
Free Range Routing
Monitoring and Anomaly Detection Tool

Bachelor’s Thesis
Documentation

Semester: Spring 2025

Version: 01.00
Date: 2025-06-12

Project Team: Yannick Staedeli
Mino Petrizzo
Roman Cvijanovic

Advisor: Severin Dellsperger
Internal Co-Examiner: Olaf Zimmermann
External Co-Examiner: Thomas Graf

Project Partner: Open-Systems - Julian Klaiber

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

Modern dynamic routing environments often suffer from limited visibility and diagnostic capabilities
at the individual router level. This is especially true for setups based on Free Range Routing (FRR), an
open-source routing suite that implements routing protocols like Open Shortest Path First (OSPF) and
Border Gateway Protocol (BGP). Operators are typically forced to inspect each router’s state manu-
ally via Command Line Interface (CLI), making it difficult to detect and understand anomalies such
as missing or unexpected route advertisements. These issues can compromise network stability and
make troubleshooting time-consuming and error-prone.

We developed FRR-MAD, a modular, open-source monitoring and anomaly detection tool tailored to
OSPF in FRRouting, to address these issues. It parses and analyzes routing data, detects inconsisten-
cies, and visualizes the router’s state through an interactive text-based user interface (TUI). FRR-MAD
consists of two components: the frr-mad-analyzer, which acts as the backend, collecting and evalu-
ating OSPF data from FRR and the frr-mad-tui, a terminal-based frontend that presents the data for
monitoring and troubleshooting. Features like structured route overviews, live anomaly highlighting,
filtering, and Prometheus-compatible export simplify OSPF diagnostics and make routing behavior
easier to understand, even in complex environments. An additional artifact that arose from this the-
sis is a containerlab-based development and test environment, which allows users to quickly spin up
a realistic multi-router topology and test FRR-MAD without impacting production systems.

FRR-MAD enhances the monitoring and troubleshooting of OSPF routing in FRR environments by pro-
viding live anomaly detection and intuitive visualization. Its open-source nature encourages commu-
nity collaboration. We invite the FRR community to adopt, test, and contribute to the project1. Devel-
oped in close collaboration with our project partner Open Systems, this tool is now being integrated
into their production infrastructure.

1https://github.com/FRR-MAD/frr-mad

i

https://github.com/FRR-MAD/frr-mad

Management Summary

Management summary outlines the project’s objective, methodology, result and achievements. Com-
pared to the abstract it provides more clarity and detail what was explicitly achieved.

Current State

Free Range Routing (FRR) is a widely used network routing software suite. It implements a variety of
different routing protocols like Open Shortest Path First (OSPF). However, the implementations are
occasionally suboptimal due to software faults, which can lead to unexpected behavior in practice.
As a result, the implementation of OSPF in FRR behaves sometimes inconsistently. This behavior can
be seen by checking the Link State Database (LSDB) against FRR’s static file configuration. The incon-
sistency appears as wrongly advertised Link-State Database (LSDB) entry. This issue is made worse
by the fact, that there are no available open source solution to report such inconsistent behavior. To
battle this behavior users of FRR are forced to create custommonitoring and observability processes
to provide high availability of their services. And even if this inconsistency is spotted, it still needs
to be manually verified. This can only be done on the device presenting the issue and only by using
the interactive command terminal of FRR. This also highlights another issue. This issue requires an
operator of such a service to directly interactive with a tool that can apply runtime changes. Advanced
network engineers will have no issues correctly handling vtysh, but the same cannot be claimed for
entry or medium level engineers. Therefore a monitoring solution to observe the current OSPF state
is required.

Methodology

The project followed an agile development methodology based on the SCRUM framework. In close
collaboration with the industry partner, multiple meetings were held to define and iteratively refine the
Functional Requirements. This helped prioritize key features for development. In addition, relevant

ii

Non-Functional Requirements were established to ensure high product quality.
To establish a solid foundation, a two-sprint elaboration phase was conducted. The goal of this phase
was to evaluate existing tools and technologies that could be integrated into the project, thereby re-
ducing development effort and focusing on value-adding components.
The subsequent development phase was the most substantial part of the project. All features were
implemented and tested during this time. As the core components took shape, some initial require-
ments had to be revised, and previously considered integration solutions were discarded in favor of
custom implementations.
The final solution comprises two distinct components: the frr-mad-analyzer, a background daemon
responsible for data collection and analysis, and the frr-mad-tui, a terminal-based user interface that
enables real-time interaction with the analyzer.

Achievements

The results of this bachelor’s thesis are the previously mentioned frr-mad-analyzer and frr-mad-tui.

Figure 1: Simplified Architecture

The frr-mad-analyzer runs quietly in the background on a server. As long as the server is using Free
Range Routing (FRR) and has routing enabled, it regularly checks two types of routing information:
what the routing should look like, and what it actually looks like. It uses this comparison to find and
report any problems or unexpected behavior in the network.

The frr-mad-analyzer works by creating two separate views of the network. The first view is based
on the configuration and shows how the routing is expected to behave. The second view is based on
the current state of the router and shows how the routing is actually working. By comparing these
two views, it can quickly detect anything unusual or incorrect. If a route is found in one view but not
the other, it is marked as a problem. Each issue is clearly described to help understand what is wrong
and why.

In addition to finding problems, the frr-mad-analyzer also replaces an older monitoring tool used by
the project partner. For this reason, it also includes built-in support to send status and performance
data to external monitoring systems.

The second main part of the system is the frr-mad-tui. This is a simple, text-based interface that
allows users to interact with the analyzer. It shows a clear summary of the router’s current status
and any problems that have been found. It also lets users explore detailed routing information in an
easy-to-read format. This helps people who are not entry-level network engineers quickly understand
how the router is performing.

Figure 2: frr-mad-tui Anomaly Dashboard

Future Work

Both project components were released with version 1.0.0 on GitHub. But this only contains the fea-
tures outlined in the requirements. During the development many experiences were gathered and
some compromises were made to meet industry partner’s expectations. Following that, the project
will be open sourced with the organization name Free Range Routing - Monitoring and Anomaly De-
tection. The short term plans are:

https://github.com/FRR-MAD/frr-mad

• Adjust the anomaly detection to be compatible with the newest version of Free Range Routing.

• Enable increased modularity for the daemon component to support more standalone features.
For example, a software running in the background that only provides basic monitoring data for
external tools.

• Adjustment of the parsing system to support different configuration styles.

After implementing all pending shortcomings, the project will effectively enter maintenance mode. It
will accept feature requests and bug reports as per the norm.

Acknowledgments

Lecture Sources

The following lecturers contributed significantly to the foundational knowledge of this thesis. Their
lecture slides were used as key references throughout the project work.

• Prof. Laurent Metzger and Urs Baumann — Computer Networks 1 and 2

• Thomas Kälin, Prof. Dr. Farhad Mehta, and Stefan Kapferer - Software Engineering Practices

Special Thanks

Severin Dellsperger

As our project advisor, he played a crucial role in guiding us through the project. He provided valuable
advice on both technical implementation and the academicwriting of this bachelor’s thesis. He played
an essential role in making this project a success.

Julian Klaiber

As the representative of our industry partner, he did an outstanding job. He was always available for
calls to discuss progress or assist with technical questions regarding FRR setups. He single-handedly
tested our application in a real-world environment and provided valuable feedback throughout the
project.

Prof. Dr. Olaf Zimmermann

As a lecturer in application architecture, he was the ideal person to consult during the elaboration
phase. We are very grateful for the time he took to review and discuss our architectural designs,
which greatly improved the quality of this aspect of our work.

vi

Sandro Bolliger

Sandro Bolliger provided valuable technical insight regarding specialized OSPF use-cases. His exper-
tise helped clarify specific aspects of OSPF protocol operations and implementation details.

Contents

I Glossary and Acronyms xiii

II Technical Report 1

1 Introduction 2
1.1 General . 2

1.1.1 Technical Report . 2
1.1.2 Project Documentation . 3

1.2 Terms & Techniques . 3
1.2.1 FRR-MAD . 3
1.2.2 Free Range Routing . 4
1.2.3 Open Shortest Path First . 4

1.3 Aims and Objectives . 4
1.3.1 Problem . 4
1.3.2 Solution . 7

2 Results 10
2.1 Project Boundaries . 10
2.2 Project Achievements . 11

2.2.1 Gather FRR Route Information . 11
2.2.2 Persistently store FRR Route Information . 12
2.2.3 Visualize FRR Route Information . 13
2.2.4 Export Parsed FRR Route Information . 16
2.2.5 OSPF Anomaly Detection . 18
2.2.6 Export OSPF Anomalies . 19
2.2.7 Visualize Detected Anomalies . 20

viii

2.2.8 Other TUI Features . 21
2.2.9 Augmented Development and Testing Environment 23

2.3 Implementation . 24
2.3.1 Architecture . 25
2.3.2 Backend Service . 29
2.3.3 Frontend Client . 35
2.3.4 Process and Challenges . 36

3 Conclusion 43
3.1 Outcome Analysis . 43

3.1.1 Functional Requirements Evaluation . 44
3.1.2 Non-Functional Requirements Evaluation . 51

3.2 Future Directions . 52
3.2.1 Protocol Support Extensions . 52
3.2.2 Anomaly Detection Enhancements . 52
3.2.3 User Experience Improvements . 53
3.2.4 Community and Operational Features . 53

III Project Documentation 54

4 Requirements 55
4.1 Personas . 55
4.2 Actors . 57
4.3 Use Case Diagram . 57
4.4 Functional Requirements . 59

4.4.1 FR1-1: Export OSPF Routing Metrics . 61
4.4.2 FR1-2: Export BGP Routing Metrics (Optional) 61
4.4.3 FR2: Gather FRR Routing Information . 61
4.4.4 FR3: OSPF Route Anomaly Detection by FRR-MAD 62
4.4.5 FR4: Query and Display Routing Anomalies via FRR-MAD 62
4.4.6 FR5: BGP Route Anomaly Detection (Optional) 63
4.4.7 FR6: Adding new tabs to TUI (Optional) . 63
4.4.8 FR7: OSPF Neighbor States Troubleshooting (Optional) 64
4.4.9 FR8: BGP Session States Troubleshooting (Optional) 64
4.4.10 FR9: Advanced TUI History (Optional) . 65
4.4.11 FR10: Issue Solving via TUI (Optional) . 65
4.4.12 FR11: Guided Fixes for Misadvertised Routes (Optional) 65
4.4.13 FR12: Export Routing Anomaly Analysis Results (Optional) 66
4.4.14 FR13: Knowledge Database for Manual Fixes . 66
4.4.15 FR14: FRRMon Replacement . 67
4.4.16 FR15: Dynamic Content Filtering in TUI (Optional) 67

4.4.17 FR16: Export Detected Anomalies (Optional) . 67
4.5 Non-Functional Requirements . 69

4.5.1 NFR1: Presentation of Information Dashboard Extension 70
4.5.2 NFR2: Tab Selection . 70
4.5.3 NFR3: Presentation of Information BGP Extension 70
4.5.4 NFR4: Correctness of frr_exporter Metrics . 71
4.5.5 NFR5-1: TUI Read Mode Only . 71
4.5.6 NFR5-2: TUI Read/Write Mode . 71
4.5.7 NFR6: Limited Exported Metrics . 72
4.5.8 NFR7: TUI User Experience . 72
4.5.9 NFR8: TUI Resolution Support . 73
4.5.10 NFR9: Lazy Loading of TUI . 73
4.5.11 NFR10: Integration of TUI in Dev/Prod Environments 73
4.5.12 NFR11: Guided or Automated Implementation of TUI 74
4.5.13 NFR12: Testing Environment for frr_exporter and TUI 74

5 Domain Analysis 75
5.1 Related Work . 75

5.1.1 FRR Exporter . 75
5.1.2 NetworkMonitor . 76
5.1.3 Quagga Exporter . 76
5.1.4 Batfish . 76
5.1.5 GoBGP CLI . 76
5.1.6 OpenBMP . 76
5.1.7 OSPF Topology Watcher . 77
5.1.8 Proprietary Network Monitoring Tools . 77
5.1.9 Nvidia Cumulus Linux Documentation . 77
5.1.10 Summary . 77
5.1.11 Decisions on Tooling Implementation . 78

6 Solution Strategy 79
6.1 Technology & Technique . 79

6.1.1 Development . 79

7 Architecture 81
7.1 System Context diagram . 81
7.2 Strategic Design . 83

7.2.1 Adjustment Considerations . 83

8 Quality Measures 87
8.1 Documentation . 87

8.1.1 LLM Usage . 87
8.1.2 Documentation Principles . 87

8.1.3 Member Participation . 87
8.1.4 Documentation Context . 88
8.1.5 Documentation Guidelines . 88
8.1.6 Document Guidelines . 89

8.2 Development . 91
8.2.1 Code Guidelines . 92
8.2.2 Code Tools . 92
8.2.3 Code Review Guidelines . 93
8.2.4 Environment . 93

8.3 Testing . 93
8.3.1 Scope of Testing . 93

8.4 Quality Assurance . 94
8.4.1 Definition of Done . 95
8.4.2 Version Control Guidelines . 95

9 Risk Assessment and Mitigation 98
9.1 Version History . 98
9.2 Risk Matrix . 99
9.3 Risk Identification . 100
9.4 Risk Mitigation . 101
9.5 Risk Status Update (v2.0) . 102

10 Testing 103
10.1 Unit Tests . 103
10.2 Acceptance Testing . 103

10.2.1 Testing Plan . 104

11 Project Plan 105
11.1 Resources . 105

11.1.1 People . 105
11.1.2 Time . 105

11.2 Roles . 106
11.2.1 SCRUM Role Distribution . 106
11.2.2 General Role Distribution . 107
11.2.3 Roles scope . 107

11.3 Project Planning and Tracking . 109
11.4 Time Tracking . 110
11.5 Project Schedule . 111

11.5.1 Phases . 112
11.5.2 Iterations . 113
11.5.3 Milestones . 114

11.6 Processes and Meetings . 114

11.6.1 Processes . 114
11.6.2 Meetings . 114
11.6.3 Estimated Time plan per Week . 116

11.7 Project Management and Development Workflow . 117
11.7.1 Jira . 117

Bibliography 117

List of Figures 120

List of Tables 122

List of Algorithms 124

List of Code Blocks 125

A Technical Resources 127
A.1 List of Tools and Resources . 127

B Testing Reports 128
B.1 Acceptance Test Reports . 128

B.1.1 QA Team . 128
B.1.2 Industry Partner . 130

C Miscellaneous 132
C.1 Industry Partner’s Anomaly Occurrence . 132
C.2 Development and Test Environment Architecture . 134
C.3 Setup and Installation . 136

C.3.1 Build Instructions . 136
C.3.2 Application Launch . 137

Part I

Glossary and Acronyms

xiii

General Terms

aggregator The aggregator is a component of the frr-mad-analyzer service. It is responsible for query-
ing vtysh correctly and parsing the received information into structured data objects. 3, 7, 29

analyzer The analyzer is a component of the frr-mad-analyzer service. The analyzer receives data
objects from the aggregator and analyzes it for anomalous behavior. The results are stored in
structured data objects and provided to the exporter and socket components. 3, 7

Batfish Batfish is an open-source tool that analyzes network configuration files to detect potential
issues like routing loops, unreachable networks, and policy violations before deployment. It
builds a model of your network from vendor configs (Cisco, Juniper, etc.) and runs verification
queries to catch configuration errors in a safe, offline environment. 38

Border Gateway Protocol (BGP) Astandardized exterior gateway protocol designed to exchange rout-
ing and reachability information among autonomous systems on the Internet. For an in-depth
exploration, see BGP on Wikipedia. xxi, 59, 75

Cobra Configuration File The standardized YAML configuration file format used by the Cobra CLI
framework, which serves as the central configuration mechanism for the entire FRR-MAD sys-
tem. 13

Codecov Codecov is a code coverage analysis platform that integrates with your development work-
flow to track how much of your codebase is covered by tests. It provides detailed reports, visu-
alizations, and pull request comments to help development teams identify untested code and
maintain high code quality standards. https://about.codecov.io/. 95

containerlab A tool for orchestrating container-based networking labs, enabling easy deployment of
virtual network topologies for testing and development purposes. 9

Context Mapping Context Maps describe the contact between bounded contexts and teams with a
collection of patterns. The context map patterns describe a variety of perspectives like service

xiv

https://en.wikipedia.org/wiki/Border_Gateway_Protocol

provisioning, model propagation or governance aspects The diversity of perspectives enables
you to get a holistic overview of team and bounded context relationships (see here for more
information) . 83

Docker A platform for developing, shipping, and running applications in lightweight containers. It
allows consistent environments across development, testing, and production systems. 49

exporter The exporter is a component of the frr-mad-analyzer service. Its sole responsibility lies in
exporting received information from the aggregator and analyzer components. 3, 7, 26, 29

Feature Such a Bounded Context represents a boundary around a set of functional features (user
stories / use cases). For example, everything that is related to customer management in an
insurance scenario: create customer, update customer, update customer address, etc.. 83

Free Range Routing (FRR) Free Range Routing is an open source routing stack that provides a suite
of tools for managing IP routing. It is designed to be highly customizable and can be used to
build a wide range of IP routing applications. 4

Free Range Routing - Monitoring and Anomaly Detection (FRR-MAD) TheProject nameof this bach-
elor’s thesis. 3, 7, 24

FRR-MAD TUI Write Mode Aprivilegedmodewithin the frr-mad-tui, activated using Ctrl+W, that grants
the user access to execute shell commands and any vtysh command. Since this mode permits
configuration changes, a safety mechanism ensures that the application can only be exited if
the running-config matches the startup-config. 8, 14

frr-mad-analyzer The backend component of FRR-MAD that collects, analyzes, and exposes OSPF
routing data and anomalies. iii, iv, 3, 7, 80

frr-mad-tui A Text-Based User Interface (TUI) for visualizing OSPF routing data and anomalies de-
tected by the frr-mad-analyzer. iii, iv, 3, 8, 13, 21, 22, 35, 48, 50, 57, 80

Functional Requirements Specific features or functions the system must perform, such as process-
ing data, providing output, or enabling user interactions. 55

iTerm2 A terminal emulator for macOS that offers technical features such as split panes, inline im-
ages, and support for OSC52 clipboard integration. 49

Label Cardinality The number of unique label combinations in a Prometheus time series. High cardi-
nality increases memory usage and can degrade query performance. 12

Non-Functional Requirements Qualitative attributes the system should have, such as performance,
reliability, usability, and maintainability. 55

OSC52 Protocol A terminal escape sequence that allows copying text to the system clipboard over
SSH by encoding the data in the terminal output stream. 17, 49

https://github.com/ddd-crew/context-mapping

socket The socket is a component of the frr-mad-analyzer service. It ties together the frontend and
the backend. Spawning a Unix socket, it enables the frontend direct access to the various gath-
ered and analyzed metrics. 3, 8

System The system Bounded Context allow to model a software from a more physical perspective
(deployment). Examples for systems: a single page application for the frontend, a Spring Boot
application that realizes the domain logic, an Oracle database that holds the data, etc. Thus, an
application typically consists of multiple systems. 83

Technical Concepts

AIR - Hot Module Reloading (HMR) Air is yet another live-reloading command line utility for develop-
ing Go applications. Run air in your project root directory, leave it alone, and focus on your code.
https://github.com/air-verse/air. 127

AS External LSA (Type 5 LSA) AS-external-LSAs describe routes to destinations external to the Au-
tonomous System. AS-external-LSAs are the only type of LSAs that are flooded throughout the
entire Autonomous System (except stub areas). For a comprehensive overview and deeper in-
sights, visit RFC2328, Chapter AS-external-LSAs. 12, 13, 19, 42, 46, 132

ASBR Summary LSA (Type 4 LSA) ASBR-summary-LSAs are generated by ABRs to describe routes
to Autonomous System Boundary Routers (ASBRs). These LSAs allow routers within an area to
reach inter-AS destinations. See RFC2328 for more information. 13

Duplicated Route A route that is announced (advertised) multiple times with conflicting attributes,
such as different costs or paths. This can cause confusion in the network, as devices may not
know which route to use, potentially leading to inefficient or incorrect routing of data. 46, 62, 63

Forwarding Information Base (FIB) A lookup table used by routers to actually forward packets. It
contains only the best route to each destination, selected from the Routing Information Base
(RIB). 6, 14, 16

Free Range Routing - Monitoring and Anomaly Detection An open-source monitoring and issue de-
tection toolkit for FRRouting. It consits of a daemon for static frr config and lsdb cross analysis
and anomaly detection. Reporting useful information via a self-built tui or a prometheus node
exporter compatible layer. iv

frr_exporter Prometheus exporter for FRR version 3.0+ that collects metrics from the FRR Unix sock-
ets and exposes them via HTTP, ready for collecting by Prometheus. 4, 38, 39, 71

xvii

https://datatracker.ietf.org/doc/html/rfc2328#page-139
https://datatracker.ietf.org/doc/html/rfc2328#page-137

FRRMon Aproprietarymonitoring application developedbyOpenSystems for FRRouting (FRR) anomaly
detection and alerting. The current system provides automated alerting capabilities but lacks a
TUI/CLI interface. This project aims to replace FRRMon while maintaining its core monitoring
functionality and adding interactive features. 60, 67

Interface List In OSPF context, this refers to the collection of network interfaces participating in OSPF
routing, including their states, assigned areas, network types, and associated metrics. 13

Interior Gateway Protocol (IGP) A class of routing protocols used to exchange routing information
within a single autonomous system. Common IGPs include OSPF, RIP, and IS-IS. 4

Link State Database (LSDB) A structured repository maintained by link-state routing protocols, such
as OSPF, containing detailed topology information about all network segments and their inter-
connections. Routers within an OSPF area synchronize their LSDBs to ensure consistent and
accurate routing decisions throughout the network. ii, xxi, 11, 13

Link State Routing Algorithm An interior routing protocol that ensures each router maintains accu-
rate knowledge of all other routers, their links, and associated costs (metrics) within a network,
stored in a shared topology database. 4

Link-State Advertisement (LSA) A fundamental data structure in OSPF used to exchange routing and
topology information between routers. LSAs describe the state of router links and are distributed
throughout anOSPF area to build a consistent Link State Database (LSDB). Each LSA type serves
a specific purpose, representing different aspects of the network state, and is propagated to
defined scopes such as individual routers, areas, or the entire autonomous system. xxi, 4, 5

mission control operator An employee of our industrial partner who works in a support role. They are
typically the first to encounter a problem but may not necessarily be a specialist in the field. 37,
49, 70–73, 81

Multi-Access Network A network segment where multiple devices can communicate directly with
each other over a shared medium (LAN). 4

Network LSA (Type 2 LSA) A network-LSA is generated for every transit broadcast or NBMA network
by the Designated Router (DR). The network-LSA describes all the routers that are attached to
the network. Visit RFC2328, Chapter Network-LSAs for details. xix, 12

NSSA External LSA (Type 7 LSA) NSSA-external-LSAs are used in Not-So-Stubby Areas (NSSAs) to
describe routes to external destinations. These LSAs are similar to Type 5 LSAs but are confined
to the NSSA area and are converted to Type 5 LSAs by ABRs. Reference: RFC3101. 13, 19, 46

Open Shortest Path First (OSPF) A dynamic routing protocol based on link-state technology, utilizing
Dijkstra’s algorithm to determine the shortest path. OSPF is widely used within autonomous
systems for efficient IP routing. For a comprehensive overview and deeper insights, visit OSPF
on Wikipedia. ii, xxi, 3, 59, 75

https://datatracker.ietf.org/doc/html/rfc2328#page-133
https://datatracker.ietf.org/doc/html/rfc3101
https://ru.wikipedia.org/wiki/OSPF
https://ru.wikipedia.org/wiki/OSPF

OSPF Neighbors OSPF routers form neighbor relationships with adjacent routers on the same net-
work segment. Neighbors progress through several states (Down, Init, 2-Way, Full) before achiev-
ing full adjacency. 13

Overadvertised Route A route that is being announced (advertised) to other devices in the network
but should not be. This can cause confusion or unnecessary traffic in the network, as devices
may try to use a route that is not supposed to exist. 7, 19, 30, 46, 62, 63

Prometheus Anopen-sourcemonitoring and alerting toolkit designed for collecting, storing, and query-
ing time-series data. It features a powerful query language (PromQL) and integrates well with
cloud-native environments. 3, 11, 12, 19, 20, 61, 67

Prometheus Node Exporter . 7, 28

Route List The complete set of routes known to an OSPF router, including intra-area, inter-area, and
external routes, along with their metrics and next-hop information. 13

Router LSA (Type 1 LSA) A router originates a router-LSA for each area that it belongs to. Such an
LSA describes the collected states of the router’s links to the area. The LSA is flooded through-
out the particular area, and no further. For a comprehensive overview and deeper insights, visit
RFC2328, Chapter Router-LSAs. 5, 6, 12, 19, 40, 41, 46, 47, 123, 132

Routing Information Base (RIB) Adata structure used by routers to store all received and known rout-
ing information, including multiple possible routes to the same destination. These routes may
contain duplicates and are evaluated based on predefined metrics to determine the most op-
timal path, which is then installed to the Forwarding Information Base (FIB) for actual packet
forwarding. xxii, 4, 5, 14, 16

Stub Network An OSPF network type where no router adjacencies are formed, meaning transit traffic
is not allowed. It can be seen as a client network. 5

Summary LSA (Type 3 LSA) Summary-LSAs are generated byAreaBorder Routers (ABRs) to describe
inter-area routes. These LSAs are flooded throughout the backbone area and into connected
non-backbone areas. For details, see RFC2328, Chapter Summary-LSAs. 13

Transit Network An OSPF network type that connects two or more routers capable of forming adja-
cencies, typically represented by a Network LSA (Type 2 LSA). Visit RFC2328 for details. 47

Unadvertised Route A route that is expected to be announced (advertised) to other devices in the
network but is missing. This can cause connectivity issues because other devices are unaware
of the route and cannot send data to the intended destination. 7, 19, 30, 46, 62, 63

Unix Domain Socket A communication endpoint that enables efficient inter-process communication
(IPC) on the same host system, often used for exchanging data between client and server ap-
plications without relying on network protocols. 8, 29, 137

https://datatracker.ietf.org/doc/html/rfc2328#page-126
https://datatracker.ietf.org/doc/html/rfc2328#page-135
https://datatracker.ietf.org/doc/html/rfc2328

unixGNU Linux foobar. 80

vtysh VTYSH is a shell for FRR daemons. It amalgamates all the CLI commands defined in each of
the daemons and presents them to the user in a single shell, which saves the user from having
to telnet to each of the daemons and use their individual shells. More information here. ii, 8, 14,
15, 22, 48

Wrongly Advertised Route A route that is announced (advertised) with incorrect information, such
as the wrong destination or subnet mask. This can lead to data being sent to the wrong location
or being unable to reach its intended destination. 46, 62, 63

https://docs.frrouting.org/projects/dev-guide/en/latest/vtysh.html

Acronyms

API Application Programming Interface. 7

arch architecture. 111

BDR Backup Designated Router. 4

BGP Border Gateway Protocol (see Border Gateway Protocol (BGP)). 4, 9

CLI Command Line Interface. 80

doc documentation. 110

DR Designated Router. xviii, 4, 47

FRR Free Range Routing. ii, iii, 4, 5, 7, 10, 41, 45, 59, 98

FRR-MAD Free Range Routing - Monitoring and Anomaly Detection. 7, 9

FRs Functional Requirements. 3, 59, 93

LAN Local Area Network. xviii

LSA Link State Advertisement (see Link-State Advertisement (LSA)). 6, 61, 62

LSDB Link-State Database (see Link State Database (LSDB)). ii, 4–7, 15, 18, 38, 123

MVP Minimal Viable Product. 59, 113

NFRs Non-Functional Requirements. 69, 93

OSPF Open Shortest Path First (see Open Shortest Path First (OSPF)). ii, 4, 7–10, 40

xxi

RIB Routing Information Base (see Routing Information Base (RIB)). 5, 6, 21

SLA Servise Level Agreements. 6

TUI Text-Based User Interface. xv, 8, 13, 22, 23, 38, 80

Part II

Technical Report

1

Chapter 1

Introduction

This chapter introduces the context and scope of this bachelor’s thesis. It begins by outlining the
overall structure of the thesis, followed by a discussion of key terms and techniques used throughout
the document. These terms are explained only to the extent necessary for understanding the content.
Subsequently, the section on aims and objectives provides a concise overview of the core issues
addressed and the goals pursued. Altogether, this chapter offers a clear starting point for what the
thesis aims to achieve.

