INSTITUTE FOR OST

SOFTWARE .
Eastern Switzerland

University of Applied Sciences

Bringing Context Mapper to the
Developer’s Workflow

Enhanced IDE Integration and Tooling Support

Department of Computer Science
OST - Eastern Switzerland University of Applied Sciences
Campus Rapperswil-Jona

Bachelor Thesis, Spring Term 2025

Author: Lukas Streckeisen
Advisor: Stefan Kapferer

Project Partner: IFS Institute for Software
External Co-Examiner: Roman Blum

Internal Co-Examiner: Prof. Dr. Farhad D. Mehta

Abstract

Context Mapper provides a Domain-Specific Language (DSL) for modelling software
systems using Domain-Driven Design patterns. The Context Mapper DSL (CML)
language supports patterns from strategic and tactic DDD, as well as Value-Driven
Analysis and Design. Context Mapper currently offers an Eclipse and VSCode plugin.
IntelliJ, a popular IDE among Java developers, is not yet supported, potentially
preventing Context Mapper’s widespread adoption. This thesis aims to enhance the
developer’s workflow by developing a proof of concept for a Context Mapper IntelliJ
plugin and outline a path for the plugin to be extended to full functionality. To achieve
this goal, this thesis provides an overview of current language workbenches
(frameworks for creating DSLs) and options for integrating DSLs in Intelli]. From
these technologies, the thesis evaluates the most suited technology to develop the
proof of concept (PoC). The implemented plugin uses LSP41]J, an open-source IntelliJ
plugin based on the Language Server Protocol, and Langium, a TypeScript DSL
framework. The PoC successfully implemented important editor features, such as
syntax highlighting, hyperlinking, autocomplete and a PlantUML component diagram
generator. Future work includes providing a Java library for reading and writing CML
models, so Context Mapper’s existing Java tools can be migrated as well.

Keywords: Context Mapper, Domain-Specific Language, Language Server, Intelli],
Editor Support

ii

Management Summary

Introduction

Context Mapper provides a Domain-Specific Language called Context Mapping
Language (CML) for modelling software systems on the basis of Domain-Driven
Design patterns. The language supports patterns from strategic and tactic Domain-
Driven Design, as well as Value-Driven Analysis and Design. The current
implementation of Context Mapper is based on Xtext, which is a Java-based
framework for creating Domain-Specific Languages. With Xtext, Context Mapper
offers an Eclipse plugin out of the box. Additionally, based on the language server that
comes with Xtext, it also provides an extension for VSCode.

Intelli] has become a popular development environment among Java developers, for
which Context Mapper does not yet offer editor support. This situation requires
developers to use two development environments, which potentially prevents the
widespread adoption of Context Mapper.

Objective

The goal of this thesis is to enhance the workflow for developers using Intelli], by
developing a proof of concept for a Context Mapper Intelli] plugin. To achieve this
goal, this thesis provides an overview of current language workbenches (frameworks
for creating Domain-Specific Languages) and options for integrating languages in
Intelli]. From these technologies, the thesis selected the most suited technology to
develop the proof of concept. For the not-implemented features, the thesis outlines
how these features can be implemented in a future project.

Results

The technology analysis covered three options each for language workbenches and
Intelli] integration options. The covered language workbenches are JetBrains MPS,
Langium and Rascal. Based on a utility analysis, Langium, a TypeScript framework,
proved to be the most suitable, capable and stable workbench for Context Mapper. The
analysed integration options are a language server integration via Intelli]’s LSP
(Language Server Protocol) support, a language server integration via the LSP4I]
IntelliJ plugin, and native integration. Since a language server is the most suitable
approach from an architectural perspective, the language server integration options
received high scores in the utility analysis. In the end, LSP4I] received the highest
score due to its availability in both Intelli] Community and Ultimate versions, as well
as its superior set of supported LSP capabilities.

The proof of concept was implemented using both Langium and LSP4]]J. Figure 1
shows the resulting architecture.

iii

Intelli) IDEA - Containers

Intelli) IDEA T~

[system] ~.

. . Intelli) Editor
triggers actions

Context Mapper Plugin

[Kotlin, intelli} Plugin SDK] Intelli)'s text editor

configures -

support in Intelli)

LSP4l1] Plugin

Manages language server
configurations and LSP

! |
I I
! |
I I
! |
I I
! |
I I
! |
I I
! |
: Provides Context Mapper _— :
| - |
! I
I I
! I
! |
! I
! |
I I
: integration for Intelli) :
! |

Context Mapper
Language Server

Provides language server

capabilities for Context
Mapper

Legend
system
container

0 system boundary

Figure 1: C4 container diagram of the developed proof of concept

With LSP4]] in charge of interactions between the language server and IntelliJ, the
Context Mapper plugin limits itself to configuring LSP4I]. All feature logic is placed in
the language server, which gives Context Mapper the flexibility to target other
development environments at a later point.

The proof of concept successfully implemented most of the selected subset of Context
Mapper features. Figure 2 shows the Context Mapper Intelli] editor and a generated
PlantUML component diagram.

CE context-mapper-examples 79 master Current File v
[0 @ DDD-Sample-Stage-1.cml : ¢ DDD-Sample-Stage-1.puml g
s ContextMap DDDSampleMap { v E0=8 <2 @RCZ ® 0 @
contains CargoBookingContext r]
o contains VoyagePlanningContext Lz o)
20 contains LocationContext]
i
CargoBookingContext [SK]<->[SK] VoyagePlanningContext o]
- Upstream—,ﬁowus(ream
'
CargoBookingContext <- LocationContext | | !
‘yconsume)
= . A I Upstream-Qownstream
= VoyagePlanningContext <- LocationContext ! '
R S \
o ¥ T | CargoBookingContext consume
ontext Car ingContext : B
BoundedContext VoyagePlanningContext Shared Kerne\/’/
14 BoundedContext Lucatinn[}untextl P
(]
[©) VoyagePlanningContext
54 {3} LocationContext
O context-mapper-examples > src > omain > cml > ddd-sample > @) DDD-Sample-Stage-1.cml 14:31 LF UTF-8 4spaces

Figure 2: Screenshot of the CML editor in IntelliJ

Future work includes providing a Java library for reading and writing CML models, so
Context Mapper’s existing Java tools can be migrated as well.

iv

Acknowledgements

I would like to thank Stefan Kapferer for his guidance during my thesis and for
providing valuable feedback on my work. I am also grateful to Jann Flepp for sharing
his experiences from his own thesis. Furthermore, I would like to thank the
maintainers of LSP4IJ and Langium for their prompt and helpful responses to my
questions. Finally, I sincerely thank my family and friends for their unwavering
support.

Table of Contents

Part I - Technical Report

1. INtroductionooooii i e 1
1.1, Project Context .. .o..iuni it 1
1.2, MOtIVationoou 2
1.3 GOALS e 3

2. System Analysis & Requirementsoooiiiiiiiiiiiii i 4
2.1. Existing System Analysisoooeiiiiiiiiiii 4
2.2, ReqUITEIMENTES . ..ottt e e 6

3. Technology Explorationt 15
3.1. Language Workbenches 15
3.2. Intelli] Integration OPptionSvuuuiiit et 16
3.3. Technology DeciSionouuuuiiiiiiiiii i 18

4. Proof of Concept Implementation ... 24
4.1, Architecture 24
4.2. Context Mapper Grammar Changescooiiiiiiiiiiiiii i, 31
4.3. Implemented Featuresoooiiiiiiiii 34

5. RESULLS oo 39
5.1. Fulfilment of Requirementscooouiiiiiiiiiiiii i, 39
5.2, OPENISSUES ...ttt e 42
5.3. Experience Reporto 43

6. OULIOOK ... 45
6.1. Long-Term Risk Analysisouiiiiiiiiiiii i 45
6.2. Future WOrK 49

7. CoNCIUSION ...t 52

Part II - Appendix

A: Task Descriptionooouuii i 54

B: Technology Exploration Testscoouuuuiiiiiiiiiiiii i, 57

C: Detailed Technology Evaluation ..., 63

D: Architectural Decisionsuuuuiiiiiiiiiiii 73

E: Implementation detailso 75

Fr Manual TestSottt 81

G: Glossary & List 0f ACTONYINSttt 85

H: Bibliography ... 86

L LISt Of FIGUIES .o oottt e e 89

T LSt Of Tables ..o 90

K: List of Code LiStingsoueeiiiiiiitt e 91

1. Introduction Enhanced Context Mapper IDE Integration

Part I - Technical Report

1. Introduction

This section describes the context (Section 1.1), motivation (Section 1.2) and goals
(Section 1.3) of this thesis. The thesis context describes Context Mapper itself and
frameworks relevant to Context Mapper. The motivation and goals are based on the
thesis task description, which can be found in full in Appendix A.

1.1. Project Context

Context Mapper [1] provides a DSL (Domain Specific Language) and tools to model
software systems on the basis of DDD (Domain-Driven Design) patterns. It was
mainly created to support strategic DDD patterns like Context Mapping, but also has
elements for tactic DDD like Domain modelling. The CML (Context Mapping
Language) also offers support for process flows, user requirements, stakeholders, and
values from Value-Driven Analysis & Design'. For editor support, Context Mapper
offers plugin extensions for Eclipse? and VSCode®. These extensions include the CML
editor (syntax highlighting, autocomplete, etc.), as well as the capabilities for story
splitting* and architectural refactorings®. In addition, the extensions include
generators that convert the defined contexts to, e.g. a PlantUML diagram.

Context Mapper also offers additional tools, such as a discovery library to generate a
CML model from an existing project. However, these tools are out of scope for this
thesis.

Xtext (see Section 1.1.1) lays the foundation of the CML. Context Mapper heavily
relies on Xtext for the CML parser, Eclipse plugin and LSP (Language Server Protocol)
language server (see Section 1.1.2). The existing VSCode plugin leverages the language
server generated by Xtext.

1.1.1. Xtext

Xtext [3], part of the Eclipse project, is a framework for creating DSLs. By defining a
language grammar for the DSL, Xtext automatically generates a parser and text editor,
among other resources. The text editor includes code completion, syntax highlighting,
syntactic validation, hyperlinking and more. Xtext can also build an Eclipse plugin,
which makes editor support for DSLs available to others. For integration with other
IDE (Integrated Development Environment)s, Xtext supports the generation of LSP
language servers.

In 2020, the core maintainers made a call to action [4] regarding the future
maintenance of Xtext. The blog post outlines the decreasing numbers of active

'Process aiming to combine value-driven approaches with software engineering practices [2]
*https://eclipseide.org/

*https://code.visualstudio.com/
*https://socadk.github.io/design-practice-repository/activities/DPR-StorySplitting.html
*https://contextmapper.org/docs/architectural-refactorings/

Page 1 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 1.2. Motivation

contributors and the difficulties of keeping up with Eclipse releases. As of February
2024, Xtext is still being maintained; however, there is no indication that the situation
has changed much.

1.1.2. Language Server Protocol

The purpose of LSP [5] is to enable language servers to integrate with different
development tools without having to consider their implementation specifics. LSP
defines a protocol for development tools to communicate with language servers via
JSON-RPC (JavaScript Object Notation - Remote Procedure Call)'. When interacting
with a language file in a development tool, the tool sends a request to the language
server, which then replies with the information required for the tool to offer editor
support. Figure 3 shows an example of how such an interaction could look like.

Development Language Server Protocol Language
Tool (JSON-RPC) Server

Notification: textDocument/didOpen; Params: document
User opens document >

. Notification: textDocument/didChange; Params: {documentURI, changes}
User edits document >

Notification: textDocument/publishDiagnostics; Params: Diagnostic[] Server publishes

errors and warnings
Request: textDocument/definition Params: {documentURI, position}

User executes
“Goto definition” Response: textDocument/definition; Result: Location

Notification: textDocument/didClose; Params: documentURI
User closes document

Figure 3: Example sequence between a language server and a development tool [6]

Supported language features are grouped into capabilities. Not every language server
and development tool supports the same capabilities. During initialisation, the
supported capabilities are negotiated. This capability negotiation allows language
servers to be reused, but it also means that the editing experience for a language can
differ from tool to tool.

1.2. Motivation

According to the 2024 StackOverflow developer survey [7], VSCode is used by 73.6%,
Intelli] by 26.8%, and Eclipse by 9.4% of developers. Currently, Context Mapper offers
plugins for Eclipse and VSCode, so developers using Intelli] either do not use Context
Mapper or have to use a second IDE. This situation is inconvenient for Intelli]
developers and potentially hinders the widespread use of Context Mapper. Therefore,
Context Mapper should offer an editor for IntelliJ, improving the developer’s
workflow. In light of Eclipse’s low popularity, Context Mapper’s editor support for
Eclipse might be abandoned in the future.

'https://www.jsonrpc.org/specification

L. Streckeisen Page 2 of 92

1. Introduction Enhanced Context Mapper IDE Integration

1.3. Goals

This thesis aims to create a PoC (Proof of Concept) IntelliJ plugin for Context Mapper.
To do that, first, all available options for integrating Context Mapper’s DSL into
Intelli] were analysed. After identifying the most suitable technology for Context
Mapper, a PoC plugin was implemented. The timeframe available for this thesis was
not sufficient to implement all features included in Context Mapper’s Eclipse plugin.
Instead, the thesis analyses possible challenges and limitations to implementing the

remaining features in a future project.

Page 3 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.1. Existing System Analysis

2. System Analysis & Requirements

To define the requirements of this thesis, an inventory of Context Mapper’s current
features was made, which can be found in Section 2.1. Section 2.2 provides a more
detailed description of the Context Mapper features selected for implementation in the
PoC.

2.1. Existing System Analysis

The following subsections list the features available in Context Mapper [8], [9] as of
February 2025. The list differentiates between supported concepts in the CML
grammar and available editor features.

2.1.1. Context Mapper DSL

The CML supports concepts from DDD, VDAD (Value-Driven Analysis & Design),

requirement analysis as well as application and process layers:

« Context Map: Definition of relationships between Bounded Contexts

+ Bounded Context: Definition of Bounded Contexts

+ Bounded Context Relationships: Definition of Bounded Context relationships,
including Partnership, Shared Kernel, Customer/Supplier, Conformist, Open Host
Service, Anticorruption Layer and Published Language

+ Domain & Subdomain: Definition of Domains and Subdomains

+ Tactic DDD Modelling: Definition of Domain Models using tactic DDD patterns,
including Aggregate, Entity, Value Objects, Domain Elements, Commands, Services
and Repositories

« Application & Process Layer: Definition of Application Layers, including process
flows with Event and Command events

« User Requirements: Definition of Use Cases and User Stories

« Stakeholder (VDAD): Definition of project stakeholders

« Value Register (VDAD): Definition of stakeholder values

The CML is contained in .cm1 files, in which elements for the concepts above can be
declared. CML also supports cross-references between files via import statements.
ContextMap DDDSampleMap {
contains CargoBookingContext

contains VoyagePlanningContext
contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext
CargoBookingContext [D]<-[U,OHS,PL] LocationContext
VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

}

BoundedContext CargoBookingContext
BoundedContext VoyagePlanningContext
BoundedContext LocationContext

Listing 1: Example of a Context Map modelled in the CML

Listing 1 gives an example of a Context Map defined in the CML. The Context Map
shown defines relationships with three Bounded Contexts using Shared-Kernel and

L. Streckeisen Page 4 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

Upstream-Downstream relationships with the Open Host Service and Published
Language pattern.

2.1.2. Use Cases

To give an overview of all features included in the current version of Context Mapper,
all Use Cases were collected and displayed in Figure 4 and Figure 5. The Use Cases
relevant to the PoC are displayed in Figure 4.

In previous work [1], three actors were identified for Context Mapper:
+ Business Analyst / Domain Expert

« Software Engineer

« Software Architect

Since the DSL already exists and the thesis does not aim to change the available
concepts, the actors are merged into one actor: Context Mapper User.

T UCI_CML_Editing

—

Feature: recognise a SyntaxError

Feature: recognise a CmlKeyword

Feature: collapse a CmlDefinitionBlock
Feature: expand a CmlDefinitionBlock
Feature: see a HoverDocumentation
Feature: see a CmlOutline

Feature: navigate to a CmlDefinitionBlock
Feature: see a CmlDefinitionOccurrence
Feature: rename a CmlElement

Feature: format a CmiFile

Feature: see suggestions for a CmlKeyword
Benefit: | am able to conveniently edit CML files in my IDE

(UC2_CML_QuickFix

- ' I
Il
- I
s
[
Ly

Feature: create a MissingBoundedContext
Feature: split a UserStory
VAN Benefit: | am able to fix small mistakes in my CML definition

Context Mapper User\

-:i"UC3_CML_Generate_ContextMaH‘::-

Feature: generate a VisualContextMap
Benefit: | am able to create a context map diagram from my CML context map

. UC4_CML_Generate_PlantUML)

Feature: generate a PlantUmIDiagram
Benefit: | am able to create visual representations of my CML definitions

Figure 4: Context Mapper Use Cases (Part 1)

Page 5 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

-\"IJCS_CML_Generate_SketchMine-r""j

Feature: generate a SketchMinerDiagram
Benefit: | am able to create a BPMN diagram from my process flow definitions

{ UC6_CML_Generate_MDSLContract)

Feature: generate a MDSLContract
Benefit: | am able to create an MDSL contract from my CML definitions

:\:__rHU_C?_CML_FreeMarkﬁr_;)

Feature: apply a FreeMakerTemplate
Benefit: | am able to create my own files, e.g. Markdown, from my CML definitions
I: /I
A <_'__._UC8_CML_Refa|:torings_"))
Context Maﬁper User o T

Fearure: split an Aggregate

Feature: split a BoundedContext

Feature: extract an Aggregate

Feature: merge an Aggregate

Feature: merge a BoundedContext

Feature: extract a SharedKernel

Feature: suspend a Partnership

Feature: convert a SharedKernel to a Partnership

Feature: convert a Partnership to a SharedKernel

Benefit: | am able to easily restructure my CML definitions

(" UCY_CML_Discovery

Feature: discover a Context MapperDefintion for my existing project
Benefit: | am able to get CML defintions for my existing project

¢ U10_CML_Validators

oy

Feature: validate a CMLFile
Benefit: | am able to validate my CML files for their semantic correctness

(UL1_CML ArchUnit

P

Feature: validate a CodeBase
Benefit: | am able to validate my codebase against my CML model

Figure 5: Context Mapper Use Cases (Part 2)
2.2. Requirements

The Use Cases from Figure 4 are documented as functional requirements for the PoC

in Section 2.2.1. Additional non-functional requirements were defined and
documented in Section 2.2.2.

2.2.1. Functional Requirements

Table 1 contains an overview of all the defined requirements, including their priority.

More detailed requirement descriptions following the casual description format
defined by Larman [10] can be found below.

