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Abstract
OpenStreetMap (OSM) is one of the most comprehensive openly licensed geospatial vector
datasets, containing an estimated 60–90 million points of interest (POIs). While this is compa-
rable to Overture Maps ~61 million POIs, OSM distinguishes itself through its data richness,
openness, and crowdsourced quality assurance. However, its raw structure based on a graph
of nodes, ways, and relations combined with a flexible tagging system, presents significant
challenges for scalable querying and analysis.

This thesis presents a reproducible, open-source pipeline designed to transform country-scale
OSM extracts, such as those from Geofabrik, into simplified, analysis-ready GeoParquet files.
The files are aligned with Overture Maps Places and Divisions themes and converted into a
tabular format optimized for geographic information systems. The solution is built on a modular
Extract–Transform–Load (ETL) architecture using osm2pgsql with Lua scripts, PostgreSQL/
PostGIS for schema alignment and spatial processing, and DuckDB with PyArrow for high-
performance GeoParquet conversion.

Multiple spatial file partitioning strategies, including KDB Tree and S2, were evaluated to
support efficient downstream interoperability and client-side filtering. The pipeline operates as
a CI/CD enabled DataOps workflow, orchestrated via GitLab, containerized with Docker, and
hosted on S3-compatible MinIO storage. A vandalism detection module prototype supports
data quality by flagging anomalies in stable administrative names.

The result is Cadence Maps, a fully automated and publicly accessible data service for the D-A-
CH-LI region, updated weekly and accompanied by release documentation. GeoParquet files
can be queried directly via DuckDB or QGIS without requiring full downloads. For example,
queries can filter specific features such as restaurants using hive-compatible S3 prefixes. Full
dataset updates can be completed in under 24 hours, demonstrating the system’s performance
and scalability. This work establishes a reliable and extensible framework for delivering cloud-
native geospatial data services with global potential.
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Management Summary
Introduction
OpenStreetMap (OSM) represents one of the most comprehensive openly licensed geospatial
vector datasets, maintained and enriched by a global community of contributors. With an
estimated 60–90 million points of interest (POIs), it rivals proprietary solutions such as Overture
Maps, which advertises approximately 61 million POIs. The distinguishing features of OSM
include its openness, data richness, and the crowdsourced validation that ensures continual
improvements and relevance across domains including urban planning, logistics, environmen-
tal monitoring, and emergency response.

However, this openness and flexibility also introduce challenges. OSM’s core data model is
based on a graph structure, comprised of nodes, ways, and relations, and uses a highly flexible
tagging system. While this allows the community to map a vast diversity of features, it makes
the data inherently unstructured and inconsistent, potentially presenting significant obstacles
for users who require standardized, analysis-ready formats.

In contrast, modern cloud-native file formats like GeoParquet offer significant advantages for
analytical workflows. These formats enable scalable, SQL-based querying without the need for
dedicated server or database infrastructure. Yet, leveraging these benefits requires extensive
preprocessing and transformation of raw OSM data—a process that has traditionally relied on
custom, ad-hoc solutions. While initiatives like Overture Maps aim to provide unified schemas,
they fall short in terms of openness and transparency, relying on proprietary software and data
curation processes that are not publicly verifiable.

Problem Statement
The central problem addressed by this project is the lack of a reproducible, scalable, and
open-source pipeline that transforms raw OpenStreetMap extracts into fully analysis-ready,
partitioned GeoParquet datasets, accessible directly from cloud storage and usable without
dedicated backend infrastructure.

The utilization of OpenStreetMap data at scale presents multiple obstacles for analysts, devel-
opers, and researchers:
• Manual preprocessing is time-consuming and prone to inconsistencies.
• Raw data lacks a uniform schema and cannot be directly queried using standard analytical

tools.
• Most available datasets require full downloads, leading to substantial storage and bandwidth

requirements.
• Existing solutions do not guarantee traceability or data quality checks, particularly with

respect to vandalism or inconsistencies between updates.

This project seeks to bridge these gaps by developing a solution that not only transforms data
into an optimized analytical format but also ensures data integrity, scalability, and transparency.

Approach / Technology
The solution implements a modular Extract–Transform–Load (ETL) pipeline built entirely on
open-source technologies and optimized for country-scale datasets. The pipeline starts with
country-specific extracts, primarily from Geofabrik, and performs a series of transformations to
produce high-quality, analysis-ready GeoParquet files.
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Figure 1: Anatomy of a GeoParquet File

Key components and technologies include:
• osm2pgsql with custom Lua scripts to ingest and map OSM features into structured layers.
• PostgreSQL/PostGIS to handle spatial operations and enforce consistent data schemas

aligned with the Places and Divisions themes from Overture Maps.
• DuckDB and PyArrow to convert the cleaned data into partitioned GeoParquet files.
• Spatial file partitioning using KDB Tree to ensure optimal performance for large-area queries.
• GitLab CI/CD for orchestration and automation, ensuring regular updates and reproducible

builds.
• Docker for containerization of the entire system, enabling consistent deployment across

environments.
• MinIO, an S3-compatible object storage service, to host the output data publicly and enable

remote SQL access.

To ensure data integrity and mitigate the risk of vandalism, the system incorporates a
lightweight, rule-based validation mechanism prototype. It monitors key indicators, such as ad-
ministrative name changes, that would otherwise go unnoticed and flags suspicious updates. If
anomalies are detected, datasets are staged rather than published, requiring manual approval
through GitLab pipelines.
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Figure 2: ETL pipeline diagram illustrating the OpenStreetMap import, conversion to GeoPar-
quet files and access by geospatial analysts

Result
The resulting product, Cadence Maps, is a fully automated, cloud-hosted data service providing
OpenStreetMap derived GeoParquet datasets for Switzerland, Germany, Austria, and Liecht-
enstein. The system processes and publishes weekly updates through a dedicated website
and S3-compatible storage endpoint.

The generated files are structured to support hive-style partitioning, enabling users to execute
queries directly against remote datasets without downloading the full files. For example:

SELECT names.primary
FROM read_parquet(
  's3://cadencemaps/release/2025-05-13/theme=places/type=place/country=CH/*',
  filename=true, hive_partitioning=1)
WHERE categories.primary = 'restaurant';

Figure 3: Map of Switzerland showing all restaurants as red dots accessed via our Cadence
Maps

This structure facilitates both efficient client-side filtering and seamless integration with tools
such as DuckDB, QGIS, and Python-based tools, making the data accessible to a broad range
of users.
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Performance evaluations demonstrate that complete updates for the entire D-A-CH-LI (Ger-
many, Austria, Switzerland, and Liechtenstein) region are processed in under 24 hours.
This makes the solution suitable for near real-time applications and extensible for broader
geographical coverage.

Outlook
The current implementation provides a robust and extensible foundation for scalable, reliable,
and open access to structured geospatial data derived from OpenStreetMap. Several forward-
looking enhancements are envisioned to increase its reach, efficiency, and usability.

A key area of expansion lies in scaling beyond the D-A-CH-LI region. The pipeline can be
extended to process additional countries, broadening its relevance across Europe and globally.
This would allow international users to benefit from consistent, partitioned GeoParquet data that
is immediately usable in tools such as DuckDB or QGIS, without requiring local infrastructure.

To strengthen trust in the data, future iterations could enhance validation logic with checks for
anomalies in geometry, naming, or data density. Integration of rule-based systems, community
tools like Clearance, or even machine learning would improve the detection of vandalism and
ensure higher data integrity, particularly important as public usage grows.

Operationally, the pipeline’s deployment could benefit from decoupling key components like
PostgreSQL and the proxy server from container environments in favor of native hosting. This
would improve runtime performance and ease debugging. Additionally, introducing real-time
monitoring solutions such as Prometheus or Sentry would support proactive maintenance,
alerting, and long-term stability.

Finally, for larger-scale or enterprise-grade use cases, integrating Apache Iceberg can offer
advanced features like ACID-compliant versioning, time travel, and efficient data pruning. This
would position the system as a long-term, cloud-native platform capable of managing both
current and historical geospatial data at scale.

In summary, the pipeline is not just a functional solution for today’s analytical needs—it also
serves as a strategic base for future-ready, globally accessible geospatial data services.

5 of 100



Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Management Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Glossary and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Part I - Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1. Problem Statement and Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2. Objectives and Sub-Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3. Constraints, Scope, and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4. Methodology and Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1. Map Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Overture Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3. Other Map Data Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Data Management Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1. osm2pgsql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2. PostgreSQL / PostGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3. DuckDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4. Other Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1. Parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2. GeoParquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3. Other Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4. Data Access Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1. QGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2. DuckDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3. Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1. Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2. Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Non Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1. High-Level Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2. System Context (C4 Level 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3. Container Architecture (C4 Level 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4. Reflection on Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1. Architecture Decision: Country-Based Processing . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2. Architecture Decision: Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3. Comparison of Importer Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4. Converter Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 of 100



4.2.5. Converter Implementation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.6. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.7. OSM ID Handling and GERS ID Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1. Pipeline Architecture and Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1. Import Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2. Transformation and Conversion Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3. Validation and Release Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2. Importer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1. Places Category Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2. Division mapping subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3. Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1. Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2. GeoParquet Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4. Validation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.1. Database configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.2. Parallelism via Pipeline Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.3. Postprocessing in pgsql instead of osm2pgsql . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7. Contribution to the GeoParquet Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6. Testing and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1. Data Quality Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1. Places Zürich, Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2. Places Dortmund, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3. Places Vienna, Austria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.4. Division Area Rapperswil-Jona, Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.5. Automatic Vandalism Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2. Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3. Non Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1. NFR-1 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.2. NFR-2: Geographic Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.3. NFR-3 Query Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.4. NFR-4 Access Controls and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1. Parallel Processing and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2. Data Quality and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3. Performance and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4. Compatibility and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5. Comparison with Overture Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.6. Documentation and Ecosystem Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.1. Global Scaling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2. Improved Validation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3. Infrastructure and Monitoring Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 of 100



8.4. Iceberg Integration for Long-Term Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10. List of Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11. Used Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12. Used Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

13. Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.1. Categorization of Partitioning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

13.1.1. Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.1.2. Recursive Space Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.1.3. Hierarchical Geospatial Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

13.2. Partitioning Method Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.2.1. Hilbert Curve Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
13.2.2. KD Tree Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.2.3. KDB Tree Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.2.4. QuadTree Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
13.2.5. GeoHash Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.2.6. S2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
13.2.7. H3 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.2.8. Summary and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

13.3. Scaling Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.3.1. Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.3.2. USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13.4. Query Testing on Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
13.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

14. NFR 2 - Performance and Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
14.1. Dataset Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
14.2. Processing Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14.2.1. Initial Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
14.2.2. Detailed Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14.3. Global Scalability Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

15. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
15.1. Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
15.2. File Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

15.2.1. Places Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
15.2.2. Divisions Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15.3. URL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
15.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

15.4.1. DuckDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
15.4.2. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
15.4.3. QGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 of 100



Glossary and Acronyms
BBOX Bounding Box; a rectangular area used for spatial filtering in

queries.
C4 Model A model for visualizing and documenting software architecture,

focusing on the context, containers, components, and code.
CI/CD Continuous Integration / Continuous Deployment; automates

testing and deployment.
Confluence A collaboration tool used for documentation and project

management.
Converter The part of the pipeline that includes the process of partitioning and

sorting the Postgres / PostGIS dataset into Parquet files.
D-A-CH-LI An abbreviation referring to the countries Germany (D), Austria (A),

Switzerland (CH), and Liechtenstein (LI).
DataOps DataOps is an agile, process-oriented methodology focused on

automating and monitoring data pipelines to deliver high-quality
data quickly, efficiently, and reliably for business analytics and AI.

DevOps DevOps is a modern approach in the IT world that combines
software development (Dev) and IT operations (Ops) to shorten the
system development lifecycle and provide continuous delivery of
high-quality software.

Docker A platform designed to help developers build, share, and run
modern applications using containerization technology.

DuckDB An in-process OLAP database optimized for analytical queries,
especially with Parquet files.

ETL Extract, Transform, Load; a data pipeline model for processing and
storing data.

Flex Mode A flexible mode in osm2pgsql that uses Lua scripting for schema
customization.

GDAL The Geospatial Data Abstraction Library; a library for reading and
writing geospatial data in various formats.

GeoArrow A binary format under development to efficiently encode geometries
within the Arrow ecosystem.

GeoHash A geocoding system that encodes geographic coordinates into
short strings of letters and digits.

GeoJSON A JSON-based format for encoding geographical data structures.
GeoParquet A geospatial extension of the Apache Parquet format, designed for

efficient storage and querying of geospatial data.
Geospatial Data Data that identifies the geographic location and characteristics of

natural or constructed features and boundaries on the Earth.
Git A version control system for tracking changes in computer files and

coordinating work among multiple developers.
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GitLab A web-based DevOps lifecycle tool that provides a Git-repository
manager providing wiki, issue-tracking, and CI/CD pipeline
features.

H3 A geospatial indexing system developed by Uber, designed for
efficient spatial queries and analysis.

Hilbert Curve A space-filling curve used for sorting and partitioning spatial data
while preserving locality.

Importer The part of the pipeline that includes the process of downloading
PBF Files and converting them into a Postgres / PostGIS
compatible dataset

JIRA A project management tool used for issue tracking, bug tracking,
and agile project management.

KDB Tree A data structure for spatial partitioning that splits space recursively
based on data density.

MinIO An object storage solution with S3-compatible API, used for storing
output datasets.

OSM
(OpenStreetMap)

A collaborative, open-source mapping project providing global
geospatial data.

Overture Maps An open mapping initiative that combines authoritative and open
data, including from OSM.

Overpass API A read-only API for querying specific data from the OSM dataset.
PBF Protocolbuffer Binary Format; compact binary format for storing

OSM data.
Partitioning The process of dividing a dataset into smaller, more manageable

parts, often used to improve query performance and data
management.

PostGIS A spatial extension for PostgreSQL that enables geospatial queries
and operations.

PostgreSQL An open-source relational database management system.
PyArrow A Python interface to Apache Arrow, used to write GeoParquet files.
QGIS A free and open-source GIS application used for viewing and

analyzing spatial data.
QuadTree A tree data structure in which each internal node has exactly four

children, used for spatial indexing and partitioning.
S3 A scalable object storage service provided by Amazon Web

Services (AWS), commonly used for storing and retrieving large
amounts of data.

S2 Hierarchical global spatial indexing systems for partitioning and
analyzing spatial data. S2 was developed by Google.

SCRUM+ A hybrid project management methodology combining SCRUM and
Rational Unified Process (RUP).
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Shapefile A legacy vector data format used in GIS software, developed by
Esri.

Spatial Indexing A method to improve the performance of spatial queries by indexing
geometries.

STAC SpatioTemporal Asset Catalog; an open specification for geospatial
data that provides a common language for describing geospatial
assets.

Validation The process of checking and ensuring the accuracy, consistency,
and quality of data.

Vandalism The deliberate addition of incorrect or misleading data, often a
concern in collaborative and open data projects like OSM.

osm2pgsql A tool for importing OSM data into PostgreSQL/PostGIS databases.
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1. Introduction
1.1. Problem Statement and Vision
Geospatial data forms the backbone of modern decision making in areas such as urban
planning, transportation, environmental monitoring, and logistics. OpenStreetMap (OSM), a
community-driven and openly licensed dataset, offers a rich source of global geospatial infor-
mation. However, its raw format, designed for flexibility rather than efficiency, poses significant
challenges for scalable analysis. The data is inconsistently tagged, lacks a standardized tabular
structure, and requires complex preprocessing to be usable in analytical workflows.

Early solutions for processing and querying OSM data typically relied on maintaining a
constantly running PostgreSQL/PostGIS database. While powerful, this approach introduces
several drawbacks: the database must be continuously available, requires significant mainte-
nance effort, and demands infrastructure that is often over-provisioned for sporadic querying
workloads. These setups are difficult to scale, hard to reproduce, and often unsuitable for
lightweight, serverless analytics.

Modern workflows, by contrast, benefit from cloud optimized, queryable file formats such as
GeoParquet. In this model, the heavy lifting of parsing and transforming the OSM data is done
once during preprocessing. The result is a structured, columnar dataset that can be stored in
object storage and queried directly by tools like DuckDB or QGIS, without needing to set up
or maintain any database infrastructure. This not only reduces operational complexity but also
aligns with cloud native principles such as statelessness and scalability.

The vision of this thesis is to bridge that gap: to create a modular, scalable, and cloud
optimized pipeline that transforms raw OSM data into structured GeoParquet files. The pipeline
is designed to support efficient analysis, reuse, and integration across modern data systems.

1.2. Objectives and Sub-Objectives
The overarching objective of this thesis is to design and develop an automated, reproducible,
and scalable data processing pipeline that transforms OSM data into a structured, cloud
optimized format suitable for geospatial analysis.

To achieve this, the project is structured around the following sub objectives:
• Schema Definition: Define a data model that enables efficient representation of OSM data

in a tabular geospatial format. The schema should preserve key semantic elements while
enabling compatibility with modern query engines.

• Pipeline Development: Develop a modular and maintainable processing pipeline that can
ingest, transform, and output geospatial data in a standardized and analysis ready form.

• Validation and Integrity Checks: Introduce mechanisms for ensuring data quality and
integrity, with a focus on detecting structural inconsistencies and preserving trust in the
dataset over time.

• Performance Optimization: Optimize the processing pipeline to support full country scale
datasets and enable efficient spatial querying through suitable partitioning and system
design.