1.1 General

This thesis is structured into two main segments: a Technical Report and Project Documentation.

1.1.1 Technical Report

The Technical Report is the first part of this thesis and is divided into three chapters. The first chapter
is the Introduction and familiarizes the reader with the overall context of the project. The three sec-
tions present the structure of the thesis, elaborate on key terms and techniques used, and define the
aims and objectives of the work.

The second chapter of the technical report, Results, examines the results in detail. It begins by distin-
guishing thiswork fromexisting solutions and emphasizes the uniqueness of the presented approach.
In the following section the Achievements are listed. Many objectives have been achieved and they
are detailed, to demonstrate the capabilities of the solution. Finally, the chapter concludes with an
in-depth analysis of the Implementation.

The final chapter of the technical report, Conclusion, evaluates the project outcomes and assesses
the predefined goals. It also outlines potential directions for future improvements.

2

1.2. Terms & Techniques Chapter 1. Introduction

1.1.2 Project Documentation

During the four-month development period of this thesis, numerous strategic and technical decisions
were made. While these decisions are grounded in technical expertise, they are not addressed in the
concise technical report, as they fall outside its focused scope.

The Project Documentation begins by outlining the Requirements of the industry partner. While the
Project Achievements section presents the fulfilled requirements from a user-oriented perspective,
showcasing what the system delivers, the Requirements chapter documents the original Functional
Requirements (FRs) as they were defined during the elaboration phase in collaboration with the in-
dustry partner. The four chapters that follow provide a structured account of the project’s strategic
approach. It covers tool and framework selection, architectural decisions, design rationale, quality
assurance practices, and documentation standards. The Testing chapter ensures comprehensive
validation of the thesis deliverables.

The concluding chapters of the project documentation address project planning, strategic develop-
ment, and time management tracking.

1.2 Terms & Techniques

In this section, key concepts are presented to provide the necessary context for this thesis.

1.2.1 FRR-MAD

Free Range Routing - Monitoring and Anomaly Detection (FRR-MAD) is the name of the solution de-
veloped in this bachelor’s thesis and consists of two main components, described below.

frr-mad-analyzer is an open-source Open Shortest Path First (OSPF) state analysis and information
export tool. The frr-mad-analyzer is the daemon of this solution and is the first out of two tools result-
ing from this project. Provided Free Range Routing is running and OSPF enabled, this tool operates
stand-alone. It’s designed to analyze the state of an OSPF router and export the data in a format that
Prometheus can understand. It consists of multiple components that act together as one service.
The components are respectively: aggregator, analyzer, exporter and socket.
→ In the context of this thesis, backend is synonymous to frr-mad-analyzer.

frr-mad-tui is an open-source text-based user interface that complements the daemon frr-mad-analyzer.
While the backend is a stand-alone daemon, the frr-mad-tui differs in nature. It’s an extension to frr-
mad-analyzer and only functions when the analyzer is running. It provides a text-based user interface
to monitor any OSPF related anomalies or the OSPF and FIB state.
→ In the context of this thesis, frontend is synonymous to frr-mad-tui.

3

1.3. Aims and Objectives Chapter 1. Introduction

1.2.2 Free Range Routing

Free Range Routing (FRR) is an open-source IP routing protocol suite designed to provide high per-
formance and flexible routing solutions for modern network infrastructures. It supports a wide range
of routing protocols, including OSPF, BGP, RIP, IS-IS, and more, making it suitable for both enterprise
and service provider environments. FRR is built on a modular architecture, allowing individual routing
daemons to operate independently while sharing routing information through a central Routing Infor-
mation Base (RIB).
Originally derived from the Quagga project, FRR has evolved with a strong focus on performance,
scalability, and modern protocol support. It is actively maintained by a community of developers and
contributors, including major networking vendors and open-source advocates.
In the context of this thesis, FRR is particularly relevant as it is the routing software suite deployed
by the industry partner. Their infrastructure relies on FRR to implement OSPF, BGP, and maybe other
routing functionalities, making it a critical component for understanding and evaluating the current
state of the system as well as for developing improvements.

1.2.3 Open Shortest Path First

Open Shortest Path First (OSPF) is regarded as a legacy routing protocol. Its foundational specifica-
tion, detailed in RFC2328, dates back to 1998. Despite its age, OSPF continues to play a significant
role in contemporary networking solutions, as emphasized by the industry partner Open Systems.
OSPF is a widely used Interior Gateway Protocol (IGP) based on the Link State Routing Algorithm,
which dynamically distributes routing information within autonomous systems to efficiently deter-
mine optimal paths for data transmission. In such networks, OSPF routers maintain identical copies
of a Link-State Database (LSDB), which is a detailed repository containing topology information about
the entire network segment. To prevent excessive flooding of Link-State Advertisement (LSA) among
multiple routers in Multi-Access Network environments, OSPF employs an election process to select
a Designated Router (DR) and a Backup Designated Router (BDR). The DR is responsible for con-
solidating and distributing routing information to other routers, significantly reducing the amount of
protocol-related network traffic. The BDR acts as a standby, ensuring rapid convergence and continu-
ity of routing information exchange if the DR becomes unavailable.

1.3 Aims and Objectives

This section outlines the issues addressed in this thesis and the corresponding solutions.

1.3.1 Problem

The existing monitoring infrastructure for Free Range Routing (FRR), particularly in the context of
dynamic routing protocols such as OSPF and BGP, reveals substantial limitations. Current tools, in-
cluding the frr_exporter, lack the analytical depth required to ensure consistency between the static

4

https://datatracker.ietf.org/doc/html/rfc2328

1.3. Aims and Objectives Chapter 1. Introduction

configuration and the actual operational state of the network. Beyond insufficient analytical capabili-
ties, there is also a notable absence of mechanisms to effectively monitor the behavior of individual
routers within the network.
These shortcomings hinder the detection and diagnosis of common routing issues such as missing,
unexpected, or incorrect route advertisements, as well as duplicated entries. Furthermore, existing
monitoring solutions do not adequately explain discrepancies between routes advertised in Link-State
Advertisement (LSA) or configured in FRR and those ultimately installed in the Routing Information
Base (RIB). This diagnostic gap limits the ability to troubleshoot routing anomalies in a timely and
effective manner.

Common Ruting Issues

To illustrate the routing issues consider the following router configuration:

1 !

2 interface eth1

3 ip address 10.0.0.1/24

4 ip ospf passive

5 ip ospf area 0.0.0.0

6 exit

7 !

8 interface eth2

9 ip address 10.10.10.1/24

10 ip ospf passive

11 ip ospf area 0.0.0.0

12 exit

13 !

14 router ospf

15 ospf router -id 1.1.1.1

16 exit

17 !

18 ! INFO: no other interface is configured on this router

Listing 1.1: Example Router Interface Config

Important to understand, that the routing issues can occur between configuration and LSDB, or be-
tween LSDB and RIB. This means inconsistencies may arise either during the translation of static
configuration into Link-State Advertisement (LSA) or during the installation of routes from the LSDB
into the Routing Information Base (RIB).

In case of static configuration translation, it’s safe to say, that exactly these two network IDs of eth1

(10.0.0.0/24) and eth2 (10.10.10.0/24) must be advertised as Stub Network in the Router LSA
(Type 1 LSA).

5

1.3. Aims and Objectives Chapter 1. Introduction

Issue Example LSDB of Router LSA (Type 1 LSA)
Unadvertised
A route that is expected to be an-
nounced (advertised) to other devices
in the network but is missing.
here: 10.10.10.0/24 is missing

Link connected to: Stub Network

(Link ID) Net: 10.0.0.0

(Link Data) Network Mask: 255.255.255.0

Overadvertised
A route that is being announced (ad-
vertised) unexpectedly to other de-
vices in the network but should not
be.
here: 10.10.10.0/14 is unexpected

Link connected to: Stub Network

(Link ID) Net: 10.0.0.0

(Link Data) Network Mask: 255.255.255.0

Link connected to: Stub Network

(Link ID) Net: 10.10.10.0

(Link Data) Network Mask: 255.255.255.0

Link connected to: Stub Network

(Link ID) Net: 10.10.10.0

(Link Data) Network Mask: 255.252.0.0

Duplicated Advertised
A route that is announced (adver-
tised) multiple times with conflicting
attributes, such as different costs or
paths.
here: 10.10.10.0/24 is duplicated

Link connected to: Stub Network

(Link ID) Net: 10.0.0.0

(Link Data) Network Mask: 255.255.255.0

Link connected to: Stub Network

(Link ID) Net: 10.10.10.0

(Link Data) Network Mask: 255.255.255.0

Link connected to: Stub Network

(Link ID) Net: 10.10.10.0

(Link Data) Network Mask: 255.255.255.0

Table 1.1: Routing Issues between Static Config and LSDB

To understand routing issues between the LSDB and the RIB, it’s important to note that the RIB is
allowed to contain multiple routes to the same prefix. Only the Forwarding Information Base (FIB) en-
forces a single best route per destination, typically the shortest path based on administrative distance
and metric [6].
Therefore, verifying routing correctness requires analyzing the complete LSDB (including LSAs origi-
nated by other routers) and ensuring that every advertised prefix is present in the RIB as contributed
by OSPF.

Industry Partner’s Initial Situation

The industry partner operates all routers using FRR version 8.5.4. Due to the critical nature of their
services and strict Servise Level Agreements (SLA), performing software upgrades (which typically
require router restarts) is not feasible without risking service disruptions. As a result, they are con-
strained to using this specific version of FRR, which limits access to newer features, optimizations,
and potential bug fixes available in later releases.

6

https://docs.frrouting.org/en/stable-8.5/ospfd.html

1.3. Aims and Objectives Chapter 1. Introduction

Our industry partner presented a specific problem encountered in their FRR environments, which ulti-
mately served as the motivation for this thesis. The issue emerged during configuration changes and
led to the occurrence of Unadvertised Routes and Overadvertised Routes routes. Further technical
details can be found in the appendix.

Core Issues Problem

Limited router-level OSPFmonitoring: Resulting in time-consuming troubleshooting | Miss-
ing (Unadvertised) routes | Unexpected (Overadvertised) routes | Version lock-in: In-
dustry partner constrained to FRR 8.5.4

1.3.2 Solution

The challengesmentioned above highlight the need for an enhanced anomaly detection system capa-
ble of generating timely alerts, a solution to visualize the routing configuration of FRR, and a mecha-
nism to persistently store routingmetrics for further analysis and correlation. To address these needs,
the novel tool Free Range Routing - Monitoring and Anomaly Detection (FRR-MAD) is introduced, pro-
viding a focused set of essential capabilities for monitoring, visualization, and anomaly detection in
OSPF-based FRR environments.
Due to time constraints, it was not feasible to implement all optional features, including the BGP-
related enhancements. As a result, the current version of FRR-MAD is specifically focused on OSPF
anomaly detection and monitoring.
We’re excited to share that our industry partner, Open Systems, is already using FRR-MAD in produc-
tion. Our team will continue maintaining and improving the project beyond the scope of this thesis.
Several ideas for future enhancements are already in the pipeline and are outlined in the Future Direc-
tions section.

Analyzer Service - frr-mad-analyzer

One of the two major achievements of this bachelor’s thesis is the frr-mad-analyzer. As the name
indicates, it functions as the analytical part of the solution. It comprises four distinct components,
each responsible for a specific role in the data processing pipeline.

• The aggregator component retrieves FRRoperational data (including running configuration, LSDB
data, and routing tables) and serializes it into structured data objects for consumption by down-
stream processes.

• The analyzer component processes the aggregator’s structured data to compute predicted LSDB
states and performs comparative analysis against actual network LSDB data. Analysis outputs
are encapsulated as data objects accessible to both socket and exporter component.

• The exporter component exposes metrics through a Prometheus Node Exporter-compatible
endpoint, enabling standard Prometheus instances to scrape network analysis data via the Ap-
plication Programming Interface (API).

7

1.3. Aims and Objectives Chapter 1. Introduction

• The socket component establishes a Unix Domain Socket interface, providing the frr-mad-tui
with real-time access to query operational data from the frr-mad-analyzer process.

Figure 1.1 provides an overview of how the four components interact. A detailed explanation follows
in the Architecture subsection of the implementation.

Figure 1.1: Design of frr-mad-analyzer Components

Monitoring Client - frr-mad-tui

The primary objective of this client is to provide a functional and intuitive Text-Based User Interface
(TUI) that enables live monitoring of OSPF behavior and highlights any detected anomalies. It serves
as a centralized interface, providing a comprehensive overview of the OSPF state on a given router. As
a result, frr-mad-tui simplifies troubleshooting for network engineers and makes OSPF behavior more
accessible to non-experts. Beyond its visual design (dashboard), the TUI provides practical functional-
ity through features such as exporting parsed OSPF and FRR-related data to temporary files or directly
to the system clipboard. Additionally, it supports direct execution of vtysh commands within the in-
terface via the FRR-MAD TUI Write Mode.

The following figure demonstrate the FRR-MAD TUI, presenting the OSPF dashboard to illustrate the
interface design.

8

1.3. Aims and Objectives Chapter 1. Introduction

Figure 1.2: frr-mad-tui OSPF Dashboard

Development and Test Environment: Containerlab

To ensure seamless integration of all components, a significant part of this thesis focused on devel-
oping a comprehensive testing environment using containerlab.
The network topology includes multiple OSPF areas and BGP peers that interconnect distinct OSPF
domains. The complexity of the topology was progressively expanded to accommodate the evolving
capabilities of the thesis solution. The network concept is provided in the appendix, while the deploy-
ment files are available directly on GitHub, along with detailed documentation.
For both development and testing purposes, containerlab proved indispensable. During construction
phases, the ability to rapidly test changes significantly enhanced development efficiency. Similarly,
usability and acceptance testing were made feasible through this development environment.
Additionally, it serves as a ready-to-use test environment for potential users. The lab can be deployed
with just a few commands, allowing anyone to quickly try out FRR-MAD in a realistic setup.

Core Artefacts Solution

frr-mad-analyzer: Automated OSPF anomaly detection and metrics export | frr-mad-tui:
Interactive TUI for live monitoring and troubleshooting | Develop and Test Environment:
Containerlab-based OSPF lab for safe evaluation and demos

9

https://github.com/FRR-MAD/frr-mad/tree/main/.devenvironment
https://github.com/FRR-MAD/frr-mad/blob/main/docs/containerlab.md

Chapter 2

Results

This chapter examines the bachelor’s thesis results in detail. The introduction briefly outlines the
project boundaries. The two subsequent sections, Achievements and Implementation, detail the ac-
complished results and the final implementation respectively. The achievements section expands
on the fulfilled requirements, while the implementation section describes the completed solution in
comprehensive detail.

2.1 Project Boundaries

The Achievements and Implementation sections frequently reference Free Range Routing (FRR) and
OSPF. It is important to clarify that no modifications to the implementation of FRR or OSPF were un-
dertaken.

The implementations presented in this project represent original contributions developed by the three
thesis authors. The FRR software suite and OSPF protocol specifications served as the foundational
technologies for developing both backend and frontend system components.

This solution introduces a novel approach to monitoring and anomaly detection within OSPF network
domains. At the time of the project’s development, no existing tools were available that provided
monitoring and analysis capabilities for OSPF behavior.

10

2.2. Project Achievements Chapter 2. Results

2.2 Project Achievements

This section elaborates on the solution’s usage and the features achieved through its implementation.
A separate FRR-MAD build and setup description is provided in the appendix.

2.2.1 Gather FRR Route Information

FRR-MAD implements a data collection process for routing information. The aggregator component
receives structured JSON-formatted OSPF metrics from FRR at fixed intervals. Once parsed, this
data becomes available to both the exporter and socket components. Metrics are exposed through a
Prometheus-compatible endpoint for external polling via the exporter (discussed in subsection 2.2.2).
Concurrently, frr-mad-tui accesses this data through the socket component. This collected routing
data serves as the foundation for monitoring, anomaly detection, and subsequent analysis within the
FRR-MAD system.

The following list provides a concise overview of achieved functions.

Unified OSPF Monitoring

• Full LSDBSnapshots: Complete Link State Database (LSDB) per area, including Router, Network,
Summary, and External LSAs.

• Neighbor States: Real-time adjacency status (up/down), DR/BDR roles, and convergence met-
rics.

• RIB/FIB Data: Installed routes with protocol origins (OSPF/BGP/static), next hops, and metrics.

System Integration

• FRR Configuration: Static hostname, interface IPs, and OSPF areas from running configs.

• Resource Metrics: CPU/memory usage correlated with routing events.

Operational Benefits

• No Manual Polling: Metrics are gathered automatically at configurable intervals (default: 30s).

• Structured Outputs: Data is normalized for consistency across visualization (TUI) and export
(Prometheus).

• Anomaly Detection Ready: Self-originating LSAs are pre-filtered for validation checks.

Supported Data Types

11

2.2. Project Achievements Chapter 2. Results

Category Examples Use Case
Topology Router IDs, LSAs, neighbor states Path validation
Routing Tables RIB prefixes, next hops, admin distances Route policy compliance
System Metrics CPU load, memory usage Capacity planning

Table 2.1: Supported FRR Data Types

Why This Matters

• Troubleshooting: Engineers can validate that currentOSPFadvertisements alignwith the router’s
configuration (e.g., passive interfaces are correctly advertised as stubs). However, the tool does
not provide root cause analysis or historical correlation with specific OSPF events such as LSA
floods or neighbor transitions.

• Compliance: Ensures that live OSPF state and advertised routes conform to intended design
(e.g., redistribution rules, interface types).

• Scalability: Efficiently handles large-scale deployments, with normalized data structures and
selective filtering (see Filter TUI content).

TL;DR Gather FRR Route Information

FRR-MADgathers and structures all relevantOSPF routing data, including LSDBs, neighbor states,
and the routing table, in real time. This allows for high-resolution networkmonitoring, streamlined
troubleshooting, and accurate anomaly detection across large-scale OSPF deployments.

2.2.2 Persistently store FRR Route Information

While not directly, FRR-MAD enables persistent storage of OSPF routing metrics via Prometheus. Ex-
port behavior is configurable through runtime flags or the application’s configuration file. This modu-
larity provides flexibility for users operating large-scale networks. This level of control helps manage
Label Cardinality effectively, which is especially important in Prometheus environments with many
routers.

Selective Metric Export (via startup flags)

Specific OSPFmetrics can be enabled, by default is disabled, via command-line flags. In this example
Router LSA (Type 1 LSA) and AS External LSA (Type 5 LSA) are exported:
frr-mad-analyzer start --ospf-router --ospf-external

Provided is a list of all options available.

• --ospf-router (Router LSA (Type 1 LSA))

• --ospf-network (Network LSA (Type 2 LSA))

12

2.2. Project Achievements Chapter 2. Results

• --ospf-summary (Summary LSA (Type 3 LSA))

• --ospf-asbr-summary (ASBR Summary LSA (Type 4 LSA))

• --ospf-external (AS External LSA (Type 5 LSA))

• --ospf-nssa-external (NSSA External LSA (Type 7 LSA))

• --ospf-database (Link State Database (LSDB))

• --ospf-neighbors (OSPF Neighbors)

• --interface-list (Interface List)

• --route-list (Route List)

Config File Based Metric Selection

Metrics can alternatively be configured using a YAML-based configuration file (the Cobra Configura-
tion File used throughout FRR-MAD for all configurations).

2.2.3 Visualize FRR Route Information

This subsection first explains the structure of the TUI for gaining an effective overview of the system.
It then describes the FRR routing information displayed on each page.

FRR-MAD-TUI Structure

All OSPF-related routing metrics gathered and exposed by FRR-MAD can be interactively viewed in
the Text-Based User Interface (TUI) (frr-mad-tui). It presents FRR behavior on a router with a clear,
engineer-focused design. The TUI is fully keyboard-driven, with the footer displaying real-time hints
for actions and shortcuts.
Currently, the TUI is organized into four main pages, each serving a specific function. To reduce un-
necessary scrolling (NFR8), pages include sub-pages or segmented views. (see Table 2.2)

13

2.2. Project Achievements Chapter 2. Results

Page Purpose
Dashboard Offers a high-level summary of OSPF metrics, system status, and routing

data. If anomalies are detected, they are prominently displayed.
OSPF Monitor Displays detailed information about OSPF neighbors, LSAs, and interface

states. Serves as the core for OSPF-specific monitoring.
RIB Presents a structured view of the current Routing Information Base (RIB)

and Forwarding Information Base (FIB), including all installed routes and
their attributes.

Shell Enables direct interaction with FRR via FRR-MAD TUI Write Mode,
including execution of vtysh commands and bash commands.

Table 2.2: Purpose of each frr-mad-tui Page

The Figure 2.1 shows the info page of the TUI, which can be accessed at any time by pressing the i

key. This provides an overview of the main menu bar with the four previously described pages as well
as all available keyboard shortcuts and user interactions.
In addition to navigation options, this page highlights important interface behaviors such as TUI
modes (read/write) and message types (info, warning, error). It serves as a quick reference guide
to help users efficiently operate the TUI.

Figure 2.1: frr-mad-tui Info Page

Dashboard

The Dashboard currently contains two subpages. In the future, asmore routing protocols are analyzed
by FRR-MAD, each protocol will be provided with its own dedicated dashboard.

14

2.2. Project Achievements Chapter 2. Results

All dashboards are divided into two main panes:

• Left Pane: This pane is context-sensitive and updates based on the selected subpage.

– If the anomaly dashboard is selected (default subpage of dashboards), the left pane dis-
plays anomaly-specific information.

– TheOSPFDashboard is being used purely formonitoring, the left pane displays an overview
using the vtysh command:
show ip ospf database self-originating

• Right Pane: This provides general system information, including:

– Resource utilization (e.g., CPU, memory)

– A summary of OSPF status retrieved with the command:
show ip ospf

– Information about FRR-MAD like version and build-date

This layout ensures that both high-level systemmetrics and protocol-specific insights are readily avail-
able, supporting quick decision-making in both routine monitoring and anomaly scenarios.

OSPF Monitor

The OSPF Monitor page serves as the central hub for inspecting all relevant data required to monitor
or troubleshoot OSPF behavior in detail. It is composed of several sub-pages, each focusing on a
specific aspect of the OSPF protocol, allowing for targeted analysis and better operational insight.

• LSDBOverview: The first sub-page provides a full view of Link-State Database (LSDB), separated
for each OSPF area.
show ip ospf database

• Router LSA (Type 1): This sub-page presents a detailed breakdown of Router LSAs. It catego-
rizes and displays link information in separate tables based on link type: transit networks, stub
networks, and point-to-point connections.
show ip ospf database router self-originating

• Network LSA (Type 2): Displays information about all Type 2 LSAs, which describe the routers
connected to a shared broadcast or non-broadcast multi-access (NBMA) network.
show ip ospf database network self-originating

• External LSAs (Type 5 and Type 7): This sub-page provides detailed tables for external route ad-
vertisements, which are used to represent routes redistributed into OSPF from external sources
such as BGP or static routes.
show ip ospf database external self-originating

show ip ospf database nssa-external self-originating

15

2.2. Project Achievements Chapter 2. Results

• Neighbor Overview: Presents comprehensive information about all OSPF neighbors.
show ip ospf neighbor

• Running Configuration: As a final sub-page, this view shows the live FRR running configuration
directly within the TUI. It allows users to verify current OSPF-related settings without leaving the
monitoring interface.
show running-config

RIB

The RIB page provides a detailed view of the router’s Routing Information Base (RIB) and Forwarding
Information Base (FIB). This page is essential for understanding which routes have been learned, and
which paths are ultimately used for forwarding.
It presents the following outputs:

• All known routes (prefix and next hops), their sources (e.g., OSPF, BGP, static), and associated
metrics as a clearly arranged table.
show ip route

• The number of routes in each routing table, which are accurately determined with the route
summary command.
show ip route summary

Given that routing tables can contain a large number of entries, this page integrates the TUI’s filtering
mechanism (see Filter Feature), which is especially useful here. Users can quickly isolate specific
prefixes, next hops, or protocol entries using the interactive filter interface (activated by the : key).

TL;DR Visualize Frr Route Information

The frr-mad-tui provides a comprehensive and structured interface for inspecting OSPF routing
data and system state in real time. With dedicated pages for the dashboard, OSPF monitoring,
and RIB/FIB inspection, the TUI significantly enhances the visibility and manageability of routing
operations. Its filtering functionality is especially valuable in large-scale environments, enabling
efficient navigation of high-volume routing data. These features collectively turn the TUI into a
practical and powerful tool for monitoring, troubleshooting, and understanding FRR-based OSPF
networks.

2.2.4 Export Parsed FRR Route Information

The previous subsection focused on the visualization of OSPF metrics and routing data within the frr-
mad-tui. This part explains how users can export the underlying parsed and aggregated data collected
by the frr-mad-analyzer.

