
Bachelor Thesis
Documentation

OST Marketplace App
for Android and iOS using Kotlin Multiplatform (KMP)

Semester: Spring 2025

Project Team: Roger Marty
Simon Peier
Tseten Emjee

Project Advisor: Martin Seelhofer

Version: 1.0
Date: 2025-06-13

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Part I

Abstract

i

Abstract

Whether students want to reduce clutter, generate extra income or contribute to a more
sustainable economy, having an accessible way to sell and buy secondhand or new items
can be beneficial. Unfortunately, existing marketplaces are not specifically designed
for an academic environment. Their users are spread out and trust is limited, which
discourages users from using them. To foster the usage of such marketplaces and combat
the mentioned issues, a university-specific marketplace app should be created.

For the frontend, a cross-platform mobile app was developed. A major part of
this thesis was the research and evaluation of Kotlin Multiplatform, which was used to
develop the app. This provided both theoretical and practical insights into the tech-
nology. Various multiplatform-compatible frameworks and libraries such as Compose
Multiplatform, Voyager and Koin were utilized. The backend is a REST API built with
Python using FastAPI. SQLAlchemy is used as the ORM to interact with a PostgreSQL
database. The entire backend, including a search engine, is hosted on AWS, leveraging
services such as ECS Fargate, RDS, EC2, and S3. Firebase was used for push notifica-
tions, PubNub for real-time chat and Microsoft Entra ID for authentication.

The Kotlin Multiplatform research has concluded that the technology is sufficiently
advanced to be used in productive applications. While still young in comparison to its
competitors, JetBrains’ support for its technology is evident and its progress is rapid.
As of May 6, 2025, the iOS platform has also been marked as stable, meaning that cross-
platform mobile development is now fully stable in Kotlin Multiplatform. The developed
app, POSTE, is a fully functional marketplace where users can create listings, browse
listings, initiate a chat with the seller and much more. OST students can sign in using
their OST-specific Microsoft account. This not only enhances the trust among users but
also gives a sense of community.

ii

Part II

Management Summary

iii

Management Summary

Initial Situation

In university settings, students and staff may own used and no longer needed items
such as calculators, tablets, laptops or everyday commodities like clothes or bicycles.
Instead of having these items just lying around or throwing them away, owners could
resell or exchange them to reduce waste and make some money with it. While online
marketplaces exist for this purpose, they are not tailored to universities. A marketplace
app specifically made for the OST domain would fill this gap. It could encourage users
to use such a platform more frequently, as they are geographically closer. And since the
transactions are only made with other students of the same university, the trust factor
would be increased which leads to more students using such a platform. Additionally, no
new account would be required, as users could log in using their existing OST Microsoft
account.

The idea of a university-specific marketplace is coupled with the second objective
of this thesis, which is the research and evaluation of Kotlin Multiplatform (KMP). To
make the app available to the widest possible audience, it should run on both Android
and iOS. Kotlin Multiplatform is a relatively new cross-platform development framework
that allows the sharing of both business and UI logic. The evaluation of its maturity
level and real-world suitability is a central part of this thesis.

Methodology

The project was conducted using the Scrum+ methodology, which uses RUP for long-
term planning and Scrum for short-term planning. In addition, risks were identified and
evaluated during the inception phase, followed by the preparation of quality measures.

The elaboration phase began by defining the functional and non-functional require-
ments of the Minimum Viable Product (MVP). This included core features such as listing
creation, browsing the marketplace and chat functionality.

Following this, extensive research into Kotlin Multiplatform was conducted to assess
its capabilities and production-readiness. Additional research into real-time messag-
ing options, authentication, search engines, cloud services and App Store deployment
processes was carried out.

After evaluating said technologies and choosing the options best suited for the project,

iv

the application architecture was designed. For this, wide-spread software engineering
methodologies such as the C4 model, domain analysis and component interaction dia-
grams were leveraged.

As a last step before the implementation phase began, wireframes of the app were
designed and the required cloud infrastructure was set up and tested.

During the implementation phase, the mobile app and backend were developed in
parallel. A beta and and an MVP release were performed, followed by usability tests
with students to validate the app’s functionality and gather real-world feedback.

Technologies

Frontend: KMP, Compose Multiplatform, Voyager, Koin

The app is built using KMP, leveraging compatible frameworks and libraries such as
Compose Multiplatform for the user interface, Voyager for navigation, and Koin for
dependency injection. This approach enables the sharing of business and UI logic, while
keeping platform specific code to a minimum.

Backend: Python, FastAPI, SQLAlchemy

A REST API developed in Python, using the FastAPI framework, serves as the backbone
of the application. It provides the required endpoints for the frontend to interact with,
handling all core functionalities. It communicates with the database and additional
services, such as the search engine and AWS components.

Cloud: AWS, OpenTofu

AWS is used to host the backend, database, and image storage. ECS Fargate runs the
containerized backend, RDS hosts the PostgreSQL database and S3 stores the listing
images. An EC2 instance runs the Meilisearch search engine required for the browsing
of listings. Other services, such as load balancing, are integrated as well. Everything is
configured using infrastructure as code (IaC) with OpenTofu.

External Interfaces: Microsoft Entra ID, PubNub, Firebase

To avoid implementing authentication from scratch, Microsoft Entra ID is used as the
identity provider. This allows OST students and employees to sign in using their OST
Microsoft account. Real-time chat is an integral part of the app, allowing users to
negotiate and discuss payment or delivery details of the item. PubNub is used to provide
this functionality. To send push notifications and handle events in real-time, Firebase
Cloud Messaging is integrated.

v

Figure 1: Used Technologies

Results

Product

In the final version of the POSTE app, everyone with a valid OST Microsoft account
can sign in and start using the marketplace. The app itself is available on the Apple
App Store.

