
TeachOS
Design and Implementation of an
OS for Use in the Operating Systems
Lecture Track

Print time:

11.06.2025

Team / Authors:

Matteo Gmür and Fabian Imhof

Advisors:

Felix Morgner

Copy editor:

Thomas Letsch

Abstract
TeachOS is an operating System for the x86_64 CPU architecture. It is designed to be an interactive learning tool used in the
«Operating Systems 1» and «Operating Systems 2» lecture track at OST.

As part of a previous thesis, a foundation in form of memory management, including physical and heap memory was created.
Topics covered included parsing Multiboot2 information, implementing frame allocation and page tables, and using these
components to remap the kernel. Based on this, dynamic memory allocation during kernel runtime was implemented using
different allocation strategies.

This paper examines the core concept of context-switching in operating systems for the x86 processor architecture. To imple-
ment the context-switch mechanisms, multiple operating system concepts had to be researched and implemented. These
concepts include Privilege Levels, the Global Descriptor Table, Interrupts and the Interrupt Descriptor Table and Procedure
Calls.

To give the newly created access to user mode a purpose, the existing heap implementation has been expanded upon, by uti-
lizing the new and delete operators in various data-structures. Additionally a separate user mode heap has been created,
which is separated from the kernel mode heap via paging, and is dynamically extended when running out of memory.

This foundation can be extended in the future, by separating kernel-code and user-code binaries. Doing this allows for better
separation of the different privilege levels inside the paging mechanism, which in turn better resembles real world operating
systems, and thus better fulfills the primary goal of providing an operating system designed for education.

i

Table of Contents
1 Goals .. 1

1.1 Scope .. 1
1.2 Memory Management ... 1
1.3 Context Switching ... 1
1.4 Out of scope ... 1

2 Research ... 3
2.1 User Mode Heap .. 3

2.1.1 Decision ... 3
2.2 Privilege levels .. 4
2.3 Interrupts ... 5
2.4 Global Descriptor Table .. 5

2.4.1 Segment Descriptor ... 6
2.4.2 Segment Selector ... 10
2.4.3 Descriptor Table Pointer .. 10
2.4.4 Segment Registers ... 11
2.4.5 Far Pointer ... 11

2.5 Interrupt Descriptor Table .. 12
2.5.1 Gate Descriptors .. 13

2.6 Task State Segment .. 15
2.6.1 Memory Management Register ... 16

2.7 Procedure Calls ... 17
2.7.1 SYSCALL / SYSRET ... 17
2.7.2 SYSENTER / SYSEXIT ... 18
2.7.3 INT/IRETQ .. 19
2.7.4 Decision ... 20
2.7.5 Passing Arguments to System Calls ... 20
2.7.6 Decision ... 21
2.7.7 Using System Calls with multiple stacks .. 21

3 Results .. 22
3.1 Memory Management ... 22

3.1.1 Current problem .. 22
3.1.2 Overriding new and delete .. 22
3.1.3 Global Heap Allocator .. 22
3.1.4 Factory Method Pattern .. 23
3.1.5 Improving the Linked List Allocator ... 23

3.2 Context Switching ... 25
3.2.1 Segment Descriptor ... 25
3.2.2 Global Descriptor Table ... 27
3.2.3 Interrupt Descriptor Table (IDT) ... 28
3.2.4 Interrupt Service Routine (ISR) .. 29
3.2.5 Task State Segment (TSS) ... 30
3.2.6 Changing Segment Registers ... 30

3.3 Separating User from Kernel Mode .. 33
3.3.1 Configuring and Enabling System Calls .. 33
3.3.2 Implementing and Wrapping System Calls .. 33
3.3.3 Implementing the System Call Handler ... 34
3.3.4 Creating and Moving Code into User Linker Section ... 35
3.3.5 Mapping Pages User Accessible .. 35
3.3.6 Creating a User Heap Allocator ... 37

4 Assembly caveats ... 39
4.1 GNU Assembly (GAS) .. 39
4.2 Inline assembly ... 39

4.2.1 Output operands ... 39
4.2.2 Input operands .. 39
4.2.3 Clobber list ... 40
4.2.4 Operand constraints .. 40
4.2.5 Constraint modifiers .. 40
4.2.6 Compile time optimization .. 40
4.2.7 Loading effective address .. 40

ii

5 Future Work ... 41
5.1 Interrupt Handler ... 41
5.2 System Call over Interrupts .. 41
5.3 Interrupt Stack .. 41
5.4 System Call Parameter Passing ... 41
5.5 Keyboard Interrupts ... 41
5.6 Creating a User Mode Stack ... 41
5.7 Educational Structure ... 41

6 Glossary ... 43

7 Bibliography ... 45

8 Table of Figures .. 45
8.1 Listings .. 45
8.2 Images .. 46
8.3 Tables ... 46
8.4 Tools ... 47

iii

TeachOS | Matteo Gmür and Fabian Imhof

Part 1
Goals

1.1 Scope
This project focuses on enhancing the TeachOS operating system with improved memory management, task creation, and
user- and kernel-space interaction. The main areas of development include:

• Context switching
‣ Implement interrupt handling
‣ Enable paging in user space
‣ Create user-mode heap
‣ Ensure correct permissions for the different modes

• Custom Memory Management and Data Structures
‣ Override new and delete to use a heap allocator based on current protection level
‣ Build reusable infrastructure to replace parts of the C++ standard library (e.g. std::vector, std::unique_pointer)

1.2 Memory Management
The memory management should be improved, by making heap allocation as simple as possible. This is required for efficient
and viable memory management inside all privilege levels. These improvements have the highest priority and should be im-
plemented first.

The current memory management implementation contains various deficiencies that require some tweaking to be more opti-
mal and developer-friendly:

• Connect memory management infrastructure to new and delete calls
• Create custom implementations of C++ Standard Library constructs like std::vector which use the custom memory man-

agement infrastructure
• Improve linked_list_allocator to allow for delete calls without passing a size attribute (Storing the size in a header of

the allocated block instead)

1.3 Context Switching
The primary goal of this bachelor thesis is implementing the ability to switch between privilege levels. Meaning it should be
possible to execute code in user mode and switch to kernel mode via syscall to handle more privileged instructions.

This goal essentially consists of the following tasks:

• Creating a global descriptor table with kernel and user segment descriptors
• Creating an interrupt descriptor table to avoid system crashes due to exceptions
• Mapping kernel code and user code onto different pages
• Updating the (permission) flags of all page tables to correctly represent their purpose
• Switching into user-mode at the end of kernel initialization so that the “default” operating mode is in privilege level 3
• Setting up the system in a way, that allows syscalls inside user mode, to allow switching the current privilege level to let

the kernel handle calls requiring elevated privileges

1.4 Out of scope
Currently TeachOS is turning out to be an operating system kernel running on a single processing core. Partly because of the
limited resources available during the bachelor thesis. For this reason a multithreaded implementation of any functionality is
out of scope. This results in syscalls invoked in user mode being blocking until the kernel is done handling it.

The creation of code solely for educational purposes will also be disregarded in this thesis. One reason is that the kernel is not
yet in a state, in which it could immediately be used in a classroom. All the in-scope work is necessary for these features to be
effective. This will be explained further in Section 5, “Future work”.

Page 1 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Another interesting and worthwhile feature is implementing appropriate keyboard input handling. However, a complete inter-
rupt handling would have to be implemented first, which is simply not possible due to the time constraint of this thesis. For
this reason, keyboard interrupt handling is also mentioned as a possible feature to implement next in Section 5, “Future
work”.

Page 2 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Part 2
Research

2.1 User Mode Heap
There are three different ways to implement a separate heap for User Mode. This is done to ensure that user applications can
not interfere with the kernels’ memory management.

All strategies share that they require an additional heap area to be mapped, so instead of only having a 100 KiB Kernel Heap,
they also require a separately mapped Heap for User Mode.

Strategy Advantages / Disadvantages

Changing allo-
cation calls de-
pending on CS
register

Advantages:
• Allows to keep the current operator overloads for Kernel and User Mode
• Check the value of the CS register, when the new or delete operator is called
• Depending on the value, either allocate memory in User Mode Heap or Kernel Mode Heap
• Implementation is relatively simple, because it allows to keep the current infrastructure and re-

quires to simply add another member variable to the global_heap_allocator

Disadvantages:
• Kernel and User Mode Heap Allocation are not cleanly separated and can not be separated later

without a rewrite

Use template
argument for
allocator with
separate Kernel
and User Mode
Allocator

Advantages:
• Uses an additional template argument to pass a custom allocator, depending on the mode for

Standard Template Library (STL) implementations
• Kernel can use kmalloc / kfree and User Mode can use malloc / free which forward to SYSCALL
• User Mode can be the default Allocator used

Disadvantages:
• Requires more work, because separate allocators need to be written that forward calls to

SYSCALL

Place User
Mode operator
overload in sep-
arate linker sec-
tion, loaded in
Ring 3

Advantages:
• Cleanest way, allows to simply implement another set of new and delete operator overloads
• Use separate page tables to only load ELF section in User Mode where the User Mode implemen-

tation is contained and not the Kernel Mode implementation

Disadvantages:
• Hard to explain, Linker does Magic in the background. Suboptimal for teaching functionality of

the operating system
• Hard to put the implementation into the correct Linker section
• Would require splitting the binary, because the new and delete can not be redefined

Table. 1: Comparison of User Mode Heap Implementations

2.1.1 Decision
With these three options available, a decision must be made as to which of them TeachOS should utilize.
Option 3 currently can not be implemented, because it would require splitting User and Kernel Code into different binaries.
Option 2 is a viable option, but it only allows using STL data structures in user mode. However, it does not enable using new or
delete calls directly to instantiate an arbitrary data structure. Therefore, the best option for this operating system is Option 1
combined with Option 2, which has been chosen.

This decision is motivated by the following factors:
• Extensibility: The decision tree inside the new / delete operators have been modified to additionally use Option 2, because

the actual allocation calls kmalloc / malloc and deallocation calls kfree / free have been separated into a user and kernel
method already. Which then individually call their respective Allocator implementation.

• Learning value: The code is relatively simple and therefore makes understanding, what exactly happens clearer and more
useful as a learning tool.

Page 3 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.2 Privilege levels
Privilege levels are a protection mechanism. There are four protection levels (0 to 3) with level 0 being the most privileged
and decreasing with every higher level. Privilege levels are used to prevent a program operating at a lesser privilege level from
accessing a segment with a greater privilege level. Instead, this attempted access will generate a General Protection Fault
(#GP).

Image. 1: Operating system protection ring (Figure 6-3. Protection Rings [1])

There are multiple recognized types of privilege levels, that check access between Code and Data Segments.

Name Description

Current Privilege Level (CPL) Stored in bits 0-1 of the CS and SS registers. Equivalent to the privilege level of
the Code Segment the current instructions are being fetched from, for noncon-
forming Code Segments. Changed when control is being transferred to a Code
Segment with a different privilege level, besides for conforming Code Seg-
ments, here the CPL is not changed even if control is transferred.

Descriptor Privilege Level (DPL) Describes privilege level of Segment Descriptor (Section 2.4.1) or Gate Descrip-
tor (Section 2.5.1). Interpretation depends on the type of segment or gate:
• Data Segment / TSS / Call Gate: Indicates the numerically highest CPL that is

allowed to access the segment.
• Nonconforming Code Segment: Exact CPL required to access the segment.
• Conforming Code Segment (or Nonconforming through Call Gate): Indicates

the numerically lowest CPL that is allowed to access the segment.

Requested Privilege Level (RPL) Overrides the value of the CPL. Uses either the CPL or RPL value for actual priv-
ilege level checks, depending on which value is numerically higher.

Table. 2: Types of Privilege Levels (Vol. 3A, Chapter 6.5 Privilege Levels [1])

Page 4 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.3 Interrupts
Interrupts are signals generated by devices, such as keyboards or hard drives, or code, that instruct the CPU to halt its current
operations and address a different task. For instance, when a key is pressed on a keyboard, the keyboard controller sends an
interrupt to the CPU. This allows the operating system to promptly display the corresponding character on the screen, regard-
less of the CPU’s previous activity, after which the CPU can resume its prior task.

When receiving a specific interrupt, the CPU consults a designated table provided by the operating system to locate the rele-
vant entry for that interrupt. In the x86_64 architecture, this table is referred to as the Interrupt Descriptor Table (IDT). Once
the CPU identifies the appropriate entry for the interrupt, it executes the code associated with that entry. This code is called
“interrupt service routine” (ISR) or “interrupt handler”.

There are usually three different types of interrupts: Exceptions, Interrupt requests / Hardware interrupts and Software inter-
rupts. (Article “Interrupts” [2])

2.4 Global Descriptor Table
The Global Descriptor Table (GDT) is a fundamental component of memory management in the x86 architecture. In 32-bit
mode it is used as a data structure by the CPU to define and separate memory segments in a system.

In IA-32e 64-bit mode, segmentation using the GDT has been replaced with paging, which is instead used to separate memory
into protected areas. This causes the CPU to simply treat all Base field values as if they were 0, regardless of the actual value
in the Segment Descriptor. Additionally, limit checks for the registers are disabled and the values of the Limit field are ignored
as well. (Vol. 3A, Chapter 3.2.4 Segmentation in IA-32e Mode [1])

Therefore, the setup of the GDT can be minimal in IA-32e 64-bit mode, as it is only used for Context Switching. This minimal
setup requires an empty “Null Descriptor” at the start, followed by a Code Segment Descriptor and a Data Segment Descrip-
tor for Kernel Mode, a Code Segment Descriptor and Data Segment Descriptor for User Mode and lastly a Task State Segment
Descriptor.

Image. 2: GDT segments in IA-32e 64-bit mode

During the setup of the GDT it is important to ensure that no interrupts are occurring. The code initializing the GDT must not
get interrupted, because the program could still attempt to access the segment registers of the old GDT structure. [3]

To prevent this, all interrupts have to be temporarily disabled. This can be achieved by clearing the interrupt flag using the cli
instruction. Once the IDT has been set up interrupts can again be enabled, simply by setting the interrupt flag again through
the sti instruction. This will additionally cause any hardware interrupts that were ignored while the flag was cleared, to be
received again as soon as the flag has been set.

Page 5 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.4.1 Segment Descriptor
The memory segments inside the GDT are called Segment Descriptors and contain the following data for the 64-bit version.