1.3. Constraints, Scope, and Definitions
The scope of this thesis is limited to the design and implementation of a country scale data
processing pipeline for converting OSM data into GeoParquet format. While the architecture
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is designed to be globally scalable, the evaluation focuses on the D-A-CH-LI region, with
Switzerland as the primary reference dataset.

Key constraints include:
• All tools used must be open-source.
• The pipeline should be executable on institutional infrastructure.
• Processing time for an update cycle should not exceed 24 hours.

1.4. Methodology and Research Approach
This thesis combines applied research with practical software engineering to build a state-of-
the-art geospatial data pipeline. The development process was guided by an iterative approach:
design decisions were continuously evaluated through prototyping, performance testing, and
comparison against current standards and community tools.

Given the novelty of applying cloud native technologies like GeoParquet and DuckDB to raw
OSM data, significant effort was dedicated to evaluating data schemas, partitioning strategies,
and validation logic. This involved not only selecting existing tools, but in many cases extending
or adapting them for the specific requirements of scalable geospatial processing.

The result is a bleeding-edge system that bridges gaps between open-source mapping data
and modern analytical workflows. Rather than remaining theoretical, this project delivers a
tangible, fully functional implementation that can be adopted, extended, and deployed by data
engineers.
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2. State of the Art
This chapter outlines open geospatial datasets, standards, processing tools, and data access
methods used in modern spatial data pipelines. Emphasis is placed on scalable, cloud-native
technologies aligned with the goals of this thesis.

2.1. Map Data
This section covers open map data sources. Mainly OpenStreetMap and Overture Maps, used
for analysis and integration. Commercial platforms like Google Maps or Swisstopo are excluded
due to restrictive licensing.

2.1.1. OpenStreetMap
OpenStreetMap is a global, collaborative project that provides openly licensed geospatial data.
Founded in 2004, OSM has become a foundational dataset for navigation, urban analysis, and
spatial applications worldwide. Unlike proprietary platforms, OSM allows anyone to contribute,
edit, and access data freely [1].

The platform operates under the Open Database License (ODbL), ensuring that its data can
be used, modified, and redistributed, provided that derivative datasets remain equally open.

Core Data Model
OSM’s data structure is organized around three key primitives:
• Nodes: Point features with latitude and longitude. Used to represent standalone entities like

trees or traffic signs.
• Ways: Ordered lists of nodes. These define linear features (e.g., roads, rivers) or area

boundaries (e.g., buildings, lakes).
• Relations: Groupings of nodes and ways that form more complex features such as multi-

polygons, bus routes, or administrative boundaries.

Each element uses a flexible key-value tagging system, enabling contributors to encode rich
metadata. While this flexibility supports global diversity, it can introduce inconsistency across
regions and contributors.

Data Formats and Accessibility
OSM data is available in multiple formats:
• .osm (XML) and .pbf (Protocolbuffer Binary Format) for raw dumps
• .shp, .geojson, and increasingly GeoParquet for analysis and cloud workflows

The Protocolbuffer Binary Format (PBF) is especially efficient for bulk import and processing
in tools like osm2pgsql (see Section 2.2.1).

Data Quality and Research
Numerous studies have evaluated OSM’s data quality. Findings show that urban areas benefit
from high positional accuracy and feature completeness, while rural regions may be underrep-
resented [2].

Common quality metrics include:
• Positional accuracy: Compared against authoritative data sources.
• Completeness: Coverage of roads, POIs, and buildings.
• Consistency: Regional variation in tag usage and contributor activity.
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Another metric is global road coverage, estimated to be above 80% [3], demonstrating the
project’s extensive coverage and reliability as a geospatial data source.

Efforts to improve OSM data include community validations, spatial integrity checks, and
machine-learning-based error detection [4].

2.1.2. Overture Maps
Overture Maps is an open mapping initiative founded by Amazon Web Services, Meta,
Microsoft, and TomTom, under the Linux Foundation [5]. Its mission is to build high-quality,
interoperable map data by aggregating multiple open and authoritative sources, including
OpenStreetMap data [6].

The project publishes datasets as partitioned GeoParquet files, hosted on S3 storage and
structured for analytical queries in modern data tools such as DuckDB. Overture adopts a
well-documented, evolving schema tailored to core map themes such as places, buildings,
transportation, and administrative boundaries.

Data Licensing and Openness
Overture Maps embraces open data principles, primarily using CDLA-Permissive v2 for its
datasets, with OSM-derived data under ODbL v1.0. Computational results using this data are
exempt from license text requirements, enabling flexible commercial and non-commercial use
[7].

Unlike OpenStreetMap, Overture is designed as a data-centric project rather than a community
of individual map editors. The schema and release process are primarily driven by member
organizations, with no direct editing mechanism for the general public. While individuals can
contribute through GitHub or by providing feedback, the primary contribution model involves
organizational membership [7].

Monthly Release Cadence
Overture Maps follows a monthly release schedule. As of this writing, the 2025-02-19.0 release
introduced over 40,000 km of new roads, improved building footprints, updated division hierar-
chies, and a 12% expansion of the places dataset [8].

Each Overture data release includes:
• Partitioned GeoParquet files (ZSTD-compressed)
• Theme- and type-specific S3 key prefixes
• Hive-compatible folder structure for querying

Example:

1 s3://overturemaps-us-west-2/release/2025-02-19.0/theme=places/type=place/*

Use Cases and Strengths
• Cloud-native workflows: The file format and structure make it ideal for querying in cloud data

warehouses and geospatial engines.
• Commercial adoption: The schema is stable and predictable, enabling integration into routing,

search, and delivery platforms.
• Data unification: Combines authoritative sources (e.g., U.S. TIGER) with community-curated

datasets like OSM, improving global coverage.
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Limitations
Despite its structured approach and cloud-native format, Overture Maps has several notewor-
thy limitations:
• Limited community governance: Unlike OpenStreetMap, Overture is not a community-

editable platform. Users cannot directly contribute or correct data; instead, updates rely on
aggregated sources curated by corporate contributors.

• Opaque data sources: Portions of the dataset are derived from proprietary tools such as
Meta’s Map with AI, which are not publicly auditable or user-editable, reducing transparency
and trust in the data.

• Questionable data accuracy: In some cases, the dataset includes large numbers of implau-
sible or misplaced entries. For example, the latest dataset (2025-02-19.0) contains thousands
of place entries scattered across the Atlantic Ocean without valid geographic justification (see
Figure 4).

• Update delay and regional imbalance: Real-world changes can take weeks to appear, and
data coverage outside North America and Europe remains incomplete or outdated.

Figure 4: Example of invalid place entries in ocean areas (Overture Maps release 2025-02-19)

2.1.3. Other Map Data Providers
While this project focused exclusively on open and collaborative sources such as Open-
StreetMap and Overture Maps, it is important to acknowledge several prominent commercial
and national mapping platforms that represent the current state of the art in geospatial data:
• Google Maps and Apple Maps provide comprehensive, regularly updated global datasets.

However, their proprietary licensing models impose restrictions on raw data extraction and
integration with open-source workflows.

• Swisstopo, the Swiss Federal Office of Topography, offers authoritative and high-resolution
datasets for Switzerland, predominantly used in governmental and infrastructure contexts.
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The data is available under open licenses, primarily Open Government Data (OGD), with
some high-resolution products requiring specific usage terms and attribution.

• OpenGarmin supplies map data tailored for Garmin devices, often derived from OSM, but
with additional preprocessing for navigation use cases.

Due to licensing restrictions and limited raw data accessibility, these sources were not consid-
ered in the design or implementation of our data pipeline.

2.2. Data Management Technologies
This section provides an overview of modern technologies commonly used in geospatial data
processing. Each tool plays a specialized role in transforming raw spatial data into analysis-
ready formats. Together, they represent a state-of-the-art toolchain for scalable, modular, and
efficient spatial data workflows.

2.2.1. osm2pgsql
osm2pgsql is a widely adopted tool for importing OpenStreetMap data into spatial databases. It
converts .osm.pbf or .osm.xml files into structured tables within a PostgreSQL/PostGIS data-
base. The tool supports two output modes: the traditional PgSQL output with a fixed schema
defined by style files, and the modern Flex output with Lua-based configuration that allows for
fully customizable database schemas and transformations.

Key Features
• Selective tag processing: Enables filtering of OpenStreetMap’s extensive tag set to include

only relevant attributes, reducing database size and complexity.
• Schema customization: Lua scripts allow advanced control over which objects are stored and

how they are structured.
• High-performance ingestion: Designed for fast imports of large-scale extracts.
• Incremental updates: Supports applying .osc diff files for ongoing synchronization.

osm2pgsql is commonly used as the first step in OSM data pipelines, converting raw data into
a relational format ready for spatial querying and further transformation. [9], [10]

2.2.2. PostgreSQL / PostGIS
PostgreSQL is a mature, open-source relational database management system (RDBMS).
Extended with PostGIS, it evolves into a powerful spatial database with comprehensive capa-
bilities for the storage, retrieval, and analysis of complex geospatial data structures. [11]

PostGIS adds native geometry types (e.g., POINT, LINESTRING, POLYGON) and over 300
spatial functions for filtering, measuring, and transforming geographic features.

Key Features
• Spatial indexing: R-tree–based GiST indexes for efficient spatial queries.
• Advanced SQL support: Complex joins, aggregates, and filtering logic for spatial and non-

spatial data.
• Standards-compliant: Follows OGC and SQL/MM standards for spatial operations.
• Extensive ecosystem: Integrates well with tools like QGIS, GDAL, and Python (e.g., GeoPan-

das).

PostGIS often serves as a central staging area in geospatial workflows, supporting both heavy
transformations and exploratory analysis prior to conversion into optimized formats such as
GeoParquet. [12]
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2.2.3. DuckDB
DuckDB is an in-process SQL OLAP database optimized for analytical workloads. It is designed
for simplicity, speed, and seamless integration with modern data science workflows. Unlike
traditional databases, DuckDB operates entirely within the host process (e.g., Python, R, or
command-line scripts), eliminating the need for a separate server. [13]

Key Features
• Columnar storage: Efficient for analytical scans and aggregations over large datasets.
• In-process execution: Minimal setup, fast startup, and low overhead.
• SQL compatibility: Supports complex queries, joins, CTEs, and window functions.
• Cloud and file system integration: Reads directly from local files and cloud storage (e.g., S3),

including .parquet, .csv, and .json.
• Spatial extension: Adds support for spatial data types and functions, including reading and

writing various geospatial formats via GDAL [14].

DuckDB is particularly well-suited for transforming and exporting large spatial datasets into
columnar formats like GeoParquet, and is gaining traction as a lightweight alternative to Spark
or PostgreSQL for analytical tasks.

2.2.4. Other Technologies
Beyond the core tools described above, several alternative technologies are used in modern
geospatial data pipelines. These tools are widely recognized for their capabilities and are
commonly deployed in production environments for specialized use cases.

• Osmium is a high-performance C++ library and command-line toolset for working with
OpenStreetMap data . It provides efficient, low-level access to OSM data structures (nodes,
ways, relations, and changesets) and supports reading and writing various OSM file formats.
The library is designed for performance and memory efficiency when processing large OSM
datasets, making it well-suited for custom preprocessing, filtering, and format conversion
tasks. Osmium is particularly valuable for scenarios requiring high-performance processing
or tight integration with compiled applications. [15]

• Apache Sedona (formerly GeoSpark) is a distributed spatial processing framework that
extends Apache Spark and Apache Flink with spatial data types and operations. It provides
distributed spatial datasets and Spatial SQL for large-scale geospatial analytics. The frame-
work supports various spatial data formats including GeoParquet, Shapefile, WKT, and WKB,
and includes spatial indexing and query optimization for distributed environments. While
primarily designed for big data scenarios, Sedona also offers local execution modes for
development and testing. [16]

2.3. Standards
This section outlines key data standards governing geospatial data storage, exchange, and pro-
cessing. These formats define how spatial features and attributes are encoded, compressed,
and accessed, enabling interoperability across tools, libraries, and platforms.

2.3.1. Parquet
Apache Parquet is a columnar storage format widely used in modern data engineering and an-
alytical workflows. It organizes data into row groups, column chunks, and data pages, enabling
high-performance access patterns particularly suited for analytical workloads. This architecture
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enables independent compression and encoding of each column, thereby optimizing both
performance and storage utilization. [17]

A defining characteristic of Parquet is its comprehensive metadata framework. Beyond data
storage, it maintains detailed structural information across multiple levels, including min/max
statistics at the row group and column chunk levels.These metadata components enable
predicate pushdown and data skipping, allowing query engines to bypass irrelevant data during
execution, significantly improving query performance.

Parquet supports primitive types (e.g., int32, float, boolean) and extensible logical types,
allowing for semantic richness without compromising structural simplicity.

2.3.2. GeoParquet
GeoParquet is an extension of the Apache Parquet columnar storage format, purpose-built
for geospatial data. It combines the performance and compression benefits of Parquet with
metadata and geometry support essential for spatial analytics. As a result, GeoParquet has
emerged as a high-performance alternative to legacy formats such as GeoJSON and Shapefile,
and serves as a cornerstone for modern, cloud-native geospatial workflows. [18]

Key Features
• Geometry Column Support: Spatial data is stored in dedicated geometry columns, typically

encoded as Well-Known Binary (WKB), Well-Known Text (WKT), or GeoArrow. In contrast,
standard Parquet treats such data as generic binary or string types without spatial awareness.

• Geospatial Metadata: GeoParquet embeds metadata describing geometry types, coordinate
reference systems (CRS), bounding boxes, etc. This metadata, standardized by the Open
Geospatial Consortium, enables geospatial tools to interpret and process spatial data accu-
rately, addressing a limitation of standard Parquet.

• Spatial Query Optimization: Leverages Parquet’s columnar storage to enable selective ac-
cess to only the required attributes, minimizing I/O operations. Further enhanced by bounding
box metadata and spatial indexing hints that allow query engines to skip irrelevant row groups
or pages, significantly improving spatial query performance.

• Interoperability: GeoParquet integrates seamlessly with geospatial libraries and tools like
GeoPandas, DuckDB (with the spatial extension), Apache Sedona, and QGIS, enhancing its
utility in a variety of GIS workflows.

• Cloud and Big Data Compatibility: Like Parquet, GeoParquet is optimized for cloud-native
environments (e.g., S3) and distributed processing frameworks, leveraging Parquet’s colum-
nar efficiency and compression.

GeoParquet’s enhancements and compatibility with the broader Parquet ecosystem have
made it the preferred format for scalable, portable, and maintainable geospatial data pipelines.

Anatomy of a GeoParquet File
The structure of a GeoParquet file builds on Parquet’s hierarchical organization while adding
support for geospatial data. At the top level, a GeoParquet file consists of one or more row
groups, each containing column chunks for all columns including the geometry data (e.g.,
storing Points). The file metadata includes a 'geo' key containing a JSON object with version
information, primary geometry column designation, and a detailed columns object. This object
specifies various geometry column properties such as encoding, geometry types, bounding
box, etc. This enables spatial query optimizations and correct interpretation of the spatial data.
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Figure 5: Anatomy of a GeoParquet File

GeoParquet’s influence in Geospatial Processing
GeoParquet represents a paradigm shift from traditional database-centric geospatial process-
ing to a cloud-native approach. This transformation addresses key limitations of conventional
systems while offering new advantages.

Traditional Database Challenges:

• Infrastructure Overhead: Requires persistent database servers with 24/7 operation, leading
to continuous cloud/hardware expenses.

• Operational Complexity: Demands specialized expertise for maintenance, optimization, and
performance tuning.

• Scaling Challenges: Vertical scaling hits hardware limits while horizontal scaling introduces
data partitioning complexity.

• Resource Intensive: Complex spatial operations on large datasets require significant compu-
tational resources.

GeoParquet Advantages:

• Cloud-Native Architecture: Utilizes object storage (e.g., S3) without managed database
services, being more cost-effective and easier to operate.

• Optimized Query Performance: Leverages columnar storage and filter pushdown, allowing
modern query engines like DuckDB to deliver SQL-like querying.

• Simplified Operations: Eliminates traditional database administration overhead while main-
taining robust query capabilities through standardized file formats.

This approach makes geospatial processing more accessible and cost-effective, particularly
for read-heavy analytical workloads. The combination of file-based storage with database-like
querying addresses the needs of modern geospatial data workflows.

2.3.3. Other Standards
Beyond GeoParquet, several established and widely supported geospatial formats and stan-
dards play a key role in data exchange and interoperability.
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• GeoJSON is a text-based format built on JSON for encoding geographic features like points,
lines, and polygons. It is easy to use, human-readable, and well-supported in web mapping
and APIs. However, it is inefficient for large datasets due to its verbosity and lack of binary
or columnar optimization. [19]

• Shapefile format, developed by Esri, remains one of the most used vector formats in GIS.
Despite lacking modern features like coordinate metadata or efficient storage, its widespread
support across tools like QGIS and ArcGIS secures its ongoing relevance, particularly in
legacy systems. [20]

• SpatioTemporal Asset Catalog (STAC) is an open specification that standardizes the
description of geospatial data, enabling interoperable discovery and access to assets in
cloud-native workflows. It uses a JSON-based format to organize spatiotemporal metadata,
simplifying data management and integration. This structure ensures efficient search and
compatibility across diverse platforms and tools. [21]

2.4. Data Access Tools
A variety of tools support accessing, querying, and visualizing OpenStreetMap and Overture
Maps datasets. These tools facilitate cloud-native workflows and enable both local and remote
data exploration in modern GIS environments.