16

2.2. Project Achievements Chapter 2. Results

Description

The frr-mad-tui offers a convenient mechanism for exporting any currently displayed or page-specific
routing data. Users can open the export menu from any page or sub-page in the TUI. The export op-
tions are context-sensitive: each page exposes exportable data relevant to its content. In most cases,
this reflects the data returned by backend calls used to populate the page. In the remaining cases,
direct API calls to the ospfd.vty socket provide additional information.

Two export targets are available:

• Temporary file: The data is written to a temporary file at a path configurable via the FRR-MAD
configuration file (Listing 2.1 illustrates where to modify this path).

• Clipboard: When supported by the terminal, data can be copied directly to the system clipboard
using the OSC52 Protocol protocol. This functionality is also available during remote SSH ses-
sions, provided the client terminal supports OSC52.

1 default:

2 tempfiles: /tmp/frr -mad

3 exportpath: /tmp/frr -mad/exports # adjust this to specify tui export path

4 logpath: /var/log/frr -mad

Listing 2.1: Adjust Export Path in Configuration File

How to

When opening the export options with Ctrl+E at any point in the frr-mad-tui, users can navigate
through the available export targets using Tab and Shift+Tab . Pressing Enter triggers the export,
and the user is immediately notified of the export target location. Exactly this is illustrated in Fig-
ure 2.2.

17

2.2. Project Achievements Chapter 2. Results

Figure 2.2: frr-mad-tui Export Page

TL;DR Export Parsed FRR Route Information

This export functionality enhances operational efficiency by enabling seamless transfer of rout-
ing snapshots, diagnostics, or metric outputs for further processing, sharing, or archiving. Any
data parsed by the frr-mad-analyzer and used on the current page can be exported via the ex-
port menu, accessible with Ctrl+E . Data is exported to both the clipboard and a file located at a
configurable path, as defined in the configuration file.

2.2.5 OSPF Anomaly Detection

One of the most important features is the detection of inconsistent behavior in FRR. For this purpose,
frr-mad-analyzer compares two datasets to determine anomalies. The first dataset is the static FRR
configuration file. Using the FRR configuration, predictions can be made for the LSDB, denoted as
shouldState. The scope of these predictions is limited to self-originating routes only. Similarly, an
isState is available from the router LSDB.

State Comparison

Table 2.3 presents a comparative analysis of the source metrics, designated as shouldState and is-
State, employed for anomalous behavior detection and analysis.

18

2.2. Project Achievements Chapter 2. Results

shouldState isState Description
FRR conf LSDB Router Provides the difference between the predicted Router LSA

(Type 1 LSA) and the actual self-originating generated Type 1
LSDB. Contained within the same area.

FRR conf LSDB External Provides the difference between the predicted AS External LSA
(Type 5 LSA) and the actual self-originating generated Type 5
LSDB. Exists in all areas except stub, totally stubby areas, and
NSSAs, totally NSSAs.

FRR conf LSDB NSSA-
External

Provides the difference between the predicted NSSA External
LSA (Type 7 LSA)and the actual self-originating generated
Type 7 LSDB. Important for NSSA areas.

LSDB FIB Provides the difference between the populated LSDB and the
actual FIB.

Table 2.3: Comparison of isState and shouldState

The concept is straightforward: compare the LSDB entries of Type 1, 5 and 7 against the configuration
to identify discrepancies. The anomaly detection attempts to predict what should be added to the
LSDB and then compares this prediction with the actual state.

While this approach is feasible, certain limitations must be acknowledged. The limitations will be
explained in subsubsection 2.3.4

2.2.6 Export OSPF Anomalies

FRR-MAD exports all detected routing anomalies to Prometheus, providing immediate visibility into
network issues without configuration overhead.

Anomaly Types Detected

As outlined in Table 2.3 there exists four different comparisons. These are further broken down into
two major types of anomalies; Overadvertised Route and Unadvertised Route.

Category Example Scenario Severity
Over-Advertised Static route announced in NSSA Critical
Un-Advertised Missing stub route Critical

Table 2.4: Examples of Route Advertisement Issues

Operational Benefits

• Real-Time Alerts: Includes prebuilt Prometheus alert rules

• Forensic Data: Export includes:

19

2.2. Project Achievements Chapter 2. Results

– Source (Router/External/NSSA)

– Link-State ID

– Affected Interface

– Protocol options

Key Differences to FRR Route Information

Table 2.5 distinguishes between configurable system features and those with preset configurations.
Optional data points can thus be selectively hidden, such as detailed route metrics, while anomalies
are always exported.

Feature Route Metrics (2.2.3) Anomalies (2.2.7)
Configurable Yes (flags/config file) No (always on)
Storage Use Variable (based on selected

metrics)
Fixed

Alerting Manual alert rule setup Preconfigured alert rules
Table 2.5: Comparison of Route Metrics and Anomalies Features

Note: Both data points are available at the same Prometheus endpoint :9091/metrics.

2.2.7 Visualize Detected Anomalies

Figure 2.3 illustrates how an anomaly is displayed within the dashboard. All previously described
anomaly types are presented in this format. For additional details on a specific anomaly, users can
press Ctrl+A within the dashboard to open a dedicated page that provides further descriptions of
each anomaly type.

20

2.2. Project Achievements Chapter 2. Results

Figure 2.3: frr-mad-tui Anomaly Dashboard

2.2.8 Other TUI Features

The frr-mad-tui includes additional features that enhance the usability of both anomaly detection and
OSPF monitoring.

Filter TUI Content

In large-scale network environments, such as those operated by service providers, the LSDB can grow
significantly. Since OSPF does not define a strict upper limit for LSDB size, the number of entries is
constrained only by the router’s hardware resources. Practical deployments may contain anywhere
from 1,000 to over 10,000 OSPF routes. Many vendors offer direct commands to limit the number of
prefixes exported to OSPF. While FRR does not support this explicitly, similar control can be achieved
using other methods[19].

To navigate and analyze such volumes efficiently, frr-mad-tui includes an interactive filtering func-
tion. This feature is essential for locating specific routes, LSAs, or configuration entries quickly. It
greatly enhances usability and is particularly critical for troubleshooting and validating routing behav-
ior in large and dynamic topologies.

As shown in Figure 2.4, the router maintains a Routing Information Base (RIB) containing 52 entries.
The list is reduced to only two matching entries by applying a filter, which searches for the string /23

marked in red.

21

2.2. Project Achievements Chapter 2. Results

Figure 2.4: frr-mad-tui Filter Function

To activate the filter, press : . It can be deactivated either by pressing : again or ESC . If ESC is
used, the current filter is retained and can be re-applied on any other page by pressing : again. In
contrast, deactivating with : clears the filter immediately.

Custom Shell in TUI

The frr-mad-tui includes a custom shell interface to conduct troubleshooting workflows directly from
the TUI. It consists of two subpages: a simplified shell and a vtysh interface. The simplified shell
allows users to run basic bash commands such as ip a or pwd , while excluding commands that
involve special characters (e.g., pipes, redirection). The second subpage provides full access to vtysh,
enabling direct interactionwith the FRR CLI. Figure 2.5 illustrates how the vtysh interface is used. Both
shell interfaces require write mode to be enabled via Ctrl+W .

22

2.2. Project Achievements Chapter 2. Results

Figure 2.5: frr-mad-tui vtysh input

Status Bar TUI

The status bar is a persistent UI element located at the bottom of all TUI pages (except the running-
config view). It provides real-time system feedback and status updates.
Its two primary functions are:

• System Alerts: Color-coded messages indicate system state, including informational updates
(e.g., successful export), warnings (e.g., high resource usage), and errors (e.g., failed API calls).

• Contextual Guidance: Dynamic hints are shown based on the current mode (e.g., read-only) or
relevant actions.

The TUI automatically shortens long messages with ellipsis, based on the window size.

2.2.9 Augmented Development and Testing Environment

To conclude the achievements section, this project’s development and testing environment solution
is presented. To provide a system-independent test and development environment, containerlab has
been utilized. Figure 2.6 illustrates the design of the development environment (see Appendix C.1
for full illustration). All routers and hosts are provided by Dockerfiles, and containerlab constructs
the environment. A dedicated host was chosen to handle the build task, and through Docker mount
processes, the build results are distributed across all routers.

23

2.3. Implementation Chapter 2. Results

Figure 2.6: Development and Test Environment Overview

This design offers several advantages:

• System-independent development and building of files.

• Rapid replacement of build results across all containerlab devices.

• Dedicated build host reduces resource consumption compared to building on all containerlab
hosts.

• Isolated build environment eliminates developer-specific build settings.

• Quick deployment and testing of the test environment.

• Enables quick, hands-on testing of FRR-MAD in a realistic setup with just a few commands.

2.3 Implementation

In the following section, the different aspects of implementing the Free Range Routing - Monitoring
and Anomaly Detection (FRR-MAD) tool suit will be discussed in more detail. The overall approach

24

2.3. Implementation Chapter 2. Results

to reaching the solution will be outlined. Decisions on why certain technologies were chosen, are
examined in the chapter Solution Strategy.

2.3.1 Architecture

The anomaly analysis is confined to the operation of a single device. As a result, the FRR-MAD soft-
ware suite operates based on the FRR configuration and Link-State Database (LSDB) of an individual
router. Figure 2.7 illustrates the interaction between the various components and services involved.

Although all illustrated entities are important, the implementation specifically focuses on the com-
ponents frr-mad-analyzer and frr-mad-tui. The architectural abstraction offers a clear overview of
the FRR-MAD tool suite’s role within the overall system. While frr-mad-analyzer and frr-mad-tui

form the core of the architecture, other referenced services and systems are included for context and
to support a comprehensive understanding of the project’s implementation.

Figure 2.7: High Level Abstraction Architecture

Logger

The logging feature holds a distinct role within the FRR-MAD system. While it captures application-
level behavior, it categorizes logmessages into the following severity levels: debug, norm, info, warning,
and error. In addition to general application behavior, inherent events within FRR-MAD, particularly
those related to anomaly detection, are also recorded in the logs on the backend.

This loggingmechanismenablesmore than just the useof export features from the frr-mad-analyzer.
It allows users to directly inspect log files for any relevant state changes or anomalies. A similar ap-

25

2.3. Implementation Chapter 2. Results

proach is used for the frr-mad-tui, which shares the same logging foundation and stores all user
interactions persistently in log files.

The log files are structured in JSON format, which facilitates efficient integration with systems that
consume structured data. JSON is widely adopted due to its flexibility and readability. Each log en-
try includes additional metadata, most importantly, the service that generated the log and precise
timestamps—ensuring traceability and consistency across the system.

Communication Channels

The communication scheme employs multiple implementation approaches, depending on the inter-
action layer.

FRR-MAD Suite ↔ FRR is the most critical communication channel. To enable effective anomaly
detection, access to raw routing data is essential. FRR supports efficient querying via Unix sockets,
which allows for low-latency communication using simple byte streams. Thismethodminimizes over-
head and enables rapid data retrieval.

While the use of byte-stream communication introduces certain limitations, most notably, the lack
of built-in fault correction mechanisms—the performance benefits outweigh these drawbacks in the
current context. The trade-off favors speed and simplicity, which are crucial for real-time analysis
within the FRR-MAD system.

Figure 2.8: Frontend to FRR Communication

frr-mad-tui↔ frr-mad-analyzer operates through decoupled communication. The frontend periodi-
cally queries the backend via Unix domain socket connections. The backend exposes a Unix socket
endpoint for frontend state requests. This polling mechanism cannot reliably detect transient errors
due to the absence of historical anomaly access. Two complementary systems address this limita-
tion: the Logger and the exporter.

26

2.3. Implementation Chapter 2. Results

Both applications operate as standalone processes but require shared data object definitions. Data
serialization is implemented using Protocol Buffers (protobuf) to ensure type consistency across pro-
cess boundaries. Despite protobuf’s native gRPC support, the implementation utilizes simple byte
stream communication over the Unix socket, as shown in Figure 2.9. This design decision reflects
the single-host, single-client communication pattern, which minimizes backend overhead. Given the
local communication scope and fast information retrieval requirements, byte stream transmission
provides sufficient performance without gRPC complexity.

Figure 2.9: Frontend to Backend Communication

frr-mad-analyzer↔ internal communication utilizes direct pointer references. Thanks to the use of
pointer references, the application achieves a high degree of decoupling. The pointer references can
be regarded as dependency injection. It provides the benefits that arbitrary data can be injected for
testing purposes too. Once again protobuf is used for data serialization and handling.

The frr-mad-analyzer comprises four components: aggregator, analyzer, exporter, and communica-
tion handler. These components function as self-containedmicroserviceswith decoupled operational
logic. Components expose pointers to protobuf-serialized data structures to maintain this architec-
tural separation. An internal timer periodically refreshes data objects, ensuring all components access
current metrics efficiently.

27

2.3. Implementation Chapter 2. Results

Figure 2.10: Backend internal communication

frr-mad-analyzer ↔ Prometheus implements the external metrics interface. This communication
layer adheres to Prometheus Node Exporter endpoint specifications, as detailed in previous sections.
As in internal communication explained, the metrics are made available with pointer references. The
exporter exposes a copy of these metrics on a Prometheus compatible endpoint.

Figure 2.11 illustrates the communication structure. The Prometheus Node Exporter endpoint binds
to all available network interfaces, enabling metric access via the configured port. The port number
is configurable through the application configuration file.

28

2.3. Implementation Chapter 2. Results

Figure 2.11: Backend - Prometheus Communication

2.3.2 Backend Service

The backend implements multiple communication paradigms. Direct synchronous communication
with the frontend is established through a Unix Domain Socket interface. The exporter component
facilitates the extraction and transmission of operational metrics from FRR services.
Prior to metric exportation, data collection and analysis must be performed. The aggregator compo-
nent handles the retrieval and parsing of FRR operational data. The implementation follows a direct
approach: information is obtained via FRR control sockets zebra.vty and ospfd.vty. Retrieved data
undergoes parsing and serialization into structured data objects, which are subsequently made avail-
able to downstream components.

The following of this subsection examines the implementation of the analyzer, communications, and
exporter components in detail. Refer to Section 2.2.5 to review the fundamentals of OSPF anomaly
analysis.

Backend: Analyzer

The analysis process begins by generating a predicted Link State Database (LSDB) and comparing it
against the actual LSDB. The prediction is derived by analyzing the FRR configuration and construct-
ing the potential network states. This approach has an inherent limitation: only self-originating routes
can be predicted using this method. Four distinct datasets are analyzed to identify potential anoma-
lies. These datasets are calculated for LSA Types 1, 5, and 7, as well as the Forwarding Information
Base (FIB).

29

2.3. Implementation Chapter 2. Results

Algorithm 1 provides an overview of the data preparation process. The analyzer receives parsed con-
figuration data and different LSDB types as input. These two datasets have fundamentally different
structures and must first be normalized to enable comparison. The most straightforward approach
involves calculating the network addresses from the respective datasets and storing them in maps.

Algorithm 1: Convert OSPF Link States to Network Addresses Map
Input: linkStateList (collection of OSPF link states)
Output: networkMap (map of network addresses in CIDR notation with linkState information)

networkMap← [string]linkState;
foreach linkState ∈ linkStates do

tmpLinkState := {

ip← EXTRACTIP(linkState);
mask ← EXTRACTMASK(linkState);
network ← CALCULATENETWORK(ip,mask);
cidr ← CONVERTTOCIDR(network,mask);
networkSet← networkSet ∪ {cidr};
} networkMap[network] = tmpLinkState;

end
return networkMap

The use ofmapsmakes checking for the existence of link states straightforward. Algorithm2provides
an overview of how the test is performed. If an entry from the shouldState is not present in the
isState, an anomaly can be inferred and is classified as Unadvertised Route.
Algorithm 2: Detect Unadvertised Networks
Input: shouldNetworkMap (expected network addresses)
Input: isNetworkMap (actual network addresses)
Input: unadvertisedList (pointer to unadvertised networks list)

foreach network ∈ shouldNetworkMap do
if network /∈ isNetworkmap then
∗unadvertisedList← ∗unadvertisedList ∪ {network};

end
end

Similar to the previous algorithm, Algorithm 3 abstracts the detection of Overadvertised Routes. The
same logic applies, but in reverse. If a network from isNetworkMap is not present in shouldNet-
workMap, it can be classified as overadvertised.

30

2.3. Implementation Chapter 2. Results

Algorithm 3: Detect Overadvertised Networks
Input: shouldNetworkMap (expected network addresses)
Input: isNetworkMap (actual network addresses)
Input: overadvertisedList (pointer to overadvertised networks list)

foreach network ∈ isNetworkMap do
if network /∈ shouldNetworkMap then
∗overadvertisedList← ∗overadvertisedList ∪ {network};

end
end

The algorithms are executed sequentially. During the initialization of the different components, serial-
ized data structures are created and shared between components. The information sharing process
is therefore accomplished through pointer references, as previouslymentioned. It is important to note
that no two instances perform write operations on the same pointer reference. Only one component
populates the pointer references while all other instances function as read-only consumers.

This testing procedure is generally sound, with one primary limitation: reduced accuracy. Different
network types, such as stub or point-to-point networks, exhibit distinct behaviors.

While the algorithms presented above are high-level abstractions of the actual implementations, they
accurately represent the general procedure. Ideally, the analyzer should infer the correct network type
from the configuration, but this is not feasible with the current analyzer architecture.

Backend: Socket

As previously mentioned, the socket is implemented using a Unix socket. Byte streams transport
protobuf-serialized data structures between components. Request messages are of type Message
and contain the fields Service and Command. Algorithm 4 illustrates the general operation of the mes-
sage handler. The socket receives a protobuf-serialized byte stream of type Message containing two
data fields: Service , which determines the appropriate service handler for command routing, and
Command , which specifies the requested information retrieval operation.

31

2.3. Implementation Chapter 2. Results

Algorithm 4: Unix Socket Message Handler
Input: request←Message{} (incoming bytestream; protobuf serialized data)
Output: response← Response{} (outgoing bytestream; protobuf serialized Response)

message← DESERIALIZEPROTOBUF(request,Message);
service← message.Service;

switch service do
case "ServiceA" do

responseObj ← FORWARDTOSERVICEHANDLER(”ServiceA”,message);
end
case "ServiceB" do

responseObj ← FORWARDTOSERVICEHANDLER(”ServiceB”,message);
end
case Default do

responseObj ← CREATEERRORRESPONSE(”InvalidService”);
end

end

response← SERIALIZEPROTOBUF(responseObj,Response);

return response

Upon successful service identification, the corresponding service handler processes the Command. Al-
gorithm 5 presents the generic implementation of the service handler. While each service handler
follows a similar structure, their specific implementations do not allow for abstraction. However, this
generic algorithm suffices for explaining the common service handler pattern. Once the message is
properly parsed, requests are forwarded to their respective tasks. All subtasks consistently return
Response objects as a design consideration to reduce complexity at the frontend-backend socket
interface. The response object either contains a dataset corresponding to the Message request or
returns nil . In addition, it reduces the complexity of testing.

32

2.3. Implementation Chapter 2. Results

Algorithm 5: Generic Service Handler
Input: message (deserialized Message object)
Output: response (outgoing byte stream; protobuf serialized Response)

command← message.Command;

switch command do
case "CommandA" do

result← EXECUTECOMMAND(”CommandA”,message);
responseObj ← CREATESUCCESSRESPONSE(result);

end
case "CommandB" do

result← EXECUTECOMMAND(”CommandB”,message);
responseObj ← CREATESUCCESSRESPONSE(result);

end
case Default do

responseObj ← CREATEERRORRESPONSE(”InvalidCommand”);
end

end

response← SERIALIZEPROTOBUF(responseObj,Response);

return response

The communication system between these two components is designed to be synchronous. In the
current iteration of FRR-MAD, there is no requirement for more complex capabilities. All information
accessible to the frontend is also exported through a Prometheus-compatible endpoint.

Backend: Exporter

The exporter component serves as the metrics interface between FRR-MAD and external monitoring
systems. It implements a Prometheus-compatible endpoint that exposes both operational metrics
and anomaly detection results. The exporter follows a modular design with two primary subcompo-
nents: the MetricExporter for FRR operational data and the AnomalyExporter for anomaly detection
results.

Metrics Export
The MetricExporter takes the data from the pointer and exposes FRR operational metrics through a
configurable HTTP endpoint. Key characteristics include:

• Thread-safe Updates: A read-write mutex protects metric updates during concurrent access

• Comprehensive Coverage: Supports exporting metrics for all LSA types including OSPF neigh-
bor, Interface status and Routing table metrics

Algorithm 6 illustrates the metric update procedure. The exporter periodically refreshes all enabled
metrics from the shared data structure while maintaining atomic operations through mutex protec-

33

2.3. Implementation Chapter 2. Results

tion. This algorithm uses a generic type parameter as a placeholder for any metric type that can be
exported, with specific metrics outlined in Persistently Store FRR Route Information.
Algorithm 6: Metric Export Procedure
Input: data (shared FRR operational data)
Input: config (exporter configuration)

foreach metric category do
if category is enabled then

switch category do
case generic do

Update generic metrics;
end

end
end

end

Anomaly Export
The AnomalyExporter provides detailed visibility into detected anomalies through three metric types:

• Binary Flags: Indicate presence/absence of anomaly types per detection source

• Counters: Track total anomalies detected per category

• Detailed Metrics: Provide labeled instances of specific anomalies

The exporter handles four anomaly sources:

• Router LSA anomalies (Type 1)

• External LSA anomalies (Type 5)

• NSSA LSA anomalies (Type 7)

• LSDB-to-RIB inconsistencies

Algorithm 7 shows the anomaly metric update process. The exporter first resets all metrics to zero
before repopulating them with current anomaly data, ensuring metric staleness is prevented.

34

2.3. Implementation Chapter 2. Results

Algorithm 7: Anomaly Export Procedure
Input: anomalies (shared anomaly detection results)

Reset all anomaly metrics to zero;

foreach anomaly source do
Update binary flags for detected anomaly types;
Update counters for anomaly counts;
foreach detected anomaly do

Create detailed metric with labels;
end

end

Implementation Details
The exporter component implements several reliability features:

• Retry Mechanism: Failed metric updates automatically retry once before logging errors

• Panic Recovery: Catches and logs panics during metric updates

• Atomic Operations: Uses mutexes to prevent concurrent write conflicts

The HTTP server exposes metrics on a configurable port (default: 9091) with these endpoints:

• /metrics - Prometheus-formatted metrics

• / - Simple HTML status page

2.3.3 Frontend Client

The frr-mad-tui serves as the main interaction point for users. It is built using Bubbletea, a robust and
flexible Go framework for creating rich TUIs, and styled with Lipgloss, which provides composable
terminal styling utilities.

Frontend Structure

The source code for the TUI is organized for scalability, following a clean separation of concerns:

1 root/

2 +- src/

3 +- frontend/

4 +- cmd/

5 | +- tui/ # Entry point for the TUI application (main.go)

6 +- internal/

7 +- common/ # Shared types , utilities , and helper functions

8 +- pages/ # Page -based structure ,

9 | +- examplePage/

35

https://github.com/charmbracelet/bubbletea/tree/main
https://github.com/charmbracelet/lipgloss

2.3. Implementation Chapter 2. Results

10 | +- model/ # Bubbletea model definition

11 | +- update/ # Update logic and message handling

12 | +- view/ # View rendering and data aggregation

13 +- services/ # Interfaces to the backend (e.g., socket

communication)

14 +- ui/ # Shared Lipgloss -based UI components and

layout styling

Listing 2.2: Frontend Structure

Design Philosophy

Each page within the TUI (e.g., Dashboard, OSPF Monitor) is implemented as an independent Bub-
bletea model, following a standardized pattern: model, update, and view. This structure promotes
modularity and makes it easy to extend the TUI with new pages or features.
Backend interactions are handled through the services layer, which abstracts the protobuf communi-
cation with the frr-mad-analyzer.
Styling and layout components are centralized in the ui folder, which ensures consistency across all
pages and enables quick design adjustments via Lipgloss.

Development Process

To become familiar with the framework and libraries, a minimal prototype was developed early in the
project. While prior experience with CSS can be helpful, working with Lipgloss, and TUIs in general,
presents its own unique challenges. One of the most time-consuming aspects was implementing
responsive layout behavior. Unlike web development, Lipgloss does not offer built-in layout systems
such as Flexbox or CSS Grid. Instead, all sizing must be handled manually in code. Functionality like
justify-content: space-between; quickly loses its charm when you have to manually calculate the
widths of container A and B, then insert a third invisible box as a spacer, just to make sure that A
sticks to the left edge of the terminal and B hugs the right. Consequently, the style.go file contains
extensive logic for calculating dynamic widths and heights, supporting various terminal segmentation
(e.g., half, one-third, one-fourth).

Keywords Frontend Client

Design Pattern: Model, View, Update | Bubbletea (Go Framework) | Lipgloss Styling |
Modular Page Structure | Responsive Layout | Unix Socket Communication via Protobuf

2.3.4 Process and Challenges

This final subsection examines the key decisions and challenges encountered during the project de-
velopment phase. The first section discusses the general workflow processes and design decisions
made, along with subsequent adjustments implemented during development. The second section
addresses the challenges and limitations encountered in anomaly detection implementation.

36

2.3. Implementation Chapter 2. Results

Workflow

This section outlines the workflow followed by a mission control operator when facing a routing prob-
lem. The corresponding flowchart serves as a foundational reference for later project phases, partic-
ularly for the development of the TUI-MVP.

To better understand the flowchart, several key aspects should be noted:

• Data export can be made at any point of the workflow.

• The "Anomaly Detection" process contains the anomalies according to FR3.

Figure 2.12: Workflow Flowchart

37

2.3. Implementation Chapter 2. Results

System Design Adjustments

The systemdesign challenges encountered during development necessitated significant architectural
modifications. Both Batfish and frr_exporter proved impractical for FRR-MAD development require-
ments.

Initial Design:
Figure 2.13 presents the initial system architecture following the project’s elaboration phase. Ini-
tially, Batfish was evaluated as a potential engine for parsing and validating routing configurations
of the complete OSPF network. Additionally, the frr_exporter was intended to handle all FRR-MAD-
related analysis results export functionality.
By querying both frr_exporter and Batfish, it would obtain insights into network configuration and
LSDB state. With this information the analysis process could be initiated as described in previous
chapters. Finally, the frr_exporter was to be extended to export analysis results, while a Text-Based
User Interface (TUI) would offer insights into the local router’s state directly on the device.

Figure 2.13: Elaboration Result: Initial Architecture

38

2.3. Implementation Chapter 2. Results

Adjusted Design:
Early in the development phase, it became evident that the above approach was insufficient. Both
Batfish and frr_exporter proved to be suboptimal choices for implementation or adaptation.