Image. 3: 64-bit Segment Descriptor [1] (Figure 3-8. Segment Descriptor)

The Base and Limit fields are divided across multiple separate fields. While this might initially seem unusual, it originated for
historical reasons to maintain backwards compatibility with the 16-bit processor format of the 80286 and the 32-bit processor
format of the 80368 processor. The 16-bit processor does not require the additional Flags field, because it is primarily used to
signal 32-bit instead of 16-bit registers. Furthermore, it also does not require the 4 additional bits for the Limit field or the ad-
ditional 8 bit for the Base field. Instead, these 16 bit have to be 0 and reserved to keep compatibility between both processor
formats.

Table. 3: 16-bit Segment Descriptor (Figure 6-1. Protection Fields of Segment Descriptors [4]) and 32-bit Segment Descriptor
(Figure 6-3. Segment Descriptors [5])

Bits Name Description

32 Reserved Required because the 64-bit version of the Segment Descriptor requires a 64-bit base address
instead of only a 32-bit address. This means our new entry would be 96 bit (64 bit from 32-bit
Segment Descriptor + 32 bit for remaining half of the base address). However, to be compatible
with the design of the 32-bit Segment Descriptor, two entries in little-endian format are now
needed in the Global Descriptor Table, because those two entries would add up to 128-bit, the
remaining space has to be filled with reserved data.

64 Base Defines the starting memory address of the segment within the 4-GiB linear address space. Is
calculated by combining the three base address fields to form a single 64-bit value.

4 Flags Defines 4 individual bits that change the behavior of the Segment Descriptor.

20 Limit Defines the size of the segment. Is calculated by combining the two limit fields to form a single
20-bit value. Behavior depends on the Granularity flag in the Flags field.
• 0: Segment size ranges from 1 Byte to 1 MiB, in byte increments
• 1: Segment size ranges from 4 KiB to 4 GiB in 4 KiB increments

8 Access Byte Defines 8 individual bits that change the type of the Segment Descriptor.

Table. 4: Segment Descriptor Components (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1])

Page 6 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.4.1.1 Flags

IA-32e mode can run in 64-bit mode or 32-bit compatibility mode. However, because Long Mode is enabled, IA-32e in 64-bit
mode is used and therefore bit 2 is always enabled for Code Segments.

Table. 5: Differences in Flags on different Segment Descriptor Types (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1])

Bit Name Description

1 Available Segment is available for use by the system software

2 Length Defines the size of the Code Segment descriptor. Should be 0 for non Code Segment Descrip-
tors. If this bit is set, the third bit should always be 0. Only defined for IA-32e mode, for other
modes this bit should be 0.
• 0: Defines a 32-bit Compatibility Code Segment
• 1: Defines a 64-bit Code Segment

3 Default / Big Behavior depends on the actual type of the segment descriptor.
• Code Segment: Flag indicates the default length for effective addresses and operands
‣ 0: 16-bit addresses and 16-bit or 8-bit operands
‣ 1: 32-bit addresses and 32-bit or 8-bit operands

• Stack Segment: Specifies the size of the Stack Pointer (SP) used for implicit stack opera-
tions
‣ 0: 16-bit SP stored in 16-bit Extended Stack Pointer (ESP) register (value 0)
‣ 1: 32-bit SP stored in 32-bit ESP register

• Expand-Down Data Segment: Specifies the upper bound of the segment
‣ 0: 64 KiB
‣ 1: 4 GiB

4 Granularity Signifies the resolution of the Limit value.
• 0: Scaled by 1 Byte
• 1: Scaled by 4 KiB blocks

Table. 6: Segment Descriptor Flags (Little-Endian) (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1])

Page 7 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.4.1.2 Access Byte

Bit Name Description

1-4 Type Field Further specifies the underlying type of the segment, depends on the Descriptor
Type.

5 Descriptor Type Defines the underlying type of the segment.
• 0: System Segment
• 1: Code or Data Segment

6-7 Descriptor Privilege
Level

Specifies the privilege level required to access this segment. A higher value means
a less privileged access level is required. If only two access levels are required it is
recommended to use the highest (0) and the lowest access level (3) respectively.
• 0: Level 0 (Kernel)
• 1: Level 1 (Used for System Services like Device Drivers)
• 2: Level 2
• 3: Level 3 (User Applications)

8 Segment-present Indicates whether the segment is present in memory or not. Will cause a Segment
Not Present (#NP) exception, when this Segment Descriptor is loaded while the
value is 0.

Allows for more fine-grained control of segments that are actually loaded into
physical memory at a give time. (Vol. 3A, Chapter Interrupt 11—Segment Not Pre-
sent (#NP) [1])
• 0: Not present in memory
• 1: Present in memory

Table. 7: Segment Descriptor Access Byte (Little-Endian) (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1])

Page 8 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.4.1.3 Type Field

Table. 8: Differences in Type Field on different Segment Descriptor Types (Figure 6-1. Descriptor Fields Used for Protection [1])

2.4.1.3.1 Type Field for Data or Code Segments Descriptors

Bit Description

1 Behavior is the same for both types Code and Data Segment Descriptors. Whether the segment has been ac-
cessed since the last time the operating system has cleared the flag or not.
• 0: Not accessed
• 1: Accessed

2 Behavior depends on the specific type of the Segment Descriptor as indicated by bit 0.
• Data Segment: Determines if the segment is writable or only readable
‣ 0: Read-Only
‣ 1: Read-Write

• Code Segment: Indicates if the segment can be read or only executed
‣ 0: Execute-Only
‣ 1: Execute-Read

3 Behavior depends on the actual type of the Segment Descriptor possible in bit 0.
• Data Segment: Whether the segment expands downwards or upwards
‣ 0: Expand-Up
‣ 1: Expand-Down

• Code Segment: Whether the code is allowed to be executed by different access levels (higher or lower)
‣ 0: Nonconforming (Access by different access level causes a General Protection Fault (#GP) exception,

Data Segments are always nonconforming, but allow access from higher levels)
‣ 1: Conforming

4 Defines the actual type of the segment.
• 0: Data Segment
• 1: Code Segment

Table. 9: Segment Descriptor Type Field (Little-Endian) (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1])

2.4.1.3.2 Type Field for System Segment Descriptors
The Type field for System Segment Descriptors is a special case. This is because the individual bits are not standalone flags.
Rather, specific combinations of bits are used to identify the exact type of system segment. Since IA-32e 64-bit mode is in use,
only the 64-bit versions of these types are applicable.

All other possible values (0-15) not mentioned below, are reserved for backwards compatibility with 32-bit addresses.

Decimal Bits IA-32e Mode

2 0 | 0 | 1 | 0 Local Descriptor Table (LDT)

9 1 | 0 | 0 | 1 64-bit Task State Segment (TSS) Available

11 1 | 0 | 1 | 1 64-bit Task State Segment (TSS) Busy

12 1 | 1 | 0 | 0 64-bit Call Gate

14 1 | 1 | 1 | 0 64-bit Interrupt Gate

15 1 | 1 | 1 | 1 64-bit Trap Gate

Table. 10: System Segment Descriptor Type Field (Table 3-2. System-Segment and Gate-Descriptor Types [1])

Page 9 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.4.1.4 Segment Types

The Segment Descriptors point to actual Segments, which have different uses depending on their specific type.

• Code Segment: Stores executable instructions
• Data Segment: Stores variables and data
‣ Expand-Down Data Segment: Arbitrary Data Segment that expands downwards
‣ Stack Segment: Special Data Segment that is pointed to by the Stack-Segment (SS) register. Defines the block of memory

that will be used to save stack information. Can also be an Expand-Down Data Segment (Default / Big flag will be used to
signify both settings). Additionally has to allow for both Read / Write, or it will cause a GP exception to be thrown.

• System Segments: Includes TSS and LDT

2.4.2 Segment Selector
The Segment Selector is a special pointer that identifies a segment in memory through descriptors in the GDT. It allows select-
ing any of the preconfigured entries, however selecting the first entry of the GDT (Null Segment Descriptor), will not directly
generate an exception. But, if the CS or SS registers are accessed when they have a Segment Selector pointing to that entry as
the value, it will cause a General Protection Fault (#GP) to be thrown.

Image. 4: 16-bit Segment Selector (Figure 3-6. Segment Selector [1])

Bit Name Description

0-1 Requested Privi-
lege Level

See RPL in Section 2.2

2 Table Indicator Specifies Descriptor Table to be used:
• 0: Selects the GDT
• 1: Selects the current LDT

3-15 Index Select one of the possible 212 = 8192 descriptors in the GDT or LDT. Processor simply
multiplies value by 8 (size of the Segment Selector in bytes in 32-bit mode) and adds
the result to the base address of the GDT or LDT.

Table. 11: Segment Selector Components (Vol. 3A, Chapter 3.4.2 Segment Selectors [1])

2.4.3 Descriptor Table Pointer
The descriptor table pointer defines an 80-bit structure in IA-32e 64-bit mode, used by both the IDTR and GDTR registers to al-
low the CPU access to the IDT and GDT respectively.

Image. 5: 80-bit Descriptor Table Pointer (Vol. 3A, Chapter 2.4 Memory-Management Registers [1])

Bits Name Description

16 Table Limit Defines the amount of bytes in the Descriptor Table.

64 Linear Base Address Defines the address of the first byte in the Descriptor Table.

Table. 12: Descriptor Table Pointer Components (Vol. 3A, Chapter 2.4 Memory-Management Registers [1])

Page 10 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.4.4 Segment Registers
A segment register allows accessing a particular segment in memory. This is achieved using a Segment Selector to the Seg-
ment Descriptor in the GDT and then accessing the register, which will access the segment in memory.

Register Full Name Description

CS Code Segment Register Contains Segment Selector to the Code Segment, where the cur-
rently executing instructions are stored. Cannot be loaded explic-
itly and is instead loaded implicitly through instructions or internal
processor operations that pass control to another segment.

SS Stack Segment Register Contains Segment Selector to a Stack Segment. In IA-32e 64-bit
mode it can simply be the Data Segment as well.

DS Data Segment Register Contains Segment Selector to a Data Segment.

ES Extra Segment Register Contains Segment Selector to a Data Segment.

FS / GS General Purpose Segment Reg-
isters

Contains Segment Selector to a Data Segment.

Table. 13: Segment Registers (Vol. 1, 3.4.2 Segment Registers [1])

2.4.5 Far Pointer
Allows referencing methods from Code Segments in the GDT, other than the currently loaded segment.

Image. 6: 64-bit Far Pointer (Figure 4-5. Pointers in 64-Bit Mode [1])

Bits Name Description

64 Offset Defines the address to the procedure that should be called or jumped to.

16 Segment Selector Selects the destination Code Segment, see Section 2.4.2.

Table. 14: Far Pointer Components (Vol. 3A, Chapter 4.3.1 Pointer Data Types in 64-Bit Mode [1])

Page 11 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.5 Interrupt Descriptor Table
The Interrupt Descriptor Table (IDT) is a data structure similar to the GDT. Its pointer is loaded into the Interrupt Descriptor
Table register (IDTR).

The IDT can hold up to 256 entries, of which the first 22 have a predefined purpose defined by the x86 architecture, and an
additional 10 are reserved for future use. The 224 remaining entries however, can be used as needed.

Image. 7: IDT items in x86 (Table 6-1. Exceptions and Interrupts [1])

Each interrupt type is assigned a unique ID, which the processor uses as the index of the IDT. This IDT entry then points to a
specific interrupt handler. When an interrupt occurs, the processor stops executing the current task and transitions to that
handler to address it. Once the handler has finished processing the interrupt, control is returned to the program or task that
was interrupted.

The following table displays some of the more well known predefined interrupts and exceptions which must be present in
form of an entry in the IDT.

Vector Description Source

0 Divide Error DIV and IDIV instructions.

3 Breakpoint INT3 instruction.

10 Invalid TSS Task switch or TSS access.

12 Stack Segment Fault Stack operations and SS register loads.

14 Page Fault Any memory reference.

16 Floating-Point Error
(Math fault)

Floating-Point or WAIT / FWAIT instruction.

Table. 15: Exceptions and Interrupts (Table 6-1. Exceptions and Interrupts [1])

When an interrupt happens the type of the interrupt defines how the CPU must continue handling its instructions after the
interrupt handler is done. This is defined by the gate type field in the IDT entry of the specific interrupt. In case of an excep-
tion, it is important to save the address of the currently executing instruction so that it can be retried. These interrupts are
called traps. In case of an interrupt request, the address of the next instruction must be saved to prevent the CPU from re-
peatedly executing the same instruction.

A third kind of interrupt gate type exists, called the “Task Gate”. However, this type is not used in Long Mode and is specifi-
cally for hardware task switching, which is why it is not further referenced in this document.

Page 12 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.5.1 Gate Descriptors
Similar to the GDT, the IDT contains multiple entries, which are called Gate Descriptors.

Image. 8: 64-bit Gate Descriptor (Figure 7-8. 64-Bit IDT Gate Descriptors [1])

The structure looks similar to a Segment descriptor (Section 2.4.1), this is the case because it also grew historically from a 16-
bit and 32-bit variant of the same structure.

Table. 16: 16-bit Gate Descriptor (Figure 7-10. Gate Descriptor Format [4]) and 32-bit Gate Descriptor (Figure 9-3. 80306 IDT
Gate Descriptors [5])

Bits Name Description

32 Reserved Required because the 64-bit version of the Gate Descriptor requires a 64-bit base address
instead of only a 32-bit address. This means our new entry would be 96 bit (64 bit from
32-bit Gate Descriptor + 32 bit for remaining half of the base address). However, to be
compatible with the design of the 32-bit Gate Descriptor, two entries in little-endian for-
mat are now needed in the Interrupt Descriptor Table, because those two entries would
add up to 128-bit, the remaining space has to be filled with reserved data.

64 Offset Defines the address to the procedure handling the interrupt of this specific entry.

8 Type Define 8 individual bits that change the behavior of the Gate Descriptor.

4 Interrupt Stack
Table (IST)

Leftmost 3 bits are the index into the seven IST pointers of the TSS. Value 0 means the IST
Mechanism is not used, Value 1 means IST1 is used. Only available in IA-32e 64-bit mode.
(Vol. 3A, Chapter 7.14.5 Interrupt Stack Table [1])

16 Segment Selector Selects the destination Code Segment, see Section 2.4.2

Table. 17: Gate Descriptor Components (Vol. 3A, Chapter 7.14.1 64-Bit Mode IDT [1])

Page 13 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.5.1.1 Type Field

The Task Gate is a special case, because the 4th bit marks the usage of 32-bit, which is always disabled for a Task Gate. This is
because the complete Hardware Task Switching mechanism does not exist on IA-32e 64-bit mode and instead has to be im-
plemented in software. Therefore, the Task Gate can not be used in IA-32e 64-bit mode. (Vol. 3A, Chapter 9.7 Task Manage-
ment in 64-bit Mode [1])

Table. 18: Differences in Type Field on different Gate Descriptor Types (Figure 7-2. IDT Gate Descriptors [1])

Bit Name Description

1-5 Type Field Defines the actual type of the Gate. Can only be either 32-bit Interrupt or 32-bit
Trap in IA-32e 64-bit mode.