As a seller, the user can create listings, attach images to them and provide additional
information such as price, condition, category and a description. These listings can be
updated or deleted as needed. The seller can also view and respond to incoming chat
messages from interested buyers.

As a buyer, the user can browse listings using a variety of filtering and sorting
options. If not looking for anything specific, the popular listings may be of interest. If
an interesting item is found, it can either be saved to the personal watchlist or a chat
with the seller can be initiated.

In the chat, the seller and buyer can discuss details such as pricing, payment and

vi

https://apps.apple.com/ch/app/poste-ost-marketplace/id6743496948?l=en-GB&platform=iphone
https://apps.apple.com/ch/app/poste-ost-marketplace/id6743496948?l=en-GB&platform=iphone

shipping methods. Once the payment has been sent, the seller can mark it as received.
Later, upon receival of the item, the buyer can confirm the delivery. Once both parties
confirm their part, the transaction is finalized and they have the opportunity to rate
each other.

Other features such as a blocklist, automatic QR-bill generation and various settings
like dark mode are also available.

Figure 2: MVP App - Home Screen, Search and Listing

Kotlin Multiplatform

The result of the KMP research was a positive assessment of the technology. KMP
is already used by international companies such as McDonald’s and Forbes, providing
millions of users with their services. These companies use KMP to separate their native
applications from their business logic, which they develop as a shared KMP module.
This approach increases the maintanability of the business logic and helps reduce the
lines of code. Any changes to the business logic need to be made only once within the
KMP module.

The POSTE app took a different approach, sharing 100% of its code, meaning the UI
code as well. This significantly reduced development time, having to write the UI code
only once using the Compose Multiplatform framework. Since this framework is based
on Jetpack Compose, which the development team is highly experienced with, it also

vii

contributed to faster development. The development of POSTE was not without issues,
but overall the POSTE development team deems the Kotlin Multiplatform technology
as a viable alternative for productive mobile cross-platform development.

Outlook

While all planned features were implemented, there is still room for improvements and
additional functionality. Several optional features were considered and could be added
in the future.

One such feature is an auction system, where multiple buyers could bid on a listing.
This could increase the engagement and potentially lead to better prices for in-demand
items, which benefits the seller.

Another feature would be the ability to save specific searches, and receive alerts when
new listings, matching a saved search, are created.

Finally, the reporting and monitoring capabilities of the platform could be improved.
Users have the ability to block other users but having an option to report them would
enhance safety and trust on the platform.

viii

Contents

I Abstract i

II Management Summary iii

III Glossary and Acronyms xv

IV Introduction 1

1 Task Definition 2

2 Motivation 3

3 General Conditions 4

V Product Documentation 5

4 Requirements 6
4.1 Functional Requirements . 6

4.1.1 Actors . 6
4.1.2 Use Case Diagram . 7
4.1.3 Use Case Descriptions . 8

4.2 Non-Functional Requirements . 10
4.2.1 Performance Efficiency . 10
4.2.2 Reliability . 11
4.2.3 Maintainability . 12
4.2.4 Security . 12
4.2.5 Interaction Capability . 12
4.2.6 Flexibility . 13

5 Domain Analysis 14
5.1 Domain Model . 14

ix

5.1.1 User . 15
5.1.2 Listing . 15
5.1.3 Chat & Message . 15
5.1.4 Blocklist . 15
5.1.5 Watchlist . 15
5.1.6 SavedSearch . 15

6 Architecture 16
6.1 Technology Decisions . 16

6.1.1 Frontend Dependency Injection . 16
6.1.2 Frontend UI Framework . 17
6.1.3 Frontend Navigation Framework 17
6.1.4 Backend API Framework . 18
6.1.5 Backend ORM . 18
6.1.6 Database . 19
6.1.7 Infrastructure as Code . 19
6.1.8 Cloud and Infrastructure . 20
6.1.9 Authentication . 20
6.1.10 Push Notifications . 21
6.1.11 Messaging . 21
6.1.12 Search . 22
6.1.13 CI/CD . 22

6.2 C4 Model . 24
6.2.1 Context . 24
6.2.2 Container . 24
6.2.3 Component . 25

6.3 Component Interaction Diagrams . 27
6.3.1 Login Flow . 27
6.3.2 Create Listing . 27
6.3.3 Search . 28
6.3.4 Chat . 29