Batfish required a dedicated host to perform network-wide FRR configuration validation within
OSPF domains. This approach introduced practical limitations, as it would force users of the
FRR-MAD toolset to deploy and maintain a centralized Batfish instance. This was neither desired
by the industry partner nor aligned with our design goal to keep the solution self-contained and
free of heavyweight dependencies.

The intended modifications to frr_exporter would violate its intended design principles. The
frr_exporter is specifically designed to export FRR-based information without modification. The
changes to frr_exporter by this project, would also see a strong coupling between the FRR-MAD
toolset and frr_exporter. Based on these findings, the design shown in Figure 2.14 was chosen.

Figure 2.14: Development Phase: Adjusted Architecture

Anomaly Detection

The implementation of the analyzer logic required close collaboration with our industry partner, who
provided essential domain knowledge. Since FRR-MAD is intended to run in this specific context, it
was crucial to follow an agile development approach with rapid feedback loops. Despite extensive
testing in our own lab environment (see Figure C.1), several issues only emerged in the industry part-
ner’s setup. These discrepancies highlighted two major challenges that arose from both a gap in our
OSPF expertise and an initially limited understanding of the partner’s infrastructure.
To clearly present the two problems, the explanation is structured into three parts: Deep-Dive, Identi-
fied Problem, and Solution.

39

2.3. Implementation Chapter 2. Results

Problem 1 - Predicted Link Type in Router LSA (Type 1 LSA)
Deep Dive into Link Types:
A Router LSA (Type 1 LSA) advertises the state of a router’s own interfaces. Within this LSA, each
interface is assigned a link type, which depends on the interface configuration and the observed
topology on the LAN. The general rule for determining the link type is shown in Table 2.7:

Interface Configuration Situation on the LAN Link Type in Router LSA
(Type 1 LSA)

passive1 Only one Router (nothing else
is possible)

stub network

no special network defini-
tions

only one Router stub network

no special network defini-
tions

two or more routers
connected to the same LAN

transit network

Table 2.7: Link Types based on Interface State
1A passive interface is an interface that doesn’t send or receive OSPF hello packets, but still participates in the

routing process by learning routes from other OSPF routers on that interface.

Identified Problem:
The absence of a passive configuration on an interface does not necessarily indicate that it belongs
to a transit network.

Solution:
We introduced a new network type called "unknown" for cases where an interface is expected to
act as a transit network but cannot be confidently classified during prediction. If the shouldState
marks a link as "unknown", and the actual isState turns out to be either a stub or transit network,
this is treated as a valid match, no anomaly is raised in such cases.

Resulting Limitation:
Since the link type is yet another element in OSPF that can change dynamically at runtime, this
solution introduces a limitation. It is technically possible for a non-passive interface to appear
with a different link type than expected, without triggering an anomaly.

Problem 2 - Predicted Router LSA (Type 1 LSA) for P2P Interfaces
Deep Dive Point-to-Point Networks:
The behavior is clearly defined in RFC 2328, Section 12.4.1.2. The handling of interfaces in Router
LSA (Type 1 LSA) generation depends on whether the interface is numbered or unnumbered:

40

https://datatracker.ietf.org/doc/html/rfc2328#page-130

2.3. Implementation Chapter 2. Results

Numbered2 Unnumbered3

Stub Network:
If the neighboring router’s IP address
is known, the Link ID is set to that IP
address. If the neighbor is not known,
the subnet’s IP address is used as the
Link ID.
Point-to-Point:
The Link ID is set to the Router ID of the
neighboring router.

Point-to-Point:
Only a single link is advertised with link type
point-to-point. The Link ID is set to the
interface index (ifIndex) of the local router’s
interface.

Table 2.9: Difference of Router LSA (Type 1 LSA) from Numbered/Unnumbered Interfaces

2A numbered interface has an IP address and subnet assigned.
3An unnumbered interface has no IP address assigned; uses interface index as identifier.

Point-to-Point peerings in OSPF can be configured in several common ways:

• /32 Address: The neighbor’s address must be manually specified, as no subnet is implied.

• /31 Network: The neighbor’s IP address is automatically derived, as both usable addresses
in the /31 subnet are assumed to be point-to-point peers. This is supported due to RFC 3021
and is commonly used to conserve address space.

• /30 Network: The neighbor’s address is automatically derived from the subnet. The network
and broadcast addresses are reserved, so only two usable host addresses remain.

It is also important to note that FRR treats interfaces configuredwith a /32 address as unnumbered,
which is documented in the official FRR documentation.

Identified Problem:
The industry partner’s configuration deviates fromRFC-specified standards. Despite this deviation,
their LSDB is populated in a manner that appears functionally correct. The underlying interface
operates as a peer-to-peer interface, as confirmed by examining the applied configuration using
the command ip ospf interface <interfaceName> . This behavior occurs because the underly-
ing interface is inherently peer-to-peer, and the Zebra daemon correctly identifies this configuration.

Solution:
To address this issue, the anomaly analyzer was adjusted to treat the interface as numbered, even
though the official FRR documentation indicates that such configurations should be interpreted as
unnumbered. This adjustment accurately reflects the standard behavior observedwith the industry
partner’s setup.

41

https://datatracker.ietf.org/doc/html/rfc3021
https://docs.frrouting.org/en/latest/ospfd.html#clicmd-ip-ospf-network-broadcast-non-broadcast-point-to-multipoint-delay-reflood-non-broadcast-point-to-point-dmvpn
https://docs.frrouting.org/en/latest/ospfd.html#clicmd-ip-ospf-network-broadcast-non-broadcast-point-to-multipoint-delay-reflood-non-broadcast-point-to-point-dmvpn

2.3. Implementation Chapter 2. Results

Resulting Limitation:
A significant issue remains unresolved. The peer-to-peer interface parsing logic was specifically
tailored to accommodate the industry partner’s configuration. Consequently, /32 point-to-point
peering configurations will trigger false anomaly detection. This limitation will be addressed in
future updates.

Anomaly Detection Limitations

Due to the decentralized nature of OSPF, the information available on a single host is limited to its lo-
cal configuration scope. This constraint limits LSDB prediction capabilities to self-originated entries
resulting from the router’s own FRR configuration, such as interfaces and static routes. For example,
self-originated AS External LSA (Type 5 LSA) entries redistributed from BGP cannot be predicted. De-
spite this limitation, it remains possible to reliably predict self-originating link states.

Once both the isState and shouldState have been parsed, the comparison process begins. At this
point, the analysis encounters another challenge. Ideally, the anomaly detection should reliably de-
termine whether a network functions as a stub or a transit network. In practice, however, this is not
feasible with sufficient accuracy.

42

Chapter 3

Conclusion

This chapter evaluates the functional and non-functional requirements defined at the beginning of
the project and concludes with an outlook on potential future developments of the FRR-MAD project
beyond the scope of this thesis.

3.1 Outcome Analysis

This section presents a comprehensive evaluation of all defined Functional Requirements and Non-
Functional Requirements from the project specification. Each requirement is individually assessed
with regard to its implementation status, validation method, and critical discussion of outcomes and
trade-offs. Optional features are also reviewed to determine their current level of completion and their
potential for future development.

Legend for Evaluation Icons:

Ë MVP and Finished

é MVP and not Finished

Ë Optional and Finished

é Optional and not Finished

43

3.1. Outcome Analysis Chapter 3. Conclusion

3.1.1 Functional Requirements Evaluation

Ë MVP | FR1-1: Export OSPF Routing Metrics

Detail The backend (frr-mad-analyzer) supports exporting relevant OSPF metrics
in JSON format, which are directly polled from the router. A Prometheus-
compatible endpoint has been implemented to access these metrics exter-
nally, enabling persistent storage of these metrics. The configuration file al-
lows users to selectively define which metrics are exported. Due to the im-
proved architecture, these export settings do not interfere with any function-
ality in the TUI, even if no metrics are exported. Additionally, the backend (frr-
mad-analyzer) is designed to be easily extensible, making it straightforward
to add support for additional metrics if needed.

Status Fully implemented
Validation Unit Tests, Acceptance Test with stakeholder
Discussion The initial implementation of this feature was static in nature. However,

to accommodate the industry partner’s request to reduce the number of
Prometheus labels, flexibility was incorporated into this feature. Conse-
quently, individual metrics can be enabled or disabled through either the con-
figuration file or command-line options. This feature includes enhancements
beyond the original specification.

é Optional | FR1-2: Export BGP Routing Metrics

Detail This optional FR aimed to provide BGP metrics export functionality, similar to
the OSPF implementation described in FR1-1 evaluation.

Status Not implemented
Reason
(if not completed)

Several challenges were encountered during the implementation of OSPF
anomaly detection, as discussed in FR3 evaluation. Additionally, the scope
of the MVP regarding both anomaly detection (FR3 evaluation) and informa-
tion gathering (FR2 evaluation) was clearly underestimated.

Discussion The decision to exclude BGP-related functionality was made in project week
12 and discussed with the stakeholder on May 8, 2025. This trade-off allowed
the team to focus on completing and stabilizing OSPF-related features. Future
work could include extending the system to support BGP metrics in a similar
fashion to OSPF.

44

3.1. Outcome Analysis Chapter 3. Conclusion

Ë MVP | FR2: Gather FRR Routing Information

Detail The backend (frr-mad-analyzer) includes a dedicated module for aggregating
OSPF routing information fromFree RangeRouting (FRR). Using a fixed polling
interval of 5 seconds, the system continuously collects data such as installed
and advertised OSPF routes, various LSA types (1, 2, 3, 4, 5 and 7), and FRR
system configuration and status. The aggregated data is made available for
real-time analysis in the analyzer component and for visualization in the fron-
tend (frr-mad-tui).

Status Fully implemented
Validation Unit Tests, Acceptance test with stakeholder
Discussion Due to the lack of open-source tools for parsing FRR routing data, we devel-

oped a custom parser using FRR’s JSON command output. This solution in-
tegrated well and met project needs. However, structural changes in FRR ver-
sion 10.3 JSON responses broke compatibility. As a result, FRR-MAD currently
supports only the stable 8.5 release. A future enhancement would be to ex-
tend parser compatibility across multiple FRR versions.

45

https://docs.frrouting.org/en/stable-10.3/ospfd.html
https://docs.frrouting.org/en/stable-10.3/ospfd.html
https://docs.frrouting.org/en/stable-8.5/ospfd.html

3.1. Outcome Analysis Chapter 3. Conclusion

Ë MVP | FR3: OSPF Route Anomaly Detection by TUI

Detail The analyzer component implements OSPF route anomaly detection focus-
ing on three key LSA types: Router LSA (Type 1 LSA), which check intra-area
links and interfaces; AS External LSA (Type 5 LSA), which verify redistributed
routes; and NSSA External LSA (Type 7 LSA), which validate NSSA-specific
routes. Additionally, the system performs FIB-LSDB consistency checks to
identify installed routes that don’t match the LSDB. The detection covers un-
advertised routes (missing expected routes) and overadvertised routes (un-
expectedly announced routes).

Status Partially implemented.
Validation Unit tests for core detection logic and acceptance tests with stakeholder us-

ing real network scenarios
Reason
(if not completed)

No examples were provided by the stakeholder to demonstrate how a Dupli-
cated Route could occur. Additionally, no clear case was given for Wrongly
Advertised Route that could not already be categorized as either Unadvertised
Route or Overadvertised Route.

Discussion The implementation provides comprehensive anomaly detection for the most
critical LSA types affecting route propagation. The FIB-LSDB comparison
adds valuable operational state validation. While Network (Type 2) and Sum-
mary (Type 3/4) LSAs aren’t directly analyzed, their effects are captured
through the router LSA and FIB checks. The modular design allows for future
extension to additional LSA types if needed.

Comment The system focuses on the LSA types that most directly impact route anoma-
lies, providing targeted detection without unnecessary complexity

Ë MVP | FR4: Query and Display Routing Anomalies via TUI

Detail The frontend (frr-mad-tui) visualizes all requiredOSPF anomalies as defined in
FR4, including affected prefixes and expected vs. actual values. Additionally,
it covers further anomalies such as LSDB-to-RIB and RIB-to-FIB mismatches.
The dedicated OSPF Monitor and RIB pages were developed to support trou-
bleshooting. Anomaly data is queried automatically at regular intervals or
upon accessing the OSPF dashboard.

Status Partially implemented.
Validation Acceptance test with stakeholder
Reason
(if not completed)

Same reason as in FR3 evaluation.

46

3.1. Outcome Analysis Chapter 3. Conclusion

é Optional | FR5: BGP Route Anomaly Detection

Detail -
Status Not implemented
Comment BGP-related functionality was entirely excluded from the project scope, as dis-

cussed in FR1-2 evaluation.

Ë Optional | FR6: Adding new tabs to TUI

Detail The config file enables control over which pages of the frontend (frr-mad-tui)
are active. For instance, the shell page can be disabled while retaining full
functionality of the remaining pages. On startup, the TUI reads these settings
and renders only the activated pages.

Status Fully implemented
Validation Acceptance testing performed within the project team.
Discussion The current implementation supports page-level toggling via the config file.

A more granular approach allowing activation of individual sub tabs would
improve modularity and even satisfy user needs.

Ë Optional | FR7: OSPF Neighbor States Troubleshooting

Detail The frontend (frr-mad-tui) offers a clear, focused display of OSPF neighbors,
showing their states and adjacency details without clutter. Neighbor states
are also included in the Router LSA (Type 1 LSA) Transit Network table, helping
users determine if the local router, a direct neighbor, or another transit network
device is the Designated Router (DR).

Status Fully implemented
Validation Acceptance test with stakeholder
Discussion Enhancing the feature with state change detection and historical tracking

would further improve troubleshooting capabilities.

é Optional | FR8: BGP Session States Troubleshooting

Detail -
Status Not implemented
Comment BGP-related functionality was entirely excluded from the project scope, as dis-

cussed in FR1-2 evaluation.

47

3.1. Outcome Analysis Chapter 3. Conclusion

Ë Optional | FR9: FR9: TUI History

Detail All command inputs from the frontend (frr-mad-tui) client are logged to a ded-
icated log file. This applies to both the built-in vtysh shell and bash shell. Ad-
ditional metadata including timestamps and source identifiers indicate when
commands were executed and from which shell.

Status Partially implemented.
Validation Acceptance testing performed within the project team.
Reason
(if not completed)

Not fully completed due to time constraints.

Discussion The foundational infrastructure has been established. Interactions with fron-
tend (frr-mad-tui) are already logged with sufficient metadata for proper cat-
egorization. Only an additional feature for input history lookup remains to be
implemented.

Ë Optional | FR10: Issue Solving via TUI

Detail The Custom Shell enables users to execute vtysh commands directly within
the TUI, allowing manual resolution of routing anomalies. This feature sup-
ports issue-solving functionality, but must be used with care due to the con-
straint defined in NFR10, which requires the router configuration to remain
unchanged between frr-mad-tui startup and shutdown.

Status Partially implemented
Validation Acceptance testing performed within the project group.
Reason
(if not completed)

Not fully completed due to time constraints.

Discussion While the current shell feature enables manual issue resolution, a major im-
provement would be a preview mechanism that estimates the impact of a
configuration change. Such a feature could simulate the resulting OSPF state
based on current neighbors and received/sent LSAs. However, implement-
ing this feature would require significant development effort and depends on
other optional functionalities that exceed the time constraints of this thesis.

48

3.1. Outcome Analysis Chapter 3. Conclusion

é Optional | FR11: Guided Fixes for Misadvertised Routes

Detail This feature was planned as an extension of the previous FR (FR10). For fur-
ther details, see FR11.

Status Not implemented
Reason
(if not completed)

Not implemented due to time constraints and the unexpectedly large scope
of work.

Discussion This feature has the potential to provide significant support for the industry
partner’smission control operator. The steps outlined in Industry Partner Spe-
cific Problems could potentially be executed with a single action.

Ë Optional | FR12: Export Routing Anomaly Analysis Results

Detail The frontend (frr-mad-tui) implements the feature “Export Options,” accessi-
ble from every page that displays backend (frr-mad-analyzer) data. It allows
users to export any parsed data, such as OSPF metrics, routing tables, or
anomaly results directly to the clipboard or to a temporary file. The export
path can be configured via the application’s configuration file.

Status Fully implemented
Validation Acceptance testing with stakeholder
Discussion The only reliable way to transmit a “copy to clipboard” command from a

Docker container running on aVM (accessed via SSH)to the user’s local termi-
nal is through the OSC52 Protocol. For example, in iTerm2, this feature can be
enabled under Settings > General > Selection > Access: <allow>. This feature
includes enhancements beyond the original specification.

é Optional | FR13: Knowledge Database for Manual Fixes

Detail This featurewas proposed spontaneously during ameeting but remains unim-
plemented due to its broad scope and lack of detailed planning.

Status Not implemented
Reason
(if not completed)

Not implemented due to time constraints and the unexpectedly large scope
of work.

Discussion Such a featurewould help novice users by giving themaccess to insights from
more experienced community members.

49

3.1. Outcome Analysis Chapter 3. Conclusion

Ë MVP | FR14: FRRMon Replacement

Detail The system completely replaces FRRMon’s export functionality while adding
anomaly detection and interactive TUI capabilities. It maintains Prometheus
compatibility while providingmore comprehensive OSPF-specific checks than
the original tool.

Status Fully implemented
Validation Successfully validated by the stakeholder through testing on their production

systems, confirming all monitoring workflows work as expected.
Discussion The solution successfully replaced FRRMon while offering superior capabil-

ities. The main improvement is the interactive TUI interface for immediate
troubleshooting. While more resource-intensive than FRRMon, the benefits of
real-time analysis justify this trade-off. Future enhancements could include
direct Prometheus export.

Ë Optional | FR15: Dynamic Route Filtering in TUI

Detail The frr-mad-tui provides dynamic filtering capabilities across all pages, allow-
ing users to interactively filter routes or LSA contents during a session. The
Filter is one of the core usability features, significantly improving and readabil-
ity, especially in large-scale routing environments. Filters can be stored tem-
porarily and re-applied across views, aligning with the design goals of FR15.

Status Fully implemented
Validation Acceptance testing with stakeholder
Discussion This is already a highly practical featurewithin the FRR-MADapplication. How-

ever, its utility could be further improved by extending the filter to support reg-
ular expression (regex) searches.

50

3.1. Outcome Analysis Chapter 3. Conclusion

Ë Optional | FR16: Export Detected Anomalies

Detail The system fully implements anomaly export functionality to Prometheus,
covering all detected OSPF anomalies including overadvertised and unadver-
tised routes. Metrics are categorized by source (Router, External, NSSA Exter-
nal, RIB-to-FIB, and LSDB-to-RIB) and include detailed contextual information
about each anomaly. The exporter runs at a configurable interval with auto-
matic retry logic for failed updates.

Status Fully implemented
Validation Unit Tests, Acceptance Test with stakeholder
Discussion The implementation provides comprehensive anomaly reporting with detailed

labels for effective monitoring. The modular design allows for easy extension
to additional anomaly types. The retry mechanism ensures reliability during
temporary failures. Future enhancements could include additional diagnostic
metadata in the exported metrics.

3.1.2 Non-Functional Requirements Evaluation

Ë NFR1: Presentation of information dashboard extension

Displays OSPF and system information in a dashboard view.

Ë NFR2: Tab selection

Allows switching between TUI tabs via click or shortcut.

é NFR3: Presentation of information BGP extension

Extends the dashboard to display BGP information.

Ë NFR4: Correctness of frr_exporter metrics

Ensures the frr_exporter detects and exports anomalies within 120 seconds.

Ë NFR5-1: TUI read mode only

Ensures the TUI operates in read-only mode by default.

Ë NFR5-2: TUI read/write mode

Allows switching between read-only and read/write modes with visual cues.

Ë NFR6: Limited exported metrics

Ensures the frr_exporter only exports OSPF- and BGP-related metrics.

51

3.2. Future Directions Chapter 3. Conclusion

Ë NFR7: TUI User Experience

Ensures the TUI uses color schemes for warnings and informational messages.

Ë NFR8: TUI Resolution Support

Ensures the TUI displays correctly at 1280×720 resolution.

Ë NFR9: Lazy Loading of TUI

Ensures the TUI only loads content for the currently selected tab.

Ë NFR10: Integration of TUI in Dev/Prod Environments

Ensures the TUI can be easily integrated into Linux environments.

Ë NFR11: Guided or Automated Implementation of TUI

Provides a script to automate TUI installation in five commands.

Ë NFR12: Testing Environment for frr_exporter and TUI

Ensures a test environment is provided for both frr_exporter and the TUI.

3.2 Future Directions

The FRR-MAD project successfully delivered its core OSPF monitoring and anomaly detection capa-
bilities, but several areas remain for future development. Based on implementation challenges and
stakeholder feedback, we identify four key improvement vectors:

3.2.1 Protocol Support Extensions

• BGP integration: Implement monitoring and anomaly detection for BGP (FR1-2, FR5, FR8) to
create comprehensive routing visibility

• FRR version compatibility: Refactor the JSON parser to support newer FRR releases (post-8.5)
as identified in FR2 evaluation

3.2.2 Anomaly Detection Enhancements

• Guided remediation: Develop the planned guided fixes system (FR11) with configuration impact
simulation (FR10)

• LSA coverage expansion: Extend detection to Network (Type 2) and Summary (Type 3/4) LSAs
(FR3 evaluation)

52

3.2. Future Directions Chapter 3. Conclusion

• Interface generalization: Refactor interface parsing to correctly handle /32 point-to-point con-
figurations and avoid false positives caused by current industry-specific adjustments (Problem
2)

3.2.3 User Experience Improvements

• Intuitive shell tab: Enhance the TUI shell with command autocompletion, history navigation, and
syntax highlighting to improve interactive usage

• Advanced filtering: Implement regular expression support for dynamic filters (FR15)

3.2.4 Community and Operational Features

• Knowledge base: Implement the proposed troubleshooting database (FR13)

• Enhanced metrics: Expand Prometheus exports with diagnostic metadata (FR16)

This roadmap prioritizes features that wouldmost significantly enhance operational utility whilemain-
taining the system’s modular architecture. The proposed extensions address both immediate techni-
cal gaps and long-term usability requirements identified during the project.

53

Part III

Project Documentation

54

Chapter 4

Requirements

This chapter defines the system requirements, starting with Personas and Actors to identify key users
and interactions. A Use Case Diagram provides an overview, followed by detailed Functional Require-
ments for system capabilities. Finally, Non-Functional Requirements ensure the system meets stan-
dards for capability, reusability, security, aesthetic, serviceability and testability forming a solid foun-
dation for development.

4.1 Personas

Two personas with distinct and representative characteristics have been created to reflect typical
users of the application. These personas serve as a tool to better define and refine the application’s
functional and non-functional requirements.
The first persona represents a fictional employee at the company Open Systems. "Ronny Router" is
the primary persona for whom the application is designed. The second persona represents anyone
else interested in improving the monitoring of their FRRouting OSPF setup.

55

4.1. Personas Chapter 4. Requirements

Figure 4.1: Persona - Mission Control Operator

Figure 4.2: Persona - anyone else using our application

The persona cardswere designed using Figma, and the profile pictures generatedwithChatGPT[21],[10].

56

4.2. Actors Chapter 4. Requirements

4.2 Actors

• Mission Control Operator: An employee who uses frr-mad-tui to see and solve network anoma-
lies.

• System: The system collects data and is looking for network anomalies.

4.3 Use Case Diagram

This section shows the use case diagram, which illustrates the functional requirements from the per-
spective of the actors.

57

4.3. Use Case Diagram Chapter 4. Requirements

Figure 4.3: Use Case Diagram

58

4.4. Functional Requirements Chapter 4. Requirements

4.4 Functional Requirements

This section details the Functional Requirements of the system, with a focus on the Minimal Viable
Product (MVP). Each requirement ensures the implementation of essential Open Shortest Path First
(OSPF) monitoring and analysis functionalities for Free Range Routing (FRR). In addition to the MVP,
the system also includes further FRs, such as Border Gateway Protocol (BGP) monitoring and other
advanced features, which are planned for implementation as part of the complete system.

59

4.4. Functional Requirements Chapter 4. Requirements

FR Description

FR1-1: Export OSPF Routing Metrics Exports OSPF routing metrics to Prometheus.

FR1-2: Export BGP Routing Metrics (Op-
tional)

Exports BGP advertisement metrics to Prometheus.

FR2: Gather FRR Routing Information Collects OSPF and FRR routing data for real-time anal-
ysis.

FR3: OSPF Route Anomaly Detection by
FRR-MAD

Detects OSPF-specific anomalies like unadvertised or
overadvertised routes.

FR4: Query and Display Routing Anoma-
lies via FRR-MAD

Allows users to query and display routing anomalies in
the TUI.

FR5: BGP Route Anomaly Detection (Op-
tional)

Detects BGP-specific anomalies like unadvertised or
duplicated routes.

FR6: Adding new tabs to TUI (Optional) Customizability for the different tabs.

FR7: OSPF Neighbor States Trou-
bleshooting (Optional)

Displays detailed OSPF neighbor states and adjacency
information.

FR8: BGP Session States Troubleshoot-
ing (Optional)

Displays detailed BGP session states and peer infor-
mation.

FR9: Advanced TUI History (Optional) Saves a log file and provides a historical lookup for
past commands.

FR10: Issue Solving via TUI (Optional) Allows users to manually apply fixes for routing
anomalies.

FR11: Guided Fixes for Misadvertised
Routes (Optional)

Suggests and automatically applies fixes for detected
anomalies.

FR12: Export Routing Anomaly Analysis
Results (Optional)

Exports anomaly analysis results to files (e.g., CSV,
JSON).

FR13: Knowledge Database for Manual
Fixes (Optional)

Saves manual fixes to a Knowledge Database for fu-
ture reference.

FR14: FRRMon Replacement Provides equivalent anomaly detection capabilities as
FRRMon with added TUI interface.

FR15: Dynamic Route Filtering in TUI (Op-
tional)

Provides temporary filtering of displayed routes
through interactive TUI controls.

FR16: Export Detected Anomalies (Op-
tional)

Exports the detected anomalies to Prometheus.

Table 4.1: Summary of Functional Requirements

60

4.4. Functional Requirements Chapter 4. Requirements

4.4.1 FR1-1: Export OSPF Routing Metrics

Main Success Scenario (MVP)

• The system provides an exporter to exposeOSPF Routingmetrics via a Prometheus-compatible
endpoint.

• The exported OSPF data includes:

– Number of installed and advertised OSPF routes.

– Differentiated OSPF traffic statistics.

– OSPF LSA Types and counts.

• The data is formatted for seamless integration with existing monitoring systems.

Alternate Scenarios

• If exporting fails, the system retries the process and logs the failure.

4.4.2 FR1-2: Export BGP Routing Metrics (Optional)

Main Success Scenario (Optional Feature)

• The system provides an exporter to expose BGP Routing metrics via a Prometheus-compatible
endpoint.