6-7 Descriptor Privilege
Level

Specifies the privilege level required to access this gate. A higher value means a
less privileged access level is required. If only two access levels are required it is
recommended to use the highest (0) and the lowest access level (3) respectively.
• 0: Level 1 (Kernel)
• 1: Level 1 (Used for System Services like Device Drivers)
• 2: Level 2
• 3: Level 3 (User Applications)

8 Gate-present Indicates whether the gate is present in memory or not. Will cause a Segment Not
Present (#NP) exception, when this Segment Descriptor is loaded while the value is
0.

Allows for more fine-grained control of segments that are actually loaded into
physical memory at a give time. (Vol. 3A, Chapter Interrupt 11—Segment Not Pre-
sent (#NP) [1])
• 0: Not present in memory
• 1: Present in memory

Table. 19: Gate Descriptor Type Field (Little-Endian) (Vol. 3A, Chapter 7.14.1 64-Bit Mode IDT [1])

Page 14 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.6 Task State Segment
The Task State Segment (TSS) is used for managing task switching and is primarily used for hardware task switching by storing
the Segment Selectors and Stack Pointers of each privilege level. However, this only applies in Protected Mode. In Long Mode
the task switching mechanism of the TSS is not supported. Regardless, the TSS in Long Mode must still exist, because it has
been repurposed to hold information that is not directly related to the task-switch mechanism instead. (Vol. 3A, Chapter 9.7
Task Management in 64-bit Mode [1])

Image. 9: Long-Mode Task State Segment layout (Figure 9-11. 64-Bit TSS Format [1])

Field Purpose

I/O Map Base
Address

The 16-bit offset to the I/O permission bit map from the 64-bit TSS base

ISTn Interrupt Stack Table (IST) pointers

RSPn Stack Pointers (rsp) for privilege levels 0-2

Table. 20: Task State Segment fields (Vol. 3A, Chapter 9.7 Task Management in 64-bit Mode [1])

Page 15 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.6.1 Memory Management Register
To actually use any of the configured memory management data structures, the corresponding registers have to be set. That
is because the values contained in the registers allow the CPU to know where the data structures lie in memory.

Register Name Value Type

GDTR Global Descriptor Table Regis-
ter

Descriptor Table Pointer pointing to GDT start address in memory
(see Section 2.4.3).

IDTR Interrupt Descriptor Table Reg-
ister

Descriptor Table Pointer pointing to IDT start address in memory
(see Section 2.4.3).

TR Task Register Segment Selector pointing to Task State Segment (see Sec-
tion 2.4.2).

Table. 21: Memory Management Registers (Vol. 3A, Chapter 2.4 Memory-Management Registers [1])

Page 16 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.7 Procedure Calls
Procedure calls are a mechanism to access kernel functionality from User Mode. Generally there are three different options
how such a call can be made. Each comes with its own advantages and disadvantages.

2.7.1 SYSCALL / SYSRET
SYSCALL / SYSRET are designed for 64-Bit Mode. SYSCALL is used in privilege level 3 to access operating system procedures,
while SYSRET is used in privilege level 0 to return to level 3.

2.7.1.1 Overview

The processor uses certain preconfigured Model Specific Registers (MSR) as configuration on what the SYSCALL / SYSRET in-
structions actually do. The structure of these registers and how they should be configured can be seen below:

Table. 22: Fast System Calls Registers (Figure 6-14. MSRs Used by SYSCALL and SYSRET [1])

The values in this register is then used differently depending on if the SYSCALL or SYSRET instruction is executed.

MSR Name Usage by SYSCALL Usage by SYSRET

IA32_FMASK RFLAGS mask to ignore certain bits. All bit set
in the Mask will be disabled if they are cur-
rently enabled. RFLAGS & (~IA32_FMASK).

Not used. Instead RFLAGS are saved into R11
register by SYSCALL instruction. Restored
when SYSRET instruction is executed into
RFLAGS.

IA32_LSTAR Target instruction pointer that will be called
on SYSCALL instruction.

Not used. Instead return function is copied
into by SYSCALL instruction. Which will be
called when the SYSRET instruction is exe-
cuted loading the value into RIP.

IA32_STAR Uses the Segment Selector that is the
SYSCALL CS and SS value, being bits 32:47 of
the IA32_STAR as the base for calculations.
• Target Code Segment the SYSCALL will

switch into is simply this value.
• Target Stack Segment the SYSCALL will

switch into is simply this value + 8, results
in Segment Selector Index + 1.

Uses the Segment Selector that is the SYSRET
CS and SS value, being bits 48:63 of the
IA32_STAR as the base for calculations.
• Target Code Segment the SYSRET will

switch into is simply this value + 16, results
in Segment Selector Index + 2.

• Target Stack Segment the SYSRET will
switch into is simply this value + 8, results
in Segment Selector Index + 1.

Table. 23: Fast System Calls in 64-Bit mode (Vol. 3A, Chapter 6.8.8 Fast System Calls in 64-Bit mode [1])

However, the SYSCALL / SYSRET instructions does not save the Stack Pointer. If the System Call intends to change the stack,
this must be done by the operating system. (Vol. 3A, Chapter 6.8.8 Fast System Calls in 64-Bit mode [1])

Page 17 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.7.1.2 Evaluation of SYSCALL and SYSRET

Advantages Disadvantages

Specifically designed for fast System Call Entry / Exit Does not automatically switch stacks or reload CS and SS
registers from the GDT

Currently the go-to instruction for modern operating sys-
tems

Requires IA32_LSTAR, IA32_STAR, and IA32_FMASK Model
Specific Registers (MSRs) to be properly set up

Automatically stores RIP and RFLAGS Does not save the current Stack Pointer

Lower latency compared to INT n Harder to set up compared to INT n

Table. 24: Advantages and disadvantages of SYSCALL / SYSRET instruction

2.7.2 SYSENTER / SYSEXIT
SYSENTER / SYSEXIT are designed for performance. As with the previous companion instructions, SYSENTER is used in privilege
level 3 to access operating system procedures and SYSEXIT is used in privilege level 0 to return to level 3. However, these two
instructions do not work on x86 on processors by all manufacturers, as they only work on x86_64 Intel processors.

2.7.2.1 Overview

MSR Name Usage by SYSENTER Usage by SYSEXIT

IA32_SYSENTER_CS Uses the Segment Selector that is the
IA32_SYSENTER_CS value as the base for cal-
culations.
• Target Code Segment the SYSENTER will

switch into is simply this value.
• Target Stack Segment the SYSENTER will

switch into is simply this value + 8, results
in Segment Selector Index + 1.

Uses the Segment Selector that is the
IA32_SYSENTER_CS value as the base for cal-
culations.
• Target Code Segment the SYSEXIT will

switch into is simply this value + 32, results
in Segment Selector Index + 4.

• Target Stack Segment the SYSEXIT will
switch into is simply this value + 40, results
in Segment Selector Index + 5.

IA32_SYSENTER_EIP Target instruction pointer that will be called
on SYSENTER instruction.

Not used. Instead return function is copied
into by SYSENTER instruction. Which will be
called when the SYSEXIT instruction is exe-
cuted loading the value into RIP.

IA32_SYSENTER_ESP Target Stack Pointer that will be loaded on
SYSENTER instruction.

Not used. Instead the Stack Pointer is copied
into by SYSENTER instruction. Which will be
loaded into RSP when the SYSEXIT instruc-
tion is executed.

Table. 25: Fast System Calls in 64-Bit mode (Vol. 3A, Chapter 6.8.8 Fast System Calls in 64-Bit mode [1])

During SYSEXIT, the processor loads the new value for the CS register from the same bits as SYSENTER does, but to get the off-
set to the user Code Segment, it adds 32 to that number. This behavior forces a specific GDT layout, which is showcased in the
table below.

Offset (Hex) Offset (Dec) Segment Descriptor

0x0 0 Null Segment

0x10 16 Kernel Code Segment

0x20 32 Kernel Data Segment

0x30 48 User Code Segment

0x40 64 User Data Segment

Table. 26: Expected GDT layout by SYSEXIT instruction

Page 18 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.7.2.2 Evaluation of SYSENTER and SYSEXIT

Advantages Disadvantages

Easy to setup Only works on Intel processors in 64-bit mode

Specifically designed for fast System Call Entry / Exit Not very educational (hides a lot of work from the devel-
oper)

Lower latency compared to INT 0x80

Table. 27: Advantages and disadvantages of SYSENTER / SYSEXIT instructions

2.7.3 INT/IRETQ
In contrast to SYSCALL and SYSENTER, the instruction INT n is not specifically designed to execute operating system procedure
calls. INT n exists to send an interrupt signal, which will be handled inside privilege level 3. But exactly due to this behavior, it
can be used as a stand-in for SYSCALL / SYSENTER.

2.7.3.1 Overview

The operand n specifies a vector, which essentially is an index to a Gate Descriptor in the IDT. If the INT n instruction is used
to handle system calls, the vector 0x80 should be used, as this is the vector used by the Linux kernel. The interrupt service
routine (ISR) inside the gate descriptor at index 0x80 is then called and should contain a branching mechanism to determine
which type of “SYSCALL” operation is being executed. The System Call type must be specified in the RAX register by the caller.

The registers RDI, RSI, RDX, RCX, R8 and R9 can be used to pass arguments to the ISR. However these registers are not per-
sisted and available with the defined values in the ISR. These registers must be pushed to the stack before actually calling INT
80 to be available. This can be done best by utilizing a wrapper function like this:

1 [[gnu::naked]]
2 auto system_call() -> void {
3 asm volatile(
4 "push %%rdi\n"
5 "push %%rsi\n"
6 "push %%rdx\n"
7 "push %%rcx\n"
8 "push %%r8\n"
9 "push %%r9\n"

10 "INT 80\n"
11 "ret"
12);
13 }

Listing. 1: INT 80 wrapper function

2.7.3.2 Evaluation of INT 80

Advantages Disadvantages

System Call interface is just an interrupt and uses stan-
dard x86 interrupt mechanisms

Slower because of full interrupt handling overhead (sav-
ing / restoring many registers, checking privilege transi-
tions, etc.)

Only needs the ISR to be set up once. No model specific
registers are required

Not specifically optimized for frequent user / kernel tran-
sitions unlike actual system calls

Automatically handles privilege level transitions, stack
switching (via TSS), and loading of new CS and SS registers

Table. 28: Advantages and disadvantages of INT n instruction in context switching

Page 19 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.7.4 Decision
With these three options available, a decision must be made as to which of them the TeachOS should utilize. Because this op-
erating system is for educational purposes, the most common implementation used in the most operating systems should be
preferred, even if it is more complex to set up. Therefore, TeachOS will use SYSCALL / SYSRET as its procedure call mechanism.

This decision is motivated by the following factors:
• Industry relevance: Modern 64-bit operating systems like Linux and Windows use SYSCALL / SYSRET, making it the most

practical and educational choice.
• Performance: Despite its complexity, SYSCALL provides the best performance due to its lower overhead compared to INT

n.
• Learning value: Setting up the MSRs and handling privilege transitions manually, gives deeper insight into system internals,

which aligns with the goals of TeachOS.

Future extensions could add support for INT n as a fallback for compatibility or educational comparison, but the primary im-
plementation will use SYSCALL.

2.7.5 Passing Arguments to System Calls
There are multiple ways to pass arguments to a System Call.

Option Description Advantages Disadvantages

Register Easiest way to pass arguments.
Simply uses certain predefined
CPU registers and reads the val-
ues from them.

• Very fast
• Easy to implement

• Limited number of available
registers

• Callee has to save and re-
store the used registers if the
old values are needed

• Passing less arguments is not
differentiable from passing
all arguments

Stack Requires configuring System
Calls with multiple stacks. Then
uses that configured stack to
pass arguments.

• Makes Nested System Calls
possible (Calling System Call
in a System Call)

• Mirrors the C way to pass ar-
guments to function

• No limitation on amount of
parameters

• Requires allocating different
stack section and switching
before a System Call

• Passing less arguments is not
differentiable from passing
all arguments

Memory Caller needs to store a pointer
to arguments location and
saves that address in a register.
Alternatively the memory loca-
tion of the arguments can also
be fixed.

• No limitation on amount of
parameters

• Secure because memory can
be accessible to Kernel Mode
only

• Nested System Calls possible
only if the arguments are
copied

• Passing less arguments is not
differentiable from passing
all arguments

Table. 29: Passing Arguments to System Call (Chapter 11. x86 Assembly Language Programming, A.3.2. Alternate Calling Con-
vention [6])

Page 20 of 47

TeachOS | Matteo Gmür and Fabian Imhof

2.7.6 Decision
With these three options available, a decision must be made as to which of them the TeachOS should utilize. Because this op-
erating system is for educational purposes, the implementation used by Linux should be preferred. Additionally, it removed
the need to implement the overhead of a Stack infrastructure, which would probably not have been possible in the remaining
time of this thesis.

This decision is motivated by the following factors:
• Mirroring Linux: The Linux Operating System uses the same way to pass parameters to System Calls, therefore seeing this

way of passing arguments implemented helps to understand how it works on Linux as well. (syscall(2) - Linux manual page
[7])

• Learning value: Loading and storing the registers for each passed argument provides the deepest insight into system inter-
nals, which aligns with the goals of TeachOS.

Future extensions could add support for the option utilizing memory as well, because it still partially uses registers and
negates the drawback of limited parameters. Both calls using either method of passing parameters could then be supported
to additionally expand the learning experience. Additionally, actually implementing the Stack infrastructure could be useful as
well, because it shares the underlying need for the infrastructure to allow mapping and allocating physical frames for Stack
space with the Interrupt Stack.

2.7.7 Using System Calls with multiple stacks
System Calls generally can work with a single stack. However, if the Stack method to pass parameters to System Calls is used
this is not possible anymore.

Instead, to use the stack for procedure calls, it must be setup first, because the stack is contained in a segment in the GDT and
identified by the Segment Selector. This can be done through the following steps, where steps 2 and 3 must be repeated be-
fore each System Call.

