
Bringing Context Mapper to the
Developer’s Workflow

Enhanced IDE Integration and Tooling Support

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences

Campus Rapperswil-Jona

Bachelor Thesis, Spring Term 2025

Author: Lukas Streckeisen
Advisor: Stefan Kapferer
Project Partner: IFS Institute for Software
External Co-Examiner: Roman Blum
Internal Co-Examiner: Prof. Dr. Farhad D. Mehta

i

Abstract
Context Mapper provides a Domain-Specific Language (DSL) for modelling software
systems using Domain-Driven Design patterns. The Context Mapper DSL (CML)
language supports patterns from strategic and tactic DDD, as well as Value-Driven
Analysis and Design. Context Mapper currently offers an Eclipse and VSCode plugin.
IntelliJ, a popular IDE among Java developers, is not yet supported, potentially
preventing Context Mapper’s widespread adoption. This thesis aims to enhance the
developer’s workflow by developing a proof of concept for a Context Mapper IntelliJ
plugin and outline a path for the plugin to be extended to full functionality. To achieve
this goal, this thesis provides an overview of current language workbenches
(frameworks for creating DSLs) and options for integrating DSLs in IntelliJ. From
these technologies, the thesis evaluates the most suited technology to develop the
proof of concept (PoC). The implemented plugin uses LSP4IJ, an open-source IntelliJ
plugin based on the Language Server Protocol, and Langium, a TypeScript DSL
framework. The PoC successfully implemented important editor features, such as
syntax highlighting, hyperlinking, autocomplete and a PlantUML component diagram
generator. Future work includes providing a Java library for reading and writing CML
models, so Context Mapper’s existing Java tools can be migrated as well.

Keywords: Context Mapper, Domain-Specific Language, Language Server, IntelliJ,
Editor Support

ii

Management Summary

Introduction
Context Mapper provides a Domain-Specific Language called Context Mapping
Language (CML) for modelling software systems on the basis of Domain-Driven
Design patterns. The language supports patterns from strategic and tactic Domain-
Driven Design, as well as Value-Driven Analysis and Design. The current
implementation of Context Mapper is based on Xtext, which is a Java-based
framework for creating Domain-Specific Languages. With Xtext, Context Mapper
offers an Eclipse plugin out of the box. Additionally, based on the language server that
comes with Xtext, it also provides an extension for VSCode.

IntelliJ has become a popular development environment among Java developers, for
which Context Mapper does not yet offer editor support. This situation requires
developers to use two development environments, which potentially prevents the
widespread adoption of Context Mapper.

Objective
The goal of this thesis is to enhance the workflow for developers using IntelliJ, by
developing a proof of concept for a Context Mapper IntelliJ plugin. To achieve this
goal, this thesis provides an overview of current language workbenches (frameworks
for creating Domain-Specific Languages) and options for integrating languages in
IntelliJ. From these technologies, the thesis selected the most suited technology to
develop the proof of concept. For the not-implemented features, the thesis outlines
how these features can be implemented in a future project.

Results
The technology analysis covered three options each for language workbenches and
IntelliJ integration options. The covered language workbenches are JetBrains MPS,
Langium and Rascal. Based on a utility analysis, Langium, a TypeScript framework,
proved to be the most suitable, capable and stable workbench for Context Mapper. The
analysed integration options are a language server integration via IntelliJ’s LSP
(Language Server Protocol) support, a language server integration via the LSP4IJ
IntelliJ plugin, and native integration. Since a language server is the most suitable
approach from an architectural perspective, the language server integration options
received high scores in the utility analysis. In the end, LSP4IJ received the highest
score due to its availability in both IntelliJ Community and Ultimate versions, as well
as its superior set of supported LSP capabilities.

The proof of concept was implemented using both Langium and LSP4IJ. Figure 1
shows the resulting architecture.

iii

Figure 1: C4 container diagram of the developed proof of concept

With LSP4IJ in charge of interactions between the language server and IntelliJ, the
Context Mapper plugin limits itself to configuring LSP4IJ. All feature logic is placed in
the language server, which gives Context Mapper the flexibility to target other
development environments at a later point.

The proof of concept successfully implemented most of the selected subset of Context
Mapper features. Figure 2 shows the Context Mapper IntelliJ editor and a generated
PlantUML component diagram.

Figure 2: Screenshot of the CML editor in IntelliJ

Future work includes providing a Java library for reading and writing CML models, so
Context Mapper’s existing Java tools can be migrated as well.

iv

Acknowledgements
I would like to thank Stefan Kapferer for his guidance during my thesis and for
providing valuable feedback on my work. I am also grateful to Jann Flepp for sharing
his experiences from his own thesis. Furthermore, I would like to thank the
maintainers of LSP4IJ and Langium for their prompt and helpful responses to my
questions. Finally, I sincerely thank my family and friends for their unwavering
support.

v

Table of Contents

Part I - Technical Report

1. Introduction . 1
1.1. Project Context . 1
1.2. Motivation . 2
1.3. Goals . 3

2. System Analysis & Requirements . 4
2.1. Existing System Analysis . 4
2.2. Requirements . 6

3. Technology Exploration . 15
3.1. Language Workbenches . 15
3.2. IntelliJ Integration Options . 16
3.3. Technology Decision . 18

4. Proof of Concept Implementation . 24
4.1. Architecture . 24
4.2. Context Mapper Grammar Changes . 31
4.3. Implemented Features . 34

5. Results . 39
5.1. Fulfilment of Requirements . 39
5.2. Open Issues . 42
5.3. Experience Report . 43

6. Outlook . 45
6.1. Long-Term Risk Analysis . 45
6.2. Future Work . 49

7. Conclusion . 52

Part II - Appendix

A: Task Description . 54

B: Technology Exploration Tests . 57

C: Detailed Technology Evaluation . 63

D: Architectural Decisions . 73

E: Implementation details . 75

F: Manual Tests . 81

G: Glossary & List of Acronyms . 85

H: Bibliography . 86

I: List of Figures . 89

J: List of Tables . 90

K: List of Code Listings . 91

1. Introduction Enhanced Context Mapper IDE Integration

Part I - Technical Report

1. Introduction
This section describes the context (Section 1.1), motivation (Section 1.2) and goals
(Section 1.3) of this thesis. The thesis context describes Context Mapper itself and
frameworks relevant to Context Mapper. The motivation and goals are based on the
thesis task description, which can be found in full in Appendix A.

1.1. Project Context
Context Mapper [1] provides a DSL (Domain Specific Language) and tools to model
software systems on the basis of DDD (Domain-Driven Design) patterns. It was
mainly created to support strategic DDD patterns like Context Mapping, but also has
elements for tactic DDD like Domain modelling. The CML (Context Mapping
Language) also offers support for process flows, user requirements, stakeholders, and
values from Value-Driven Analysis & Design¹. For editor support, Context Mapper
offers plugin extensions for Eclipse² and VSCode³. These extensions include the CML
editor (syntax highlighting, autocomplete, etc.), as well as the capabilities for story
splitting⁴ and architectural refactorings⁵. In addition, the extensions include
generators that convert the defined contexts to, e.g. a PlantUML diagram.

Context Mapper also offers additional tools, such as a discovery library to generate a
CML model from an existing project. However, these tools are out of scope for this
thesis.

Xtext (see Section 1.1.1) lays the foundation of the CML. Context Mapper heavily
relies on Xtext for the CML parser, Eclipse plugin and LSP (Language Server Protocol)
language server (see Section 1.1.2). The existing VSCode plugin leverages the language
server generated by Xtext.

1.1.1. Xtext
Xtext [3], part of the Eclipse project, is a framework for creating DSLs. By defining a
language grammar for the DSL, Xtext automatically generates a parser and text editor,
among other resources. The text editor includes code completion, syntax highlighting,
syntactic validation, hyperlinking and more. Xtext can also build an Eclipse plugin,
which makes editor support for DSLs available to others. For integration with other
IDE (Integrated Development Environment)s, Xtext supports the generation of LSP
language servers.

In 2020, the core maintainers made a call to action [4] regarding the future
maintenance of Xtext. The blog post outlines the decreasing numbers of active

¹Process aiming to combine value-driven approaches with software engineering practices [2]
²https://eclipseide.org/
³https://code.visualstudio.com/
⁴https://socadk.github.io/design-practice-repository/activities/DPR-StorySplitting.html
⁵https://contextmapper.org/docs/architectural-refactorings/

Page 1 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 1.2. Motivation

contributors and the difficulties of keeping up with Eclipse releases. As of February
2024, Xtext is still being maintained; however, there is no indication that the situation
has changed much.

1.1.2. Language Server Protocol
The purpose of LSP [5] is to enable language servers to integrate with different
development tools without having to consider their implementation specifics. LSP
defines a protocol for development tools to communicate with language servers via
JSON-RPC (JavaScript Object Notation - Remote Procedure Call)¹. When interacting
with a language file in a development tool, the tool sends a request to the language
server, which then replies with the information required for the tool to offer editor
support. Figure 3 shows an example of how such an interaction could look like.

Figure 3: Example sequence between a language server and a development tool [6]

Supported language features are grouped into capabilities. Not every language server
and development tool supports the same capabilities. During initialisation, the
supported capabilities are negotiated. This capability negotiation allows language
servers to be reused, but it also means that the editing experience for a language can
differ from tool to tool.

1.2. Motivation
According to the 2024 StackOverflow developer survey [7], VSCode is used by 73.6%,
IntelliJ by 26.8%, and Eclipse by 9.4% of developers. Currently, Context Mapper offers
plugins for Eclipse and VSCode, so developers using IntelliJ either do not use Context
Mapper or have to use a second IDE. This situation is inconvenient for IntelliJ
developers and potentially hinders the widespread use of Context Mapper. Therefore,
Context Mapper should offer an editor for IntelliJ, improving the developer’s
workflow. In light of Eclipse’s low popularity, Context Mapper’s editor support for
Eclipse might be abandoned in the future.

¹https://www.jsonrpc.org/specification

L. Streckeisen Page 2 of 92

1. Introduction Enhanced Context Mapper IDE Integration

1.3. Goals
This thesis aims to create a PoC (Proof of Concept) IntelliJ plugin for Context Mapper.
To do that, first, all available options for integrating Context Mapper’s DSL into
IntelliJ were analysed. After identifying the most suitable technology for Context
Mapper, a PoC plugin was implemented. The timeframe available for this thesis was
not sufficient to implement all features included in Context Mapper’s Eclipse plugin.
Instead, the thesis analyses possible challenges and limitations to implementing the
remaining features in a future project.

Page 3 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.1. Existing System Analysis

2. System Analysis & Requirements
To define the requirements of this thesis, an inventory of Context Mapper’s current
features was made, which can be found in Section 2.1. Section 2.2 provides a more
detailed description of the Context Mapper features selected for implementation in the
PoC.

2.1. Existing System Analysis
The following subsections list the features available in Context Mapper [8], [9] as of
February 2025. The list differentiates between supported concepts in the CML
grammar and available editor features.

2.1.1. Context Mapper DSL
The CML supports concepts from DDD, VDAD (Value-Driven Analysis & Design),
requirement analysis as well as application and process layers:
• Context Map: Definition of relationships between Bounded Contexts
• Bounded Context: Definition of Bounded Contexts
• Bounded Context Relationships: Definition of Bounded Context relationships,

including Partnership, Shared Kernel, Customer/Supplier, Conformist, Open Host
Service, Anticorruption Layer and Published Language

• Domain & Subdomain: Definition of Domains and Subdomains
• Tactic DDD Modelling: Definition of Domain Models using tactic DDD patterns,

including Aggregate, Entity, Value Objects, Domain Elements, Commands, Services
and Repositories

• Application & Process Layer: Definition of Application Layers, including process
flows with Event and Command events

• User Requirements: Definition of Use Cases and User Stories
• Stakeholder (VDAD): Definition of project stakeholders
• Value Register (VDAD): Definition of stakeholder values

The CML is contained in .cml files, in which elements for the concepts above can be
declared. CML also supports cross-references between files via import statements.

ContextMap DDDSampleMap {
 contains CargoBookingContext
 contains VoyagePlanningContext
 contains LocationContext

 CargoBookingContext [SK]<->[SK] VoyagePlanningContext

 CargoBookingContext [D]<-[U,OHS,PL] LocationContext

 VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

}
BoundedContext CargoBookingContext
BoundedContext VoyagePlanningContext
BoundedContext LocationContext

Listing 1: Example of a Context Map modelled in the CML

Listing 1 gives an example of a Context Map defined in the CML. The Context Map
shown defines relationships with three Bounded Contexts using Shared-Kernel and

L. Streckeisen Page 4 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

Upstream-Downstream relationships with the Open Host Service and Published
Language pattern.

2.1.2. Use Cases
To give an overview of all features included in the current version of Context Mapper,
all Use Cases were collected and displayed in Figure 4 and Figure 5. The Use Cases
relevant to the PoC are displayed in Figure 4.

In previous work [1], three actors were identified for Context Mapper:
• Business Analyst / Domain Expert
• Software Engineer
• Software Architect

Since the DSL already exists and the thesis does not aim to change the available
concepts, the actors are merged into one actor: Context Mapper User.

Figure 4: Context Mapper Use Cases (Part 1)

Page 5 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

Figure 5: Context Mapper Use Cases (Part 2)

2.2. Requirements
The Use Cases from Figure 4 are documented as functional requirements for the PoC
in Section 2.2.1. Additional non-functional requirements were defined and
documented in Section 2.2.2.

2.2.1. Functional Requirements
Table 1 contains an overview of all the defined requirements, including their priority.
More detailed requirement descriptions following the casual description format
defined by Larman [10] can be found below.

L. Streckeisen Page 6 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

Key Summary Priority
FR 1.1 Syntax highlighting - Visual distinction of CML keywords and

syntax errors
High

FR 1.2 Hyperlinking - Navigation from a CML element usage to its
definitions

High

FR 1.3 Occurrence highlighting - Occurrences of a selected CML
element are highlighted in the same file

High

FR 1.4 Autocomplete - IDE suggests CML elements to complete
existing fragments

High

FR 1.5 Code folding - Expanding and collapsing CML code blocks Medium
FR 1.6 Keyword tooltips - Hover tooltip for CML keyword usages Medium
FR 1.7 Structure outline - Concise overview of CML element

definitions in a file
Medium

FR 1.8 Find usages - List of all usages of a CML element in the project Medium
FR 1.9 Document formatting - “Reformat Code” action formats CML

file
Medium

FR 2.1 Missing Bounded Context quick fix - Inline suggestion to create
a Bounded Context if it is not defined yet

Medium

FR 3.1 Generate a visual Context Map Medium
FR 1.10 Definition tooltips - Tooltip for CML element usages Low
FR 4.1 Generate PlantUML diagrams Low

Table 1: Functional Requirements for IntelliJ plugin PoC

FR 1.1 - Syntax Highlighting

Primary Actor Context Mapper User
Goal Ensure users can visually distinguish CML keywords and

comments from element names.
Main Scenario
The IntelliJ CML editor distinguishes in colour between CML keywords, such as
BoundedContext, and the name of a Bounded Context. The used colours follow the
IntelliJ colour schemes, i.e. Dark, Light, etc.

FR 1.2 - Hyperlinking

Primary Actor Context Mapper User
Goal Users can easily navigate from a CML element usage to its

definition.
Main Scenario
A Ctrl-/Cmd-Click with the mouse on the usage of a CML element, such as the
name of a Bounded Context, should navigate the plugin user to the definition of that
element in its CML file.

Page 7 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

FR 1.3 - Occurrence Highlighting

Primary Actor Context Mapper User
Goal Users can visually detect other usages of the selected CML

element.
Main Scenario
If the user places the caret within the name of a CML element, such as the name of a
Bounded Context, the CML editor should highlight all other usages of that CML
element within the same file.

FR 1.4 - Autocomplete

Primary Actor Context Mapper User
Goal The IDE makes suggestions while the user is typing.
Main Scenario
The CML editor automatically makes suggestions based on the already given
structure. For example, if the user starts typing “Bou” on the top level of a CML file,
the editor automatically suggests the keyword “BoundedContext.”
Extensions
The editor also suggests, e.g. names of defined Bounded Contexts when defining
Context Map relationships.

FR 1.5 - Code Folding

Primary Actor Context Mapper User
Goal Users can collapse and expand CML blocks.
Main Scenario
The IntelliJ CML editor recognizes definition blocks, for example the Bounded
Context in Listing 2, and allows the user to collapse and expand these definition
blocks.

BoundedContext LanguageCore {
 domainVisionStatement "Provides the Context Mapper DSL (CML) modelling
language to express architectures based on Strategic Domain-driven
Design (DDD) patterns."

 Aggregate StrategicDesign
 Aggregate TacticDesign
}

Listing 2: CML definition block example [11]

FR 1.6 - Keyword Tooltip

Primary Actor Context Mapper User
Goal Users can learn about DDD concepts while editing CML files.
Main Scenario
When moving the mouse cursor over a CML keyword, a brief description of that
keyword should be displayed as tooltip documentation.