2.4.1. QGIS
QGIS is a leading open-source desktop GIS application used for editing, visualizing, and
analyzing geospatial data. Supporting a wide variety of formats, it features a strong plugin
ecosystem for integrating external data sources such as OpenStreetMap or cloud-hosted
datasets.

The GeoParquet Downloader Plugin allows QGIS to access GeoParquet files stored in cloud
object storage, such as AWS S3. Users can specify a public or signed URL pointing to a
GeoParquet file and load spatial features directly into QGIS. It supports spatial filtering, allowing
users to view only relevant slices of large datasets such as Overture Maps. Integration with
QGIS’s core functionality ensures full support for styling, querying, and combining layers in a
map project. [22]

2.4.2. DuckDB
DuckDB excels at querying remote GeoParquet files directly via HTTP(S) and S3 paths. Its
spatial extension enables users to perform complex geospatial operations including filtering,
aggregation, and spatial joins without downloading entire datasets. This makes DuckDB partic-
ularly suitable for cloud-native workflows that demand fast, columnar access to large geospatial
datasets.

DuckDB’s efficiency stems from several architectural features. It automatically recognizes Hive-
style directory structures (e.g., /theme=places/country=CH), enabling partition pruning which
allows skipping entire directory trees that don’t match the query conditions. This is particularly
valuable for geographically distributed datasets, as it significantly reduces I/O operations.

Filter pushdown further enhances performance by evaluating predicates at the storage level
before loading data into memory. When combined with GeoParquet’s spatial indexing, this
ensures that only relevant row groups are processed, rather than scanning entire files. The
columnar storage format further optimizes performance by allowing direct access to specific
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attributes without reading entire rows, which is especially beneficial for analytical queries that
typically operate on column subsets. [23]

Together, these features make DuckDB a powerful tool for cloud-native geospatial data
processing, offering an optimal balance between file-based storage flexibility and traditional
database query capabilities.

2.4.3. Other Tools
The following tools complement the main data access solutions, offering specialized function-
ality for working with geospatial data in various contexts.

• ogr2ogr is a command-line utility from the OGR Simple Features Library (part of GDAL)
that specializes in vector data conversion and processing. It enables format-to-format trans-
formations (supporting 200+ formats), coordinate system transformations, attribute filtering,
and spatial operations. While it leverages GDAL’s drivers, including the Parquet driver for
GeoParquet support, ogr2ogr specifically provides the command-line interface for these
operations, making it particularly useful for scripting and batch processing of geospatial data.
[24], [25]

• Overpass Turbo is a web interface for the Overpass API that allows users to craft and
execute custom spatial queries against OpenStreetMap data. Results can be visualized
interactively and exported in formats like GeoJSON. Useful for lightweight, ad hoc data
extraction. [26]

• QuickOSM Plugin provides querying OSM data via the Overpass API. It allows tag-based
filtering and bounding box constraints, but relies on an external API and is more suited for
exploratory, small-scale use cases. [27]

• OvertureMaestro is a Python library built on PyArrow that simplifies working with Over-
tureMaps data. It provides a high-level interface for processing the dataset, supports
multiprocessing, and exports to GeoParquet. [28]

• parquet-wasm is a WebAssembly-based library that enables reading Parquet and GeoP-
arquet files directly in the browser. Ideal for edge computing, offline scenarios, or browser-
based geospatial apps that need local, lightweight access to structured data. [29]
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3. Requirements
Due to the autonomous, server-side nature of the pipeline, a detailed use case diagram was
not required. The system runs without direct user interaction, processing OpenStreetMap
(OSM) data and publishing it in GeoParquet format for geospatial analysts. Instead of modeling
interactions, the thesis focuses on functional and non-functional requirements to describe the
system’s expected behavior and performance.

3.1. Actors
• Geospatial Analysts: professionals who specialize in analyzing spatial data to extract

meaningful insights about the world. They possess strong domain knowledge and are skilled
in using geospatial tools and libraries. Their primary focus is on analyzing, interpreting, and
visualizing data rather than managing infrastructure.

• Data Engineers: technical experts who are responsible for the maintenance and develop-
ment of the pipeline. They are skilled in writing code and have a deep understanding of
computer systems. They are responsible for ensuring that the pipeline is running smoothly
and that the data is being processed correctly.

3.2. Functional Requirements
Following are the functional requirements of the system in the form of user stories:

ID FR-1
Actor Geospatial Analyst
Priority High
StoryPoint As a geospatial analyst, I want to access OSM data for the

D-A-CH-LI region pre-processed in GeoParquet, so that I
can begin my analysis immediately without handling
complex data transformations.

Acceptance Criteria The data is available in the GeoParquet format.

ID FR-2
Actor Geospatial Analyst
Priority High
StoryPoint As a geospatial analyst, I want to query the OSM data using

tools like QGIS and DuckDB, so that I can leverage my
existing skills and workflows to extract insights efficiently.

Acceptance Criteria The data can be queried with:
• QGIS
• DuckDB

Optional:
• PostGIS
• Python / Jupyter Notebooks
• Browser with parquet-wasm
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ID FR-3
Actor Geospatial Analyst
Priority High
StoryPoint As a geospatial analyst, I want to receive regular updates to

the D-A-CH-LI OSM dataset, so that my analyses reflect the
most current geospatial information available.

Acceptance Criteria The data must be updated weekly. Optionally, the data is
updated daily.

ID FR-4
Actor Geospatial Analyst
Priority Low
StoryPoint As a geospatial analyst, I want access to usage examples,

release information, and documentation, so that I can
quickly understand how to work with the GeoParquet files in
my tools.

Acceptance Criteria Usage examples, release information, as well as
documentation of the schema are provided on a static
website.

ID FR-5
Actor Data Engineer, Geospatial Analyst
Priority High
StoryPoint As a data engineer and geospatial analyst, I want the

schema of the data to be compatible with Overture Maps
(themes Places and Divisions), so that I don’t have to learn
a new schema and can use my existing knowledge.

Acceptance Criteria The schema is compatible with Overture Maps (themes
Places and Divisions).

ID FR-6
Actor Data Engineer
Priority High
StoryPoint As a data engineer, I want to process OSM data efficiently

using Python-based tools, so that I can leverage a familiar
ecosystem to build and maintain the Data Processing
pipeline.

Acceptance Criteria The focus of the pipeline is on Python-based tools, with
optional other languages, if necessary.
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ID FR-7
Actor Data Engineer
Priority Low
StoryPoint As a data engineer, I want to monitor the processing time

and performance of the pipeline, so that I can ensure it
meets the sub-24-hour processing goal for D-A-CH-LI.

Acceptance Criteria The processing time and performance of the pipeline can
be monitored.

ID FR-8
Actor Data Engineer
Priority Low
StoryPoint As a data engineer, I want the pipeline to store each output

dataset with a unique version number and allow for easy
reversion to an older dataset version if quality checks fail,
so that I can maintain a history of the data and revert to
previous versions if needed.

Acceptance Criteria Each output dataset is stored with the date of the release as
version number and can be reverted to an older version if
quality checks fail.

ID FR-9
Actor Data Engineer
Priority Low
StoryPoint As a data engineer, I want comprehensive documentation of

the pipeline architecture and processes, so that future
maintainers can understand and improve the system.

Acceptance Criteria Comprehensive documentation of the pipeline architecture
and processes is provided in the README of the Git-
Repository.

3.3. Non Functional Requirements
ID NFR-1
Title Processing Time
Requirement The Data Processing pipeline must process the full D-A-

CH-LI OSM dataset into GeoParquet format in under 24
hours, ensuring timely availability of updated data.

Acceptance Criteria The pipeline processes the full D-A-CH-LI OSM dataset into
GeoParquet format in under 24 hours, measured from the
start to the end of the pipeline.
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ID NFR-2
Title Geographic Scalability
Requirement The pipeline architecture must be designed to scale from

Switzerland-sized datasets to planet-wide OSM data with
minimal redesign.

Acceptance Criteria The pipeline demonstrates linear scalability when adding
countries and the system design includes parallel
processing capabilities to handle potential planet-scale data
with appropriate infrastructure scaling.

ID NFR-3
Title Query Performance
Requirement A typical client query like “all restaurants in D-A-CH-LI” must

take no longer than 3 minutes.
Acceptance Criteria A DuckDB query, filtering for all restaurants in the region D-

A-CH-LI takes no longer than 3 minutes.

ID NFR-4
Title Access Controls and Security
Requirement Access Controls and security features are included.
Acceptance Criteria The only access to the data is through the static website

and the S3-compatible endpoint. S3 prefixes outside of the
release prefix must not be publicly accessible.
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4. Design
This chapter outlines the technical design of the Cadence Maps data pipeline, structured
into two sections. The first section covers the architecture of the system through established
software engineering models, including data flow representations and C4-based architectural
diagrams. The second section documents the architectural decisions that shaped the system,
presenting the evaluation of technologies and design choices that led to the final architecture.
This includes the rationale behind selecting specific tools and patterns to ensure modularity,
reproducibility, and performance, based on the project’s requirements.

4.1. Architecture
The architecture of the Cadence Maps data pipeline follows a modular and containerized de-
sign. It separates concerns into well defined functional units, ensuring scalability and reusability.
This section describes the high-level data flow, the system context, and the technical container
structure based on the C4 model.

4.1.1. High-Level Data Flow
The data flow diagram (Figure 6) provides an overview of how data traverses through the
processing pipeline and which containers contribute to the overall system functionality.

Figure 6:  Data Flow Diagram

The pipeline follows the classic ETL pattern:
• Extract: OpenStreetMap data in .pbf format is downloaded from Geofabrik or Open-

StreetMap France as a fallback.
• Transform: The data is parsed and saved into a relational database. From there, a converter

module writes it to GeoParquet files.
• Load: The transformed GeoParquet files are stored in an object storage system (MinIO)

which supports S3-like access.

4.1.2. System Context (C4 Level 1)
The system context diagram (Figure 7) outlines the high-level interaction between core actors,
external systems, and the application.
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Figure 7:  System Context Diagram

The architecture involves the following stakeholders:

• Geospatial Analysts access the published GeoParquet datasets via Tools like QGIS or
DuckDB SQL.

• Data Engineers maintain the system via GitLab CI/CD pipelines and contribute updates to
code and configuration

An additional external data source is integrated:

• OpenStreetMap acts as the external raw data source
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4.1.3. Container Architecture (C4 Level 2)
The container architecture diagram (Figure 8) illustrates the technical structure of the system
and the relationships between individual Docker-based components.

Figure 8:  Container Architecture Diagram

To enhance modularity and clarity, containers are grouped by their respective roles within the
pipeline:
• Data Processing Stage
‣ Importer Container: Uses osm2pgsql with Lua mappings to import .pbf data into PostGIS.
‣ Converter Container: Reads from the database and writes partitioned .parquet files using

DuckDB and PyArrow.
• Storage & Serving
‣ Database Container: A PostgreSQL database extended with PostGIS for data storage

between Importer and Converter
‣ MinIO Container: Serves as object storage for GeoParquet and CSV outputs.

• Validation
‣ Validator Container: Performs quality checks on the parquet data using DuckDB and

produces .csv summaries as well as .csv diff files.
• Publishing
‣ Web Container: A NodeJS frontend providing basic access and information.
‣ Caddy Container: A reverse proxy that routes domain-based HTTP traffic to the respective

containers, enabling clean URL mapping and SSL termination.

4.1.4. Reflection on Architecture
The use of Docker for components such as PostgreSQL, MinIO, and Caddy was mainly driven
by the requirement that the pipeline must run on the institute’s infrastructure. Containerization
ensured a reproducible and portable setup across different environments with minimal manual
configuration.

For most production scenarios, however, this level of abstraction may be unnecessary. It is
recommended to use a locally installed PostgreSQL database and run Caddy or a similar
reverse proxy directly on the host system to reduce complexity and simplify debugging.
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4.2. Evaluation
The evaluation section provides the rationale behind key decisions made throughout the
project. It explains why specific technologies and design strategies were chosen and how these
choices align with project requirements. Each subsection addresses a major design dimension
and justifies the selected approach through comparison, reasoning, and contextual relevance.

4.2.1. Architecture Decision: Country-Based Processing
From the outset, the project was scoped to support the D-A-CH-LI region (Germany, Austria,
Switzerland, Liechtenstein). Therefore, a country-based processing approach was the natural
choice. This strategy not only fits the requirement but also enables efficient scaling: each
country can be processed independently and in parallel using dedicated container instances.

A global or continental based transformation would have introduced considerable complexity in
terms of compute resources, processing time, and partitioning strategies. The country-based
approach reduces these concerns and aligns well with a containerized architecture, allowing us
to parallelize imports and conversions while keeping processing time predictable and resource
usage bounded.

Additionally, this modular approach simplifies debugging and validation, since issues can be
traced to a specific region without affecting others.

Table 1 summarizes key advantages and disadvantages of the country-based processing
approach:

Advantages Disadvantages
Country-based • Enables parallel processing per

country
• Simplifies debugging by region
• Scales well as new countries are

added
• Lower memory/compute

requirements
• Users and analysts often want

country-specific views or exports

• Fragmented view for global use
cases

• Disputed borders and territories
are a sensitive matter

Planet-based • Unified global dataset
• Easier for global analysis tasks

• Extremely high memory/CPU
demands

• Longer processing time
• Harder to parallelize cleanly
• Debugging more complex and

risky

Table 1: Comparison of Country-based and Planet-based Processing Approaches

Y - Statement:
In the context of supporting the D-A-CH-LI region, facing requirements for efficient scaling
and manageable processing, we decided for a country-based transformation strategy
and neglected global or continental based processing, to achieve modularity, paralleliza-
tion and predictable performance, accepting downside of regional fragmentation and
increased orchestration complexity.
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4.2.2. Architecture Decision: Containerization
One of the key architectural decisions was the use of Docker containers to structure the
pipeline. This choice was partially guided by project constraints: the pipeline is expected to
be deployable on the infrastructure of the supervising institute. Containerization ensures porta-
bility, reproducibility, and environment isolation, making it significantly easier to run the entire
setup across different machines with minimal manual configuration. It also aligns with DevOps
best practices and simplifies orchestration for CI/CD pipelines.

Each core function (import, convert, storage and validation) is encapsulated within its own
Docker container, enabling modular development and execution. This separation of concerns
supports maintainability and deployment flexibility. In particular, the architecture supports hori-
zontal scaling by design: the import and transformation steps for each country are executed
in parallel using separate instances of the importer container and converter container. This
approach significantly reduces processing time and prepares the system for future geographic
expansion.

Y - Statement:
In the context of deploying the pipeline on external institutional infrastructure, facing
requirements for portability and reproducibility, we decided for Docker-based container-
ization and neglected direct host-based or virtual machine–based setups, to achieve
isolated, modular, and scalable execution, accepting downside of added orchestration
complexity and container overhead.

4.2.3. Comparison of Importer Tools
The transformation of OSM data into the desired format is a complex task, as the OSM
schema is not directly compatible with the Overture Maps schema. OSM’s primitive data model,
which consists solely of nodes, ways, and relations, requires the construction of geometry
types (points, lines, polygons, etc.). Additionally, to make it fully compatible with the Overture
Maps schema, the OSM tagging system must be transformed to match the Overture Maps
schema. This involves mapping OSM’s free-form key-value pairs to the structured schema
while preserving essential attributes. Current tooling support for this specific transformation
remains limited, with only a few specialized solutions available.

Two primary tools were evaluated for processing OSM PBF files, each with distinct architectural
approaches:

• osm2pgsql
‣ Operates in flex mode with custom Lua scripts to define table schemas and data transfor-

mations
‣ Directly streams OSM data into a PostgreSQL/PostGIS database
‣ Provides native support for spatial operations and complex geometries
‣ Enables SQL-based querying and post-processing of the imported data

• PyOsmium
‣ Python interface to the high-performance C++ Osmium library
‣ Loads and processes OSM data in-memory using Python data structures
‣ Stores results in Pandas DataFrames for further processing
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Performance Benchmark
To assess the performance of the two tools, a benchmark was performed using the small
PBF extract of Liechtenstein. The task was to transform the PBF data into their respective
intermediate formats, implementing an incomplete subset of the Overture Places schema. The
results were as follows:

• osm2pgsql: ≈ 2 seconds
• PyOsmium: ≈ 57 seconds

This test reveals a substantial performance advantage for osm2pgsql, even in its single-
threaded flex mode. While PyOsmium benefits from underlying C++ performance via libosmium,
the overhead from Python-based transformation and geometry handling dominates already for
small datasets.

Summary
Overall, osm2pgsql offers a more robust, maintainable, and performant solution for converting
OSM data, additionally offering the possibility to use SQL-based post-processing workflows.
While PyOsmium provides a Python-based alternative that seems suitable for small tasks, its
performance limitations make it less suitable for large-scale production use.

The tool chosen for production use was osm2pgsql with Lua flex mode, due to its superior
performance, spatial operation capabilities, and compatibility with SQL-based post-processing
workflows. It is well known in the geospatial community and therefore shouldn’t be a barrier for
a data engineer to maintain the pipeline.