1. Create a Stack Segment and add it to the GDT
2. Load the Segment Selector for the Stack Segment into the SS register
3. Load the Stack Pointer for the stack into the ESP register. The LSS instruction can be used to load the SS and ESP registers

in one operation

Image. 10: Stack Segment Layout (Figure 6-1. Stack Structure [1])

Page 21 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Part 3
Results

3.1 Memory Management

3.1.1 Current problem
Currently, the heap memory can be managed by utilizing “placement new”, which instantiates an object at the provided
memory address.

1 memory::heap::linked_list_allocator heap_allocator{
2 memory::heap::HEAP_START,
3 memory::heap::HEAP_START + memory::heap::HEAP_SIZE
4 };
5 auto heap_address = heap_allocator.allocate(1024);
6 auto object = new (heap_address) memory::multiboot::memory_information{};

Listing. 2: Old way of allocating heap memory

This can now be utilized to instantiate our own local instance of a heap allocator that can then be used to allocate blocks of
memory by hand.

There are multiple issues with this implementation:

• Heap allocator is local to a method and not shared globally (Multiple instances of heap allocators might attempt to write
into the same heap area in the kernel)

• Requires individual calls to allocate and deallocate to actually create and free the memory
• Requires using placement new every time a new object on the heap should be created
• Does not allow for the usage of C++ STL types like std::vector

3.1.2 Overriding new and delete
To fix the issue of only being able to use the placement new, the instantiation of heap memory by using the simpler and more
widespread new operator has to be allowed. Calls to new and delete are also required for implementing components of the
C++ STL, allowing to create custom implementation.

This is not directly possible, because the new and delete keywords do not magically use the correct heap allocator.
Instead, to be able to use these two operators, the following operators must be overwritten with a custom implementation.

1 auto operator new(std::size_t size) -> void *;
2 auto operator delete(void * pointer) noexcept -> void;
3 auto operator delete(void * pointer, std::size_t size) noexcept -> void;
4 auto operator new[](std::size_t size) -> void *;
5 auto operator delete[](void * pointer) noexcept -> void;
6 auto operator delete[](void * pointer, std::size_t size) noexcept -> void;

Listing. 3: Required global operator overrides

3.1.3 Global Heap Allocator
In our case the methods have to be overwritten with calls to a global instance of an arbitrary heap allocator. This allows fixing
the problem, where multiple instances of the heap allocator might write to the same area in memory. Now there only exists
one global shared instance that is used instead.

To achieve that use case, a global static class called global heap allocator is created. This static class needs to contain:

• A Factory Method that instantiates the actual heap implementation. This can only be done once the kernel and, especially,
the heap area has been fully remapped

• A Getter for the heap implementation that should be used

Page 22 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Using this global heap allocator allows to simply bind new and delete calls to the corresponding static calls of the global mem-
ory manager. This also allows removing the separate allocation calls, which were previously necessary, because this is now
handled by the calls to new and delete.

3.1.4 Factory Method Pattern
The Factory Method Pattern was used to make the underlying heap allocation implementation easily configurable. This is pos-
sible, because a specific method creates the used heap allocation implementation, instead of directly instantiating it in the
constructor, which would cause the global heap allocator to have a fixed underlying heap allocation strategy.

Therefore, that method requires a parameter that changes which instance should be created in the factory method and all fu-
ture calls to the global heap allocator will use that instance. (Factory Method [8])

Image. 11: Sequence Diagram for function call with Factory Method Pattern

This additionally allows the configuration of the global instance to be done after initializing the memory management of the
kernel. This has to be done, because the global heap allocation accesses the kernel heap area and if that section has not been
remapped already the operating system would crash.

3.1.5 Improving the Linked List Allocator
Currently, the linked list allocator has multiple issues in its implementation, which makes using it incompatible with the newly
created global heap allocator:

• Deallocating a memory area starting from a certain address is only possible if the size of that memory area is known as
well. This is the case, because the linked list only keeps track of free memory blocks and as soon as a block is allocated, the
total allocated size of that block is not recoverable anymore.

• Allocating an int or other data smaller than 16 bytes on the heap is not possible. This is the case because when freeing up
the memory area again, the linked_list_allocator needs enough space to safe both the total size of the block and a
pointer to the next free block in the linked list. Otherwise, the free memory area can not be attached to the linked list and
therefore the memory is leaked, because it can not be recovered.

Page 23 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Image. 12: Structure of allocated memory area of the Linked List allocator

To resolve the first issue, the allocation algorithm has to be adjusted. Instead of simply allocating the necessary amount of
memory for the heap object, it needs to allocate enough space for an additional header as well. This header then simply con-
tains the total size of allocated memory, allowing that value to be read when deallocating. This removes the need for knowing
the size that was allocated in the first place.

Furthermore, this also allows resolving the second issue. Now that the size of the allocated memory block can be expanded
without leaking memory, because the size of the allocation is managed internally, the total size in the header can simply be in-
creased to the necessary 16 bytes if the allocated object would be smaller.

Page 24 of 47

TeachOS | Matteo Gmür and Fabian Imhof

3.2 Context Switching

3.2.1 Segment Descriptor
The Segment Descriptors need to be tightly packed, because certain fields like the Segment Limit or Base Address fields are
split over multiple partial bytes. For example, the first portion of the Base Address is only 24 bits, but C++ only allows allocat-
ing fields with sizes that are powers of two. In this case the value would need to be in an 32-bit integer. Luckily C++ has a fea-
ture, that allows for a field size to not be a power of 2 in bits, called C++ Bit-Fields.

1 struct S {
2 uint8_t b1 : 3; // 1st 3 bits (in 1st byte) are b1
3 uint8_t : 2; // next 2 bits (in 1st byte) are blocked out as unused
4 uint8_t b2 : 6; // 6 bits for b2 - doesn't fit into the 1st byte => starts a 2nd
5 uint8_t b3 : 2; // 2 bits for b3 - next (and final) bits in the 2nd byte
6 };

Listing. 4: C++ Bit-Field (Article “Bit-Field” [9])

This feature allows including multiple values in one byte, which normally would not be possible. Additionally, it also allows us-
ing an unnamed Bit-Field for the 32-bit reserved field, because the value of that field should never be set or read anyway, it is
simply used to provide backwards compatibility with the 32-bit version of the Segment Descriptor.

There is an additional problem with the example above. The member variable b2, will not save the left-most 3 bits of its value
into the remaining space of b1, but instead start a new byte. This is the case because the compiler automatically adds
padding to byte-align a field.

This is a problem for the Segment Descriptor which, as previously established, needs to be tightly packed. To make that possi-
ble, the [[gnu::packed]] attribute can be used.

1 struct [[gnu::packed]] S { ... };

Listing. 5: Packed Structures (15.6 Packed Structures [10])

This will tightly pack all members of the struct, causing the aforementioned left-most 3 bits of b2 to still be in the first Byte
where b1 resides.

These features combined allow creating a Segment Descriptor that uses 128 bit, where every member is tightly packed, with
overlapping byte borders and no padding.

1 struct [[gnu::packed]] segment_descriptor_base {
2 uint16_t _limit_1 = {}; ///< First part of the limit field (0 - 15)
3 uint32_t _base_1 : 24 = {}; ///< First part of the base field (16 - 39)
4 access_byte _access = {}; ///< Access byte field (40 - 47)
5 gdt_flags _flag = {}; ///< Second part of the limit field + Flags field (48 - 55)
6 uint8_t _base_2 = {}; ///< Second part of the base field (56 - 63)
7 };
8

9 struct [[gnu::packed]] segment_descriptor_extension {
10 segment_descriptor_base _base = {}; ///< Base Segment Descriptor = Single entry in GDT (0 - 63)
11 uint32_t _base_3 = {}; ///< Third part of the base field (63 - 95)
12 uint32_t : 32; ///< Reserved field used to ensure 128 bits lnegth (96 - 127)
13 };

Listing. 6: Segment Descriptor Structures

However, the Global Descriptor Table requires certain entries to use the 32-bit Segment Descriptor
(segment_descriptor_base) instead of being able to use the 64-bit Segment Descriptor (segment_descriptor_extension)
for all entries. Therefore, the implementation needs to make the 64-bit Segment Descriptor an extension of the 32-bit Seg-
ment Descriptor. The exact reason is explained in more detail in Section 3.2.2.

To allow the configuration of both Segment Descriptors to be as readable as possible. To achieve this a std::bitset in combi-
nation with an unscoped enum is used, because it allows for direct conversion into an integral type, which also means multiple
enum values can be combined with the binary OR-operator (|) in a call to the constructor.

Page 25 of 47

TeachOS | Matteo Gmür and Fabian Imhof

1 std::bitset<20U> constexpr LIMIT{0xFFFFF};
2 uint64_t constexpr BASE = 0x0;
3 access_byte user_data_access_byte{access_byte::PRESENT | access_byte::ACCESS_LEVEL_USER |
4 access_byte::CODE_OR_DATA_SEGMENT | access_byte::WRITABLE};
5 gdt_flags user_data_gdt_flags{gdt_flags::GRANULARITY | gdt_flags::UPPER_BOUND, LIMIT};
6 segment_descriptor_base user_data_segment{user_data_access_byte, user_data_gdt_flags, BASE, LIMIT};
7

8 uint64_t constexpr TSS_LIMIT = sizeof(task_state_segment) - 1;
9 access_byte const tss_access_byte{access_byte::PRESENT | access_byte::DESCRIPTOR_LEVEL_KERNEL |

10 access_byte::TASK_STATE_SEGMENT_AVAILABLE};
11 gdt_flags const tss_gdt_flags{0U, TSS_LIMIT};
12 segment_descriptor_extension const tss_descriptor{tss_access_byte, tss_gdt_flags,
13 reinterpret_cast<uint64_t>(tss), TSS_LIMIT};

Listing. 7: Segment Descriptors Configuration example

The same is the case for the contains_flags method, which, thanks to implicit integral conversion, allows to be called with
multiple enum values with the bitwise-OR operator (|) directly as well.

1 flags.contanins_flags(gdt_flags::GRANULARITY | gdt_flags::UPPER_BOUND);
2

3 auto gdt_flags::contains_flags(std::bitset<4U> other) const -> bool
4 {
5 return (std::bitset<4U>{_flags} & other) == other;
6 }

Listing. 8: Contains flag call and implementation

The contains_flags utilizes std::bitset, because it easily allows to only compare certain bits without the need for bit-shift-
ing, which makes the code much easier to read. Additionally, the overridden binary AND-operator (&) can be used to create a
new std::bitset that only sets the bits if it is set in both operands.

If the result of this operation is then compared with the std::bitset passed as an argument, and it returns true, then the ar-
gument is either the same as the internal value or a subset of it.

Furthermore, because the unscoped enum itself is in a struct, the members of the enum will not leak into the namespace, but
instead into the struct. This means the structs name still needs to be specified before an enum value can be accessed.

An enum also makes it possible to define multiple names for the same value, this is useful for the Segment Descriptor, be-
cause as seen in Section 2.4.1, the actual meaning of a bit varies depending on the type of Segment Descriptor.

1 struct [[gnu::packed]] gdt_flags
2 {
3 enum bitset : uint8_t {
4 LENGTH = 1U << 0U,
5 UPPER_BOUND = 1U << 1U,
6 STACK_POINTER_SIZE = 1U << 1U,
7 DEFAULT_LENGTH = 1U << 1U,
8 GRANULARITY = 1U << 2U,
9 }

10

11 gdt_flags(uint8_t flags, std::bitset<20U> limit);
12

13 auto contains_flags(std::bitset<4U> other) const -> bool;
14

15 private:
16 uint8_t _limit_2 : 4 = {};
17 uint8_t _flags : 4 = {};
18 };

Listing. 9: GDT Flags Field Structure

The field gdt_flags however is a special case, because every struct created has to be at least one byte in size, even if packed
structs and Bit-fields are used. Therefore, the gdt_flags additionally has to include the right-most 4 bits of the limit field, so
that the total of the members result in one byte, because otherwise the Segment Descriptor would not be tightly packed any-
more, because gdt_flags would be padded to one byte instead.

Page 26 of 47

TeachOS | Matteo Gmür and Fabian Imhof

3.2.2 Global Descriptor Table
The GDT is a simple custom vector implementation that contains multiple base Segment Descriptors.

The exact Segment Descriptors and their order is strictly enforced in long mode, because the Base and Limit values are ig-
nored. This is the case, because in Long Mode the usage of segmentation is disallowed, and it strictly enforces the usage of
paging to protect memory regions. Therefore, the Base field starts at address 0 and with the Limit field set to the maximum
value, it allows access to the complete memory region.

The GDT only requires a Null Descriptor, one descriptor for each combination of privilege level, and segment type, and a Task
State Segment.

Offset Name Content

0x0000 Null Descriptor Base = 0, Limit = 0x00000, Access Byte = 0x00, Flags = 0x0

0x0008 Kernel Mode Code Segment Base = 0, Limit = 0xFFFFF, Access Byte = 0x9A, Flags = 0xC

0x0010 Kernel Mode Data Segment Base = 0, Limit = 0xFFFFF, Access Byte = 0x92, Flags = 0xC

0x0018 User Mode Code Segment Base = 0, Limit = 0xFFFFF, Access Byte = 0xFA, Flags = 0xA

0x0020 User Mode Data Segment Base = 0, Limit = 0xFFFFF, Access Byte = 0xF2, Flags = 0xC

0x0028 Task State Segment Base = &TSS, Limit = sizeof(TSS) - 1, Access Byte = 0x89, Flags = 0x0

Table. 30: 64-bit minimal GDT for Long Mode Setup (Article “GDT Tutorial” [2])

As shown in the table above all Segment Descriptors, besides the TSS Descriptor, only use the 32-bit Segment Descriptor. That
is the case, because only the TSS Descriptor, actually contains a 64-bit address to the TSS. Whereas the other Segment De-
scriptors ignore the Base and Limit fields, and assuming these fields are always 32-bit makes the structure compatible with
older 32-bit implementations (e.g. Fast System Call in Section 2.7.1).

This however causes another issue, because a vector can only contain data of the same type. Therefore, to circumvent ugly
workarounds with the vector containing only raw integer data and then converting to and from Segment Descriptors, the
segment_descriptor_extension can simply be split into two segment_descriptor_base.

These two entries can then simply be inserted into the Global Descriptor Table like expected, which allow keeping the
global_descriptor_table as a vector of segment_descriptor_base.