L. Streckeisen Page 8 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

FR 1.7 - Structure Outline

Primary Actor Context Mapper User
Goal Users can see the structure of their CML files at one glance.
Main Scenario
The IntelliJ structure tool window should outline the structure of a CML file. The
breadcrumbs of the IntelliJ structure toolbar should also display the path from the
document root to the current caret position in the file.

FR 1.8 - Find Usages

Primary Actor Context Mapper User
Goal Users can easily find usages of their CML definitions.
Main Scenario
Both a Ctrl-/Cmd-Click with the mouse on a CML definition name and the “Find
Usages” action, report all usages of that CML definition.

FR 1.9 - Document Formatting

Primary Actor Context Mapper User
Goal Users can easily reformat their CML files.
Main Scenario
The “Reformat Code” action ensures proper indentation and removes syntactically
irrelevant whitespaces from a CML file.

FR 1.10 - Definition Tooltip

Primary Actor Context Mapper User
Goal Users can see descriptions of the used CML element.
Main Scenario
CML definitions can be documented using comments, as shown in Listing 3. The
comment text preceding a CML element should be displayed in a hover tooltip when
hovering the mouse cursor over the usage of that element.

...

/* The original booking application context */
BoundedContext CargoBookingContext

...

Listing 3: CML definitions with documentation [11]

Page 9 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

FR 2.1 - Missing Bounded Context Quick Fix

Primary Actor Context Mapper User
Goal Users can easily create a missing Bounded Context.
Main Scenario
If a Bounded Context is used in a Context Map, but its definition is missing, the
CML editor provides a quick fix for creating the definition.

FR 3.1 - Generate a Visual Context Map

Primary Actor Context Mapper User
Goal Users can create a visual representation of their CML Context

Map.
Main Scenario
The context menu of a CML file displays the option “Generate Visual Context Map”.
If the user clicks on the menu item, the editor gives the user a choice of output
format (png, svg, or dot). After the selection, the plugin generates the visual Context
Map using graphviz and stores the output file in a src-gen folder in the project
root.

FR 4.1 - Generate PlantUML Diagrams

Primary Actor Context Mapper User
Goal Users can generate PlantUML diagrams from their CML

definitions.
Main Scenario
The option “Generate PlantUML Diagrams” is displayed in the context menu of a
CML file. If the user clicks on the menu item, the plugin collects all CML definitions
of the current file and generates the following diagram types:
1. Use Case Diagram
2. Component Diagram
3. Class Diagram
4. State Diagram
5. Stakeholder Map
6. Value Impact Map

The generated files are stored in the output folder src-gen in the project root.

2.2.2. Non-Functional Requirements
The NFR (Non-Functional Requirement)s below concern the plugin itself or are cross-
cutting and therefore concern all Use Cases. The ISO-25010 [12] standard was used for
classification.

Table 2 overviews all defined NFRs.

L. Streckeisen Page 10 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

ID Summary
NFR 1 Minimise duplicated code between IntelliJ and VSCode implementations
NFR 2 Plugin stability
NFR 3 CML editor efficiency
NFR 4 PlantUML diagram generation efficiency
NFR 5 Extensibility for additional generators
NFR 6 Code quality
NFR 7 Separation of concerns
NFR 8 IntelliJ compatibility
NFR 9 Licence compatibility
NFR 10 IntelliJ best practices

Table 2: Overview of project NFRs

NFR 1: Reusability - Minimise duplicated code between IntelliJ and VSCode
implementations
Both the VSCode and IntelliJ plugins will offer the same features. While the
implementations cater to the respective IDE platform, the core logic stays the same
and should be reused if possible.

Verification
Review of extension point classes
Acceptance Criteria
Classes implementing IntelliJ extension points do not contain implementation logic
and use either existing Context Mapper logic or delegate to a reusable component.
Realisation
Creating adapters for existing Context Mapper logic in case it should not be directly
reusable. Discussion of potentially necessary changes to Context Mapper to improve
reusability. Separation of IntelliJ specific code and feature logic where using the
existing implementation was not possible, so the logic may easily be extracted/
replaced later.

NFR 2: Reliability - Plugin stability
The IntelliJ plugin should not terminate unexpectedly, e.g. if graphviz is not installed
and the user wants to generate a visual Context Map

Verification
Unit and component tests
Acceptance Criteria
Unit and component tests for error cases pass.
Realisation
Proper error handling, e.g. checking if graphviz is available before generating visual
context maps.

Page 11 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

NFR 3: Performance Efficiency - CML editor
The editor must remain responsive during normal editing activities, such as typing.

Verification
Informal user test with the thesis advisor
Acceptance Criteria
No reports of editor freezes or lags.
Realisation
Avoiding synchronised, performance-intensive actions in editor functions.

NFR 4: Performance Efficiency - PlantUML diagram generation
The generation of the PlantUML component diagram for the stage 3 DDD-Sample
from the context-mapper-examples repository¹, is completed within 0.5 seconds.

Verification
Performance Test
Acceptance Criteria
Performance measurement of the PlantUML component diagram generation
completes within 500ms.
Realisation
Avoiding costly CML model conversions in the generator.

NFR 5: Modifiability - Extensibility for additional generators
The PoC plugin can easily be extended with more generators.

Verification
Creation of a dummy generator
Acceptance Criteria
A new generator can be added by using one extension point.
Realisation
Generators implement the same interface and are dynamically loaded by the plugin.

¹https://github.com/ContextMapper/context-mapper-examples/blob/master/src/main/cml/ddd-
sample/DDD-Sample-Stage-3.cml

L. Streckeisen Page 12 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

NFR 6: Maintainability - Code quality
The plugin code passes linting & static code analysis.

Verification
Code linting with KtLint¹ & code analysis in CI (Continuous Integration) pipeline
with JetBrains Qodana²
Acceptance Criteria
KtLint and Qodana report no problems or warnings.
Realisation
Following coding best practices & implementation of Qodana suggestions.

NFR 7: Modularity - Separation of concerns
Plugin code is structured into feature-based packages to improve code discoverability.
Cross-package dependencies are only allowed for shared helper/utility classes in a
utils package.

Verification
Automated structure checks with ArchUnit
Acceptance Criteria
ArchUnit tests pass.
Realisation
Strictly separate features from each other. Move shared code to helper classes.

NFR 8: Installability - IntelliJ compatibility
The plugin can be installed in the Community and Ultimate versions of IntelliJ,
starting from version 2024.3.

Verification
Manual installation test with the final PoC plugin
Acceptance Criteria
Successful installation of the PoC plugin in the mentioned IntelliJ versions.
Realisation
Avoiding IntelliJ features only available in the Ultimate version of IntelliJ or features
only available in most recent IntelliJ versions.

¹https://github.com/pinterest/ktlint
²https://www.jetbrains.com/qodana

Page 13 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

NFR 9: Legal Compliance - Licence compatibility
All used frameworks & libraries have to be compatible with the Apache 2.0 licence.

Verification
Manual dependency check
Acceptance Criteria
No dependency with a licence incompatible with Apache 2.0 (according to Apache
guidelines [13]) is found.
Realisation
Licence as a decision factor for technology decision, checking licences before using
libraries.

NFR 10: Appropriateness/Recognizability - IntelliJ best practices
Features implemented in the IntelliJ plugin should follow IntelliJ best practices.
Features included in the Context Mapper Eclipse plugin should only be rebuilt in the
same way if they fit into the IntelliJ best practices.

Verification
Informal user test with thesis advisor
Acceptance Criteria
No reports of confusion about the way a feature is visible in IntelliJ.
Realisation
Studying IntelliJ documentation and tips.

L. Streckeisen Page 14 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

3. Technology Exploration
This section explores the different technological options to create a DSL and to
integrate a DSL in IntelliJ. Each option was evaluated regarding its suitability for
Context Mapper. The best-suited option for the IntelliJ integration was then used to
implement the PoC.

Descriptions of the tests performed with the evaluated technologies can be found in
Appendix B.

3.1. Language Workbenches
DSL workbenches are tools that help developers create DSLs. More specifically, they
support modelling the language itself, provide at least one editing environment for the
language, and define its behavioural semantics [14].

This section gives an overview of such language workbenches that could be used to
replace Xtext.

3.1.1. JetBrains MPS
JetBrains MPS (Meta Programming System) [15] is a language workbench to create
DSLs and comes with its own IDE. MPS works differently than most language
workbenches. While a DSL creator usually defines a grammar in “Backus-Naur form”¹
or a similar notation, this is not the case with MPS. Instead, JetBrains created its own
DSL to define language structure, editor views, constraints, quick fixes, etc.

MPS uses projectional editing [16], which is why the editing experience and the
experience of creating the DSL are different from those of other language
workbenches. Most programming languages store their code in text files. These files
are then parsed, which results in an AST (Abstract Syntax Tree). With projectional
editing, the user does not write a text file but directly modifies the AST. This allows
the editor to use graphical formats (e.g. to display mathematical equations in their
correct visual representations) or to hide unnecessary information from the user.

Languages constructed with MPS can be packaged into a plugin, which can then be
installed in the MPS IDE. The plugin can also be installed in, e.g., IntelliJ, but the “MPS
Core” plugin² is required as a dependency since IntelliJ itself is not capable of handling
projectional editing.

3.1.2. Langium
Langium [17] is a language workbench written in TypeScript and is part of the Eclipse
project. While Xtext is closely integrated with Eclipse, Langium focuses more on
VSCode, which is why TypeScript has been chosen as its implementation language.
The integration of a DSL into IDEs is achieved via LSP, which means that other IDEs
than VSCode can be targeted. A language plugin for VSCode can be built in the same
project as the language itself. Plugins for other IDEs require a separate project.

¹https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
²https://plugins.jetbrains.com/plugin/7075-mps-core

Page 15 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.2. IntelliJ Integration Options

Langium itself does not provide a direct integration into IntelliJ. It would require
combining it with one of the LSP integration options.

3.1.3. Rascal
Rascal [18] is a meta-programming language that allows the creation of DSLs. Its
features include the definition of language syntax, parser generators, and hooks for
IDE integration. The documentation mentions IDE integration into Eclipse via the
Eclipse Meta-Tooling Platform and VSCode via LSP.

Since Rascal does not integrate into IntelliJ by itself, one of the described LSP options
would also have to be used.

3.1.4. Spoofax
Spoofax [19] is a language workbench that allows developers to create their languages
using meta-languages. Using the “Syntax Definition Formalism”¹, developers can
define their language’s syntax, and Spoofax generates parsers, type checkers,
compilers, etc., for the language. Spoofax comes with an Eclipse extension and can
generate Eclipse editors for defined languages.

Attempts to set up a sample project with Spoofax proved cumbersome, and error
messages suggested that Spoofax’s technology stack was outdated (Java 8). It seems
that a new version of Spoofax is under development [20], which should also support
IntelliJ plugins in the future. However, since the current stable version of Spoofax only
supports the creation of Eclipse editor extensions and the documentation does not
mention the generation of a language server, Spoofax was not considered for the PoC
in this thesis.

3.1.5. Others
There are more language workbenches out there than the ones introduced above. Two
worth mentioning are MetaEdit+² and MontiCore³. Both do not offer the possibility of
IDE integrations for the created languages, which is why they are not included in the
evaluation.

While researching language workbench, other names of language workbenches
popped up, but these either have not reached a mature level or have been abandoned.

3.2. IntelliJ Integration Options
There are two possible ways to create a plugin for custom language support in IntelliJ:
LSP integration or native development. Both integration styles are further explained
below.

3.2.1. LSP Integration
As described in Section 1.1.2, LSP is a protocol for language servers and development
environments to communicate with each other. To integrate a language server in
IntelliJ, there are two possible options:

¹https://spoofax.dev/references/sdf3/
²https://www.metacase.com/
³https://monticore.github.io/monticore/

L. Streckeisen Page 16 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

• IntelliJ LSP Support
• External Plugins like LSP4IJ

The capabilities of these two options are further explained below.

Language servers cannot fully replace a native IDE integration. Some native
customisation is still required, e.g., for the Context Mapper generators.

IntelliJ LSP Support
JetBrains added LSP support for IntelliJ Ultimate as of version 2023.2 [21]. The
Community version of IntelliJ does not include LSP support, so plugins using this
integration style cannot be installed in IntelliJ Community IDEs.

The 2024.3 Ultimate version supports the most important LSP features. They include:
• Go-To declaration
• Code completion
• Quick fixes
• Error & warning highlighting
• Quick (hover) documentation
• Code formatting
• Semantic highlighting
• Find usages

Plugins can bundle a binary for the language server or let the user define the language
server location.

LSP4IJ
LSP4IJ [22] is an IntelliJ plugin developed by the Red Hat developer community. It
allows users or developers to configure language servers for specific languages/file
types. Users can configure language servers via the UI, and developers can build their
own plugins based on the LSP4IJ extension points and API (Application Programming
Interface). LSP4IJ’s advantage over IntelliJ’s native LSP support is that the plugin is
also available for IntelliJ Community versions.

LSP4IJ 0.11.0 does not yet support all LSP features, but it does support the most
important ones.

3.2.2. Native IntelliJ Integration
Integrating a DSL natively into IntelliJ is an approach many DSL plugins like
Structurizr¹ use. A native integration requires a lexer, a parser and an implementation
of PSI (Program Structure Interface) classes [21]. The PSI is a layer in the IntelliJ
platform, responsible for parsing files and creating code models. Many IntelliJ editor
features are built upon the PSI.

JetBrains offers various extension points through which syntax highlighting,
autocomplete, custom actions, etc., can be implemented. While an LSP integration

¹https://plugins.jetbrains.com/plugin/20606-structurizr-dsl-language-support

Page 17 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Technology Decision

adds many editor features, a native integration allows the implementation of a broader
range of IDE features.

The required lexer and parser can either be written manually or generated by a parser
generator. The easiest way to generate a lexer and parser is to use JFlex¹ and
GrammarKit² since the generated parser integrates into IntelliJ’s PSI. Other parser
generators, like ANTLR³, can also be used, but these parsers must be manually
adapted to the PSI to be useful.

3.3. Technology Decision
The technology decision is based on a utility analysis [23]. In a utility analysis, the
criteria that influence the decision must be defined first. Then, these criteria are
weighted, and scoring scales are defined for each criterion. Finally, each option is
evaluated according to the criteria and scoring scale. The weighted scores are summed
up per option, allowing the quantification of each option’s utility and making it
possible to compare options. The option with the highest total score provides the best
utility.

The defined criteria can be found in Section 3.3.1. The evaluation of language
workbenches and integration options is summarised in Section 3.3.2 and Section 3.3.3.
For the detailed evaluation with reasoning for the given scores, see Appendix C.
Finally, the resulting scores, including the technology decision, can be found in
Section 3.3.4.

¹https://www.jflex.de/
²https://plugins.jetbrains.com/plugin/6606-grammar-kit
³https://www.antlr.org/

L. Streckeisen Page 18 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

3.3.1. Criteria
The criteria in Table 3 have been set in collaboration with the thesis advisor. Each
criterion includes a brief statement clarifying its goal, weight, and scoring system.

Criterion Goal Weight Scoring
Future Proofing The technology is well

maintained and will not
be abandoned anytime
soon

3 3 = Large group of
maintainers (30+ active
maintainers) or
maintained by a (mid-size
to large) company, future
of technology is secured
2 = Small group of
maintainers (4-30 active
maintainers) or future
support of the technology
is unknown
1 = Less than four active
maintainers or
technology is/will be
abandoned

Ease of use The technology has a low
learning curve, is not
overly complicated and
easy to use

2 3 = Technology concepts
are straightforward and
easy to understand, and
its usage is
straightforward
2 = Some of the involved
concepts require a more
profound understanding,
and its usage is
straightforward in most
cases
1 = The technology
requires a deep
understanding of all
involved concepts, and its
usage is complicated in
most cases

Page 19 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Technology Decision

Criterion Goal Weight Scoring
Documentation The technology provides

a well-maintained
documentation

2 3 = The documentation is
easy to read, complete
and up-to-date
2 = The documentation
has some gaps, is not
clear in some details, or
some parts have not been
updated in a while
1 = The documentation is
very minimalistic,
complicated or outdated

Feature Support The technology supports
features that already exist
in the Eclipse plugin of
the Context Mapper
(unless there is no
equivalent of that feature
in IntelliJ)

3 3 = The technology
supports all major and
minor features of Context
Mapper
2 = The technology
supports all major
features of Context
Mapper; some minor
features are not
supported
1 = The technology does
not support a major
feature of Context
Mapper

Licence The technology licence is
compatible with the
Apache 2.0 licence of
Context Mapper.

3 3 = Licence is compatible
without additional
restrictions
2 = Licence is compatible
with some additional
restrictions
1 = Licence is not
compatible

IDE Compatibility The technology supports
both IntelliJ and VSCode

3 3 = Support for IntelliJ
(Ultimate and
Community) and VSCode
2 = Support for IntelliJ
(Ultimate only) and
VSCode
1 = Support only for
IntelliJ (Ultimate or
Community)

L. Streckeisen Page 20 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

Criterion Goal Weight Scoring
Reusability Existing Context Mapper

logic can be reused
2 3 = Most logic can be

reused
2 = Partial rewrites are
necessary
1 = Full rewrite necessary

Table 3: Technology evaluation criteria

3.3.2. Workbench Evaluation
The following summarises the evaluation of the language workbenches JetBrains MPS,
Langium and Rascal. For the conclusion, see Section 3.3.4.