4.2.4. Converter Tooling
The second architectural pillar of the pipeline is the Converter, which is responsible for extract-
ing spatial data from PostgreSQL (populated by the importer) and exporting it as partitioned
GeoParquet files.

A core design consideration for the converter was the partitioning strategy. Partitioning is used
to split large datasets into smaller, manageable files, such that spatial queries using bounding
boxes (BBOX) touch as few files as possible. Since GeoParquet files are typically written
once and queried often, the initial partitioning must be efficient, scalable, and maximize spatial
locality. The choice of tools, libraries, and techniques in the converter was therefore heavily
influenced by the partitioning strategy adopted.

Evaluated Partitioning Methods
This evaluation examines partitioning strategies for dividing spatial data into separate files.
These strategies are grouped into three conceptual categories, with representative algorithms
implemented for each. A detailed evaluation of these methods, including comprehensive
performance metrics and analysis, is available in the appendix, Section 13 (see page 68).

1. Space-Filling Curves

Methods that map multi-dimensional data to a single dimension while preserving spatial
locality, ideal for creating a linear ordering of spatial data.

• Hilbert Curve: Implemented natively in DuckDB, this approach maps 2D coordinates to
a 1D index using space-filling curves. While offering perfect row distribution, it produces
irregular partition shapes unsuitable for efficient spatial queries.
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2. Recursive Space Subdivision

Techniques that recursively split the space into smaller, manageable regions, typically using
axis-aligned or grid-based approaches.

• KD Tree: Implemented using a DuckDB common table expression (CTE) with recursive
median calculations, this method performs alternating axis splits (longitude/latitude). It
provides clean rectangular partitions with excellent spatial locality (no bounding box
overlap) and near-perfect row distribution, though it requires specifying the number of
splits rather than target partition sizes.

• KDB Tree: This adaptive variant of KD Tree, implemented in both DuckDB and Sedona,
continues splitting based on row limits. The DuckDB implementation was preferred over
Sedona’s for its better balance and partition shapes, while both maintain excellent spatial
locality with axis-aligned rectangular regions.

• QuadTree: Implemented in Apache Sedona, this method uses recursive quadrant division
to create grid-like rectangular regions, offering good spatial locality with minimal bounding
box overlap.

3. Hierarchical Geospatial Tiling Global tiling systems that provide predefined, hierarchical
spatial partitions, particularly well-suited for planet-scale data.

• GeoHash: Implemented using Sedona’s native support, this method produces non-
contiguous regions when hash-regions are merged, leading to significant bounding box
overlap and poor spatial locality.

• S2: Using the s2geometry community extension via DuckDB, this method provides good
partitions with spherical quadrilateral tiling. While showing great spatial organization, it
can produce small partitions at cell boundaries.

• H3: Implemented using both DuckDB and PostgreSQL’s H3 extension, this hexagonal
global tiling offers good spatial organization with adaptive resolution, though it may
produce small partitions at boundaries.

After initial testing, the following partitioning approaches were eliminated before proceeding to
scaling tests:
• Hilbert Curve: Produced poor partition shapes unsuitable for spatial queries despite excel-

lent row distribution.
• KD Tree: Required specifying the number of splits rather than target partition sizes. Elimi-

nated in favor of KDB Tree.
• Sedona KDB Tree: DuckDB’s implementation provided better-balanced partitions with faster

performance.
• GeoHash: Poor partition shapes due to diagonal merges of regions leading to significant

bbox overlap and non-contiguous partitions.

Partitioning Methods Scaling Analysis
For the scaling analysis, the research focused on the four methods that demonstrated the best
partition quality:
• S2 (DuckDB)
• KDB Tree (DuckDB)
• QuadTree (Sedona)
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• H3 (PostgreSQL and DuckDB)

The benchmarking utilized a dataset from Switzerland, with additional scaling tests on larger
datasets from Germany and the United States. Results in Figure 9 show that DuckDB-based
methods (KDB Tree and S2) consistently outperform alternatives.

Figure 9: Partitioning Algorithm Scaling Comparison

Partitioning Methods Query Tests
Notably, query performance showed minimal variation between methods, confirming that
partitioning strategy primarily impacts preprocessing efficiency rather than runtime query per-
formance.

Summary
The converter’s design prioritized efficient spatial data organization in GeoParquet files.
The evaluation of seven partitioning methods across three categories (Space-Filling Curves,
Recursive Space Subdivision, and Hierarchical Geospatial Tiling) led to the development of a
KDB Tree implementation using DuckDB as the primary tool. This solution provides optimal
partitioning for country-based datasets and demonstrated superior performance in terms of
preprocessing efficiency and partition quality compared to alternative approaches.

The KDB Tree implementation, built on top of DuckDB, establishes a robust foundation for
processing OSM data into spatially optimized GeoParquet files. While S2 (also available
through DuckDB) remains a strong alternative for global-scale processing, the KDB Tree
implementation offers the best balance of performance and partition quality for regional focus.

4.2.5. Converter Implementation Design
This section documents the key design decisions for the OSM GeoParquet converter, focusing
on file-internal structure and metadata handling to ensure optimal performance and accessi-
bility.

35 of 100



Sorting within Partitions
While file-level partitioning improves query performance by reducing the number of files that
need to be read, it does not address the organization of data within each partition file. To
optimize spatial queries further, the data within each partition file must be sorted based on
spatial proximity.

This is achieved through the use of space-filling curves, which map 2D spatial data into a 1D
space while preserving locality. The two most common approaches are the Hilbert curve and
Z-Order curve. Between these, the Hilbert curve is generally preferred for its superior spatial
locality and balance, which leads to better query performance. [30]

An alternative approach involves using the Z-Order curve with the bigmin optimization. The
bigmin optimization improves Z-Order performance by enabling efficient skipping of irrelevant
regions during range queries. It works by calculating the next relevant Z-Order value that falls
within the query range, allowing the system to jump over large sections of irrelevant data.
However, this approach comes with several drawbacks:

1. It requires additional calculations for Z-Order curve values
2. It needs an external library for the bigmin jump optimization
3. It necessitates an additional column in the GeoParquet file
4. It introduces complexity in the processing pipeline

Given these considerations, the Hilbert curve was selected for its simplicity and effectiveness.
The Hilbert curve provides good spatial locality out-of-the-box, and the filtering can be efficiently
handled by the row group min/max statistics in the Parquet files. DuckDB’s native sorting
capabilities are utilized to sort the data within each partition by its Hilbert index, ensuring optimal
spatial clustering.

GeoParquet Metadata Handling
The GeoParquet export process was designed to ensure proper handling of spatial metadata.
Although DuckDB offers native support for GeoParquet export, it currently lacks the capability to
include certain metadata attributes that are considered essential for effective spatial data usage
and optimization. Specifically, the following metadata elements were identified as important:

• Coordinate Reference System (CRS) Information: This attribute encodes the spatial refer-
ence system associated with the dataset, enabling accurate interpretation of spatial coordi-
nates and facilitating transformations between different projections.

• Covering Metadata: This attribute references the bounding box columns corresponding to
the geometry. Its inclusion supports efficient spatial queries by enabling spatial indexing and
filtering.

While the GeoParquet specification does not require these metadata attributes, their inclusion
enhances the utility, correctness, and performance of spatial datasets.

The initial implementation involved exporting the dataset using DuckDB’s native Parquet func-
tionality, followed by a post-processing step with PyArrow to inject the necessary metadata.
However, this two-step process introduced additional complexity and increased input/output
operations.

To address these limitations, the export workflow was ultimately restructured to utilize PyArrow
exclusively for the entire file-writing process. This approach simplifies the export pipeline,
reduces I/O overhead, and ensures the inclusion of relevant metadata.

36 of 100



STAC Consideration
The SpatioTemporal Asset Catalog (STAC) standard was evaluated as a potential solution for
cataloging the generated GeoParquet files. STAC provides comprehensive metadata manage-
ment and discovery capabilities for geospatial assets through a standardized specification.
However, after careful consideration, it was determined that implementing STAC would intro-
duce unnecessary complexity relative to the project’s requirements and scope.

Key considerations that led to this decision include:
• The provided data already has a well-defined, consistent organization with clear naming

conventions
• The additional metadata management overhead of STAC would not provide sufficient value

given the project’s scale
• The cloud-optimized GeoParquet format already includes self-describing metadata and effi-

cient query capabilities

While STAC offers robust cataloging features, the project’s current needs are sufficiently met
by the existing GeoParquet metadata and file organization.

4.2.6. Validation
One of the initial project requirements was to establish a mechanism ensuring data integrity
and protection against potential vandalism within the dataset. During a design consultation
with the academic advisor, the feasibility of implementing such validation mechanisms was
thoroughly evaluated. It was concluded that comprehensive vandalism detection and mitigation
would necessitate advanced logic or artificial intelligence based approaches, which would
have exceeded the defined scope of this project and introduced considerable maintenance
complexity.

An external service, Clearance¹, was considered for this purpose. Clearance is an open-source
validation tool tailored for OpenStreetMap data, utilizing rule-based and statistical anomaly
detection techniques to identify suspicious edits. Despite its capabilities, the integration and
sustained operation of such a system would require administrative resources and operational
oversight that could not be guaranteed within the institutional constraints.

As a practical compromise, a lightweight validation prototype was implemented. This mecha-
nism performs consistency checks on key administrative names such as “Rapperswil” or “St.
Gallen” across subsequent dataset versions. Given that such names are typically stable over
time, any unexpected variation is interpreted as a potential indicator of vandalism.

If discrepancies are detected, the affected dataset is not released immediately. Instead, it is
retained within a staging directory on the MinIO object storage system. A manual review and
approval process—executed via a dedicated GitLab pipeline—must then be conducted before
the data is promoted to the release state. This hybrid approach balances operational simplicity
with essential quality assurance for critical regional data.

4.2.7. OSM ID Handling and GERS ID Decision
OpenStreetMap’s nodes, ways, and relations share the same ID space, meaning a node, way,
and relation can all have the same numeric ID, which prevents their use as globally unique
identifiers. [31] The Global Entity Reference System (GERS) by the Overture Maps Foundation

¹https://clearance.teritorio.xyz/
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was considered, which provides 128-bit identifiers that remain stable across data releases and
updates [32].

While GERS offers robust ID stability, its implementation would require maintaining a compre-
hensive history of object versions and complex conflation logic—requirements that exceed the
scope of our stateless, extract-based processing model.

Instead, the following three practical strategies based on recommendations from giswiki.ch
were considered [33]:

1. Prefixed IDs Encode object type using a prefix:
• N123456 for node
• W789012 for way
• R345678 for relation

2. Custom osm_id with separate type field
Store the numeric OSM ID in a dedicated osm_id column and provide an additional field
(e.g., osm_type) to indicate the entity type. This improves filtering and indexing performance
in SQL-based systems.

3. Bit-Shifted IDs
Encode both type and ID in a single numeric value:
• node_id = osm_id * 10
• way_id = osm_id * 10 + 1
• relation_id = osm_id * 10 + 4

The prefixed ID format was selected for its optimal balance of human readability, technical sim-
plicity, and compatibility with existing OSM tooling, while avoiding the infrastructure overhead
of GERS.
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5. Implementation
This chapter outlines the most relevant implementation decisions made during the development
of the system. Rather than documenting every technical detail, it focuses on the key design
trade-offs, configurations, and decisions that influenced the pipeline’s structure and behavior.

5.1. Pipeline Architecture and Workflow
The system is designed as a modular, cloud-optimized data processing pipeline. Its primary
objective is to convert raw OpenStreetMap (OSM) data into analysis-ready, partitioned GeoP-
arquet files that conform to the schemas defined by OvertureMaps. The process is broken down
into distinct stages, each responsible for one aspect of the transformation, and coordinated via
a GitLab-based CI/CD, started by a schedule job once weekly.

5.1.1. Import Stage
Each pipeline execution starts with importing .osm.pbf extracts from Geofabrik and as a fallback
OSM.FR, using the tool osm2pgsql. This tool parses OSM’s complex graph-based data model
(nodes, ways, and relations) into structured PostgreSQL tables using a custom Lua-based
mapping configuration. Two thematic datasets, places and divisions, are created during this
step, each aligned with the target schema.

Each country is processed in a separate CI/CD job. While osm2pgsql itself does not support
parallel execution in flex mode, the pipeline achieves parallelism by spawning one import job
per country, each targeting a separate PostgreSQL database.

5.1.2. Transformation and Conversion Stage
After import, a dedicated converter component (implemented in Python) connects to the
PostgreSQL/PostGIS database. It extracts the normalized spatial data into DuckDB, applies
spatial partitioning using a K-D-B tree (optimized via Hilbert ordering), and writes the result as
GeoParquet files using PyArrow.

The partitioning is optimized for spatial querying and cloud storage access patterns. The
resulting files are uploaded to a MinIO bucket under the staging/ prefix, using a path structure
that includes the processing date and country code (e.g., staging/2025-06-06/country=CH/
theme=places/…). This structure supports temporal versioning and downstream validation
workflows.

5.1.3. Validation and Release Management
To ensure data quality, a validation pipeline compares the freshly generated dataset with the
latest released version by executing a set of predefined SQL queries. If no differences are
found, the dataset is automatically promoted from staging/ to release/. If differences exist, they
are saved as CSV diffs and made available for manual review.

This mechanism supports DataOps best practices and protects the integrity of the released
dataset. Once validated, the datasets can also be promoted by manually triggering a release
job via the CI/CD interface, offering controlled publication for reviewed outputs.

5.2. Importer
The importer is implemented using osm2pgsql. As defined in the thesis scope, the implemen-
tation of two thematic datasets were required: places (e.g., cities, shops) and divisions (e.g.,
administrative boundaries). These two themes are aligned with the target schemas defined by
Overture.
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To achieve this, the mapping logic was carefully designed to retain compatibility with the defined
schema while ensuring the output is consistent across different countries.

5.2.1. Places Category Mapping
To fulfill the Places theme requirements, a dynamic mapping logic was implemented to assign
structured categories to OSM features based on their tags. This logic is designed to align with
the Overture Places schema, which organizes entities in a hierarchical, multi-level taxonomy.

The implementation loads two CSV files:
• one defining the category hierarchy,

e.g., eat_and_drink > restaurant > italian_restaurant,
• and one mapping OSM tag combinations to category keys,

e.g., amenity=restaurant, cuisine=italian → italian_restaurant.

The function getCategory() matches OSM features against these mappings by checking if
all required tag-value pairs are present in the object. When a match is found, the associated
taxonomy path is returned as a list of category levels, ordered from most specific to general.

Final Schema of categories
Each matched feature includes a categories field of the following structure:

1 {
2     "primary": "italian_restaurant",
3     "alternate": ["restaurant", "eat_and_drink"]
4 }

The primary category represents the most specific match (leaf of the taxonomy), while the
alternate categories represent higher-level categories.

Design Critique and Recommendation
Although the current implementation aligns with the Overture schema by separating the
matched categories into a primary and an alternate field, we identified this as a suboptimal
design for practical usage. The schema only allows a single category match, even though OSM
features can often logically fit into multiple categories. This restriction forces a prioritization that
may not reflect the user’s intent or use case.

Instead, we recommend a simpler and cleaner structure: a single list of ordered categories,
from most specific to general. For example:

1 {
2     "categories": ["italian_restaurant", "restaurant", "eat_and_drink"]
3 }

This format eliminates ambiguity, avoids artificial prioritization, and provides a deterministic,
consistent path for querying and analysis. We have communicated this proposal² as feedback
to the Overture project for potential consideration in future schema revisions.

²https://github.com/orgs/OvertureMaps/discussions/360
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5.2.2. Division mapping subtypes
The Overture Divisions theme is divided into three main types: division, division_area, and
division_boundary. Each type serves a specific purpose in representing administrative bound-
aries and their associated geometries.

Setting the subtype of an administrative division is of fundamental importance, as it determines
how the "hierarchies", "parent_division_id", "capital_division_ids" and "region" proper-
ties of the division type is filled.

A mapping logic was implemented to assign subtypes to OSM administrative boundaries
based on their tags. This logic is designed to align with the Overture Divisions schema, which
organizes administrative entities into a hierarchy of subtypes and classes.

Each type in the divisions theme has specific subtypes or classes and they are described in
the following sections.

Type Division
This type represents the administrative divisions themselves, such as countries, states, or
regions. Geometries are saved as points, which are typically used to represent the centroid or
a point on surface of the division. The division type is used to provide a high-level overview
of administrative entities without detailed geometries.

The official Wiki page for OSM admin_levels [34] was used as a reference and adapted to
align in the best possible way with the actual hierarchy and levels of real-world administrative
boundaries for Switzerland.

Most ways, relations and points that describe a division, defined in the OSM data, have a tag
"admin_level" with a value between 2 and 11. The subtype is solely determined by this tag.
Switzerland uses levels 2-10 but the value 11 is also considered as a valid subtype because
some places were tagged as such in the OSM data.

1 {
2
3   "2": "country",
4   "3": "dependency",
5   "4": "region",
6   "5": "county",
7   "6": "localadmin",
8   "7": "locality",
9   "8": "macrohood",
10   "9": "neighborhood",
11   "10": "microhood",
12   "11": "microhood"
13
14 }

Type Division Area
This type represents the actual geometries of administrative divisions, such as polygons or
multipolygons. It is used to provide detailed spatial information about the administrative areas.