1 global_descriptor_table global_descriptor_table{...,
2 tss_descriptor.get_first_gdt_entry(),
3 tss_descriptor.get_second_gdt_entry()};

Listing. 10: Global Descriptor Table Configuration

Once the complete GDT has been configured, it needs to be saved into memory and kept alive for the remainder of the sys-
tem lifetime. That is because a Descriptor Table Pointer pointing to the GDT (see Section 2.4.3) needs to be loaded into the
Global Descriptor Table Register (GDTR).

1 struct [[gnu::packed]] global_descriptor_table_pointer
2 {
3 uint16_t table_length = {};
4 segment_descriptor * address = {};
5 };
6

7
global_descriptor_table_pointer gdt_pointer{static_cast<uint16_t>((gdt.size() *
sizeof(segment_descriptor)) - 1), gdt.data()};

8

9 auto load_global_descriptor_table(global_descriptor_table_pointer const & gdt_pointer) -> void
10 {
11 asm volatile("lgdt %[input]" : /* no output from call */ : [input] "m"(gdt_pointer));
12 }

Listing. 11: Loading GDT Pointer Structure (Vol. 2A, LGDT/LIDT—Load Global/Interrupt Descriptor Table Register [1])

Page 27 of 47

TeachOS | Matteo Gmür and Fabian Imhof

To initialize the global_descriptor_table_pointer correctly, the value of the Size Limit field has to be passed first, which is
the size of the GDT in bytes. This can be calculated by multiplying the amount of entries in the GDT with the size of each entry
and subtracting one for byte 0.

Additionally, the member variable address is of type segment_descriptor instead of global_descriptor_table, because
the pointer must refer to the first entry of the GDT, and not to the address of the vector on the heap. To then actually pass the
memory address pointing to the first entry two methods can be used:
• gdt.data(): Returns the underlying c-style array, which is simply the memory address pointing to the start of the actual el-

ements on the heap.
• &gdt.at(0): Returns the reference to the first element, which can then be used to access its address.

Passing this structure to the load_global_descriptor_table method overrides the GDTR entry that has been preconfigured
in the assembler file. The asm constraint m has to be used to signify that it should be interpreted as a memory address.

At this point, the CS register still contains a value referencing the previous GDT. To actually register the changes to the GDTR,
the Segment Registers need to be reset. This can be done through a Far Call using a Far Pointer (see Section 2.4.5), where the
Segment Selector has to point to the first non-null entry of the GDT (Vol. 2A, CALL — Call Procedure [1]).

1 auto call(far_pointer pointer) -> void
2 {
3 asm volatile("rex64 lcall *%[input]" : /* no output from call */ : [input] "m"(pointer));
4 }
5

6 interrupt_descriptor_table::segment_selector segment_selector{
7 1U, interrupt_descriptor_table::segment_selector::REQUEST_LEVEL_KERNEL};
8 kernel::cpu::far_pointer pointer{&kernel::cpu::reload_segment_registers, segment_selector};
9 kernel::cpu::call(pointer);

Listing. 12: Far jump to reload CS registers

3.2.3 Interrupt Descriptor Table (IDT)
Once the GDT has been set up the IDT can be created and initialized. The IDT is required to handle interrupts and exceptions
produced by the operating system or an application.

Its setup is very similar to the GDT, requiring a globally available vector of Gate Descriptors. The initial setup requires 32 en-
tries where each index corresponds to a different exception or interrupt type that has to be handled. 32 entries, because that
is the amount that is reserved by the architecture see Section 2.5.

To get the IDT up and running, these entries are simply connected to a generic interrupt handler that essentially does nothing.
This is enough to initialize a working IDT, but will not handle the interrupts or exceptions correctly.

1 auto create_interrupt_descriptor_table() -> interrupt_descriptor_table
2 {
3 // Only account for the reserved Vectors for now (0 - 31)
4 interrupt_descriptor_table interrupt_descriptor_table{32};
5

6 uint64_t offset = reinterpret_cast<uint64_t>(interrupt_handling::generic_interrupt_handler);
7 segment_selector selector{1U, segment_selector::REQUEST_LEVEL_KERNEL};
8 ist_offset ist{0U};
9
 idt_flags flags{idt_flags::DESCRIPTOR_LEVEL_KERNEL | idt_flags::INTERRUPT_GATE |
idt_flags::PRESENT};

10

11 for (std::size_t i = 0; i < 32; i++)
12 {
13 interrupt_descriptor_table.at(i) = {selector, ist, flags, offset};
14 }
15

16 return interrupt_descriptor_table;
17 }

Listing. 13: Creating the interrupt descriptor table

To implement interrupt handlers, which correctly handle an interrupt signal, a more advanced setup would be required, were
different interrupt handlers are called, depending on the actual interrupt received. Additionally, the ist_offset can be used
to allow certain interrupts to always execute in a known good stack. This is especially useful for a double-fault. A double- fault

Page 28 of 47

TeachOS | Matteo Gmür and Fabian Imhof

results in a triple-fault, if another interrupt occurred within its handler and a triple-fault always results in a system crash (Vol.
3A, Chapter 7.14.5 Interrupt Stack Table [1]).

Since these interrupts will not be handled properly in this operating systems current state, no Interrupt Stack Table (IST)
needs to be created and registered. This allows setting the value of ist_offset to 0, which signals the system that the IST is
not used. If this mechanism were to be used the TSS would need to point to 7 allocated stack areas in its IST1 through IST7
pointers.

The IDT has to be loaded into the IDTR register using the lidt instruction. To achieve that a idt_pointer is created, whose
structure exactly matches the gdt_pointer, but instead of pointing to the first Segment Descriptor it points to the first Gate
Descriptor.

1 struct [[gnu::packed]] interrupt_descriptor_table_pointer
2 {
3 uint16_t table_length = {};
4 gate_descriptor * address = {};
5 };
6

7
interrupt_descriptor_table_pointer idt_pointer{static_cast<uint16_t>((idt.size() *
sizeof(gate_descriptor)) - 1), idt.data()};

8

9 auto load_interrupt_descriptor_table(interrupt_descriptor_table_pointer const & idt_pointer) -> void
10 {
11 asm volatile("lidt %[input]" : /* no output from call */ : [input] "m"(idt_pointer));
12 }

Listing. 14: Loading IDT Pointer Structure (Vol. 2A, LGDT/LIDT—Load Global/Interrupt Descriptor Table Register [1])

In contrast to the GDT and its loading mechanisms, no Far Call is required for the processor to recognize the newly created
IDT. Instead, the interrupts that were disabled before the GDT was set up simply have to re-enabled, and it will start using the
newly configured interrupt handler.
Interrupts should only be re-enabled after the entire context-switching process is fully completed. Re-enabling them too early
could allow the program to access Segment Registers that still reference the old GDT structure, leading to undefined behavior
or system errors. [3]

3.2.4 Interrupt Service Routine (ISR)
As mentioned before, only a generic interrupt service routine has been implemented. The interrupts themselves are not actu-
ally addressed in this handler.

1 [[gnu::interrupt]]
2 auto generic_interrupt_handler(interrupt_frame * frame) -> void
3 {
4 (void)frame;
5
 video::vga::text::write("An Interrupt occurred.",
video::vga::text::common_attributes::green_on_black);

6 }

Listing. 15: Generic interrupt handler

The [[gnu::interrupt]] annotation marks this function as an interrupt handler for the compiler. With it, the compiler will
generate the function entry and exit sequences necessary to be able to use it as an interrupt handler (5.24 Declaring Attrib-
utes of Functions [11]).

1 ...
2 push %rax # Preserve original value of all general-purpose register
3 ...
4 lea 0x8(%rbp),%rax # Save address of the interrupt frame on the stack frame
5 mov %rax,-0x10(%rbp)
6 ...
7 mov -0x8(%rbp),%rax
8 iretq # Return from the interrupt

Listing. 16: C++ Assembly with [[gnu::interrupt]]

This leads to general-purpose registers being saved when entering and restored before leaving the interrupt method. Addi-
tionally, arguments are not passed using a common calling convention. Meaning, the RDI register can not simply be read for

Page 29 of 47

TeachOS | Matteo Gmür and Fabian Imhof

the passed interrupt frame. Instead they are read directly by interacting with the stack frame without manipulating it. This is
done through negative indexes like this: mov %rdi,-0x8.

3.2.5 Task State Segment (TSS)
The Task State Segment Descriptor requires additional work, because the Base field is not ignored and instead has to point to
the actual Task Segment in memory, see Section 2.6.

1 struct [[gnu::packed]] task_state_segment
2 {
3 private:
4 uint32_t : 32;
5 uint64_t rsp0 = {};
6 uint64_t rsp1 = {};
7 uint64_t rsp2 = {};
8 uint64_t : 64;
9 uint64_t ist1 = {};

10 uint64_t ist2 = {};
11 uint64_t ist3 = {};
12 uint64_t ist4 = {};
13 uint64_t ist5 = {};
14 uint64_t ist6 = {};
15 uint64_t ist7 = {};
16 uint64_t : 64;
17 uint16_t : 16;
18 uint16_t io_map_base_address = {};
19 };

Listing. 17: Task State Segment Structure

For now the Interrupt Stack Table is not used and the values are default initialized.

Similar to the GDT and IDT, the TSS has to be loaded into the TR register, but only after the GDT has been fully loaded into the
CS register. This is essential, because when executing the “Load Task Register” (ltr) instruction, the CPU accesses the TSS De-
scriptor to set the “Accessed” Flag. If the correct GDT is not loaded at this point, it will cause an exception.

3.2.6 Changing Segment Registers
To actually switch control into another segment, the Segment Registers have to be set up correctly. This can be done once the
GDT and IDT have been configured, because the Segment Registers need to point to valid Segment Descriptors in the GDT us-
ing a Segment Selector.

The actual Segment Registers can be seen in Section 2.4.4. To switch the context, the values of these registers needs to be
changed. This can simply be achieved by using mov statements in inline assembly that copy the value of the Segment Selector
pointing to the User Data Segment Descriptor into the registers.

1 asm volatile("xor %%rax, %%rax\n"
2 "mov %[input], %%ax\n"
3 "mov %%rax, %%ds\n"
4 "mov %%rax, %%es\n"
5 "mov %%rax, %%fs\n"
6 "mov %%rax, %%gs\n"
7 : /* no output from call */
8 : [input] "m"(data_segment)
9 : "rax");

Listing. 18: Changing Data Segment Registers

Changing the value of the SS register can also be done using the mov instruction, but it cannot simply be used with any arbi-
trary value. The SS register must be loaded with a Segment Selector, that references a writable data segment.

Changing the value of CS is even more difficult. This can not be done directly but instead requires an instruction or internal
processor operation that switches the control to another segment. That is the case, because the CS register displays the Code
Segment we are currently executing code on. Therefore, changing the CS register always entails Context Switching.

Page 30 of 47

TeachOS | Matteo Gmür and Fabian Imhof

There are multiple options that can achieve that; The Far Jump, Far Call, Interrupt, Far Return or Interrupt Return. In our case
the Interrupt Return was chosen, because the other calls do not work in IA-32e mode. This is the case because, in IA-32e
mode, a privilege level change from kernel mode to user mode requires a controlled context switch that updates the Code
Segment, Stack Segment, and privilege level atomically, which is something that only the interrupt return mechanism is de-
signed to handle. After setting up the kernel, the default mode the operating system runs in should be the User Mode. Felix
Cloutier describes the purpose of the IRET statement as follows:

“Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by an
exception, an external interrupt, or a software-generated interrupt. These instructions are also used to perform a return
from a nested task.”

— Felix Cloutier [12]

Derived from this, using the IRET instruction instead of JMP or CALL, tricks the system into assuming that it is returning into
the User Mode, and not just jumping there. This results in future SYSCALL and other ring level changing calls, to automatically
return into User Mode when the IRET instruction is executed.

Image. 13: Executing SYSCALL in User Mode

This also increases safety because all future access requiring kernel mode, must be handled by SYSCALL and will only be in
that mode for the limited execution time.

This is necessary because kernel mode provides access to critical system functionalities that should not be used after the ini-
tial system setup, except through predefined SYSCALL instructions. Unrestricted access would allow direct manipulation of
CPU registers and memory, which could be catastrophic. For example, a user application could overwrite the IDT or GDT struc-
tures or disable interrupts entirely. To prevent this, an interrupt return must be used to safely switch to the user mode while
making it the default operating mode.

Additionally, the iretq instruction, has to be called because the default instruction iret is 32 bits in size. Therefore, because
IA-32e in 64-bit mode is used the 64-bit version of the instruction has to be utilized instead.

Furthermore, the stack needs to be configured accordingly and push multiple different values. This is the case because the in-
struction pops values from the stack in the following order:

• Return Instruction Pointer
• Return Code Segment Selector
• Extended Flags Register (EFLAGS)
• 64-bit Stack Pointer Register (RSP)
• Stack Segment Register (SS)

The actual call results in a Far Return because the Nested Task (NT) flag in the EFLAGS register must always be cleared in
IA-32e mode. This is required since hardware task switching is not supported in IA-32e mode. If the NT flag was set, it would

Page 31 of 47

TeachOS | Matteo Gmür and Fabian Imhof

trigger a General Protection Fault (#GP) when executing an interrupt return (Vol. 2A, IRET/IRETD/IRETQ— Interrupt Return
[1]).

1 asm volatile("mov %%rsp, %%rax\n"
2 "push %[data_segment]\n"
3 "push %%rax\n"
4 "pushfq\n"
5 "push %[code_segment]\n"
6 "mov %[return_function], %%rax\n"
7 "push %%rax\n"
8 "iretq\n"
9 : /* no output from call */

10 : [data_segment] "m"(data_segment)
11 , [code_segment] "m"(code_segment)
12 , [return_function] "r"(address)
13 : "rax");

Listing. 19: Changing Code Segment Register

This additionally causes a problem, because if the stack is updated in C++, the method call should not generate additional
stack pushes or pops. These pre- and post-ambles are normally generated by the compiler in the assembler code and includes
returning from the method and saving the previous stack of the method that called.

1 push %rbp ; Save address of previous stack frame
2 mov %rsp,%rbp ; Copy address of current stack frame
3 ...
4 sub $0x8,%rsp ; Save space for 8 bytes on the stack frame
5 mov %rdi,-0x8(%rbp) ; Copy the passed value expected to be in RDI register into stack
6 ...
7 leave ; Pops the saved previous stack frame (pop %rbp)
8 ret ; Returns control from this method to the one that called it

Listing. 20: C++ Assembly without [[gnu::naked]]

The preamble must be removed because it pushes the frame pointer (RBP) register onto the stack and loads the current stack
pointer (RSP) into the frame pointer register. This is of course a problem for this setup, because the stack is modified and does
not match the expected stack of IRETQ anymore.