6.4 Frontend . 30
6.5 Backend . 32
6.6 Database . 32
6.7 CI/CD . 34

6.7.1 Frontend . 34
6.7.2 Backend . 35
6.7.3 AWS . 35

6.8 Infrastructure . 35
6.9 PSP Integration Concept . 38

6.9.1 Planned Implementation . 38
6.9.2 Motivation for PSP . 38
6.9.3 PSP Integration . 38

x

6.9.4 Comparison of PSPs . 40
6.10 Extension . 40

6.10.1 Development Environment . 41
6.10.2 Backend Microservices . 41

6.11 Scaling . 41
6.11.1 Performance . 41
6.11.2 Platforms . 41

7 Design 42
7.1 Colors . 42
7.2 Logo . 42
7.3 Prototyping . 43

7.3.1 Low-Fidelity . 43
7.3.2 High-Fidelity . 43

8 Implementation 44
8.1 Frontend . 44

8.1.1 App Architecture . 44
8.1.2 Navigation . 45
8.1.3 Chat . 46
8.1.4 Instrumented Testing . 50

8.2 Backend . 51
8.2.1 API Architecture . 51
8.2.2 Endpoints . 54
8.2.3 Integration Testing . 55

8.3 AWS . 55
8.3.1 VPC Resource Map . 55
8.3.2 Security . 56
8.3.3 Remote State . 56

9 Results 57
9.1 NFR Validation . 57

9.1.1 Beta Validation . 57
9.1.2 MVP Validation . 59

9.2 Final Product . 59

VI Research Documentation 65

10 Kotlin Multiplatform 66
10.1 Overview . 66
10.2 Compose Multiplatform . 67

10.2.1 Features & Constraints . 68
10.2.2 Interrelation with Jetpack Compose 68

xi

10.3 History . 68
10.4 Concepts . 69

10.4.1 Common Code . 69
10.4.2 Targets . 70
10.4.3 Source Sets . 70
10.4.4 Tests . 75

10.5 Sharing Code . 75
10.6 iOS Integration . 77

10.6.1 Direct Integration . 79
10.6.2 CocoaPods Integration . 80
10.6.3 Kotlin-Swift/Objective-C Interoperability 81

10.7 iOS Dependencies . 81
10.7.1 Cinterop . 81
10.7.2 CocoaPods . 81
10.7.3 Dependency Injection . 82

11 Comparison 84
11.1 Native Android . 84
11.2 MAUI . 84

12 In Practice 87
12.1 Use Cases . 87

12.1.1 Cross-Platform Mobile Application Development 87
12.1.2 Unifying Business Logic . 87

12.2 Industry Adoption . 88
12.2.1 Forbes . 88
12.2.2 McDonald’s . 88

12.3 Community . 90
12.4 Kotlin Multiplatform in POSTE . 90

12.4.1 Integration Method . 90
12.4.2 UI Code . 90
12.4.3 Data Handling . 91
12.4.4 Persistency . 91
12.4.5 Dependency Injection . 91
12.4.6 Local Pod . 92
12.4.7 UI/Integration Testing . 93

13 Evaluation and Outlook 94
13.1 Features . 94
13.2 Industry . 94
13.3 POSTE Experience . 95
13.4 Final Assessment . 95
13.5 Future . 96

xii

VII Project Documentation 97

14 Project Plan 98
14.1 Planning . 98

14.1.1 Methodology . 98
14.1.2 Roles and Responsibility . 98
14.1.3 Meetings . 99
14.1.4 Long-Term Plan . 99
14.1.5 Milestones . 101
14.1.6 Short-Term Plans . 102
14.1.7 Risk Management . 105

14.2 Tooling . 108
14.2.1 Documentation . 108
14.2.2 Code . 108
14.2.3 Tracking . 109
14.2.4 Workflow . 109
14.2.5 Tool and Resource Directory . 109

15 Quality Measures 111
15.1 Code . 111
15.2 Gitflow . 111
15.3 DoR / DoD . 112
15.4 Metrics . 113
15.5 Testing . 113

15.5.1 Frontend . 113
15.5.2 Backend . 114

15.6 Pipelines . 114

16 Project Monitoring 115
16.1 Time Tracking Reports . 115
16.2 Time Tracking Statistics . 115

16.2.1 Work Distribution . 116
16.2.2 Work History . 116
16.2.3 Overview Epics . 116
16.2.4 Project Timeline . 117
16.2.5 Milestone Fullfilment . 118

16.3 Repository Analytics . 118
16.3.1 Test Coverage . 118
16.3.2 Commits . 118

xiii

VIII Closing Thoughts 120

17 Conclusion 121
17.1 KMP . 121
17.2 Chat Implementation with PubNub . 121
17.3 Evaluating Success . 122
17.4 Future and Outlook . 122

18 Personal Reports 124
18.1 Roger Marty . 124
18.2 Simon Peier . 126
18.3 Tseten Emjee . 127

19 Note of Thanks 128

IX Lists 129

Bibliography 130

List of Figures 135

List of Tables 138

List of Listings 140

X Appendix 141

A Task Description 142

B Usability Tests 146

C Designs 149
C.1 Low Fidelity . 149
C.2 High Fidelity . 151

D Meeting Minutes 155

xiv

Part III

Glossary and Acronyms

xv

Glossary

Table 1: Glossary

Term Definition

AMI
An Amazon Machine Image that already contains the required
software for booting up an EC2 machine.

C4 Diagram
The Context, Container, Component, and Code diagram used for
software architecture modeling.

EC2
Elastic Compute Cloud are virtual servers in the cloud that can be
used for various tasks (e.g. hosting the Meilisearch search engine)

ECR
A fully managed Docker container registry service called Amazon
Elastic Container Registry, used to store and manage container
images.

ECS Fargate
A serverless compute engine provided by Amazon Elastic Con-
tainer Service, used to run containers without managing servers.
ECS Fargate handles scaling and orchestration.

VPC
To isolate resources in the cloud a Virtual Private Cloud can be
used.

xvi

Acronyms

Table 2: Acronyms

Term Definition

AAB Android App Bundle

ALB Application Load Balancer

APK Android Package Kit

AWS Amazon Web Services

CI/CD Continuous Integration and Continuous Delivery/Deployment

CMP Compose Multiplatform

DI Dependency Injection

DTO Data Transfer Object

ERD Entity-Relationship Diagram

FCM Firebase Cloud Messaging

IaC Infrastructure as Code

IPA iOS App Store Package

JDK Java Development Kit

JWT JSON Web Token

JVM Java Virtual Machine

KMP Kotlin Multiplatform

MADR Markdown Architectural Decision Records

NAT Network Address Translation

NDK Native Development Kit

ORM Object-Relational Mapping

OST OST Eastern Switzerland University of Applied Sciences

PII Personally Identifiable Information

PSP Payment Service Provider

RDS Relational Database Service

S3 Simple Storage Service

xvii

Part IV

Introduction

1

Chapter 1

Task Definition

This documentation outlines the development of the OST marketplace app, named
POSTE, as well as the research of the Kotlin Multiplatform (KMP) technology. This is
part of the Bachelor thesis in the Computer Science program at OST - Eastern Switzer-
land University of Applied Sciences. A cross-platform mobile application is developed
to facilitate the exchange of secondhand or unused items within the university commu-
nity. The university community includes OST students and employees. If only one party
is mentioned, students and employees are included. The development of this app also
serves as a practical evaluation of KMP.