L. Streckeisen Page 6 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

Key Summary Priority

FR 1.1 | Syntax highlighting - Visual distinction of CML keywords and | High
syntax errors

FR 1.2 | Hyperlinking - Navigation from a CML element usage to its High
definitions

FR 1.3 | Occurrence highlighting - Occurrences of a selected CML High
element are highlighted in the same file

FR 1.4 | Autocomplete - IDE suggests CML elements to complete High
existing fragments

FR 1.5 | Code folding - Expanding and collapsing CML code blocks Medium

FR 1.6 | Keyword tooltips - Hover tooltip for CML keyword usages Medium

FR 1.7 | Structure outline - Concise overview of CML element Medium

definitions in a file

FR 1.8 | Find usages - List of all usages of a CML element in the project [Medium

FR 1.9 | Document formatting - “Reformat Code” action formats CML Medium
file
FR 2.1 | Missing Bounded Context quick fix - Inline suggestion to create | Medium
a Bounded Context if it is not defined yet

FR 3.1 | Generate a visual Context Map Medium
FR 1.10 | Definition tooltips - Tooltip for CML element usages Low
FR 4.1 | Generate PlantUML diagrams Low

Table 1: Functional Requirements for Intelli] plugin PoC

FR 1.1 - Syntax Highlighting

Primary Actor Context Mapper User

Goal Ensure users can visually distinguish CML keywords and
comments from element names.

Main Scenario

The Intelli] CML editor distinguishes in colour between CML keywords, such as
BoundedContext, and the name of a Bounded Context. The used colours follow the
IntelliJ colour schemes, i.e. Dark, Light, etc.

FR 1.2 - Hyperlinking

Primary Actor Context Mapper User

Goal Users can easily navigate from a CML element usage to its
definition.

Main Scenario

A Ctrl-/Cmd-Click with the mouse on the usage of a CML element, such as the
name of a Bounded Context, should navigate the plugin user to the definition of that
element in its CML file.

Page 7 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

FR 1.3 - Occurrence Highlighting

Primary Actor Context Mapper User

Goal Users can visually detect other usages of the selected CML
element.

Main Scenario

If the user places the caret within the name of a CML element, such as the name of a
Bounded Context, the CML editor should highlight all other usages of that CML
element within the same file.

FR 1.4 - Autocomplete

Primary Actor Context Mapper User
Goal The IDE makes suggestions while the user is typing.
Main Scenario

The CML editor automatically makes suggestions based on the already given
structure. For example, if the user starts typing “Bou” on the top level of a CML file,
the editor automatically suggests the keyword “BoundedContext.”

Extensions

The editor also suggests, e.g. names of defined Bounded Contexts when defining
Context Map relationships.

FR 1.5 - Code Folding

Primary Actor Context Mapper User
Goal Users can collapse and expand CML blocks.
Main Scenario

The Intelli] CML editor recognizes definition blocks, for example the Bounded
Context in Listing 2, and allows the user to collapse and expand these definition

blocks.

BoundedContext LanguageCore {

domainVisionStatement "Provides the Context Mapper DSL (CML) modelling
language to express architectures based on Strategic Domain-driven
Design (DDD) patterns."

Aggregate StrategicDesign
Aggregate TacticDesign
}

Listing 2: CML definition block example [11]

FR 1.6 - Keyword Tooltip

Primary Actor Context Mapper User
Goal Users can learn about DDD concepts while editing CML files.
Main Scenario

When moving the mouse cursor over a CML keyword, a brief description of that
keyword should be displayed as tooltip documentation.

L. Streckeisen Page 8 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

FR 1.7 - Structure Outline

Primary Actor Context Mapper User
Goal Users can see the structure of their CML files at one glance.
Main Scenario

The Intelli] structure tool window should outline the structure of a CML file. The
breadcrumbs of the Intelli] structure toolbar should also display the path from the
document root to the current caret position in the file.

FR 1.8 - Find Usages

Primary Actor Context Mapper User
Goal Users can easily find usages of their CML definitions.
Main Scenario

Both a Ctrl-/Cmd-Click with the mouse on a CML definition name and the “Find
Usages” action, report all usages of that CML definition.

FR 1.9 - Document Formatting

Primary Actor Context Mapper User
Goal Users can easily reformat their CML files.
Main Scenario

The “Reformat Code” action ensures proper indentation and removes syntactically
irrelevant whitespaces from a CML file.

FR 1.10 - Definition Tooltip

Primary Actor Context Mapper User
Goal Users can see descriptions of the used CML element.
Main Scenario

CML definitions can be documented using comments, as shown in Listing 3. The
comment text preceding a CML element should be displayed in a hover tooltip when
hovering the mouse cursor over the usage of that element.

/* The original booking application context */
BoundedContext CargoBookingContext

Listing 3: CML definitions with documentation [11]

Page 9 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

FR 2.1 - Missing Bounded Context Quick Fix

Primary Actor Context Mapper User
Goal Users can easily create a missing Bounded Context.
Main Scenario

If a Bounded Context is used in a Context Map, but its definition is missing, the
CML editor provides a quick fix for creating the definition.

FR 3.1 - Generate a Visual Context Map

Primary Actor Context Mapper User

Goal Users can create a visual representation of their CML Context
Map.

Main Scenario

The context menu of a CML file displays the option “Generate Visual Context Map”.

If the user clicks on the menu item, the editor gives the user a choice of output

format (png, svg, or dot). After the selection, the plugin generates the visual Context

Map using graphviz and stores the output file in a src-gen folder in the project

root.

FR 4.1 - Generate PlantUML Diagrams

Primary Actor Context Mapper User

Goal Users can generate PlantUML diagrams from their CML
definitions.

Main Scenario

The option “Generate PlantUML Diagrams” is displayed in the context menu of a
CML file. If the user clicks on the menu item, the plugin collects all CML definitions
of the current file and generates the following diagram types:

Use Case Diagram

Component Diagram

Class Diagram

State Diagram

Stakeholder Map

Value Impact Map

AN A

The generated files are stored in the output folder src-gen in the project root.

2.2.2. Non-Functional Requirements

The NFR (Non-Functional Requirement)s below concern the plugin itself or are cross-
cutting and therefore concern all Use Cases. The ISO-25010 [12] standard was used for
classification.

Table 2 overviews all defined NFRs.

L. Streckeisen Page 10 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

ID Summary

NFR 1 | Minimise duplicated code between Intelli] and VSCode implementations
NFR 2 [Plugin stability

NFR 3 | CML editor efficiency

NFR 4 [PlantUML diagram generation efficiency

NFR 5 | Extensibility for additional generators
NFR 6 [Code quality

NFR 7 | Separation of concerns

NFR 8 [IntelliJ compatibility

NFR 9 | Licence compatibility

NEFR 10 | IntelliJ best practices

Table 2: Overview of project NFRs

NEFR 1: Reusability - Minimise duplicated code between IntelliJ and VSCode
implementations

Both the VSCode and Intelli] plugins will offer the same features. While the
implementations cater to the respective IDE platform, the core logic stays the same
and should be reused if possible.

Verification
Review of extension point classes
Acceptance Criteria

Classes implementing Intelli] extension points do not contain implementation logic
and use either existing Context Mapper logic or delegate to a reusable component.

Realisation

Creating adapters for existing Context Mapper logic in case it should not be directly
reusable. Discussion of potentially necessary changes to Context Mapper to improve
reusability. Separation of IntelliJ specific code and feature logic where using the
existing implementation was not possible, so the logic may easily be extracted/
replaced later.

NFR 2: Reliability - Plugin stability
The Intelli] plugin should not terminate unexpectedly, e.g. if graphviz is not installed
and the user wants to generate a visual Context Map

Verification

Unit and component tests

Acceptance Criteria

Unit and component tests for error cases pass.
Realisation

Proper error handling, e.g. checking if graphviz is available before generating visual
context maps.

Page 11 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

NEFR 3: Performance Efficiency - CML editor

The editor must remain responsive during normal editing activities, such as typing.

Verification

Informal user test with the thesis advisor
Acceptance Criteria

No reports of editor freezes or lags.
Realisation

Avoiding synchronised, performance-intensive actions in editor functions.

NEFR 4: Performance Efficiency - PlantUML diagram generation
The generation of the PlantUML component diagram for the stage 3 DDD-Sample
from the context-mapper-examples repository’, is completed within 0.5 seconds.

Verification
Performance Test
Acceptance Criteria

Performance measurement of the PlantUML component diagram generation
completes within 500ms.

Realisation

Avoiding costly CML model conversions in the generator.

NEFR 5: Modifiability - Extensibility for additional generators

The PoC plugin can easily be extended with more generators.

Verification

Creation of a dummy generator

Acceptance Criteria

A new generator can be added by using one extension point.
Realisation

Generators implement the same interface and are dynamically loaded by the plugin.

'https://github.com/ContextMapper/context-mapper-examples/blob/master/src/main/cml/ddd-
sample/DDD-Sample-Stage-3.cml

L. Streckeisen Page 12 of 92

2. System Analysis & Requirements Enhanced Context Mapper IDE Integration

NFR 6: Maintainability - Code quality

The plugin code passes linting & static code analysis.

Verification

Code linting with KtLint' & code analysis in CI (Continuous Integration) pipeline
with JetBrains Qodana®

Acceptance Criteria
KtLint and Qodana report no problems or warnings.
Realisation

Following coding best practices & implementation of Qodana suggestions.

NFR 7: Modularity - Separation of concerns

Plugin code is structured into feature-based packages to improve code discoverability.
Cross-package dependencies are only allowed for shared helper/utility classes in a
utils package.

Verification

Automated structure checks with ArchUnit
Acceptance Criteria

ArchUnit tests pass.

Realisation

Strictly separate features from each other. Move shared code to helper classes.

NFR 8: Installability - Intelli] compatibility

The plugin can be installed in the Community and Ultimate versions of Intelli],
starting from version 2024.3.

Verification

Manual installation test with the final PoC plugin

Acceptance Criteria

Successful installation of the PoC plugin in the mentioned IntelliJ versions.
Realisation

Avoiding Intelli] features only available in the Ultimate version of Intelli] or features
only available in most recent Intelli] versions.

‘https://github.com/pinterest/ktlint
*https://www.jetbrains.com/qodana

Page 13 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Requirements

NEFR 9: Legal Compliance - Licence compatibility
All used frameworks & libraries have to be compatible with the Apache 2.0 licence.

Verification
Manual dependency check
Acceptance Criteria

No dependency with a licence incompatible with Apache 2.0 (according to Apache
guidelines [13]) is found.

Realisation

Licence as a decision factor for technology decision, checking licences before using
libraries.

NFR 10: Appropriateness/Recognizability - IntelliJ best practices

Features implemented in the Intelli] plugin should follow Intelli] best practices.
Features included in the Context Mapper Eclipse plugin should only be rebuilt in the
same way if they fit into the Intelli] best practices.

Verification

Informal user test with thesis advisor

Acceptance Criteria

No reports of confusion about the way a feature is visible in Intelli].
Realisation

Studying IntelliJ documentation and tips.

L. Streckeisen Page 14 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

3. Technology Exploration

This section explores the different technological options to create a DSL and to
integrate a DSL in IntelliJ. Each option was evaluated regarding its suitability for
Context Mapper. The best-suited option for the Intelli] integration was then used to
implement the PoC.

Descriptions of the tests performed with the evaluated technologies can be found in
Appendix B.

3.1. Language Workbenches

DSL workbenches are tools that help developers create DSLs. More specifically, they
support modelling the language itself, provide at least one editing environment for the
language, and define its behavioural semantics [14].

This section gives an overview of such language workbenches that could be used to
replace Xtext.

3.1.1. JetBrains MPS

JetBrains MPS (Meta Programming System) [15] is a language workbench to create
DSLs and comes with its own IDE. MPS works differently than most language
workbenches. While a DSL creator usually defines a grammar in “Backus-Naur form”™*

or a similar notation, this is not the case with MPS. Instead, JetBrains created its own
DSL to define language structure, editor views, constraints, quick fixes, etc.

MPS uses projectional editing [16], which is why the editing experience and the
experience of creating the DSL are different from those of other language
workbenches. Most programming languages store their code in text files. These files
are then parsed, which results in an AST (Abstract Syntax Tree). With projectional
editing, the user does not write a text file but directly modifies the AST. This allows
the editor to use graphical formats (e.g. to display mathematical equations in their
correct visual representations) or to hide unnecessary information from the user.

Languages constructed with MPS can be packaged into a plugin, which can then be
installed in the MPS IDE. The plugin can also be installed in, e.g., IntelliJ, but the “MPS
Core” plugin? is required as a dependency since Intelli]J itself is not capable of handling
projectional editing,.

3.1.2. Langium

Langium [17] is a language workbench written in TypeScript and is part of the Eclipse
project. While Xtext is closely integrated with Eclipse, Langium focuses more on
VSCode, which is why TypeScript has been chosen as its implementation language.
The integration of a DSL into IDEs is achieved via LSP, which means that other IDEs
than VSCode can be targeted. A language plugin for VSCode can be built in the same
project as the language itself. Plugins for other IDEs require a separate project.

thttps://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
*https://plugins.jetbrains.com/plugin/7075-mps-core

Page 15 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.2. IntelliJ Integration Options

Langium itself does not provide a direct integration into IntelliJ. It would require
combining it with one of the LSP integration options.

3.1.3. Rascal
Rascal [18] is a meta-programming language that allows the creation of DSLs. Its
features include the definition of language syntax, parser generators, and hooks for

IDE integration. The documentation mentions IDE integration into Eclipse via the
Eclipse Meta-Tooling Platform and VSCode via LSP.

Since Rascal does not integrate into Intelli] by itself, one of the described LSP options
would also have to be used.

3.1.4. Spoofax

Spoofax [19] is a language workbench that allows developers to create their languages
using meta-languages. Using the “Syntax Definition Formalism”’, developers can
define their language’s syntax, and Spoofax generates parsers, type checkers,
compilers, etc., for the language. Spoofax comes with an Eclipse extension and can
generate Eclipse editors for defined languages.

Attempts to set up a sample project with Spoofax proved cumbersome, and error
messages suggested that Spoofax’s technology stack was outdated (Java 8). It seems
that a new version of Spoofax is under development [20], which should also support
Intelli] plugins in the future. However, since the current stable version of Spoofax only
supports the creation of Eclipse editor extensions and the documentation does not
mention the generation of a language server, Spoofax was not considered for the PoC
in this thesis.

3.1.5. Others

There are more language workbenches out there than the ones introduced above. Two
worth mentioning are MetaEdit+* and MontiCore®. Both do not offer the possibility of
IDE integrations for the created languages, which is why they are not included in the
evaluation.

While researching language workbench, other names of language workbenches
popped up, but these either have not reached a mature level or have been abandoned.

3.2. IntelliJ Integration Options

There are two possible ways to create a plugin for custom language support in IntelliJ:
LSP integration or native development. Both integration styles are further explained
below.

3.2.1. LSP Integration

As described in Section 1.1.2, LSP is a protocol for language servers and development
environments to communicate with each other. To integrate a language server in
Intelli], there are two possible options:

'https://spoofax.dev/references/sdf3/
*https://www.metacase.com/
*https://monticore.github.io/monticore/

L. Streckeisen Page 16 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

« Intelli] LSP Support
«+ External Plugins like LSP41J

The capabilities of these two options are further explained below.

Language servers cannot fully replace a native IDE integration. Some native
customisation is still required, e.g., for the Context Mapper generators.

IntelliJ LSP Support

JetBrains added LSP support for Intelli] Ultimate as of version 2023.2 [21]. The
Community version of Intelli] does not include LSP support, so plugins using this
integration style cannot be installed in Intelli] Community IDEs.

The 2024.3 Ultimate version supports the most important LSP features. They include:
+ Go-To declaration

« Code completion

* Quick fixes

 Error & warning highlighting

Quick (hover) documentation

+ Code formatting

« Semantic highlighting

« Find usages

Plugins can bundle a binary for the language server or let the user define the language
server location.

LSP41]

LSP4IJ [22] is an Intelli] plugin developed by the Red Hat developer community. It
allows users or developers to configure language servers for specific languages/file
types. Users can configure language servers via the U, and developers can build their
own plugins based on the LSP4I] extension points and API (Application Programming
Interface). LSP4I]’s advantage over IntelliJ’s native LSP support is that the plugin is
also available for Intelli] Community versions.

LSP41J 0.11.0 does not yet support all LSP features, but it does support the most
important ones.

3.2.2. Native IntelliJ Integration

Integrating a DSL natively into Intelli] is an approach many DSL plugins like
Structurizr® use. A native integration requires a lexer, a parser and an implementation
of PSI (Program Structure Interface) classes [21]. The PSI is a layer in the Intelli]
platform, responsible for parsing files and creating code models. Many IntelliJ editor
features are built upon the PSL

JetBrains offers various extension points through which syntax highlighting,
autocomplete, custom actions, etc., can be implemented. While an LSP integration

'https://plugins.jetbrains.com/plugin/20606-structurizr-dsl-language-support

Page 17 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Technology Decision

adds many editor features, a native integration allows the implementation of a broader
range of IDE features.

The required lexer and parser can either be written manually or generated by a parser
generator. The easiest way to generate a lexer and parser is to use JFlex' and
GrammarKit® since the generated parser integrates into IntelliJ’s PSI. Other parser
generators, like ANTLR?®, can also be used, but these parsers must be manually
adapted to the PSI to be useful.

3.3. Technology Decision

The technology decision is based on a utility analysis [23]. In a utility analysis, the
criteria that influence the decision must be defined first. Then, these criteria are
weighted, and scoring scales are defined for each criterion. Finally, each option is
evaluated according to the criteria and scoring scale. The weighted scores are summed
up per option, allowing the quantification of each option’s utility and making it
possible to compare options. The option with the highest total score provides the best
utility.

The defined criteria can be found in Section 3.3.1. The evaluation of language
workbenches and integration options is summarised in Section 3.3.2 and Section 3.3.3.
For the detailed evaluation with reasoning for the given scores, see Appendix C.
Finally, the resulting scores, including the technology decision, can be found in
Section 3.3.4.

thttps://www.jflex.de/
*https://plugins.jetbrains.com/plugin/6606-grammar-kit
*https://www.antlr.org/

L. Streckeisen Page 18 of 92

3. Technology Exploration

3.3.1. Criteria

Enhanced Context Mapper IDE Integration

The criteria in Table 3 have been set in collaboration with the thesis advisor. Each
criterion includes a brief statement clarifying its goal, weight, and scoring system.