OSM tags can have multiple values since it is a flexible public tagging system. The following
values of the tag "boundary" are used to select which OSM features to include in the divisions
theme:
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1 [
2   "administrative",
3   "local_authority",
4   "political",
5   "special_economic_zone",
6   "state",
7   "province",
8   "region",
9   "district"
10 ]

Type Division Boundary
This type represents the boundaries between administrative division areas, the geometries are
of type line or multiline that define the edges of administrative regions.

Only the boundaries of division areas with a subtype of "country", "region" or "county" are
considered for the division_boundary type.

This ensures that only significant administrative boundaries are included, while smaller or less
relevant boundaries are excluded from this type.

OSM features with missing admin_level
In some cases, OSM features may not have an "admin_level" tag, which would lead to
missing entries in the divisions theme. To address this, we implemented a fallback mechanism
that assigns an "admin_level" based on the "place" tag. If the "admin_level" is missing, the
"admin_level" is determined by the "place" tag value, which can be one of the following:

1 {
2   "country": "2",
3   "county": "5",
4   "megacity": "6",
5   "city": "8",
6   "municipality": "8",
7   "town": "9",
8   "village": "10",
9   "quarter": "10",
10   "suburb": "10",
11   "borough": "10",
12   "hamlet": "11",
13   "city_block": "11"
14 }

Class Field
In addition to the subtype, the Overture Divisions theme defines a class field that categorizes
the administrative divisions into broader classes. This field is derived from the place tag and
provides a high-level classification of the division types.

Overture Maps defines the following classes for the division type:

1 ["megacity", "city", "town", "village", "hamlet"]

Division area and division boundary types can only have "land" or "maritime" tag.
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Class Field Mapping
The class field is derived from the "place" tag in OSM data. If the value of the tag is not one of
the defined classes, the following mapping is applied:

1 {
2   "class": {
3     "municipality": "town",
4     "county": "megacity",
5     "suburb": "village",
6     "quarter": "village",
7     "city_block": "hamlet",
8     "borough": "town"
9   }
10 }

If the "place" tag is not present but the “"admin_level" tag is set, the following mapping is
applied:

1 {
2   "6": "megacity",
3   "8": "city",
4   "9": "town",
5   "10": "village",
6   "11": "hamlet"
7 }

5.3. Converter
The converter is implemented in Python, utilizing DuckDB for spatial SQL queries and PyArrow
for writing the final GeoParquet files.

The process starts by reading spatial data from PostgreSQL into DuckDB. If the dataset
surpasses a certain size, the data is spatially partitioned using a recursive KDB-tree algorithm
implemented in DuckDB SQL. Each partition is then sorted using the Hilbert curve, extracted
from DuckDB and written as a GeoParquet file using PyArrow.

5.3.1. Code Structure
The converter is organized into three Python modules to ensure clarity and maintainability:

• converter.py: This is the main entry point of the converter. It handles the initialization of
the DuckDB connection, loads required extensions, attaches the PostgreSQL database, and
orchestrates the conversion process by iterating over the configured datasets.

• converter_config.py: Contains the ConverterConfig class, which encapsulates all configu-
ration parameters for each dataset, including SQL queries, partition sizes, and output paths.
This file also defines the list of all dataset configurations and shared type definitions.

• converter_logic.py: Implements the core logic for converting, partitioning and writing the
data to GeoParquet files.

This modular structure separates configuration, orchestration, and data processing logic,
making the codebase easier to extend and maintain.
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5.3.2. GeoParquet Parameter Optimization
The optimization of GeoParquet output files requires tuning of two parameters: the partition size
(rows per file) and the row group size (rows per internal Parquet unit). As of the time of writing,
the geospatial community has not established formal best practices for these parameters,
research and experimentation to determine optimal values is still ongoing.

To determine the optimal parameter configuration, a series of benchmarking experiments
were conducted, focusing on query performance across varying file and row group sizes. The
objective was to balance file size, row count, and read efficiency.

The testing process included:
1. Estimating row sizes through analysis of representative data samples
2. Measuring query performance across datasets ranging from 10′000 to 8′000′000 rows
3. Evaluating row group sizes between 50′000 and 200′000 rows
4. Recording and comparing average query execution times

Based on the results, the following configurations were established (Table 2):

Theme/Type Max Rows/Partition Row Group Size
places/place
divisions/division

10′000′000 100′000

divisions/division_area 100′000 1′500
divisions/
division_boundary

1′000′000 10′000

Table 2: GeoParquet Parameter Optimization

These parameters address significant variations in memory usage between different data
types. For instance, point geometries in the places/place type demonstrate substantially
lower memory requirements compared to the complex polygon geometries in divisions/
division_area. Consequently, partition sizes were adjusted to maintain individual file sizes
within an optimal range of approximately 500 MB to 1 GB, ensuring efficient data processing
while accommodating the inherent characteristics of each dataset.

5.4. Validation Logic
To address the requirement of ensuring data consistency and detecting potential vandalism in
administrative names, a lightweight validation prototype was developed. The validation logic
is implemented in Python using DuckDB for querying and MinIO for dataset access and diff
storage.

The system compares the current staging dataset against the most recent released dataset
by executing a predefined set of SQL queries (e.g., selecting primary names for cities, towns,
or villages). Each query template includes placeholders for both the dataset states (staging or
release) and the processing date. These placeholders are dynamically resolved at runtime.

For each query:
• The results from the current and previous dataset are fetched and sorted.
• A row-level diff is calculated using pandas to detect any discrepancies.
• If differences are found, a CSV diff file is created and uploaded to MinIO under validation/
{date}/diffs/.
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Additionally, a summary.csv file is generated containing the mismatch count for each query. If
no differences are detected across all queries, the staging dataset is automatically promoted
to the release directory. Otherwise, the files remain in staging, and manual approval via CI/CD
is required to proceed.

This approach allows targeted validation of high-confidence attributes such as administrative
names.primary, which are stable over time and likely to expose unintended changes. The
system can be extended with more queries or adapted to check other themes in the future.

5.5. Performance

5.5.1. Database configuration
The Database is minimally configured optimized for the pipeline’s requirements. While the
osm2pgsql V2 documentation provides recommendations for PostgreSQL server tuning [35],
initial testing revealed stability issues when processing larger datasets such as Germany
or France. The recommended settings resulted in premature connection termination during
osm2pgsql operations, leading to incomplete data imports.

The deployment environment consists of a server equipped with 8 CPU cores and 128 GB of
RAM, enabling substantial memory allocation to PostgreSQL. The following configuration was
implemented to balance performance and stability:

1 shared_buffers=32GB
2 work_mem=32GB
3 temp_buffers=2GB

5.5.2. Parallelism via Pipeline Jobs
A significant limitation of osm2pgsql in flex mode is it’s lack of multi-threaded or multi-processor
execution, which leads to performance bottlenecks when importing large .pbf datasets. To
address this constraint, parallelism was introduced at the orchestration level rather than within
the tool itself.

The GitLab CI/CD pipeline leverages a matrix job setup, where each country is processed
independently in a separate job. Each job is configured with its own .pbf download URL, country
code, and database name.

Instead of deploying separate PostgreSQL instances, a single PostgreSQL server is reused,
and a dedicated database is created for each country (e.g., Germany, Switzerland, Austria,
etc.). This ensures isolation between runs while keeping the infrastructure lightweight and
manageable.

This setup enables the system to process multiple countries in parallel, reducing the overall
runtime of the import stage significantly. While introducing some complexity in terms of man-
aging multiple databases, it offers an effective and scalable solution to the single-threaded
limitation of osm2pgsql.

5.5.3. Postprocessing in pgsql instead of osm2pgsql
Osm2pgsql processes OSM data in a specific sequence: first nodes, then ways, and finally
relations [36]. This sequential processing means that when nodes and ways are being handled,
their potential membership in relations remains unknown. For features requiring relation context
(e.g., 'hierarchies', 'parent_division_id', 'region', etc.), osm2pgsql flex mode offers a

45 of 100



“reprocessing” step. During this step, the Lua function select_relation_members() is invoked for
each relation, allowing the specification of which nodes or ways require reprocessing with rela-
tion context. The implementation can utilize built-in helpers like osm2pgsql.way_member_ids() or
custom selection logic as needed.

The initial implementation of relation member selection revealed substantial performance
limitations, particularly when reprocessing extensive datasets such as those for Germany and
France.

To address these performance constraints, the postprocessing logic was moved into a dedi-
cated SQL script that executes after the osm2pgsql import operation. This script uses PostGIS
spatial functions, specifically ST_Contains and ST_PointOnSurface to determine the relationships
between features. This modification presents itself as significantly faster and more efficient than
the osm2pgsql reprocessing step, as it leverages PostgreSQL’s optimized spatial indexing and
query execution capabilities.

5.6. Security
To ensure the security and data integrity of the pipeline, several measures were implemented
as described below.

Pipeline variables

The pipeline uses GitLab CI/CD variables to store sensitive information such as database
credentials, MinIO access keys, and other configuration parameters. These variables are
encrypted and only accessible to the pipeline jobs that require them. This approach prevents
hardcoding sensitive information in the codebase and prevents credential exposure in logs or
source control.

MinIO Bucket Access Controls

The MinIO object storage system provides multiple mechanisms for configuring bucket access
controls. The pipeline uses the MinIO Client (mc) utility³ to set up and manage bucket config-
urations and access control policies.

The data is only accessible through MinIO’s S3-compatible endpoint.

The following policy is applied to the bucket cadencemaps, enforcing strict access restrictions.
This policy permits anonymous read-only access exclusively to objects within the release/
directory, while maintaining restricted access to the staging/ and validation/ directories. The
policy adheres to the JSON-based Amazon IAM policy format [37] and is applied during the
pipeline’s setup step.

1   "Version": "2012-10-17",
2   "Statement": [
3     {
4       "Effect": "Allow",
5       "Action": ["s3:List*", "s3:GetObject", "s3:Get*"],
6       "Resource": ["arn:aws:s3:::cadencemaps/release/*"],
7       "Principal": "*"
8     },
9     {

³https://min.io/docs/minio/linux/reference/minio-mc.html
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10       "Effect": "Allow",
11       "Action": ["s3:ListBuckets", "s3:ListBucket","s3:GetBucketLocation"],
12       "Resource": ["arn:aws:s3:::cadencemaps"],
13       "Principal": "*"
14     },
15     {
16       "Effect": "Deny",
17       "Action": ["s3:GetObject", "s3:Get*", "s3:List*", "s3:Put*"],
18       "Resource": ["arn:aws:s3:::cadencemaps/staging/*"],
19       "Principal": "*"
20     },
21     {
22       "Effect": "Deny",
23       "Action": ["s3:GetObject", "s3:Get*", "s3:List*", "s3:Put*"],
24       "Resource": ["arn:aws:s3:::cadencemaps/validation/*"],
25       "Principal": "*"
26     }
27   ],
28   "Sid": "PublicReadForGetBucketObjects"

The pipeline user only has read and write access to the bucket, and no rights to modify the
bucket configuration or access controls. The following policy is applied to the pipeline user:

1   "Version": "2012-10-17",
2   "Statement": [
3     {
4       "Sid": "PipelineUserFullBucketAccess",
5       "Effect": "Allow",
6       "Action": [
7         "s3:ListBucket",
8         "s3:GetBucketLocation",
9         "s3:GetBucketVersioning"
10       ],
11       "Resource": ["arn:aws:s3:::cadencemaps"]
12     },
13     {
14       "Sid": "PipelineUserFullObjectAccess",
15       "Effect": "Allow",
16       "Action": [
17         "s3:GetObject",
18         "s3:GetObjectVersion",
19         "s3:PutObject",
20         "s3:DeleteObject",
21         "s3:DeleteObjectVersion",
22         "s3:ListMultipartUploadParts",
23         "s3:AbortMultipartUpload"
24       ],
25       "Resource": ["arn:aws:s3:::cadencemaps/*"]
26     },
27     {
28       "Sid": "PipelineUserMultipartUpload",
29       "Effect": "Allow",
30       "Action": [
31         "s3:ListBucketMultipartUploads"
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32       ],
33       "Resource": ["arn:aws:s3:::cadencemaps"]
34     }
35   ]

Database

The PostgreSQL database, which temporarily stores imported OSM data during processing, is
configured to accept connections exclusively from within the Docker network. This configuration
ensures that only authorized pipeline components can access the database, preventing any
external connections. Following the completion of the import and conversion processes, the
database is automatically removed.

Release Website

The release website does not contain any sensitive information and is designed to be publicly
accessible. It provides a user-friendly interface with quick links that point to the various releases
of the datasets on the MinIO Bucket.

Server security

The server hosting the MinIO instance needs to be secured and managed by the system
administrator. While server administration falls outside this project’s scope, it is crucial to ensure
that the server is properly configured, updated, and monitored to prevent unauthorized access
or data breaches.
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5.7. Contribution to the GeoParquet Ecosystem
In alignment with the project’s cloud-native design, a pull request (#1224) was submitted to the
open-source GeoParquet Downloader plugin for QGIS, developed by Chris Holmes. The plugin
enables users to directly load GeoParquet datasets into QGIS via DuckDB’s remote querying
capabilities.

The enhancement enables users to load GeoParquet files directly from self-hosted MinIO
buckets by leveraging DuckDB’s remote querying capabilities. This aligns closely with the
project’s architectural design, which stores published datasets in a MinIO-based object store
with S3-compatible access.

Although the pull request has not yet been merged, it represents a valuable improvement to
the plugin and demonstrates a contribution back to the tools and ecosystem this project builds
upon.

4https://github.com/cholmes/qgis_plugin_gpq_downloader/pull/122
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6. Testing and Verification
6.1. Data Quality Testing
To evaluate the quality of Cadence Maps, selected manual comparisons with Overture Maps
were conducted. While the dataset is based on community maintained OpenStreetMap data
and cannot be modified directly, it is essential to ensure that the data is suitable for analysis.

6.1.1. Places Zürich, Switzerland
Overture Maps (Red): 28′543 POIs
Cadence Maps (Blue): 30′022 POIs

Figure 10: Comparison Overture Maps vs Cadence Maps Places (Zürich, Switzerland)

Result: Cadence Maps contains more POIs and shows a visibly denser and more complete
coverage than Overture Maps in the Zürich area (Figure 10).

6.1.2. Places Dortmund, Germany
Overture Maps (Red): 10′582 POIs
Cadence Maps (Blue): 11′529 POIs

Figure 11: Comparison Overture Maps vs Cadence Maps Places (Dortmund, Germany)

Result: Cadence Maps shows a higher POI count and more complete spatial coverage than
Overture Maps in the Dortmund area (Figure 11).
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6.1.3. Places Vienna, Austria
Overture Maps (Red): 65′965 POIs
Cadence Maps (Blue): 76′616 POIs

Figure 12: Comparison Overture Maps vs Cadence Maps Places (Vienna, Austria)

Result: Cadence Maps provides significantly more POIs and a denser spatial distribution than
Overture Maps in the Vienna region (Figure 12).

6.1.4. Division Area Rapperswil-Jona, Switzerland

Overture Maps Cadence Maps

Table 3: Comparison Overture Maps vs Cadence Maps Divisions Rapperswil-Jona

Result: Cadence Maps and Overture Maps show identical administrative boundaries in the
tested regions, indicating schema alignment (Table 3).

6.1.5. Automatic Vandalism Detection
A prototype for automatic vandalism detection is integrated into the pipeline and runs with every
import, serving as an example for future, more advanced detection mechanisms. The Data
quality tests are documented in the implementation chapter Section 5.1.3 (see page 39).
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6.2. Functional Requirements
ID Comment
FR-1 Pass, the data is available in the GeoParquet format via the MinIO

bucket.
FR-2 Pass, the data can be accessed using DuckDB, QGIS, Python, and

Jupyter Notebooks.
FR-3 Pass, a cron job is scheduled to run every Thursday at 1:05 AM.
FR-4 Pass, usage examples, release information and documentation is

available on a static website, accessible via https://cadencemaps.
infs.ch/.

FR-5 Pass, the schema is compatible with OvertureMaps (themes Places
and Divisions), see appendix Section 15.2 (page 92).

FR-6 Pass, while the converter is implemented in Python, the importer
uses osm2pgsql and lua scripts to transform the OSM data. This is
accepted, because it is optionally allowed to use other languages
and osm2pgsql is a well known tool in the geospatial community.
The justification for this choice can be found in the design chapter
Section 4.2.3 (see page 32).

FR-7 Pass, the processing time and performance of the pipeline can be
monitored through the GitLab CI/CD pipeline. Optionally, additional
monitoring tools can be used as mentioned in Section 8.3 (see
page 59).

FR-8 Pass, the datasets are versioned using their release date as the
unique identifier and can be reverted to an older version via the
GitLab CI/CD pipeline if quality checks fail.

FR-9 Pass, the documentation is available in the README of the Git-
Repository.

Table 4: Verification of Functional Requirements

6.3. Non Functional Requirements

6.3.1. NFR-1 Processing Time

Run Processing time (min)
1 63
2 67
3 64
Average Time 65

Table 5: Processing Time for D-A-CH-LI Dataset, rounded to minutes

The results in Table 5 show that the time for processing the D-A-CH-LI dataset is around 1 hour
and therefore well below the 24 hour limit.