• The exported BGP data includes:

– Number of installed and advertised BGP routes.

– Differentiated BGP traffic statistics.

• The data is formatted for seamless integration with existing monitoring systems.

Alternate Scenarios

• If exporting fails, the system retries the process and logs the failure.

4.4.3 FR2: Gather FRR Routing Information

Main Success Scenario (MVP)

• The system continuously retrieves routing information from FRR for real-time analysis.

• The collected data includes:

– Installed and advertised OSPF routes.

– OSPF-specific details such as Link State Advertisement (LSA) Type 1, 2, 3, and 5.

61

4.4. Functional Requirements Chapter 4. Requirements

– FRR System configuration and status.

Optional Features (Future Enhancements)

• Collection of BGP routes And protocol-specific attributes.

• Additional OSPF data such as detailed adjacency states.

Alternate Scenarios

• If FRR does not provide sufficient data, the system logs an error.

4.4.4 FR3: OSPF Route Anomaly Detection by FRR-MAD

Main Success Scenario (MVP)

• Upon entering the TUI it detects OSPF-specific anomalies Specifically looking at inconsisten-
cies:

– Unadvertised Route – Expected OSPF routes that are missing.

– Overadvertised Route – Routes that should not be advertised but are still announced.

– Wrongly Advertised Route – Incorrectly advertised prefixes (e.g., ‘10.39.0.0/27‘ instead of
‘10.39.0.0/17‘).

– Duplicated Route – The same OSPF route is advertised multiple times with different at-
tributes (e.g., different costs or from multiple LSAs).

Alternate Scenarios

• If no anomalies are detected, the system confirms OSPF route consistency.

• If an anomaly is detected but cannot be classified, the system logs it for manual review.

4.4.5 FR4: Query and Display Routing Anomalies via FRR-MAD

Main Success Scenario (MVP)

• The TUI allows users to query and display the following routing anomalies:

– Unadvertised Route: Expected routes that are missing.

– Overadvertised Route: Routes that should not be advertised but are still announced.

– Wrongly Advertised Route: Incorrectly advertised prefixes (e.g., ‘10.39.0.0/27‘ instead of
‘10.39.0.0/17‘).

– Duplicated Route: The same route advertised multiple times with conflicting attributes.

• The tool provides a clear and concise summary of detected anomalies, including:

62

4.4. Functional Requirements Chapter 4. Requirements

– Affected prefixes.

– Expected vs. actual route attributes.

– Protocol (OSPF).

Alternate Scenarios

• If no anomalies are detected, the tool confirms that the routing information is consistent.

• If data is missing or incomplete, the tool logs an error and suggests checking the prometheus
database or FRR service.

4.4.6 FR5: BGP Route Anomaly Detection (Optional)

Main Success Scenario (Optional Feature)

• The system detects BGP-specific anomalies Specifically looking at inconsistencies:

– Unadvertised Route – Expected BGP routes that are missing.

– Overadvertised Route – Routes that should not be advertised but are still announced.

– Wrongly Advertised Route – Incorrectly advertised prefixes (e.g., ‘10.39.0.0/27‘ instead of
‘10.39.0.0/17‘).

– Duplicated Route – The same route being advertised multiple times with conflicting at-
tributes.

Alternate Scenarios

• If BGP route inconsistencies are detected, the system alerts the user.

• If no anomalies are detected, the system confirms BGP route consistency.

4.4.7 FR6: Adding new tabs to TUI (Optional)

Main Success Scenario (Optional Feature)

• The TUI initially will provide basic functions for information gathering and troubleshooting.

• These Information can be accessed via tabs. The base tab is a dashboard, which will contain
information for troubleshooting purposes.

• On startup, the system reads the config file’s list of pages and their activated flags.

• The TUI renders only those pages marked as activated, with all navigation keys intact.

Alternate Scenarios

• Base tabs are immutable.

63

4.4. Functional Requirements Chapter 4. Requirements

• If all pages are deactivated, the TUI displays only the Dashboard (which always remains active).

• Any entries that aren’t valid TUI pages are ignored.

4.4.8 FR7: OSPF Neighbor States Troubleshooting (Optional)

Main Success Scenario (Optional Feature)

• The TUI provides detailed information about OSPF neighbor states and adjacency status this is
an extension from FR4.

• The tool displays:

– Current OSPF neighbor states (e.g., Full, 2-Way, Down).

– Adjacency details (e.g., neighbor IP, interface, state).

• The tool allows users to filter and search for specific OSPF neighbors or interfaces.

Alternate Scenarios

• If OSPFneighbor data is unavailable, the tool logs an error and suggests checking the prometheus
database or FRR configuration.

4.4.9 FR8: BGP Session States Troubleshooting (Optional)

Main Success Scenario (Optional Feature)

• The TUI provides detailed information about BGP session states and peer status this is an ex-
tension from FR5.

• The tool displays:

– Current BGP session states (e.g., Established, Idle, Active).

– Peer details (e.g., peer IP, AS number, uptime).

– Timestamps for session state changes.

• The tool allows users to filter and search for specific BGP peers or sessions.

Alternate Scenarios

• If BGP session data is unavailable, the tool logs an error and suggests checking the prometheus
database or FRR configuration.

64

4.4. Functional Requirements Chapter 4. Requirements

4.4.10 FR9: Advanced TUI History (Optional)

Main Success Scenario (Optional Feature)

• A log file is saved on the device.

• The TUI provides a historical lookup feature(configurable).

• The historical lookup is compromised of three parts.

– Issue History (e.g., misadvertised route)

– Command used History (e.g., show ip bgp neighbors)

– A combination of both items above.

Alternate Scenarios

• If the history is empty, show a notice, that no history is available.

4.4.11 FR10: Issue Solving via TUI (Optional)

Main Success Scenario (Optional Feature)

• The TUI allows users to manually apply fixes for detected routing anomalies.

– The TUI provides some kind of compatibility layer to execute vtysh commands.

• The TUI provides a before and after changes result to preview changes before applying them.

Alternate Scenarios

• If a fix cannot be applied (e.g., due to insufficient permissions), the tool logs an error and sug-
gests manual intervention.

4.4.12 FR11: Guided Fixes for Misadvertised Routes (Optional)

Main Success Scenario (Optional feature)

• This is an enhancement to fr10, building upon its functionality.

• If the system detects a misadvertised or missing route, it suggests possible corrective actions.

• The system provides a recommended command To resolve the issue, such as updating an ac-
cess list or modifying a route advertisement.

• If enabled by the user, the system automatically applies the fix (e.g., executing a corrective
command in frr) after prompting for confirmation.

Alternate Scenarios

• If an issue is detected but no fix is confidently determined, the system logs the anomaly and
suggests manual intervention.

65

4.4. Functional Requirements Chapter 4. Requirements

4.4.13 FR12: Export Routing Anomaly Analysis Results (Optional)

Main Success Scenario (Optional feature)

• The TUI allows users to export the results of the routing anomaly analysis to a file.

• The exported data includes:

– Detected anomalies (over-advertised, unadvertised, wrongly advertised, duplicated).

– Timestamps for when the analysis was performed.

Alternate Scenarios

• If the export fails, the tool logs an error and retries the process.

4.4.14 FR13: Knowledge Database for Manual Fixes

Main Success Scenario (Optional feature)

• The system provides a Knowledge Database where manual fixes applied by users are saved for
future reference.

• when a user applies amanual fix (e.g., modifying access lists, re-advertising routes), the system
prompts the user to save the fix to the Knowledge Database.

• The saved fix includes:

– A description of the issue (e.g., “unadvertised route for prefix 10.39.0.0/27”).

– The steps taken to resolve the issue (e.g., “modified access list to allow route advertise-
ment”).

– The protocol affected (e.g., OSPF, BGP).

– The timestamp of when the fix was applied.

• The Knowledge Database is searchable by keywords, protocol, or issue type.

• When a similar issue is detected, the systemsuggests relevant fixes from theKnowledgeDatabase
to the user.

• The format of the Knowledge Database is portable and deployable.

Optional Features (Future Enhancements)

• User ratings: Allow users to rate the effectiveness of fixes in the Knowledge Database.

• Automated fix suggestions: automatically apply fixes from the Knowledge Database if the issue
matches a known problem.

• Integration with external knowledge bases: allow the system to pull fixes from external knowl-
edge bases or forums.

66

4.4. Functional Requirements Chapter 4. Requirements

Alternate Scenarios

• If the user chooses not to save a fix, the system logs the fix locally but does not add it to the
Knowledge Database.

4.4.15 FR14: FRRMon Replacement

Main Success Scenario (MVP)

• The system provides the anomaly detection capabilities currently available in FRRMon.

• The TUI interface adds new functionality for interactive querying and display of routing anoma-
lies.

• Existing monitoring workflows using FRRMon can be fully replaced by this solution.

Alternate Scenarios

• If any FRRMon functionality is missing, the system logs an error.

4.4.16 FR15: Dynamic Content Filtering in TUI (Optional)

Main Success Scenario (Optional Feature)

• The TUI provides interactive controls for temporary filtering of anomaly andmonitoring content.

• Users can quickly toggle visibility of specific subnet sizes during a session.

• Dynamic filters don’t persist after TUI restart unless explicitly saved to configuration.

• The filter can be saved even when deactivated, allowing to easily apply it on another page.

Alternate Scenarios

• When no dynamic filters are active, the view follows static configuration settings.

• Filter changes are immediately reflected in the current view without requiring restart.

4.4.17 FR16: Export Detected Anomalies (Optional)

Main Success Scenario (Optional Feature)

• The system exports anomaly metrics to Prometheus at a configurable interval.

• The following anomaly types are exported:

– Overadvertised routes

– Unadvertised routes

67

4.4. Functional Requirements Chapter 4. Requirements

• Anomalies are categorized by source:

– RouterAnomaly

– ExternalAnomaly

– NssaExternalAnomaly

– RibToFib

– LsdbToRib

• Detailed anomaly information includes:

– Interface address

– Link state ID

– Prefix length

– Link type

– P-bit status

– Options

Alternate Scenarios

• When no anomalies are detected, all metrics are set to zero.

• If anomaly data is unavailable, the export is skipped.

• Failed updates are retried once before being logged as errors.

68

4.5. Non-Functional Requirements Chapter 4. Requirements

4.5 Non-Functional Requirements

Non-Functional Requirements (NFRs) are an integral part to proper project and the development of
lean and functional applications. Thus, we’ll be using the model for classifying software quality at-
tributes FURPS+[12].

NFR Description

NFR1: Presentation of Information Dash-
board Extension

Displays OSPF and system information in a dashboard
view.

NFR2: Tab Selection Allows switching between TUI tabs via click or short-
cut.

NFR3: Presentation of Information BGP
Extension

Extends the dashboard to display BGP information.

NFR4: Correctness of frr_exporter Met-
rics

Ensures the frr_exporter detects and exports anoma-
lies within 120 seconds.

NFR5-1: TUI Read Mode Only Ensures the TUI operates in read-onlymode by default.

NFR5-2: TUI Read/Write Mode Allows switching between read-only and read/write
modes with visual cues.

NFR6: Limited Exported Metrics Ensures the frr_exporter only exports OSPF and BGP-
related metrics.

NFR7: TUI User Experience Ensures the TUI uses color schemes for warnings and
information.

NFR8: TUI Resolution Support Ensures the TUI displays information correctly at
1280x720 resolution.

NFR9: Lazy Loading of TUI Ensures the TUI only loads content for the currently se-
lected tab.

NFR10: Integration of TUI in Dev/Prod
Environments

Ensures the TUI can be easily integrated into Linux en-
vironments.

NFR11: Guided or Automated Implemen-
tation of TUI

Provides a script to automate TUI installation in 5 com-
mands.

NFR12: Testing Environment for
frr_exporter and TUI

Provides a containerlab-based testing environment for
OSPF and BGP.

Table 4.2: Summary of Non-Functional Requirements

69

4.5. Non-Functional Requirements Chapter 4. Requirements

4.5.1 NFR1: Presentation of Information Dashboard Extension

Target Application: TUI
Category: Functionality→ Capability
Description: As a mission control operator, I want to display information described in fr3 in one dash-
board like view.
Acceptance Criteria: The dashboard is not bloated but still allows the mission control operator to get
an overview of the system, running service and current issues.
Verification Process:

• On systems with and without issues open the TUI, the dashboard is the greeting window.

• Base information as described in the description should be visible.

• Regular review with stakeholder.

Verification Period: At the end of sprint 6.

4.5.2 NFR2: Tab Selection

Target Application: TUI
Category: Functionality→ Capability
Description: As a mission control operator, I want to switch between the different tabs, for example
go from dashboard tab to OSPF tab, by either clicking on the tab or using a shortcut command.
Acceptance Criteria: Switching between tabs works by click or shortcut.
Verification Process:

• Open TUI and switch between tabs

Verification Period: At the end of sprint 3.

4.5.3 NFR3: Presentation of Information BGP Extension

Target Application: TUI
Category: Functionality→ Reusability
Description: As amission control operator, I want to display BGP information such as described in the
dashboard view, effectively extendingNFR1. all the information should fully fit in 1280x1440 resolution.
Acceptance Criteria: The dashboard is extended by BGP information. Scrolling works if resolution
doesn’t fit description.
Verification Process:

• The dashboard always contains BGP information, if they are configured.

• Regular review with stakeholder.

Verification Period: At the end of sprint 8.

70

subsec:fr1#i.n

4.5. Non-Functional Requirements Chapter 4. Requirements

4.5.4 NFR4: Correctness of frr_exporter Metrics

application: FRR Exporter
Category: Functionality→ Capabilities
Description: As a mission control operator, I want the frr_exporter To export anomalous behavior, as
described in fr1 At the latest after two polling, with a 60 second polling interval.
AcceptanceCriteria: At the latest after 120 seconds after a change in the routing occurs, the frr_exporter
should display these changes after two polling.
Verification Process:

• Manual review of exported information.

• Automated comparison of information for the same time frame and FRR Exporter target.

• Automated comparison of advertised routes to a specific router.

Verification Period: At the end of each monitoring development sprint.

4.5.5 NFR5-1: TUI Read Mode Only

application: TUI
Category: Functionality→ Security
Description: As a mission control operator, I want the TUI to have a read/write mode. Switching is
done by either clicking on a switch or using a shortcut command. There is a visual cue depending on
which mode I am in.
Acceptance Criteria: A toggle enables switching between read and read/write mode. The TUI should
be displayed differently so that read/write mode can be perceived and toggling should be possible by
clicking on a switch or using a shortcut command.
Verification Process:

• Click or execute the shortcut command - swapping between read/write mode.

• Switching between read and write mode should be visible by obvious TUI coloration changes.

• Config alteration of frr settings should be possible.

Verification Period: At the end of sprint 6.

4.5.6 NFR5-2: TUI Read/Write Mode

application: TUI
Category: Functionality→ Security
Description: As a mission control operator, I want the TUI to be primarily read only to prevent acci-
dental configuration changes. No changes can be applied in read only mode.
Acceptance Criteria: The TUI should display all necessary information for debugging purposes but

71

4.5. Non-Functional Requirements Chapter 4. Requirements

not allow any actions that could change the running configuration.
Verification Process:

• Take steps to not allow some kind of taint style vulnerabilities, considering that the TUI should
be extensible. - adding some kind of white or black list filtering.

• Trying to execute taint style commands in different fashions. (should be automated)

Verification Period: Security tests in every sprint, with detailed audit log reviews at the end of each
release cycle.

4.5.7 NFR6: Limited Exported Metrics

Target Application: FRR Exporter
Category: Functionality→ Security (Information Disclosure)
Description: Asamission control operator, I want the frr_exporter to only export OSPFandBGP related
information as described in fr2.
Acceptance Criteria: Only the necessary information, such as service status, announced routes, and
similar should be displayed.
Verification Process:

• Auditing of monitoring output.

• The exporter only exposes information that is truly necessary for monitoring of OSPF and BGP.

Verification Period: At the end of each monitoring development sprint.

4.5.8 NFR7: TUI User Experience

application: TUI
Category: Usability→ Aesthetics
Description: As a mission control operator I want the TUI to display warnings, configured information
and running information with different colors.
Acceptance Criteria: As described the different information groups will follow a coloring scheme. A
small legend will explain the scheme.
Verification Process:

• Open TUI, browse all tabs.

• Information coloration matches according to description.

Verification Period: At the end of sprint 6.

72

4.5. Non-Functional Requirements Chapter 4. Requirements

4.5.9 NFR8: TUI Resolution Support

application: TUI
Category: Usability→ Aesthetics
Description: As a mission control operator, I want the TUI to display information, such as warnings
and OSPF elements in groups on a resolution of at least 157 columns (width) and 38 lines (height).
Acceptance Criteria: On a terminal with resolution of 157 columns by 38 lines, the related information
are properly displayed in their groups.
Verification Process:

• Frames separate different information objects.

• Scrolling should be kept to a minimum.

• Resolution should be at least 157 columns by 38 lines.

Verification Period: At the end of sprint 4.

4.5.10 NFR9: Lazy Loading of TUI

Category: Performance→ Resource Consumption
Description: As an mission control operator, I want the TUI to only load currently selected tab con-
tents. No other tab-specific content should be run otherwise.
Acceptance Criteria: Starting the TUI only the selected tabs will execute actions interactive with the
system and processes reduction of system resource consumption.
Verification Process:

• Start TUI.

• Follow log output which commands are run.

• Switch tab and verify if tabs are lazy loaded.

Verification Period: At the end of project.

4.5.11 NFR10: Integration of TUI in Dev/Prod Environments

Target Application: TUI
Category: Supportability→ Serviceability
Description: As a gnu/Linux customdistromaintainer, I want to integrate the TUI intomy environment.
Adding the package shouldn’t be harder than copy the file to the system, make it executable and run
it.
Acceptance Criteria: An installation process or guide should be present.
Verification Process:

• Review directives on where to place the binary, config file and DSL files.

73

4.5. Non-Functional Requirements Chapter 4. Requirements

• Manually review if the TUI is working as intended.

Verification Period: At the end of each TUI development sprint.

4.5.12 NFR11: Guided or Automated Implementation of TUI

Target Application: TUI
Category: Supportability→ Reproducible Installation
Description: As a gnu/Linux custom distro maintainer, I want to be able to automate the process as
described in NFR7. The TUI should be up and running within 5 commands.
Acceptance Criteria: As described the application needs to be functional after at most 5 commands
have been executed. Acceptable results are only such if the application is fully functional.
Verification Process:

• Download the repository as a git repo or tarball

• Regardless either git has to be installed or the tarball needs to be extracted

• Execute the commands as described in the readme

• The TUI needs to be up and running with all base functions working.

Verification Period: Recurring thus at the end of every TUI development sprint.

4.5.13 NFR12: Testing Environment for frr_exporter and TUI

Category: Supportability→ Testability
Description: As a frr user, I want to be able to deploy the test environment using containerlab[9].
Executing the run.sh script in the containerlab folder should start the environment.
Acceptance Criteria: Executing the run.sh script inside the containerlab folder starts up the whole
containerlab and adds custom interface settings to the various PC nodes.
Verification Process:

• The testing environment can be deployed as described.

• The monitoring solution can be observed as described.

• OSPF is are running as described in the clab file.

Verification Period: At the end of development cycle for the MVP.

74

Chapter 5

Domain Analysis

To make sure our project doesn’t already exist, we mainly look at related work in this chapter. The
Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP) protocols are the primary focus.

5.1 Related Work

Our goal is to evaluate the different available solutions, compare them against our requirements and
find overlapping elements.

5.1.1 FRR Exporter

The frr_exporter project [29] is an open-source Prometheus exporter designed to collect metrics from
Free Range Routing (FRR). It provides basic statistics such as the number of routes, protocol states,
and up time per routing protocol instance.

While frr_exporter already covers the functional requirement FR2, it lacks more advanced capabil-
ities such as:

• OSPF information such as

– Advertised OSPF routes,

– Installed OSPF routes and,

– LSA types and counts (1,2,3,5).

• Running FRR config on the current instance. This includes OSPF and BGP.

For these reasons, we consider frr_exporter to be a suitable base for extension but insufficient as a
standalone solution.

75

5.1. Related Work Chapter 5. Domain Analysis

5.1.2 NetworkMonitor

The NetworkMonitor project [3] is another open-source monitoring tool designed for general network
monitoring, with a focus on OSPF and BGP. It provides visualizations and some historical data track-
ing but does not offer Free Range Routing-specific insights or anomaly detection tailored to FRR’s
operational behavior.

5.1.3 Quagga Exporter

Historically, monitoring solutions existed forQuagga, FRR’s predecessor. The projectquagga_exporter,
originally maintained at https://github.com/teran/Quagga_exporter, is no longer available. Its suc-
cessor, google-quagga [1], primarily focuses on integrating Quagga with Google’s internal monitoring
ecosystem. This approach, however, is tightly coupled toGoogle’s infrastructure and lacks the general-
purpose flexibility required for our environment. Furthermore, it does not address anomaly detection,
route alerting, or container-based deployment, making it unsuitable for direct reuse.

5.1.4 Batfish

The Batfish project [23] is a widely used open-source tool for static analysis of network configurations,
supporting major protocols such as OSPF and BGP. It allows operators to validate configurations by
detecting misadvertised or missing routes, identifying policy inconsistencies, and simulating various
network events. Although Batfish excels at offline analysis, it does not provide real-timemonitoring of
running environments. Consequently, Batfish serves as inspiration for anomaly detection techniques,
but it does not provide a directly applicable solution for our use case.

5.1.5 GoBGP CLI

TheGoBGP project [22] is an open-source BGP implementation providing a comprehensive command-
line interface (CLI) for analyzing BGP state and debugging route announcements. This tool demon-
strates how to build powerful route inspection capabilities within a CLI, which directly conforms to
the design of our own CLI-based troubleshooting tool. However, GoBGP is BGP-specific and does not
cover OSPF or FRR-specific functionality, meaning it does not meet all our requirements.

5.1.6 OpenBMP

The OpenBMP project [25] is a real-time BGP Monitoring Protocol (BMP) collector. It aggregates BGP
updates and state changes from routers and provides structured data suitable for integration with
monitoring system. While OpenBMP excels at collecting BGP data, it lacks direct support for OSPF,
real-time anomaly detection. It also requires BMPsupport on routers, which is not universally available
in all FRR environments.

76

https://github.com/teran/Quagga_exporter

5.1. Related Work Chapter 5. Domain Analysis

5.1.7 OSPF Topology Watcher

The OSPF Topology Watcher [30] monitors OSPF Link State Advertisements (LSAs) and builds a live
view of the OSPF topology. It can detect missing neighbors, unexpected topology changes, and pos-
sible routing inconsistencies. While this covers one of our key requirements, detection of routing
anomalies, it’s OSPF-only and lacks Prometheus compatibility. Nevertheless, its anomaly detection
approach provides useful techniques we can adopt.

5.1.8 Proprietary Network Monitoring Tools

Numerous commercial solutions provide comprehensive networkmonitoring, including tools such as:

• SolarWinds Network Performance Monitor

• PRTG Network Monitor

• ManageEngine OpManager

These tools already offer capabilities such as real-time route state visualization, historical data anal-
ysis, and alerting based on routing anomalies. However, all these solutions are closed-source and
expensive. Because of its closed-source nature, extensibility of this tool is limited. Consequently,
these tools serve as evidence that the need for an advanced, open source FRR monitoring and trou-
bleshooting solution is needed.

5.1.9 Nvidia Cumulus Linux Documentation

Nvidia’s Cumulus Linux documentation [18] provides valuable insight into how Free Range Routing
is monitored and managed in production-grade environments. This includes recommended systemd
integration, essential commands for health checks, and general operational guidelines. While this is
not a standalone tool, it directly influences our understanding of what health metrics are considered
critical in real-world FRR deployments.

5.1.10 Summary

After a thorough evaluation of the available tools, we concluded that none fully met our requirements
for real-time FRR monitoring and anomaly detection. While frr_exporter provided valuable insights,
such as Prometheus integration and command execution, it did not suite fully our need and needed
an heavy revision.

Notably, frr_exporter served as a key reference for its lightweight design and metrics collection ap-
proach, directly inspiring parts of our implementation. However, we opted to develop a custom solu-
tion to address gaps in advanced route analytics, multi-protocol support, and CLI-driven debugging.
Our tool synthesizes lessons from these projects while introducing novel features tailored to FRR’s
operational needs.

77

5.1. Related Work Chapter 5. Domain Analysis

5.1.11 Decisions on Tooling Implementation

After evaluating the available tools and solutions for our monitoring system, we have made the fol-
lowing key decisions:

GoBGP Exclusion

While GoBGP provides a robust BGP implementation and CLI tooling, we have decided not to use it in
our solution for several reasons:

• Primary Use Case Mismatch: GoBGP is primarily designed to run as a BGP server rather than
as a monitoring tool for existing FRR implementations.

• Protocol Focus: Our project requires comprehensive OSPF monitoring with BGP being an op-
tional component, while GoBGP focuses exclusively on BGP.

• IntegrationComplexity: ImplementingGoBGPalongside FRRwould introduce unnecessary com-
plexity for our specific testing needs.

Given that BGP monitoring is optional in our project and not part of the MVP requirements, we will
focus our development efforts on OSPFmonitoring first, keeping the architecture flexible for potential
BGP support in the future.

Batfish Implementation Strategy

Our evaluation of Batfish yielded the following conclusions:

• Post-MVP Feature: While Batfish provides excellent static configuration analysis capabilities,
we have determined it falls outside our MVP scope of live anomaly detection.

• Future Integration: We will keep Batfish in consideration for later implementation phases as it
offers valuable out-of-the-box configuration analysis features.

• Architecture Considerations: The system design will maintain compatibility with Batfish’s re-
quirements to facilitate easier integration when prioritized.

MVP Focus

The MVP implementation will concentrate on:

• Live anomaly detection in OSPF operations

• Basic BGP monitoring capabilities (as stretch goals)

• CLI-based troubleshooting

This focused approach ensures we deliver core functionality while maintaining a clear path for future
enhancements including Batfish integration and BGP support.

78

Chapter 6

Solution Strategy

This chapter talks about the reasoning which technologies made for this project. Usually architecture
and quality measures are also part of solution strategy. But because of their importance, they will be
detailed in dedicated chapters.

6.1 Technology & Technique

The technologies employed in this bachelor’s thesis are fairly standard. Because of the complexity of
this project, it was decided to stress the importance of proper technology decisions. Therefore this
section talks about the different environments, technologies and techniques employed. First, a brief
overview will be presented of what the next section discusses.

• Development environment and all it’s tool necessary to create it.

• Automated development steps to help test and build during development.