Criterion

Goal

Weight

Scoring

Future Proofing

The technology is well
maintained and will not
be abandoned anytime
soon

3

3 = Large group of
maintainers (30+ active
maintainers) or
maintained by a (mid-size
to large) company, future
of technology is secured
2 = Small group of
maintainers (4-30 active
maintainers) or future
support of the technology
is unknown

1 = Less than four active
maintainers or
technology is/will be
abandoned

Ease of use

The technology has a low
learning curve, is not
overly complicated and
easy to use

3 = Technology concepts
are straightforward and
easy to understand, and
its usage is
straightforward

2 = Some of the involved
concepts require a more
profound understanding,
and its usage is
straightforward in most
cases

1 = The technology
requires a deep
understanding of all
involved concepts, and its
usage is complicated in
most cases

Page 19 of 92

L. Streckeisen

Enhanced Context Mapper IDE Integration

3.3. Technology Decision

both Intelli] and VSCode

Criterion Goal Weight | Scoring
Documentation The technology provides | 2 3 = The documentation is
a well-maintained easy to read, complete
documentation and up-to-date
2 = The documentation
has some gaps, is not
clear in some details, or
some parts have not been
updated in a while
1 = The documentation is
very minimalistic,
complicated or outdated
Feature Support | The technology supports |3 3 = The technology
features that already exist supports all major and
in the Eclipse plugin of minor features of Context
the Context Mapper Mapper
(unless there is no 2 = The technology
equivalent of that feature supports all major
in Intelli]) features of Context
Mapper; some minor
features are not
supported
1 = The technology does
not support a major
feature of Context
Mapper
Licence The technology licence is | 3 3 = Licence is compatible
compatible with the without additional
Apache 2.0 licence of restrictions
Context Mapper. 2 = Licence is compatible
with some additional
restrictions
1 = Licence is not
compatible
IDE Compeatibility | The technology supports | 3 3 = Support for Intelli]

(Ultimate and
Community) and VSCode
2 = Support for Intelli]
(Ultimate only) and
VSCode

1 = Support only for
IntelliJ (Ultimate or
Community)

L. Streckeisen

Page 20 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

Criterion Goal Weight | Scoring
Reusability Existing Context Mapper | 2 3 = Most logic can be
logic can be reused reused

2 = Partial rewrites are
necessary

1 = Full rewrite necessary

Table 3: Technology evaluation criteria

3.3.2. Workbench Evaluation

The following summarises the evaluation of the language workbenches JetBrains MPS,
Langium and Rascal. For the conclusion, see Section 3.3.4.

JetBrains MPS

JetBrains MPS is a future-proof option by JetBrains. Its projectional editor provides
interesting possibilities but is incompatible with the current version of Context
Mapper. MPS would require a complete rewrite and could only be used in the MPS
IDE and Intelli] (though 2024 versions of Intelli] do not support MPS yet).

With a guided tutorial (~2 hours), a sample language (chemmastery) could be extended
within a few minutes. The key concepts became clear after working through the
tutorial, but understanding the MPS DSL beyond the tutorial scope requires much
more time.

Langium

Written in TypeScript, using Langium would require a complete rewrite of Context
Mapper. Langium itself is well-documented and easy to understand. By leveraging
LSP, the resulting language server can be used in various IDEs. Langium is actively
maintained and promotes a clear feature-based structure.

Following the tutorial in the documentation [17], allowed the creation of a VSCode
plugin and language server for a sample language within 30 minutes.

Rascal

Since there is no tutorial on IDE integration in the documentation [18], and IDE
integration requires knowledge of Rascal’s LSP package, a Rascal sample language
could not be tested in an IDE. Rascal as a language is well documented and similar to
Haskell’s syntax. Using Rascal would require a complete rewrite of Context Mapper.

3.3.3. Integration Option Evaluation
The evaluation of LSP integration (IntelliJ LSP support and LSP4I]) and the native
integration is outlined below. For the conclusion, see Section 3.3.4.

Intelli] LSP

The documentation for Intelli]’s LSP support is up-to-date but limited. Further
information has to be obtained from existing plugins using LSP support, e.g. the Vue.js

Page 21 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Technology Decision

plugin®. While only available for Ultimate versions of Intelli], the language server can
be reused.

In a brief test with the existing Xtext CML language server, some features like the
keyword tooltip documentation worked instantly, while other LSP features like
semantic tokens did not work yet.

LSP41]

LSP4IJ supports the majority of LSP capabilities and works in both Intelli] Community
and Ultimate versions. The plugin is actively maintained and receives frequent
updates. It would allow the reuse of the language server, as with Intelli]’s LSP support.

A brief test with the LSP4I]J configuration UI delivered the same results as the test
with IntelliJ’s built-in LSP support.

Native Integration

Integrating CML natively into Intelli] would offer the broadest range of editor features
but also means that other IDE plugins have to be developed separately. The
documentation [21] is extensive but not complete. Some editor features require a
deeper understanding of PSI and Intelli]’s extension points.

Following the tutorial on custom language plugins in the documentation made it
possible to create a plugin for a sample language within a day.

The native integration approach was evaluated using JFlex and Grammar-Kit as lexer
and parser generators. ANTLR was briefly considered as an option to retain a
common grammar base between a VSCode and Intelli] plugin, but has not been
evaluated further as integration of the parser into the PSI is crucial and not provided
for ANTLR.

3.3.4. Result

Before discussing the evaluation’s results, it is important to highlight that the
combination of the best-suited language workbench and the most suitable integration
option is not always compatible. For example, combining JetBrains MPS with an
integration option does not work as the MPS has its own IDE and its own way of
creating plugins. Conversely, a native integration does not require a language
workbench at all. Workbenches like Langium and Rascal can be combined with one of
the LSP-based integration options but are not compatible with the native integration
option.

Table 4 provides an overview of the evaluation results, which contain the weighted
score totals for the language workbenches and IntelliJ integration options.

'https://github.com/JetBrains/intellij-plugins/tree/master/vuejs

L. Streckeisen Page 22 of 92

3. Technology Exploration Enhanced Context Mapper IDE Integration

Criterion Language Workbenches Integration Options
MPS | Langium | Rascal | IntelliJ LSP | LSP4I]J | Native

Future Proofing |9 6 6 9 6 9
Ease of use 2 4 4 4 4 4
Documentation 4 6 2 4 6 4
Feature Support 3 9 6 6 9 9
Licence 9 9 9 9 6 9
IDE Compeatibility | 3 9 9 6 9 3
Reusability 2 2 2 6 6 4
Total 32 45 38 44 46 42

Table 4: Utility analysis results

For the integration option, the highest utility is achieved through an LSP-based
integration with LSP41J. Considering the broader context of Context Mapper, this
result is logical. A language server ensures that editor features can be reused in
different IDEs, giving Context Mapper the flexibility to target different IDEs in the
future. At this time, LSP4IJ supports more LSP capabilities than IntelliJ’s LSP support
and is available in the Intelli] Community version. While a native integration offers
the broadest range of supported features, it requires maintaining separate codebases
for every IDE plugin. It would theoretically be possible to have a shared grammar
between the IDE plugins, for example, using ANTLR. However, integrating such a
generated parser into the Intelli] PSI requires considerable effort. Therefore, the PoC
will use LSP4]]J as an integration option.

For the workbenches, JetBrains MPS is an intriguing option, but its incompatibility
with existing CML files speaks against its use for Context Mapper. Langium made a
more mature impression than Rascal. It provides better documentation on how to
create a language server and has more active maintainers. That makes Langium the
most suitable language workbench for Context Mapper.

The complete reasoning behind the evaluation results can be found in Appendix C.

LSP4I] requires a language server to provide editor services for the CML. The existing
Xtext language server or a newly created one could be used. The adoption of Langium
was initially postponed to a later project, and the reuse of the existing Xtext language
server was preferred. However, it was discovered that customisation to the Xtext
language server would have been necessary. Since Xtext is not considered future-
proof, a new Langium language server was created as well.

The decisions made in this section qualify as architectural decisions. Detailed ADR
(Architectural Decision Record)s can be found in Appendix D.

Page 23 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

4. Proof of Concept Implementation
This section describes essential aspects, like architecture and necessary steps to

4.1. Architecture

implement features, as well as challenges encountered during the PoC

implementation, such as issues with the CML grammar.

4.1. Architecture

The PoC architecture is based on analysing architecturally significant requirements

and architectural decisions. The resulting architecture is documented using a Context

Map and the C4' model.

4.1.1. Architecturally Significant Requirements

To find architectural requirements, the requirements from Section 2.2 were evaluated
regarding their architectural significance, using the ASR (Architecturally Significant
Requirement)-Test [24] method. The ASR Test entails seven criteria that indicate that a
requirement is significant to a system’s architecture. A requirement is architecturally

significant if the requirement:

NSk »w =

...I1s associated with high business value

...Is a concern of an important stakeholder
...includes QoS (Qualify-of-Service) characteristics
...causes new or deals with existing unpredictable/unreliable external dependencies
...has a cross-cutting nature

...has a first-of-a-kind character

...has been troublesome in a previous project

Table 5 shows which of the requirements qualify as architecturally significant.

Intelli] and VSCode
implementations

Requirement ASR-Test Criteria Reasoning
NFR1: Minimise + Concern of a Code reusability is an
duplicated code between stakeholder essential concern of the

+ Cross-Cutting nature

Context Mapper
maintainer. Reusability
affects the VSCode and
Intelli] plugins.

NFR2: Plugin stability

« High business value
+ Cross-Cutting nature

Prevention of crashes, etc.,
affects all plugin
components. Plugin
stability increases user
satisfaction.

‘https://c4model.com/

L. Streckeisen

Page 24 of 92

4. Proof of Concept Implementation

Enhanced Context Mapper IDE Integration

Requirement

ASR-Test Criteria

Reasoning

NFR3: Editor performance

« High business value

+ Quality-of-Service
characteristic

+ Cross-Cutting nature

Editor performance
directly affects the editing
experience. Low response
times for syntax
highlighting,
autocomplete, etc., are
important to make the
editor convenient and,
therefore, increase user
satisfaction. It affects all
editor features.

NFR5: Extensibility for
additional generators

« Concern of stakeholder

Making it easy to add new
generators increases the
maintainability of the
plugin. Design
considerations are
necessary to achieve that.

NFR7: Separation of
concerns

+ Cross-Cutting nature
« Concern of stakeholder

Separation of concerns
impacts the scope of
plugin components. By
clearly separating feature
logic, it becomes easier to
replace or reuse code at a
later point.

Table 5: Architectural Significance of non-functional requirements

4.1.2. Strategic Design

In DDD, bounded contexts describe parts of a system with their own Domain Model

and maybe even a different technology stack [25]. There are two bounded contexts in

this project: The language server and the IntelliJ plugin.

Page 25 of 92

L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

LanguageServer

IntelliJPlugin

Figure 6: Context map of the project

Figure 6 shows the contexts in an upstream-downstream relationship, where the
language server is the upstream, and the IntelliJ plugin is the downstream context.
The language server implements the LSP as the Published Language. Development
environments (clients) can freely access the services from the language server, making
it an Open Host Service.

The following technical architecture description models the language server as the
software system “Context Mapper Language Server” and the IntelliJ plugin context as
the container “Context Mapper Plugin”.

4.1.3. C4 Model
The C4 model [26] defines four detail levels to describe software architecture:
(System) Context, Containers, Components, and Code.

Software systems The definition of a software system is often different from
organisation to organisation. It can be defined as a team boundary or as a
collection of software contributing to the same goal.

Containers A container represents a runtime boundary around code. Containers are
individually deployable units of code.

Components Components are part of a container and group related functionality.

Code On the code level, the C4 model refers to UML (Unified Modelling Language)
diagrams.

Software System

This thesis defines the term software system as a deployable (group of) container(s)
that serve a common goal. Since the Intelli] plugin cannot run independently, it does
not qualify as a software system. The software system of the plugin is IntelliJ itself.
However, since JetBrains maintain Intelli], it is not described in detail.

The language server runs independently in its own process and can be used by more
IDEs than just Intelli], which is why it is considered a software system. Figure 7 shows
the interactions between the software systems.

L. Streckeisen Page 26 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Intelli) IDEA - System Context

Context Mapper
Language Server

Plugin User

starts

-
=

____|:|_r_uEides editor seEi_ce_s____

Intelli] IDEA

Provides language server
capabilities for Context

Mapper

Figure 7: C4 system context diagram of the Context Mapper IntelliJ plugin

Containers

Figure 8 shows the containers involved in this PoC. The diagram shows the
perspective of IntelliJ as the software system, which is why the language server
(another software system) is drawn outside the system boundary.

Intelli) IDEA - Containers

Plugin User

Intelli) IDEA

[system]

Intelli] Editor

triggers actions

Context Mapper Plugin
[Ketlin, Intelli] Plugin SDK] - Intelli)'s text editor

configures
configures

T

Provides Context Mapper
support in Intelli]

LSP41) Plugin
Manages language server

configurations and LSP
integration for Intelli)

Context Mapper
Language Server

Provides language server
capabilities for Context
Mapper

Legend
& person
container

1 system boundary

Figure 8: C4 container diagram of the Context Mapper Intelli] plugin

Page 27 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

The three main containers are:

Context Mapper plugin The Intelli] plugin configures LSP4IJ and adds additional
features to the IntelliJ editor.

LSP4I]J plugin The LSP4IJ plugin is in charge of managing language servers and
communicating with them. To do that, LSP4I] is deeply integrated into the IntelliJ
editor features.

Context Mapper language server A Langium language server that provides
information on CML files to the LSP4IJ plugin. The language server is a one-
container system, which is why there are no containers displayed in the diagram
above.

This setup keeps the Intelli] plugin lightweight, reducing the required maintenance
work on the plugin.

Language Server Components
The components in the language server, displayed in Figure 9, correspond to the LSP
capabilities that are either not supported out-of-the-box or required customisation.

L. Streckeisen Page 28 of 92

4. Proof of Concept Implementation

Enhanced Context Mapper IDE Integration

Context Mapper Language Server - Context Mapper Language Server - Components

Context Mapper Language Server
[container]
trigger
command/generator

execution __» CML Command Handler

requests autocomplete
suggestions from ___—%

_f': /’/ gets formatting
/o changes from _____w CML Formatter
{ Vg
Fy
i -
.'l r/ _.-"'-f
7 requests hover rovi
_,:f 7 documentation from_______» CML Hover P ider
Langium Language -~
Server requests reference
AN —___ scopefrom CML Reference Scope
W\ T —* Provider
1Y S requests folding ranges
Voo

.‘\\ \ requests validation

-, requests tokens from

CML Completion
Provider

~ » CML Folding Range
Provider

~*™ CML Semantic Validator

~—___, CML Semantic Token
Provider

Legend
component
0 container boundary

Figure 9: C4 component diagram of the Context Mapper Language Server

The language server is structured according to Langium’s component-based

architecture. At its core is the server component, which is responsible for interacting

with the development environment. It receives requests via LSP and forwards the

request to the responsible feature component, such as the semantic token provider.

The feature components return their response to the server component, which then

sends the LSP response to the development environment. Each feature component’s

logic is encapsulated behind one entry-point class registered with the Langium server

module. This design promotes a clear separation of feature implementations,

improving their maintainability.

Page 29 of 92

L. Streckeisen

Enhanced Context Mapper IDE Integration 4.1. Architecture

Plugin Components
The Intelli] plugin does not contain much implementation logic, as shown in
Figure 10.

Intelli) IDEA - Context Mapper Plugin - Components

Context Mapper Plugin

[container]

triggers command
execution

LSP41]) Plugin

configures Manages language server triggers actions
configurations and LSP
integration for Intelli)

integrates with

Intelli) Editor

Intelli)'s text editor

Lﬁ end

1 container boundary

Figure 10: C4 component diagram of the Context Mapper Plugin

The Context Mapper language config defines CML as an editor language,
associating .cm1 files with it. The LSP4IJ configuration component defines the
language server in LSP41IJ and configures individual editor features. Generators are
implemented as editor actions, which trigger an LSP command in LSP4I].

Code
Details on the implementation of the plugin and the language server can be found in
Appendix E.

4.1.4. Deployment
The Intelli] plugin and the language server are bundled and deployed as a single
package, as illustrated in Figure 11.

L. Streckeisen Page 30 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

wdevice»
Developer Machine

wexecution environment»
Intelli) IDEA

«plugine
Context Mapper Intelli] Plugin

")

‘ Bundled Language Server

/

w‘ /aunched as

Language Server Process

Figure 11: Deployment diagram of the Context Mapper IntelliJ plugin

This setup ensures that the plugin can reliably access and launch the language server,
eliminating the need to check for an external dependency. Bundling the language
server also improves the plugin usability, as users do not need to install an additional
package for the language server.

4.2. Context Mapper Grammar Changes

Since creating a new language server was not part of the original scope of this thesis
and the project has a fixed timeframe, the CML grammar was reduced by omitting
tactic DDD and the import grammar elements.

While Langium’s grammar syntax is similar to that of Xtext, there are a few key
differences. TypeFox provides a tool' to convert Xtext grammars to Langium.
However, the tool produced overly complex enum definitions and generated a
grammar that was not valid in Langium.

Instead, the grammar was converted manually. The encountered grammar issues are
explained in detail below.

4.2.1. Comments

The Xtext CML grammar allows comments to appear anywhere in a .cm1 file.
However, comments are also an explicit part of the CML grammar, an example of
which can be seen in Listing 4.

'https://github.com/TypeFox/xtext2langium

Page 31 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.2. Context Mapper Grammar Changes

ContextMappingModel:
(
(topComment=SL COMMENT | topComment=ML COMMENT)? &

(boundedContexts += BoundedContext)* &

’

BoundedContext:
(comment=ML COMMENT | comment=SL COMMENT) ?

’

Listing 4: Ambiguous comment grammar rules in CML Xtext grammar [8]

These rules are ambiguous for Chevrotain’, the parser used by Langium. A top-level
comment can be a ContextMappingModel topComment, a BoundedContext comment,
or a regular comment. The ANTLR parser used by Xtext could handle this ambiguity
by backtracking if a rule did not match, but Chevrotain is stricter in that regard and
requires clear grammar rules.

As a consequence of this issue, comments were excluded entirely from the grammar
rules and converted to hidden terminal rules, as shown in Listing 5.
hidden terminal ML COMMENT: /\/*[\s\S]*?2*\//;
hidden terminal SL COMMENT: /\/\/["\n\r]*/;
Listing 5: Langium grammar comment terminal rules

Making the comment terminal rules hidden still allows users to add comments to their
CML files, but the parser will ignore them so that they will not appear in the AST
nodes.

4.2.2. Optional Elements in Unordered Groups

The CML Xtext grammar heavily relies on optional elements in unordered groups.
Listing 6 shows an example of this. The * or 2 cardinalities make grammar elements
optional. The s operator chains the elements together, indicating to the parser that the
defined elements can appear in any order.

ContextMappingModel:
(

(topComment=SL COMMENT | topComment=ML COMMENT)? &
(imports+=Import) * &
(map = ContextMap)? &
(boundedContexts += BoundedContext)* &
(domains += Domain)* &
(userRequirements += UserRequirement)* &
(stakeholders += Stakeholders)* &
(valueRegisters += ValueRegister) *

Listing 6: Use of optional elements in an unordered group in the CML Xtext grammar

(8]

thttps://chevrotain.io

L. Streckeisen Page 32 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Chevrotain does not support combining optional elements and unordered groups in
this way. According to Mark Sujew, a maintainer of Langium, there are two possible
workarounds to this issue [27]:

1. Grammar elements in unordered groups are optional by default, so removing the »
cardinality still has the desired effect, and the parser accepts the rule.

2. The second recommended workaround is to use a rule in the style of (» | B | ¢)*.
This rule allows zero or more repetitions of the grammar elements A, B and C in
any order. A semantic validator that enforces non-repetition needs to be registered
in the language server to enforce a maximum of one repetition per grammar
element.

The second workaround also allows one to define clear error messages, while the first
workaround may produce cryptic error messages for invalid CML content.