To achieve this, KMP is thoroughly researched, evaluated and documented. The
KMP research, while part of the thesis, is presented as a self-contained segment and
is available as a separate document. In addition, a cloud-based backend is designed
and developed to support the required functionality in a scalable and highly available
manner. If possible, a payment provider is integrated and if not, at a conceptual design
must be developed.

To ensure the app meets the user needs, functional and non-functional requirements
are first defined and then discussed with the project supervisor. Further details regarding
the specifications of the thesis can be found in the original task description located in
Appendix A.

2

Chapter 2

Motivation

This Bachelor thesis is conducted by three computer science students: Tseten Emjee,
Roger Marty, and Simon Peier who came up with the idea behind the OST marketplace
app. The core motivation is to create a product exchange platform where the users feel
safe and familiar, as all participants are part of the same university community. Whereas
any user can sign up on other marketplaces, POSTE restricts sign-ups to students with
access to a valid OST Microsoft account. This closed community is intended to foster
trust and reduce the risk of malicious buyers or sellers.

Additionally, the project covers areas of interest of all three students with Simon
and Tseten being primarily interested in app development and Roger in the cloud tech-
nologies and backend development. It is an excellent opportunity to apply and deepen
the knowledge obtained during the course of the computer science studies, acquire new
skills and gain practical experience.

3

Chapter 3

General Conditions

The project is conducted in the spring semester of 2025 and spans a total duration of
16 weeks. The Bachelor thesis is worth 12 ECTS credits. With one credit equaling to
30 hours, the whole workload amounts to 360 hours per student which is roughly 22.5
hours per week. In total, 1’080 hours are available for the completion of the project.

A meeting with the supervisor, Martin Seelhofer, is held on a weekly basis to review
progress and address challenges. Important discussions and decisions are documented
accordingly and can be found in the meetings minutes located in Appendix D.

An interim and final presentation must be held in the presence of the supervisor, the
assigned proofreader and an external expert. These stakeholders are also responsible for
evaluating the overall quality and outcome of the thesis.

4

Part V

Product Documentation

5

Chapter 4

Requirements

This chapter defines the requirements of the project, including both functional and
non-functional aspects. These requirements are defined based on the task specifications
outlined in Appendix A to ensure a high-quality product.

4.1 Functional Requirements

This section covers the functional requirements for the marketplace application. The
relevant actors and their goals, as well as the use cases are shown.

4.1.1 Actors

Actor Goals

Seller A person with the intent of selling used or unneeded items. The main goal
is to create and manage listings.

Buyer The buyer’s main focus is to search for listings and start the interaction
with the seller if interested.

AWS AWS’s goal is the reliable hosting of the backend, database, search engine
and object storage.

PubNub Focuses on real-time and reliable message delivery between buyer and seller
which allows for negotiations and the exchange of payment and delivery
details.

Firebase Firebase manages the sending of push notifications.

Table 4.1: Actors

6

4.1.2 Use Case Diagram

Figure 4.1: Use Case Diagram

7

4.1.3 Use Case Descriptions

Each use case is described below using the casual format [1].

Table 4.2: Casual Format Use Cases

ID Description Alternate Scenario

UC1
The seller can create listings for products
intended for sale. Listings can be viewed,
updated or deleted as desired.

-

UC2
A buyer can open listings of interest to see
more details about them.

-

UC3

When the app is opened, an overview page
is shown to the user with shortcuts to cer-
tain functionalities (e.g. search, watch-
list).

-

UC4
All users can search for listings using the
search function.

No results: A hint is shown to the user.

UC5
The searches can be refined using the filter
and sort functions.

No results: A hint is shown to the user.

UC6

Buyers have the ability to wishlist their
favorite listings so they can easily be ac-
cessed at a later time. The wishlist can be
viewed and modified as needed.

-

UC7
After a purchase/sale, the buyer and seller
can rate each other on a scale from 1 to 5.

-

UC8
Through the listing, a user can open the
profile of the other party to see its rating
and listings.

-

UC9
If a buyer is interested in a listing, they
can start a conversation with the seller us-
ing the chat function.

Blocked user: If the seller has blocked the
buyer, the buyer cannot start a conversa-
tion.
Own listing: The message seller button is
disabled if the listing is their own.

Continued on next page

8

Table 4.2 – continued from previous page

ID Description Alternate Scenario

UC10
The seller has the option to send an auto-
matically generated QR-bill to the buyer
in the chat window.

QR-bill not enabled: A click on the button
shows a reminder to enable the QR-bill in
the settings.

UC11

After payment details are exchanged and
the buyer has sent the money, the seller
can confirm the receipt of the payment to
indicate that the product will be shipped
soon.

-

UC12
The buyer can confirm that the product
has been received.

-

UC13
Other users on the platform can be
blocked and unblocked.

-

UC14
There is a settings tab to customize the
app experience which includes features
like dark mode and notification settings.

-

UC15
For important events the user receives a
push notification.