JetBrains MPS
JetBrains MPS is a future-proof option by JetBrains. Its projectional editor provides
interesting possibilities but is incompatible with the current version of Context
Mapper. MPS would require a complete rewrite and could only be used in the MPS
IDE and IntelliJ (though 2024 versions of IntelliJ do not support MPS yet).

With a guided tutorial (~2 hours), a sample language (chemmastery) could be extended
within a few minutes. The key concepts became clear after working through the
tutorial, but understanding the MPS DSL beyond the tutorial scope requires much
more time.

Langium
Written in TypeScript, using Langium would require a complete rewrite of Context
Mapper. Langium itself is well-documented and easy to understand. By leveraging
LSP, the resulting language server can be used in various IDEs. Langium is actively
maintained and promotes a clear feature-based structure.

Following the tutorial in the documentation [17], allowed the creation of a VSCode
plugin and language server for a sample language within 30 minutes.

Rascal
Since there is no tutorial on IDE integration in the documentation [18], and IDE
integration requires knowledge of Rascal’s LSP package, a Rascal sample language
could not be tested in an IDE. Rascal as a language is well documented and similar to
Haskell’s syntax. Using Rascal would require a complete rewrite of Context Mapper.

3.3.3. Integration Option Evaluation
The evaluation of LSP integration (IntelliJ LSP support and LSP4IJ) and the native
integration is outlined below. For the conclusion, see Section 3.3.4.

IntelliJ LSP
The documentation for IntelliJ’s LSP support is up-to-date but limited. Further
information has to be obtained from existing plugins using LSP support, e.g. the Vue.js

Page 21 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Technology Decision

plugin¹. While only available for Ultimate versions of IntelliJ, the language server can
be reused.

In a brief test with the existing Xtext CML language server, some features like the
keyword tooltip documentation worked instantly, while other LSP features like
semantic tokens did not work yet.

LSP4IJ
LSP4IJ supports the majority of LSP capabilities and works in both IntelliJ Community
and Ultimate versions. The plugin is actively maintained and receives frequent
updates. It would allow the reuse of the language server, as with IntelliJ’s LSP support.

A brief test with the LSP4IJ configuration UI delivered the same results as the test
with IntelliJ’s built-in LSP support.

Native Integration
Integrating CML natively into IntelliJ would offer the broadest range of editor features
but also means that other IDE plugins have to be developed separately. The
documentation [21] is extensive but not complete. Some editor features require a
deeper understanding of PSI and IntelliJ’s extension points.

Following the tutorial on custom language plugins in the documentation made it
possible to create a plugin for a sample language within a day.

The native integration approach was evaluated using JFlex and Grammar-Kit as lexer
and parser generators. ANTLR was briefly considered as an option to retain a
common grammar base between a VSCode and IntelliJ plugin, but has not been
evaluated further as integration of the parser into the PSI is crucial and not provided
for ANTLR.

3.3.4. Result
Before discussing the evaluation’s results, it is important to highlight that the
combination of the best-suited language workbench and the most suitable integration
option is not always compatible. For example, combining JetBrains MPS with an
integration option does not work as the MPS has its own IDE and its own way of
creating plugins. Conversely, a native integration does not require a language
workbench at all. Workbenches like Langium and Rascal can be combined with one of
the LSP-based integration options but are not compatible with the native integration
option.

Table 4 provides an overview of the evaluation results, which contain the weighted
score totals for the language workbenches and IntelliJ integration options.

¹https://github.com/JetBrains/intellij-plugins/tree/master/vuejs

L. Streckeisen Page 22 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

Criterion Language Workbenches Integration Options
MPS Langium Rascal IntelliJ LSP LSP4IJ Native

Future Proofing 9 6 6 9 6 9
Ease of use 2 4 4 4 4 4
Documentation 4 6 2 4 6 4
Feature Support 3 9 6 6 9 9
Licence 9 9 9 9 6 9
IDE Compatibility 3 9 9 6 9 3
Reusability 2 2 2 6 6 4
Total 32 45 38 44 46 42

Table 4: Utility analysis results

For the integration option, the highest utility is achieved through an LSP-based
integration with LSP4IJ. Considering the broader context of Context Mapper, this
result is logical. A language server ensures that editor features can be reused in
different IDEs, giving Context Mapper the flexibility to target different IDEs in the
future. At this time, LSP4IJ supports more LSP capabilities than IntelliJ’s LSP support
and is available in the IntelliJ Community version. While a native integration offers
the broadest range of supported features, it requires maintaining separate codebases
for every IDE plugin. It would theoretically be possible to have a shared grammar
between the IDE plugins, for example, using ANTLR. However, integrating such a
generated parser into the IntelliJ PSI requires considerable effort. Therefore, the PoC
will use LSP4IJ as an integration option.

For the workbenches, JetBrains MPS is an intriguing option, but its incompatibility
with existing CML files speaks against its use for Context Mapper. Langium made a
more mature impression than Rascal. It provides better documentation on how to
create a language server and has more active maintainers. That makes Langium the
most suitable language workbench for Context Mapper.

The complete reasoning behind the evaluation results can be found in Appendix C.

LSP4IJ requires a language server to provide editor services for the CML. The existing
Xtext language server or a newly created one could be used. The adoption of Langium
was initially postponed to a later project, and the reuse of the existing Xtext language
server was preferred. However, it was discovered that customisation to the Xtext
language server would have been necessary. Since Xtext is not considered future-
proof, a new Langium language server was created as well.

The decisions made in this section qualify as architectural decisions. Detailed ADR
(Architectural Decision Record)s can be found in Appendix D.

Page 23 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

4. Proof of Concept Implementation
This section describes essential aspects, like architecture and necessary steps to
implement features, as well as challenges encountered during the PoC
implementation, such as issues with the CML grammar.

4.1. Architecture
The PoC architecture is based on analysing architecturally significant requirements
and architectural decisions. The resulting architecture is documented using a Context
Map and the C4¹ model.

4.1.1. Architecturally Significant Requirements
To find architectural requirements, the requirements from Section 2.2 were evaluated
regarding their architectural significance, using the ASR (Architecturally Significant
Requirement)-Test [24] method. The ASR Test entails seven criteria that indicate that a
requirement is significant to a system’s architecture. A requirement is architecturally
significant if the requirement:
1. …is associated with high business value
2. …is a concern of an important stakeholder
3. …includes QoS (Qualify-of-Service) characteristics
4. …causes new or deals with existing unpredictable/unreliable external dependencies
5. …has a cross-cutting nature
6. …has a first-of-a-kind character
7. …has been troublesome in a previous project

Table 5 shows which of the requirements qualify as architecturally significant.

Requirement ASR-Test Criteria Reasoning
NFR1: Minimise
duplicated code between
IntelliJ and VSCode
implementations

• Concern of a
stakeholder

• Cross-Cutting nature

Code reusability is an
essential concern of the
Context Mapper
maintainer. Reusability
affects the VSCode and
IntelliJ plugins.

NFR2: Plugin stability • High business value
• Cross-Cutting nature

Prevention of crashes, etc.,
affects all plugin
components. Plugin
stability increases user
satisfaction.

¹https://c4model.com/

L. Streckeisen Page 24 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Requirement ASR-Test Criteria Reasoning
NFR3: Editor performance • High business value

• Quality-of-Service
characteristic

• Cross-Cutting nature

Editor performance
directly affects the editing
experience. Low response
times for syntax
highlighting,
autocomplete, etc., are
important to make the
editor convenient and,
therefore, increase user
satisfaction. It affects all
editor features.

NFR5: Extensibility for
additional generators

• Concern of stakeholder Making it easy to add new
generators increases the
maintainability of the
plugin. Design
considerations are
necessary to achieve that.

NFR7: Separation of
concerns

• Cross-Cutting nature
• Concern of stakeholder

Separation of concerns
impacts the scope of
plugin components. By
clearly separating feature
logic, it becomes easier to
replace or reuse code at a
later point.

Table 5: Architectural Significance of non-functional requirements

4.1.2. Strategic Design
In DDD, bounded contexts describe parts of a system with their own Domain Model
and maybe even a different technology stack [25]. There are two bounded contexts in
this project: The language server and the IntelliJ plugin.

Page 25 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

Figure 6: Context map of the project

Figure 6 shows the contexts in an upstream-downstream relationship, where the
language server is the upstream, and the IntelliJ plugin is the downstream context.
The language server implements the LSP as the Published Language. Development
environments (clients) can freely access the services from the language server, making
it an Open Host Service.

The following technical architecture description models the language server as the
software system “Context Mapper Language Server” and the IntelliJ plugin context as
the container “Context Mapper Plugin”.

4.1.3. C4 Model
The C4 model [26] defines four detail levels to describe software architecture:
(System) Context, Containers, Components, and Code.

Software systems The definition of a software system is often different from
organisation to organisation. It can be defined as a team boundary or as a
collection of software contributing to the same goal.

Containers A container represents a runtime boundary around code. Containers are
individually deployable units of code.

Components Components are part of a container and group related functionality.
Code On the code level, the C4 model refers to UML (Unified Modelling Language)

diagrams.

Software System
This thesis defines the term software system as a deployable (group of) container(s)
that serve a common goal. Since the IntelliJ plugin cannot run independently, it does
not qualify as a software system. The software system of the plugin is IntelliJ itself.
However, since JetBrains maintain IntelliJ, it is not described in detail.

The language server runs independently in its own process and can be used by more
IDEs than just IntelliJ, which is why it is considered a software system. Figure 7 shows
the interactions between the software systems.

L. Streckeisen Page 26 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Figure 7: C4 system context diagram of the Context Mapper IntelliJ plugin

Containers
Figure 8 shows the containers involved in this PoC. The diagram shows the
perspective of IntelliJ as the software system, which is why the language server
(another software system) is drawn outside the system boundary.

Figure 8: C4 container diagram of the Context Mapper IntelliJ plugin

Page 27 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

The three main containers are:
Context Mapper plugin The IntelliJ plugin configures LSP4IJ and adds additional

features to the IntelliJ editor.
LSP4IJ plugin The LSP4IJ plugin is in charge of managing language servers and

communicating with them. To do that, LSP4IJ is deeply integrated into the IntelliJ
editor features.

Context Mapper language server A Langium language server that provides
information on CML files to the LSP4IJ plugin. The language server is a one-
container system, which is why there are no containers displayed in the diagram
above.

This setup keeps the IntelliJ plugin lightweight, reducing the required maintenance
work on the plugin.

Language Server Components
The components in the language server, displayed in Figure 9, correspond to the LSP
capabilities that are either not supported out-of-the-box or required customisation.

L. Streckeisen Page 28 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Figure 9: C4 component diagram of the Context Mapper Language Server

The language server is structured according to Langium’s component-based
architecture. At its core is the server component, which is responsible for interacting
with the development environment. It receives requests via LSP and forwards the
request to the responsible feature component, such as the semantic token provider.
The feature components return their response to the server component, which then
sends the LSP response to the development environment. Each feature component’s
logic is encapsulated behind one entry-point class registered with the Langium server
module. This design promotes a clear separation of feature implementations,
improving their maintainability.

Page 29 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

Plugin Components
The IntelliJ plugin does not contain much implementation logic, as shown in
Figure 10.

Figure 10: C4 component diagram of the Context Mapper Plugin

The Context Mapper language config defines CML as an editor language,
associating .cml files with it. The LSP4IJ configuration component defines the
language server in LSP4IJ and configures individual editor features. Generators are
implemented as editor actions, which trigger an LSP command in LSP4IJ.

Code
Details on the implementation of the plugin and the language server can be found in
Appendix E.

4.1.4. Deployment
The IntelliJ plugin and the language server are bundled and deployed as a single
package, as illustrated in Figure 11.

L. Streckeisen Page 30 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Figure 11: Deployment diagram of the Context Mapper IntelliJ plugin

This setup ensures that the plugin can reliably access and launch the language server,
eliminating the need to check for an external dependency. Bundling the language
server also improves the plugin usability, as users do not need to install an additional
package for the language server.

4.2. Context Mapper Grammar Changes
Since creating a new language server was not part of the original scope of this thesis
and the project has a fixed timeframe, the CML grammar was reduced by omitting
tactic DDD and the import grammar elements.

While Langium’s grammar syntax is similar to that of Xtext, there are a few key
differences. TypeFox provides a tool¹ to convert Xtext grammars to Langium.
However, the tool produced overly complex enum definitions and generated a
grammar that was not valid in Langium.

Instead, the grammar was converted manually. The encountered grammar issues are
explained in detail below.

4.2.1. Comments
The Xtext CML grammar allows comments to appear anywhere in a .cml file.
However, comments are also an explicit part of the CML grammar, an example of
which can be seen in Listing 4.

¹https://github.com/TypeFox/xtext2langium

Page 31 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.2. Context Mapper Grammar Changes

ContextMappingModel:
 (
 (topComment=SL_COMMENT | topComment=ML_COMMENT)? &
 ...
 (boundedContexts += BoundedContext)* &
 ...
)
;

BoundedContext:
 (comment=ML_COMMENT | comment=SL_COMMENT)?
 ...
;

Listing 4: Ambiguous comment grammar rules in CML Xtext grammar [8]

These rules are ambiguous for Chevrotain¹, the parser used by Langium. A top-level
comment can be a ContextMappingModel topComment, a BoundedContext comment,
or a regular comment. The ANTLR parser used by Xtext could handle this ambiguity
by backtracking if a rule did not match, but Chevrotain is stricter in that regard and
requires clear grammar rules.

As a consequence of this issue, comments were excluded entirely from the grammar
rules and converted to hidden terminal rules, as shown in Listing 5.

hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;
hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

Listing 5: Langium grammar comment terminal rules

Making the comment terminal rules hidden still allows users to add comments to their
CML files, but the parser will ignore them so that they will not appear in the AST
nodes.

4.2.2. Optional Elements in Unordered Groups
The CML Xtext grammar heavily relies on optional elements in unordered groups.
Listing 6 shows an example of this. The * or ? cardinalities make grammar elements
optional. The & operator chains the elements together, indicating to the parser that the
defined elements can appear in any order.

ContextMappingModel:
 (
 (topComment=SL_COMMENT | topComment=ML_COMMENT)? &
 (imports+=Import)* &
 (map = ContextMap)? &
 (boundedContexts += BoundedContext)* &
 (domains += Domain)* &
 (userRequirements += UserRequirement)* &
 (stakeholders += Stakeholders)* &
 (valueRegisters += ValueRegister)*
)
;

Listing 6: Use of optional elements in an unordered group in the CML Xtext grammar
[8]

¹https://chevrotain.io

L. Streckeisen Page 32 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Chevrotain does not support combining optional elements and unordered groups in
this way. According to Mark Sujew, a maintainer of Langium, there are two possible
workarounds to this issue [27]:

1. Grammar elements in unordered groups are optional by default, so removing the ?
cardinality still has the desired effect, and the parser accepts the rule.

2. The second recommended workaround is to use a rule in the style of (A | B | C)*.
This rule allows zero or more repetitions of the grammar elements A, B and C in
any order. A semantic validator that enforces non-repetition needs to be registered
in the language server to enforce a maximum of one repetition per grammar
element.

The second workaround also allows one to define clear error messages, while the first
workaround may produce cryptic error messages for invalid CML content.

An issue with unordered groups and autocomplete was also discovered. After one
attribute was set, e.g. the domainVisionStatement in a Bounded Context,
autocomplete stopped making suggestions.

For that reason, the (A | B | C)* workaround was applied. Most unordered groups
contained elements with the ? cardinality, which with this change turned from simple
properties like string to array properties, making access to these properties in the
AST inconvenient.

4.2.3. User Requirement Linking in Aggregate
The CML Aggregate structure allows four ways to specify related user requirements.
Listing 7 contains the related Xtext grammar rule. As can be seen, an Aggregate can
be related to only Use Cases or User Stories by using the useCases or userStories
keyword. It can also be related to both Use Cases and User Stories by using either the
features or userRequirements keywords.

Aggregate:
 ...
 (
 (('useCases' ('=')? userRequirements += [UseCase]) (","
userRequirements += [UseCase])*) |
 (('userStories' ('=')? userRequirements += [UserStory]) (","
userRequirements += [UserStory])*) |
 ((('features' | 'userRequirements') ('=')? userRequirements +=
[UserRequirement]) ("," userRequirements += [UserRequirement])*)
)? &
 ...
;

Listing 7: Aggregate User Requirements rule in the CML Xtext grammar [8]

In the AST, though, this separation is not relevant as all the requirements end up in
the userRequirements property. Chevrotain can handle these rules for parsing but not
for linking. User Stories specified using the userStories keyword were attempted to
be linked to a Use Case.

This issue could be resolved by separating the properties in which the UserStory,
UseCase and UserRequirement values are stored in the AST (see Listing 8). Separating

Page 33 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.3. Implemented Features

the AST properties makes it clear during linking which values should be related to
which type. This change does not have any impact on users.