An issue with unordered groups and autocomplete was also discovered. After one
attribute was set, e.g. the domainvisionstatement in a Bounded Context,
autocomplete stopped making suggestions.

For that reason, the (» | B | c)* workaround was applied. Most unordered groups
contained elements with the 2 cardinality, which with this change turned from simple
properties like string to array properties, making access to these properties in the
AST inconvenient.

4.2.3. User Requirement Linking in Aggregate

The CML Aggregate structure allows four ways to specify related user requirements.
Listing 7 contains the related Xtext grammar rule. As can be seen, an Aggregate can
be related to only Use Cases or User Stories by using the usecases or userstories
keyword. It can also be related to both Use Cases and User Stories by using either the

features Or userRequirements kCYVVOIdS

Aggregate:
(
(('useCases' ('=')? userRequirements += [UseCase]) (","
userRequirements += [UseCasel])*) |
(('userStories' ('=')? userRequirements += [UserStory]) (","
userRequirements += [UserStory])*) |
((('features' | 'userRequirements') ('=')? userRequirements +=
[UserRequirement]) ("," userRequirements += [UserRequirement])*)
)? &

Listing 7: Aggregate User Requirements rule in the CML Xtext grammar [8]
In the AST, though, this separation is not relevant as all the requirements end up in
the userrRequirements property. Chevrotain can handle these rules for parsing but not

for linking. User Stories specified using the userstories keyword were attempted to
be linked to a Use Case.

This issue could be resolved by separating the properties in which the userstory,
UseCase and UserRequirement values are stored in the AST (see Listing 8). Separating

Page 33 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.3. Implemented Features

the AST properties makes it clear during linking which values should be related to
which type. This change does not have any impact on users.

Aggregate:

(('"useCases' ('=')? useCases+=[UseCase]) ("," useCases+=[UseCase])*) |

(('userStories' ('=')? userStoriest+=[UserStory]) (","
userStories+=[UserStory])*) |

((('features' | 'userRequirements') ('='")?
userRequirements+=[UserRequirement]) (","

userRequirements+=[UserRequirement]) *) |

Listing 8: Resolved Aggregate user requirements linking issue

4.3. Implemented Features

This section outlines the features implemented in the language server and IntelliJ
plugin as part of the PoC. The goal is to provide a concise but comprehensive picture
of the PoC’s current capabilities.

4.3.1. Semantic Validation

The grammar changes described in Section 4.2 made it necessary to add semantic
validation so that the supported CML elements are equivalent to their Xtext
implementation.

Semantic validation performs checks beyond what the parser can check based on the
language grammar. A validation registry and validator need to be created for
validations to be executed [17].

Multiple specialised validators have been created to keep the validator implementation
clean. For more details, see Appendix E.1.6.

The PoC only includes semantic validations necessary to compensate for the required
grammar changes described in Section 4.2.2. The Xtext implementation of Context
Mapper includes more validation rules that have not been migrated.

Figure 12 shows an example of a syntax error in the CML editor that was detected
through semantic validation.
ContextMap InsuranceContextMap {

type = SYSTEM_LANDSCAPE
state = TO_BE

St‘ There must be zero or one state attribute context-mapper-ds! ‘

Figure 12: Screenshot of an error message in the CML editor from semantic validation

4.3.2. Syntax Highlighting (FR 1.1)

Syntax Highlighting via LSP is based on so-called “semantic tokens”. A semantic token
describes an element’s position in a source file, as well as its type and modifier
(declaration, static, etc.) [5].

When an editor requests the semantic tokens for a file, Langium traverses a source
file’s AST and requests tokens for each node from the semantic token provider [17].

L. Streckeisen Page 34 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Since Langium does not provide a default implementation, a semantic token provider
had to be implemented. The created token provider delegates token requests to
specialised providers. For more details, see Appendix E.1.1.

Generating tokens for all AST nodes is not enough, though. As comments are not part
of the AST, they will not get semantic tokens created for them. So, to enable syntax
highlighting for comments, a RegEx (Regular Expression) search on the root node had
to be implemented to locate all comments and generate tokens for them.

In the Intelli] plugin, syntax highlighting is handled by the LSP4I] plugin. The only
customisation necessary was translating the semantic token types and modifiers to
editor text attributes. For more details, see Appendix E.2.1.

4.3.3. Hyperlinking (FR 1.2)

The navigation between a language element usage and its definition worked out of the
box. However, as shown in Figure 13, the displayed hyperlink covered the whole file
instead of just one element.

) - - -1
@) DDD-Sample-Stage-1.cml CargoBookingContext

ContextMap DDOSampleMa
contains CargoBookingContext
contains VoyagePlanningContext
contains LocationContext

CargoBookinaContext [SK]1<->[SK] VovagePlanningContext

CargoBookingContext <- locationContext

VovagePlanningContext <- locationContext

BoundedContext CargoBookingContext

BoundedContext VoyagePlanningContext

BoundedContext LocationContext

Figure 13: Hyperlinking after the initial LSP4I] setup

The LSP4]] plugin is responsible for displaying these hyperlinks. To resolve the issue,
a configuration change had to be applied (see Appendix E.2.1).

4.3.4. Occurrence Highlighting (FR 1.3)

Occurrence highlighting worked out of the box. Placing the cursor in a Bounded
Context name, for example, highlights all occurrences of the same Bounded Context in

the file.

No custom configuration/implementation was necessary.

Page 35 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.3. Implemented Features

4.3.5. Autocomplete (FR 1.4)

The language server provides autocomplete suggestions without any special
configuration or implementation [17]. However, the default implementation hides
non-alphabetic keywords from autocomplete suggestions [28]. For CML, this means
that Context Map relationship arrows like <-> are not automatically suggested by the
language server.

An implementation change in the language server (see Appendix E.1.3) was required
to change this behaviour.

An example for an autocomplete suggestion in the editor can be seen in Figure 14.

BoundedContext CustomerManagementContext implements CustomerManagementDomain {
businessModel = "ENGAGEMENT"
evolution = CUSTOM_BUILT
d

domainVisionStatement Keyword

Press +2 to insert, + to replace Next Tip

Figure 14: Screenshot of an autocomplete suggestion in the CML editor

4.3.6. Code Folding (FR 1.5)

Code folding required applying a configuration change in the IntelliJ plugin, see
Appendix E.2.1. However, when collapsing a code block, it was impossible to see what
CML element was hidden in the collapsed block (see Figure 15).

2

Figure 15: A collapsed Context Map after the initial LSP41J setup

By default, the language server provides folding ranges for code blocks [17]. A custom
folding range provider was implemented to improve the folding ranges so that the
first line of a block is still visible when collapsed (see Appendix E.1.4).

With invalid syntax embedded in a valid element, code folding cannot correctly
determine the folding ranges since the language server cannot parse the whole
document structure.

4.3.7. Keyword Tooltips (FR 1.6)

By default, the language server returns a JSDoc' comment directly preceding a
language element (if available) as tooltip documentation [17]. In Langium, these
tooltips are handled by so-called “hover providers”. Hover providers return
documentation text for any given position in a document.

A custom hover provider (see Appendix E.1.5) was implemented to extend Langium’s
default behaviour so that the keyword description is returned when a user hovers over
a CML keyword.

‘https://jsdoc.app/about-getting-started

L. Streckeisen Page 36 of 92

4. Proof of Concept Implementation Enhanced Context Mapper IDE Integration

Figure 16 shows the keyword tooltip for the contextMap keyword.

ContextMap InsuranceContextMap {

1
o Context Map: A model describing bounded
contexts and especially their relationships.
. Brandolini provides a very good introduction b /
d into context mapping here: https://www.infog.
b com/articles/ddd-contextmapping/ »
Find all DDD pattern descriptions in the DDD
— reference under https://domainlanguage.com/
- U% ddd/reference/ »
Domai

Figure 16: Screenshot of a keyword tooltip

4.3.8. Structure Outline (FR 1.7)

Intelli]’s structure view outlines the language elements in a file and relies on
document symbols provided by the language server [21]. The language server
automatically provides these symbols [17].

An adjustment in the LSP4IJ configuration was necessary for Intelli] to display the
received document symbols (see Appendix E.2.1).

An example of how a populated structure outline can look like is shown in Figure 17.

Structure

= Bounded-Context-Canvas-Example-5tage-1.cml
{} InsuranceContextMap
{} InsuranceDomain
{} CustomerManagementDomain

{} CustomerManagementContext

Figure 17: Screenshot of the Intelli] structure tool window

4.3.9. Display Usages (FR 1.8)
LSP4IJ supports displaying the usages of a language element by default (see Figure 18).
No customisation in the language server or the Intelli] plugin was required.

BoundedContext CargoBookingContext

Type CargoBookingContext DDD-Sample-Stage-1.cml 4 usages It
BoundedContext VoyagePld

¥) 0 0 i M B AlPlaces Usages @
BoundedContext Locationd

(@) DDD-Sample-Stage-1.cml 2 contains CargoBookingContext

(@) DDD-Sample-Stage-1.cml & CargoBookingContext [SK]<->[SK] VoyagePlanningContext
(@) DOD-Sample-Stage-1.cml 8 CargoBookingContext <- LocationContext
(@) DDD-Sample-Stage-1.cml 13 BoundedContext CargoBookingContext

Press "CH#F7 again to search in 'Project Files

Figure 18: Screenshot of the "Find Usages" action

Page 37 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 4.3. Implemented Features

4.3.10. Document Formatting (FR 1.9)

LSP can transmit instructions for a development environment to reformat a file
according to the rules defined in the language server [5]. Langium does not provide
formatters by default [17]. Therefore, one had to be implemented.

As with semantic tokens and validation, specialised formatter classes were created to
avoid a cluttered formatter implementation. For more details, see Appendix E.1.7.

4.3.11. Definition Tooltips (FR 1.10)

By default, the language server returns JSDoc comments preceding a language
element as its documentation text [17].

A customisation of this type of tooltips was not made, but it would be necessary to
extend this feature to regular multiline comments.

4.3.12. PlantUML Generator (FR 4.1)

The PlantUML generator in Context Mapper’s current Xtext documentation generates
different diagram types. The component diagram generation was picked for the PoC
to showcase how a generator can be implemented.

The generator’s implementation leverages the workspace/executeCommand [5] LSP
capability. For a detailed explanation of the generator implementation in the language
server, see Appendix E.1.8.

LSP4]J supports the execution of LSP commands, but a generator “Action” had to be
created, to display the generator in Intelli]’s editor popup menu and instruct LSP41] to
execute the generator command. For more details, see Appendix E.2.2.

Figure 19 shows a generated component diagram.

° CE context-mapper-examples 79 master Current File v E & Q ©
[J @ DDD-Sample-Stage-1.cml : *L DDD-Sample-Stage-1.pumi n
o ContextMap DDDSampleMap { v ZI0=ER <29 @R ®0O > @

contains CargoBookingContext]
o contains VoyagePlanningContext (== V=
oo contains LocationContext
i
CargoBookingContext [SK]<->[SK] VoyagePlanningContext O
Upstream-fDownstream
CargoBookingContext <- LocationContext
\\\\\\\\ Q
- ‘ ‘ spstream Bownstream
=) VoyagePlanningContext <- LocationContext '
e |
@ ¥ CargoBookingContext \’ CCCCCCC
ontext Car ingContext - B
BoundedContext VoyagePlanningContext }&ared}(eme\/’/
14 BoundedContext Lu:atiuncuntextl ’
]
[©) VoyagePlanningContext
T {3} LocationContext
0 context-mapper-examples > src > omain > cml > ddd-sample > @) DDD-Sample-Stage-1.cml 14:31 LF UTF-8 4spaces

Figure 19: Screenshot of a generated PlantUML component diagram in Intelli]

L. Streckeisen Page 38 of 92

5. Results Enhanced Context Mapper IDE Integration

5. Results

This section evaluates the results of the project, including a review of which of the
initially stated requirements have been implemented and what features remain
unresolved. An experience report reflects on the technology evaluation and points out
general issues encountered during the development of the PoC.

5.1. Fulfilment of Requirements

The thesis task description set the following goals that needed to be achieved:

1. Researching and analysing technical options to integrate a DSL into IntelliJ

2. A technology and architectural decision based on criteria defined in accordance
with the thesis advisor

3. A prototype plugin implementation

4. A migration path for Context Mapper features that were not implemented in the
plugin

Section 3 covers the first two goals. The prototype plugin was implemented as a PoC
and documented in Section 4. Finally, a migration path for remaining features is
outlined in Section 6.2.1. Therefore, the goals of this thesis could be achieved.

In addition to the general thesis goals, Section 2.2.1 and Section 2.2.2 defined
requirements towards the PoC. Automated tests have been implemented to verify the
correctness of the language server and plugin features. The language server includes
418, the Intelli] plugin nine, automated tests. These tests include unit tests, component
tests and ArchUnit tests to enforce separation of concerns. Manual tests were executed
for the IntelliJ plugin (see Appendix F).

Table 6 overviews which requirements were fulfilled.

Requirement Fulfilment status | Comment

FR 1.1 - Syntax highlighting Fulfilled

FR 1.2 - Hyperlinking Fulfilled

FR 1.3 - Occurrence Fulfilled

highlighting

FR 1.4 - Autocomplete Fulfilled There are a few remaining

open issues, see Section 5.2,
but overall the requirement

was fulfilled
FR 1.5 - Code folding Fulfilled
FR 1.6 - Keyword tooltips Fulfilled
FR 1.7 - Structure outline Fulfilled
FR 1.8 - Find usages Fulfilled

FR 1.9 - Document formatting | Fulfilled
FR 1.10 - Definition tooltips Partially fulfilled | see Section 5.1.2

FR 2.1 - Missing Bounded Not fulfilled see Section 5.1.1
Context quick fix

Page 39 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.1. Fulfilment of Requirements

Requirement Fulfilment status | Comment

FR 3.1 - Generate visual Not fulfilled see Section 5.1.1
Context Map

FR 4.1 - Generate PlantUML Partially fulfilled | see Section 5.1.3
diagrams

NFR 1 - Minimise duplicated | Fulfilled see Section 5.1.4
code between Intelli] and

VSCode

NFR 2 - Plugin stability Fulfilled see Section 5.1.5
NFR 3 - CML editor efficiency | Fulfilled see Section 5.1.6
NFR 4 - PlantUML diagram Fulfilled see Section 5.1.7
generation efficiency

NFR 5 - Generator Fulfilled see Section 5.1.8
extensibility

NFR 6 - Code quality Fulfilled see Section 5.1.9
NFR 7 - Separation of Fulfilled see Section 5.1.10
concerns

NEFR 8 - Intelli] compatibility [Fulfilled see Section 5.1.11
NFR 9 - Licence compatibility | Fulfilled see Section 5.1.12
NEFR 10 - IntelliJ best practices | Fulfilled see Section 5.1.13

Table 6: Fulfilment status of project requirements

5.1.1. Changed project scope

When the project requirements were defined, a new language server was not planned.
The mid-project decision to create a new language server with Langium not only
reduced the CML grammar supported by the PoC but also reprioritised the planned
features. The following features were given a lower priority in favour of the PlantUML
generator feature (FR 4.1):

« FR 2.1 - Missing Bounded Context quick fix

« FR 3.1 - Generate visual Context Map

Due to time constraints, these features could not be implemented during this thesis.

5.1.2. FR 1.10 - Definition tooltips

The current Eclipse extension of Context Mapper is capable of using regular multiline
comments (/*...*/) as tooltip documentation for a CML element. The PoC can only
use JSDoc comments (/**. . .*/) for tooltip documentation.

5.1.3. FR 4.1 - Generate PlantUML diagrams

The PlantUML generator in Context Mapper’s current Eclipse & VSCode extension
creates multiple diagram types. Due to time constraints, the component diagram
generation was selected to showcase how a generator can be implemented in
Langium. All remaining PlantUML diagram types have not been implemented.

L. Streckeisen Page 40 of 92

5. Results Enhanced Context Mapper IDE Integration

5.1.4. NFR 1 - Minimise duplicated code between IntelliJ and VSCode
While the PoC could not directly reuse existing Context Mapper code, the feature
logic was placed in the newly created language server. That way, a future VSCode
extension can be built upon the language server without adding additional feature
logic. The verification criteria were, therefore, fulfilled.

5.1.5. NFR 2 - Plugin stability

The language server has been extensively tested with automated unit & component
tests executed as part of the CI pipeline. Where possible, unit tests have been created
for the Intelli] plugin. The plugin stability was also observed during manual tests.

5.1.6. NFR 3 - CML editor efficiency

No performance issues were discovered during manual tests and an informal user test
with the thesis advisor.

5.1.7. NFR 4 - PlantUML diagram generation efficiency

An automated performance test has been created in the language server project that
verifies the creation of a PlantUML component diagram within the set time constraint.
The test is executed as a part of the CI pipeline.

5.1.8. NFR 5 - Extensibility for additional generators

A new generator can be added to the plugin using one extension point each. First, the
generator needs to be registered with the command handler in the language server. A
corresponding generator action then has to be registered within the Context Mapper
action group in the plugin.xml of the Intelli] plugin.

A dummy generator was added in a branch of the language server' and Intelli] plugin?
repositories, to showcase their extensibility.

5.1.9. NFR 6 - Code quality

JetBrains Qodana has been set up to analyse code in the language server and Intelli]
plugin CI pipeline. At the time of the thesis submission, there were no open problems
in the IntelliJ plugin code. As Figure 20 shows, Qodana reports one open problem for
the language server regarding the test coverage of the main. ts file. This problem was
accepted since the code in main.ts is equivalent to the standard script generated
when creating a Langium project.

thttps://github.com/Istreckeisen/context-mapper-language-server/compare/dummy-generator
*https://github.com/Istreckeisen/context-mapper-intellij-plugin/compare/dummy-generator

Page 41 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

context-mapper-language-server

L# main 2 Jun 15:49
1 problem

O 98% lines covered
License audit not enabled

5.2. Open Issues

context-mapper-intellij-plugin

L? main 24m ago

No problems

Coverage not enabled
License audit not enabled

Figure 20: Screenshot of Qodana scan results after the PoC was finalised

5.1.10. NFR 7 - Separation of concerns

To enforce separation of concerns, ArchUnit tests have been created. These tests check
that features in a top-level package/folder do not depend on code in a sister-package/
folder. The ArchUnit tests are executed as part of the CI pipeline.

5.1.11. NFR 8 - IntelliJ compatibility
A manual compatibility check with the IntelliJ versions 2024.3.5 and 2025.1.1.1 was
performed. The plugin could be installed in both versions.

5.1.12. NFR 9 - Licence compatibility

JetBrains Qodana is capable of performing licence compatibility checks for project
dependencies. However, due to an unknown issue, this feature did not work.
Therefore, the licences of all used libraries were checked for compatibility according
to Apache’s third-party licence policy [13]. All dependency licences were found
compatible.

5.1.13. NFR 10 - Intelli] best practices
Most features in the PoC Intelli] plugin are provided through the LSP4IJ plugin. LSP4I]
and the added generator conform to the Intelli] best practices.

5.2. Open Issues

The informal user test with the thesis advisor led to the discovery of a few issues with
the PoC implementation that could not be resolved as of the end of this thesis. These
issues are outlined below.