• Organizational and further miscellaneous decisions, to streamline communication and develop-
ment.

6.1.1 Development

The development environment talks about which languages, frameworks, libraries and tools are used.

79

6.1. Technology & Technique Chapter 6. Solution Strategy

Language Usage Reasoning
Go Main language to develop the project

results.
In accordance with the project
bachelor’s thesis assignment go was
the first choice. Additionally each
member already possessed considerate
expertise with go.

Shell Create different helper function for
deployment and building purposes.

The target system of the application
was meant to be a unixGNU Linux
system.

LATEX Utilized to write this bachelor’s thesis
paper.

Well-known and widely used in the
science community. Wide support and
many examples available.

Table 6.1: Programming Languages & Scripts

Language Usage Reasoning
bubbletea Used to create a complex Text-Based

User Interface (TUI).
A Framework[4] providing all necessary
tools and libraries to create an
interactive TUI. It has many available
examples and a very good
documentation.

lipglos Used to create a more complex TUI. A companion[5] to bubbletea, extending
its capabilities. It only makes sense to
use lipgloss to increase the capabilities
of the TUI

protobuf Both components, frr-mad-tui and
frr-mad-analyzer require similar
datatypes, thus a serializing structure
was chosen.

Protocolbuffer[11] is easy to use and
easy to implement. There are available
proto compilers to create go compatible
syntax. It also creates all the necessary
datatype handlers.

cobra The backend requires a stable
Command Line Interface (CLI).

Viper[27] is a well-known configuration
solution. It has wide support and was
recommended. CLI

viper Building and parsing application
configuration.

Same reasons apply as with cobra[28].

Table 6.2: Libraries & Frameworks

80

https://github.com/charmbracelet/bubbletea
https://github.com/charmbracelet/lipgloss
https://protobuf.dev/
https://cobra.dev/
https://github.com/spf13/viper

Chapter 7

Architecture

This chapter presents the system architecture, summarizing the System Context Diagram (C1)[24].
To present a clear overview of the general flow only C1 was choosen. It provides a clearer picture of
how amission control operator is expected to interact with the bachelor’s thesis solution. The second
part discusses design decisions regarding the architecture. It again provides only an overview and a
general direction of this bachelor’s thesis’ solution. This way, the initial design decisions won’t be
constraints during the development phase, as it allows for high flexibility.

7.1 System Context diagram

The System Context Diagram outlines the system’s interactions with external entities, providing a
high-level view of its scope and relationships.

81

7.1. System Context diagram Chapter 7. Architecture

Figure 7.1: C1 System Context

82

7.2. Strategic Design Chapter 7. Architecture

7.2 Strategic Design

This section defines the problem domain using a ubiquitous language that all parties can easily un-
derstand. A solid design provides flexibility, domain prioritization and clear communications with all
involved stakeholders.
Context Mapping describes the relationships of the different bounded contexts. It consists of the
core domain, described as Free Range Routing Anomaly Detection and Monitoring. The composite
bounded context is decomposed into two more granular bounded contexts[20].

Bounded Context Type Description
Free Range Routing
Anomaly Monitoring

System Allows the user to view issues related to OSPF and BGP
anomalies. The user can interact with the interface to get
further information or even solve anomalies.

Free Range Routing
Anomaly Detection

System Working in the backend as the core component of the
system. Receives runtime configuration from the
aggregation system and static configuration from the
host system, recognizing and reporting anomalies to the
monitoring system.

Free Range Routing
Runtime Configuration
Aggregation

Feature A small aggregator gathering Free Range Routing related
runtime configurations such as received routes from
neighbors and reports them to the Anomaly Detection
component.

Free Range Routing
Anomaly Exporter

Feature A Feature responsible for exporting detected Routing
Anomalies.

Table 7.1: Bounded Context: Free Range Routing Anomaly Detection and Monitoring

Bounded Context Type Description
Free Range Routing
Configuration Metrics
Exporter

System A system that exports Free Range Routing specific host
information.

Metrics Persistence System A system that aggregates information from metric
exporters.

Table 7.2: Supporting Bounded Context

7.2.1 Adjustment Considerations

During the development process the accumulated knowledge lead to adjustments to the contextmap.
Initially the core system required the two supporting context

• Free Range Routing Static Configuration Validation and

83

7.2. Strategic Design Chapter 7. Architecture

Legend: ACL - Anti-Corruption Layer, CNF - Conformist, OHS - Open Host Server, PL - Published Language, U -
Upstream, D - Downstream, Orange - New Feature Addition, Blue - Existing Systems (Unchanged), Green -

Existing Systems (To Be Modified)

Figure 7.2: Context Mapping Free Range Routing Anomaly Detection and Monitoring v1.0

84

7.2. Strategic Design Chapter 7. Architecture

• Free Range Routing Configuration Metrics Exporter.

The former proved impractical to implement, while the latter offered few benefits but imposed many
restrictions on the flexibility of this application. Thus it has been decided to remove both these con-
texts.

Legend: ACL - Anti-Corruption Layer, CNF - Conformist, OHS - Open Host Server, PL - Published Language, U -
Upstream, D - Downstream, Orange - New Feature Addition, Blue - Existing Systems (Unchanged), Green -

Existing Systems (To Be Modified)

Figure 7.3: Context Mapping Free Range Routing Anomaly Detection and Monitoring v1.1

The decision to modify the context map at an advanced stage of the project was made follow-
ing a comprehensive evaluation. Subsequent documentation delineates the benefits and drawbacks,
concluding that this architectural refinement directly supports the intended functionality of the final
solution.

Initially, the Validation system was intended as a supporting context. But the implementation of
said system proved to be impractical. It requires a seperate server to run and adds complexity to an

85

7.2. Strategic Design Chapter 7. Architecture

already complicated system. Thus, it has been decided to remove this context and integrate it directly
into the core system.

Free Range Routing Static Configuration Validation

As previously described, the complexity of this system proved inadequate, thus it has been removed.
The subsequent list provides considerations regarding this removal.

Advantages
• Less complexity as the solution runs stan-
dalone.

• Less complexity as the solution doesn’t re-
quire an additional data access layer be-
tween the core system and the Validation
system.

Disadvantages
• Implementation of a parsing system is re-
quired.

• Reduced functionality as the previous sys-
tem had a wide range of capabilities.

Free Range Routing Configuration Metrics Exporter

The Exporter still has its use, which iswhy the context has not been removed. However, the connection
to the core system has been removed. This allows for independent development of said system and
improvement in its functionality.

Advantages
• No reliance on the exporter for information
gathering.

• Focused development of the core system.
• Respecting a stakeholder concern to re-
duce label cardinality concerning the Ex-
porter system.

Disadvantages
• There are no notable disadvantages in this
context. The solution already encompassed
an extension to the Exporter system. This
decision only shifted the implementation
from the Exporter system to the core sys-
tem.

86

Chapter 8

Quality Measures

8.1 Documentation

This section outlines our documentation standards and procedures to ensure consistency and quality
across all project documentation artifacts.

8.1.1 LLM Usage

Throughout the documentation process, wemakemoderate use of AI languagemodels such as Chat-
GPT and Claude. These tools primarily assist in improving spelling and grammar. This approach en-
hances the overall text quality by improving coherence and cohesion while maintaining the technical
accuracy of the content[21],[7].

8.1.2 Documentation Principles

• All documentation is written in English.

• Abbreviations are permitted where contextually appropriate; otherwise, terms must be written
in full.

• Redundancy is minimized and only allowed for demonstration purposes. Example: Describing
a piece of code in two different chapters for comparative analysis.

• The main branch serves as the working branch, and all changes undergo compilation before
being pushed to the repository.

8.1.3 Member Participation

• Each project member is required to actively contribute to documentation.

• All members must adhere to the established technology stack and documentation rules.

87

8.1. Documentation Chapter 8. Quality Measures

8.1.4 Documentation Context

• The documentation comprises two distinct parts:

– Technical Report: Describes implemented features and development processes, including:

* General issue description

* Documentation breakdown

* Tools and terminology

* Present issues and solutions

* Results and outcomes

* Achieved requirements

* Implementation details

* Conclusion and future work

– Project Documentation: Outlines guidelines and project journey, covering:

* Requirements specification

* Domain analysis

* System architecture

* Quality measures

* All other miscellaneous elements

• All objects must be properly labeled, including:

– Titles of all kinds

– Images and figures

– Tables and data representations

– Code listings and references

8.1.5 Documentation Guidelines

• We utilize GitLab for source control management, shared documentation, and automated doc-
umentation building.

• Documentation is written in LATEX, maintaining plain-text source files that compile to PDF using
a LATEX interpreter.

• For spellchecking, we implement Aspell for basic verification, integrated into our GitLab pipeline:

– Mac: Aspell installation via Homebrew

– Windows: Binary download from official sources

• A Makefile ensures consistent building processes across all team members’ environments.

88

8.1. Documentation Chapter 8. Quality Measures

8.1.6 Document Guidelines

Having document guidelines helps us maintain document integrity when multiple parties work simul-
taneously. We push all updates directly to the main branch to ensure continuous visibility of modifi-
cations rather than confining changes to separate branches that only become visible near completion.

We implement basic commit rules for documentation, as overly complex guidelines could discour-
age frequent commits. These rules include a basic commit message structured by chapter name
followed by a description of the change.

To enhance consistency, titles will be capitalized, and quick Aspell spell checks will be conducted
when adding content. These practices improve the editing process andminimize verification and cor-
rection time.

As we use many acronyms and technical terms, we rely heavily on a glossary using the glossaries
package, which includes TOC and acronym functionality. Glossary entries follow a specified tem-
plate, and new entries must strictly adhere to the defined structure.

In summary, adhere to these guidelines:

• Titles must be capitalized.

• Use Aspell for manual error correction→ make interactive-spellcheck.

• Our documentation uses no git branches to reduce project complexity.

• For in-document and out-document references, use \hyperref and \href.

• Simple commit rule: <chapter name>: <description of change made>.

• Use \gls{} or \glspl{} for glossary references.

– \gls{} Print the term in lowercase.

– \Gls{} Print the term in uppercase.

– \glspl{} The plural form of the previous commands.

– \Glspl{} The plural form of the previous commands.

• \acr

– Use \acrfull{} the first time in a new chapter

– Use \acrshort{} the first time in a new section

• For code snippets, use the package lstlisting, see example

• For tables of all kinds, use xltabular, which provides good support for longer tables, captions,
and labeling without nesting.

89

8.1. Documentation Chapter 8. Quality Measures

• Use complete sentences in all itemizations and enumerations whenever possible. Apply stan-
dard punctuation rules.

– When an itemization serves as a straightforward list, the final entry must conclude with a
period (Example).

LATEX Documentation Examples

1 % Note the distinction between Technical and General

2 \newglossary[glg]{ general }{gls}{glo}{ General Terms} % General terms glossary

3 \newglossary[alg]{ technical }{als}{alo}{ Technical Concepts} % Technical terms

glossary

4

5 \newglossaryentry{openShortestPathFirst }{

6 type=general ,

7 name={Open Shortest Path First (OSPF)},

8 description ={A dynamic routing protocol based on link -state technology ,

utilizing Dijkstra 's algorithm to determine the shortest path. OSPF

is widely used within autonomous systems for efficient IP routing .}

9 }

10

11 \newglossaryentry{ospfNeighbors} % Entry for technical glossary

12 {

13 type=technical ,

14 name={OSPF Neighbors},

15 description ={OSPF routers form neighbor relationships with adjacent

routers on the same network segment.

16 Neighbors progress through several states (Down , Init , 2-Way , Full)

before achieving full adjacency}

17 }

18

19 % Acronym for NFR

20 \newacronym{NFR}{NFR}{Non -Functional Requirement}

Listing 8.1: Example of new glossary entry

1 \href{https :// foobar.com /}{\ underline{Name of Reference }}

2

3 \hyperref[in-document -label -reference]{Name of in-document Reference}

Listing 8.2: Example of hyperref and href

1 % Example 1: Table with header

2 \begin{xltabular }{\ textwidth }{|P{2cm}|R|}

3 \caption{Example xltabular table} \label{tab:example -table} \\

4 \endlastfoot

5 \hline

90

8.2. Development Chapter 8. Quality Measures

6 \rowcolor{headercolor}

7 \myheadercell{Header 1} & \myheadercell{Header 2} \\

8 \hline

9 \endhead

10 foo & bar \\ \hline

11 foo & bar \\ \hline

12 \end{xltabular}

13

14 % Example 2: Table without header and background colored rows

15 \rowcolors {0}{ rowcolor }{white}

16 \begin{longtable }{p{3cm} p{\ dimexpr\linewidth -3cm -2\ tabcolsep\relax}}

17 foo & bar \\

18 \end{longtable}

Listing 8.3: Example of xltabular

1 % Example 1: Itemization with complete sentences

2 \begin{itemize}

3 \item The documentation requires thorough spell correction.

4 \item Documentation guidelines have to be thorough , to uphold consistency.

5 \end{itemize}

6

7 % Example 2: Itemization as a simple listing with final period

8 The features needs to support

9 \begin{itemize}

10 \item e-mail verification

11 \item password and ,

12 \item multi factor authentication.

13 \end{itemize}

Listing 8.4: Example of itemization

1 \lstinputlisting[

2 language=go,

3 caption ={ Example of itemization},

4 label={lst:example -itemization}

5]{03_ project -documentation/resources /05_ quality -measures/code -snippet -example}

Listing 8.5: Code Snippet Example

8.2 Development

This section outlines the tools and techniques we use to develop, test, and maintain our code. The
TUI development represents a fresh start. To ensure future developers have an easy onboarding ex-
perience, we will deploy common and up-to-date tools and development techniques.

91

8.2. Development Chapter 8. Quality Measures

8.2.1 Code Guidelines

For new code development, we implement clean code guidelines as defined in Robert C. Martin’s book
"Clean Code"[16].

The structure of new files follows basic rules for vertical and horizontal formatting. To maintain read-
ability, we limit file length to approximately 200 lines. Similarly, to prevent horizontal scrolling and
improve code clarity, we target a maximum line length of 120 characters, with 80 characters being the
preferred length.

With existing implementations, we adhere to clean code principles where practical, with the option
of major rewrites. For new feature additions and modifications to existing code, we gradually align
with these standards while respecting the current architecture.

Beyond these general guidelines, we have specific standards for our Go-based project:

• Use Go modules for dependency management to ensure reproducible builds.

• Follow standard project layout with /cmd, /pkg, and /internal directories to organize code.

• Write thorough tests with the standard testing package, aiming for good coverage.

• Use meaningful error handling rather than ignoring errors or panicking.

• Implement consistent naming conventions camelCase for variables, PascalCase for exported
items.

• Keep functions small and focused on a single responsibility.

• Use linters like golangci-lint to catch common issues automatically.

• Apply consistent formatting with gofmt or go fmt.

• Avoid global variables as they make testing difficult and create hidden dependencies.

• Use interfaces appropriately to enable mocking for tests and increase flexibility.

• Implement proper context handling for cancelable operations.

• Use defer for cleanup operations like closing files and database connections.

8.2.2 Code Tools

• GoLand (IDE): A specialized IDE for Go development that integrates built-in debugging, code
refactoring, import completion, linting, and numerous other productivity features. As an IDE
specifically designed for developing high-quality Go code, it delivers an optimal development
experience.

• VSCode/Codium: Similar to GoLand, these are comprehensive IDEs that offer extensive tools to
support efficient coding workflows and development cycles.

92

https://www.jetbrains.com/go/
https://github.com/golang/vscode-go

8.3. Testing Chapter 8. Quality Measures

8.2.3 Code Review Guidelines

Once features are implemented, they need to be reviewed before merging:

• Feature implementations must be small, allowing for thorough code review and adherence to
coding guidelines.

• Features must pass the testing and linting tools mentioned in the frr-tui development branch.

• Code test coverage must meet the requirements.

• A manual review process and subsequent approval by a second developer is required.

Feedback will be communicated to the developer. Once all necessary changes have been applied and
the merge requirements are met, the feature is ready to be merged into the trunk.
Once merged, stakeholders can oversee progress and test the new features.

8.2.4 Environment

For faster and more inclusive development hot module reloading is implemented. This feature relies
on a containerlab environment that is included in the FRR-MAD development repository.

To assure compatibility with the containerlab environment, the Proxmox Virtual Environment (PVE)
is used as a remote development host. With modern IDEs like VSCode or Goland every developer is
able to remote develop on a development virtual machine.

8.3 Testing

This section presents our testing strategy to ensure the quality and performance of all implemented
FRs and NFRs .

8.3.1 Scope of Testing

Test Types

• Automated Regression Tests: Ensures that the application continues to perform as expected
after changes or enhancements.

• Cross-terminal and Cross-platform Tests: Ensures consistent operation across different termi-
nal emulators and operating systems.

Test Levels

We implement the testing levels presented in various software engineering courses:

• Unit Testing: Initial testing of individual code units in isolation.

93

https://github.com/ba2025-ysmprc/frr-tui

8.4. Quality Assurance Chapter 8. Quality Measures

• Integration Testing: Tests combinations of units for functionality, performance, and compati-
bility.

• Acceptance Testing: Validates complete application scenarios from an end-user perspective.

Test Environments

• Development Environment: Remote dev host environment utilized by developers during the im-
plementation process.

• GitHub Pipeline: Configured for running automated tests after each commit.

• Go Test Suite: Employed for sub-project wide automated and integrated testing.

Tools and Technologies

• Unit Testing: Utilizing Go’s built-in testing framework.

• Automated Testing: Integration with GitLab CI/CD pipeline.

Roles and Responsibilities

Key roles defined:

• Developers: Responsible for implementing unit and integration tests.

• Tester: Manages test environments and executes test plans.

• Architect Lead: Oversees the overall architecture of the testing environment, not necessarily the
implementation details.

Testing Schedule

We follow an agile development methodology with no fixed testing schedule. Feature implementa-
tions are structured as user stories within two-week Scrum sprints. No merges are permitted into the
main feature branch until the complete test suite executes successfully. Testing occurs continuously
with every push to the repository via GitHub Actions.
Many of the details in this subsection are based on the technical report [17].

8.4 Quality Assurance

This section outlines our quality assurance procedures to ensure consistent delivery of high-quality
software.

94

8.4. Quality Assurance Chapter 8. Quality Measures

8.4.1 Definition of Done

The Monitoring and Anomaly Detection Tool is considered done when the following criteria are met:

1. Functional Requirements Completed:

• The implementation of the MVP product has to be realized.

2. Non-Functional Requirements:

• Implementation of all feasible non-functional requirements (NFRs).

• NFRs are considered infeasible for implementation when their corresponding functional
requirements are not implemented.

3. Code Quality and Documentation:

• Code has been peer-reviewed, with no critical bugs or security vulnerabilities.

• Unit and integration tests cover all relevant aspects of the backend.

• Documentation is complete, including:

– Technical documentation for developers.

– User guide explaining how to install and use FRR-MAD.

4. Testing and Verification:

• All tests (unit, integration, and acceptance) have passed in both development and produc-
tion environments.

• Codecov is utilized to track test code coverage.

5. Stakeholder Sign-Off:

• Stakeholder has reviewed and approved the functionality of FRR-MAD.

• Final sign-off has been obtained from both the development team and project manager.

8.4.2 Version Control Guidelines

In our project, we use the Trunk-Based Development approach to version control management. This
strategy involves merging small, frequent updates directly into our main branch - the trunk. In our
case, the trunk is named staging, which is kept up to date and always in a working state. Features will
be introduced to the trunk once working. After intensive testing and a review process, the trunk will
be merged into main.

Branches should be created as follows: <branch prefix>/<jira ticket number>-<concise branch name>
The possible prefixes are:

• feature: used for developing new features

• fix: used to fix bugs in the code

95

8.4. Quality Assurance Chapter 8. Quality Measures

• experimental: used for new ideas or prototypes that should not be part of a release

For example:

• feature/FRR-1-Example-Task

Finally, we use semantic commit messages to add coherence when pushing changes. The format
looks like this: <type of change>: <description of change>

The possible types of change are:

• feat: a feature was added to the code or is in development

• fix: something in the code was fixed

• style: formatting, missing semicolons, etc. - no production code change

• refactor: refactoring production code, for example, renaming a variable

• test: adding missing tests, refactoring tests; no production code change

With commit hooks this is automatically enforced. Every user will execute this script to enable this
commit hook.

1 #!/bin/sh

2

3 mkdir -p .git/hooks

4

5 cat > .git/hooks/commit -msg << 'EOF'

6 #!/bin/sh

7

8 # Get the commit message from the first argument

9 commit_msg_file=$1

10 commit_msg=$(cat "$commit_msg_file")

11

12 # Define the allowed prefixes

13 valid_prefixes="feat:|fix:|style:| refactor :|test:"

14

15 # Check if the commit message starts with one of the allowed prefixes

16 if ! echo "$commit_msg" | grep -E "^($valid_prefixes)" > /dev/null

17 then

18 echo "Error: Commit message must start with one of the following prefixes:"

19 echo "Merge "

20 echo "feat: "

21 echo "fix: "

22 echo "style: "

23 echo "refactor: "

24 echo "test: "

25 exit 1

26 fi

96

8.4. Quality Assurance Chapter 8. Quality Measures

27 EOF

28

29 chmod +x .git/hooks/commit -msg

Listing 8.6: Commit hooks setup

97

Chapter 9

Risk Assessment and Mitigation

This section outlines the potential risks associated with the implementation of the monitoring tool
for Free Range Routing within a Proxmox-based virtualized environment. The risks are categorized
based on likelihood and impact, followed by corresponding mitigation strategies.

9.1 Version History

• v1.0 - Initial risk assessment

• v2.0 - Updated risk status based on operational experience

98

9.2. Risk Matrix Chapter 9. Risk Assessment and Mitigation

9.2 Risk Matrix

Very High

High

Normal

Low

Very Low

Pr
ob

ab
ili
ty

Very Low Low Medium High Very High

Impact

R1

R2

R3

R4

R5

R6

R7

R8

R1

R2

R3

R4

R5

R6

R7

R8

R1 R2 R3 R4

R5 R6 R7

R8

Explanation:

• High Impact - Directly affects core functionality or operational viability.

• Moderate Impact - Reduces efficiency, requires rework, but core functions remain operational.

• Low Impact - Minor inconvenience, cosmetic, or low-sensitivity issue.

Mapping to matrix:

• Rare - Highly unlikely to happen in the project’s context.

• Unlikely - Can occur but only under specific corner cases.

• Possible - Plausible during normal development/operations.

• Likely - Expected during the project lifecycle.

99

9.3. Risk Identification Chapter 9. Risk Assessment and Mitigation

Risk visualization:

• Gray circles - Pre-mitigation risk assessment showing initial risk positions (v1.0)

• Red circles - Post-mitigation risk assessment showing how risks have been reduced through
appropriate control measures (v1.1)

• Blue circles - Current operational status (v2.0)

9.3 Risk Identification

Risk ID Risk Description Likelihood Impact Conditions
R1 Non-reproducible bugs due

to inconsistencies in
virtualized network behavior

Possible High
• Virtual NIC driver variability
• Proxmox/KVM
virtualization
inconsistencies

• Packet processing
differences

R2 Performance overhead from
virtualized network stack
causing inaccurate
monitoring data

Unlikely High
• High CPU/Memory load
• Packet delays in virtual
switches

• Misconfigured resource
allocation

R3 Data corruption or loss in
virtual machine snapshots
affecting monitoring results

Unlikely Moderate
• Snapshot issues
• Unstable Proxmox storage
• Backup/restore conflicts

R4 Misconfigured virtual
network topology leading to
inaccurate routing data

Possible High
• FRR config errors
• VLAN misconfiguration
• Bridge errors

R5 Incompatibility between
monitoring tools
(Prometheus, Grafana) and
Proxmox environment

Unlikely Moderate
• Kernel restrictions
• Proxmox API limitations
• Insufficient logging
granularity

100

9.4. Risk Mitigation Chapter 9. Risk Assessment and Mitigation

Risk ID Risk Description Likelihood Impact Conditions
R6 Docker container instability

for FRR versions (e.g., FRR
8.5.4) leading to
unpredictable behavior

Possible High
• Version-specific bugs
• Networking stack
differences in Docker

• Missing capabilities in
container

R7 Deployment failure in
Containerlab due to
incorrect topology
definitions

Possible Moderate
• Wrong container mapping
• Invalid connection
definitions

• Missing Docker images

R8 Human error during
configuration and usage

Likely High
• Manual misconfiguration
• Insufficient training
• Wrong network
parameters

Table 9.1: Risk Identification Table

9.4 Risk Mitigation

Risk ID Mitigation Strategy New Risk Assessment
R1 Replace VM-based deployment with Containerlab

and Ansible, reducing dependency on snapshots
entirely.

Reduced likelihood to Un-
likely

R2 Allocate dedicated CPU/Memory resources for
Containerlab and apply Docker resource limits per
container.

Reduced impact to Rare

R3 Configuration fully automated using Ansible and
Containerlab, avoiding manual snapshot reliance.

Reduced likelihood to Rare

R4 Use pre-defined Containerlab topology files and
version-controlled configurations, avoiding manual
editing.

Reduced likelihood to Un-
likely

R5 Perform compatibility testing for monitoring stack
(Prometheus, Grafana) within Containerlab before
deployment.

Reduced likelihood to Rare

101

9.5. Risk Status Update (v2.0) Chapter 9. Risk Assessment and Mitigation

Risk ID Mitigation Strategy New Risk Assessment
R6 Pin Docker image versions to tested stable

versions (e.g., FRR 8.5.4) and add custom health
checks to detect container misbehavior.

Reduced likelihood to Un-
likely

R7 Validate topology files with CI pipeline before
deployment to Containerlab. Add schema
validation tools to catch errors.

Reduced likelihood to Rare

R8 Implement "least privilege" access model and
automate configuration using Ansible, reducing
manual steps.

Reduced likelihood to Un-
likely

Table 9.2: Risk Mitigation Strategies

9.5 Risk Status Update (v2.0)

Table 9.3: Risk Status Update

Risk ID Previous Status Current Status Change Reason
R1 Possible/High Rare/Medium No occurrences observed in production

VMs
R2 Unlikely/High Mitigated Sufficient resources confirmed in all

environments
R3 Unlikely/Moderate Mitigated No cases of data corruption detected
R4 Possible/High Rare/Medium Stable topology confirmed through testing
R5 Unlikely/Moderate Mitigated Full compatibility verified in testing
R6 Possible/High Mitigated No stability issues found in production
R7 Possible/Moderate Rare/Low Test coverage confirms mitigation not

required
R8 Likely/High Unlikely/Medium No change - monitoring remains in place

102

Chapter 10

Testing

10.1 Unit Tests

Developers are expected to write unit tests for their code, when appropriate and meaningful. The
developers are encouraged to use the principles of TDD, meaning to write the Unit Tests in advance
to ensure a form of "safety net" and immediate feedback whether the code’s behavior is unexpected.
This approach also ensures there is no regression, where new features break previously existing func-
tionality.
The use of Unit Tests will mainly occur in the backend side, since Unit Testing the frontend would not
make sense in this particular case. The frontend will be tested using Acceptance Tests.
Side note: Every developer is informed that using TDD isn’t a mandatory approach, but more of a sug-
gestion. If by chance the developer decides that writing Unit Tests in advance for a specific feature
would be disadvantageous, he is free to approach the development as he pleases.