Push notifications turned off: The user is
not notified.

UC16
For proper marketplace moderation, users
can be reported which informs the relevant
parties.

-

UC17
Buyers can bid on listings. The highest
bidder at the end of the deadline can get
in touch with the seller.

-

UC18
Certain searches can be saved and if a new
listing that matches the saved search ap-
pears, a notification is sent to the user.

-

Precondition

The user must sign in using a valid OST Microsoft account to perform any actions within
the app. Only authorized OST students and staff can interact with the marketplace
functionalities.

9

4.2 Non-Functional Requirements

Based on the ISO/IEC 25010 [2] standard, the below non-functional requirements are
defined.

4.2.1 Performance Efficiency

ID NFR1

Description The search function returns results quickly.

Acceptance Criteria Searching for a product returns results according to the
specified landing zones, given the user has a mid-range de-
vice with a working 4G internet connection.

Landing Zones

• Minimal: 4 seconds

• Target: 2 seconds

• Outstanding: 1 seconds

Table 4.3: NFR1

ID NFR2

Description The backend is able to process many search requests in a
given timeframe.

Acceptance Criteria The backend returns successful responses for search results
with the default pagination size of 10, as specified.

Landing Zones

• Minimal: 50 requests per minute

• Target: 100 requests per minute

• Outstanding: 150 requests per minute

Table 4.4: NFR2

10

ID NFR3

Description The capacity of the database is sufficient for the target au-
dience.

Acceptance Criteria The database can handle 120’000 listings (6000 possible
users * 20 listings per user).

Table 4.5: NFR3

4.2.2 Reliability

ID NFR4

Description Fault tolerance is implemented by the backend server.

Acceptance Criteria In case of a downed node, the traffic gets load-balanced to
a working node and operability is maintained.

Table 4.6: NFR4

ID NFR5

Description Database data backups are always available.

Acceptance Criteria All databases are backed up daily and can always be re-
stored.

Table 4.7: NFR5

ID NFR6

Description No app crashes due to user input.

Acceptance Criteria During usability and regression testing the app does not
crash due to user input.

Table 4.8: NFR6

11

4.2.3 Maintainability

ID NFR7

Description The project is efficiently modifiable.

Acceptance Criteria Industry standard code guidelines are enforced with linters,
formatters and pipelines to ensure quality.

Table 4.9: NFR7

4.2.4 Security

ID NFR8

Description Data is only transferred over secure connections and is en-
crypted during transit and at rest.

Acceptance Criteria Only HTTPS connections are used for data transfer be-
tween the app, AWS and other external services. PII in
the database is never stored as plain text and is encrypted
instead.

Table 4.10: NFR8

ID NFR9

Description A user may only see his own data.

Acceptance Criteria Upon signing in, the user only has access to his own account
and PII. This is tested by developers on an ad hoc basis.

Table 4.11: NFR9

4.2.5 Interaction Capability

ID NFR10

Description A user is aware when certain errors happen.

Acceptance Criteria The user is informed with messages when connection or
backend errors occur.

Table 4.12: NFR10

12

ID NFR11

Description The app demonstrates intuitive navigation and interaction,
allowing users to accomplish their goals with minimal fric-
tion.

Acceptance Criteria The feedback from the usability tests is positive.

Table 4.13: NFR11

4.2.6 Flexibility

ID NFR12

Description The app is installable on multiple mobile operating systems.

Acceptance Criteria The app can be installed on Android and iOS.

Table 4.14: NFR12

13

Chapter 5

Domain Analysis

In this chapter the key identities and their relationships are illustrated using a domain
model diagram. Certain core entities are explained in greater detail.

5.1 Domain Model

The following model shows the entities that are in the MVP and the ones that are outside
the scope.

Figure 5.1: Domain Model Diagram

14

5.1.1 User

A user represents a registered OST student or employee in the system. The user can act
as a seller or buyer depending on their actions, but in the system the user is treated the
same way. Among other things, their most important abilities are creating listings and
conversing with others to buy/sell things.

5.1.2 Listing

A listing contains details about the item that is being sold on the marketplace. This
information is shown to buyers and can be used in searches. The listing itself also has a
status field to indicate whether the product has been sold or if the offer is still open.

5.1.3 Chat & Message

These two entities are tightly coupled. A chat always consists of two users, unless
one party leaves, and contains a series of messages. This allows for simple seller-buyer
communication.

The status of the negotiations between sellers and buyers is bound to the chat entity.

5.1.4 Blocklist

If a user does not want to be contacted by certain users, they have the ability to block
them. This can also be undone if desired.

5.1.5 Watchlist

The watchlist allows the buyer to mark certain listings. These can then be accessed via
a separate tab in the navigation instead of having to search for the listing again.

5.1.6 SavedSearch

If a buyer is looking for a specific product, an alert can be created using certain search
terms. A notification will then be sent to the buyer if a new listing is posted, that
matches the saved search.

15

Chapter 6

Architecture

This chapter focuses on the architectural decisions and the system’s design.

6.1 Technology Decisions

This section shows the evaluation of the technologies used in the project. Different
options are compared against each other and documented using the MADR format [3].

No decision is required regarding the cross-platform development of the app, as the
task definition mandates the use and evaluation of KMP.

6.1.1 Frontend Dependency Injection

Context and Problem Statement

To manage dependencies in the frontend application, a dependency injection framework
is needed. It should integrate well with KMP and be officially supported.

Considered Options

• Koin

• Kotlin-inject

Decision Outcome

Chosen option: Koin, because:

• It works for Multiplatform and is officially referenced by Kotlin [4].

• It integrates well with Compose Multiplatform.