5.2.1. Brace Matching

IDEs usually automatically complete a brace pair when typing “(“ in the editor. IntelliJ
also has this capability, but custom languages such as CML require a custom brace
pair matcher [21]. A brace pair matcher defines brace, bracket and parenthesis pairs
using lexer tokens, which requires the Intelli] plugin to have a lexer.

To resolve this issue in a future project, a lexer could be created. For the purpose of
this feature, it would be enough for the lexer to be capable of recognizing brace pairs
and not the full CML grammar.

L. Streckeisen Page 42 of 92

5. Results Enhanced Context Mapper IDE Integration

5.2.2. Autocomplete

There are two known cases where autocomplete is not yet on the same level as in the

VSCode extension.

1. When defining a Context Map relationship, autocomplete can only make
suggestions for keywords within brackets after the user starts to type

2. The VSCode extension suggests placeholder values, e.g. for a stakeholder
description, which benefits users unfamiliar with the CML grammar.

Modifications to the completion provider in the language server should resolve these
issues.

5.2.3. IntelliJ Plugin Testing

The developed Intelli] plugin is currently only tested with unit tests. However,
integration tests would be necessary for the CI pipeline to detect an issue in the
plugin.

Attempts were made to set up integration tests according to the JetBrains
documentation [21], but they broke the existing unit tests. As of the end of this thesis,
the source of this issue has not yet been discovered and requires further investigation.

5.3. Experience Report
This experience report reflects on the technology decision and highlights both
positive and negative experiences during the PoC development.

As described in the technology evaluation, Langium is well-designed and generally
easy to understand for developers. However, the documentation [17] had more gaps
regarding implementation details than anticipated. The documentation appears to be
heavily VSCode-oriented and omits supported LSP capabilities that are not required in
VSCode. Syntax highlighting is a good example of that. In VSCode, syntax
highlighting is provided through TextMate' and does not require semantic tokens.
IntelliJ, on the other hand, needs semantic tokens to highlight source files. Since the
Langium documentation does not provide guidance on implementing a semantic
token provider, public GitHub repositories that also use Langium had to be consulted
instead.

On the IntelliJ side, the young age of the LSP4I] plugin became apparent. Syntax
highlighting was very unstable up to version 0.13.0, which was released towards the
end of the PoC implementation. Without a fix in version 0.13.0, the Context Mapper
Intelli] plugin would have been unusable for end users.

During the PoC implementation, both the Langium and LSP4I] maintainers have been
contacted for help with minor issues. The interaction with both maintainers proved to
be very pleasant, with quick and constructive responses.

Based on the experiences collected during this thesis, the technology decision can be
confirmed. Langium is currently the most capable alternative to Xtext and works very
well once it becomes clear how to implement certain LSP features. LSP4I], apart from

'https://macromates.com/manual/en/language_grammars

Page 43 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.3. Experience Report

the syntax highlighting issues, worked very well. It is currently also the most effective
option for integrating a language server in Intelli].

L. Streckeisen Page 44 of 92

6. Outlook Enhanced Context Mapper IDE Integration

6. Outlook

This section identifies possible long-term risks with the newly selected technologies
and outlines a migration path for Context Mapper features that have not been
implemented in the PoC.

6.1. Long-Term Risk Analysis

To analyse the risks involved with using Langium and LSP4I] in the long term, the
identified risks are evaluated using the factors “probability” and “severity”. The risk
matrix in Table 7 describes the scale for both factors and assigns colour codes.

Probability / | 1 Almost 2 Unlikely | 3 Moderate | 4 Likely 5 Almost

Severity Impossible Certain

4
Catastrophic

3 Critical
2 Major

1 Minor

Table 7: Risk matrix

Section 6.1.1 and Section 6.1.2 highlight the risks associated with Langium and LSP4I],
respectively, and discuss their mitigation. A conclusion on the associated risks can be
found in Section 6.1.3.

6.1.1. Langium
Table 8 contains the identified long-term risks for Langium.

ID Risk Probability | Severity | Reasoning

RSK-1 [Maintainers stop 2 3 Langium is backed by
contributing and the TypeFox'. TypeFox
project is abandoned maintained Xtext for

more than 10 years and
decided to start fresh
with Langium. It cannot
be ruled out that this
will happen again, but
given Langium’s age of
3 years, this seems

unlikely at this time.

‘https://www.typefox.io/language-engineering/

Page 45 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.1. Long-Term Risk Analysis

ID Risk Probability | Severity [Reasoning

RSK-2 [Documentation is 4 2 Based on the
missing vital experiences made
information for a future during the PoC
feature development, the

information needed for
a future feature is likely
missing from the
documentation. Gaps in
the documentation
impact the time
required to implement
the feature but not the
feature’s technical

feasibility.
RSK-3 [Breaking changes are 4 2 The introduction of
introduced breaking changes in

future versions of
Langium is likely based
on past releases’.
Breaking changes would
increase the effort
required to upgrade to
the next version but
should not have a
bigger impact.

Table 8: Identified long-term risks for Langium

The possibilities to mitigate the mentioned risks are limited. To mitigate the impact of
breaking changes, it could be attempted to abstract feature logic in a way that limits
dependencies on Langium to a few classes. However, this might not be easy to
achieve. To mitigate the risk of abandonment, DSL developers could be encouraged to
make code or financial contributions to the Langium project.

'https://github.com/eclipse-langium/langium/blob/main/packages/langium/CHANGELOG.md

L. Streckeisen Page 46 of 92

6. Outlook

6.1.2. LSP41]
Table 9 shows the identified long-term risks for the LSP4I] plugin.

Enhanced Context Mapper IDE Integration

ID

Risk

Probability

Severity

Reasoning

RSK-4

Maintainers stop
contributing and the
project is abandoned

3

3

LSP4]] is maintained by
the Red Hat developer
community and is
approximately one year
old as of the end of this
thesis. Among other
things, the future of
LSP4]I] depends on its
user base. The plugin is
currently used by 27
other plugins' and has
155’000 downloads in
the JetBrains
marketplace®. At this
time, it is unlikely that
the plugin will be
abandoned, but it
cannot be ruled out.

RSK-5

LSP4I] prevents plugin
support for latest IntelliJ
version

If LSP4IJ becomes
incompatible with the
latest version of Intelli],
the Context Mapper
plugin cannot be
installed with that
version of Intelli] either.
A situation like that
could be caused by a
breaking change in the
Intelli] Platform and
Plugin API, which does
tend to happen®. As of
the end of this thesis,
LSP4IJ had a fast release
cycle and supports
Intelli] versions as of
2023.2.

'https://github.com/redhat-developer/lsp4ij/blob/main/README.md

*https://plugins.jetbrains.com/plugin/23257-1sp4ij
*https://plugins.jetbrains.com/docs/intellij/api-changes-list.html

Page 47 of 92

L. Streckeisen

Enhanced Context Mapper IDE Integration 6.1. Long-Term Risk Analysis

ID Risk Probability | Severity [Reasoning
RSK-6 | Breaking changes are 3 1 As of the end of this
introduced thesis, there are no

known breaking
changes up to version
0.13.0. Since the PoC
primarily configures
LSP4]], a breaking
change would likely
necessitate the use of a
new or different
configuration option.

Table 9: Identified long-term risks for LSP4I]

As with Langium, the best way to mitigate the abandonment of LSP41J is to encourage
developers to make contributions and to promote the plugin. The mitigation of the
Context Mapper plugin being blocked from running in the latest IntelliJ versions is,
due to the nature of its dependency on LSP4I], not possible. In the event of breaking
changes to the LSP41J configuration, the required adjustments should require minimal
effort and, therefore, do not require mitigation.

6.1.3. Conclusion

Software dependencies always carry risks when used. They lead to a loss of control
over code that is sometimes essential to a project. However, it is not always an option
to replace a dependency with your own code, as the required effort would be too high.
The use of dependencies, therefore, is always a tradeoff between the associated risks
and the benefits of using them [29].

Langium, as a language workbench, is an essential part of a DSL project. The effort
required to switch to a different language workbench or implement a language server
from scratch would be very high, and any issues related to the language server also
impact IDE plugins that are based on it. With Xtext seemingly reaching the end of its
life, Langium is currently the most capable option for building a language server.
There are risks associated with using Langium, but they are at an acceptable level.

LSP4I] bears fewer risks than Langium, as its role as an integration option is not as
essential as with a language workbench. The risks involved in using LSP4I] are also on
an acceptable level. In case LSP4IJ becomes an unreliable option, a fallback to IntelliJ’s
LSP support is always possible, with the consequence that the plugin becomes
unavailable in Intelli] Community versions. It is also possible that JetBrains will add
more LSP capabilities to IntelliJ in the future and make LSP support available in
IntelliJ’s Community version. In that case, a switch to JetBrains’ LSP support would
make sense from a risk perspective.

L. Streckeisen Page 48 of 92

6. Outlook Enhanced Context Mapper IDE Integration

6.2. Future Work

This section describes how not-implemented Context Mapper features can be
migrated to the technology stack used in the PoC. Given the complexity of migration,
a future project is proposed.

6.2.1. Migration of Remaining Context Mapper Features

The following ContextMapper features have not been implemented in the PoC.
 Quick fixes
Architectural refactorings

Validators (other than the ones implemented due to grammar differences)
+ Generators
» PlantUML (other than component diagram)
» Visual Context Map
» Sketch Miner
» MDSL contract
» FreeMarker
« Discovery
« ArchUnit extension

Grammar Completion

The developed PoC does not include the grammar elements for tactic DDD and
imports. To offer the complete set of Context Mapper features, the grammar in the
language server must be fully implemented. The Xtext grammar for the remaining
grammar elements needs to be adjusted according to the Langium grammar
differences described in Section 4.2.

Quick Fixes and Architectural Refactorings

Since quick fixes and architectural refactorings are offered in the same way in the
editor, their implementation follows the same path. The LSP handles quick fixes via
“code actions” [5]. The language server computes available code action commands for
a document and returns them to the editor. The execution of code actions is handled
via the workspace/executeCommand request, which is already used in the PoC to
execute generator actions.

In the language server, code actions are provided by a codeactionProvider, which
needs to be implemented to offer quick fixes and architectural refactoring actions in
the editor [17]. Additionally, a command must be registered in the
ContextMapperCommandHandler for every quick fix and refactoring.

In the Intelli] plugin, it should not be necessary to make customisations for these
features [22].

The quick fixes and refactorings implemented in the Xtext version of Context Mapper
manipulate the AST and do not have any dependencies on other libraries [8]. Their
reimplementation in TypeScript is, therefore, unproblematic.

Page 49 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 6.2. Future Work

Validators

The PoC showcased the implementation of semantic validation. The validators
implemented in Xtext do not depend on any non-Xtext libraries [8] and can, therefore,
be rewritten in TypeScript without any issues.

Generators

The partially implemented PlantUML generator shows how generators can be
implemented in a Langium language server. The PlantUML generator can be
completed in the same manner as the component diagram implementation in the PoC.

The Context Map generator in the Xtext language server depends on the graphviz-
java' library. A potential TypeScript alternative is ts-graphviz?® If this library proves
insufficient to replace graphviz-java, the Context Map diagram can be generated by
creating a .dot file - similar to the approach for the PlantUML diagrams - and then
using the graphviz CLI (Command Line Interface) tool to generate the desired output
formats.

The migration of the FreeMarker, MDSL, and Sketch Miner generators, which all
utilise FreeMarker® templates, requires more effort. There are currently no maintained
Node.js libraries for FreeMarker, which prevents a straightforward migration to
Langium. To work around that, a Java-based CLI tool could be created that reads a
CML file and renders a FreeMarker template. The language server or the IDE plugin
would then call the CLI tool to generate resources based on the CML models defined
by users. These generators therefore still require a Java library to parse CML files.

Discovery

The Context Mapper discovery feature, which is separate from the current Xtext
language server, utilises the Context Mapper standalone library to translate discovered
Bounded Contexts and their relationships into CML. Since the discovery library
specifically targets Java projects, it still requires a Java library to create CML files.

ArchUnit Extension

The Context Mapper ArchUnit extension can be used to check if the model defined in
CML is reflected in a Java codebase. To do that, the ArchUnit extension relies on the
Context Mapper standalone library.

There is an ArchUnit implementation for TypeScript: ts-arch®. ts-arch would allow
writing ArchUnit tests based on a CML model, but the library cannot target Java code.
The Context Mapper ArchUnit extension, therefore, still requires a Java library for
parsing CML.

thttps://github.com/nidi3/graphviz-java
*https://github.com/ts-graphviz/ts-graphviz
*https://freemarker.apache.org/
*https://github.com/ts-arch/ts-arch

L. Streckeisen Page 50 of 92

6. Outlook Enhanced Context Mapper IDE Integration

Context Mapper Java Library

Context Mapper should continue to support Java developers, as it does today, by
offering an ArchUnit extension and a standalone library for CML. To do that, a Java
parser for CML will still be required in the future.

There are currently plans for Langium to refactor its parsing engine’, allowing parsers
other than Chevrotain to be used. These plans also include offering an ANTLR parser
out of the box.

With an ANTLR grammar as the base for the Langium language server, a Java parser
could be generated. This parser could then be used for a standalone Java library, the
discovery library and the ArchUnit extension. A CLI tool based on that ANTLR parser
could implement the Context Mapper generators. This approach would allow partial
reuse of the existing implementations for the discovery library, ArchUnit extension
and generators.

However, it is to be expected that an ANTLR parser will not be available in Langium
for some time. In the meantime, building the Java libraries on an ANTLR parser is still
possible by using separate grammars for the Java tools and Langium. This separation
would require maintaining both grammars until Langium supports the ANTLR parser,
at which point the Langium grammar could be discarded.

6.2.2. Suggestion for a Future Project

Given the need for a Java library that allows automated parsing and writing of CML,
an additional project is required to provide this library. One possible implementation
path is to use ANTLR alongside Langium, as mentioned above. Another option is to
build a language server from scratch on the JVM (Java Virtual Machine) stack. A JVM-
based language server would have the advantages of having a single technology base
and being able to reuse existing feature implementations more easily. The parser from
the language server could then be reused for a standalone library as well.

The project would need to assess the trade-offs between building a custom language
server and going ahead with Langium, as well as evaluate the risks associated with
using ANTLR alongside Langium.

'https://github.com/eclipse-langium/langium/issues/1742

Page 51 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

7. Conclusion

This thesis analysed the Context Mapper features included in the existing Context
Mapper implementation. An overview of current language workbenches and
integration options to add custom language support in Intelli] was provided. A
technology selection based on a utility analysis was made, resulting in the use of
Langium and LSP4IJ. A PoC was implemented, showcasing how Context Mapper can
be integrated into Intelli] and how Xtext can be replaced as the base for the language
server. A risk analysis identified long-term risks associated with the PoC technologies
and concluded that there are no uncommonly significant risks associated with them.
Finally, a migration path for expanding the PoC to the complete Context Mapper
feature set was outlined. Since Context Mapper should continue to offer Java libraries,
not all features can be based on the Langium sources from the PoC. An additional
project is required to provide a new Java library for reading and writing CML models,
so Context Mapper’s existing Java tools, such as the ArchUnit extension, can be
migrated as well.

L. Streckeisen Page 52 of 92

7. Conclusion Enhanced Context Mapper IDE Integration

Part II - Appendix

Page 53 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 1.1. Initial Situation

A: Task Description

A.1: Initial Situation

Context Mapper (contextmapper.org) is an open source modelling tool and framework
that uses a Domain-Specific Language (DSL) to enable the modelling of software
systems based on Domain-Driven Design (DDD) patterns. Various artefacts such as
context maps, PlantUML diagrams and interface contracts can be generated from the
models.

The Context Mapper is currently available as an Eclipse plugin and as a Visual Studio
Code (VSCode) extension. There is also a CLI (Command Line Interface), standalone
Java library for generating Context Mapper DSL (CML) models using code, a discovery
library for generating models from existing source code, and an ArchUnit extension
for comparing code and model. Technologically, the entire framework is implemented
in Java and uses the Xtext framework (eclipse.dev/Xtext) for language engineering.
Integration into VSCode is realised via the so-called Language Server Protocol (LSP).
The Xtext framework automatically generates an LSP server based on the grammar of
the CML language. The VSCode extension of Context Mapper uses this LSP server as a
“backend”.

Since many Java developers today use Intelli] IDEA from JetBrains, they would like to
see Context Mapper integrated into this Integrated Development Environment (IDE).
The lack of such integration means that software developers have to use VSCode in
addition to Intelli] IDEA to edit CML models, or that this hurdle is perceived as too
high and Context Mapper is therefore not used.

A.2: Goals and Deliverables

The lack of a Context Mapper integration for Intelli] IDEA makes it difficult to spread
the modelling tool, especially in the Java community, where Intelli] has established
itself as the standard IDE. In addition, the current technology stack based on the Xtext
framework is getting older and maintainability is not ideal. The spread of Eclipse has
declined in recent years and the Xtext framework is no longer really developed
further.

The main objective of this thesis is to demonstrate through a prototype how the
Context Mapper DSL (CML) language and its tools can be integrated into Intelli] IDEA
- as a plugin.

The first step is to analyse and research the options available for this. Integration on
the basis of the existing Xtext/LSP stack is only one possible variant. Within the scope
of this work, an open overview of the possibilities, independent of the existing
technology, is to be created.

After a technology and architecture decision has been made (according to criteria to

be defined), a prototype (Intelli] plugin) is to be implemented. The plugin should offer
the basic functionalities of the CML-language in a corresponding editor and integrate
one or two of the existing generators. For the other existing Context Mapper features,

L. Streckeisen Page 54 of 92

1. Task Description Enhanced Context Mapper IDE Integration

it should be shown how these can be implemented or migrated in the new plugin (no
complete implementation required as part of the prototype).

The critical success factors for this work are defined as follows:

1. An analysis and research shows which technical options are available for
integrating the CML-language and the other Context Mapper tools into IntelliJ.

2. A well-founded technology and architecture decision is made on the basis of jointly
defined criteria (with the supervisor).

3. A prototype of a plugin shows how Context Mapper and its CML language can be
integrated into the Intelli] IDEA IDE.

4. For existing Context Mapper features that are not implemented (in the prototype),
it is at least analysed how they can be integrated or implemented later.

5. The report of the bachelor thesis documents the analysis (technology research,
etc.), the decisions for the prototype (including the underlying criteria), the
implementation of the prototype, and gives an outlook on how the integration can
be completed in subsequent projects.

A.3: Support
The expected and effectively received support is recorded by the student.

A.4: Project Execution

The Bachelor’s thesis is about applying the knowledge learned in the various OST
modules to a project. In particular, software engineering skills will be required.
Students are expected to apply this knowledge and use methods such as unit testing,
clean code, SCM and continuous integration wherever possible. The usability of the
results should also be checked using suitable means and representatives of the target

group.

The preliminary study, requirements documentation and architecture documentation
should be approved in a stable state during the course of the project by means of
milestones with the client and supervisor. Preliminary feedback is given on the
submitted work results. A definitive assessment is made on the basis of the
documentation delivered by the deadline.