6.3.2. NFR-2: Geographic Scalability
The scalability of the pipeline was tested by comparing processing times between two datasets:

52 of 100

https://cadencemaps.infs.ch/
https://cadencemaps.infs.ch/


• D-A-CH-LI (Germany, Austria, Switzerland, Liechtenstein)
• D-A-CH-LI-FR-IT (Germany, Austria, Switzerland, Liechtenstein, France, Italy)

The results in Table 6 show that the ratio between data size and sequential processing time is
consistent, indicating linear scalability. A more detailed analysis of NFR 2 can be found in the
appendix in Section 14 (see page 89).

Metric D-A-CH-LI D-A-CH-LI-FR-IT
Total Size 5′542 MB 12′081 MB
Size Ratio 1.0x 2.2x
Parallel Processing Time (avg.) 65 min 74 min
Sequential Processing Time (avg.) 79 min 174 min
Sequential Processing Time Ratio 1.0x 2.2x

Table 6: Processing Time Comparison

Key Findings
1. The pipeline demonstrates linear scalability, with processing time increasing proportionally

to dataset size.
2. Parallel processing maintains efficiency, with only a 10-minute overhead when processing

the larger dataset.
3. Individual country processing times remain largely consistent between test runs, indicating

stable performance.

Global Scalability Projection
The performance analysis indicates a processing throughput of 65 MB/min for the slowest-
performing region (France). Extrapolating this rate to a planet-scale dataset of 81 GB yields an
estimated processing time of approximately 21 hours.

It is important to note that this projection assumes ideal hardware resource availability and
does not account for potential system constraints or resource contention.

6.3.3. NFR-3 Query Performance
This NFR was tested with the following query, measured with the Explain Analyze statement in
DuckDB. Tested on a MacBookPro with 32GB RAM and an M2 chip.

Query:

1 INSTALL httpfs;
2 LOAD httpfs;
3 INSTALL spatial;
4 LOAD spatial;
5 SET s3_endpoint='api.cadencemaps.infs.ch';
6 SET s3_url_style='path';
7 SELECT *
8 FROM read_parquet('s3://cadencemaps/release/2025-06-04/theme=places/type=

place/*/*', hive_partitioning=1)
9 WHERE
10   country IN ('DE', 'CH', 'LI', 'AT')
11   AND categories.primary = 'restaurant'
12   OR 'restaurant' IN categories.alternate;
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Run Execution Time
Run 1 20.17 seconds
Run 2 19.17 seconds
Run 3 19.40 seconds
Run 4 19.68 seconds
Run 5 19.05 seconds

Table 7: NFR-3 Query Performance measurements

Table 7 shows that the query takes around 20 seconds to execute. The requirement of a
maximum 3-minute execution time is therefore met.

Note: A test in QGIS revealed that a full download of the theme places and type place dataset
for the D-A-CH-LI region until fully displayed took aproximately 1 minute and 30 seconds (500
MB/s download speed).

6.3.4. NFR-4 Access Controls and Security
The S3 endpoint is configured to enforce access restrictions, permitting access exclusively to
the release directory while denying all other paths.

To validate these access controls, test queries were executed against restricted paths using
DuckDB, as demonstrated below:

1 INSTALL httpfs;
2 LOAD httpfs;
3 INSTALL spatial;
4 LOAD spatial;
5 SET s3_endpoint='api.cadencemaps.infs.ch';
6 SET s3_url_style='path';
7
8 SELECT *
9 FROM read_parquet('s3://cadencemaps/staging/2025-06-04/theme=places/type=

place/country=CH/*', hive_partitioning=1)
10 WHERE
11   categories.primary = 'restaurant'
12   OR 'restaurant' IN categories.alternate;
13
14
15 SELECT * FROM read_csv('s3://cadencemaps/validation/2025-06-07/summary.csv');
16

The test queries resulted in the following error responses:

1 HTTP Error:
2 HTTP GET error on 'https://api.cadencemaps.infs.ch/cadencemaps/staging/2025-06-

04/theme%3Dplaces/type%3Dplace/country%3DCH/place_0.parquet' (HTTP 403)
3
4 HTTP Error:
5 HTTP GET error on 'https://api.cadencemaps.infs.ch/cadencemaps/validation/2025-

06-07/summary.csv' (HTTP 403)
6
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These responses confirm that access to both the staging and validation directories is properly
restricted, as evidenced by the HTTP 403 Forbidden status code.
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7. Results
The outcome of this Bachelor’s thesis is the development of Cadence Maps, a modular, cloud-
native data pipeline for geospatial data processing, accessible directly from cloud storage
and usable without dedicated backend infrastructure. This system transforms OpenStreetMap
(OSM) country extracts into spatially partitioned, schema-aligned GeoParquet files that are fully
compatible with the Overture Maps schema (“Places” and “Divisions” themes). The pipeline
currently supports Switzerland, Germany, Austria, and Liechtenstein (shown in Figure 13) and
is designed for extension to additional regions or even global scale.

Figure 13: QGIS Screenshot of Cadence Maps' ~5.8M Places in the D-A-CH-LI region

7.1. Parallel Processing and Architecture
A central achievement is the pipeline’s parallel processing architecture. By leveraging GitLab
CI/CD matrix jobs, the system processes multiple countries simultaneously, substantially
reducing processing time compared to sequential execution. Additional performance gains
were realized by shifting computationally intensive reprocessing steps from osm2pgsql to
PostgreSQL spatial SQL postprocessing.

7.2. Data Quality and Validation
To ensure data integrity, a lightweight validation framework prototype was implemented. This
system automatically flags anomalies in critical regional identifiers (e.g., administrative names)
and defers publishing in case of suspicious changes. Manual validation can be triggered via
CI/CD before the final promotion of data to the release path, ensuring that only validated data
is published and maintaining high data quality standards.

7.3. Performance and Scalability
Benchmarking results demonstrate that the pipeline reliably completes processing for the D-A-
CH-LI region in slightly over an hour. Extrapolation from current performance metrics suggests
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that, with adequate hardware, the pipeline could support global-scale processing within a 24-
hour timeframe, given appropriate hardware scaling.

Real-world query benchmarks further validate scalability and responsiveness. For example,
queries such as “all restaurants in D-A-CH-LI” using DuckDB consistently execute in around
20 seconds. This performance is achieved through:

• Efficient spatial partitioning using the KDB-tree method via DuckDB
• In-file sorting using Hilbert curves to preserve spatial locality
• Optimized row group sizing tailored to each dataset type

The performance of the pipeline can be monitored through the GitLab CI/CD pipeline. Option-
ally, additional monitoring tools can be used as mentioned in Section 8.3 (see page 59).

7.4. Compatibility and Integration
The resulting GeoParquet files are:

• Fully compatible with Overture Maps schemas
• Usable in tools such as QGIS, DuckDB, and Python (with DuckDB, GeoPandas, PyArrow)
• Optimized for performance through:
‣ Hive-compatible S3 prefixes, enabling query engines to skip irrelevant partitions
‣ Min/max metadata values for row groups, enabling query engines to skip irrelevant row

groups within GeoParquet files

This compatibility allows analysts familiar with Overture Maps and standard GIS tools to easily
incorporate the data into their existing workflows.

7.5. Comparison with Overture Maps
Manual comparisons demonstrate that Cadence Maps offers more comprehensive data cov-
erage than Overture Maps. For instance:

• In Zürich, Cadence Maps contained 30,022 POIs, compared to Overture’s 28,543
• In Dortmund, 11,529 POIs versus 10,582 in Overture Maps
• Similar improvements were observed in Vienna and Rapperswil-Jona

These results underscore the reliability and completeness of OSM data when processed
through this pipeline.

7.6. Documentation and Ecosystem Contribution
A static website was developed to provide release information, usage examples, and docu-
mentation for end users (Figure 14). Information for usage can also be viewed in the appendix
Section 15 (see page 92). The project repository includes documentation in the form of a
README file to support future maintainers.
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Figure 14: Cadence Maps website displaying the available releases

Additionally, the project contributed to the open-source ecosystem by submitting a pull request
to the QGIS GeoParquet Downloader Plugin, enhancing its support for MinIO-based sources
and enabling broader adoption of decentralized spatial data services.
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8. Outlook
While the current implementation successfully enables scalable transformation of Open-
StreetMap (OSM) data into partitioned GeoParquet files for the D-A-CH-LI region, several
promising directions exist for future improvements and expansion.

8.1. Global Scaling Strategy
The pipeline design is inherently scalable and technically capable of processing global OSM
datasets. A natural extension would be to move from country-based processing toward conti-
nent-based or even planet-wide ingestion. One possible approach is to import larger extracts
(e.g., entire continents from Geofabrik) into a single PostgreSQL table and enrich them with an
additional column containing the S2 Level 0 or Level 1 cell ID. The S2 geometry’s hierarchical
cell structure provides globally consistent, non-overlapping spatial boundaries that are perfectly
suited for distributed processing. This enables efficient parallel processing by allowing the
data to be partitioned into manageable chunks, with each thread handling a separate S2 cell.
The system can adapt to varying data densities by starting with high-level S2 cells (e.g., level
10) and recursively combining them into larger cells when the point count is below a defined
threshold, ensuring each partition contains an optimal number of points. The deterministic
nature of S2 cell identifiers ensures consistent partitioning across different processing runs,
while maintaining spatial locality and balancing the computational load. This approach would
allow the pipeline to apply intelligent partitioning on a per-cell basis, improving spatial locality
and distribution while simplifying storage management.

However, this shift requires careful consideration. Moving from country-based to continent-
based or global imports would significantly increase hardware requirements. For example,
osm2pgsql’s memory usage can be several times the dataset size, with Germany’s 4.3 GB
dataset requiring up to 29 GB of RAM at peak usage.

Additionally, since users typically expect data organized by country or region, a global import
would require either additional post-processing to split the data by country boundaries, or if
keeping the S2 partitioning, users would need to employ geospatial functions to filter the data
by country boundaries when querying, which can be significantly more time-consuming.

8.2. Improved Validation Logic
The current validation approach is functional but minimal. Future versions should introduce
more comprehensive quality checks to verify structural consistency, schema conformance, and
semantic integrity across datasets. Automated checks for unexpected changes (e.g., deleted or
moved administrative boundaries, name mismatches, or suspicious feature density changes)
would help ensure higher trust in the published GeoParquet files.

Integrating machine learning-based anomaly detection or external tools like Clearance could
further enhance vandalism detection and data reliability. As usage scales, trust in data quality
becomes increasingly important especially for downstream users in academia, urban planning,
and infrastructure monitoring.

8.3. Infrastructure and Monitoring Recommendations
While the use of Docker throughout the project ensured portability and reproducibility, we
recommend decoupling PostgreSQL, the release website and the reverse proxy (Caddy)
from containerization in future deployments. Running these components natively on the host

59 of 100



system would reduce complexity, improve performance, and simplify debugging in production
environments.

Pipeline Monitoring Tool

For the Monitoring of the pipeline performance and health, we recommend implementing
a dedicated monitoring tool like Sentry5 or Prometheus6. These tools can provide real-time
insights into the pipeline’s operational status, error rates, and performance metrics. This would
enable proactive identification of issues, optimization of resource usage, and improved overall
reliability.

8.4. Iceberg Integration for Long-Term Data Management
To further enhance scalability, traceability, and compatibility with big data ecosystems, future
iterations of the pipeline could integrate Apache Iceberg. As of version 3, Iceberg supports
native geospatial data types, making it a strong candidate for managing large volumes of
GeoParquet files. Iceberg would enable:
• ACID-compliant transactions and atomic file management
• Time travel support for historical OSM snapshots
• Efficient data pruning and partition evolution
• Compatibility with distributed query engines like Apache Spark or Trino

These features would be particularly beneficial for global-scale datasets or scenarios involving
frequent updates and historical analysis, such as monitoring urban development or land use
change over time.

5https://sentry.io/
6https://prometheus.io/
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11. Used Tools
Task Tools
Project Organization Confluence, Jira, Microsoft Teams, Gitlab, Outlook
Documentation Visual Studio Code, Windsurf, Typst, Excel, Figma, Draw.io,

ChatGPT, DeepL, Github Copilot
Code Visual Studio Code, Windsurf, Grok, ChatGPT, Github

Copilot

12. Used Libraries
Library License
osm2pgsql GPL-2.0
duckdb MIT
pyarrow Apache License 2.0
pandas BSD 3-Clause
boto3 Apache License 2.0
heroicons MIT
next MIT
react MIT
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13. Partitioning
Spatial partitioning is a key element of the OSM GeoParquet Data Service pipeline. The goal is
to split large point datasets (e.g., millions of OSM places) into smaller, manageable GeoParquet
files, such that spatial queries using bounding boxes (BBox) touch as few files as possible.
Crucially, partitioning is static—performed once during the pipeline and not adjusted at runtime,
making efficient initial partitioning essential.

Each partitioning method is evaluated for how well it preserves spatial locality, balances
partition sizes, and supports scaling. We use a max_rows_per_partition parameter to ensure
output files remain within optimal size and row count limits.

13.1. Categorization of Partitioning Methods
The spatial partitioning methods under evaluation can be categorized into three conceptual
groups based on their underlying geometric and algorithmic principles.

13.1.1. Space-Filling Curves
These methods map multi-dimensional geographic coordinates into a single-dimensional order
while preserving spatial locality. Though not partitioning methods per se, they enable highly
efficient chunking after sorting.
• Representative: Hilbert Curve

13.1.2. Recursive Space Subdivision
These algorithms split the space recursively—either along axes (KD, KDB) or using a fixed grid
structure (QuadTree). While primarily designed for planar space, they work well on projected
data.
• Representatives: KD Tree, KDB Tree, QuadTree

13.1.3. Hierarchical Geospatial Tiling
These systems tile the globe using predefined cell structures—rectangular (GeoHash), spher-
ical-quadrilateral (S2), or hexagonal (H3). The tiling is hierarchical and deterministic, making
them ideal for parallel and distributed workflows.
• Representatives: GeoHash, S2, H3

13.2. Partitioning Method Benchmarks
With this categorization in mind, an implementation of each method was tested on the Swiss
dataset. The tests were performed with consistent partition size limits and their performance
was measured.

Dataset:
• Original .pbf Filesize: ca. 500MB
• Places count: ca. 500K
• Places conversion: ca. 3m
• max_rows_per_partition = 100'000

The following metrics are recorded:
• Setup: Environment initialization and dependency loading
• Reading and Transformation: Reading from PostgresSQL and converting to internal struc-

tures
• Partitioning: Applying the spatial partitioning algorithm
• Writing: Exporting the partitions as GeoParquet
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• Total Time Reading to Writing: The total time it took from reading the partitions from
PostgreSQL to writing the partitions as GeoParquet

• Total Time Script: The total time it took to run the Python command, measured in the entry
point bash script.

13.2.1. Hilbert Curve Partitioning
Mechanism: Maps 2D coordinates to a 1D Hilbert index, then sorts the dataset by this index
and partitions using the max_rows_per_partition variable.

Implementation: Using DuckDB’s native Hilbert Curve partitioning with the spatial extension.

Benchmarks:

Measurement 1 2 3 4 5 Average
Setup 1.84 1.73 1.94 1.62 1.68 1.762
Reading and
transformation

2.66 2.71 2.63 2.77 2.74 2.702

Partitioning 0 0 0 0 0 0
Writing to
GeoParquet

2.76 2.81 2.77 2.81 2.79 2.788

Total time reading to
writing

5.42 5.52 5.4 5.58 5.53 5.49

Total time script 8 7 7 8 7 7.4

Table 8: DuckDB Hilbert Curve Partitioning Benchmarks (measured in seconds)

Figure 15: DuckDB Hilbert Curve partitions
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Figure 16: DuckDB Hilbert Curve partition BBoxes

Figure 17: DuckDB Hilbert Curve partition skewed shape

Results:
• Partition shape / clustering: Elongated, snake-like partitions that follow the Hilbert curve’s

space-filling path.
• Bounding box overlap: Significant, because the partitions are of irregular shape.
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• Amount of rows per partition: Perfect, exact amount of rows per partition, except for the last
partition which contains the remaining rows.

13.2.2. KD Tree Partitioning
Mechanism: Recursively splits the dataset by alternating axis (longitude/latitude), yielding
axis-aligned rectangles.

Implementation: Using DuckDB queries to calculate the median of the dataset and split it into
two partitions. This is repeated recursively until the defined number of splits is met.

Benchmarks:

Measurement 1 2 3 4 5 Average
Setup 1.32 1.27 1.29 1.28 1.26 1.284
Reading and
transformation

1.83 1.8 1.83 1.88 1.73 1.814

Partitioning 0.27 0.27 0.27 0.26 0.27 0.268
Writing to
GeoParquet

1.11 1.1 1.1 1.14 1.08 1.106

Total time reading to
writing

3.21 3.17 3.2 3.28 3.08 3.188

Total time script 5 5 5 5 5 5

Table 9: DuckDB KD Tree Partitioning Benchmarks (measured in seconds)

Figure 18: DuckDB KD Tree partitions
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Figure 19: DuckDB KD Tree partition BBoxes

Results:
• Partition shape / clustering: Clean, rectangular partitions.
• Bounding box overlap: None, because the partitions are axis-aligned.
• Amount of rows per partition: Great, almost the same amount of rows in each partition.

13.2.3. KDB Tree Partitioning
Mechanism: Data-aware axis-aligned binary partitioning. Splits the largest partitions until row
limits are met.