• It has more community support.

16

https://www.jetbrains.com/kotlin-multiplatform/
https://insert-koin.io/
https://github.com/evant/kotlin-inject

6.1.2 Frontend UI Framework

Context and Problem Statement

A UI framework is needed to build cross-platform UIs while enabling native-like experi-
ences. Integration with KMP is required.

Considered Options

• Compose Multiplatform

• Native implementations using Jetpack Compose and SwiftUI

Decision Outcome

Chosen option: Compose Multiplatform, because:

• It allows for sharing UIs across multiple platforms.

• It seamlessly integrates with Kotlin Multiplatform shared logic.

• The team already has experience using Jetpack Compose, which Compose Multi-
platform is based on.

6.1.3 Frontend Navigation Framework

Context and Problem Statement

A framework is needed enable cross-platform navigation.

Considered Options

• Inbuilt Compose Multiplatform Navigation

• Voyager

• Decompose

Decision Outcome

Chosen option: Voyager, because:

• Inbuilt Navigation framework is in alpha.1

• It enables cross-platform navigation in KMP.

• Offers an alternative to the experimental ViewModel API of Compose Multiplat-
form.1

• Pragmatic and easy to use API.
1As of May 6, 2025, the Navigation and ViewModel package have been marked Stable [5]

17

https://www.jetbrains.com/compose-multiplatform/
https://developer.android.com/compose
https://developer.apple.com/xcode/swiftui/
https://www.jetbrains.com/compose-multiplatform/
https://voyager.adriel.cafe/
https://arkivanov.github.io/Decompose/

6.1.4 Backend API Framework

Context and Problem Statement

To create the backend endpoints, a fitting framework is needed. It should be lightweight,
well-documented and support features such as automatic request validation and depen-
dency injection.

KMP is not considered for the backend part of the project, as its evaluation is focused
on the mobile app part. Instead, a backend framework is chosen based on the team’s
experience and suitability for the defined requirements.

Considered Options

• FastAPI

• Flask

• Django

• Express.js

Decision Outcome

Chosen option: FastAPI, because:

• It is modern, lightweight and widely used.

• It is a high-performance framework with many built-in features.

• It integrates seamlessly with Pydantic for request validation and data serialization.

• FastAPI has strong community support and high quality documentation.

• Some team members already have experience with it.

Consequence

Through this decision, the backend language is set to Python.

6.1.5 Backend ORM

Context and Problem Statement

A relational database is used for storing data, which the backend interacts with fre-
quently. For these operations an ORM is needed that integrates well with FastAPI and
PostgreSQL.

18

https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/en/stable/
https://www.djangoproject.com/
https://expressjs.com/

Considered Options

• SQLAlchemy

• SQLModel

Decision Outcome

Chosen option: SQLAlchemy, because:

• SQLAlchemy is more mature and flexible.

• It works well with Pydantic, which allows for clean separation between DB and
API models.

• SQLModel is less flexible and generally less favored within the developer commu-
nity.

6.1.6 Database

Context and Problem Statement

A relational database that integrates well with the chosen frameworks and platforms is
required.

Considered Options

• PostgreSQL

• MySQL

Decision Outcome

Chosen option: PostgreSQL, because:

• It is supported by SQLAlchemy.

• It is available on the AWS RDS service.

• It is open-source, powerful, highly reliable and familiar to work with.

6.1.7 Infrastructure as Code

Context and Problem Statement

Instead of creating the required cloud resources by hand, an IaC tool should be used.
With it, the infrastructure should be managed reproducibly and version controlled. It
is required to have GitLab CI/CD integration.

19

https://www.sqlalchemy.org/
https://sqlmodel.tiangolo.com/
https://www.postgresql.org/
https://www.mysql.com/

Considered Options

• Terraform

• OpenTofu

• CloudFormation

Decision Outcome

Chosen option: OpenTofu, because:

• GitLab officially supports OpenTofu (Terraform deprecated).

• It is open-source and well supported.

6.1.8 Cloud and Infrastructure

Context and Problem Statement

For the hosting of the backend, storage, search engine and database, a cloud provider is
needed.

Considered Options

• AWS

• Azure

• GCP

Decision Outcome

Chosen option: AWS, because:

• It provides all services required for the use cases.

• It is widely adopted and has detailed documentation.

• There is existing knowledge of AWS and a personal interest in using it.

6.1.9 Authentication

Context and Problem Statement

Instead of creating an authentication system, an existing platform should be used. This
is more secure and allows for easier setup and integration into the frontend and backend.

20

https://developer.hashicorp.com/terraform
https://opentofu.org/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/

Considered Options

• Switch edu-ID integration

• OST Microsoft Account integration

• Firebase Authentication

• Auth0

Decision Outcome

Chosen option: OST Microsoft Account integration, because:

• This automatically restricts the app to OST students as is intended.

• The entire authentication logic (including 2FA) is handled by Microsoft Entra ID.

• JWT tokens can then be used to authenticate for the backend API.

6.1.10 Push Notifications

Context and Problem Statement

To inform users about important events or changes, push notifications need to be sent.
A service is required that supports all required platforms.

Considered Options

• Firebase Cloud Messaging

Decision Outcome

Chosen option: Firebase Cloud Messaging, because:

• It is the industry standard.

• It supports all required operating systems.

6.1.11 Messaging

Context and Problem Statement

For real-time messaging between the users, a reliable messaging solution is needed.

21

https://eduid.ch/
https://firebase.google.com/products/auth
https://auth0.com/
https://firebase.google.com/products/cloud-messaging

Considered Options

• Lambda + Firestore/DynamoDB

• Stream Chat

• Sendbird

• PubNub

Decision Outcome

Chosen option: PubNub, because:

• It provides integration with FCM.