The rights to the results of the Bachelor’s thesis are defined in a separate agreement
(report public, no non-disclosure agreement required).

The requirements are specified by the student in consultation with the supervisor. In
the event of disputes, the supervisor decides on the definitive requirements relevant to
the Bachelor’s thesis in consultation with the student.

As a rule, weekly meetings are held with the supervisor (meeting at OST or video
conference). Additional meetings are to be arranged as required. All meetings that
require preparation by the supervisor must be prepared by the student with an
agenda. This must be sent to the supervisor at least half a working day in advance.
Decisions must be documented in minutes and then sent to the supervisor or filed in a
defined location (e.g. wiki). A project plan must be drawn up for the realisation of the

Page 55 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 1.5. Tools

work. Attention must be paid to continuous and visible work progress. Working hours
must be documented.

A.5: Tools
Unless specified in the assignment, students are responsible for selecting their own
tools, libraries, frameworks, etc.

A.6: Documentation

This work must be documented in accordance with the guidelines of the Department
of Computer Science (regulations and instructions in MS Teams of the Computer
Science programme). The documents to be created must be recorded in the project
plan. All documents must be kept up to date, i.e. they should document the status of
the work in a consistent form at the time of submission. Time records must be kept
and analysed in the report.

L. Streckeisen Page 56 of 92

2. Technology Exploration Tests Enhanced Context Mapper IDE Integration

B: Technology Exploration Tests
This appendix contains a brief documentation of tests performed with the
technologies from the technology elaboration phase.

B.1: JetBrains MPS

The introduction course for MPS' uses the ChemMastery sample project included in
MPS. Each MPS project comes with a sandbox to test the language and its definition.
The structure of the language definition is clear and easy to understand (Figure 21).

jetbrains.mps.samples.ChemMastery.sandbox
- [L] jetbrains.mps.samples.ChemMastery
< structure
[z editor
o actions
2 constraints
C2 behavior
T typesystem

[intentions

(&) generatorfjetbrains.mps.samples.ChemMastery/main

Figure 21: Structure of an MPS language definition

The structure and editor definitions are most important to the language. The structure
definition consists of so-called “concepts”, which represent the different structural
elements of the language. Each concept can define properties, possible child elements
and references to other concepts (Figure 22).

'https://cogniterra.org/course/28

Page 57 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.1. JetBrains MPS

ChemSheet

BaseConcept
5 INamedConcept

properties:
showButtons : boolean

Figure 22: Example of an MPS concept definition

Each language concept has its own editor. The editor defines how a language concept
is presented to the user and how the language user provides information to create an
instance of the concept. The editor can use textual or graphical elements for language
users to provide the required information. However, the resulting editor always
includes some graphical elements and is never just plain text. Figure 23 shows an
example of an editor definition that uses Java Swing elements. An example of the
resulting editor presented to the language user can be seen in Figure 24.

L. Streckeisen Page 58 of 92

2. Technology Exploration Tests Enhanced Context Mapper IDE Integration

ChemSheet_Editor

editor for cnnceptl:l

node cell layout:

Chemistry sheet {[name|

description

Hm {showButtons} |Show manipulation huttuns

inspected cell layout:

component provider: (
t () .getFontSize();
int desiredWidth = fontSize *
JPanel panel = new JPanel() {

lic Dimension getPrefer Size() {
'n new Dimension(desiredWidth, fontSize);

nt(6raphics g) {
.paintComponent(g);
height = gth»lght{|
g.setColo o 7
((6raphics2D) g).setStroke(new BasicStroke(3));
{{Graphiﬂs A1) gl Sth»ndvr1ngH1nt{and»r1ngH1nts

);
¥

|

panel.setBackground(new Color(l,

panel;

Figure 23: MPS editor definition using graphical elements

Page 59 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.2. Langium

Chemistry sheet Inorganic reactions
The basic inorganic chemistry formulas that form the basis of chemistry.
Learn them!

@ show manipulation buttons

Electrolysis of water

Chlorine production
2) ELEIA + + M) NaOH

Figure 24: Example of an MPS editor presented to the language user

The resulting MPS plugin can be installed in the MPS IDE itself and used there in a
solution project. The plugin could also be installed in a 2023 version of IntelliJ.
However, the ChemMastery language did not appear anywhere in Intelli].

B.2: Langium

A basic example of a Langium project can be generated using Yeoman'. The project
can be generated with a basic setup of a VSCode extension, a CLI and the language
itself.

The grammar definition in Listing 9 is a bit easier to understand for beginners than
the Grammar-Kit grammar (see Appendix B.5), but that is mainly because Langium
does not include configuration for a program structure interface.

grammar TestLang

entry Model:
(persons+=Person | greetings+=Greeting) *;

Person:
'person' name=ID;

Greeting:
'Hello' person=[Person:ID] '!';

hidden terminal WS: /\s+/;

terminal ID: /[a-zA-Z][\w_]1*/;

terminal INT returns number: /[0-9]+/;

terminal STRING: /" (\\.[[""\\1)*"|" \\.[[""\\])*"/;

hidden terminal ML COMMENT: /\/*[\s\S]*2?*\//;
hidden terminal SL COMMENT: /\/\/["\n\r]*/;

Listing 9: Langium grammar of the generation getting started example

For a VSCode extension, there is also some configuration for syntax highlighting and
comment & bracket tokens. Depending on the language, other extensions of the basic

thttps://yeoman.io/

L. Streckeisen Page 60 of 92

2. Technology Exploration Tests Enhanced Context Mapper IDE Integration

setup, e.g. for validators, are required, but the basic setup remains and provides the
language server and VSCode extension separately.

B.3: IntelliJ LSP

Setting up an LSP integration via Intelli]’s LSP support requires little effort. Figure 25
shows the file structure required for the setup. IntelliJ calls the
CMLLspServerSupportProvider when a file is opened. If the file has the correct file
extension, it is responsible for starting the language server. The
CMLLspServerDescriptor contains the start command for the language server and is
passed to Intelli]’s server starter by the cMLLspServerSupportProvider.

v Dsre
- [7 main

kotlin

~ [] org.contextmapper.dsl.Isptest

CMLLspServerDescriptor
CMLLspServerSupportProvider

~ [2resources
~ [0 META-INF
< T plugin.xmil

Figure 25: File structure of the basic Intelli] LSP setup

Finally, a single entry in the plugin.xml completes the LSP setup. In a test with the
existing CML language server, features like autocomplete worked, but others, like
syntax highlighting and code folding, did not.

B.4: LSP41]
To assess LSP4I]’s capabilities, its Ul config was used over its plugin API Figure 26
shows the configuration necessary to start the language server.

¥ = CML Server Mappings Configuration Debug

< started pid:88005
Environment variables:

Command:

I vscode-extension/lsp/bin/context-mapper-Isp

Server Mappings Configuration Debug

File associations with the language server

Language File type File name patterns (1)

|

File name patterns Language Id

* cmi cml

Figure 26: LSP4I] test UI config

Page 61 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 2.5. Native Integration

The test showed the same results as with Intelli]’s LSP support.

B.5: Native Integration

The tutorial from JetBrains’ documentation [21] guides through the major editor
features. For the “Simple” language, which is basically a key-value mapping, the
tutorial guides through the creation of 48 classes and a lexer and parser definition. The
tutorial uses JFlex' to generate the lexer and Grammar-Kit? to generate the parser.

While the implementation of editor features can be understood relatively quickly, the
JFlex and Grammar-Kit definitions require more knowledge, especially when the
grammar is more complicated than a simple key-value mapping. Listing 10 shows the
grammar definition for the Simple language. The basic grammar is based on the
Parsing Expression Grammar® and extended with global and rule attributes [30]. In
addition to the grammar itself, Grammar-Kit also includes configuration for the PSI
integration of the generated parser.
{
parserClass="ch.streckeisen.intellijtestplugin.parser.SimpleParser"
extends="com.intellij.extapi.psi.ASTWrapperPsiElement"
psiClassPrefix="Simple"
psiImplClassSuffix="Impl"

psiPackage="ch.streckeisen.intellijtestplugin.psi"
psiImplPackage="ch.streckeisen.intellijtestplugin.psi.impl"

elementTypeHolderClass="ch.streckeisen.intellijtestplugin.psi.SimpleTypes"

elementTypeClass="ch.streckeisen.intellijtestplugin.psi.SimpleElementType"
tokenTypeClass="ch.streckeisen.intellijtestplugin.psi.SimpleTokenType"

psiImplUtilClass="ch.streckeisen.intellijtestplugin.psi.impl.SimplePsiImplUtil"
}

simpleFile ::= item *

private item ::= (property|COMMENT |CRLF)

property ::= (KEY? SEPARATOR VALUE?) | KEY {
pin=3

recoverWhile="recover property"
mixin="ch.streckeisen.intellijtestplugin.reference.SimpleNamedElementImpl"

implements="ch.streckeisen.intellijtestplugin.reference.SimpleNamedElement"
methods=[getKey getValue getName setName getNameldentifier
getPresentation]

}
private recover property ::= ! (KEY|SEPARATOR|COMMENT)

Listing 10: Grammar definition of the Simple language from the custom language
plugin tutorial

‘https://www.jflex.de/
*https://github.com/JetBrains/Grammar-Kit
*https://en.wikipedia.org/wiki/Parsing_expression_grammar

L. Streckeisen Page 62 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

C: Detailed Technology Evaluation
This appendix contains the detailed utility analysis performed during the technology
evaluation.

C.1: JetBrains MPS

Future Proofing

Score 3
Weighted Score 9
Reasoning

MPS is maintained by JetBrains and receives regular updates. It is unlikely that it
will be discontinued anytime soon.

Ease of use

Score 1
Weighted Score 2
Reasoning

According to JetBrains, “(...) there are easier tasks in the world than learning

MPS?” [15] A Stack Overflow post [31] also confirms that. When one already
understands how a DSL is created, MPS concepts are certainly easier to understand,
but even then, there is a learning curve because projectional DSLs just work
differently. For languages that are a bit more complicated than, e.g. the
chemmastery sample language (included in the MPS IDE), an understanding of the
MPS DSL is required.

Documentation
Score 2
Weighted Score 4
Reasoning

A Stack Overflow post [31] mentioned that the documentation is challenging for
beginners, at least in 2010. The documentation [15] seems to have improved since
then. The documentation as of March 2025 is quite extensive and includes a link to a
getting started course’ that explains the core concepts of MPS quite well.

Feature Support

Score 1
Weighted Score 3
Reasoning

'https://cogniterra.org/course/28

Page 63 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.2. Langium

MPS does have equivalents for all defined requirements but in a very different way.
Projectional editing cannot read or modify a .cm1 file created with the VSCode
extension of Context Mapper. Using MPS would be a breaking change to all existing
CML definitions.

Licence
Score 3
Weighted Score 9
Reasoning

MPS is licensed under Apache 2.0.

IDE Compatibility

Score 1

Weighted Score 3

Reasoning

MPS is a JetBrains product and, therefore, only usable with JetBrains products.
Language plugins are MPS plugins intended for use in the MPS IDE. With the “MPS
Core” plugin, MPS language plugins can also be installed in IntelliJ. However, as of
March 2025, the “MPS Core” plugin does not yet support the 2024 versions of Intelli]
[32].

Reusability
Score 1
Weighted Score 2
Reasoning

Using MPS requires a complete rewrite of Context Mapper.

C.2: Langium

Future Proofing

Score 2
Weighted Score 6
Reasoning

Langium gets frequent updates, and version 3.3.0 (November 2024) marked the
milestone of Langium becoming a mature project [33]. Langium was created by
TypeFox' and had about 20 active contributors in 2024, with the main contributions
made by about five people [34]. At this point, there are no signs of difficulties in
maintaining the project.

‘https://www.typefox.io

L. Streckeisen Page 64 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

Ease of use

Score 2
Weighted Score 4
Reasoning

The tutorial in the Langium documentation [17] shows that creating a language
server is straightforward. The creation of advanced languages will require studying
the Langium grammar language.

Documentation
Score 3
Weighted Score 6
Reasoning

The documentation [17] is clear, covers all major features, and includes a complete
description of the grammar language and APL There is also a tutorial on getting
started and a more advanced example that guides through the creation of validators,
generators, and a VSCode extension.

Feature Support

Score 3
Weighted Score 9
Reasoning

Langium leverages LSP. While the documentation [17] does not list supported LSP
capabilities, it indicates that all editor requirements are supported. Features that are
not supported by LSP can be added through native integration.

Licence
Score 3
Weighted Score 9
Reasoning

Langium is licensed under the MIT" licence. According to the Apache 3rd Party
Licence Policy [13], software under the MIT licence may be included in an Apache
2.0 project without restrictions.

IDE Compatibility

Score 3
Weighted Score 9
Reasoning

By leveraging LSP, langium supports a wide range of IDEs, including VSCode and
Intelli].

'https://opensource.org/licence/mit

Page 65 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.3. Rascal

Reusability
Score 1
Weighted Score 2
Reasoning

Langium is written in TypeScript. Though it is possible to still use the existing
Context Mapper code by delegating parts of the logic to a separate Java process, that
solution would not be ideal. Therefore, a complete rewrite would be possible. The
resulting language server can then be reused for different IDEs.

C.3: Rascal

Future Proofing

Score 2
Weighted Score 6
Reasoning

The organisation UseTheSource' coordinates contributions to Rascal. In 2024, 5
people actively contributed, with the main contributions made by three people [35].

Ease of use

Score 2
Weighted Score 4
Reasoning

Defining a grammar syntax is not complicated, especially if one is familiar with
Haskell, as Rascal is similar to Haskell in syntax. However, the documentation [18]
does not include a guide on how to achieve an IDE integration; therefore, it requires
deeper knowledge of the Rascal LSP package.

Documentation
Score 1
Weighted Score 2
Reasoning

While the documentation [18] on the Rascal language itself is detailed, there is not
much to go on regarding creating a DSL. There is no tutorial on IDE integration, but
one page’ referring to the language server package documentation. The required
information has to be pulled from the package API description and examples.

Feature Support

Score 2
Weighted Score 6

‘http://www.usethesource.io
*https://www.rascal-mpl.org/docs/Recipes/BasicProgramming/IDEConstruction

L. Streckeisen Page 66 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

Reasoning

The language server’s supported capabilities are not documented, and since creating
one requires knowledge of the LSP package, they could not be evaluated in a test.
Native integration could enhance missing features, but if too many LSP features are
not supported, it could question the use of Rascal in the first place.

Licence
Score 3
Weighted Score 9
Reasoning

Rascal is licensed under BSD-2, which can be used without restrictions in an Apache
2.0 project [13].

IDE Compatibility

Score 3
Weighted Score 9
Reasoning

The documentation [18] explicitly mentions VSCode support. The language server
can be integrated into Intelli].

Reusability
Score 1
Weighted Score 2
Reasoning

Rascal is its own language and has custom hooks for LSP support, so a rewrite is
necessary.

C.4: IntelliJ LSP

Future Proofing

Score 3
Weighted Score 9
Reasoning

It is part of IntelliJ Ultimate and, therefore, maintained by JetBrains. While JetBrains
still recommends a native integration, since that supports more features [21], it is
unlikely that JetBrains will drop LSP support after just recently adding it.

Ease of use

Score 2
Weighted Score 4
Reasoning

Page 67 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.4. Intelli] LSP

Configuring the language server requires just 2 class implementations and one entry
in the plugin.xml [21]. However, debugging problems requires knowledge of LSP.

Documentation
Score 2
Weighted Score 4
Reasoning

While the Intelli] plugin SDK documentation is quite extensive, there is only one
page for LSP integration’. The essential parts are documented; information not
included in the documentation needs to be pulled from existing plugins using LSP.

Feature Support

Score 2
Weighted Score 6
Reasoning

The Intelli] LSP supports most editor features from the requirements. Context
actions, like e.g. the Context Map generator, can be added through native
integration. Code folding tough is not yet supported.

Licence
Score 3
Weighted Score 9
Reasoning

Intelli] is licensed under Apache 2.0. The same licence applies since LSP support is
bundled in the Ultimate version of Intelli].

IDE Compatibility
Score 2
Weighted Score 6

Reasoning
LSP is available for Intelli] Ultimate and VSCode

Reusability
Score 3
Weighted Score 6
Reasoning

The existing language server can be reused. Additional features not supported by
LSP can use the same logic as VSCode by properly abstracting IDE/framework
specifics.

'https://plugins.jetbrains.com/docs/intellij/language-server-protocol.html

L. Streckeisen Page 68 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

C.5: LSP4I]

Future Proofing

Score 2
Weighted Score 6
Reasoning

LSP4I] is maintained by the Red Hat developer community and has a small group of
active developers [36]. The plugin is relatively new (it was first released in May
2024), so it is unlikely to be discontinued soon.

Ease of use

Score 2
Weighted Score 4
Reasoning

Configuring LSP4I] via Ul is very straightforward. The effort to create a plugin that
uses LSP41] is comparable to IntelliJ’s native LSP support [22]. Debugging problems
also requires knowledge of LSP.

Documentation
Score 3
Weighted Score 6
Reasoning

The documentation for LSP4I]J [22] contains a step-by-step guide to creating a
plugin based on it (including some pointers for special cases), lists all supported LSP
capabilities in detail and explains how to use the plugin UL

Feature Support

Score 3
Weighted Score 9
Reasoning

LSP4IJ supports all editor requirements. Features not supported by LSP can be added
to the plugin implementation.

Licence
Score 2
Weighted Score 6
Reasoning

Page 69 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.6. Native Integration

LSP4]] is licensed under the EPL-2.0" licence. According to the Apache 3rd Party
Licence Policy [13], software under the EPL-2.0 licence may be included in binary
form, provided that its inclusion is made visible to the user. This condition is
fulfilled in the case of an IntelliJ plugin since the dependency is distributed
separately, and dependencies on other plugins are visible to users in the plugin
marketplace.

IDE Compatibility
Score 3
Weighted Score 9

Reasoning
LSP4I] is available for Intelli] Community & Ultimate and LSP is available in VSCode

Reusability
Score 3
Weighted Score 6
Reasoning

The existing language server can be reused. Additional features not supported by
LSP can use the same logic as VSCode by properly abstracting IDE/framework
specifics.

C.6: Native Integration

Future Proofing

Score 3
Weighted Score 9
Reasoning

The PSI is at the core of custom language plugins in Intelli]. It is in JetBrains’
interest to provide plugin developers with an interface to create custom language
plugins. Though JetBrains has an alternative to create language plugins with MPS, it
is implausible that JetBrains will enforce projectional editing in the future.

Ease of use

Score 2
Weighted Score 4
Reasoning

‘https://www.eclipse.org/legal/epl-2.0

L. Streckeisen Page 70 of 92

3. Detailed Technology Evaluation Enhanced Context Mapper IDE Integration

The custom language plugin tutorial in the plugin SDK (Software Development Kit)
documentation [21] gives a good overview of the relevant extension points for
implementing editor features. The concepts explained are easy to understand but
require some knowledge of the PSI. While advanced cases may become complicated
and require a deeper understanding of how the PSI and editor features work,
acquiring the required knowledge should not be too difficult in most cases.