Aggregate:
 ...
 (('useCases' ('=')? useCases+=[UseCase]) ("," useCases+=[UseCase])*) |
 (('userStories' ('=')? userStories+=[UserStory]) (","
userStories+=[UserStory])*) |
 ((('features' | 'userRequirements') ('=')?
userRequirements+=[UserRequirement]) (","
userRequirements+=[UserRequirement])*) |
 ...
;

Listing 8: Resolved Aggregate user requirements linking issue

4.3. Implemented Features
This section outlines the features implemented in the language server and IntelliJ
plugin as part of the PoC. The goal is to provide a concise but comprehensive picture
of the PoC’s current capabilities.

4.3.1. Semantic Validation
The grammar changes described in Section 4.2 made it necessary to add semantic
validation so that the supported CML elements are equivalent to their Xtext
implementation.

Semantic validation performs checks beyond what the parser can check based on the
language grammar. A validation registry and validator need to be created for
validations to be executed [17].

Multiple specialised validators have been created to keep the validator implementation
clean. For more details, see Appendix E.1.6.

The PoC only includes semantic validations necessary to compensate for the required
grammar changes described in Section 4.2.2. The Xtext implementation of Context
Mapper includes more validation rules that have not been migrated.

Figure 12 shows an example of a syntax error in the CML editor that was detected
through semantic validation.

Figure 12: Screenshot of an error message in the CML editor from semantic validation

4.3.2. Syntax Highlighting (FR 1.1)
Syntax Highlighting via LSP is based on so-called “semantic tokens”. A semantic token
describes an element’s position in a source file, as well as its type and modifier
(declaration, static, etc.) [5].

When an editor requests the semantic tokens for a file, Langium traverses a source
file’s AST and requests tokens for each node from the semantic token provider [17].

L. Streckeisen Page 34 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Since Langium does not provide a default implementation, a semantic token provider
had to be implemented. The created token provider delegates token requests to
specialised providers. For more details, see Appendix E.1.1.

Generating tokens for all AST nodes is not enough, though. As comments are not part
of the AST, they will not get semantic tokens created for them. So, to enable syntax
highlighting for comments, a RegEx (Regular Expression) search on the root node had
to be implemented to locate all comments and generate tokens for them.

In the IntelliJ plugin, syntax highlighting is handled by the LSP4IJ plugin. The only
customisation necessary was translating the semantic token types and modifiers to
editor text attributes. For more details, see Appendix E.2.1.

4.3.3. Hyperlinking (FR 1.2)
The navigation between a language element usage and its definition worked out of the
box. However, as shown in Figure 13, the displayed hyperlink covered the whole file
instead of just one element.

Figure 13: Hyperlinking after the initial LSP4IJ setup

The LSP4IJ plugin is responsible for displaying these hyperlinks. To resolve the issue,
a configuration change had to be applied (see Appendix E.2.1).

4.3.4. Occurrence Highlighting (FR 1.3)
Occurrence highlighting worked out of the box. Placing the cursor in a Bounded
Context name, for example, highlights all occurrences of the same Bounded Context in
the file.

No custom configuration/implementation was necessary.

Page 35 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.3. Implemented Features

4.3.5. Autocomplete (FR 1.4)
The language server provides autocomplete suggestions without any special
configuration or implementation [17]. However, the default implementation hides
non-alphabetic keywords from autocomplete suggestions [28]. For CML, this means
that Context Map relationship arrows like <-> are not automatically suggested by the
language server.

An implementation change in the language server (see Appendix E.1.3) was required
to change this behaviour.

An example for an autocomplete suggestion in the editor can be seen in Figure 14.

Figure 14: Screenshot of an autocomplete suggestion in the CML editor

4.3.6. Code Folding (FR 1.5)
Code folding required applying a configuration change in the IntelliJ plugin, see
Appendix E.2.1. However, when collapsing a code block, it was impossible to see what
CML element was hidden in the collapsed block (see Figure 15).

Figure 15: A collapsed Context Map after the initial LSP4IJ setup

By default, the language server provides folding ranges for code blocks [17]. A custom
folding range provider was implemented to improve the folding ranges so that the
first line of a block is still visible when collapsed (see Appendix E.1.4).

With invalid syntax embedded in a valid element, code folding cannot correctly
determine the folding ranges since the language server cannot parse the whole
document structure.

4.3.7. Keyword Tooltips (FR 1.6)
By default, the language server returns a JSDoc¹ comment directly preceding a
language element (if available) as tooltip documentation [17]. In Langium, these
tooltips are handled by so-called “hover providers”. Hover providers return
documentation text for any given position in a document.

A custom hover provider (see Appendix E.1.5) was implemented to extend Langium’s
default behaviour so that the keyword description is returned when a user hovers over
a CML keyword.

¹https://jsdoc.app/about-getting-started

L. Streckeisen Page 36 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Figure 16 shows the keyword tooltip for the ContextMap keyword.

Figure 16: Screenshot of a keyword tooltip

4.3.8. Structure Outline (FR 1.7)
IntelliJ’s structure view outlines the language elements in a file and relies on
document symbols provided by the language server [21]. The language server
automatically provides these symbols [17].

An adjustment in the LSP4IJ configuration was necessary for IntelliJ to display the
received document symbols (see Appendix E.2.1).

An example of how a populated structure outline can look like is shown in Figure 17.

Figure 17: Screenshot of the IntelliJ structure tool window

4.3.9. Display Usages (FR 1.8)
LSP4IJ supports displaying the usages of a language element by default (see Figure 18).
No customisation in the language server or the IntelliJ plugin was required.

Figure 18: Screenshot of the "Find Usages" action

Page 37 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.3. Implemented Features

4.3.10. Document Formatting (FR 1.9)
LSP can transmit instructions for a development environment to reformat a file
according to the rules defined in the language server [5]. Langium does not provide
formatters by default [17]. Therefore, one had to be implemented.

As with semantic tokens and validation, specialised formatter classes were created to
avoid a cluttered formatter implementation. For more details, see Appendix E.1.7.

4.3.11. Definition Tooltips (FR 1.10)
By default, the language server returns JSDoc comments preceding a language
element as its documentation text [17].

A customisation of this type of tooltips was not made, but it would be necessary to
extend this feature to regular multiline comments.

4.3.12. PlantUML Generator (FR 4.1)
The PlantUML generator in Context Mapper’s current Xtext documentation generates
different diagram types. The component diagram generation was picked for the PoC
to showcase how a generator can be implemented.

The generator’s implementation leverages the workspace/executeCommand [5] LSP
capability. For a detailed explanation of the generator implementation in the language
server, see Appendix E.1.8.

LSP4IJ supports the execution of LSP commands, but a generator “Action” had to be
created, to display the generator in IntelliJ’s editor popup menu and instruct LSP4IJ to
execute the generator command. For more details, see Appendix E.2.2.

Figure 19 shows a generated component diagram.

Figure 19: Screenshot of a generated PlantUML component diagram in IntelliJ

L. Streckeisen Page 38 of 92

5. Results Enhanced Context Mapper IDE Integration

5. Results
This section evaluates the results of the project, including a review of which of the
initially stated requirements have been implemented and what features remain
unresolved. An experience report reflects on the technology evaluation and points out
general issues encountered during the development of the PoC.

5.1. Fulfilment of Requirements
The thesis task description set the following goals that needed to be achieved:
1. Researching and analysing technical options to integrate a DSL into IntelliJ
2. A technology and architectural decision based on criteria defined in accordance

with the thesis advisor
3. A prototype plugin implementation
4. A migration path for Context Mapper features that were not implemented in the

plugin

Section 3 covers the first two goals. The prototype plugin was implemented as a PoC
and documented in Section 4. Finally, a migration path for remaining features is
outlined in Section 6.2.1. Therefore, the goals of this thesis could be achieved.

In addition to the general thesis goals, Section 2.2.1 and Section 2.2.2 defined
requirements towards the PoC. Automated tests have been implemented to verify the
correctness of the language server and plugin features. The language server includes
418, the IntelliJ plugin nine, automated tests. These tests include unit tests, component
tests and ArchUnit tests to enforce separation of concerns. Manual tests were executed
for the IntelliJ plugin (see Appendix F).

Table 6 overviews which requirements were fulfilled.

Requirement Fulfilment status Comment
FR 1.1 - Syntax highlighting Fulfilled
FR 1.2 - Hyperlinking Fulfilled
FR 1.3 - Occurrence
highlighting

Fulfilled

FR 1.4 - Autocomplete Fulfilled There are a few remaining
open issues, see Section 5.2,
but overall the requirement
was fulfilled

FR 1.5 - Code folding Fulfilled
FR 1.6 - Keyword tooltips Fulfilled
FR 1.7 - Structure outline Fulfilled
FR 1.8 - Find usages Fulfilled
FR 1.9 - Document formatting Fulfilled
FR 1.10 - Definition tooltips Partially fulfilled see Section 5.1.2
FR 2.1 - Missing Bounded
Context quick fix

Not fulfilled see Section 5.1.1

Page 39 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.1. Fulfilment of Requirements

Requirement Fulfilment status Comment
FR 3.1 - Generate visual
Context Map

Not fulfilled see Section 5.1.1

FR 4.1 - Generate PlantUML
diagrams

Partially fulfilled see Section 5.1.3

NFR 1 - Minimise duplicated
code between IntelliJ and
VSCode

Fulfilled see Section 5.1.4

NFR 2 - Plugin stability Fulfilled see Section 5.1.5
NFR 3 - CML editor efficiency Fulfilled see Section 5.1.6
NFR 4 - PlantUML diagram
generation efficiency

Fulfilled see Section 5.1.7

NFR 5 - Generator
extensibility

Fulfilled see Section 5.1.8

NFR 6 - Code quality Fulfilled see Section 5.1.9
NFR 7 - Separation of
concerns

Fulfilled see Section 5.1.10

NFR 8 - IntelliJ compatibility Fulfilled see Section 5.1.11
NFR 9 - Licence compatibility Fulfilled see Section 5.1.12
NFR 10 - IntelliJ best practices Fulfilled see Section 5.1.13

Table 6: Fulfilment status of project requirements

5.1.1. Changed project scope
When the project requirements were defined, a new language server was not planned.
The mid-project decision to create a new language server with Langium not only
reduced the CML grammar supported by the PoC but also reprioritised the planned
features. The following features were given a lower priority in favour of the PlantUML
generator feature (FR 4.1):
• FR 2.1 - Missing Bounded Context quick fix
• FR 3.1 - Generate visual Context Map

Due to time constraints, these features could not be implemented during this thesis.

5.1.2. FR 1.10 - Definition tooltips
The current Eclipse extension of Context Mapper is capable of using regular multiline
comments (/*...*/) as tooltip documentation for a CML element. The PoC can only
use JSDoc comments (/**...*/) for tooltip documentation.

5.1.3. FR 4.1 - Generate PlantUML diagrams
The PlantUML generator in Context Mapper’s current Eclipse & VSCode extension
creates multiple diagram types. Due to time constraints, the component diagram
generation was selected to showcase how a generator can be implemented in
Langium. All remaining PlantUML diagram types have not been implemented.

L. Streckeisen Page 40 of 92

5. Results Enhanced Context Mapper IDE Integration

5.1.4. NFR 1 - Minimise duplicated code between IntelliJ and VSCode
While the PoC could not directly reuse existing Context Mapper code, the feature
logic was placed in the newly created language server. That way, a future VSCode
extension can be built upon the language server without adding additional feature
logic. The verification criteria were, therefore, fulfilled.

5.1.5. NFR 2 - Plugin stability
The language server has been extensively tested with automated unit & component
tests executed as part of the CI pipeline. Where possible, unit tests have been created
for the IntelliJ plugin. The plugin stability was also observed during manual tests.

5.1.6. NFR 3 - CML editor efficiency
No performance issues were discovered during manual tests and an informal user test
with the thesis advisor.

5.1.7. NFR 4 - PlantUML diagram generation efficiency
An automated performance test has been created in the language server project that
verifies the creation of a PlantUML component diagram within the set time constraint.
The test is executed as a part of the CI pipeline.

5.1.8. NFR 5 - Extensibility for additional generators
A new generator can be added to the plugin using one extension point each. First, the
generator needs to be registered with the command handler in the language server. A
corresponding generator action then has to be registered within the Context Mapper
action group in the plugin.xml of the IntelliJ plugin.

A dummy generator was added in a branch of the language server¹ and IntelliJ plugin²
repositories, to showcase their extensibility.

5.1.9. NFR 6 - Code quality
JetBrains Qodana has been set up to analyse code in the language server and IntelliJ
plugin CI pipeline. At the time of the thesis submission, there were no open problems
in the IntelliJ plugin code. As Figure 20 shows, Qodana reports one open problem for
the language server regarding the test coverage of the main.ts file. This problem was
accepted since the code in main.ts is equivalent to the standard script generated
when creating a Langium project.

¹https://github.com/lstreckeisen/context-mapper-language-server/compare/dummy-generator
²https://github.com/lstreckeisen/context-mapper-intellij-plugin/compare/dummy-generator

Page 41 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.2. Open Issues

Figure 20: Screenshot of Qodana scan results after the PoC was finalised

5.1.10. NFR 7 - Separation of concerns
To enforce separation of concerns, ArchUnit tests have been created. These tests check
that features in a top-level package/folder do not depend on code in a sister-package/
folder. The ArchUnit tests are executed as part of the CI pipeline.

5.1.11. NFR 8 - IntelliJ compatibility
A manual compatibility check with the IntelliJ versions 2024.3.5 and 2025.1.1.1 was
performed. The plugin could be installed in both versions.

5.1.12. NFR 9 - Licence compatibility
JetBrains Qodana is capable of performing licence compatibility checks for project
dependencies. However, due to an unknown issue, this feature did not work.
Therefore, the licences of all used libraries were checked for compatibility according
to Apache’s third-party licence policy [13]. All dependency licences were found
compatible.

5.1.13. NFR 10 - IntelliJ best practices
Most features in the PoC IntelliJ plugin are provided through the LSP4IJ plugin. LSP4IJ
and the added generator conform to the IntelliJ best practices.

5.2. Open Issues
The informal user test with the thesis advisor led to the discovery of a few issues with
the PoC implementation that could not be resolved as of the end of this thesis. These
issues are outlined below.

5.2.1. Brace Matching
IDEs usually automatically complete a brace pair when typing “{“ in the editor. IntelliJ
also has this capability, but custom languages such as CML require a custom brace
pair matcher [21]. A brace pair matcher defines brace, bracket and parenthesis pairs
using lexer tokens, which requires the IntelliJ plugin to have a lexer.

To resolve this issue in a future project, a lexer could be created. For the purpose of
this feature, it would be enough for the lexer to be capable of recognizing brace pairs
and not the full CML grammar.

L. Streckeisen Page 42 of 92

5. Results Enhanced Context Mapper IDE Integration

5.2.2. Autocomplete
There are two known cases where autocomplete is not yet on the same level as in the
VSCode extension.
1. When defining a Context Map relationship, autocomplete can only make

suggestions for keywords within brackets after the user starts to type
2. The VSCode extension suggests placeholder values, e.g. for a stakeholder

description, which benefits users unfamiliar with the CML grammar.

Modifications to the completion provider in the language server should resolve these
issues.

5.2.3. IntelliJ Plugin Testing
The developed IntelliJ plugin is currently only tested with unit tests. However,
integration tests would be necessary for the CI pipeline to detect an issue in the
plugin.

Attempts were made to set up integration tests according to the JetBrains
documentation [21], but they broke the existing unit tests. As of the end of this thesis,
the source of this issue has not yet been discovered and requires further investigation.

5.3. Experience Report
This experience report reflects on the technology decision and highlights both
positive and negative experiences during the PoC development.

As described in the technology evaluation, Langium is well-designed and generally
easy to understand for developers. However, the documentation [17] had more gaps
regarding implementation details than anticipated. The documentation appears to be
heavily VSCode-oriented and omits supported LSP capabilities that are not required in
VSCode. Syntax highlighting is a good example of that. In VSCode, syntax
highlighting is provided through TextMate¹ and does not require semantic tokens.
IntelliJ, on the other hand, needs semantic tokens to highlight source files. Since the
Langium documentation does not provide guidance on implementing a semantic
token provider, public GitHub repositories that also use Langium had to be consulted
instead.

On the IntelliJ side, the young age of the LSP4IJ plugin became apparent. Syntax
highlighting was very unstable up to version 0.13.0, which was released towards the
end of the PoC implementation. Without a fix in version 0.13.0, the Context Mapper
IntelliJ plugin would have been unusable for end users.

During the PoC implementation, both the Langium and LSP4IJ maintainers have been
contacted for help with minor issues. The interaction with both maintainers proved to
be very pleasant, with quick and constructive responses.

Based on the experiences collected during this thesis, the technology decision can be
confirmed. Langium is currently the most capable alternative to Xtext and works very
well once it becomes clear how to implement certain LSP features. LSP4IJ, apart from

¹https://macromates.com/manual/en/language_grammars

Page 43 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.3. Experience Report

the syntax highlighting issues, worked very well. It is currently also the most effective
option for integrating a language server in IntelliJ.