Additionally, the preamble will allocate space for the arguments on the stack frame and copy the values from the registers
(where the arguments are initially expected to be) into the corresponding slots on the stack. This preamble is only generated
in non-[[gnu::naked]] mode and only if the function actually has arguments that are passed to it.

The post-amble however, executes the LEAVE and RET instructions. LEAVE essentially restores the frame- and stack pointer by
executing the reverse instructions of the preamble. In itself this would not be an issue for this function, because the IRETQ in-
struction is called before the post-amble is ever executed, but skipping the generation of only the preamble is not possible.

Skipping the generation of both, can be achieved with the [[gnu::naked]] specifier above the function, which prevents the
creation of any additional assembly statements. This will however also remove the generated RET statement in assembly,
meaning if the method does not call RET it will not return control out of the function anymore. Furthermore, using this at-
tribute on any statement besides inline assembly is not recommended, because the function is mangled if the correct assem-
bly instructions are not added (5.24 Declaring Attributes of Functions [11]).

1 [[gnu::naked]]
2 auto example() -> void { ... }

Listing. 21: Preventing C++ Assembly pre- and post-amble

This attribute will additionally generate an Undefined Instruction (UD) after the C++ Assembly itself. This is done to ensure
that the C++ Assembly actually returns, because if it does not, the UD instruction will be called which generates an Invalid Op-
Code Exception (#UD).

Page 32 of 47

TeachOS | Matteo Gmür and Fabian Imhof

3.3 Separating User from Kernel Mode
Once the return function has been entered, all code will now be executed in the user mode. Accessing Kernel functionality
however, is at this point only partially blocked. To completely separate them and ensure safety, more measures must be
taken.

3.3.1 Configuring and Enabling System Calls
The first step is to separate system functionality into system calls. This serves as the foundation to later disallow access to this
functionality from user mode if it is not called through SYSCALL.

To achieve this, the SYSCALL instruction needs to be configured and enabled. This is done by setting the required MSRs with
the expected values and by setting the System Call Extensions bit in the EFER flags (see Section 2.7.1).

1 auto enable_syscall() -> void
2 {
3 uint64_t const syscall_function = reinterpret_cast<uint64_t>(syscall_handler);
4 kernel::cpu::write_msr(IA32_LSTAR_ADDRESS, syscall_function);
5 kernel::cpu::write_msr(IA32_FMASK_ADDRESS, 0U);
6

7 uint64_t const kernel_cs = KERNEL_CODE_SEGMENT_SELECTOR;
8 uint64_t const star_value = (kernel_cs << 32) | (kernel_cs << 48);
9 kernel::cpu::write_msr(IA32_STAR_ADDRESS, star_value);

10

11 kernel::cpu::set_efer_bit(kernel::cpu::efer_flags::SCE);
12 }

Listing. 22: Configuring and Enabling the SYSCALL instruction

This has to be called before the actual switch to user mode occurs, because calling certain privileged instruction once the user
mode switch has occurred will cause a General Protection Fault (#GP) to be thrown. Write Model Specific Register WRMSR,
which is used to configure the SYSCALL instruction is one of those privileged instructions. (Vol. 3A, Chapter 6.9 Privileged In-
structions [1])

3.3.2 Implementing and Wrapping System Calls
Once the SYSCALL instruction has been configured the next step is actually implementing the syscall_handler function for
the required functionality and wrapping it to provide an normal method interface and remove the need to directly set CPU
registers.

1 auto syscall(type syscall_number, arguments args) -> response
2 {
3 asm volatile("mov %[input], %%rax" :: [input] "m"(syscall_number) : "memory");
4

5 asm volatile("mov %[input], %%rdi " :: [input] "m"(args.arg_0) : "memory");
6 asm volatile("mov %[input], %%rsi" :: [input] "m"(args.arg_1) : "memory");
7 asm volatile("mov %[input], %%rdx" :: [input] "m"(args.arg_2) : "memory");
8 asm volatile("mov %[input], %%r10" :: [input] "m"(args.arg_3) : "memory");
9 asm volatile("mov %[input], %%r8" :: [input] "m"(args.arg_4) : "memory");

10 asm volatile("mov %[input], %%r9" :: [input] "m"(args.arg_5) : "memory");
11

12 asm volatile("syscall");
13

14 arguments values{};
15 asm volatile("mov %%rdi, %[output]" : [output] "=m"(values.arg_0));
16 asm volatile("mov %%rsi, %[output]" : [output] "=m"(values.arg_1));
17 asm volatile("mov %%rdx, %[output]" : [output] "=m"(values.arg_2));
18 asm volatile("mov %%r10, %[output]" : [output] "=m"(values.arg_3));
19 asm volatile("mov %%r8, %[output]" : [output] "=m"(values.arg_4));
20 asm volatile("mov %%r9, %[output]" : [output] "=m"(values.arg_5));
21 error error_code{};
22 asm volatile("mov %%rax, %[output]" : [output] "=m"(error_code));
23

24 return {error_code, values};
25 }

Listing. 23: Preparing arguments and loading return values for SYSCALL instruction

Page 33 of 47

TeachOS | Matteo Gmür and Fabian Imhof

This is done by passing an enum indicating the specific type of SYSCALL that should be executed, which is then moved into the
RAX register. And by passing the optional arguments struct, up to 6 arguments that will be passed to the SYSCALL instruction
can be used.

This passing of the argument is done through CPU Registers (RDI, RSI, RDX, R10, R8, R9). For the reasoning and other possible
implementations see Section 2.7.5.

These same CPU registers are then also reused to return up to 6 possible arguments as well as a possible error code signaling
if and why the SYSCALL failed.

3.3.3 Implementing the System Call Handler
These arguments can then be read from the according CPU registers when the System Call Handler is executed by the instruc-
tion.

1 auto syscall_handler() -> void
2 {
3 uint64_t return_instruction_pointer, rflags = {};
4 asm volatile("mov %%rcx, %[output]" : [output] "=m"(return_instruction_pointer));
5 asm volatile("mov %%r11, %[output]" : [output] "=m"(rflags));
6

7 uint64_t syscall_number, arg_0, arg_1, arg_2, arg_3, arg_4, arg_5 = {};
8 asm volatile("mov %%rdi, %[output]" : [output] "=m"(arg_0));
9 asm volatile("mov %%rsi, %[output]" : [output] "=m"(arg_1));

10 asm volatile("mov %%rdx, %[output]" : [output] "=m"(arg_2));
11 asm volatile("mov %%r10, %[output]" : [output] "=m"(arg_3));
12 asm volatile("mov %%r8, %[output]" : [output] "=m"(arg_4));
13 asm volatile("mov %%r9, %[output]" : [output] "=m"(arg_5));
14

15 asm volatile("mov %%rax, %[output]" : [output] "=m"(syscall_number));
16

17 response result;
18 switch (static_cast<type>(syscall_number)) { ... }
19

20 asm volatile("mov %[input], %%rax" :: [input] "m"(result.error_code) : "memory");
21

22 asm volatile("mov %[input], %%rdi" :: [input] "m"(result.values.arg_0) : "memory");
23 asm volatile("mov %[input], %%rsi" :: [input] "m"(result.values.arg_1) : "memory");
24 asm volatile("mov %[input], %%rdx" :: [input] "m"(result.values.arg_2) : "memory");
25 asm volatile("mov %[input], %%r10" :: [input] "m"(result.values.arg_3) : "memory");
26 asm volatile("mov %[input], %%r8" :: [input] "m"(result.values.arg_4) : "memory");
27 asm volatile("mov %[input], %%r9" :: [input] "m"(result.values.arg_5) : "memory");
28

29 asm volatile("mov %[input], %%rcx" :: [input] "m"(return_instruction_pointer) : "memory");
30 asm volatile("mov %[input], %%r11" :: [input] "m"(rflags) : "memory");
31

32 asm volatile("leave\n"
33 "sysretq");
34 }

Listing. 24: SYSCALL handler implementation

That instruction additionally also saves the Return Instruction Pointer into the RCX Register, as well as the RFLAGS which are
saved in the R11 Register. That has to be done, because calling another method in the switch case statement, will override
the Return Instruction Pointer. Therefore to ensure that returning from the method is still possible both values have to be
cached first so they can be restored later, before SYSRET is called.

The optional arguments returned from the method as well as the error code are then saved into the according CPU registers,
so they can be read after the SYSRET has occurred.

Returning from the System Call Handler would already work like expected, but then if the next return from a method is hit the
program will crash. That is the case, because if the leave instruction is not called before calling the SYSRET instruction, then
the stack space allocated to the stack frame by the System Call Handler itself will not be cleaned up. That is the case, because
the SYSCALL does not return normally from the method instead using an early return with sysretq and therefore the leave
instruction is not called implicitly by the return generated by C++ but has to be called explicitly instead. (Vol. 2A, LEAVE—High
Level Procedure Exit [1])

Page 34 of 47

TeachOS | Matteo Gmür and Fabian Imhof

3.3.4 Creating and Moving Code into User Linker Section
With the SYSCALL infrastructure set up, .user_code and .user_data linker sections should now be separated from the
kernel’s code and data section to disallow direct access to Kernel resources from user mode, which would otherwise directly
circumvent the protection mechanism of the privilege levels.

Firstly all functions which need to be executable in user mode are annotated with the [[gnu::section(".user_text")]] an-
notation. But doing this does not yet fully define into which section it is linked. This is because in the linker script, all available
sections are either kept or discarded by the linker. For the .user_text section to be kept, it must be added in the following
way:

1 .user_text ALIGN(4K) : AT(ADDR (.user_text))
2 {
3 *(.user_text .user_text.*)
4 }

Listing. 25: Adding .user_text section to the Linker script

The same needs to be done for all static variables which are accessed in user mode, because they need to be annotated with
[[gnu::section(".user_data")]]. Otherwise the static variables will be put into the Kernel Data Section .data instead.
Similar to above a separate .user_data section needs to be kept as well. For normal member variables this annotation does
not have to be added, because they are simply placed into the User Data Section where they are instantiated instead.

Thanks to these annotation all code and data, which should be accessible in User Mode is in its own section. However, the C+
+ STL should also be accessible in user mode. But putting that code into a specific section is not possible in the same manner,
because GNU annotations can not be added to already compiled code. Therefore, the C++ STL must be added to the section
by referencing its archive file (group of objects or static libraries) instead.

1 .stl_text ALIGN(4K) : AT(ADDR (.stl_text))
2 {
3 *(.stl_text .stl_text*)
4 KEEP(*libstdc++.a:*(.text .text.*))
5 }

Listing. 26: Adding the standard library to a specific section

3.3.4.1 Template Code Workaround

The section .stl_text contains only some parts of the C++ STL, as well as the custom implementations that were created.
However template definition are not fully linked into the .stl_text section.

“The compiler must have full visibility to the definition at the time of the instantiation. In the above mentioned .cpp, you
instantiate this class Template with specific types. The compiler will generate full class type definition at the point of this
explicit instantiation.”

— Martin Vorbrodt [13]

Because of both of those rules, the templates are always mapped into the Linker Section which first uses them, which is the
Kernel Linker Section. Because of the One-Definition Rule (ODR) the Linker then does not create another copy of those tem-
plates in the User Linker Section.

Due to this behavior, when accessing the templated definition of the C++ STL the User Mode will attempt to access code that
is in the Kernel Text Section .text. Which will then cause the Page Fault Exception (#PF), unless the User Mode is explicitly al-
lowed access to Kernel Mode code.

3.3.5 Mapping Pages User Accessible
To allow access to these section in User Mode, they need to be mapped with the user accessible flag turned on. For this to
work the alignment of the sections is important, because the pages themselves also have a size of 4 KiB. If this alignment is
neglected, the mapping process would be increasingly difficult.

Usually the Linker Sections are mapped to pages using their names.

Page 35 of 47

TeachOS | Matteo Gmür and Fabian Imhof

1 if (section.name == ".user_text") {
2 entry.set_user_accessible();
3 }

Listing. 27: Mapping Linker Sections to pages by name example

However, this requires setting up access to the Symbol Table, which contains these names. The remaining time of this thesis
does not allow this mechanism to be implemented. For that reason, the Linker Sections are mapped to pages using their
starting address instead.

These addresses usually change when the Linker script is updated. So each time a new Linker Section is added or removed,
the map_elf_kernel_sections function inside the kernel_mapper.hpp file must be checked for correctness and updated ac-
cordingly.

This can be achieved by querying the addresses of each section using the readelf -WSl build/bin/Debug/_kernel com-
mand in the console, which prints the following output.

1 Section Headers:
2 [Nr] Name Type Address Off Size ES Flg Lk Inf Al
3 [0] NULL 0000000000000000 000000 000000 00 0 0 0
4 [1] .boot_rodata PROGBITS 0000000000100000 001000 0000f7 00 A 0 0 8
5 [2] .boot_text PROGBITS 0000000000101000 002000 0001ae 00 AX 0 0 16
6 [3] .boot_bss NOBITS 0000000000102000 0021ae 104000 00 WA 0 0 4096
7 [4] .boot_data PROGBITS 0000000000206000 003000 000004 00 WA 0 0 1
8 [5] .init PROGBITS 0000000000207000 004000 000010 00 AX 0 0 1
9 [6] .fini PROGBITS 0000000000208000 005000 00000b 00 AX 0 0 1

10 [7] .stl_text PROGBITS 0000000000209000 006000 0000d9 00 AX 0 0 16
11 [8] .text PROGBITS 000000000020a000 007000 00ded0 00 AX 0 0 32
12 [9] .user_text PROGBITS 0000000000218000 015000 00105c 00 AX 0 0 2
13 [10] .rodata PROGBITS 000000000021a000 017000 000bd3 00 A 0 0 32
14 [11] .ctors PROGBITS 000000000021b000 018000 000010 00 WA 0 0 8
15 [12] .dtors PROGBITS 000000000021c000 019000 000010 00 WA 0 0 8
16 [13] .bss NOBITS 000000000021d000 019010 000500 00 WA 0 0 32
17 [14] .data PROGBITS 000000000021e000 01b000 000018 00 WA 0 0 8
18 [15] .user_data PROGBITS 000000000021f000 01c000 000020 00 WA 0 0 16
19 [16] .debug_line PROGBITS 0000000000000000 01c020 00fb28 00 0 0 1
20 [17] .debug_line_str PROGBITS 0000000000000000 02bb48 002631 01 MS 0 0 1
21 [18] .debug_info PROGBITS 0000000000000000 02e179 06d714 00 0 0 1
22 [19] .debug_abbrev PROGBITS 0000000000000000 09b88d 01045e 00 0 0 1
23 [20] .debug_aranges PROGBITS 0000000000000000 0abcf0 003690 00 0 0 16
24 [21] .debug_str PROGBITS 0000000000000000 0af380 049107 01 MS 0 0 1
25 [22] .debug_rnglists PROGBITS 0000000000000000 0f8487 00221f 00 0 0 1
26 [23] .debug_macro PROGBITS 0000000000000000 0fa6a6 03a6d4 00 0 0 1
27 [24] .debug_loclists PROGBITS 0000000000000000 134d7a 00030f 00 0 0 1
28 [25] .symtab SYMTAB 0000000000000000 135090 005d90 18 26 910 8
29 [26] .strtab STRTAB 0000000000000000 13ae20 016840 00 0 0 1
30 [27] .shstrtab STRTAB 0000000000000000 151660 000118 00 0 0 1

Listing. 28: Output of readelf command

This output can then be used to get the hard-coded address to all sections that need to be mapped as user accessible.