Implementation DuckDB: Using DuckDB queries to calculate the median of the dataset and
split it into two partitions. This is repeated recursively until the number of rows per partition is
below the defined limit.

Benchmarks:
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Measurement 1 2 3 4 5 Average
Setup 1.23 1.26 1.2 1.25 1.29 1.246
Reading and
transformation

1.81 1.84 1.85 1.81 1.78 1.818

Partitioning 0.39 0.39 0.38 0.38 0.39 0.386
Writing to
GeoParquet

1.32 1.34 1.27 1.37 1.27 1.314

Total time reading to
writing

3.52 3.57 3.5 3.56 3.44 3.518

Total time script 5 5 5 5 5 5

Table 10: DuckDB KDB Tree Partitioning Benchmarks (measured in seconds)

Figure 20: DuckDB KDB Tree partitions
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Figure 21: DuckDB KDB Tree partition BBoxes

Implementation Sedona: Using Sedona’s native KDB Tree partitioning.

Benchmarks:

Measurement 1 2 3 4 5 Average
Setup 28.5 27.39 26.32 25.92 26.72 26.97
Reading and
transformation

0.29 0.29 0.29 0.3 0.29 0.292

Partitioning 10.04 10.06 10.05 10.94 10.12 10.242
Writing to
GeoParquet

3.1 2.98 3.06 2.93 2.88 2.99

Total time reading to
writing

13.43 13.33 13.4 14.17 13.29 13.524

Total time script 43 41 41 41 41 41.4

Table 11: Sedona/Spark KDB Tree Partitioning Benchmarks (measured in seconds)
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Figure 22: Sedona/Spark K-D-B Tree partitions

Figure 23: Sedona/Spark K-D-B Tree partition BBoxes

Results:
• Partition shape / clustering: Clean, rectangular partitions.
• Bounding box overlap: None, because the partitions are axis-aligned.
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• Amount of rows per partition: Great, almost the same amount of rows in each partition. The
DuckDB implementation balances better.

13.2.4. QuadTree Partitioning
Mechanism: Recursively divides space into quadrants until partitions are below the point limit.

Implementation: Using Sedona’s native QuadTree partitioning.

Benchmarks:

Measurement 1 2 3 4 5 Average
Setup 25.68 26.67 26.6 25.57 27.57 26.418
Reading and
transformation

0.3 0.3 0.3 0.3 0.29 0.298

Partitioning 10.17 10.35 10.62 11.22 10.52 10.576
Writing to
GeoParquet

3.07 3.05 3.05 3.12 3.09 3.076

Total time reading to
writing

13.54 13.7 13.97 14.64 13.9 13.95

Total time script 40 41 41 41 42 41

Table 12: Sedona/Spark QuadTree Partitioning Benchmarks (measured in seconds)

Figure 24: Sedona/Spark QuadTree partitions
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Figure 25: Sedona/Spark QuadTree partition BBoxes

Results:
• Partition shape / clustering: Clean, rectangular partitions ideal for BBOX queries.
• Bounding box overlap: None, because the partitions are axis-aligned.
• Amount of rows per partition: Okay, some variation from file to file.

13.2.5. GeoHash Partitioning
Mechanism: Converts coordinates into geohash strings, optionally varying the geohash length
to fit target partition size.

Implementation: Using Sedona’s native GeoHash partitioning.

Benchmarks:

Measurement 1 2 3 4 5 Average
Setup 25.55 25.56 26.69 25.17 27.18 26.03
Reading and
transformation

0.3 0.3 0.3 0.3 0.3 0.3

Partitioning 9.5 9.91 9.65 9.99 9.65 9.74
Writing to
GeoParquet

3.54 3.43 3.31 3.39 3.32 3.398

Total time reading to
writing

13.34 13.64 13.26 13.68 13.27 13.438

Total time script 39 40 41 40 41 40.2

Table 13: Sedona/Spark GeoHash Partitioning Benchmarks (measured in seconds)
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Figure 26: Sedona/Spark GeoHash partitions

Figure 27: Sedona/Spark GeoHash partition BBoxes
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Figure 28: Sedona/Spark GeoHash fragmented partition

Results:
• Partition shape / clustering: Some geohash rectangles get merged. Since they’re in Z-Order,

they get merged diagonally.
• Bounding box overlap: Significant, large bounding boxes because of the diagonal merge.
• Amount of rows per partition: Good, some variation, but not by much.

13.2.6. S2 Partitioning
Mechanism: Assigns points to S2 cells and refines cell level until each is under the point limit.
Uses spherical geometry and Hilbert curves internally to sort partitions, developed and used
by Google Maps.

Implementation: Using DuckDB’s community extension s2geometry, the adaptive spatial
partitioning recursively groups points into S2 cells, starting from the maximum level (most
granular) and aggregating to coarser levels until each partition contains fewer than the specified
maximum points or reaches the minimum level.

Benchmarks:
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Measurement 1 2 3 4 5 Average
Setup 1.7 1.71 1.67 1.74 1.8 1.724
Reading and
transformation

2.1 1.83 1.78 1.77 1.83 1.862

Partitioning 0.02 0.02 0.02 0.02 0.02 0.02
Writing to
GeoParquet

1.83 1.83 1.83 1.82 1.83 1.828

Total time reading to
writing

3.95 3.68 3.63 3.61 3.68 3.71

Total time script 5 6 6 6 5 5.6

Table 14: DuckDB S2 Partitioning Benchmarks (measured in seconds)

Figure 29: DuckDB S2 partitions
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Figure 30: DuckDB S2 partition BBoxes

Results:
• Partition shape / clustering: Great, partition shapes are spherical geodesic.
• Bounding box overlap: Some overlap, because of the spherical geometry.
• Amount of rows per partition: Not so balanced, has some very small partitions, likely because

of the shape of the country borders.

13.2.7. H3 Partitioning
Mechanism: Hexagon-based grid system developed by Uber. Assigns points to H3 cells at a
fixed resolution. Optionally, adaptively subdivide overloaded cells.

Implementation: Using PostgreSQL’s h3 extension to compute adaptive hexagon cells, start-
ing from a fine resolution and aggregating to coarser resolutions until each cell contains fewer
than the specified maximum points.

Benchmarks:
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Measurement 1 2 3 4 5 Average
Setup 1.24 1.24 1.2 1.17 1.2 1.21
Reading and
transformation

2.92 3.52 2.45 2.3 2.41 2.72

Partitioning 32.2 33.31 31.55 34 32.63 32.738
Writing to
GeoParquet

1.77 1.78 1.75 1.74 1.72 1.752

Total time reading to
writing

36.89 38.61 35.75 38.04 36.76 37.21

Total time script 38 40 38 40 39 39

Table 15: PostgreSQL/DuckDB H3 Partitioning Benchmarks (measured in seconds)

Figure 31: PostgreSQL/DuckDB H3 partitions
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Figure 32: PostgreSQL/DuckDB H3 partition BBoxes

Figure 33: PostgreSQL/DuckDB H3 recognizable hexagon shape

Results:
• Partition shape / clustering: Great, partition shapes are hexagonal.
• Bounding box overlap: Some overlap, because of the hexagonal geometry.
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• Amount of rows per partition: Not so balanced, has some very small partitions, likely because
of the shape of the country borders.

13.2.8. Summary and Observations

Algorithm Setup Reading
and

Trans-
formation

Partitioning Writing Total
Time

Reading
to Writing

Total
Time
Script

DuckDB Hilbert
Curve

1.762 2.702 0 2.788 5.49 7.4

Sedona GeoHash 26.03 0.3 9.74 3.398 13.438 40.2
Sedona KDB Tree 26.97 0.292 10.242 2.99 13.524 41.4
DuckDB KDB Tree 1.246 1.818 0.386 1.314 3.518 5
DuckDB KD Tree 1.284 1.814 0.268 1.106 3.188 5

Sedona QuadTree 26.418 0.298 10.576 3.076 13.95 41
DuckDB S2 1.724 1.862 0.02 1.828 3.71 5.6

PostgreSQL/DuckDB
H3

1.21 2.72 32.738 1.752 37.21 39

Table 16: Partitioning Algorithm Comparison (measured in seconds)

Based on our evaluation, we made the following observations and decisions:
• Hilbert: Elongated, snake-like partitions that follow the Hilbert curve’s space-filling path make

it unsuitable for partitioning.
• KDB Tree (Sedona/DuckDB): DuckDB resulted in more balanced partitions, while partitions

in sedona were more elongated. Sedona KDB Tree will be eliminated in favor of DuckDB
KDB Tree.

• DuckDB KDB and KD Tree: The resulting partitions were approximately the same. The KDB
Tree has the advantage of setting partition sizes, which is a clear advantage for this use case
and eliminates the KD Tree.

• GeoHash: Sedona GeoHash partitions are non-rectangular because some areas get merged
diagonally, which makes it unsuitable for partitioning.

• QuadTree, S2, H3: Generally partition well, however, they can produce partitions with only
few points due to the border shape of the country.

This narrows down the selection to the following partitioning methods for further analysis:
• KDB Tree
• QuadTree
• S2
• H3

13.3. Scaling Experiments
To evaluate the scalability of the partitioning methods, the four preferred algorithms are tested
using larger countries (Germany and the United States) with a partition size of 500,000 points
per file.

13.3.1. Germany
Dataset:
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• Original .pbf Filesize: ca. 4.52 GB
• Places count: ca. 4.5M
• Places conversion: ca. 31m
• max_rows_per_partition = 500'000

KDB-Tree QuadTree S2 H3
Setup 1.4 27.09 1.76 1.27
Reading and transformation 15 0.35 14.96 29.87
Partitioning 7.87 94.03 0.07 372.54
Writing to GeoParquet 6.06 17.63 8.02 7.04
Total time reading to writing 28.93 112.01 23.05 409.45
Total time script 30 140 25 411

Table 17: Germany Partitioning Algorithm Comparison (measured in seconds)

13.3.2. USA
Dataset:
• Original .pbf Filesize: ca. 11.1 GB
• Places count: ca. 7.96M
• Places conversion: ca. 1h 9m
• max_rows_per_partition = 500'000

KDB-Tree QuadTree S2 H3
Setup 1.21 26.39 1.75 1.26
Reading and transformation 24.07 0.35 23.33 74.26
Partitioning 14.02 151.86 0.12 691.91
Writing to GeoParquet 9.1 27.19 16.23 16.37
Total time reading to writing 47.19 179.4 39.68 782.54
Total time script 49 207 42 784

Table 18: USA Partitioning Algorithm Comparison (measured in seconds)

The results in Figure 34 show that DuckDB-based methods (KDB Tree and S2) consistently
outperform alternatives:
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Figure 34: Partitioning Algorithm Comparison

13.4. Query Testing on Germany
To further investigate the performance of the partitioning methods, we execute queries on the
resulting GeoParquet files using DuckDB. We measure the query execution time using the
EXPLAIN ANALYZE command to measure the time.

The queries used for this test are as follows:

Query “sushi_restaurant” (for BBox see Figure 35)

1 SELECT names, categories, websites, emails, phones, addresses
2 FROM read_parquet('{path}')
3 WHERE categories.primary = 'sushi_restaurant'
4 AND bbox.xmin BETWEEN 8.000000 AND 14.000000
5 AND bbox.ymin BETWEEN 51.000000 AND 53.000000;

Figure 35: Sushi Restaurant Query BBox

Query “restaurant” (for BBox see Figure 36)

1 SELECT names, categories, websites, emails, phones, addresses
2 FROM read_parquet('{path}')
3 WHERE categories.primary = 'restaurant'
4 OR array_contains(categories.alternate, 'restaurant')
5 AND bbox.xmin BETWEEN 9.500000 AND 10.000000
6 AND bbox.ymin BETWEEN 47.600000 AND 54.000000
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Figure 36: Restaurant Query BBox

Query “warehouse” (for BBox see Figure 37)

1 SELECT geometry, bbox, names, categories, websites, emails, phones, addresses
2 FROM read_parquet('{path}')
3 WHERE categories.primary = 'warehouse'
4 OR array_contains(categories.alternate, 'warehouse')
5 AND bbox.xmin BETWEEN 8.000000 AND 12.000000
6 AND bbox.ymin BETWEEN 48.000000 AND 54.000000

Figure 37: Warehouse Query BBox

Query Results:

87 of 100



Algorithm Query Run 1 Run 2 Run 3 Run 4 Run 5 Average
KDB-Tree restaurant 0.231 0.227 0.224 0.224 0.226 0.226
KDB-Tree sushi_restaurant 0.115 0.0814 0.0825 0.085 0.082 0.089
KDB-Tree warehouse 0.279 0.28 0.28 0.252 0.252 0.269
S2 restaurant 0.24 0.228 0.241 0.258 0.247 0.243
S2 sushi_restaurant 0.0775 0.0765 0.0793 0.0752 0.078 0.077
S2 warehouse 0.255 0.255 0.279 0.258 0.276 0.265
H3 restaurant 0.246 0.266 0.252 0.241 0.247 0.25
H3 sushi_restaurant 0.101 0.0642 0.0672 0.067 0.0674 0.073
H3 warehouse 0.263 0.263 0.264 0.286 0.268 0.269
QuadTree restaurant 0.253 0.244 0.251 0.254 0.243 0.249
QuadTree sushi_restaurant 0.116 0.115 0.115 0.124 0.113 0.117
QuadTree warehouse 0.271 0.271 0.296 0.297 0.276 0.282

Table 19: Query Results (measured in seconds)

Query Averages:

Query H3 KDB-Tree QuadTree S2
restaurant 0.25 0.226 0.249 0.243
sushi_restaurant 0.073 0.089 0.117 0.077
warehouse 0.269 0.269 0.282 0.265

Table 20: Query Averages (measured in seconds)

The results from Table 19 and Table 20 demonstrate that the partitioning method has negligible
impact on spatial query performance.

13.5. Conclusion
Both S2 and KDB Tree demonstrate excellent performance in our tests. S2 excels in global-
scale scenarios with its clean spatial boundaries, adaptive resolution, and disjoint partitions,
which enable efficient parallel processing. The true power of these tiling systems lies in their
ability to partition different world regions independently without coordination, yet still produce
consistent, interoperable results.

While S2 is ideal for worldwide datasets, KDB Tree proves more than sufficient for country-
level datasets, offering comparable performance for regional processing.
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14. NFR 2 - Performance and Scalability Analysis
14.1. Dataset Comparison
The scalability of the pipeline was tested by comparing processing times between two datasets:
1. D-A-CH-LI (Germany, Austria, Switzerland, Liechtenstein)
2. D-A-CH-LI-FR-IT (Germany, Austria, Switzerland, Liechtenstein, France, Italy)

Country File Size (MB)
Germany (DE) 4′328
Austria (AT) 737
Switzerland (CH) 474
Liechtenstein (LI) 3
Total 5′542

Table 21: D-A-CH-LI Dataset Size

Country File Size (MB)
Germany (DE) 4′328
Austria (AT) 737
Switzerland (CH) 474
Liechtenstein (LI) 3
France (FR) 4′569
Italy (IT) 1′970
Total 12′081

Table 22: Extended Dataset Size

The scalability factor can be calculated by comparing the total dataset sizes from Table 21
and Table 22:

Dataset Size Ratio = 12081 MB
5542 MB ≈ 2.2

The extended dataset, which adds France and Italy, represents a 2.2-fold increase in size
compared to the original D-A-CH-LI dataset.

14.2. Processing Time Analysis

14.2.1. Initial Benchmark

Run Processing Time (min)
1 74
2 75
3 74
Average 74

Table 23: Processing Time for D-A-CH-LI-FR-IT Dataset, rounded to minutes

The experimental results in Table 23 demonstrate the effectiveness of the parallel processing
implementation. Despite the 2.2-fold increase in dataset size, the processing time for the
extended D-A-CH-LI-FR-IT dataset increased by only 10 minutes compared to the original D-
A-CH-LI dataset (as documented in Table 5, see page 52).

14.2.2. Detailed Performance Metrics
In order to prove scalability, we have to look at the processing time of the countries in Table 24
and Table 25.
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Country Run 1 Run 2 Run 3 Average Time
DE 58 minutes 34

seconds
62 minutes 29
seconds

59 minutes 8
seconds

60 minutes 4
seconds

AT 9 minutes 41
seconds

9 minutes 59
seconds

10 minutes 1
seconds

9 minutes 54
seconds

CH 7 minutes 2
seconds

6 minutes 53
seconds

7 minutes 14
seconds

7 minutes 3
seconds

LI 1 minutes 18
seconds

1 minutes 26
seconds

2 minutes 3
seconds

1 minute 36
seconds

Sum 76 minutes 35
seconds

80 minutes 47
seconds

78 minutes 26
seconds

78 minutes 36
seconds

Table 24: Processing Time for D-A-CH-LI Dataset

Country Run 1 Run 2 Run 3 Average Time
DE 58 minutes 48

seconds
58 minutes 36
seconds

60 minutes 47
seconds

59 minutes 24
seconds

AT 8 minutes 52
seconds

9 minutes 42
seconds

9 minutes 42
seconds

9 minutes 25
seconds

CH 6 minutes 39
seconds

6 minutes 38
seconds

6 minutes 41
seconds

6 minutes 39
seconds

LI 1 minutes 32
seconds

1 minutes 55
seconds

2 minutes 48
seconds

2 minutes 5
seconds

FR 69 minutes 33
seconds

70 minutes 10
seconds

69 minutes 27
seconds

69 minutes 43
seconds

IT 26 minutes 46
seconds

25 minutes 59
seconds

27 minutes 24
seconds

26 minutes 43
seconds

Sum 172 minutes 10
seconds

173 minutes 0
seconds

176 minutes 49
seconds

174 minutes

Table 25: Processing Time for D-A-CH-LI-FR-IT Dataset

The scalability factor can be calculated by comparing the total processing times:

Processing Time Ratio = 174 minutes
78 minutes and 36 seconds = 10440 seconds

4716 seconds ≈ 2.2

The proportional increase in processing time relative to the dataset size confirms a linear
scaling relationship.