• It has Android and iOS SDKs and the integration of a native solution is valuable
to the KMP evaluation.

• The free tier is sufficient for the scope of this project.

6.1.12 Search

Context and Problem Statement

The search function is an important aspect of the app. Instead of relying on a full-text
search, a search engine that supports features like fuzzy matching will be used.

Considered Options

• Meilisearch

• OpenSearch

Decision Outcome

Chosen option: Meilisearch, because:

• It is fast, lightweight and easy to set up.

• It has a Python SDK.

• It is open-source and has its own AMI on AWS.

6.1.13 CI/CD

Context and Problem Statement

To automate the building, testing and deployment of the code, a CI/CD platform is a
must. This is needed for the backend as well as the frontend which includes iOS. This
implies that the platform must offer macOS runners.

22

https://aws.amazon.com/lambda/
https://firebase.google.com/products/firestore
https://aws.amazon.com/dynamodb/
https://getstream.io/chat/
https://sendbird.com/products/chat-messaging
https://www.pubnub.com/
https://www.meilisearch.com/
https://opensearch.org/

Considered Options

• GitLab CI/CD

• GitHub Actions

• Codemagic

• Bitrise

Decision Outcome

Chosen option: Gitlab CI/CD and Codemagic, because:

• GitLab is already used for the code repositories and thus used in combination with
Codemagic.

• Codemagic is optimized and focused for mobile CI/CD and supports KMP.

• Codemagic is also required because the OST GitLab instance offers no macOS
runners.

23

https://docs.gitlab.com/ci/
https://github.com/features/actions
https://codemagic.io/start/
https://bitrise.io/

6.2 C4 Model

This section contains the C4 model of the project, giving an overview of the system
architecture. It depicts the architecture on different levels of abstraction, with level one,
Context, being the most superficial and level four being the most detailed. Only level
one to three have been modeled, on the basis that the level four diagram would be too
specific and subject to too many changes. The diagrams from level one to three are
sufficient enough to gain a good understanding of the architecture.

6.2.1 Context

The context diagram gives an overview of how the system interacts with all external
systems and actors.

Figure 6.1: C4 Context Diagram

6.2.2 Container

The container diagram takes a closer look at the POSTE system itself, revealing how
the system is split up and how the containers interact with each other.

24

Figure 6.2: C4 Container Diagram

6.2.3 Component

The component diagram depicts the internal structure of POSTE’s own containers ”Mo-
bile App” and ”Backend”, showing their key components and their interactions.

25

Figure 6.3: C4 Component Diagram

26

6.3 Component Interaction Diagrams

This section shows high-level component interaction diagrams. They focus on key use
cases that cover all connections and components. Their purpose is to showcase the
different interfaces in the POSTE system.

6.3.1 Login Flow

Following diagram shows the login process and the interactions between the app and
Microsoft Entra ID. After the authentication succeedes, all backend requests must be
made with the required JWT or else they will not be accepted.

Figure 6.4: CID Login Flow

6.3.2 Create Listing

To create a new listing, the user submits all required information. Once the user confirms,
the listing is created in the database, indexed in the search engine and afterwards the
images are uploaded via a separate call.

27

Figure 6.5: CID Create Listing

6.3.3 Search

The search starts off by retrieving all listings that match the query and filter parameters.
That response also contains a temporary pre-signed URL to the thumbnail which resides
in the S3 bucket. The results are then shown to the user while the thumbnails are fetched
in the background. This usually happens quickly enough that the thumbnails load at
the same time as the listings.

28

Figure 6.6: CID Search

6.3.4 Chat

All interactions in a chat happen between the frontend, PubNub and Firebase as seen
in the following diagram.

29

Figure 6.7: CID Chat

6.4 Frontend

Kotlin Multiplatform (KMP) applications built with Compose Multiplatform share a
similar project architecture to native Android applications that use Jetpack Compose,
with the shared code residing in the common source sets.

This similarity enables the use of the same architectural principles applied in An-
droid apps. Consequently, the frontend of the POSTE system follows the typical app
architecture described by Google.

Leveraging this uni-directional data flow, with Koin as the chosen dependency in-
jection framework, the app remains flexible, expandable and testable throughout the
development process.

Figure 6.8: Typical App Architecture [6]

30

The actual project structure and architectural patterns used in the frontend are
based on the recommendations by Ignacio Carrión, an experienced member of the KMP
community and Koin contributor, as well as Volodymyr Tarasov, a KMP Medium poster.

For the architectural pattern MVVM is used, promoting a reactive approach and
clean separation of concerns [7]. This decision was made according to the experience of
the development team.

The project structure is inspired by Volodymyr Tarasov’s Medium post [8], specifi-
cally the :mobile module. As the diagram below shows, the structure inside the com-

poseApp module is split into commonMain and its platform-specific counterparts, all con-
taining following packages:

data: The outer most package, handling connections to the backend and
other external services.

di: The dependency injection package, responsible for setting up and pro-
viding the DI container.

ui: The ui package, containing the common UI code written with Compose
Multiplatform.

Figure 6.9: Planned Project Structure inside composeApp

31

https://carrion.dev/en/
https://medium.com/@vptarasov

6.5 Backend

The backend architecture is based on multiple well-known community standards. As the
backend REST API is built using FastAPI, the best practices and conventions from its
community are used [9]. These recommendations are inspired from the Netflix Dispatch
project, which is also based on FastAPI [10]. Thus, the backend follows a domain-driven
design where each package has its own router, service, schemas, models and so forth.