L. Streckeisen Page 44 of 92

6. Outlook Enhanced Context Mapper IDE Integration

6. Outlook
This section identifies possible long-term risks with the newly selected technologies
and outlines a migration path for Context Mapper features that have not been
implemented in the PoC.

6.1. Long-Term Risk Analysis
To analyse the risks involved with using Langium and LSP4IJ in the long term, the
identified risks are evaluated using the factors “probability” and “severity”. The risk
matrix in Table 7 describes the scale for both factors and assigns colour codes.

Probability /
Severity

1 Almost
Impossible

2 Unlikely 3 Moderate 4 Likely
5 Almost
Certain

4
Catastrophic

3 Critical
2 Major
1 Minor

Table 7: Risk matrix

Section 6.1.1 and Section 6.1.2 highlight the risks associated with Langium and LSP4IJ,
respectively, and discuss their mitigation. A conclusion on the associated risks can be
found in Section 6.1.3.

6.1.1. Langium
Table 8 contains the identified long-term risks for Langium.

ID Risk Probability Severity Reasoning
RSK-1 Maintainers stop

contributing and the
project is abandoned

2 3 Langium is backed by
TypeFox¹. TypeFox
maintained Xtext for
more than 10 years and
decided to start fresh
with Langium. It cannot
be ruled out that this
will happen again, but
given Langium’s age of
3 years, this seems
unlikely at this time.

¹https://www.typefox.io/language-engineering/

Page 45 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.1. Long-Term Risk Analysis

ID Risk Probability Severity Reasoning
RSK-2 Documentation is

missing vital
information for a future
feature

4 2 Based on the
experiences made
during the PoC
development, the
information needed for
a future feature is likely
missing from the
documentation. Gaps in
the documentation
impact the time
required to implement
the feature but not the
feature’s technical
feasibility.

RSK-3 Breaking changes are
introduced

4 2 The introduction of
breaking changes in
future versions of
Langium is likely based
on past releases¹.
Breaking changes would
increase the effort
required to upgrade to
the next version but
should not have a
bigger impact.

Table 8: Identified long-term risks for Langium

The possibilities to mitigate the mentioned risks are limited. To mitigate the impact of
breaking changes, it could be attempted to abstract feature logic in a way that limits
dependencies on Langium to a few classes. However, this might not be easy to
achieve. To mitigate the risk of abandonment, DSL developers could be encouraged to
make code or financial contributions to the Langium project.

¹https://github.com/eclipse-langium/langium/blob/main/packages/langium/CHANGELOG.md

L. Streckeisen Page 46 of 92

6. Outlook Enhanced Context Mapper IDE Integration

6.1.2. LSP4IJ
Table 9 shows the identified long-term risks for the LSP4IJ plugin.

ID Risk Probability Severity Reasoning
RSK-4 Maintainers stop

contributing and the
project is abandoned

3 3 LSP4IJ is maintained by
the Red Hat developer
community and is
approximately one year
old as of the end of this
thesis. Among other
things, the future of
LSP4IJ depends on its
user base. The plugin is
currently used by 27
other plugins¹ and has
 155′000 downloads in
the JetBrains
marketplace². At this
time, it is unlikely that
the plugin will be
abandoned, but it
cannot be ruled out.

RSK-5 LSP4IJ prevents plugin
support for latest IntelliJ
version

3 3 If LSP4IJ becomes
incompatible with the
latest version of IntelliJ,
the Context Mapper
plugin cannot be
installed with that
version of IntelliJ either.
A situation like that
could be caused by a
breaking change in the
IntelliJ Platform and
Plugin API, which does
tend to happen³. As of
the end of this thesis,
LSP4IJ had a fast release
cycle and supports
IntelliJ versions as of
2023.2.

¹https://github.com/redhat-developer/lsp4ij/blob/main/README.md
²https://plugins.jetbrains.com/plugin/23257-lsp4ij
³https://plugins.jetbrains.com/docs/intellij/api-changes-list.html

Page 47 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.1. Long-Term Risk Analysis

ID Risk Probability Severity Reasoning
RSK-6 Breaking changes are

introduced
3 1 As of the end of this

thesis, there are no
known breaking
changes up to version
0.13.0. Since the PoC
primarily configures
LSP4IJ, a breaking
change would likely
necessitate the use of a
new or different
configuration option.

Table 9: Identified long-term risks for LSP4IJ

As with Langium, the best way to mitigate the abandonment of LSP4IJ is to encourage
developers to make contributions and to promote the plugin. The mitigation of the
Context Mapper plugin being blocked from running in the latest IntelliJ versions is,
due to the nature of its dependency on LSP4IJ, not possible. In the event of breaking
changes to the LSP4IJ configuration, the required adjustments should require minimal
effort and, therefore, do not require mitigation.

6.1.3. Conclusion
Software dependencies always carry risks when used. They lead to a loss of control
over code that is sometimes essential to a project. However, it is not always an option
to replace a dependency with your own code, as the required effort would be too high.
The use of dependencies, therefore, is always a tradeoff between the associated risks
and the benefits of using them [29].

Langium, as a language workbench, is an essential part of a DSL project. The effort
required to switch to a different language workbench or implement a language server
from scratch would be very high, and any issues related to the language server also
impact IDE plugins that are based on it. With Xtext seemingly reaching the end of its
life, Langium is currently the most capable option for building a language server.
There are risks associated with using Langium, but they are at an acceptable level.

LSP4IJ bears fewer risks than Langium, as its role as an integration option is not as
essential as with a language workbench. The risks involved in using LSP4IJ are also on
an acceptable level. In case LSP4IJ becomes an unreliable option, a fallback to IntelliJ’s
LSP support is always possible, with the consequence that the plugin becomes
unavailable in IntelliJ Community versions. It is also possible that JetBrains will add
more LSP capabilities to IntelliJ in the future and make LSP support available in
IntelliJ’s Community version. In that case, a switch to JetBrains’ LSP support would
make sense from a risk perspective.

L. Streckeisen Page 48 of 92

6. Outlook Enhanced Context Mapper IDE Integration

6.2. Future Work
This section describes how not-implemented Context Mapper features can be
migrated to the technology stack used in the PoC. Given the complexity of migration,
a future project is proposed.

6.2.1. Migration of Remaining Context Mapper Features
The following ContextMapper features have not been implemented in the PoC.
• Quick fixes
• Architectural refactorings
• Validators (other than the ones implemented due to grammar differences)
• Generators

‣ PlantUML (other than component diagram)
‣ Visual Context Map
‣ Sketch Miner
‣ MDSL contract
‣ FreeMarker

• Discovery
• ArchUnit extension

Grammar Completion
The developed PoC does not include the grammar elements for tactic DDD and
imports. To offer the complete set of Context Mapper features, the grammar in the
language server must be fully implemented. The Xtext grammar for the remaining
grammar elements needs to be adjusted according to the Langium grammar
differences described in Section 4.2.

Quick Fixes and Architectural Refactorings
Since quick fixes and architectural refactorings are offered in the same way in the
editor, their implementation follows the same path. The LSP handles quick fixes via
“code actions” [5]. The language server computes available code action commands for
a document and returns them to the editor. The execution of code actions is handled
via the workspace/executeCommand request, which is already used in the PoC to
execute generator actions.

In the language server, code actions are provided by a CodeActionProvider, which
needs to be implemented to offer quick fixes and architectural refactoring actions in
the editor [17]. Additionally, a command must be registered in the
ContextMapperCommandHandler for every quick fix and refactoring.

In the IntelliJ plugin, it should not be necessary to make customisations for these
features [22].

The quick fixes and refactorings implemented in the Xtext version of Context Mapper
manipulate the AST and do not have any dependencies on other libraries [8]. Their
reimplementation in TypeScript is, therefore, unproblematic.

Page 49 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.2. Future Work

Validators
The PoC showcased the implementation of semantic validation. The validators
implemented in Xtext do not depend on any non-Xtext libraries [8] and can, therefore,
be rewritten in TypeScript without any issues.

Generators
The partially implemented PlantUML generator shows how generators can be
implemented in a Langium language server. The PlantUML generator can be
completed in the same manner as the component diagram implementation in the PoC.

The Context Map generator in the Xtext language server depends on the graphviz-
java¹ library. A potential TypeScript alternative is ts-graphviz². If this library proves
insufficient to replace graphviz-java, the Context Map diagram can be generated by
creating a .dot file - similar to the approach for the PlantUML diagrams - and then
using the graphviz CLI (Command Line Interface) tool to generate the desired output
formats.

The migration of the FreeMarker, MDSL, and Sketch Miner generators, which all
utilise FreeMarker³ templates, requires more effort. There are currently no maintained
Node.js libraries for FreeMarker, which prevents a straightforward migration to
Langium. To work around that, a Java-based CLI tool could be created that reads a
CML file and renders a FreeMarker template. The language server or the IDE plugin
would then call the CLI tool to generate resources based on the CML models defined
by users. These generators therefore still require a Java library to parse CML files.

Discovery
The Context Mapper discovery feature, which is separate from the current Xtext
language server, utilises the Context Mapper standalone library to translate discovered
Bounded Contexts and their relationships into CML. Since the discovery library
specifically targets Java projects, it still requires a Java library to create CML files.

ArchUnit Extension
The Context Mapper ArchUnit extension can be used to check if the model defined in
CML is reflected in a Java codebase. To do that, the ArchUnit extension relies on the
Context Mapper standalone library.

There is an ArchUnit implementation for TypeScript: ts-arch⁴. ts-arch would allow
writing ArchUnit tests based on a CML model, but the library cannot target Java code.
The Context Mapper ArchUnit extension, therefore, still requires a Java library for
parsing CML.

¹https://github.com/nidi3/graphviz-java
²https://github.com/ts-graphviz/ts-graphviz
³https://freemarker.apache.org/
⁴https://github.com/ts-arch/ts-arch

L. Streckeisen Page 50 of 92

6. Outlook Enhanced Context Mapper IDE Integration

Context Mapper Java Library
Context Mapper should continue to support Java developers, as it does today, by
offering an ArchUnit extension and a standalone library for CML. To do that, a Java
parser for CML will still be required in the future.

There are currently plans for Langium to refactor its parsing engine¹, allowing parsers
other than Chevrotain to be used. These plans also include offering an ANTLR parser
out of the box.

With an ANTLR grammar as the base for the Langium language server, a Java parser
could be generated. This parser could then be used for a standalone Java library, the
discovery library and the ArchUnit extension. A CLI tool based on that ANTLR parser
could implement the Context Mapper generators. This approach would allow partial
reuse of the existing implementations for the discovery library, ArchUnit extension
and generators.

However, it is to be expected that an ANTLR parser will not be available in Langium
for some time. In the meantime, building the Java libraries on an ANTLR parser is still
possible by using separate grammars for the Java tools and Langium. This separation
would require maintaining both grammars until Langium supports the ANTLR parser,
at which point the Langium grammar could be discarded.

6.2.2. Suggestion for a Future Project
Given the need for a Java library that allows automated parsing and writing of CML,
an additional project is required to provide this library. One possible implementation
path is to use ANTLR alongside Langium, as mentioned above. Another option is to
build a language server from scratch on the JVM (Java Virtual Machine) stack. A JVM-
based language server would have the advantages of having a single technology base
and being able to reuse existing feature implementations more easily. The parser from
the language server could then be reused for a standalone library as well.

The project would need to assess the trade-offs between building a custom language
server and going ahead with Langium, as well as evaluate the risks associated with
using ANTLR alongside Langium.

¹https://github.com/eclipse-langium/langium/issues/1742

Page 51 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

7. Conclusion
This thesis analysed the Context Mapper features included in the existing Context
Mapper implementation. An overview of current language workbenches and
integration options to add custom language support in IntelliJ was provided. A
technology selection based on a utility analysis was made, resulting in the use of
Langium and LSP4IJ. A PoC was implemented, showcasing how Context Mapper can
be integrated into IntelliJ and how Xtext can be replaced as the base for the language
server. A risk analysis identified long-term risks associated with the PoC technologies
and concluded that there are no uncommonly significant risks associated with them.
Finally, a migration path for expanding the PoC to the complete Context Mapper
feature set was outlined. Since Context Mapper should continue to offer Java libraries,
not all features can be based on the Langium sources from the PoC. An additional
project is required to provide a new Java library for reading and writing CML models,
so Context Mapper’s existing Java tools, such as the ArchUnit extension, can be
migrated as well.

L. Streckeisen Page 52 of 92

7. Conclusion Enhanced Context Mapper IDE Integration

Part II - Appendix

Page 53 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 1.1. Initial Situation

A: Task Description

A.1: Initial Situation
Context Mapper (contextmapper.org) is an open source modelling tool and framework
that uses a Domain-Specific Language (DSL) to enable the modelling of software
systems based on Domain-Driven Design (DDD) patterns. Various artefacts such as
context maps, PlantUML diagrams and interface contracts can be generated from the
models.

The Context Mapper is currently available as an Eclipse plugin and as a Visual Studio
Code (VSCode) extension. There is also a CLI (Command Line Interface), standalone
Java library for generating Context Mapper DSL (CML) models using code, a discovery
library for generating models from existing source code, and an ArchUnit extension
for comparing code and model. Technologically, the entire framework is implemented
in Java and uses the Xtext framework (eclipse.dev/Xtext) for language engineering.
Integration into VSCode is realised via the so-called Language Server Protocol (LSP).
The Xtext framework automatically generates an LSP server based on the grammar of
the CML language. The VSCode extension of Context Mapper uses this LSP server as a
“backend”.

Since many Java developers today use IntelliJ IDEA from JetBrains, they would like to
see Context Mapper integrated into this Integrated Development Environment (IDE).
The lack of such integration means that software developers have to use VSCode in
addition to IntelliJ IDEA to edit CML models, or that this hurdle is perceived as too
high and Context Mapper is therefore not used.

A.2: Goals and Deliverables
The lack of a Context Mapper integration for IntelliJ IDEA makes it difficult to spread
the modelling tool, especially in the Java community, where IntelliJ has established
itself as the standard IDE. In addition, the current technology stack based on the Xtext
framework is getting older and maintainability is not ideal. The spread of Eclipse has
declined in recent years and the Xtext framework is no longer really developed
further.

The main objective of this thesis is to demonstrate through a prototype how the
Context Mapper DSL (CML) language and its tools can be integrated into IntelliJ IDEA
- as a plugin.

The first step is to analyse and research the options available for this. Integration on
the basis of the existing Xtext/LSP stack is only one possible variant. Within the scope
of this work, an open overview of the possibilities, independent of the existing
technology, is to be created.

After a technology and architecture decision has been made (according to criteria to
be defined), a prototype (IntelliJ plugin) is to be implemented. The plugin should offer
the basic functionalities of the CML-language in a corresponding editor and integrate
one or two of the existing generators. For the other existing Context Mapper features,

L. Streckeisen Page 54 of 92

1. Task Description Enhanced Context Mapper IDE Integration

it should be shown how these can be implemented or migrated in the new plugin (no
complete implementation required as part of the prototype).

The critical success factors for this work are defined as follows:
1. An analysis and research shows which technical options are available for

integrating the CML-language and the other Context Mapper tools into IntelliJ.
2. A well-founded technology and architecture decision is made on the basis of jointly

defined criteria (with the supervisor).
3. A prototype of a plugin shows how Context Mapper and its CML language can be

integrated into the IntelliJ IDEA IDE.
4. For existing Context Mapper features that are not implemented (in the prototype),

it is at least analysed how they can be integrated or implemented later.
5. The report of the bachelor thesis documents the analysis (technology research,

etc.), the decisions for the prototype (including the underlying criteria), the
implementation of the prototype, and gives an outlook on how the integration can
be completed in subsequent projects.

A.3: Support
The expected and effectively received support is recorded by the student.

A.4: Project Execution
The Bachelor’s thesis is about applying the knowledge learned in the various OST
modules to a project. In particular, software engineering skills will be required.
Students are expected to apply this knowledge and use methods such as unit testing,
clean code, SCM and continuous integration wherever possible. The usability of the
results should also be checked using suitable means and representatives of the target
group.

The preliminary study, requirements documentation and architecture documentation
should be approved in a stable state during the course of the project by means of
milestones with the client and supervisor. Preliminary feedback is given on the
submitted work results. A definitive assessment is made on the basis of the
documentation delivered by the deadline.

The rights to the results of the Bachelor’s thesis are defined in a separate agreement
(report public, no non-disclosure agreement required).

The requirements are specified by the student in consultation with the supervisor. In
the event of disputes, the supervisor decides on the definitive requirements relevant to
the Bachelor’s thesis in consultation with the student.

As a rule, weekly meetings are held with the supervisor (meeting at OST or video
conference). Additional meetings are to be arranged as required. All meetings that
require preparation by the supervisor must be prepared by the student with an
agenda. This must be sent to the supervisor at least half a working day in advance.
Decisions must be documented in minutes and then sent to the supervisor or filed in a
defined location (e.g. wiki). A project plan must be drawn up for the realisation of the

Page 55 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 1.5. Tools

work. Attention must be paid to continuous and visible work progress. Working hours
must be documented.