Documentation
Score 2
Weighted Score 4
Reasoning

The Intelli] plugin documentation is up-to-date but not complete. According to
JetBrains “(...), it is not possible to include every feature and Use Case in the
documentation. Developing a plugin will sometimes require digging into the Intelli]
Platform code and analysing the example implementations in other plugins” [21].
There is a tutorial for custom language plugins that explains how to integrate them
into the different editor features. Additional documentation is provided for every
editor feature.

Feature Support

Score 3
Weighted Score 9
Reasoning

A native integration into IntelliJ supports the broadest range of editor features.
Therefore, all requirements are supported.

Licence
Score 3
Weighted Score 9
Reasoning

A native integration uses interfaces that are part of the Intelli] platform, which is
licensed under Apache 2.0.

IDE Compatibility
Score 1
Weighted Score 3

Reasoning

A native integration specifically targets Intelli]. A plugin for VSCode has to be
developed separately.

Page 71 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 3.6. Native Integration

Reusability
Score 2
Weighted Score 4
Reasoning

Reusing parts of the existing implementation should be possible by using the
Context Mapper standalone library. Editor features need to be rewritten, though
abstracting and reusing the core logic may be possible.

L. Streckeisen Page 72 of 92

4. Architectural Decisions Enhanced Context Mapper IDE Integration

D: Architectural Decisions

This section captures the architectural decisions made during the PoC development.
The decision records below follow the MADR (Markdown Architectural Decision
Record) format [37], documenting the context and problem description, considered
options, the decision outcome, and its consequences per decision.

D.1: Intelli] Integration Method

D.1.1: Context & Problem Statement

There are different ways in which an Intelli] custom language plugin can be
implemented. Context Mapper already has a language server implementation based on
Xtext, which could be reused for the integration.

D.1.2: Considered Options

+ Native Intelli] LSP integration
« LSP4IJ LSP integration
+ Native Intelli] integration

D.1.3: Option Descriptions

See Section 3.3.

D.1.4: Decision Outcome
It was decided to use LSP4I] for the Intelli] integration. See Section 3.3 for details.

D.1.5: Consequnces
Using LSP4]] creates a dependency on a third-party plugin, which means that its
maintenance or lack thereof carries more risk than native Intelli] features.

D.2: Enabling the CML language server to provide semantic tokens

D.2.1: Context & Problem Statement

Important editor features rely on semantic tokens that represent the structure of a file.
An example of such an editor feature is syntax highlighting. The current
implementation of the CML language server does not provide semantic tokens,
meaning syntax highlighting does not work.

D.2.2: Considered Options

« Implementing the IsemanticHighlightingCalculator in Xtext
+ Re-implementing the language server in Langium

« Falling back to native integration

D.2.3: Option Descriptions

Xtext configuration By implementing the ISemanticHighlightingCalculator, the
language server can be configured to return semantic tokens. Unfortunately, the
Xtext documentation [3] does not cover this language server extension. Further
extensions may also be necessary to make other editor features work, which
could prove difficult without documentation.

Page 73 of 92 L. Streckeisen

4.2. Enabling the CML language server to
Enhanced Context Mapper IDE Integration provide semantic tokens

Re-implementation with Langium Using Langium has the advantage of using a
more future-proof framework than Xtext. The framework also proved easy to
grasp during preliminary tests. Implementing AbstractSemanticTokenProvider
supports semantic tokens. As with Xtext, further extensions of the language
server may be necessary to support other editor features.

Fallback to native implementation As described in Section 3.3, a native
integration offers the broadest range of implementing editor features. However,
this would also mean that the Intelli] and VSCode plugins would no longer have
a common technology base.

D.2.4: Decision Outcome

In accordance with the project advisor, it was decided to re-implement the language
server with Langium. Since the future of Xtext is unknown, as little effort as possible
should go into the existing language server. While a native integration would
guarantee a smooth integration of CML into Intelli], the LSP approach is still the best
solution from a big-picture point of view. However, the project scope must be adjusted
as a full re-implementation comes with a significant effort.

D.2.5: Consequnces

As a consequence, the generators have to be re-implemented or adjusted so that they
can also be accessed from Node.js. Using Langium also includes the risk that the CML
integration in IntelliJ is not as smooth as with a native integration.

L. Streckeisen Page 74 of 92

5. Implementation details Enhanced Context Mapper IDE Integration

E: Implementation details
This appendix includes implementation details for the different components in the
language server and the Intelli] plugin.

E.1: Language Server

In the language server, the registry pattern [38] was applied multiple times where the
feature implementation is specific to the astNode type (grammar element
representation generated by Langium). The registry pattern ensures loose coupling
between the class that acts as an entry point for Langium and its implementation
logic. It also makes it easier to add further implementation classes once the language
scope is expanded to tactic DDD.

E.1.1: Semantic Token Providers

Figure 27 shows the class diagram of the semantic token provider classes in the PoC.

@ AbstractSemanticTokenProvider

highlightElement(node: AstNode, acceptor: SemanticTokenAcceptor)

© ContextMapperDs|SemanticTokenProvider

highlightElement(node: AstNode, acceptor: SemanticTokenAcceptor)

© SemanticTokenProviderRegistry

o semanticTokenProviders: Map <string, ContextMapperSemanticTokenProvider <AstNode> >

o get(node: AstNode): ContextMapperSemanticTokenProvider<AstNode> | undefined

0..7]

@ ContextMapperSemanticTokenProvider

o highlight(node: T, acceptor: SemanticTokenAcceptor)

Figure 27: Class diagram of semantic token classes

The responsibilities are divided between the classes as follows:

ContextMapperDslSemanticTokenProvider The class is the entry point for
Langium and delegates to the astNode-specific token provider.

SemanticTokenProviderRegistry Keeps track of the available token providers and
the AstNode type they are responsible for.

ContextMapperSemanticTokenProvider Interface for AstNode specific token
providers to implement

E.1.2: Reference Resolution

By default, Langium uses top-level elements in a document to resolve references in the
AST [17].

This reference resolution behaviour is not enough for Context Mapper since a top-
level Bounded Context can also reference a Subdomain, which is nested within a
Domain. Therefore, a scopeprovider had to be implemented, adding all nested
elements to the resolution scope.

Page 75 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.1. Language Server

E.1.3: Autocomplete

A custom CompletionProvider was implemented to enable the language server to
suggest non-alphabetic keywords. Overriding the filterkeyword function, which
excluded the non-alphabetic keywords, resolved the issue.

While Langium did not initially include all desired keywords in its suggestions, in
other cases it did suggest too many elements, such as Bounded Contexts. Langium
automatically makes the top-level elements in a document available to other files so
that they can import them [17]. However, importing elements from other files was
excluded when the decision was made to support only a subset of the CML grammar
in this project. Consequently, Langium’s default behaviour of “exporting” elements in
the top-level scope leads to autocomplete suggestions that are not yet supported. To
resolve this, a scopecomputation was created, which does not export anything to the
global scope. Once the CML grammar supports imports, discarding the customised
scope computation should be possible.

E.1.4: Folding Range Provider

To improve the provided folding ranges, a FoldingRangeProvider was created,
overriding the Langium default. The implementation logic is a modified version of
Langiums DefaultFoldingRangeProvider.

To ensure that the first line of a hidden CML element is still visible, a folding range is
placed at the very start of the second line of an element block. For comments a
modifiction was made, to make hidden comments look like /*...*/.

E.1.5: Hover Provider

A subclass of the Langium MultilineCommentHoverProvider was created to customise
the hover provider behaviour. The subclass implementation is an adaptation of the
implementation shared in a GitHub discussion [39]. The documentation texts for the
CML keywords are from Context Mapper’s current Xtext implementation.

L. Streckeisen Page 76 of 92

5. Implementation details Enhanced Context Mapper IDE Integration

E.1.6: Semantic Validation

Figure 28 shows the class diagram of the semantic validation classes in the PoC.

® ValidationRegistry

o register(checks: ValidationChecks<T>, validator: ThisParameterType)

‘F

©ContextMapperDsIVaIidationRegistrv

/

© ContextMapperDs|Validator

o validate(node: AstNode, acceptor: ValidationAcceptor)

AN

© ContextMapperValidationProviderRegistry

o _providers: Map<string, ContextMapperValidationProvider<AstNode>>
o get(node: AstNode): ContextMapperValidationProvider<AstNode> | undefined

0.*

@ ContextMapperValidationProvider

o validate(node: T, acceptor: ValidationAcceptor)

Figure 28: Class diagram of semantic validation classes

The class responsibilities are defined as follows:

ContextMapperDslValidationRegistry Entry point for Langium to get the
validator per AstNode type

ContextMapperDslValidator Generic validator registered for every AstNode type
that requires validation. Delegates validation requests to specialised validators.

ContextMapperValidationProviderRegistry Holds the mapping of the astNode
type to the responsible specialised validator

ContextMapperValidationProvider Interface for the specialised validators to
implement

Page 77 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.1. Language Server

E.1.7: Document Formatting
Figure 29 shows the class diagram of the applied registry pattern.

@ AbstractFormatter

format(node: AstNode) _

N

©CnntextMapperDlenrmatter

format(node: AstNode)

© ContextMapperFormatterRegistry

o _formatters: Map <string, ContextMapperFormatter<AstNode>>
o get(node: AstNode): ContextMapperFormatter<AstNode> | undefined

0..*

@ ContextMapperFormatter

o format(node: T, formatter: NodeFormatter<T>)

Figure 29: Class diagram of formatter classes

The class responsibilities are defined as follows:

AbstractFormatter Starting point for formatter implementations provided by
Langium. Acts as an intermediary between Langium and the custom formatting
instructions.

ContextMapperDslFormatter Entry point for Langium to access the Context
Mapper formatting instructions. Delegates formatting to the responsible AstNode
formatter.

ContetxMapperFormatterRegistry Contains the mapping of the astNode type to
the responsible formatter

ContextMapperFormatter Generic interface for the Context Mapper AstNode
formatters to implement

Unlike the semantic token provider, comments are automatically formatted and do not
have to be included in the formatter implementation.

E.1.8: Commands & Generators

The entry point for Langium commands is an ExecuteCommandHandler, which must be
implemented [17]. Figure 30 shows the command/generator setup implementation in
the language server.

L. Streckeisen Page 78 of 92

5. Implementation details Enhanced Context Mapper IDE Integration

@ AbstractExecuteCommandHandler

o registerCommands(ExecuteCommandAcceptor)

f

© ContextMapperCommandHandler

o registerCommands(ExecuteCommandAcceptor)

© GeneratorCommandExecutor @ ContextMapperGeneratar

o serviceRegistry: ServiceRegistry

., execute(generator: ContextMapperGenerator, args: unknown(],
cancelToken: CancellationToken): Promise <string[]>

generate(model: ContextMappingModel, filePath: string, args: unknown(],
cancelToken: CancellationToken): Promise <string[]>

Figure 30: Class diagram of command/generator classes

AbstractExecuteCommandHandler Holds the command registry and provides
functions to execute commands

ContextMapperCommandHandler Registers supported commands with their
executor functions.

GeneratorCommandExecutor Wrapper class to execute generators. Reads AST
model from provided source file and calls generator

ContextMapperGenerator Interface for generators to implement

E.2: IntelliJ Plugin
Below, the LSP4I] configuration changes and the generator action implementation are
documented in more detail.

E.2.1: LSP4IJ Configuration
The following configuration changes for LSP41J were applied.

Syntax Highlighting

For the editor to highlight the semantic tokens provided by the language server, a
SemanticTokensColorsProvider has to be implemented and registered in the
plugin.xml [22]. The colour provider maps token types and modifiers to IntelliJ’s
TextAttributesKey objects, determining the token’s highlighting colour.

Hyperlinking

To resolve the issue of the whole file being displayed as a hyperlink, the LSP4I]
LSPSemanticTokensStructurelessFileViewProviderFactory was registered as a file
view provider in the plugin.xml [22].

Code Folding

To ensure that the folding ranges provided by the language server were applied
correctly, the LSP4IJ 1sPFoldingRangeBuilder had to be registered as the folding
builder for CML in the plugin.xml [22].

Structure View
For LSP4]]J to populate the structure view, the
LSPDocumentSymbolStructureviewFactory had to be registered for the CML in the

Page 79 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration 5.2. Intelli] Plugin

plugin.xml [22]. This configuration change also enabled document breadcrumbs
(display the path from the document root to the current cursor position) to work.

E.2.2: Generator Action

Intelli] provides the “Action” concept to make plugin functionality available to users
[21]. Depending on the applied configuration, an action is displayed in Intelli]’s
toolbar or as a menu item.

The class diagram below (Figure 31) explains the implementation of the PlantUML
generator in the IntelliJ plugin.

@ AbstractExecuteCommandHandler

o registerCommands(ExecuteCommandAcceptor)

f

© ContextMapperCommandHandler

o registerCommands(ExecuteCommandAcceptor)

N

© GeneratorCommandExecutor @ ContextMapperGenerator

o serviceRegistry: ServiceRegistry

o generate(model: ContextMappingModel, filePath: string, args: unknown(],

execute(generator: ContextMapperGenerator, args: unknown(l, cancelToken: CancellationToken): Promise <string[]>

© cancelToken: CancellationToken): Promise <string[]>

Figure 31: Class diagram of the action/generator classes in the Intelli] plugin

PlantUMLACction The entry point for IntelliJ to execute the action needs to be
registered in the plugin.xml.

ContextMapperGenerator Abstracted generator that takes an LSP command,
triggers & waits on its execution. While the generator is currently only used for
the PlantUML generation, it can also handle other generator commands.

CommandExecutor Class provided by LSP4I] to trigger command executions in the
language server

L. Streckeisen Page 80 of 92

6. Manual Tests

F: Manual Tests
To verify the correct configuration of LSP4]J in the Intelli] plugin, a few manual tests
have been executed. The tests are documented below. All tests expect a started Intelli]
Community 2024.3.5 instance with the Context Mapper plugin installed, and the

Enhanced Context Mapper IDE Integration

context-mapper-examples’ project opened.

F.1: Syntax Highlighting

ID | Step Expected Executed Date | Actual Result | Status
Description Results

1 | Open file DDD- | No syntax 26.05.2025 No syntax Pass
Sample- errors errors,
Stage-1.cml displayed, highlighting as

keywords are expected
highligted

2 | Create a new A syntax error | 26.05.2025 Syntax error Pass
CML file and reports the appeared
type: missing closing
ValueRegister | brace
TestRegister
{

Table 10: Manual test execution for syntax highlighting feature
F.2: Hyperlinking

ID | Step Expected Executed Date | Actual Result | Status
Description Results

1 | Open file DDD- | CargoBooking - | 26.05.2025 Hyperlink Pass
Sample- Context is displayed as
Stage-1.cml and | displayed as expected
Ctrl-Hover over | hyperlink
the usage of
CargoBooking -
Context

2 | Ctrl-Click on The caret 25.06.2025 Caret moved as | Pass

the usage of
CargoBooking -
Context

moved to the
definition of
CargoBooking -
Context

expected

Table 11: Manual test execution for hyperlinking feature

'https://github.com/ContextMapper/context-mapper-examples

Page 81 of 92

L. Streckeisen

Enhanced Context Mapper IDE Integration

F.3: Occurrence Highlighting

6.3. Occurrence Highlighting

ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 | Open file DDD- [All occurrences | 26.05.2026 All occurrences | Pass
Sample- of highlighted
Stage-1.cml and | CargoBooking -
place caret in Context in the
CargoBooking - | file are
Context highlighted
Table 12: Manual test execution for occurrence highlighting feature
F.4: Autocomplete
ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 | Create a new The editor 26.05.2025 BoundedContext | Pass
CML file and suggests was suggested
type Bou BoundedContext
Table 13: Manual test execution for autocomplete feature
F.5: Code Folding
ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 [Open file DDD- [ContextMap 26.05.2025 Folding worked [Pass
Sample- bbbSampleMap as expected
Stage-1.cml and {" -- 118
collapse the displayed
Context Map
2 | Expand the The complete 26.05.2025 Expand worked | Pass
collapsed context map is as expected
Context Map visiable again
Table 14: Manual test execution for code folding feature
F.6: Keyword Tooltips
ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 | Open file DDD- | A tooltip 26.05.2025 Tooptip Pass
Sample- explaining the appeared

Stage-1.cml and

hover over the
ContextMap

keyword

Context Map
pattern appears

L. Streckeisen

Page 82 of 92

6. Manual Tests

Enhanced Context Mapper IDE Integration

Table 15: Manual test execution for keyword tooltip feature

F.7: Structure outline

ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 [Open file DDD- | The Context 26.05.2025 Context Map Pass
Sample- Map and the and Bounded
Stage-1.cml and | three Bounded Contexs were
open the Contexts are outlined
structure view | outlined
Table 16: Manual test execution for structure outline feature
F.8: Find Usages
ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 | Open file DDD- | The editor 26.05.2025 4 usages found | Pass
Sample- reports 4 usages
Stage-1.cml and | (the definition
Ctrl-Click on the | itself and three
definition of others)
CargoBooking -
Context
Table 17: Manual test execution for 'Find Usages' feature
F.9: Document Formatting
ID | Step Expected Executed Date | Actual Result | Status
Description Results
1 | Open file DDD- | The added 26.05.2025 The additional | Pass
Sample- space was space was
Stage-1.cml, add | removed removed

a space after
DDDSampleMap

and execute the
“Format Code”

action

Table 18: Manual test execution for document formatting feature

Page 83 of 92

L. Streckeisen

Enhanced Context Mapper IDE Integration

F.10: PlantUML Generator

6.10. PlantUML Generator

ID | Step Expected Executed Date | Actual Result | Status
Description Results

1 | Open file DDD- | A Context 26.05.2025 The menu item | Pass
Sample- Mapper menu was dispalyed
Stage-1.cml and | item appears in
right-click in the opened
the editor popup

2 | Click on the A src-gen folder | 26.05.2025 The component | Pass
“Generate with a diagram was
PlantUML component created
Diagrams” diagram is
menu item created

Table 19: Manual test execution for PlantUML generator feature

L. Streckeisen

Page 84 of 92

7. Glossary & List of Acronyms Enhanced Context Mapper IDE Integration

G: Glossary & List of Acronyms

ADR: Architectural Decision Record
API: Application Programming Interface
ASR: Architecturally Significant Requirement

AST: Abstract Syntax Tree - Data tree containing information about language
elements in a file

CI: Continuous Integration

CLI: Command Line Interface
CML: Context Mapping Language
DDD: Domain-Driven Design

DSL: Domain Specific Language - Programming language customised to a specific
Domain

IDE: Integrated Development Environment
JSON-RPC: JavaScript Object Notation - Remote Procedure Call
JVM: Java Virtual Machine

LSP: Language Server Protocol - Protocol for communication between development
tools and language servers

MADR: Markdown Architectural Decision Record

MPS: Meta Programming System - Language workbench by JetBrains to create
custom DSLs

NFR: Non-Functional Requirement

PSI: Program Structure Interface - Interface for IntelliJ plugins to interact with
language file contents

PoC: Proof of Concept

QoS: Qualify-of-Service

RegEx: Regular Expression - Expression used to match elements in a text
SDK: Software Development Kit

UML: Unified Modelling Language

VDAD: Value-Driven Analysis & Design - Iterative process aiming to combine
value-driven approaches with software engineering practices

Page 85 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

H: Bibliography

[1] S. Kapferer, “A Domain-specific Language for Service Decomposition,” Dec. 2018.
[Online]. Available: https://eprints.ost.ch/id/eprint/722/1/HS18-MSE-Stefan-
Kapferer.pdf

[2] S.Kapferer, O. Zimmermann, and M. Stocker, “Value-Driven Analysis and
Design: Applying Domain-Driven Practices in Ethical Software Engineering,” in
Proceedings of the 29th European Conference on Pattern Languages of Programs,
People, and Practices, in EuroPLoP '24. New York, NY, USA: Association for
Computing Machinery, 2024. doi: 10.1145/3698322.3698332.