1 std::array<uint64_t, 6U> constexpr USER_SECTION_BASES = {
2 0x102000, 0x209000, 0x218000, 0x21F000, 0x20A000
3 };

Listing. 29: Section addresses mapped as user accessible

Which means, this variable contains the addresses for .boot_bss, .stl_text, .user_text, .user_data and temporarily, until
the previously mentioned issue is resolved, also .text.

The section .boot_bss usually contains only uninitialized static variables. However, it still needs to be mapped user accessible
as well. This is because the .boot_bss also includes the stack used by both User and Kernel Mode.

If .boot_bss would not be mapped user accessible, it would therefore cause a Page Fault Exception (#PF) to be thrown when
entering the main method because when entering a method, local variables are pushed to the stack. To actual fix this sepa-
rate stack infrastructure for Kernel and User Mode would need to be implemented, which is out of scope for this thesis.

Page 36 of 47

TeachOS | Matteo Gmür and Fabian Imhof

To actually remap these pages as user accessible a simple for-loop is used that accesses all configured ELF Sections and maps
them to actual physical frames. It is then possible to simply additionally add the user accessible flag for all ELF Sections that
are in the predefined array.

1 if (std::ranges::find(USER_SECTION_BASES, section.physical_address) != USER_SECTION_BASES.end())
2 {
3 entry.set_user_accessible();
4 }

Listing. 30: Looping through selected sections to mark as user accessible

This has the additional problem of only setting the Level 1 Page Table Entry to be user accessible. All other Page Table Entries
(Level 4, Level 3 and Level 2) are currently not mapped user accessible.

This of course causes an issue, because even if the Level 1 Page Table Entry is mapped user accessible if the other Page Table
Entries leading to it are not mapped user accessible as well a Page Fault Exception (#PF) will still be thrown.

Therefore to fix this the underlying mapping mechanism has to be adjusted so any Page Table Entries that contain Level 1
Page Table Entries that are user accessible, need to be user accessible themselves.

1
auto next_table_or_create(T & allocator, std::size_t table_index, std::bitset<64U> flags) ->
page_table_handle

2 {
3 ...
4

5 // Check if the now created or previously created level 4, level 3 or level 2 page entry is used
6 // by user accessible code. If it is that page entry needs to be user accessible as well.
7 entry entry{flags.to_ulong()};
8 if (entry.contains_flags(entry::USER_ACCESSIBLE))
9 {

10 this->operator[](table_index).set_user_accessible();
11 }
12 return next_handle.value();
13 }

Listing. 31: Fixing Issue with Shared Level 4 Page Table Entries between Kernel and User Mode

This is achieved by additionally checking in the mapping code if the flags used by the Level 1 Page Table Entry is user accessi-
ble. If it is then the previously created or newly created Page Table Entry needs to also be user accessible.

3.3.6 Creating a User Heap Allocator
The ELF Sections however are not the only thing that needs to be mapped user accessible. To separate Kernel from User Heap
there also needs to be a separate allocator for User Mode, which uses a different Heap Section for the actual allocations.

This has been achieved through a custom User Heap Allocator, which is based on the Linked List Allocator used by the Kernel
with a few major differences.

The constructor is defaulted and the Allocator does not allocate any memory when it is first instantiated. This allows to only
map the User Heap into physical memory once the first Heap Allocation occurs and therefore allows to separate the Kernel
Heap mapping from the User Heap mapping code.

Additionally, the allocate() method does not directly fail if there is no Heap Memory left, instead it attempts to expand the
User Heap by a fixed amount (100 KiB) instead. If that is successful it uses the exact same behaviour as the Linked List Alloca-
tor and simply allocates a block with the given size into that Memory Block.

Page 37 of 47

TeachOS | Matteo Gmür and Fabian Imhof

1 auto user_heap_allocator::allocate(std::size_t size) -> void *
2 {
3 ...
4

5 current = expand_heap_if_full();
6

7 if (current != nullptr)
8 {
9 auto memory = allocate_into_memory_block_if_big_enough(current, previous, total_size);

10 if (memory.has_value())
11 {
12 return memory.value();
13 }
14 }
15

16 char constexpr OUT_OF_MEMORY_ERROR_MESSAGE[] = "[Linked List Allocator] Out of memory";
17 context_switching::syscall::syscall(context_switching::syscall::type::ASSERT,
18

 {false,
reinterpret_cast<uint64_t>(&OUT_OF_MEMORY_ERROR_MESSAGE)});

19 return nullptr;
20 }

Listing. 32: User Heap Allocate Implementation

Additionally it is not possible to directly assert and the SYSCALL Implementation of it has to be called instead, if expanding the
User Heap failed.

The same is the case for the expand_heap_if_full() method, because being able to directly map Heap Memory in the User
Mode could be potentially dangerous. Therefore, the implementation is done by a SYSCALL instead, which will expand the
heap by a fixed amount (100 KiB) and return the starting address of that memory.

1 auto user_heap_allocator::expand_heap_if_full() -> memory_block *
2 {
3
 auto const result =
context_switching::syscall::syscall(context_switching::syscall::type::EXPAND_HEAP);

4

5 uint64_t const heap_start = result.values.arg_0;
6 uint64_t const heap_size = result.values.arg_1;
7
 return !result.error_code ? new (reinterpret_cast<void *>(heap_start)) memory_block(heap_size,
nullptr) : nullptr;

8 }

Listing. 33: Expanding User Heap Implementation

The implementation of the System Call itself is relatively easy. It simply starts by expanding the User Heap from a fixed ad-
dress and increases the area that is assigned to the User Heap by the hard-coded amount (100 KiB). This is done using the
same method the Kernel Heap uses to map its physical frames.

1 auto expand_user_heap() -> response
2 {
3 static auto current_heap_end = memory::heap::USER_HEAP_START;
4 uint64_t const heap_start = current_heap_end;
5 memory::remap_heap(heap_start, memory::heap::USER_HEAP_SIZE,
6 memory::paging::entry::USER_ACCESSIBLE);
7 current_heap_end += memory::heap::USER_HEAP_SIZE;
8 return {error::OK, {heap_start, memory::heap::USER_HEAP_SIZE}};
9 }

Listing. 34: Expanding User Heap System Call Implementation

The method additionally saves the previous User Heap End Address so that address can simply be used as the next starting
point if the User Heap is expanded multiple times. This has an additional advantage of the virtual addresses in the User Heap
staying continuous even with expansion at runtime.

Page 38 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Part 4
Assembly caveats

4.1 GNU Assembly (GAS)
The assembly files are not written in plain assembly, but instead in GNU assembly (GAS). GAS has some subtle differences to
regular assembly, of which the most notable are documented here.

• Instructions like mov parse its two arguments the other way around from vanilla assembly. In the case of mov, the value of
the first argument will be moved into the second.

• Writing plain values into registers can not be done by using the values as is. Instead plain values must be surrounded by
$(). For example, the vanilla assembly move statement rax, 1000 must be written like this: mov $(1000), %rax.

• Variables when copied from or when copied into, have to be accessed with a dollar sign prefix: $variable.
• When writing values into an offset whose base address is contained in a variable, the address must be wrapped with braces

() instead of brackets []. For example mov %rax, [$variable + 1] must be written like this: mov %rax, (variable +
1).

4.2 Inline assembly
Using extended asm, operands can be specified, which allow to specify input registers, output registers and a list of clobbered
registers. The format for extended inline assembly is the following:

1 asm (assembler template
2 : output operands /* optional */
3 : input operands /* optional */
4 : list of clobbered registers /* optional */
5);

Listing. 35: Example inline assembly with output variable

4.2.1 Output operands
The output operand is an optional argument that tells the compiler how it should handle variables that are used to store out-
put from the assembly template.

1 asm volatile("sgdt %[output_label]" : [output_label] "=m"(output_value) : /* No input to call */);

Listing. 36: Example inline assembly with output variable

The important part is that we can either use labels that we write values into, or we can use the enumeration, where the first
declared variable is 0 and then every following variable is simply incremented by one. The “r” means we are writing a register
and the “=”, indicates we do not care about the initial value of the variable, which allows some optimizations.

4.2.2 Input operands
The input operand is an optional argument that tells the compiler how it should handle variables that are used to store input
into the assembly template.

1 asm volatile("lgdt %[input_label]" : /* No output from call */ : [input_label] "m"(input_value));

Listing. 37: Example inline assembly with input variable

The syntax is similar to the output operand, but the order of the movq statement is inverted and we of course now do care
about the initial value of the variables, because we copy them, therefore we do not use the “=” sign.

Page 39 of 47

TeachOS | Matteo Gmür and Fabian Imhof

4.2.3 Clobber list
Some instructions clobber some hardware registers. These registers need to be listed in the list of clobbered registers men-
tioned earlier in the extended asm template. This will inform GCC that these registers are being used and modified. This in-
cludes registers implicitly clobbered by the instructions in the assembler templates.

Input and output registers should not be listed in the clobber list, because GCC is aware of them being used.

4.2.4 Operand constraints
Constraints define whether an input or output operand is in a register, a memory address or other details. The most used are
the operands “r” and “m”. Below is a list of commonly used constraints.

Constraint Purpose

r The operand should be placed in a general-purpose register. The compiler is free to choose any
available register.

m The operand should be placed in memory and should be accessed from a memory location.

g A “generic” constraint, meaning the operand can either go in a register or memory, depending on
what the compiler thinks is best.

i Defines an immediate value. For example a constant that is directly embedded in the assembly
code.

n A constant that is a valid operand in an instruction that takes a number, like a shift amount or an im-
mediate value.

Table. 31: Common operand constraints (5.35.1 Simple Constraints [10])

4.2.5 Constraint modifiers
Operand constraints can be prefixed with a modifier for precise control over their effects. The following two modifiers are the
most used ones:

Modifier Purpose

= The operand is written by the instruction and the previous value is replaced by the output.

& The operand is an “earlyclobber” operand, which is modified before the instruction is finished using
the input operands. This prevents the compiler from allocating the same register or memory loca-
tion for an input and an output operand.

Table. 32: Common constraint modifiers (5.35.3 Constraint Modifier Characters [10])

4.2.6 Compile time optimization
The C++ compiler does not understand the content of the inline assembly statement. Because of that, the compiler might
move or delete it during compile time optimizations. GCC will never remove an asm instruction, if it has an output, however it
might still be removed. Using the volatile keyword after asm instructs GCC to not do any optimization around it.

4.2.7 Loading effective address
To load an address of a variable instead of the content of the variable, which is required for function references mov can not
be directly used when using raw assembly.

1 lea [label], %rax
2 mov %rax, %rdx
3

4 asm volatile("mov %[input]", %%rdx : /* No output from call */ : [input] "m"(label));

Listing. 38: Loading a function: Assembly vs. Inline Assembly

However, in inline assembly it is possible, because the variable passed to the mov instruction is already an address in C++.

Page 40 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Part 5
Future Work
The operating system is now able to manage memory through paging as well as heap allocation and deallocation in User
Mode. Furthermore, it is possible to switch between different ring levels thanks to the newly implemented GDT and IDT.

From here there are a few possible ways to further improve TeachOS and getting it closer to a viable teaching tool. Below are
the topics which can be implemented with the current state of the operating system.

5.1 Interrupt Handler
Currently, only one interrupt handler has been created, which does not actually handle the interrupts. It simply prints the in-
formation that an interrupt has occurred and then returns.

Implementing different interrupt handlers for the various different x86_64 reserved interrupts is a logical and necessary next
step. A good understanding of why a certain interrupt happened, what the possible state of the affected registers is and what
the state of the affected registers must be acquired to correctly implement these handlers and serves as a good foundation
for an operating system focused on teaching.

5.2 System Call over Interrupts
To show more possible implementations of System Calls, support for System Calls over INT n could be added. With the possi-
bility of switching between them and displaying the difference to the student using the operating system.

5.3 Interrupt Stack
Modern x86_64 CPUs support the Interrupt Stack Table (IST) as part of the TSS. Setting up dedicated stacks for critical excep-
tions like double faults (which may occur due to stack corruption) enhances system reliability.

5.4 System Call Parameter Passing
System Calls could additionally be expanded with the possibility of supporting memory to pass parameters as well. Addition-
ally, using the Stack to pass parameters could be implemented as well. This can be achieved much easier as well if the infra-
structure to create Interrupt Stacks has been created already or vice versa.

5.5 Keyboard Interrupts
Now that interrupts can be caught and properly handled, an interesting feature to implement is properly handling keyboard
interrupts. This would allow a user to interact with the system and provides a base for a proper shell.

5.6 Creating a User Mode Stack
Currently, TeachOS only utilizes one stack for both Kernel and User Mode. This is suboptimal and results in an issue with the
mapping of Linker Sections to pages. This issue has been introduced in Section 3.3.5, and boils down to the operating system
throwing a page fault, if the section .boot_bss is not mapped as user accessible, since it contains the stack data.

This behavior can be improved by creating a user stack and mapping it to a different Linker Section, which is in turn mapped
as user_accessible. When this is implemented, the section .boot_bss can be removed from the list of sections to map as
user accessible.