A.5: Tools
Unless specified in the assignment, students are responsible for selecting their own
tools, libraries, frameworks, etc.

A.6: Documentation
This work must be documented in accordance with the guidelines of the Department
of Computer Science (regulations and instructions in MS Teams of the Computer
Science programme). The documents to be created must be recorded in the project
plan. All documents must be kept up to date, i.e. they should document the status of
the work in a consistent form at the time of submission. Time records must be kept
and analysed in the report.

L. Streckeisen Page 56 of 92

2. Technology Exploration Tests Enhanced Context Mapper IDE Integration

B: Technology Exploration Tests
This appendix contains a brief documentation of tests performed with the
technologies from the technology elaboration phase.

B.1: JetBrains MPS
The introduction course for MPS¹ uses the ChemMastery sample project included in
MPS. Each MPS project comes with a sandbox to test the language and its definition.
The structure of the language definition is clear and easy to understand (Figure 21).

Figure 21: Structure of an MPS language definition

The structure and editor definitions are most important to the language. The structure
definition consists of so-called “concepts”, which represent the different structural
elements of the language. Each concept can define properties, possible child elements
and references to other concepts (Figure 22).

¹https://cogniterra.org/course/28

Page 57 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.1. JetBrains MPS

Figure 22: Example of an MPS concept definition

Each language concept has its own editor. The editor defines how a language concept
is presented to the user and how the language user provides information to create an
instance of the concept. The editor can use textual or graphical elements for language
users to provide the required information. However, the resulting editor always
includes some graphical elements and is never just plain text. Figure 23 shows an
example of an editor definition that uses Java Swing elements. An example of the
resulting editor presented to the language user can be seen in Figure 24.

L. Streckeisen Page 58 of 92

2. Technology Exploration Tests Enhanced Context Mapper IDE Integration

Figure 23: MPS editor definition using graphical elements

Page 59 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Langium

Figure 24: Example of an MPS editor presented to the language user

The resulting MPS plugin can be installed in the MPS IDE itself and used there in a
solution project. The plugin could also be installed in a 2023 version of IntelliJ.
However, the ChemMastery language did not appear anywhere in IntelliJ.

B.2: Langium
A basic example of a Langium project can be generated using Yeoman¹. The project
can be generated with a basic setup of a VSCode extension, a CLI and the language
itself.

The grammar definition in Listing 9 is a bit easier to understand for beginners than
the Grammar-Kit grammar (see Appendix B.5), but that is mainly because Langium
does not include configuration for a program structure interface.

 grammar TestLang

 entry Model:
 (persons+=Person | greetings+=Greeting)*;

 Person:
 'person' name=ID;

 Greeting:
 'Hello' person=[Person:ID] '!';

 hidden terminal WS: /\s+/;
 terminal ID: /[_a-zA-Z][\w_]*/;
 terminal INT returns number: /[0-9]+/;
 terminal STRING: /"(\\.|[^"\\])*"|'(\\.|[^'\\])*'/;

 hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;
 hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

Listing 9: Langium grammar of the generation getting started example

For a VSCode extension, there is also some configuration for syntax highlighting and
comment & bracket tokens. Depending on the language, other extensions of the basic

¹https://yeoman.io/

L. Streckeisen Page 60 of 92

2. Technology Exploration Tests Enhanced Context Mapper IDE Integration

setup, e.g. for validators, are required, but the basic setup remains and provides the
language server and VSCode extension separately.

B.3: IntelliJ LSP
Setting up an LSP integration via IntelliJ’s LSP support requires little effort. Figure 25
shows the file structure required for the setup. IntelliJ calls the
CMLLspServerSupportProvider when a file is opened. If the file has the correct file
extension, it is responsible for starting the language server. The
CMLLspServerDescriptor contains the start command for the language server and is
passed to IntelliJ’s server starter by the CMLLspServerSupportProvider.

Figure 25: File structure of the basic IntelliJ LSP setup

Finally, a single entry in the plugin.xml completes the LSP setup. In a test with the
existing CML language server, features like autocomplete worked, but others, like
syntax highlighting and code folding, did not.

B.4: LSP4IJ
To assess LSP4IJ’s capabilities, its UI config was used over its plugin API. Figure 26
shows the configuration necessary to start the language server.

Figure 26: LSP4IJ test UI config

Page 61 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.5. Native Integration

The test showed the same results as with IntelliJ’s LSP support.

B.5: Native Integration
The tutorial from JetBrains’ documentation [21] guides through the major editor
features. For the “Simple” language, which is basically a key-value mapping, the
tutorial guides through the creation of 48 classes and a lexer and parser definition. The
tutorial uses JFlex¹ to generate the lexer and Grammar-Kit² to generate the parser.

While the implementation of editor features can be understood relatively quickly, the
JFlex and Grammar-Kit definitions require more knowledge, especially when the
grammar is more complicated than a simple key-value mapping. Listing 10 shows the
grammar definition for the Simple language. The basic grammar is based on the
Parsing Expression Grammar³ and extended with global and rule attributes [30]. In
addition to the grammar itself, Grammar-Kit also includes configuration for the PSI
integration of the generated parser.

{
 parserClass="ch.streckeisen.intellijtestplugin.parser.SimpleParser"
 extends="com.intellij.extapi.psi.ASTWrapperPsiElement"
 psiClassPrefix="Simple"
 psiImplClassSuffix="Impl"
 psiPackage="ch.streckeisen.intellijtestplugin.psi"
 psiImplPackage="ch.streckeisen.intellijtestplugin.psi.impl"

elementTypeHolderClass="ch.streckeisen.intellijtestplugin.psi.SimpleTypes"

elementTypeClass="ch.streckeisen.intellijtestplugin.psi.SimpleElementType"
 tokenTypeClass="ch.streckeisen.intellijtestplugin.psi.SimpleTokenType"

psiImplUtilClass="ch.streckeisen.intellijtestplugin.psi.impl.SimplePsiImplUtil"
}
simpleFile ::= item_*
private item_ ::= (property|COMMENT|CRLF)
property ::= (KEY? SEPARATOR VALUE?) | KEY {
 pin=3
 recoverWhile="recover_property"

mixin="ch.streckeisen.intellijtestplugin.reference.SimpleNamedElementImpl"

implements="ch.streckeisen.intellijtestplugin.reference.SimpleNamedElement"
 methods=[getKey getValue getName setName getNameIdentifier
getPresentation]
}
private recover_property ::= !(KEY|SEPARATOR|COMMENT)

Listing 10: Grammar definition of the Simple language from the custom language
plugin tutorial

¹https://www.jflex.de/
²https://github.com/JetBrains/Grammar-Kit
³https://en.wikipedia.org/wiki/Parsing_expression_grammar

L. Streckeisen Page 62 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

C: Detailed Technology Evaluation
This appendix contains the detailed utility analysis performed during the technology
evaluation.

C.1: JetBrains MPS

Future Proofing

Score 3
Weighted Score 9
Reasoning
MPS is maintained by JetBrains and receives regular updates. It is unlikely that it
will be discontinued anytime soon.

Ease of use

Score 1
Weighted Score 2
Reasoning
According to JetBrains, “(…) there are easier tasks in the world than learning
MPS.” [15] A Stack Overflow post [31] also confirms that. When one already
understands how a DSL is created, MPS concepts are certainly easier to understand,
but even then, there is a learning curve because projectional DSLs just work
differently. For languages that are a bit more complicated than, e.g. the
chemmastery sample language (included in the MPS IDE), an understanding of the
MPS DSL is required.

Documentation

Score 2
Weighted Score 4
Reasoning
A Stack Overflow post [31] mentioned that the documentation is challenging for
beginners, at least in 2010. The documentation [15] seems to have improved since
then. The documentation as of March 2025 is quite extensive and includes a link to a
getting started course¹ that explains the core concepts of MPS quite well.

Feature Support

Score 1
Weighted Score 3
Reasoning

¹https://cogniterra.org/course/28

Page 63 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.2. Langium

MPS does have equivalents for all defined requirements but in a very different way.
Projectional editing cannot read or modify a .cml file created with the VSCode
extension of Context Mapper. Using MPS would be a breaking change to all existing
CML definitions.

Licence

Score 3
Weighted Score 9
Reasoning
MPS is licensed under Apache 2.0.

IDE Compatibility

Score 1
Weighted Score 3
Reasoning
MPS is a JetBrains product and, therefore, only usable with JetBrains products.
Language plugins are MPS plugins intended for use in the MPS IDE. With the “MPS
Core” plugin, MPS language plugins can also be installed in IntelliJ. However, as of
March 2025, the “MPS Core” plugin does not yet support the 2024 versions of IntelliJ
[32].

Reusability

Score 1
Weighted Score 2
Reasoning
Using MPS requires a complete rewrite of Context Mapper.

C.2: Langium

Future Proofing

Score 2
Weighted Score 6
Reasoning
Langium gets frequent updates, and version 3.3.0 (November 2024) marked the
milestone of Langium becoming a mature project [33]. Langium was created by
TypeFox¹ and had about 20 active contributors in 2024, with the main contributions
made by about five people [34]. At this point, there are no signs of difficulties in
maintaining the project.

¹https://www.typefox.io

L. Streckeisen Page 64 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

Ease of use

Score 2
Weighted Score 4
Reasoning
The tutorial in the Langium documentation [17] shows that creating a language
server is straightforward. The creation of advanced languages will require studying
the Langium grammar language.

Documentation

Score 3
Weighted Score 6
Reasoning
The documentation [17] is clear, covers all major features, and includes a complete
description of the grammar language and API. There is also a tutorial on getting
started and a more advanced example that guides through the creation of validators,
generators, and a VSCode extension.

Feature Support

Score 3
Weighted Score 9
Reasoning
Langium leverages LSP. While the documentation [17] does not list supported LSP
capabilities, it indicates that all editor requirements are supported. Features that are
not supported by LSP can be added through native integration.

Licence

Score 3
Weighted Score 9
Reasoning
Langium is licensed under the MIT¹ licence. According to the Apache 3rd Party
Licence Policy [13], software under the MIT licence may be included in an Apache
2.0 project without restrictions.

IDE Compatibility

Score 3
Weighted Score 9
Reasoning
By leveraging LSP, langium supports a wide range of IDEs, including VSCode and
IntelliJ.

¹https://opensource.org/licence/mit

Page 65 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Rascal

Reusability

Score 1
Weighted Score 2
Reasoning
Langium is written in TypeScript. Though it is possible to still use the existing
Context Mapper code by delegating parts of the logic to a separate Java process, that
solution would not be ideal. Therefore, a complete rewrite would be possible. The
resulting language server can then be reused for different IDEs.

C.3: Rascal

Future Proofing

Score 2
Weighted Score 6
Reasoning
The organisation UseTheSource¹ coordinates contributions to Rascal. In 2024, 5
people actively contributed, with the main contributions made by three people [35].

Ease of use

Score 2
Weighted Score 4
Reasoning
Defining a grammar syntax is not complicated, especially if one is familiar with
Haskell, as Rascal is similar to Haskell in syntax. However, the documentation [18]
does not include a guide on how to achieve an IDE integration; therefore, it requires
deeper knowledge of the Rascal LSP package.

Documentation

Score 1
Weighted Score 2
Reasoning
While the documentation [18] on the Rascal language itself is detailed, there is not
much to go on regarding creating a DSL. There is no tutorial on IDE integration, but
one page² referring to the language server package documentation. The required
information has to be pulled from the package API description and examples.

Feature Support

Score 2
Weighted Score 6

¹http://www.usethesource.io
²https://www.rascal-mpl.org/docs/Recipes/BasicProgramming/IDEConstruction

L. Streckeisen Page 66 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

Reasoning
The language server’s supported capabilities are not documented, and since creating
one requires knowledge of the LSP package, they could not be evaluated in a test.
Native integration could enhance missing features, but if too many LSP features are
not supported, it could question the use of Rascal in the first place.

Licence

Score 3
Weighted Score 9
Reasoning
Rascal is licensed under BSD-2, which can be used without restrictions in an Apache
2.0 project [13].

IDE Compatibility

Score 3
Weighted Score 9
Reasoning
The documentation [18] explicitly mentions VSCode support. The language server
can be integrated into IntelliJ.

Reusability

Score 1
Weighted Score 2
Reasoning
Rascal is its own language and has custom hooks for LSP support, so a rewrite is
necessary.

C.4: IntelliJ LSP

Future Proofing

Score 3
Weighted Score 9
Reasoning
It is part of IntelliJ Ultimate and, therefore, maintained by JetBrains. While JetBrains
still recommends a native integration, since that supports more features [21], it is
unlikely that JetBrains will drop LSP support after just recently adding it.

Ease of use

Score 2
Weighted Score 4
Reasoning

Page 67 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.4. IntelliJ LSP

Configuring the language server requires just 2 class implementations and one entry
in the plugin.xml [21]. However, debugging problems requires knowledge of LSP.

Documentation

Score 2
Weighted Score 4
Reasoning
While the IntelliJ plugin SDK documentation is quite extensive, there is only one
page for LSP integration¹. The essential parts are documented; information not
included in the documentation needs to be pulled from existing plugins using LSP.

Feature Support

Score 2
Weighted Score 6
Reasoning
The IntelliJ LSP supports most editor features from the requirements. Context
actions, like e.g. the Context Map generator, can be added through native
integration. Code folding tough is not yet supported.

Licence

Score 3
Weighted Score 9
Reasoning
IntelliJ is licensed under Apache 2.0. The same licence applies since LSP support is
bundled in the Ultimate version of IntelliJ.

IDE Compatibility

Score 2
Weighted Score 6
Reasoning
LSP is available for IntelliJ Ultimate and VSCode

Reusability

Score 3
Weighted Score 6
Reasoning
The existing language server can be reused. Additional features not supported by
LSP can use the same logic as VSCode by properly abstracting IDE/framework
specifics.

¹https://plugins.jetbrains.com/docs/intellij/language-server-protocol.html

L. Streckeisen Page 68 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

C.5: LSP4IJ

Future Proofing

Score 2
Weighted Score 6
Reasoning
LSP4IJ is maintained by the Red Hat developer community and has a small group of
active developers [36]. The plugin is relatively new (it was first released in May
2024), so it is unlikely to be discontinued soon.

Ease of use

Score 2
Weighted Score 4
Reasoning
Configuring LSP4IJ via UI is very straightforward. The effort to create a plugin that
uses LSP4IJ is comparable to IntelliJ’s native LSP support [22]. Debugging problems
also requires knowledge of LSP.

Documentation

Score 3
Weighted Score 6
Reasoning
The documentation for LSP4IJ [22] contains a step-by-step guide to creating a
plugin based on it (including some pointers for special cases), lists all supported LSP
capabilities in detail and explains how to use the plugin UI.

Feature Support

Score 3
Weighted Score 9
Reasoning
LSP4IJ supports all editor requirements. Features not supported by LSP can be added
to the plugin implementation.

Licence

Score 2
Weighted Score 6
Reasoning

Page 69 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.6. Native Integration

LSP4IJ is licensed under the EPL-2.0¹ licence. According to the Apache 3rd Party
Licence Policy [13], software under the EPL-2.0 licence may be included in binary
form, provided that its inclusion is made visible to the user. This condition is
fulfilled in the case of an IntelliJ plugin since the dependency is distributed
separately, and dependencies on other plugins are visible to users in the plugin
marketplace.

IDE Compatibility

Score 3
Weighted Score 9
Reasoning
LSP4IJ is available for IntelliJ Community & Ultimate and LSP is available in VSCode

Reusability

Score 3
Weighted Score 6
Reasoning
The existing language server can be reused. Additional features not supported by
LSP can use the same logic as VSCode by properly abstracting IDE/framework
specifics.

C.6: Native Integration

Future Proofing

Score 3
Weighted Score 9
Reasoning
The PSI is at the core of custom language plugins in IntelliJ. It is in JetBrains’
interest to provide plugin developers with an interface to create custom language
plugins. Though JetBrains has an alternative to create language plugins with MPS, it
is implausible that JetBrains will enforce projectional editing in the future.

Ease of use

Score 2
Weighted Score 4
Reasoning

¹https://www.eclipse.org/legal/epl-2.0

L. Streckeisen Page 70 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

The custom language plugin tutorial in the plugin SDK (Software Development Kit)
documentation [21] gives a good overview of the relevant extension points for
implementing editor features. The concepts explained are easy to understand but
require some knowledge of the PSI. While advanced cases may become complicated
and require a deeper understanding of how the PSI and editor features work,
acquiring the required knowledge should not be too difficult in most cases.

Documentation

Score 2
Weighted Score 4
Reasoning
The IntelliJ plugin documentation is up-to-date but not complete. According to
JetBrains “(…), it is not possible to include every feature and Use Case in the
documentation. Developing a plugin will sometimes require digging into the IntelliJ
Platform code and analysing the example implementations in other plugins” [21].
There is a tutorial for custom language plugins that explains how to integrate them
into the different editor features. Additional documentation is provided for every
editor feature.

Feature Support

Score 3
Weighted Score 9
Reasoning
A native integration into IntelliJ supports the broadest range of editor features.
Therefore, all requirements are supported.