10.2 Acceptance Testing

Acceptance testing is a type of software testing conducted to determine whether a systemmeets the
functional requirements. It serves as a final verification phase to ensure that the developed features
behave as expected from the user’s perspective. In our project, acceptance tests were performed
by our development team, the advisor and the stakeholder. This process helped confirm that the
implemented functionalities aligned with the agreed-upon requirements and that the system fulfilled
its intended purpose.

103

10.2. Acceptance Testing Chapter 10. Testing

10.2.1 Testing Plan

Who
• QA-Team: The QA-Team consist of all three students of this thesis.
• Advisor:
• Project Partner:

When The Acceptance test will be execute two times:
• After the MVP was developed (exclusively by the development team).
• Two weeks before the final submission.
This provides an opportunity to identify any misunderstandings or errors in the
MVP early on, allowing ample time for corrections. By conducting the second
acceptance test shortly before submission, we can still implement fixes for any
optional features.

What During the first acceptance test, we test the Functional Requirements (FRs)
included in the MVP
The Second run will cover all FRs we accomplished

Table 10.1: Acceptance Testing Plan

The detailed testing protocol is documented in the Appendix, which is crucial to ensure a standardized,
consistent testing process and the reproducibility of results.

104

Chapter 11

Project Plan

11.1 Resources

This section evaluates the available resources required for implementing the moniotring tool.

11.1.1 People

Name Skills
Mino Petrizzo Experienced in Web Developmen going in direction Cyber Security

Good Knowledge in PHP, Python, Golang
Roman Cvijanovic Strong background in system engineering with experience from the ISP sec-

tor
Skilled in containerization and infrastructure automation using Proxmox,
Docker, and Ansible

Yannick Staedeli Experienced in/with Network and Cloud Engineering / Telecommunication
Systems
Fundamental Knowledge of JavaScript, HTML, CSS, Java, SQL, Python,
Golang

Table 11.1: SCRUM Role distribution

11.1.2 Time

The Bachelor’s Thesis officially started on February 17, 2025. Within the first week, it is necessary
to hold a kickoff meeting with the advisor and eventually sign the official assignment. Although a
Normal Semester has 14 weeks, our spring term has 15 weeks plus 1 week spring break plus 1 week
extra time for the bachelor’s thesis. Therefore, the final submission deadline is set for June 13, 2025.

105

11.2. Roles Chapter 11. Project Plan

To estimate the time, we can invest into this project, we take the official time that is recommended for
12 ECTS Credits. That is 360 hours per person. This gives us a total of 1080 hours to meet all of our
deadlines, with 40 hours per person allocated for the extra week. If we distribute the remaining time
frame of 960 hours evenly across the 15 school weeks dedicated to the project, we will have 64 work
hours per week as a team. This is about 21.3 hours per person per week. Over the course of a week,
we will spend an average of 2.25 hours on fixed project-related meetings and 1.5 hour conducting and
preparing for the meeting with our advisor or other stakeholders. This leaves 17.55 hours for each of
us to work alone or in pairs on specific project-related tasks.

11.2 Roles

Accordingly, we have defined the following roles and divided them among ourselves. These roles are
the basic project management roles (SCRUM) and the typical software development roles necessary
for good, qualitative products.

11.2.1 SCRUM Role Distribution

Role Members Explanation
Product Owner Mino Petrizzo As the product owner, Mino Petrizzo will prioritize the di-

rection of the development of the product..
Scrum Master Roman Cvijanovic As the Scrum Master, Roman Cvijanovic will lead the

SprintMeetings, keep an overview of feature progress and
keep the team informed.

Developer Yannick Staedeli
Mino Petrizzo
Roman Cvijanovic

As developers, everyone is invested to develop a product
that satisfies current standards and the Stakeholder’s re-
quirements.

Table 11.2: SCRUM Role distribution

106

11.2. Roles Chapter 11. Project Plan

11.2.2 General Role Distribution

Role Members Explanation
Architect/Sys-
tem Design
Lead

Roman Cvijanovic A very important decision, as this pertains the backend
and frontend.

Tester Mino Petrizzo The tester is a clear-cut role. Their task is to regularly to
through our test scenarios of check them as fulfilled.

Customer OpenSystems The customer is the recipient of our solution. Their opin-
ion has the highest sway over our decisions.

Advisor Severin
Dellsperger

The advisor is our first contact and bridge to the customer
stakeholder. Additionally they will, as their role implies,
advise us in case of sub-optimal decisions.

Second Reader Olaf Zimmermann The second reader will hold no active position during the
project.

Project Leader Severin
Dellsperger

As the project Leader, Severin Dellsperger will be the tie
breaker if the team finds no common ground.

Table 11.3: General Role distribution

11.2.3 Roles scope

It is important to keep track of the scope each role has to cover, so there will not be the problem of
certain work being done double, and other work not being done at all. We have to clearly define, who
takes care of what.

Product Owner

The scope of a Product Owner (PO) typically involves various responsibilities and activities throughout
the product development life-cycle. Here are some key aspects of the scope of a Product Owner:

1. Defining product vision: The Product Owner is responsible for defining and communicating the
overall vision for the product.

2. Progress Checkups: The product owner will check on our progress and ensure we are steering
in the right direction.

Scrum Master

The scope of a Scrum Master involves various responsibilities and activities aimed at facilitating the
Scrum framework’s successful implementation and ensuring the team’s effectiveness. Here are key
aspects of the Scrum Master’s scope:

107

11.2. Roles Chapter 11. Project Plan

1. Facilitating Scrum Events: The Scrum Master facilitates various Scrum events, including Sprint
Planning, Daily Stand-ups, Sprint Reviews, and Sprint Retrospectives. They ensure that these
events are conducted effectively, time-boxed, and focused on achieving their objectives.

2. Removing Impediments: The Scrum Master identifies and removes impediments that hinder
the team’s progress. This involves addressing issues such as organizational barriers, resource
constraints, and conflicts within or outside the team.

3. Coaching and Mentoring: The Scrum Master coaches the Scrum Team and Product Owner on
Scrum principles, practices, and values. They help individuals and teams understand and adopt
Scrum roles, artifacts, and ceremonies.

4. Journal: The Scrum Master journals sprints and meetings in an open manner and shares every-
thing transparently.

Developer

In this project, the Developer role encompassesmultiple technical responsibilities. Instead of creating
separate roles for closely related tasks, we’ve consolidated these responsibilities under the Developer
role. This approach allows for flexible task distribution among team members throughout the project
lifecycle.

1. Code Development Primary responsibility involves implementing features, writing maintainable
code, creating comprehensive unit tests, and deploying completed functionality to the produc-
tion environment.

2. Testing Due to our streamlined team structure, developers perform testing duties during Pull
Request reviews at sprint boundaries. This includes integration testing, regression testing, and
verifying acceptance criteria.

3. Quality Assurance Developers are responsible for code quality enforcement through peer re-
views, static code analysis, and adherence to coding standards. This includes monitoring code
coverage, identifying technical debt, and ensuring documentation completeness.

Architect/System Design Lead

The Architect Lead/System Design Lead has the important task of design the cohesion of the test
system on which we will base our final product on. The complexity of our task requires the Architect
Lead/System Design Lead to have profound expertise. The tasks pertain

1. Test System Design: Which should replicate a real world scenario based on FRR.

2. Comprehensive System Architecture: No missing components and all the requirements re-
flected in the architecture.

3. Network Scheme: Comprehensive network scheme based on real world scenarios to test our
monitoring solution on.

108

11.3. Project Planning and Tracking Chapter 11. Project Plan

Tester

The Tester holds an equally important job to the Architect Lead/Systemd Design Lead. At the end of
the project our product should have a complete testing kit and still enable extensibility in this swift
changing environment. The Tester’s jobs include

1. Test Environment: Decide if a test environment fulfills the FRs and NFRs requirements.

2. Test Reviews: Be it either manual testing or automatic, all tests have to be tested, both bad
routes and happy routes.

3. Test Scope: Together with the Architect Lead/System Design Lead the Tester will design the
test scope, also based on FRs and NFRs.

Customer

The stakeholder is the main beneficiary of the solution of this project.

1. Conveying wishes: As the main beneficiary the stakeholder states the goals to be achieved
mostly in an abstract manner.

Advisor

The Advisor is our main contact point for the customer. While we will stay in touch with the customer
directly, our Advisor will be there to support us in case of any miscommunication happening.

Second Reader

The Second Reader’s task consists of proof-reading our solution documentation.

Project Leader

The Project Leader is responsible for overseeing the overall direction of the project and ensuring that
the team stays aligned with its goals. In cases of divergent opinions or conflicts during decision-
making, the Project Leader holds the final say to resolve disputes and maintain progress.

11.3 Project Planning and Tracking

Managing task allocation and progress tracking in complex projects like our bachelor’s thesis requires
robust project management infrastructure. Our team has implemented JIRA as our primary project
management tool. We selected JIRA based on its comprehensive feature set and the team’s existing
proficiency from prior development projects.
JIRA provides essential capabilities for our development workflow:

• Agile boards for sprint planning and execution

109

https://ba-org.atlassian.net/jira/software/projects/FRR/boards/2/timeline
https://ba-org.atlassian.net/jira/software/projects/FRR/boards/2/timeline

11.4. Time Tracking Chapter 11. Project Plan

• Task tracking with customizable workflows

• Integration with version control systems

• Story point estimation and velocity tracking

• Automated reporting and metrics collection

• Configurable issue types and fields

The team’s familiarity with JIRA’s interface and functionality enables immediate productive use with-
out additional training overhead. This standardization on JIRA streamlines our project management
processes and facilitates effective sprint management.

11.4 Time Tracking

To provide an accurate time tracking, we use an additional app in Jira called "Timetracker". Every task
for our project is documented within our issue management system Jira. This systematic approach
logically extends to time tracking, where we record the duration spent on each issue. We must also
account for the time spent in meetings, as it constitutes a significant portion of our project efforts.
To facilitate this, we create an issues in the Backlog for meetings. Every participant is then required
to log their time against this issue with a precise tag.

How to Tag the Time Logs
Ultimately, we aim to provide a precise overview of the hours invested in our project. This schema
clearly illustrates how we tag our time logs. Each time log must contain one tag from each color.
If we follow that principle, we can generate a chart based on a row of tags. Each row of tags in the
scheme represents the total time spent on the project.

Figure 11.1: Time Tracking Tags

Tag Description
Admin: General activities related to our bachelor’s thesis, including personal reports and coordination
tasks not directly tied to the technical project work, but still within the academic scope.
documentation (doc): Writing technical documentation, usage guides, and final report sections re-
lated to the project.
Planning: Sprint planning sessions, long-termproject planning, workload estimation, andother prepara-
tory tasks.

110

11.5. Project Schedule Chapter 11. Project Plan

SCRUM:Agile ceremonies including daily stand-upmeetings, sprint retrospectives, and sprint reviews.
Stakeholder: Meetings and other forms of communication with our industry partner, Open Systems,
including requirement gathering and feedback sessions.
Frontend: Implementation of the terminal-based user interface (TUI), focusing on usability features
such as text highlighting and interactive command-line output.
Backend: Core logic and data handling functionalities of the FRR-MADTool, including OSPF data pars-
ing, metrics processing, and integration with Prometheus.
architecture (arch): Tasks involving network lab setup, infrastructure design, architectural decision-
making, and visual scheme creation.
DevOps: Activities related to CI/CD pipelines, automated testing, infrastructure-as-code, and deploy-
ment workflows for the project.
Presentation: Preparation of slides, speaker notes, and practice sessions for the mitderm and final
project presentation.

Time Tracking Reports
The detailed time-tracking report is in the appendix, alongwith step-by-step instructions for generating
your own reports in our time-tracking platform.

11.5 Project Schedule

To facilitate agile execution, the project is broken down into nine sprints, each focusing on incremental
progress. Key milestones are strategically placed throughout the schedule to assess project status
and ensure alignment with goals.

A visual timeline (see diagram) illustrates the relationship between phases, sprints, andmilestone
checkpoints, ensuring transparency in tracking development progress. Notably, milestone dates serve
as key reassessment points, allowing for timeline adjustments if necessary.

Our plan is to continue development during spring break, which either reduces theweeklyworkload
(20 hours per week instead of 21.3 over a 15-week schedule) or provides the opportunity to implement
optional features. All additional calculations will be based on 20 hours per week per person, but the
actual time dedicated to the project may vary.

111

11.5. Project Schedule Chapter 11. Project Plan

Figure 11.2: Schedule - Phases, Iterations and Milestones

11.5.1 Phases

The project can be divided into four distinct phases: inception, elaboration, construction, and transi-
tion, which align with the long-term planning principles of RUP.

Inception

In the inception phase, we shape an approximate vision for the project, focusing on the needs of our
industry partner Open Systems. Therefore, a kickoff meeting with all stakeholders is necessary and
will be held in week 01. During this stage, we define the scope by evaluating various features for
the monitoring system based on the inputs from Julian Klaiber. This allows us to develop an initial
understanding of the project’s intricacies, accompanied by rough estimates for efforts to gauge the
anticipated workload.

Elaboration

The Elaboration Phase focuses on refining the project scope, validating the system architecture, and
assessing feasibility before full development begins. A sophisticated domain analysis is conducted to
evaluate existing OSPF monitoring solutions and determine whether developing a new tool provides
unique value. During this phase, we finalize functional and non-functional requirements, ensuring
alignment with the industry partner’s needs. The system architecture is defined, including data collec-
tion mechanisms and the TUI design, while key risks such as performance bottlenecks and hardware
compatibility are assessed and mitigated through early testing. The development environment is set

112

11.5. Project Schedule Chapter 11. Project Plan

up, including selecting programming languages, network simulation tools, and version control sys-
tems. A prototype is then developed to test core functionalities such as real-time OSPF state retrieval
and visualization. Finally, the project plan and milestones are refined based on insights gained from
initial testing, ensuring a solid foundation for the next development phase.

Construction

The Construction Phase is centered around the implementation of the FRR-MAD Tool based on the
previously defined requirements. After finalizing the application architecture, the focus shifted to suc-
cessfully completing the Minimal Viable Product (MVP). This includes implementing the core func-
tional requirements such as exporting OSPF routing metrics to Prometheus (FR1-1), collecting real-
time routing data from FRR (FR2), and enabling OSPF-specific anomaly detection within the terminal
user interface (FR3 and FR4). Additionally, the MVP supports querying and displaying routing anoma-
lies through the TUI (FR4), offering users a clear and interactive overview of network irregularities.
Development proceeds in short iterations with continuous integration and regular validations against
the defined requirements. Unit testing and manual inspections ensure functional correctness, while
frequent reviews with our industry partner support alignment with practical use cases. By the end of
this phase, the FRR-MAD Tool reaches a stable MVP state and additional optional features, ready for
evaluation and deployment in the final project stages.

Transition

The Transition Phasemarks the final stage of the project, focusing on preparing the FRR-MAD Tool for
production use and deployment. During this phase, we collaborated closely with the stakeholder to
conduct thorough testing, address any remaining issues, and ensure that all core functionalities met
the defined expectations. Particular attention was given to identifying and resolving bugs, optimizing
performance, and validating the system in a realistic operational environment.
In parallel, we implemented several optional features that were not part of the initial MVP but added
practical value for end users. These enhancements were prioritized based on stakeholder feedback
and technical feasibility. The deployment process was accompanied by final documentation, inter-
nal handover preparations, and knowledge transfer to ensure long-termmaintainability of the system.
Overall, the Transition Phase ensured a smooth and stable rollout of the tool, aligning technical out-
comes with the project’s strategic goals.

11.5.2 Iterations

The iteration focuses on the short-term planning of the project. For it, we will use the SCRUMmethod-
ology. Furthermore, the 2-week sprint cycle and regular meetings will expedite risk assessment, en-
abling prompt re-planning if necessary. Sprint Zero is deliberately limited to one week, as it primarily
involves administrative tasks such as project setup and initial planning. This approach ensures that
the foundational aspects of the project are established as quickly as possible, allowing us to begin
development without delay.

113

11.6. Processes and Meetings Chapter 11. Project Plan

11.5.3 Milestones

Finally, themilestones for our project will be defined based on high-level objectives, not specific epics.
We try to follow this principle due to the high demand of agility in this project, and it enables reassess-
ment and course correction. Given that these milestones have fixed dates, they are well-suited to
serve as key points in our project timeline and will be utilized accordingly. Since Jira does not natively
support milestones, we use the Releases feature to track them. This approach integrates well with
our project tracking, as milestones are clearly represented in JIRA’s timeline overview.

11.6 Processes and Meetings

This section aims to specify in more detail how we utilize the SCRUM methodology. Furthermore, it
presents a plan outlining when each meeting will be held.

11.6.1 Processes

As we have already clarified the reason for using SCRUM+ in section Collaboration Framework, we
now aim to define exactly how and what we will implement in our project. We want to use Scrum’s
flexible, iterative approach to organizing our tasks and prioritizing our work. We intend to apply the
core principles of Scrum, including its defined roles and key artifacts such as the Product Backlog,
Sprint Backlog, and Increment. In addition, we plan to incorporate selected Scrum events into our
workflow.

Customizing to our own Needs

Based on our previous project experience, we recognize the value of daily and weekly Scrum meet-
ings. While the standard practice is to hold a 15-minute daily meeting, we have adjusted this to three
meetings per week to better fit our 20-hour workweek. This approach helps keep our team aligned
and ensures steady progress. At the beginning of each sprint, we conduct Sprint Planning immedi-
ately after completing the Retrospective and Sprint Review of the previous sprint. By combining these
meetings into a single session, we aim to make them more efficient, reduce overhead, and maximize
our limited time.
For coordination, quick updates, and questions, we have created a Teams channel dedicated to de-
velopers and another channel that includes both developers and the advisor. Communication with
stakeholders will take place through a dedicated Slack channel.

11.6.2 Meetings

We decided to create a plan for all of our meetings. The plan starts in Week 2 because we decided to
shorten Sprint Zero (project setup) to one week.

114

https://ba-org.atlassian.net/projects/FRR?selectedItem=com.atlassian.jira.jira-projects-plugin%3Arelease-page
https://ba-org.atlassian.net/jira/software/projects/FRR/boards/2/timeline

11.6. Processes and Meetings Chapter 11. Project Plan

Figure 11.3: Meetings Plan

Sprint Planning

Who: the entire team
When: at the start of each Sprint cycle
What: In the Sprint Planning we will define a sprint goal, select items from the product backlog, and
assign story points to them. We will break up each one of these stories into smaller sub-tasks. This
means that a separate Sprint Planning 2 meeting will not be held. This meeting will be prepared and
led by the product owner.
How long: approximately 90 minutes

Project Elaboration

Who: the entire team
When: every Monday
What: In this meeting, all team members present their work from the past week. During this meeting,
team members have the opportunity to provide more detailed explanations and share important in-
formation relevant to the project’s progress and objectives.
How long: approximately 30 minutes

115

11.6. Processes and Meetings Chapter 11. Project Plan

Daily SCRUM

Who: the entire team (if possible)
When: two times a week
What: In thismeeting, we present small progress updates on our tasks, and it serves as an opportunity
to ask for help if needed. This meeting does not require the participation of the entire team, and in
some cases, up to three such meetings may be held in a week.
How long: approximately 15 minutes

Retrospective

Who: the entire team
When: at the end of a sprint
What: In this meeting, the team reflects on the previous sprint, discussing what went well, what could
be improved, and any obstacles faced. The goal is to identify actionable improvements to enhance
team performance in future sprints.
How long: approximately 15 minutes

Sprint Review

Who: all involved members (dev team, advisor, Open Systems representative)
When: after a completed Sprint
What: In this meeting, the team presents the completed work to stakeholders, demonstrating the
implemented features and gathering feedback. It serves as an opportunity to assess progress, adjust
priorities, and align the product with stakeholder expectations.
How long: approximately 20 minutes

Advisory Meeting

Who: the entire team and the advisor
When: every Thursday
What: In this meeting, the team presents and discusses the project’s progress with the advisor. The
goal is to receive feedback on the work completed and project planning to ensure alignment and
continuous improvement.
How long: approximately 60 minutes

11.6.3 Estimated Time plan per Week

If we strictly follow our plan, this is how one person’s work should be distributed over a week.

116

11.7. Project Management and Development Workflow Chapter 11. Project Plan

Figure 11.4: Work per Person per Week

11.7 Project Management and Development Workflow

11.7.1 Jira

Purpose: Jira is used for project planning, task management, and team collaboration.
Usage:

• Configured with custom flags to fit our project management needs.

• Used to create and track tasks for team members.

• Manages development timelines and prioritization of issues.

117

Bibliography

[1] Anarkiwi. google-quagga: Google fork of quagga routing software. https://github.com/

anarkiwi/google-quagga, 2024. Last accessed: 2024-03-02.

[2] arc42 Team. arc42: Effective, lean and pragmatic architecture documentation and communica-
tion. https://arc42.org/documentation/. Template and methodology for software architecture
documentation with 12 standardized sections; accessed June 12, 2025.

[3] BaiMeow. Networkmonitor. https://github.com/BaiMeow/NetworkMonitor, 2024. Last ac-
cessed: 2024-03-02.

[4] charmbracelet/bubbletea. Bubble tea: A powerful little tui framework. https://github.com/

charmbracelet/bubbletea. Go framework for building terminal applications based on The Elm
Architecture; accessed June 12, 2025.

[5] charmbracelet/lipgloss. Lip gloss: Style definitions for nice terminal layouts. https://github.

com/charmbracelet/lipgloss. Go library for styling terminal applications with CSS-like syntax,
tables, lists, and trees; accessed June 12, 2025.

[6] Cisco Systems. Open shortest path first (ospf) administrative distance. https://www.cisco.

com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/15986-admin-distance.html#

toc-hId--1692530466. Explains AD values such as 110 for OSPF; updated Sept 27, 2024;
accessed June 10, 2025.

[7] Claude. Claude: Conversational ai model and image generator. https://claude.ai/, 2024. Last
accessed: 2024-12-19.

[8] Practical DevSecOps. Threat modeling vs risk assessment: Understanding the difference.
https://www.practical-devsecops.com/threat-modeling-vs-risk-assessment/, 2024. Last
accessed: 2024-11-18.

118

https://github.com/anarkiwi/google-quagga
https://github.com/anarkiwi/google-quagga
https://arc42.org/documentation/
https://github.com/BaiMeow/NetworkMonitor
https://github.com/charmbracelet/bubbletea
https://github.com/charmbracelet/bubbletea
https://github.com/charmbracelet/lipgloss
https://github.com/charmbracelet/lipgloss
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/15986-admin-distance.html#toc-hId--1692530466
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/15986-admin-distance.html#toc-hId--1692530466
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/15986-admin-distance.html#toc-hId--1692530466
https://claude.ai/
https://www.practical-devsecops.com/threat-modeling-vs-risk-assessment/

Bibliography Bibliography

[9] Roman Dodin and Srlabs Team. Containerlab: Container-based networking lab. https://

containerlab.dev/, 2024. Active open-source project (latest release: v0.68.0).

[10] Inc. Figma. Figma: Collaborative interface design tool. https://www.figma.com, 2024. Last
accessed: 2024-11-25.

[11] Google Protocol Buffers Team. Protocol buffer basics: Go. https://protobuf.dev/

getting-started/gotutorial/. Tutorial for using Protocol Buffers with Go, covering message
definition, compilation, and API usage; accessed June 12, 2025.

[12] Craig Larman. Applying evolutionary requirements. https://www.craiglarman.com/wiki/

downloads/applying_uml/larman-ch5-applying-evolutionary-requirements.pdf, 2002. Ac-
cessed: 2025-03-12.

[13] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
and Iterative Development (3rd Edition). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[14] JGraph Ltd and draw.io AG. diagrams.net (formerly draw.io): Online drawing tool. https://app.
diagrams.net/, 2024. Last accessed: 2024-12-19.

[15] M. Mitchell, J. Dickinson, and G. Huston. Rfc 6996: Autonomous system (as) reservation for
private use. https://datatracker.ietf.org/doc/rfc6996, 2013.

[16] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Robert C. Martin
Series. Prentice Hall, 2009.

[17] Livio Mauchle, Simon Hefti, Martyn Foreman, Yannick Städeli, and Luca Köppel. Swiss-
cardgames: Final documentation. Technical report, School of Computer Science, OST Eastern
Switzerland University of Applied Sciences, 2024.

[18] Nvidia Networking. Cumulus linux 4.1 - frrouting overview. https://docs.nvidia.com/

networking-ethernet-software/cumulus-linux-41/Layer-3/FRRouting-Overview/, 2024. Last
accessed: 2024-03-02.

[19] Juniper Networks. Juniper, configure ospf route control. https://www.

juniper.net/documentation/us/en/software/junos/ospf/topics/topic-map/

configuring-ospf-route-control.html. Last accessed: 2025-05-30.

[20] Olaf Zimmermann. Domain-driven design. Lecture: Application Architecture (AppArch), OST
- Eastern Switzerland University of Applied Sciences. Course materials available at https://
ozimmer.ch/; accessed June 12, 2025.

[21] OpenAI. Chatgpt: Conversational ai model and image generator. https://openai.com/chatgpt,
2024. Last accessed: 2024-12-19.

[22] OSRG. Gobgp: Open source bgp implementation. https://github.com/osrg/gobgp, 2024. Last
accessed: 2024-03-02.

119

https://containerlab.dev/
https://containerlab.dev/
https://www.figma.com
https://protobuf.dev/getting-started/gotutorial/
https://protobuf.dev/getting-started/gotutorial/
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch5-applying-evolutionary-requirements.pdf
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch5-applying-evolutionary-requirements.pdf
https://app.diagrams.net/
https://app.diagrams.net/
https://datatracker.ietf.org/doc/rfc6996
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-41/Layer-3/FRRouting-Overview/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-41/Layer-3/FRRouting-Overview/
https://www.juniper.net/documentation/us/en/software/junos/ospf/topics/topic-map/configuring-ospf-route-control.html
https://www.juniper.net/documentation/us/en/software/junos/ospf/topics/topic-map/configuring-ospf-route-control.html
https://www.juniper.net/documentation/us/en/software/junos/ospf/topics/topic-map/configuring-ospf-route-control.html
https://ozimmer.ch/
https://ozimmer.ch/
https://openai.com/chatgpt
https://github.com/osrg/gobgp

Bibliography Bibliography

[23] Batfish Project. Batfish: Network configuration analysis tool. https://github.com/batfish/

batfish, 2024. Last accessed: 2024-03-02.