14.3. Global Scalability Projection
In order to project the processing time for a global-scale dataset, the processing time per
country is calculated in MB/minute.
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Country Size in MB Processing Time
rounded to minutes

Processing Time in
MB/minute

DE 4328 59 73
AT 737 9 82
CH 474 7 68
FR 4569 70 65
IT 1970 27 73

Table 26: Processing Throughput by Country

To evaluate the system’s scalability to a global dataset, a projection was calculated using the
most conservative throughput measurement of 65 MB/minute observed for the France dataset
(see Table 26). For a global dataset of 81 GB (81,000 MB), the estimated processing time is:

Global Processing Time = 81,000  MB
65  MB/min ! ≈ 1, 240  minutes ≈ 21  hours

This projection indicates that the system can process a global-scale dataset in approximately
21 hours when operating at the lowest observed throughput rate.
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15. Usage
What follows is usage information of the data provided by the pipeline.

15.1. Available Data
The data is available in two themes:

• places

• divisions

Each theme has one or multiple types:

• places
‣ place

• divisions
‣ division
‣ division_area
‣ division_boundary

15.2. File Schemas
The file schemas are as follows:

15.2.1. Places Theme

Place

1 root
2  |-- id: string (nullable = true)
3  |-- geometry: binary (nullable = true)
4  |-- bbox: struct (nullable = true)
5  |    |-- xmin: float (nullable = true)
6  |    |-- xmax: float (nullable = true)
7  |    |-- ymin: float (nullable = true)
8  |    |-- ymax: float (nullable = true)
9  |-- type: string (nullable = true)
10  |-- version: integer (nullable = true)
11  |-- sources: array (nullable = true)
12  |    |-- element: struct (containsNull = true)
13  |    |    |-- property: string (nullable = true)
14  |    |    |-- dataset: string (nullable = true)
15  |    |    |-- record_id: string (nullable = true)
16  |    |    |-- update_time: string (nullable = true)
17  |    |    |-- confidence: double (nullable = true)
18  |-- names: struct (nullable = true)
19  |    |-- primary: string (nullable = true)
20  |    |-- common: map (nullable = true)
21  |    |    |-- key: string
22  |    |    |-- value: string (valueContainsNull = true)
23  |    |-- rules: array (nullable = true)
24  |    |    |-- element: struct (containsNull = true)
25  |    |    |    |-- variant: string (nullable = true)
26  |    |    |    |-- language: string (nullable = true)
27  |    |    |    |-- value: string (nullable = true)
28  |    |    |    |-- between: array (nullable = true)
29  |    |    |    |    |-- element: double (containsNull = true)
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30  |    |    |    |-- side: string (nullable = true)
31  |-- categories: struct (nullable = true)
32  |    |-- primary: string (nullable = true)
33  |    |-- alternate: array (nullable = true)
34  |    |    |-- element: string (containsNull = true)
35  |-- confidence: double (nullable = true)
36  |-- websites: array (nullable = true)
37  |    |-- element: string (containsNull = true)
38  |-- socials: array (nullable = true)
39  |    |-- element: string (containsNull = true)
40  |-- emails: array (nullable = true)
41  |    |-- element: string (containsNull = true)
42  |-- phones: array (nullable = true)
43  |    |-- element: string (containsNull = true)
44  |-- brand: struct (nullable = true)
45  |    |-- wikidata: string (nullable = true)
46  |    |-- names: struct (nullable = true)
47  |    |    |-- primary: string (nullable = true)
48  |    |    |-- common: map (nullable = true)
49  |    |    |    |-- key: string
50  |    |    |    |-- value: string (valueContainsNull = true)
51  |    |    |-- rules: array (nullable = true)
52  |    |    |    |-- element: struct (containsNull = true)
53  |    |    |    |    |-- variant: string (nullable = true)
54  |    |    |    |    |-- language: string (nullable = true)
55  |    |    |    |    |-- value: string (nullable = true)
56  |    |    |    |    |-- between: array (nullable = true)
57  |    |    |    |    |    |-- element: double (containsNull = true)
58  |    |    |    |    |-- side: string (nullable = true)
59  |-- addresses: array (nullable = true)
60  |    |-- element: struct (containsNull = true)
61  |    |    |-- freeform: string (nullable = true)
62  |    |    |-- locality: string (nullable = true)
63  |    |    |-- postcode: string (nullable = true)
64  |    |    |-- region: string (nullable = true)
65  |    |    |-- country: string (nullable = true)
66  |-- theme: string (nullable = true)
67  |-- ext_tags: map (nullable = true)
68  |    |-- key: string
69  |    |-- value: string (valueContainsNull = true)

15.2.2. Divisions Theme
divisions/division

1 root
2  |-- id: string (nullable = true)
3  |-- geometry: binary (nullable = true)
4  |-- bbox: struct (nullable = true)
5  |    |-- xmin: float (nullable = true)
6  |    |-- xmax: float (nullable = true)
7  |    |-- ymin: float (nullable = true)
8  |    |-- ymax: float (nullable = true)
9  |-- country: string (nullable = true)
10  |-- version: integer (nullable = true)
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11  |-- sources: array (nullable = true)
12  |    |-- element: struct (containsNull = true)
13  |    |    |-- property: string (nullable = true)
14  |    |    |-- dataset: string (nullable = true)
15  |    |    |-- record_id: string (nullable = true)
16  |    |    |-- update_time: string (nullable = true)
17  |    |    |-- confidence: double (nullable = true)
18  |-- subtype: string (nullable = true)
19  |-- class: string (nullable = true)
20  |-- names: struct (nullable = true)
21  |    |-- primary: string (nullable = true)
22  |    |-- common: map (nullable = true)
23  |    |    |-- key: string
24  |    |    |-- value: string (valueContainsNull = true)
25  |    |-- rules: array (nullable = true)
26  |    |    |-- element: struct (containsNull = true)
27  |    |    |    |-- variant: string (nullable = true)
28  |    |    |    |-- language: string (nullable = true)
29  |    |    |    |-- value: string (nullable = true)
30  |    |    |    |-- between: array (nullable = true)
31  |    |    |    |    |-- element: double (containsNull = true)
32  |    |    |    |-- side: string (nullable = true)
33  |-- wikidata: string (nullable = true)
34  |-- region: string (nullable = true)
35  |-- perspectives: struct (nullable = true)
36  |    |-- mode: string (nullable = true)
37  |    |-- countries: array (nullable = true)
38  |    |    |-- element: string (containsNull = true)
39  |-- local_type: map (nullable = true)
40  |    |-- key: string
41  |    |-- value: string (valueContainsNull = true)
42  |-- hierarchies: array (nullable = true)
43  |    |-- element: array (containsNull = true)
44  |    |    |-- element: struct (containsNull = true)
45  |    |    |    |-- division_id: string (nullable = true)
46  |    |    |    |-- subtype: string (nullable = true)
47  |    |    |    |-- name: string (nullable = true)
48  |-- parent_division_id: string (nullable = true)
49  |-- norms: struct (nullable = true)
50  |    |-- driving_side: string (nullable = true)
51  |-- population: integer (nullable = true)
52  |-- capital_division_ids: array (nullable = true)
53  |    |-- element: string (containsNull = true)
54  |-- capital_of_divisions: array (nullable = true)
55  |    |-- element: struct (containsNull = true)
56  |    |    |-- division_id: string (nullable = true)
57  |    |    |-- subtype: string (nullable = true)
58  |-- theme: string (nullable = true)
59  |-- type: string (nullable = true)

divisions/division_area

1 root
2  |-- id: string (nullable = true)
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3  |-- geometry: binary (nullable = true)
4  |-- bbox: struct (nullable = true)
5  |    |-- xmin: float (nullable = true)
6  |    |-- xmax: float (nullable = true)
7  |    |-- ymin: float (nullable = true)
8  |    |-- ymax: float (nullable = true)
9  |-- country: string (nullable = true)
10  |-- version: integer (nullable = true)
11  |-- sources: array (nullable = true)
12  |    |-- element: struct (containsNull = true)
13  |    |    |-- property: string (nullable = true)
14  |    |    |-- dataset: string (nullable = true)
15  |    |    |-- record_id: string (nullable = true)
16  |    |    |-- update_time: string (nullable = true)
17  |    |    |-- confidence: double (nullable = true)
18  |-- subtype: string (nullable = true)
19  |-- class: string (nullable = true)
20  |-- names: struct (nullable = true)
21  |    |-- primary: string (nullable = true)
22  |    |-- common: map (nullable = true)
23  |    |    |-- key: string
24  |    |    |-- value: string (valueContainsNull = true)
25  |    |-- rules: array (nullable = true)
26  |    |    |-- element: struct (containsNull = true)
27  |    |    |    |-- variant: string (nullable = true)
28  |    |    |    |-- language: string (nullable = true)
29  |    |    |    |-- value: string (nullable = true)
30  |    |    |    |-- between: array (nullable = true)
31  |    |    |    |    |-- element: double (containsNull = true)
32  |    |    |    |-- side: string (nullable = true)
33  |-- is_land: boolean (nullable = true)
34  |-- is_territorial: boolean (nullable = true)
35  |-- region: string (nullable = true)
36  |-- division_id: string (nullable = true)
37  |-- theme: string (nullable = true)
38  |-- type: string (nullable = true)

divisions/division_boundary

1 root
2  |-- id: string (nullable = true)
3  |-- geometry: binary (nullable = true)
4  |-- bbox: struct (nullable = true)
5  |    |-- xmin: float (nullable = true)
6  |    |-- xmax: float (nullable = true)
7  |    |-- ymin: float (nullable = true)
8  |    |-- ymax: float (nullable = true)
9  |-- country: string (nullable = true)
10  |-- version: integer (nullable = true)
11  |-- sources: array (nullable = true)
12  |    |-- element: struct (containsNull = true)
13  |    |    |-- property: string (nullable = true)
14  |    |    |-- dataset: string (nullable = true)
15  |    |    |-- record_id: string (nullable = true)
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16  |    |    |-- update_time: string (nullable = true)
17  |    |    |-- confidence: double (nullable = true)
18  |-- subtype: string (nullable = true)
19  |-- class: string (nullable = true)
20  |-- is_land: boolean (nullable = true)
21  |-- is_territorial: boolean (nullable = true)
22  |-- division_ids: array (nullable = true)
23  |    |-- element: string (containsNull = true)
24  |-- region: string (nullable = true)
25  |-- is_disputed: boolean (nullable = true)
26  |-- perspectives: struct (nullable = true)
27  |    |-- mode: string (nullable = true)
28  |    |-- countries: array (nullable = true)
29  |    |    |-- element: string (containsNull = true)
30  |-- theme: string (nullable = true)
31  |-- type: string (nullable = true)

15.3. URL Structure
Let’s break down the components in that path:

1 api.cadencemaps.infs.ch/cadencemaps/release/[date]/theme=[theme]/type=[type]/
country=[country]/*

• [date]: Releases follow a date-based versioning scheme in the format YYYY-MM-DD
• [theme]: One of the two data themes: places or divisions
• [type]: A feature type within a theme, e.g. place or division_area
• [country]: A country code, e.g. CH for Switzerland
• /*: The file type Overture uses to store and deliver the data, the * indicates you want all of the

Parquet files in a particular directory

If you’d like to get the data of all countries, replace country=[country] with *. The URL would
then look like this:

1 api.cadencemaps.infs.ch/cadencemaps/release/[date]/theme=[theme]/type=[type]/*/
*

15.4. Examples
The following examples show how to query the data using different tools.

15.4.1. DuckDB
When using DuckDB with the data, you need to install the httpfs and spatial extension and
configure the S3 endpoint:

1 INSTALL httpfs;
2 LOAD httpfs;
3 INSTALL spatial;
4 LOAD spatial;
5 SET s3_endpoint='api.cadencemaps.infs.ch';
6 SET s3_url_style='path';
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With this out of the way, you can query the data as you would with any other Parquet file.

1 SELECT names, categories, websites, emails, phones, addresses
2 FROM read_parquet('s3://cadencemaps/release/2025-06-04/theme=places/type=place/

country=CH/*', hive_partitioning=1)
3 WHERE
4   categories.primary = 'restaurant'
5   OR 'restaurant' IN categories.alternate;

Through the use of hive partitioning, multiple countries can be selected in a single query. Note
the double star in the path:

1 SELECT *
2 FROM read_parquet('s3://cadencemaps/release/2025-06-04/theme=places/type=place/

*/*', hive_partitioning=1)
3 WHERE
4   country IN ('DE', 'CH', 'LI', 'AT')
5   AND categories.primary = 'restaurant'
6   OR 'restaurant' IN categories.alternate;

15.4.2. Python

DuckDB Python package
To use the data in Python via DuckDB, you need to install the duckdb package.

Command Line: Jupyter Notebook:

1 pip install duckdb 1 !pip install duckdb

Then, install the required DuckDB extensions and configure the S3 endpoint. It’s possible to
convert the query result into different formats, such as a Pandas DataFrame, NumPy array, or
Arrow Table.

1 import duckdb
2
3 con = duckdb.connect()
4
5 con.execute("INSTALL httpfs; LOAD httpfs;")
6 con.execute("INSTALL spatial; LOAD spatial;")
7 con.execute("SET s3_endpoint='api.cadencemaps.infs.ch';")
8 con.execute("SET s3_url_style='path';")
9
10 query = """
11     SELECT *
12     FROM read_parquet('s3://cadencemaps/release/2025-06-04/theme=places/type=

place/country=CH/*', hive_partitioning=1)
13     WHERE
14         categories.primary = 'restaurant'
15         OR 'restaurant' IN categories.alternate limit 10;
16 """
17
18 # Option 1: Fetch all rows as a list of tuples

97 of 100



19 result = con.execute(query).fetchall()
20
21 # Option 2: Fetch as a Pandas DataFrame
22 result = con.execute(query).fetchdf()
23
24 # Option 3: Fetch as a NumPy array
25 result = con.execute(query).fetchnumpy()
26
27 # Option 4: Fetch as an Arrow Table
28 result = con.execute(query).fetch_arrow_table()
29
30 # Option 5: Fetch as a Polars DataFrame
31 result = con.execute(query).pl()
32
33 print("10 Restaurants from Switzerland:")
34 print(result)

PyArrow and GeoPandas
To use the data in Python via PyArrow and GeoPandas, you need to install the pyarrow,
geopandas, s3fs, and shapely packages.

1 import geopandas as gpd
2 import pyarrow.parquet as pq
3 import s3fs
4 from shapely import wkb
5
6 fs = s3fs.S3FileSystem(anon=True, endpoint_url='https://api.cadencemaps.infs.

ch')
7
8 parquet_path = 'cadencemaps/release/2025-06-07/theme=places/type=place/

country=CH/'
9
10 dataset = pq.ParquetDataset(parquet_path, filesystem=fs)
11 df = dataset.read().to_pandas()
12
13 # Convert WKB bytes to Shapely geometry
14 if 'geometry' in df.columns:
15     df['geometry'] = df['geometry'].apply(wkb.loads)
16
17 # Convert to GeoDataFrame if geometry is present
18 gdf = gpd.GeoDataFrame(df, geometry='geometry')
19
20
21 # Filter rows where primary category is 'restaurant' OR 'restaurant' in

alternate categories
22 def is_restaurant(row):
23     try:
24         if row['categories']['primary'] == 'restaurant':
25             return True
26         if 'restaurant' in row['categories'].get('alternate', []):
27             return True
28     except Exception:
29         return False
30     return False
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31
32 filtered_gdf = gdf[gdf.apply(is_restaurant, axis=1)]
33
34 # Select relevant columns
35 result = filtered_gdf[['names', 'categories', 'websites', 'emails', 'phones',

'addresses']]
36
37 # Display or use as needed
38 print(result.head())

15.4.3. QGIS
To load the data into QGIS, you need the addon “GeoParquet Downloader” plugin7 by Chris
Holmes. If our pull request has not yet been merged, be sure to install the plugin from the
source code of the pull request8.

After installing the plugin, you can load the data by following these steps:

1. Activate the OpenStreetMap layer in the sidebar (Figure 38)
2. Zoom to the needed extent (Figure 38)
3. Click on the “GeoParquet Downloader” plugin in the menu bar (Figure 38)
4. Select “Custom URL” (Figure 39)
5. Enter the URL of the GeoParquet data you want to load. You can find an up-to-date link on

https://cadencemaps.infs.ch/ (Figure 39)
• Important: The URL must start with minio://, not with s3://.

Figure 38: QGIS Guide - Steps to load data

7https://github.com/cholmes/qgis_plugin_gpq_downloader
8https://github.com/cholmes/qgis_plugin_gpq_downloader/pull/122
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Figure 39: QGIS Guide - Popup to enter data source URL
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