Licence

Score 3
Weighted Score 9
Reasoning
A native integration uses interfaces that are part of the IntelliJ platform, which is
licensed under Apache 2.0.

IDE Compatibility

Score 1
Weighted Score 3
Reasoning
A native integration specifically targets IntelliJ. A plugin for VSCode has to be
developed separately.

Page 71 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.6. Native Integration

Reusability

Score 2
Weighted Score 4
Reasoning
Reusing parts of the existing implementation should be possible by using the
Context Mapper standalone library. Editor features need to be rewritten, though
abstracting and reusing the core logic may be possible.

L. Streckeisen Page 72 of 92

4. Architectural Decisions Enhanced Context Mapper IDE Integration

D: Architectural Decisions
This section captures the architectural decisions made during the PoC development.
The decision records below follow the MADR (Markdown Architectural Decision
Record) format [37], documenting the context and problem description, considered
options, the decision outcome, and its consequences per decision.

D.1: IntelliJ Integration Method

D.1.1: Context & Problem Statement
There are different ways in which an IntelliJ custom language plugin can be
implemented. Context Mapper already has a language server implementation based on
Xtext, which could be reused for the integration.

D.1.2: Considered Options
• Native IntelliJ LSP integration
• LSP4IJ LSP integration
• Native IntelliJ integration

D.1.3: Option Descriptions
See Section 3.3.

D.1.4: Decision Outcome
It was decided to use LSP4IJ for the IntelliJ integration. See Section 3.3 for details.

D.1.5: Consequnces
Using LSP4IJ creates a dependency on a third-party plugin, which means that its
maintenance or lack thereof carries more risk than native IntelliJ features.

D.2: Enabling the CML language server to provide semantic tokens

D.2.1: Context & Problem Statement
Important editor features rely on semantic tokens that represent the structure of a file.
An example of such an editor feature is syntax highlighting. The current
implementation of the CML language server does not provide semantic tokens,
meaning syntax highlighting does not work.

D.2.2: Considered Options
• Implementing the ISemanticHighlightingCalculator in Xtext
• Re-implementing the language server in Langium
• Falling back to native integration

D.2.3: Option Descriptions
Xtext configuration By implementing the ISemanticHighlightingCalculator, the

language server can be configured to return semantic tokens. Unfortunately, the
Xtext documentation [3] does not cover this language server extension. Further
extensions may also be necessary to make other editor features work, which
could prove difficult without documentation.

Page 73 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration
4.2. Enabling the CML language server to

provide semantic tokens

Re-implementation with Langium Using Langium has the advantage of using a
more future-proof framework than Xtext. The framework also proved easy to
grasp during preliminary tests. Implementing AbstractSemanticTokenProvider
supports semantic tokens. As with Xtext, further extensions of the language
server may be necessary to support other editor features.

Fallback to native implementation As described in Section 3.3, a native
integration offers the broadest range of implementing editor features. However,
this would also mean that the IntelliJ and VSCode plugins would no longer have
a common technology base.

D.2.4: Decision Outcome
In accordance with the project advisor, it was decided to re-implement the language
server with Langium. Since the future of Xtext is unknown, as little effort as possible
should go into the existing language server. While a native integration would
guarantee a smooth integration of CML into IntelliJ, the LSP approach is still the best
solution from a big-picture point of view. However, the project scope must be adjusted
as a full re-implementation comes with a significant effort.

D.2.5: Consequnces
As a consequence, the generators have to be re-implemented or adjusted so that they
can also be accessed from Node.js. Using Langium also includes the risk that the CML
integration in IntelliJ is not as smooth as with a native integration.

L. Streckeisen Page 74 of 92

5. Implementation details Enhanced Context Mapper IDE Integration

E: Implementation details
This appendix includes implementation details for the different components in the
language server and the IntelliJ plugin.

E.1: Language Server
In the language server, the registry pattern [38] was applied multiple times where the
feature implementation is specific to the AstNode type (grammar element
representation generated by Langium). The registry pattern ensures loose coupling
between the class that acts as an entry point for Langium and its implementation
logic. It also makes it easier to add further implementation classes once the language
scope is expanded to tactic DDD.

E.1.1: Semantic Token Providers
Figure 27 shows the class diagram of the semantic token provider classes in the PoC.

Figure 27: Class diagram of semantic token classes

The responsibilities are divided between the classes as follows:
ContextMapperDslSemanticTokenProvider The class is the entry point for

Langium and delegates to the AstNode-specific token provider.
SemanticTokenProviderRegistry Keeps track of the available token providers and

the AstNode type they are responsible for.
ContextMapperSemanticTokenProvider Interface for AstNode specific token

providers to implement

E.1.2: Reference Resolution
By default, Langium uses top-level elements in a document to resolve references in the
AST [17].

This reference resolution behaviour is not enough for Context Mapper since a top-
level Bounded Context can also reference a Subdomain, which is nested within a
Domain. Therefore, a ScopeProvider had to be implemented, adding all nested
elements to the resolution scope.

Page 75 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.1. Language Server

E.1.3: Autocomplete
A custom CompletionProvider was implemented to enable the language server to
suggest non-alphabetic keywords. Overriding the filterKeyword function, which
excluded the non-alphabetic keywords, resolved the issue.

While Langium did not initially include all desired keywords in its suggestions, in
other cases it did suggest too many elements, such as Bounded Contexts. Langium
automatically makes the top-level elements in a document available to other files so
that they can import them [17]. However, importing elements from other files was
excluded when the decision was made to support only a subset of the CML grammar
in this project. Consequently, Langium’s default behaviour of “exporting” elements in
the top-level scope leads to autocomplete suggestions that are not yet supported. To
resolve this, a ScopeComputation was created, which does not export anything to the
global scope. Once the CML grammar supports imports, discarding the customised
scope computation should be possible.

E.1.4: Folding Range Provider
To improve the provided folding ranges, a FoldingRangeProvider was created,
overriding the Langium default. The implementation logic is a modified version of
Langiums DefaultFoldingRangeProvider.

To ensure that the first line of a hidden CML element is still visible, a folding range is
placed at the very start of the second line of an element block. For comments a
modifiction was made, to make hidden comments look like /*...*/.

E.1.5: Hover Provider
A subclass of the Langium MultilineCommentHoverProvider was created to customise
the hover provider behaviour. The subclass implementation is an adaptation of the
implementation shared in a GitHub discussion [39]. The documentation texts for the
CML keywords are from Context Mapper’s current Xtext implementation.

L. Streckeisen Page 76 of 92

5. Implementation details Enhanced Context Mapper IDE Integration

E.1.6: Semantic Validation
Figure 28 shows the class diagram of the semantic validation classes in the PoC.

Figure 28: Class diagram of semantic validation classes

The class responsibilities are defined as follows:
ContextMapperDslValidationRegistry Entry point for Langium to get the

validator per AstNode type
ContextMapperDslValidator Generic validator registered for every AstNode type

that requires validation. Delegates validation requests to specialised validators.
ContextMapperValidationProviderRegistry Holds the mapping of the AstNode

type to the responsible specialised validator
ContextMapperValidationProvider Interface for the specialised validators to

implement

Page 77 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.1. Language Server

E.1.7: Document Formatting
Figure 29 shows the class diagram of the applied registry pattern.

Figure 29: Class diagram of formatter classes

The class responsibilities are defined as follows:
AbstractFormatter Starting point for formatter implementations provided by

Langium. Acts as an intermediary between Langium and the custom formatting
instructions.

ContextMapperDslFormatter Entry point for Langium to access the Context
Mapper formatting instructions. Delegates formatting to the responsible AstNode
formatter.

ContetxMapperFormatterRegistry Contains the mapping of the AstNode type to
the responsible formatter

ContextMapperFormatter Generic interface for the Context Mapper AstNode
formatters to implement

Unlike the semantic token provider, comments are automatically formatted and do not
have to be included in the formatter implementation.

E.1.8: Commands & Generators
The entry point for Langium commands is an ExecuteCommandHandler, which must be
implemented [17]. Figure 30 shows the command/generator setup implementation in
the language server.

L. Streckeisen Page 78 of 92

5. Implementation details Enhanced Context Mapper IDE Integration

Figure 30: Class diagram of command/generator classes

AbstractExecuteCommandHandler Holds the command registry and provides
functions to execute commands

ContextMapperCommandHandler Registers supported commands with their
executor functions.

GeneratorCommandExecutor Wrapper class to execute generators. Reads AST
model from provided source file and calls generator

ContextMapperGenerator Interface for generators to implement

E.2: IntelliJ Plugin
Below, the LSP4IJ configuration changes and the generator action implementation are
documented in more detail.

E.2.1: LSP4IJ Configuration
The following configuration changes for LSP4IJ were applied.

Syntax Highlighting
For the editor to highlight the semantic tokens provided by the language server, a
SemanticTokensColorsProvider has to be implemented and registered in the
plugin.xml [22]. The colour provider maps token types and modifiers to IntelliJ’s
TextAttributesKey objects, determining the token’s highlighting colour.

Hyperlinking
To resolve the issue of the whole file being displayed as a hyperlink, the LSP4IJ
LSPSemanticTokensStructurelessFileViewProviderFactory was registered as a file
view provider in the plugin.xml [22].

Code Folding
To ensure that the folding ranges provided by the language server were applied
correctly, the LSP4IJ LSPFoldingRangeBuilder had to be registered as the folding
builder for CML in the plugin.xml [22].

Structure View
For LSP4IJ to populate the structure view, the
LSPDocumentSymbolStructureViewFactory had to be registered for the CML in the

Page 79 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.2. IntelliJ Plugin

plugin.xml [22]. This configuration change also enabled document breadcrumbs
(display the path from the document root to the current cursor position) to work.

E.2.2: Generator Action
IntelliJ provides the “Action” concept to make plugin functionality available to users
[21]. Depending on the applied configuration, an action is displayed in IntelliJ’s
toolbar or as a menu item.

The class diagram below (Figure 31) explains the implementation of the PlantUML
generator in the IntelliJ plugin.

Figure 31: Class diagram of the action/generator classes in the IntelliJ plugin

PlantUMLAction The entry point for IntelliJ to execute the action needs to be
registered in the plugin.xml.

ContextMapperGenerator Abstracted generator that takes an LSP command,
triggers & waits on its execution. While the generator is currently only used for
the PlantUML generation, it can also handle other generator commands.

CommandExecutor Class provided by LSP4IJ to trigger command executions in the
language server

L. Streckeisen Page 80 of 92

6. Manual Tests Enhanced Context Mapper IDE Integration

F: Manual Tests
To verify the correct configuration of LSP4IJ in the IntelliJ plugin, a few manual tests
have been executed. The tests are documented below. All tests expect a started IntelliJ
Community 2024.3.5 instance with the Context Mapper plugin installed, and the
context-mapper-examples¹ project opened.

F.1: Syntax Highlighting
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml

No syntax
errors
displayed,
keywords are
highligted

26.05.2025 No syntax
errors,
highlighting as
expected

Pass

2 Create a new
CML file and
type:
ValueRegister
TestRegister
{

A syntax error
reports the
missing closing
brace

26.05.2025 Syntax error
appeared

Pass

Table 10: Manual test execution for syntax highlighting feature

F.2: Hyperlinking
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
Ctrl-Hover over
the usage of
CargoBooking -
Context

CargoBooking -
Context is
displayed as
hyperlink

26.05.2025 Hyperlink
displayed as
expected

Pass

2 Ctrl-Click on
the usage of
CargoBooking -
Context

The caret
moved to the
definition of
CargoBooking -
Context

25.06.2025 Caret moved as
expected

Pass

Table 11: Manual test execution for hyperlinking feature

¹https://github.com/ContextMapper/context-mapper-examples

Page 81 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.3. Occurrence Highlighting

F.3: Occurrence Highlighting
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
place caret in
CargoBooking -
Context

All occurrences
of
CargoBooking -
Context in the
file are
highlighted

26.05.2026 All occurrences
highlighted

Pass

Table 12: Manual test execution for occurrence highlighting feature

F.4: Autocomplete
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Create a new
CML file and
type Bou

The editor
suggests
BoundedContext

26.05.2025 BoundedContext

was suggested
Pass

Table 13: Manual test execution for autocomplete feature

F.5: Code Folding
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
collapse the
Context Map

ContextMap
DDDSampleMap

{...} is
displayed

26.05.2025 Folding worked
as expected

Pass

2 Expand the
collapsed
Context Map

The complete
context map is
visiable again

26.05.2025 Expand worked
as expected

Pass

Table 14: Manual test execution for code folding feature

F.6: Keyword Tooltips
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
hover over the
ContextMap

keyword

A tooltip
explaining the
Context Map
pattern appears

26.05.2025 Tooptip
appeared

Pass

L. Streckeisen Page 82 of 92

6. Manual Tests Enhanced Context Mapper IDE Integration

Table 15: Manual test execution for keyword tooltip feature

F.7: Structure outline
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
open the
structure view

The Context
Map and the
three Bounded
Contexts are
outlined

26.05.2025 Context Map
and Bounded
Contexs were
outlined

Pass

Table 16: Manual test execution for structure outline feature

F.8: Find Usages
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
Ctrl-Click on the
definition of
CargoBooking -
Context

The editor
reports 4 usages
(the definition
itself and three
others)

26.05.2025 4 usages found Pass

Table 17: Manual test execution for 'Find Usages' feature

F.9: Document Formatting
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml, add
a space after
DDDSampleMap

and execute the
“Format Code”
action

The added
space was
removed

26.05.2025 The additional
space was
removed

Pass

Table 18: Manual test execution for document formatting feature

Page 83 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.10. PlantUML Generator

F.10: PlantUML Generator
ID Step

Description
Expected
Results

Executed Date Actual Result Status

1 Open file DDD-
Sample-
Stage-1.cml and
right-click in
the editor

A Context
Mapper menu
item appears in
the opened
popup

26.05.2025 The menu item
was dispalyed

Pass

2 Click on the
“Generate
PlantUML
Diagrams”
menu item

A src-gen folder
with a
component
diagram is
created

26.05.2025 The component
diagram was
created

Pass

Table 19: Manual test execution for PlantUML generator feature

L. Streckeisen Page 84 of 92

7. Glossary & List of Acronyms Enhanced Context Mapper IDE Integration

G: Glossary & List of Acronyms

ADR: Architectural Decision Record

API: Application Programming Interface

ASR: Architecturally Significant Requirement

AST: Abstract Syntax Tree - Data tree containing information about language
elements in a file

CI: Continuous Integration

CLI: Command Line Interface

CML: Context Mapping Language

DDD: Domain-Driven Design

DSL: Domain Specific Language - Programming language customised to a specific
Domain

IDE: Integrated Development Environment

JSON-RPC: JavaScript Object Notation - Remote Procedure Call

JVM: Java Virtual Machine

LSP: Language Server Protocol - Protocol for communication between development
tools and language servers

MADR: Markdown Architectural Decision Record

MPS: Meta Programming System - Language workbench by JetBrains to create
custom DSLs

NFR: Non-Functional Requirement

PSI: Program Structure Interface - Interface for IntelliJ plugins to interact with
language file contents

PoC: Proof of Concept

QoS: Qualify-of-Service

RegEx: Regular Expression - Expression used to match elements in a text

SDK: Software Development Kit

UML: Unified Modelling Language

VDAD: Value-Driven Analysis & Design - Iterative process aiming to combine
value-driven approaches with software engineering practices

Page 85 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

H: Bibliography
[1] S. Kapferer, “A Domain-specific Language for Service Decomposition,” Dec. 2018.

[Online]. Available: https://eprints.ost.ch/id/eprint/722/1/HS18-MSE-Stefan-
Kapferer.pdf

[2] S. Kapferer, O. Zimmermann, and M. Stocker, “Value-Driven Analysis and
Design: Applying Domain-Driven Practices in Ethical Software Engineering,” in
Proceedings of the 29th European Conference on Pattern Languages of Programs,
People, and Practices, in EuroPLoP '24. New York, NY, USA: Association for
Computing Machinery, 2024. doi: 10.1145/3698322.3698332.

[3] Eclipse-Foundation, “Xtext Documentation.” Accessed: Feb. 25, 2025. [Online].
Available: https://eclipse.dev/Xtext/documentation

[4] C. Dietrich, “Call To Action: Secure the future maintenance of Xtext.” Accessed:
Feb. 20, 2025. [Online]. Available: https://github.com/eclipse-xtext/xtext/issues/
1721

[5] Microsoft, “Language Server Protocol.” Accessed: Feb. 25, 2025. [Online].
Available: https://microsoft.github.io/language-server-protocol/

[6] Microsoft, “Language Server Sequence.” Accessed: Feb. 25, 2025. [Online].
Available: https://microsoft.github.io/language-server-protocol/overviews/lsp/
img/language-server-sequence.png

[7] StackExchange, “Stack Overflow Annual Developer Survey.” [Online]. Available:
https://survey.stackoverflow.co/2024/

[8] ContextMapper, “context-mapper-dsl.” Accessed: Feb. 28, 2025. [Online].
Available: https://github.com/ContextMapper/context-mapper-dsl

[9] ContextMapper, “ContextMapper Documentation.” Accessed: Feb. 19, 2025.
[Online]. Available: https://contextmapper.org/docs

[10] C. Larman, Applying UML and patterns : an introduction to object-oriented
analysis and design and the unified process, 2nd ed. Upper Saddle River, NJ:
Prentice Hall PTR, 2002.