[3] Eclipse-Foundation, “Xtext Documentation.” Accessed: Feb. 25, 2025. [Online].
Available: https://eclipse.dev/Xtext/documentation

[4] C. Dietrich, “Call To Action: Secure the future maintenance of Xtext.” Accessed:
Feb. 20, 2025. [Online]. Available: https://github.com/eclipse-xtext/xtext/issues/
1721

[5] Microsoft, “Language Server Protocol.” Accessed: Feb. 25, 2025. [Online].
Available: https://microsoft.github.io/language-server-protocol/

[6] Microsoft, “Language Server Sequence.” Accessed: Feb. 25, 2025. [Online].
Available: https://microsoft.github.io/language-server-protocol/overviews/lsp/
img/language-server-sequence.png

[7] StackExchange, “Stack Overflow Annual Developer Survey.” [Online]. Available:
https://survey.stackoverflow.co/2024/

[8] ContextMapper, “context-mapper-dsl” Accessed: Feb. 28, 2025. [Online].
Available: https://github.com/ContextMapper/context-mapper-dsl

[9] ContextMapper, “ContextMapper Documentation.” Accessed: Feb. 19, 2025.
[Online]. Available: https://contextmapper.org/docs

[10] C.Larman, Applying UML and patterns : an introduction to object-oriented
analysis and design and the unified process, 2nd ed. Upper Saddle River, NJ:
Prentice Hall PTR, 2002.

[11] ContextMapper, “context-mapper-examples” Accessed: Mar. 04, 2025. [Online].
Available: https://github.com/ContextMapper/context-mapper-examples

[12] “Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Product quality model.” [Online].
Available: https://www.iso.org/standard/78176.html

[13] A.S. Foundation, “ASF 3rd Party Licence Policy.” Accessed: Mar. 10, 2025.
[Online]. Available: https://www.apache.org/legal/resolved.html

[14] M. Fowler, “Language Workbench.” Accessed: Sep. 09, 2008. [Online]. Available:
https://martinfowler.com/bliki/LanguageWorkbench.html

[15] JetBrains, “MPS User's Guide.” Accessed: Mar. 11, 2025. [Online]. Available:
https://www.jetbrains.com/help/mps

L. Streckeisen Page 86 of 92

https://eprints.ost.ch/id/eprint/722/1/HS18-MSE-Stefan-Kapferer.pdf
https://eprints.ost.ch/id/eprint/722/1/HS18-MSE-Stefan-Kapferer.pdf
https://doi.org/10.1145/3698322.3698332
https://eclipse.dev/Xtext/documentation
https://github.com/eclipse-xtext/xtext/issues/1721
https://github.com/eclipse-xtext/xtext/issues/1721
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://microsoft.github.io/language-server-protocol/overviews/lsp/img/language-server-sequence.png
https://survey.stackoverflow.co/2024/
https://github.com/ContextMapper/context-mapper-dsl
https://contextmapper.org/docs
https://github.com/ContextMapper/context-mapper-examples
https://www.iso.org/standard/78176.html
https://www.apache.org/legal/resolved.html
https://martinfowler.com/bliki/LanguageWorkbench.html
https://www.jetbrains.com/help/mps

8. Bibliography Enhanced Context Mapper IDE Integration

[16]

[32]

M. Fowler, “Projectional Editing” Accessed: Jan. 14, 2008. [Online]. Available:
https://martinfowler.com/bliki/ProjectionalEditing.html

Eclipse-Foundation, “Langium Documentation.” Accessed: Mar. 13, 2025.
[Online]. Available: https://langium.org/docs

UseTheSource, “Rascal Documentation.” Accessed: Mar. 13, 2025. [Online].
Available: https://www.rascal-mpl.org/docs

Spoofax, “Spoofax.” Accessed: Mar. 12, 2025. [Online]. Available: https://spoofax.
dev/

Spoofax, “Spoofax 3. Accessed: Mar. 12, 2025. [Online]. Available: https://
spoofax.dev/spoofax-pie/develop/

JetBrains, “Intelli] Platform Plugin SDK.” Accessed: 2025. [Online]. Available:
https://plugins.jetbrains.com/docs/intellij/welcome.html

RedHat, “LSP4IJ] Documentation.” Accessed: 2025. [Online]. Available: https://
github.com/redhat-developer/Isp4ij/tree/main/docs

J. B. Kithnapfel, Scoring und Nutzwertanalysen : Ein Leitfaden Fiir Die Praxis., 1st
ed. Wiesbaden: Springer Fachmedien Wiesbaden GmbH, 2021.

O. Zimmermann, “Architectural Significance Test” Accessed: Oct. 01, 2020.
[Online]. Available: https://medium.com/olzzio/architectural-significance-test-9ff
17a9b4490

E. Evans, Domain-driven design : tackling complexity in the heart of software, 4th
prin. Boston: Addison-Wesley, 2004.

S. Brown, “C4 model” Accessed: May 15, 2025. [Online]. Available: https://c4
model.com/

M. Sujew and L. Streckeisen, “Workaround for optional elements in unordered
groups.” Accessed: Apr. 14, 2025. [Online]. Available: https://github.com/eclipse-
langium/langium/discussions/1903

G. Fontorbe, “Hide non alphabetic tokens.” Accessed: Sep. 30, 2022. [Online].
Available: https://github.com/eclipse-langium/langium/pull/697

R. Cox, “Surviving software dependencies,” Commun. ACM, vol. 62, no. 9, pp. 36—
43, Aug. 2019, doi: 10.1145/3347446.

JetBrains, “Grammar-Kit” Accessed: Mar. 24, 2025. [Online]. Available: https://
github.com/JetBrains/Grammar-Kit

F. Campagne, “JetBrains Meta Programming System.” Accessed: Mar. 10, 2025.
[Online]. Available: https://stackoverflow.com/a/31186463

JetBrains, “MPS Core Versions.” Accessed: Mar. 17, 2025. [Online]. Available:
https://plugins.jetbrains.com/plugin/7075-mps-core/versions

Page 87 of 92 L. Streckeisen

https://martinfowler.com/bliki/ProjectionalEditing.html
https://langium.org/docs
https://www.rascal-mpl.org/docs
https://spoofax.dev/
https://spoofax.dev/
https://spoofax.dev/spoofax-pie/develop/
https://spoofax.dev/spoofax-pie/develop/
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://github.com/redhat-developer/lsp4ij/tree/main/docs
https://github.com/redhat-developer/lsp4ij/tree/main/docs
https://medium.com/olzzio/architectural-significance-test-9ff17a9b4490
https://medium.com/olzzio/architectural-significance-test-9ff17a9b4490
https://c4model.com/
https://c4model.com/
https://github.com/eclipse-langium/langium/discussions/1903
https://github.com/eclipse-langium/langium/discussions/1903
https://github.com/eclipse-langium/langium/pull/697
https://doi.org/10.1145/3347446
https://github.com/JetBrains/Grammar-Kit
https://github.com/JetBrains/Grammar-Kit
https://stackoverflow.com/a/31186463
https://plugins.jetbrains.com/plugin/7075-mps-core/versions

Enhanced Context Mapper IDE Integration

[33] Eclipse-Foundation, “Langium Releases.” Accessed: Mar. 13, 2025. [Online].
Available: https://github.com/eclipse-langium/langium/releases

[34] GitHub, “Langium Contributors.” Accessed: Mar. 17, 2025. [Online]. Available:
https://github.com/eclipse-langium/langium/graphs/contributors

[35] GitHub, “Rascal Contributors.” Accessed: Mar. 13, 2025. [Online]. Available:
https://github.com/usethesource/rascal/graphs/contributors

[36] GitHub, “LSP4IJ Contributors.” Accessed: Mar. 17, 2025. [Online]. Available:
https://github.com/redhat-developer/Isp4ij/graphs/contributors

[37] ADR-Organization, “Markdown Architectural Decision Records.” Accessed: Mar.
21, 2025. [Online]. Available: https://adr.github.io/madr/

[38] M. Fowler and D. Rice, Patterns of enterprise application architecture. in The
Addison Wesley signature series. Boston [etc: Addison-Wesley, 2003.

[39] Y. Daveluy, “Hovers on keywords.” Accessed: Jul. 27, 2024. [Online]. Available:
https://github.com/eclipse-langium/langium/discussions/1603

L. Streckeisen Page 88 of 92

https://github.com/eclipse-langium/langium/releases
https://github.com/eclipse-langium/langium/graphs/contributors
https://github.com/usethesource/rascal/graphs/contributors
https://github.com/redhat-developer/lsp4ij/graphs/contributors
https://adr.github.io/madr/
https://github.com/eclipse-langium/langium/discussions/1603

9. List of Figures Enhanced Context Mapper IDE Integration

I: List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31

C4 container diagram of the developed proof of concept iv
Screenshot of the CML editor inIntelli]ooo it iv
Example sequence between a language server and a development tool [6] . 2
Context Mapper Use Cases (Part 1)oiiiiiiiiiiiiinieiiiiiiaaaen.. 5
Context Mapper Use Cases (Part 2)cooviiiiiiiiiiniiiiiiiiinnnee... 6
Context map of the projectooooiiiiiiiiiiiiiiiii e 26
C4 system context diagram of the Context Mapper IntelliJ plugin 27
C4 container diagram of the Context Mapper Intelli] plugin............... 27
C4 component diagram of the Context Mapper Language Server 29
C4 component diagram of the Context Mapper Plugin 30
Deployment diagram of the Context Mapper IntelliJ plugin 31
Screenshot of an error message in the CML editor from semantic

validation ... 34
Hyperlinking after the initial LSP4I] setupc..ooiiiiiiiiiiiiin 35
Screenshot of an autocomplete suggestion in the CML editor 36
A collapsed Context Map after the initial LSP4I] setup 36
Screenshot of a keyword tooltip ... 37
Screenshot of the Intelli] structure tool window 37
Screenshot of the "Find Usages" actionccoooiiiiiiiiiin. .. 37
Screenshot of a generated PlantUML component diagram in IntelliJ 38
Screenshot of Qodana scan results after the PoC was finalised 42
Structure of an MPS language definitionol 57
Example of an MPS concept definitioncooiiiiiiii 58
MPS editor definition using graphical elements 59
Example of an MPS editor presented to the language user................. 60
File structure of the basic Intelli] LSP setupccoooiiiiiiiiiiiinn. 61
LSPAIJ test UL configovvvruniiii e 61
Class diagram of semantic token classescoooviiiiiiiiii.... 75
Class diagram of semantic validation classes 77
Class diagram of formatter classes ..., 78
Class diagram of command/generator classesoovvviiii... 79
Class diagram of the action/generator classes in the Intelli] plugin 80

Page 89 of 92 L. Streckeisen

Enhanced Context Mapper IDE Integration

J: List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19

Functional Requirements for IntelliJ plugin PoC 7
Overview of project NFRSooiiii e 11
Technology evaluation criteriaooooiiiiiiiiiiiiiiiiiiiiiiiin 21
Utility analysis results 23
Architectural Significance of non-functional requirements 25
Fulfilment status of project requirementsccoooiviiinnn. 40
Risk Matrix .. ooooee 45
Identified long-term risks for Langium ... 46
Identified long-term risks for LSP4IJ, 48
Manual test execution for syntax highlighting feature 81
Manual test execution for hyperlinking feature 81
Manual test execution for occurrence highlighting feature 82
Manual test execution for autocomplete feature 82
Manual test execution for code folding feature 82
Manual test execution for keyword tooltip feature 83
Manual test execution for structure outline feature 83
Manual test execution for 'Find Usages' featurecoo..e. 83
Manual test execution for document formatting feature 83
Manual test execution for PlantUML generator feature 84

L. Streckeisen Page 90 of 92

11. List of Code Listings Enhanced Context Mapper IDE Integration

K: List of Code Listings

Listing 1
Listing 2
Listing 3
Listing 4
Listing 5
Listing 6

Listing 7
Listing 8
Listing 9
Listing 10

Example of a Context Map modelledinthe CML 4
CML definition block example [11]cooviiiiiiiiiiiii i 8
CML definitions with documentation [11]iiiiiia... 9
Ambiguous comment grammar rules in CML Xtext grammar (8] 32
Langium grammar comment terminal rulesL 32
Use of optional elements in an unordered group in the CML Xtext grammar
L8] oot 32
Aggregate User Requirements rule in the CML Xtext grammar [8] 33
Resolved Aggregate user requirements linking issue 34
Langium grammar of the generation getting started example 60

Grammar definition of the Simple language from the custom language
plugin tutorialo oo 62

Page 91 of 92 L. Streckeisen

Disclaimer

Parts of this thesis were rephrased using the following tools:
+ Grammarly’

« LanguageTool?

« ChatGPT?

thttps://www.grammarly.com/
*https://languagetool.org/de
*https://chatgpt.com/

	Abstract
	Management Summary
	Introduction
	Objective
	Results

	Acknowledgements
	- Part Technical Report
	Introduction
	Project Context
	Xtext
	Language Server Protocol

	Motivation
	Goals

	System Analysis & Requirements
	Existing System Analysis
	Context Mapper DSL
	Use Cases

	Requirements
	Functional Requirements
	FR 1.1 - Syntax Highlighting
	FR 1.2 - Hyperlinking
	FR 1.3 - Occurrence Highlighting
	FR 1.4 - Autocomplete
	FR 1.5 - Code Folding
	FR 1.6 - Keyword Tooltip
	FR 1.7 - Structure Outline
	FR 1.8 - Find Usages
	FR 1.9 - Document Formatting
	FR 1.10 - Definition Tooltip
	FR 2.1 - Missing Bounded Context Quick Fix
	FR 3.1 - Generate a Visual Context Map
	FR 4.1 - Generate PlantUML Diagrams

	Non-Functional Requirements
	NFR 1: Reusability - Minimise duplicated code between IntelliJ and VSCode implementations
	NFR 2: Reliability - Plugin stability
	NFR 3: Performance Efficiency - CML editor
	NFR 4: Performance Efficiency - PlantUML diagram generation
	NFR 5: Modifiability - Extensibility for additional generators
	NFR 6: Maintainability - Code quality
	NFR 7: Modularity - Separation of concerns
	NFR 8: Installability - IntelliJ compatibility
	NFR 9: Legal Compliance - Licence compatibility
	NFR 10: Appropriateness/Recognizability - IntelliJ best practices

	Technology Exploration
	Language Workbenches
	JetBrains MPS
	Langium
	Rascal
	Spoofax
	Others

	IntelliJ Integration Options
	LSP Integration
	IntelliJ LSP Support
	LSP4IJ

	Native IntelliJ Integration

	Technology Decision
	Criteria
	Workbench Evaluation
	JetBrains MPS
	Langium
	Rascal

	Integration Option Evaluation
	IntelliJ LSP
	LSP4IJ
	Native Integration

	Result

	Proof of Concept Implementation
	Architecture
	Architecturally Significant Requirements
	Strategic Design
	C4 Model
	Software System
	Containers
	Language Server Components
	Plugin Components
	Code

	Deployment

	Context Mapper Grammar Changes
	Comments
	Optional Elements in Unordered Groups
	User Requirement Linking in Aggregate

	Implemented Features
	Semantic Validation
	Syntax Highlighting (FR 1.1)
	Hyperlinking (FR 1.2)
	Occurrence Highlighting (FR 1.3)
	Autocomplete (FR 1.4)
	Code Folding (FR 1.5)
	Keyword Tooltips (FR 1.6)
	Structure Outline (FR 1.7)
	Display Usages (FR 1.8)
	Document Formatting (FR 1.9)
	Definition Tooltips (FR 1.10)
	PlantUML Generator (FR 4.1)

	Results
	Fulfilment of Requirements
	Changed project scope
	FR 1.10 - Definition tooltips
	FR 4.1 - Generate PlantUML diagrams
	NFR 1 - Minimise duplicated code between IntelliJ and VSCode
	NFR 2 - Plugin stability
	NFR 3 - CML editor efficiency
	NFR 4 - PlantUML diagram generation efficiency
	NFR 5 - Extensibility for additional generators
	NFR 6 - Code quality
	NFR 7 - Separation of concerns
	NFR 8 - IntelliJ compatibility
	NFR 9 - Licence compatibility
	NFR 10 - IntelliJ best practices

	Open Issues
	Brace Matching
	Autocomplete
	IntelliJ Plugin Testing

	Experience Report

	Outlook
	Long-Term Risk Analysis
	Langium
	LSP4IJ
	Conclusion

	Future Work
	Migration of Remaining Context Mapper Features
	Grammar Completion
	Quick Fixes and Architectural Refactorings
	Validators
	Generators
	Discovery
	ArchUnit Extension
	Context Mapper Java Library

	Suggestion for a Future Project

	Conclusion
	- Part Appendix
	Task Description
	Initial Situation
	Goals and Deliverables
	Support
	Project Execution
	Tools
	Documentation

	Technology Exploration Tests
	JetBrains MPS
	Langium
	IntelliJ LSP
	LSP4IJ
	Native Integration

	Detailed Technology Evaluation
	JetBrains MPS
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Langium
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Rascal
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	IntelliJ LSP
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	LSP4IJ
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Native Integration
	Future Proofing
	Ease of use
	Documentation
	Feature Support
	Licence
	IDE Compatibility
	Reusability

	Architectural Decisions
	IntelliJ Integration Method
	Context & Problem Statement
	Considered Options
	Option Descriptions
	Decision Outcome
	Consequnces

	Enabling the CML language server to provide semantic tokens
	Context & Problem Statement
	Considered Options
	Option Descriptions
	Decision Outcome
	Consequnces

	Implementation details
	Language Server
	Semantic Token Providers
	Reference Resolution
	Autocomplete
	Folding Range Provider
	Hover Provider
	Semantic Validation
	Document Formatting
	Commands & Generators

	IntelliJ Plugin
	LSP4IJ Configuration
	Syntax Highlighting
	Hyperlinking
	Code Folding
	Structure View

	Generator Action

	Manual Tests
	Syntax Highlighting
	Hyperlinking
	Occurrence Highlighting
	Autocomplete
	Code Folding
	Keyword Tooltips
	Structure outline
	Find Usages
	Document Formatting
	PlantUML Generator

	Glossary & List of Acronyms
	Bibliography
	List of Figures
	List of Tables
	List of Code Listings

