cutting Concerns

	API Architecture
	Project Directory Structure Overview
	Presentation Layer
	Business Logic Layer
	Service Layer
	Data Layer
	Cross-Cutting Concerns


	Tools & Technologies
	Mobile Application
	Additional Libraries

	Backend API
	Libraries

	Web Application
	Additional Libraries
	Hosting
	AI Chatbot


	Implementation
	Mobile App UI Overview
	Invite and Connection Management System
	Invite Flow
	Cryptographic Code Generation
	Connection Establishment Process
	Connection Termination and Management

	Fiduciary Access Control System
	Authentication and Authorization Framework
	Document Access Patterns
	Security Considerations

	File Uploads
	Multer Middleware
	Type Validation and Constraints
	Database Schema and Relationships
	Access Control and Retrieval

	API Authentication System
	Cryptographic Foundation
	JWT Token Architecture
	Middleware Authentication
	Registration and Sign-In
	Rate Limiting and Security Controls
	Client Integration

	Web Client Authentication
	Token Storage and Persistence
	Protected Route Implementation

	Mobile Client Authentication
	Token Storage and Persistence
	Automatic User Data Fetching
	Navigation-Based Route Protection
	HTTP Request Authentication
	Session Expiration Handling

	AI Chatbot
	Configuration
	Database
	Ingestion Flow
	Retrieval
	Chat

	AI Chat Evaluation
	Synthetic Test Data Generation
	Evaluation Metrics
	Evaluation Runner

	Deployment
	Containers
	Build system
	Environment Variables and Secrets


	Results
	AI Chat Evaluation Results
	Charts
	Recommendation


	Conclusion and Further Work
	New Achievements
	Challenges and Unresolved Issues
	Future Directions
	Final Reflection

	Quality Measures
	Git Workflow
	Polyrepo
	Workflow

	Code Quality
	Linter and Prettier
	Static Analysis
	GitHub Actions
	Railway Auto Deploy

	Unit Tests
	Test Objects
	Test Implementation and Type Safety
	Test Coverage and Strategy

	End-to-End Tests
	Test Flow

	Protocol for Functional Requirements
	Protocol for Non-functional Requirements


	General Project Management
	Roles and Team Organization
	Method
	Project Plan
	Collaboration Workflow
	Review Meetings
	Team Meetings

	General Project Technologies
	Linear
	Microsoft Teams
	Typst
	Time tracking
	AI Systems

	Risk Management
	R1 - Cloud Provider Downtime
	R2 - Apple Review prevents app release
	R3 - Team member gets sick
	R4 - Tax Regulation Complexities
	R5 - Data Security Breach
	R6 - Progress on API implementation blocking other developers work
	R7 - Lack of expertise regarding Mobile development


	Glossary
	List of Figures
	List of Tables
	Directory of Resources
	Bibliography
	Requirements and decisions
	Functional Requirements
	Non-functional Requirements
	Architectural Decision Records
	ADR 01 – Database
	ADR 02 – Data Transmission Standard
	ADR 03 – Platform for Fiduciaries
	ADR 04 – Frontend Framework
	ADR 05 – Backend Framework
	ADR 06 – Mobile Framework
	ADR 07 – Authentication Strategy
	ADR 08 – Repository Structure
	ADR 09 – File Upload Strategy
	ADR 10 – Deployment Platform


	Entity Relationship Diagrams
	Initial Project proposal