[11] ContextMapper, “context-mapper-examples.” Accessed: Mar. 04, 2025. [Online].
Available: https://github.com/ContextMapper/context-mapper-examples

[12] “Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Product quality model.” [Online].
Available: https://www.iso.org/standard/78176.html

[13] A. S. Foundation, “ASF 3rd Party Licence Policy.” Accessed: Mar. 10, 2025.
[Online]. Available: https://www.apache.org/legal/resolved.html

[14] M. Fowler, “Language Workbench.” Accessed: Sep. 09, 2008. [Online]. Available:
https://martinfowler.com/bliki/LanguageWorkbench.html

[15] JetBrains, “MPS User's Guide.” Accessed: Mar. 11, 2025. [Online]. Available:
https://www.jetbrains.com/help/mps

L. Streckeisen Page 86 of 92

https://eprints.ost.ch/id/eprint/722/1/HS18-MSE-Stefan-Kapferer.pdf
https://eprints.ost.ch/id/eprint/722/1/HS18-MSE-Stefan-Kapferer.pdf
https://doi.org/10.1145/3698322.3698332
https://eclipse.dev/Xtext/documentation
https://github.com/eclipse-xtext/xtext/issues/1721
https://github.com/eclipse-xtext/xtext/issues/1721
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://survey.stackoverflow.co/2024/
https://github.com/ContextMapper/context-mapper-dsl
https://contextmapper.org/docs
https://github.com/ContextMapper/context-mapper-examples
https://www.iso.org/standard/78176.html
https://www.apache.org/legal/resolved.html
https://martinfowler.com/bliki/LanguageWorkbench.html
https://www.jetbrains.com/help/mps

8. Bibliography Enhanced Context Mapper IDE Integration

[16] M. Fowler, “Projectional Editing.” Accessed: Jan. 14, 2008. [Online]. Available:
https://martinfowler.com/bliki/ProjectionalEditing.html

[17] Eclipse-Foundation, “Langium Documentation.” Accessed: Mar. 13, 2025.
[Online]. Available: https://langium.org/docs

[18] UseTheSource, “Rascal Documentation.” Accessed: Mar. 13, 2025. [Online].
Available: https://www.rascal-mpl.org/docs

[19] Spoofax, “Spoofax.” Accessed: Mar. 12, 2025. [Online]. Available: https://spoofax.
dev/

[20] Spoofax, “Spoofax 3.” Accessed: Mar. 12, 2025. [Online]. Available: https://
spoofax.dev/spoofax-pie/develop/

[21] JetBrains, “IntelliJ Platform Plugin SDK.” Accessed: 2025. [Online]. Available:
https://plugins.jetbrains.com/docs/intellij/welcome.html

[22] RedHat, “LSP4IJ Documentation.” Accessed: 2025. [Online]. Available: https://
github.com/redhat-developer/lsp4ij/tree/main/docs

[23] J. B. Kühnapfel, Scoring und Nutzwertanalysen : Ein Leitfaden Für Die Praxis., 1st
ed. Wiesbaden: Springer Fachmedien Wiesbaden GmbH, 2021.

[24] O. Zimmermann, “Architectural Significance Test.” Accessed: Oct. 01, 2020.
[Online]. Available: https://medium.com/olzzio/architectural-significance-test-9ff
17a9b4490

[25] E. Evans, Domain-driven design : tackling complexity in the heart of software, 4th
prin. Boston: Addison-Wesley, 2004.

[26] S. Brown, “C4 model.” Accessed: May 15, 2025. [Online]. Available: https://c4
model.com/

[27] M. Sujew and L. Streckeisen, “Workaround for optional elements in unordered
groups.” Accessed: Apr. 14, 2025. [Online]. Available: https://github.com/eclipse-
langium/langium/discussions/1903

[28] G. Fontorbe, “Hide non alphabetic tokens.” Accessed: Sep. 30, 2022. [Online].
Available: https://github.com/eclipse-langium/langium/pull/697

[29] R. Cox, “Surviving software dependencies,” Commun. ACM, vol. 62, no. 9, pp. 36–
43, Aug. 2019, doi: 10.1145/3347446.

[30] JetBrains, “Grammar-Kit.” Accessed: Mar. 24, 2025. [Online]. Available: https://
github.com/JetBrains/Grammar-Kit

[31] F. Campagne, “JetBrains Meta Programming System.” Accessed: Mar. 10, 2025.
[Online]. Available: https://stackoverflow.com/a/31186463

[32] JetBrains, “MPS Core Versions.” Accessed: Mar. 17, 2025. [Online]. Available:
https://plugins.jetbrains.com/plugin/7075-mps-core/versions

Page 87 of 92 L. Streckeisen

https://martinfowler.com/bliki/ProjectionalEditing.html
https://langium.org/docs
https://www.rascal-mpl.org/docs
https://spoofax.dev/
https://spoofax.dev/
https://spoofax.dev/spoofax-pie/develop/
https://spoofax.dev/spoofax-pie/develop/
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://github.com/redhat-developer/lsp4ij/tree/main/docs
https://github.com/redhat-developer/lsp4ij/tree/main/docs
https://medium.com/olzzio/architectural-significance-test-9ff17a9b4490
https://medium.com/olzzio/architectural-significance-test-9ff17a9b4490
https://c4model.com/
https://c4model.com/
https://github.com/eclipse-langium/langium/discussions/1903
https://github.com/eclipse-langium/langium/discussions/1903
https://github.com/eclipse-langium/langium/pull/697
https://doi.org/10.1145/3347446
https://github.com/JetBrains/Grammar-Kit
https://github.com/JetBrains/Grammar-Kit
https://stackoverflow.com/a/31186463
https://plugins.jetbrains.com/plugin/7075-mps-core/versions

Enhanced Context Mapper IDE Integration

[33] Eclipse-Foundation, “Langium Releases.” Accessed: Mar. 13, 2025. [Online].
Available: https://github.com/eclipse-langium/langium/releases

[34] GitHub, “Langium Contributors.” Accessed: Mar. 17, 2025. [Online]. Available:
https://github.com/eclipse-langium/langium/graphs/contributors

[35] GitHub, “Rascal Contributors.” Accessed: Mar. 13, 2025. [Online]. Available:
https://github.com/usethesource/rascal/graphs/contributors

[36] GitHub, “LSP4IJ Contributors.” Accessed: Mar. 17, 2025. [Online]. Available:
https://github.com/redhat-developer/lsp4ij/graphs/contributors

[37] ADR-Organization, “Markdown Architectural Decision Records.” Accessed: Mar.
21, 2025. [Online]. Available: https://adr.github.io/madr/

[38] M. Fowler and D. Rice, Patterns of enterprise application architecture. in The
Addison Wesley signature series. Boston [etc: Addison-Wesley, 2003.

[39] Y. Daveluy, “Hovers on keywords.” Accessed: Jul. 27, 2024. [Online]. Available:
https://github.com/eclipse-langium/langium/discussions/1603

L. Streckeisen Page 88 of 92

https://github.com/eclipse-langium/langium/releases
https://github.com/eclipse-langium/langium/graphs/contributors
https://github.com/usethesource/rascal/graphs/contributors
https://github.com/redhat-developer/lsp4ij/graphs/contributors
https://adr.github.io/madr/
https://github.com/eclipse-langium/langium/discussions/1603

9. List of Figures Enhanced Context Mapper IDE Integration

I: List of Figures

Figure 1 C4 container diagram of the developed proof of concept iv
Figure 2 Screenshot of the CML editor in IntelliJ . iv
Figure 3 Example sequence between a language server and a development tool [6] . 2
Figure 4 Context Mapper Use Cases (Part 1) . 5
Figure 5 Context Mapper Use Cases (Part 2) . 6
Figure 6 Context map of the project . 26
Figure 7 C4 system context diagram of the Context Mapper IntelliJ plugin 27
Figure 8 C4 container diagram of the Context Mapper IntelliJ plugin 27
Figure 9 C4 component diagram of the Context Mapper Language Server 29
Figure 10 C4 component diagram of the Context Mapper Plugin . 30
Figure 11 Deployment diagram of the Context Mapper IntelliJ plugin 31
Figure 12 Screenshot of an error message in the CML editor from semantic

validation . 34
Figure 13 Hyperlinking after the initial LSP4IJ setup . 35
Figure 14 Screenshot of an autocomplete suggestion in the CML editor 36
Figure 15 A collapsed Context Map after the initial LSP4IJ setup . 36
Figure 16 Screenshot of a keyword tooltip . 37
Figure 17 Screenshot of the IntelliJ structure tool window . 37
Figure 18 Screenshot of the "Find Usages" action . 37
Figure 19 Screenshot of a generated PlantUML component diagram in IntelliJ 38
Figure 20 Screenshot of Qodana scan results after the PoC was finalised 42
Figure 21 Structure of an MPS language definition . 57
Figure 22 Example of an MPS concept definition . 58
Figure 23 MPS editor definition using graphical elements . 59
Figure 24 Example of an MPS editor presented to the language user 60
Figure 25 File structure of the basic IntelliJ LSP setup . 61
Figure 26 LSP4IJ test UI config . 61
Figure 27 Class diagram of semantic token classes . 75
Figure 28 Class diagram of semantic validation classes . 77
Figure 29 Class diagram of formatter classes . 78
Figure 30 Class diagram of command/generator classes . 79
Figure 31 Class diagram of the action/generator classes in the IntelliJ plugin 80

Page 89 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

J: List of Tables
Table 1 Functional Requirements for IntelliJ plugin PoC . 7
Table 2 Overview of project NFRs . 11
Table 3 Technology evaluation criteria . 21
Table 4 Utility analysis results . 23
Table 5 Architectural Significance of non-functional requirements 25
Table 6 Fulfilment status of project requirements . 40
Table 7 Risk matrix . 45
Table 8 Identified long-term risks for Langium . 46
Table 9 Identified long-term risks for LSP4IJ . 48
Table 10 Manual test execution for syntax highlighting feature . 81
Table 11 Manual test execution for hyperlinking feature . 81
Table 12 Manual test execution for occurrence highlighting feature 82
Table 13 Manual test execution for autocomplete feature . 82
Table 14 Manual test execution for code folding feature . 82
Table 15 Manual test execution for keyword tooltip feature . 83
Table 16 Manual test execution for structure outline feature . 83
Table 17 Manual test execution for 'Find Usages' feature . 83
Table 18 Manual test execution for document formatting feature . 83
Table 19 Manual test execution for PlantUML generator feature . 84

L. Streckeisen Page 90 of 92

11. List of Code Listings Enhanced Context Mapper IDE Integration

K: List of Code Listings
Listing 1 Example of a Context Map modelled in the CML . 4
Listing 2 CML definition block example [11] . 8
Listing 3 CML definitions with documentation [11] . 9
Listing 4 Ambiguous comment grammar rules in CML Xtext grammar [8] 32
Listing 5 Langium grammar comment terminal rules . 32
Listing 6 Use of optional elements in an unordered group in the CML Xtext grammar

[8] . 32
Listing 7 Aggregate User Requirements rule in the CML Xtext grammar [8] 33
Listing 8 Resolved Aggregate user requirements linking issue . 34
Listing 9 Langium grammar of the generation getting started example 60
Listing 10 Grammar definition of the Simple language from the custom language

plugin tutorial . 62

Page 91 of 92 L. Streckeisen

Disclaimer

Parts of this thesis were rephrased using the following tools:
• Grammarly¹
• LanguageTool²
• ChatGPT³

¹https://www.grammarly.com/
²https://languagetool.org/de
³https://chatgpt.com/

	Abstract
	Management Summary
	Introduction
	Objective
	Results

	Acknowledgements
	- Part Technical Report
	Introduction
	Project Context
	Xtext
	Language Server Protocol

	Motivation
	Goals

	System Analysis & Requirements
	Existing System Analysis
	Context Mapper DSL
	Use Cases

	Requirements
	Functional Requirements
	FR 1.1 - Syntax Highlighting
	FR 1.2 - Hyperlinking
	FR 1.3 - Occurrence Highlighting
	FR 1.4 - Autocomplete
	FR 1.5 - Code Folding
	FR 1.6 - Keyword Tooltip
	FR 1.7 - Structure Outline
	FR 1.8 - Find Usages
	FR 1.9 - Document Formatting
	FR 1.10 - Definition Tooltip
	FR 2.1 - Missing Bounded Context Quick Fix
	FR 3.1 - Generate a Visual Context Map
	FR 4.1 - Generate PlantUML Diagrams

	Non-Functional Requirements
	NFR 1: Reusability - Minimise duplicated code between IntelliJ and VSCode implementations
	NFR 2: Reliability - Plugin stability
	NFR 3: Performance Efficiency - CML editor
	NFR 4: Performance Efficiency - PlantUML diagram generation
	NFR 5: Modifiability - Extensibility for additional generators
	NFR 6: Maintainability - Code quality
	NFR 7: Modularity - Separation of concerns
	NFR 8: Installability - IntelliJ compatibility
	NFR 9: Legal Compliance - Licence compatibility
	NFR 10: Appropriateness/Recognizability - IntelliJ best practices

	Technology Exploration
	Language Workbenches
	JetBrains MPS
	Langium
	Rascal
	Spoofax
	Others

	IntelliJ Integration Options
	LSP Integration
	IntelliJ LSP Support
	LSP4IJ

	Native IntelliJ Integration

	Technology Decision
	Criteria
	Workbench Evaluation
	JetBrains MPS
	Langium
	Rascal

	Integration Option Evaluation
	IntelliJ LSP
	LSP4IJ
	Native Integration

	Result

	Proof of Concept Implementation
	Architecture
	Architecturally Significant Requirements
	Strategic Design
	C4 Model
	Software System
	Containers
	Language Server Components
	Plugin Components
	Code

	Deployment

	Context Mapper Grammar Changes
	Comments
	Optional Elements in Unordered Groups
	User Requirement Linking in Aggregate

	Implemented Features
	Semantic Validation
	Syntax Highlighting (FR 1.1)
	Hyperlinking (FR 1.2)
	Occurrence Highlighting (FR 1.3)
	Autocomplete (FR 1.4)
	Code Folding (FR 1.5)
	Keyword Tooltips (FR 1.6)
	Structure Outline (FR 1.7)
	Display Usages (FR 1.8)
	Document Formatting (FR 1.9)
	Definition Tooltips (FR 1.10)
	PlantUML Generator (FR 4.1)

	Results
	Fulfilment of Requirements
	Changed project scope
	FR 1.10 - Definition tooltips
	FR 4.1 - Generate PlantUML diagrams
	NFR 1 - Minimise duplicated code between IntelliJ and VSCode
	NFR 2 - Plugin stability
	NFR 3 - CML editor efficiency
	NFR 4 - PlantUML diagram generation efficiency
	NFR 5 - Extensibility for additional generators
	NFR 6 - Code quality
	NFR 7 - Separation of concerns
	NFR 8 - IntelliJ compatibility
	NFR 9 - Licence compatibility
	NFR 10 - IntelliJ best practices

	Open Issues
	Brace Matching
	Autocomplete
	IntelliJ Plugin Testing

	Experience Report

	Outlook
	Long-Term Risk Analysis
	Langium
	LSP4IJ
	Conclusion

	Future Work
	Migration of Remaining Context Mapper Features
	Grammar Completion
	Quick Fixes and Architectural Refactorings
	Validators
	Generators
	Discovery
	ArchUnit Extension
	Context Mapper Java Library

	Suggestion for a Future Project

	Conclusion
	- Part Appendix
	Task Description
	Initial Situation
	Goals and Deliverables
	Support
	Project Execution
	Tools
	Documentation

	Technology Exploration Tests
	JetBrains MPS
	Langium
	IntelliJ LSP
	LSP4IJ
	Native Integration

	Detailed Technology Evaluation
	JetBrains MPS
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Langium
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Rascal
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	IntelliJ LSP
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	LSP4IJ
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Native Integration
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Architectural Decisions
	IntelliJ Integration Method
	Context & Problem Statement
	Considered Options
	Option Descriptions
	Decision Outcome
	Consequnces

	Enabling the CML language server to provide semantic tokens
	Context & Problem Statement
	Considered Options
	Option Descriptions
	Decision Outcome
	Consequnces

	Implementation details
	Language Server
	Semantic Token Providers
	Reference Resolution
	Autocomplete
	Folding Range Provider
	Hover Provider
	Semantic Validation
	Document Formatting
	Commands & Generators

	IntelliJ Plugin
	LSP4IJ Configuration
	Syntax Highlighting
	Hyperlinking
	Code Folding
	Structure View

	Generator Action

	Manual Tests
	Syntax Highlighting
	Hyperlinking
	Occurrence Highlighting
	Autocomplete
	Code Folding
	Keyword Tooltips
	Structure outline
	Find Usages
	Document Formatting
	PlantUML Generator

	Glossary & List of Acronyms
	Bibliography
	List of Figures
	List of Tables
	List of Code Listings