5.7 Educational Structure
The primary purpose of TeachOS is its use in various lectures as an educational tool. To fulfill this purpose, a possible next
step is implementing different memory management strategies and an architecture which allows students to switch between

Page 41 of 47

TeachOS | Matteo Gmür and Fabian Imhof

them. This can be expanded even more by implementing a graphical representation of the loaded pages, memory hits and
misses and other data surrounding memory management.

Page 42 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Part 6
Glossary

Term Meaning

C++ STL C++ Standard Template Library; A collection of generic classes and functions that provide
common data structures and algorithms.

CPL Current Privilege Level

DPL Descriptor Privilege Level; The privilege level of the segment. Also defines the minimum
privilege level to access the segment.

EFER Extended Feature Enable Register; A model-specific register to allow enabling SYSCALL/
SYSRET instructions.

GAS GNU Assembler; The assembler developed by the GNU Project.

GCC GNU Compiler Collection; A collection of compilers from the GNU Project.

GDT Global Descriptor Table; Defines segments through segment descriptors.

GDTR Global Descriptor Table Register; Stores the GDT Pointer and is used by the CPU to access
the GDT.

#GP General Protection Fault; Occurs when executing privileged instructions while not in ring
0.

IDT Interrupt Descriptor Table; Defines interrupt types and is the logical link between inter-
rupt number and interrupt service routine.

IDTR Interrupt Descriptor Table Register; Stores the IDT Pointer and is used by the CPU to ac-
cess the IDT.

ISR Interrupt Service Routine; A code section executed during interrupt handling to restore
the system to a valid state.

IST Interrupt Stack Table; The stack pointers used to load the stack when a privilege level
change occurs.

LDT Local Descriptor Table; Holds segment descriptors just like the GDT. The difference is that
every task can have its own LDT and the LDTR can bee changed on every task switch.

MSR Model Specific Register; Control registers used for debugging, program execution tracing,
computer performance monitoring and toggling CPU features.

#NP Segment Not Present; Exception that occurs when trying to load a segment or gate which
has its “present” bit set to 0.

#PF Page fault; Exception that occurs when a page table is not present in physical memory or
when a protection check failed.

RPL Requested Privilege Level; Privilege level of a segment selector.

Segment Registers Registers that help manage memory by dividing it into segments.
• Code Segment (CS) -> Defines the memory location where the program code is stored.
• Data Segment (DS) -> Defines where data of the program will be stored.
• Extra Segment (ES) -> Defines where additional data will be stored.
• Stack Segment (SS) -> Defines where the stack is stored.
• General Purpose Segment (FS/GS) -> No processor defined purpose.

SP Stack Pointer; A register (rsp) containing the memory address of the last data element
added to the stack.

TR Task Register; Segment selector pointing to the TSS.

TSS Task State Segment; Data structure used to change the stack pointer after an interrupt or
CPL change occurred.

UD Undefined Instruction; Generates an invalid opcode exception. This instruction is pro-
vided for software testing to explicitly generate an invalid opcode exception. Not to con-
fuse with #UD.

Page 43 of 47

TeachOS | Matteo Gmür and Fabian Imhof

#UD Invalid Opcode Exception; Occurs when the processor tries to execute an invalid or unde-
fined opcode.

Page 44 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Part 7
Bibliography
[1] Intel-Corporation, “Intel 64 and IA-32 Architectures Software Developer's Manual.” 2024.
[2] O. wiki, “Operating System Development wiki,” 2025.
[3] G. Brunmar, “The world of protected mode,” 2025.
[4] Intel-Corporation, “Intel 286 Programmer's Reference Manual.” 1987.
[5] Intel-Corporation, “Intel 386 Programmer's Reference Manual.” 1986.
[6] T. F. D. Project, “FreeBSD Developers' Handbook.” 2025.
[7] M. Kerrisk, “Linux manual page.” 2024.
[8] A. Shvets, Dive into Design Patterns. Refactoring.Guru, 2019.
[9] CPPReference, “C++ reference,” 2024.
[10] I. Free Software Foundation, “GNU C Language Manual,” 2025.
[11] I. Free Software Foundation, “GNU GCC Compiler Manual.” 2005.
[12] F. Cloutier, “x86 and amd64 instruction reference,” 2024.
[13] M. Vorbrodt, “Vorbrodt's C++ Blog,” 2021.

Part 8
Table of Figures

8.1 Listings
Listing. 1: INT 80 wrapper function .. 19

Listing. 2: Old way of allocating heap memory ... 22

Listing. 3: Required global operator overrides .. 22

Listing. 4: C++ Bit-Field (Article “Bit-Field” [9]) ... 25

Listing. 5: Packed Structures (15.6 Packed Structures [10]) .. 25

Listing. 6: Segment Descriptor Structures .. 25

Listing. 7: Segment Descriptors Configuration example ... 26

Listing. 8: Contains flag call and implementation ... 26

Listing. 9: GDT Flags Field Structure ... 26

Listing. 10: Global Descriptor Table Configuration .. 27

Listing. 11: Loading GDT Pointer Structure (Vol. 2A, LGDT/LIDT—Load Global/Interrupt Descriptor Table Register [1]) 27

Listing. 12: Far jump to reload CS registers ... 28

Listing. 13: Creating the interrupt descriptor table .. 28

Listing. 14: Loading IDT Pointer Structure (Vol. 2A, LGDT/LIDT—Load Global/Interrupt Descriptor Table Register [1]) 29

Listing. 15: Generic interrupt handler ... 29

Listing. 16: C++ Assembly with [[gnu::interrupt]] .. 29

Listing. 17: Task State Segment Structure ... 30

Listing. 18: Changing Data Segment Registers .. 30

Listing. 19: Changing Code Segment Register ... 32

Listing. 20: C++ Assembly without [[gnu::naked]] .. 32

Listing. 21: Preventing C++ Assembly pre- and post-amble .. 32

Listing. 22: Configuring and Enabling the SYSCALL instruction ... 33

Listing. 23: Preparing arguments and loading return values for SYSCALL instruction ... 33

Listing. 24: SYSCALL handler implementation .. 34

Listing. 25: Adding .user_text section to the Linker script ... 35

Page 45 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Listing. 26: Adding the standard library to a specific section .. 35

Listing. 27: Mapping Linker Sections to pages by name example ... 36

Listing. 28: Output of readelf command ... 36

Listing. 29: Section addresses mapped as user accessible .. 36

Listing. 30: Looping through selected sections to mark as user accessible .. 37

Listing. 31: Fixing Issue with Shared Level 4 Page Table Entries between Kernel and User Mode .. 37

Listing. 32: User Heap Allocate Implementation .. 38

Listing. 33: Expanding User Heap Implementation ... 38

Listing. 34: Expanding User Heap System Call Implementation .. 38

Listing. 35: Example inline assembly with output variable ... 39

Listing. 36: Example inline assembly with output variable ... 39

Listing. 37: Example inline assembly with input variable ... 39

Listing. 38: Loading a function: Assembly vs. Inline Assembly ... 40

8.2 Images
Image. 1: Operating system protection ring (Figure 6-3. Protection Rings [1]) .. 4

Image. 2: GDT segments in IA-32e 64-bit mode .. 5

Image. 3: 64-bit Segment Descriptor [1] (Figure 3-8. Segment Descriptor) ... 6

Image. 4: 16-bit Segment Selector (Figure 3-6. Segment Selector [1]) .. 10

Image. 5: 80-bit Descriptor Table Pointer (Vol. 3A, Chapter 2.4 Memory-Management Registers [1]) 10

Image. 6: 64-bit Far Pointer (Figure 4-5. Pointers in 64-Bit Mode [1]) ... 11

Image. 7: IDT items in x86 (Table 6-1. Exceptions and Interrupts [1]) ... 12

Image. 8: 64-bit Gate Descriptor (Figure 7-8. 64-Bit IDT Gate Descriptors [1]) ... 13

Image. 9: Long-Mode Task State Segment layout (Figure 9-11. 64-Bit TSS Format [1]) ... 15

Image. 10: Stack Segment Layout (Figure 6-1. Stack Structure [1]) ... 21

Image. 11: Sequence Diagram for function call with Factory Method Pattern .. 23

Image. 12: Structure of allocated memory area of the Linked List allocator ... 24

Image. 13: Executing SYSCALL in User Mode ... 31

8.3 Tables
Table. 1: Comparison of User Mode Heap Implementations .. 3

Table. 2: Types of Privilege Levels (Vol. 3A, Chapter 6.5 Privilege Levels [1]) .. 4

Table. 3: 16-bit Segment Descriptor (Figure 6-1. Protection Fields of Segment Descriptors [4]) and 32-bit Segment Descriptor
(Figure 6-3. Segment Descriptors [5]) ... 6

Table. 4: Segment Descriptor Components (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1]) .. 6

Table. 5: Differences in Flags on different Segment Descriptor Types (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1]) 7

Table. 6: Segment Descriptor Flags (Little-Endian) (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1]) .. 7

Table. 7: Segment Descriptor Access Byte (Little-Endian) (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1]) 8

Table. 8: Differences in Type Field on different Segment Descriptor Types (Figure 6-1. Descriptor Fields Used for Protection [1]).
9

Table. 9: Segment Descriptor Type Field (Little-Endian) (Vol. 3A, Chapter 3.4.5 Segment Descriptors [1]) 9

Table. 10: System Segment Descriptor Type Field (Table 3-2. System-Segment and Gate-Descriptor Types [1]) 9

Table. 11: Segment Selector Components (Vol. 3A, Chapter 3.4.2 Segment Selectors [1]) .. 10

Table. 12: Descriptor Table Pointer Components (Vol. 3A, Chapter 2.4 Memory-Management Registers [1]) 10

Page 46 of 47

TeachOS | Matteo Gmür and Fabian Imhof

Table. 13: Segment Registers (Vol. 1, 3.4.2 Segment Registers [1]) .. 11

Table. 14: Far Pointer Components (Vol. 3A, Chapter 4.3.1 Pointer Data Types in 64-Bit Mode [1]) ... 11

Table. 15: Exceptions and Interrupts (Table 6-1. Exceptions and Interrupts [1]) .. 12

Table. 16: 16-bit Gate Descriptor (Figure 7-10. Gate Descriptor Format [4]) and 32-bit Gate Descriptor (Figure 9-3. 80306 IDT
Gate Descriptors [5]) ... 13

Table. 17: Gate Descriptor Components (Vol. 3A, Chapter 7.14.1 64-Bit Mode IDT [1]) .. 13

Table. 18: Differences in Type Field on different Gate Descriptor Types (Figure 7-2. IDT Gate Descriptors [1]) 14

Table. 19: Gate Descriptor Type Field (Little-Endian) (Vol. 3A, Chapter 7.14.1 64-Bit Mode IDT [1]) ... 14

Table. 20: Task State Segment fields (Vol. 3A, Chapter 9.7 Task Management in 64-bit Mode [1]) ... 15

Table. 21: Memory Management Registers (Vol. 3A, Chapter 2.4 Memory-Management Registers [1]) 16

Table. 22: Fast System Calls Registers (Figure 6-14. MSRs Used by SYSCALL and SYSRET [1]) .. 17

Table. 23: Fast System Calls in 64-Bit mode (Vol. 3A, Chapter 6.8.8 Fast System Calls in 64-Bit mode [1]) 17

Table. 24: Advantages and disadvantages of SYSCALL / SYSRET instruction ... 18

Table. 25: Fast System Calls in 64-Bit mode (Vol. 3A, Chapter 6.8.8 Fast System Calls in 64-Bit mode [1]) 18

Table. 26: Expected GDT layout by SYSEXIT instruction .. 18

Table. 27: Advantages and disadvantages of SYSENTER / SYSEXIT instructions .. 19

Table. 28: Advantages and disadvantages of INT n instruction in context switching ... 19

Table. 29: Passing Arguments to System Call (Chapter 11. x86 Assembly Language Programming, A.3.2. Alternate Calling Con-
vention [6]) ... 20

Table. 30: 64-bit minimal GDT for Long Mode Setup (Article “GDT Tutorial” [2]) .. 27

Table. 31: Common operand constraints (5.35.1 Simple Constraints [10]) .. 40

Table. 32: Common constraint modifiers (5.35.3 Constraint Modifier Characters [10]) .. 40

8.4 Tools
Purpose Tools

Literature-Research Internet Search Engines

Inspiration for paragraph
structuring

ChatGPT

Coding Visual Studio Code, CMake, QEMU, Neovim

Documentation Typst, LTeX+

Project management GitLab, Jitsi Meet, Teams, Matrix

Dev Ops Docker, GitLab

Page 47 of 47

	Goals
	Scope
	Memory Management
	Context Switching
	Out of scope

	Research
	User Mode Heap
	Decision

	Privilege levels
	Interrupts
	Global Descriptor Table
	Segment Descriptor
	Flags
	Access Byte
	Type Field
	Type Field for Data or Code Segments Descriptors
	Type Field for System Segment Descriptors

	Segment Types

	Segment Selector
	Descriptor Table Pointer
	Segment Registers
	Far Pointer

	Interrupt Descriptor Table
	Gate Descriptors
	Type Field

	Task State Segment
	Memory Management Register

	Procedure Calls
	SYSCALL / SYSRET
	Overview
	Evaluation of SYSCALL and SYSRET

	SYSENTER / SYSEXIT
	Overview
	Evaluation of SYSENTER and SYSEXIT

	INT/IRETQ
	Overview
	Evaluation of INT 80

	Decision
	Passing Arguments to System Calls
	Decision
	Using System Calls with multiple stacks

	Results
	Memory Management
	Current problem
	Overriding new and delete
	Global Heap Allocator
	Factory Method Pattern
	Improving the Linked List Allocator

	Context Switching
	Segment Descriptor
	Global Descriptor Table
	Interrupt Descriptor Table (IDT)
	Interrupt Service Routine (ISR)
	Task State Segment (TSS)
	Changing Segment Registers

	Separating User from Kernel Mode
	Configuring and Enabling System Calls
	Implementing and Wrapping System Calls
	Implementing the System Call Handler
	Creating and Moving Code into User Linker Section
	Template Code Workaround

	Mapping Pages User Accessible
	Creating a User Heap Allocator

	Assembly caveats
	GNU Assembly (GAS)
	Inline assembly
	Output operands
	Input operands
	Clobber list
	Operand constraints
	Constraint modifiers
	Compile time optimization
	Loading effective address

	Future Work
	Interrupt Handler
	System Call over Interrupts
	Interrupt Stack
	System Call Parameter Passing
	Keyboard Interrupts
	Creating a User Mode Stack
	Educational Structure

	Glossary
	Bibliography
	Table of Figures
	Listings
	Images
	Tables
	Tools