[24] Simon Brown. The c4 model for visualising software architecture. https://c4model.com/. Hier-
archical approach to software architecture diagramming with context, containers, components,
and code levels; accessed June 12, 2025.

[25] SNAS. Openbmp: Bgp monitoring protocol collector. https://github.com/SNAS/openbmp, 2024.
Last accessed: 2024-03-02.

[26] SoftwareTestingHelp. Top 15 network monitoring tools. https://www.softwaretestinghelp.

com/network-monitoring-tools/, 2024. Last accessed: 2024-03-02.

[27] spf13/cobra. Cobra: A commander for modern go cli interactions. https://github.com/spf13/
cobra. Go library for creating powerful modern CLI applications with subcommands, flags, and
auto-completion; accessed June 12, 2025.

[28] spf13/viper. Viper: Go configuration with fangs. https://github.com/spf13/viper. Go con-
figuration library supporting JSON, TOML, YAML, HCL, INI, envfile and Java properties formats;
accessed June 12, 2025.

[29] Tynany. frr_exporter: Prometheus exporter for frrouting. https://github.com/tynany/frr_

exporter, 2024. Last accessed: 2024-03-02.

[30] Vadims06. Ospf topology watcher. https://github.com/Vadims06/ospfwatcher, 2024. Last
accessed: 2024-03-02.

120

https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://c4model.com/
https://github.com/SNAS/openbmp
https://www.softwaretestinghelp.com/network-monitoring-tools/
https://www.softwaretestinghelp.com/network-monitoring-tools/
https://github.com/spf13/cobra
https://github.com/spf13/cobra
https://github.com/spf13/viper
https://github.com/tynany/frr_exporter
https://github.com/tynany/frr_exporter
https://github.com/Vadims06/ospfwatcher

List of Figures

1 Simplified Architecture . iii
2 frr-mad-tui Anomaly Dashboard . iv

1.1 Design of frr-mad-analyzer Components . 8
1.2 frr-mad-tui OSPF Dashboard . 9

2.1 frr-mad-tui Info Page . 14
2.2 frr-mad-tui Export Page . 18
2.3 frr-mad-tui Anomaly Dashboard . 21
2.4 frr-mad-tui Filter Function . 22
2.5 frr-mad-tui vtysh input . 23
2.6 Development and Test Environment Overview . 24
2.7 High Level Abstraction Architecture . 25
2.8 Frontend to FRR Communication . 26
2.9 Frontend to Backend Communication . 27
2.10 Backend internal communication . 28
2.11 Backend - Prometheus Communication . 29
2.12 Workflow Flowchart . 37
2.13 Elaboration Result: Initial Architecture . 38
2.14 Development Phase: Adjusted Architecture . 39

4.1 Persona - Mission Control Operator . 56
4.2 Persona - anyone else using our application . 56
4.3 Use Case Diagram . 58

7.1 C1 System Context . 82
7.2 Context Mapping Free Range Routing Anomaly Detection and Monitoring v1.0 84
7.3 Context Mapping Free Range Routing Anomaly Detection and Monitoring v1.1 85

121

List of Figures List of Figures

11.1 Time Tracking Tags . 110
11.2 Schedule - Phases, Iterations and Milestones . 112
11.3 Meetings Plan . 115
11.4 Work per Person per Week . 117

C.1 Containerlab - Network Concept . 135

122

List of Tables

1.1 Routing Issues between Static Config and LSDB . 6

2.1 Supported FRR Data Types . 12
2.2 Purpose of each frr-mad-tui Page . 14
2.3 Comparison of isState and shouldState . 19
2.4 Examples of Route Advertisement Issues . 19
2.5 Comparison of Route Metrics and Anomalies Features 20
2.7 Link Types based on Interface State . 40
2.9 Difference of Router LSA (Type 1 LSA) from Numbered/Unnumbered Interfaces 41

4.1 Summary of Functional Requirements . 60
4.2 Summary of Non-Functional Requirements . 69

6.1 Programming Languages & Scripts . 80
6.2 Libraries & Frameworks . 80

7.1 Bounded Context: Free Range Routing Anomaly Detection and Monitoring 83
7.2 Supporting Bounded Context . 83

9.1 Risk Identification Table . 101
9.2 Risk Mitigation Strategies . 102
9.3 Risk Status Update . 102

10.1 Acceptance Testing Plan . 104

11.1 SCRUM Role distribution . 105
11.2 SCRUM Role distribution . 106
11.3 General Role distribution . 107

A.1 Tools and Resources . 127

123

List of Tables List of Tables

B.1 Acceptance Test Protocol - QA Team . 128
B.2 Acceptance Test Protocol - Julian Klaiber . 130

124

List of Algorithms

1 Convert OSPF Link States to Network Addresses Map 30
2 Detect Unadvertised Networks . 30
3 Detect Overadvertised Networks . 31
4 Unix Socket Message Handler . 32
5 Generic Service Handler . 33
6 Metric Export Procedure . 34
7 Anomaly Export Procedure . 35

125

Listings

1.1 Example Router Interface Config . 5
2.1 Adjust Export Path in Configuration File . 17
2.2 Frontend Structure . 35
8.1 Example of new glossary entry . 90
8.2 Example of hyperref and href . 90
8.3 Example of xltabular . 90
8.4 Example of itemization . 91
8.5 Code Snippet Example . 91
8.6 Commit hooks setup . 96
C.1 Announce Prefix as Type 5 . 132
C.2 Announce Prefix as Type 1 . 132
C.3 Example Access-List . 133
C.4 Build Instructions . 136
C.5 Build Instructions with Build Flag Override . 136
C.6 Example Configuration File . 136
C.7 frr-mad-analyzer help menu . 138
C.8 frr-mad-analyzer command help . 138

126

Chapter A

Technical Resources

A.1 List of Tools and Resources

Field of Work Tools

collaboration and
project management

Teams, Slack, Outlook, Jira

coding Visual Studio Code, VSCodium, JetBrains (GoLand, PyCharm, Writer-
side), ChatGPT, claudeAI, DeepSeek

data analysis and visu-
alization

Diagrams (former draw.io), Canva

text creation, text opti-
mization, spelling and
grammar check,

Visual Studio Code, VSCodium, JetBrains (GoLand, PyCharm, Writer-
side), ChatGPT, claudeAI, DeepL, DeepSeek, latex, MacTex

DevOps Ansible, GitLab, GitHub, Containerlab, Docker, Pipelines, Actions, Scripts,
AIR - Hot Module Reloading (HMR)

Table A.1: Tools and Resources

127

Chapter B

Testing Reports

B.1 Acceptance Test Reports

B.1.1 QA Team

Table B.1: Acceptance Test Protocol - QA Team

Participant’s Name Yannick Städeli, Mino Petrizzo, Roman Cvijanovic
Date May 09, 2025
Location Remote

Continued on next page

128

B.1. Acceptance Test Reports Appendix B. Testing Reports

Table B.1 – continued from previous page
Participant’s Name Yannick Städeli, Mino Petrizzo, Roman Cvijanovic
Tasks FR1-1: Export OSPF Routing Metrics

→ Participant Feedback: Metrics for installed and OSPF routes imple-
mented correctly. OSPF LSA statistics and database counts of LSA
types are properly exported. Recommendation to implement caching
and retry mechanism in case of system failure.

FR2: Gather FRR Routing Information
→ Participant Feedback: Need to clarify distinction between gathering
and exporting in the FR. All OSPF types including type 7 are being
gathered correctly. "Show running config" and system resources are
correctly tracked. System resources should be validated and corrected
if necessary.

FR3: OSPF Route Anomaly Detection by TUI
→ Participant Feedback: Awaiting response from stakeholder regard-
ing duplicate routes. Wrongly advertised routes not yet implemented.
Need to add information page explaining anomaly types in the TUI.
Additional page for root cause analysis is needed (examining RIB and
FIB). TUI correctly shows when no anomalies are present. Currently
only detecting predefined anomaly types. Title should be changed
from "by TUI" to "FRR-MAD".

FR4: Query and Display Routing Anomalies via TUI
→ Participant Feedback: Title should be updated to "FRR-MAD TUI".
Anomalies are successfully displayed in the frontend. Need to add
expected routes to AnomalyDetection to show "should" and "is" states
in frontend. Logging capability needs to be implemented.

FR14: FRRMon Replacement
→ Participant Feedback: Implementation appears complete, awaiting
stakeholder’s confirmation.

Continued on next page

129

B.1. Acceptance Test Reports Appendix B. Testing Reports

Table B.1 – continued from previous page
Participant’s Name Yannick Städeli, Mino Petrizzo, Roman Cvijanovic
Overall Feedback We conducted a 2-hour acceptance test session and found that much

of the system is well implemented with only minor issues to correct.
Specific observations include:

• Question about double via route on 10.3.0.0/24 on router 103

• Suggestion to use "show ip ospf json" for a simpler andmore gen-
eral view on TUI

• FIB should be added to the TUI (Yannick’s suggestion)

• Question about router anomaly on r103 (Roman’s observation)

Overall, the system shows good implementation progress with only mi-
nor adjustments needed.

Status Done

B.1.2 Industry Partner

Table B.2: Acceptance Test Protocol - Julian Klaiber

Participant’s Name Julian Klaiber
Date June 12, 2025
Location Remote

Continued on next page

130

B.1. Acceptance Test Reports Appendix B. Testing Reports

Table B.2 – continued from previous page
Participant’s Name Julian Klaiber
Tasks FR1-1: Export OSPF Routing Metrics

→ Participant Feedback: Metrics are exported correctly.
FR2: Gather FRR Routing Information
→ Participant Feedback: All the information needed is present and dis-
played correctly.
FR3: OSPF Route Anomaly Detection by TUI
→ Participant Feedback: Anomaly detection is working correctly. Was
tested on multiple devices with different configurations. No more false
positives.
FR4: Query and Display Routing Anomalies via TUI
→Participant Feedback: TUI is understandable and setup is clear. Data
export is working correctly to clipboard and file. Navigation is working
as expected. Filtering function is very useful and is working very well.
FR14: FRRMon Replacement
→ Participant Feedback: Metrics for the anomaly detection is working
as expected. Logs could not be checked as there were no anomalies
present at the time testing and before. FRR-MADwill be rolled out to the
dev environment to test it thoroughly and later to production to check
if it is matching the FRRMon implementation as expected.

Overall Feedback Everything now seems to be working as intended. No further issues
were noticed. Regarding FRRMon, we plan to roll out your tool to the
development environment soon, let it run there for a few days, and then
hopefully deploy it to production to verify if it behaves the same as FR-
RMon. Unfortunately, I couldn’t find any anomalies in the development
environment, so I wasn’t able to test the log output.

Status Done

131

Chapter C

Miscellaneous

C.1 Industry Partner’s Anomaly Occurrence

When reconfiguring a specific interface, an unforeseen anomaly occurs. The goal is, that a prefix
would be advertised as a stub network within a Router LSA (Type 1 LSA), rather than as an AS External
LSA (Type 5 LSA). One can observe this change by comparing the initial configuration (Announce Pre-
fix as Type 5) with the adjusted configuration (Announce Prefix as Type 1), specifically by examining
the configuration section for interface eth1.

1 ! Initial Configuration:

2 !

3 ip route 10.0.0.0/17 10.0.0.255

4 !

5 interface eth1

6 ip address 10.0.0.0/27

7 exit

8 !

9 router ospf

10 ospf router -id 100.100.100.100

11 redistribute static route -map lanroutes metric -type 1

12 redistribute connected route -map lanroutes metric -type 1

13 exit

14 !

Listing C.1: Announce Prefix as Type 5

1 ! Adjusted Configuration:

2 !

3 ip route 10.0.0.0/17 10.0.0.255

4 !

132

C.1. Industry Partner’s Anomaly Occurrence Appendix C. Miscellaneous

5 interface eth1

6 ip address 10.0.0.1/27

7 ip ospf passive

8 ip ospf area 0.0.0.0

9 exit

10 !

11 router ospf

12 ospf router -id 100.100.100.100

13 redistribute static route -map lanroutes metric -type 1

14 exit

15 !

Listing C.2: Announce Prefix as Type 1

To maintain clarity between the two configuration examples, the route-map is omitted here, but a
possible version might look as follows:

1 !

2 access -list denyall seq 5 deny any

3 access -list localsite seq 10 permit 10.0.0.0/17

4 access -list localsite seq 15 permit 10.0.0.0/27

5 !

6 route -map lanroutes permit 10

7 match ip address localsite

8 exit

9 !

Listing C.3: Example Access-List

However, while implementing this change, a specific error occurred. The following enumeration out-
lines the issue in detail:

1. config is changed according to code snippet above

2. stub network is announced correctly

3. Anomaly: static route 10.0.0.0/17 is missing

4. Solution Step 1: remove and add the access-list entry 10.0.0.0/17

5. Anomaly: static route 10.0.0.0/27 is advertised and 10.0.0.0/17 still missing

6. Solution Step 2:

(a) remove correct (10.0.0.0/17) network from access list

(b) add wrong (10.0.0.0/27) network to access list

(c) remove wrong (10.0.0.0/27) network from access list

(d) add correct (10.0.0.0/17) network to access list

133

C.2. Development and Test Environment Architecture Appendix C. Miscellaneous

C.2 Development and Test Environment Architecture

AS described in the RFC 6996, private use ASNs were used [15].

134

C.2. Development and Test Environment Architecture Appendix C. Miscellaneous

Non-OSPF Network

AS 65001

Non-OSPF Network

Color Coding
Internal Router
Area Border Router
AS Border Router

Area
Autonomous System

Non-OSPF Components

Area0 Backbone
core network 10.0.0.0 /23

PC101

.1

.1 .1

.2 .3

.2 .3

10.0.12.0 /24
10.0.13.0 /24

10.0.23.0 /24

Network Address Coding
Base Network: 10.0.0.0
Bit 9 - 16: Identifies Area
Bit 17 - 24: Identifies Network Type
Bit 25 - 32: Identifies Device

--> 10.<area>.<network-for-Rx-Ry>.<device>

Area1 NSSA Area2 regular

Area3 stub

.3

.21

10.2.31.0 /24

10.2.12.0 /24

.21

.22

.100

PC121 .100

.21
10.2.0.0 /24

.22

.31

10.3.21.0 /24

PC131

.31

.100
10.3.0.0 /24

10.1.21.0 /24

.2

.11

10.1.12.0 /24

.11

.12

PC111

.11

.100

10.1.0.0 /24

172.22.1.0 /24

Network Concept

R131

R121

R122

PC191

link to non-ospf network
192.168.100.0/24

.1

.100
192.168.1.0 /24

.91

.91

172.22.2.0 /24

.12

.1

Router ID’s
Bit 1 - 24: identifies the AS
Bit 25 - 32: identifies router (area nr. + router nr.)
--> router 1 in area 3 in AS65001: 65.0.1.31

.2

.1

10.20.12.0/24 .1.2

PC201

.2

.100

10.20.0.0/24

PC301

10.30.12.0/24

.1

.2

.2
10.30.0.0/24

.100

Area0 Backbone

AS 65002

R191

R202

R302

Non-OSPF Network
Area0 Backbone

PC393.100
192.168.33.0/24

.91
link to non-ospf router

192.168.130.0/24

.1 .91

various customer routers
see next diagram

192.168.34.0/24
PC394.100

PC392

R391R301

link to non-ospf network
192.168.32.0/24

.1

.100

.91

PC112 .100
10.1.1.0 /24

R111

sw111

R103

PC102.100
10.0.2.0 /24

sw101

R201

.1 .1

.3
.4
10.20.14.0/24

P2P10.20.13.0/24
P2P

PC203

PC204
10.20.3.0/24

.100

R204

10.20.4.0/24

.100R203

Non-OSPF
Network

R192
link to non-ospf network

192.168.110.0/24
.92 .12

PC192.100

192.168.10.0 /24

.92

PC193.100
192.168.11.0 /24

.93
.93R193
 192.168.101.0/24

.2

link to non-ospf network

sw102

R101

.10

PC10310.0.3.0 /24

.10

.100

R1010

R102

AS 65003

R112

Figure C.1: Containerlab - Network Concept

135

C.3. Setup and Installation Appendix C. Miscellaneous

C.3 Setup and Installation

In this subsection the FRR-MAD application installation and utilization will be outlined. Similar instruc-
tions are provided in GitHub README.

C.3.1 Build Instructions

Currently, no pre-built packages are available, requiring the project to be built before use. The appli-
cations should be built statically to eliminate dependency issues. The default version can be built by
executing make, though this imposes restrictions on configuration path locations.

1 mkdir -p /tmp/frr -mad -binaries/

2 cd src/backend && CGO_ENABLED =0 GOOS=linux GOARCH=amd64 go build

-ldflags='-s' -o /tmp/frr -mad -binaries/frr -mad -analyzer ./cmd/frr -analyzer

3 cd ../../

4 cd src/frontend && CGO_ENABLED =0 GOOS=linux GOARCH=amd64 go build

-ldflags='-s' -o /tmp/frr -mad -binaries/frr -mad -tui ./cmd/tui

5 cd ../../

Listing C.4: Build Instructions

The default configuration path can be overridden during the build process using build flags. When
the correct build flags (e.g., -X configs.ConfigLocation=/path/to/configuration.yaml) are specified, the
built application reflects these changes. This is particularly valuable when the default configuration
path does not conform to company policies or other requirements.

1 mkdir -p /tmp/frr -mad -binaries/

2 cd src/backend && CGO_ENABLED =0 GOOS=linux GOARCH=amd64 go build -ldflags='-s

-X configs.ConfigLocation =/path/to/configuration.yaml' -o

/tmp/frr -mad -binaries/frr -mad -analyzer ./cmd/frr -analyzer

3 cd ../../

4 cd src/frontend && CGO_ENABLED =0 GOOS=linux GOARCH=amd64 go build

-ldflags='-s -X configs.ConfigLocation =/path/to/configuration.yaml' -o

/tmp/frr -mad -binaries/frr -mad -tui ./cmd/tui

5 cd ../../

Listing C.5: Build Instructions with Build Flag Override

Once the application is built, a configuration file must be provided. An example configuration scheme
is available here. All values are required, and if this application runs with restricted permissions, ac-
cess to the specified locations and files must be granted.

1 default:

2 tempfiles: /tmp/frr -mad

3 exportpath: /tmp/frr -mad/exports

4 logpath: /var/log/frr -mad

5 # default is info

6 debuglevel: error

136

https://github.com/FRR-MAD/frr-mad/blob/main/README.md

C.3. Setup and Installation Appendix C. Miscellaneous

7

8 frrmadtui:

9 pages:

10 ospf:

11 enabled: true

12 rib:

13 enabled: true

14 shell:

15 enabled: true

16

17 socket:

18 unixsocketlocation: /var/run/frr -mad

19 unixsocketname: analyzer.sock

20 sockettype: unix

21

22 aggregator:

23 frrconfigpath: /etc/frr/frr.conf

24 pollinterval: 5

25 socketpath: /var/run/frr

26

27 exporter:

28 # default: Port: 9091

29 OSPFRouterData: false

30 OSPFNetworkData: false

31 OSPFSummaryData: false

32 OSPFAsbrSummaryData: false

33 OSPFExternalData: false

34 OSPFNssaExternalData: false

35 OSPFDatabase: false

36 OSPFNeighbors: false

37 InterfaceList: false

38 RouteList: false

Listing C.6: Example Configuration File

C.3.2 Application Launch

After completing the build process, the build folder will contain two files:
frr-mad-tui and frr-mad-analyzer.
As previously explained, frr-mad-analyzer operates as a daemon, while frr-mad-tui functions as its
client. The frr-mad-tui cannot operate without the frr-mad-analyzer daemon running. To start frr-mad-
analyzer executing frr-mad-analyzer start is enough. This spawns a new child process that runs in
the background. According to the configuration, a Unix Domain Socket will be created, different files
touched and a network socket opened. The locations can be adjusted in said configuration.

137

C.3. Setup and Installation Appendix C. Miscellaneous

For detailed information about the tool’s capabilities, executing it without arguments displays a help
menu.

1 $> frr -mad -analyzer

2 A CLI tool for managing the FRR -MAD application.

3

4 Usage:

5 frr -mad -analyzer [command]

6

7 Available Commands:

8 completion Generate the autocompletion script for the specified shell

9 help Help about any command

10 restart Restart the FRR -MAD application

11 start Start the FRR -MAD application

12 stop Stop the FRR -MAD application

13 version show version number and exit

14

15 Flags:

16 -h, --help help for frr -mad -analyzer

17

18 Use "frr -mad -analyzer [command] --help" for more information about a command.

Listing C.7: frr-mad-analyzer help menu

Some commands provide extended options. While metric exports can be configured through the
configuration file, the start command also accepts additional arguments. This is particularly useful
during testing phases.

1 $> frr -mad -analyzer help start

2 Start the FRR -MAD application

3

4 Usage:

5 frr -mad -analyzer start [flags]

6

7 Flags:

8 -c, --configFile string Provide path overwriting default configuration

file location.

9 -h, --help help for start

10 --interface -list Enable interface list metrics

11 --ospf -asbr -summary Enable OSPF ASBR summary metrics

12 --ospf -database Enable OSPF database metrics

13 --ospf -external Enable OSPF external route metrics

14 --ospf -neighbors Enable OSPF neighbor metrics

15 --ospf -network Enable OSPF network metrics

16 --ospf -nssa -external Enable OSPF NSSA external route metrics

17 --ospf -router Enable OSPF router metrics

18 --ospf -summary Enable OSPF summary metrics

19 --route -list Enable route list metrics

138

C.3. Setup and Installation Appendix C. Miscellaneous

Listing C.8: frr-mad-analyzer command help

Once the daemon is running, starting frr-mad-tui is straightforward—simply execute the binary. Note
that frr-mad-tui requires the configuration file location to be defined. Three methods are available:

• Place the configuration file at the default location: /etc/frr-mad/main.yaml

• Use build flags during the build process to specify an alternative configuration file location.

• Export an environment variable: export FRR_MAD_CONFFILE=/path/to/configuration with the con-
figuration file path.

139

	I Glossary and Acronyms
	II Technical Report
	Introduction
	General
	Technical Report
	Project Documentation

	Terms & Techniques
	FRR-MAD
	Free Range Routing
	Open Shortest Path First

	Aims and Objectives
	Problem
	Solution

	Results
	Project Boundaries
	Project Achievements
	Gather FRR Route Information
	Persistently store FRR Route Information
	Visualize FRR Route Information
	Export Parsed FRR Route Information
	OSPF Anomaly Detection
	Export OSPF Anomalies
	Visualize Detected Anomalies
	Other TUI Features
	Augmented Development and Testing Environment

	Implementation
	Architecture
	Backend Service
	Frontend Client
	Process and Challenges

	Conclusion
	Outcome Analysis
	Functional Requirements Evaluation
	Non-Functional Requirements Evaluation

	Future Directions
	Protocol Support Extensions
	Anomaly Detection Enhancements
	User Experience Improvements
	Community and Operational Features

	III Project Documentation
	Requirements
	Personas
	Actors
	Use Case Diagram
	Functional Requirements
	FR1-1: Export OSPF Routing Metrics
	FR1-2: Export BGP Routing Metrics (Optional)
	FR2: Gather FRR Routing Information
	FR3: OSPF Route Anomaly Detection by FRR-MAD
	FR4: Query and Display Routing Anomalies via FRR-MAD
	FR5: BGP Route Anomaly Detection (Optional)
	FR6: Adding new tabs to TUI (Optional)
	FR7: OSPF Neighbor States Troubleshooting (Optional)
	FR8: BGP Session States Troubleshooting (Optional)
	FR9: Advanced TUI History (Optional)
	FR10: Issue Solving via TUI (Optional)
	FR11: Guided Fixes for Misadvertised Routes (Optional)
	FR12: Export Routing Anomaly Analysis Results (Optional)
	FR13: Knowledge Database for Manual Fixes
	FR14: FRRMon Replacement
	FR15: Dynamic Content Filtering in TUI (Optional)
	FR16: Export Detected Anomalies (Optional)

	Non-Functional Requirements
	NFR1: Presentation of Information Dashboard Extension
	NFR2: Tab Selection
	NFR3: Presentation of Information BGP Extension
	NFR4: Correctness of frr_exporter Metrics
	NFR5-1: TUI Read Mode Only
	NFR5-2: TUI Read/Write Mode
	NFR6: Limited Exported Metrics
	NFR7: TUI User Experience
	NFR8: TUI Resolution Support
	NFR9: Lazy Loading of TUI
	NFR10: Integration of TUI in Dev/Prod Environments
	NFR11: Guided or Automated Implementation of TUI
	NFR12: Testing Environment for frr_exporter and TUI

	Domain Analysis
	Related Work
	FRR Exporter
	NetworkMonitor
	Quagga Exporter
	Batfish
	GoBGP CLI
	OpenBMP
	OSPF Topology Watcher
	Proprietary Network Monitoring Tools
	Nvidia Cumulus Linux Documentation
	Summary
	Decisions on Tooling Implementation

	Solution Strategy
	Technology & Technique
	Development

	Architecture
	System Context diagram
	Strategic Design
	Adjustment Considerations

	Quality Measures
	Documentation
	LLM Usage
	Documentation Principles
	Member Participation
	Documentation Context
	Documentation Guidelines
	Document Guidelines

	Development
	Code Guidelines
	Code Tools
	Code Review Guidelines
	Environment

	Testing
	Scope of Testing

	Quality Assurance
	Definition of Done
	Version Control Guidelines

	Risk Assessment and Mitigation
	Version History
	Risk Matrix
	Risk Identification
	Risk Mitigation
	Risk Status Update (v2.0)

	Testing
	Unit Tests
	Acceptance Testing
	Testing Plan

	Project Plan
	Resources
	People
	Time

	Roles
	SCRUM Role Distribution
	General Role Distribution
	Roles scope

	Project Planning and Tracking
	Time Tracking
	Project Schedule
	Phases
	Iterations
	Milestones

	Processes and Meetings
	Processes
	Meetings
	Estimated Time plan per Week

	Project Management and Development Workflow
	Jira

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	List of Code Blocks
	Technical Resources
	List of Tools and Resources

	Testing Reports
	Acceptance Test Reports
	QA Team
	Industry Partner

	Miscellaneous
	Industry Partner’s Anomaly Occurrence
	Development and Test Environment Architecture
	Setup and Installation
	Build Instructions
	Application Launch