Additionally, the architecture is extended with a repository layer for the data access
instead of handling that in the service layer [11]. This leads to a decoupling of the
business and data access logic.

Following diagram depicts the flow that the requests go through.

Figure 6.10: Backend Architecture

Router: Contains the endpoints which are exposed to the frontend and consumes the
services provided by the service layer.

Service: Intermediary between the API endpoints and the repository/client layer, con-
taining all business logic.

Repository: Interactions with the database happen through the repository layer.

Client: Used for external service communication.

6.6 Database

This section covers the database. The following entity relationship diagram shows the
different tables of the database, including their attributes. The relationships between
the tables and their cardinalities are depicted using the crow’s foot notation.

32

Figure 6.11: Entity Relationship Diagram

Something that is added in the ER diagram, which is not visible in the domain
analysis, is the negotiation table. This extra table is required because a seller wants
to interact and start the negotiation process with multiple buyers at the same time and
vice versa. Each negotiation has an is completed status that is computed from the
two statuses payment and shipment received. If both are fulfilled, the negotiation is
completed and the listing status is set to closed.

33

6.7 CI/CD

This section describes the setup of all pipelines used in the various repositories.

6.7.1 Frontend

The frontend CI/CD process is split up into two parts. Initial steps such as linting, unit
testing and the measurement of the test coverage are done directly on GitLab where the
repository is hosted.

Figure 6.12: Frontend Pipeline - GitLab

Since no macOS runners are available on the OST GitLab instance, the building
process it outsourced to Codemagic. Unit tests of all platforms are executed again, the
respective artifacts are then built and signed. In the Android workflow, the application
archives APK and AAB are shared via mail, whereas in the iOS workflow, the application
archive IPA is also submitted to TestFlight.

Figure 6.13: Frontend Pipeline - Codemagic Android

Figure 6.14: Frontend Pipeline - Codemagic iOS

34

6.7.2 Backend

The backend pipeline starts by linting the codebase and executing all integration tests,
while measuring the percentage of code that is covered by them. Depending on the
branch, either a dev or prod Docker image is built and pushed to the GitLab registry.
This is followed by security checks and a container scanning task that scans for vulner-
abilities. If on the main branch, the built image is also published to the AWS registry.
This triggers a redeployment of all ECS containers.

Figure 6.15: Backend Pipeline

6.7.3 AWS

The AWS repository, containing all the IaC code, has a pipeline that validates the
configuration, generates a plan and then applies it.

Figure 6.16: AWS Pipeline

6.8 Infrastructure

For the hosting of the backend instances, database, image storage and search engine, the
AWS cloud is used. Figure 6.17 below illustrates the core infrastructure setup.

There is one VPC that contains all services except S3, which lives outside of it.
For enhanced security and network segregation, public and private subnets are created.
Only the ALB is publicly reachable and is the main entry point through the internet
gateway. It listens on a specific domain on ports 80 and 443. Port 80 is redirected to

35

443 to enforce HTTPS traffic. The load balancer then routes the traffic to the backend
instances hosted on ECS Fargate. These instances are the only ones with access to the
RDS PostgreSQL database and the EC2 instance which hosts the Meilisearch search
engine. The S3 bucket can be accessed through a VPC endpoint. A NAT gateway is
configured to enable outgoing traffic from the backend instances, such as FCM calls.
This design follows the AWS ECS networking best practices [12].

The backend container images are pushed from the GitLab CI/CD to the ECR.

36

Figure 6.17: Cloud Infrastructure Diagram

37

6.9 PSP Integration Concept

This section outlines the conceptual approach to integrating a Payment Service Provider
(PSP), as required by the task definition. First, the planned negotiation process of the
MVP is presented. Subsequent subsections go over the motivation for the integration of
a PSP and what changes would be required.

6.9.1 Planned Implementation

In the planned final product, a PSP is deliberately omitted. Instead, buyers and sellers
can use the planned chat feature to conduct their transactions. This gives them maxi-
mum flexibility in how they handle their transactions. They can freely negotiate prices,
shipping methods and payment preferences.

Additionally, there is a QR-bill feature. If a seller enters their swiss IBAN and
address information, they have the option to send a QR-bill to the buyer. The Swiss
QR-bill is automatically generated in the backend. If the buyer scans the bill using his
e-banking app, it automatically fills in the necessary fields. If the agreed price changes
during the negotiation, the buyer can adjust the amount before confirming.

Furthermore, this implementation bypasses the administrative and timely burden of
integrating a PSP, which is beneficial given the limited timeframe of this thesis.

6.9.2 Motivation for PSP

In the long term, integrating a PSP can improve the security and the traceability. With
the aforementioned solution, users of the app have greater flexibility, but in instances of
fraud not much can be done. That risk is accepted for now as everything is limited to
OST students and user names are visible and non-modifiable.

With a PSP, the funds could also be held until the shipment has been received.
Integrated refund mechanisms would also be beneficial.

6.9.3 PSP Integration

Such an integration would require changes in the following areas.

User Flow

The payment flow would change significantly from the current chat-based process. Cur-
rently, buyers can initiate a chat with the seller, negotiate terms and then confirm if
the payment or shipment has been received. The methods of payment and shipment are
flexible.

However, integrating a PSP and automating the purchasing process would require
streamlining the user flow. The existing onboarding process, which collects seller infor-
mation, would have to be extended to include additional details such as a phone number
and date of birth. Sellers would also be required to specify a fixed price and shipping
method when creating a listing.

38

The purchase flow would change to the following:

1. Seller signs up and provides required information for payout setup.

2. Buyer browses items and clicks “Buy” on a listing.

3. Buyer enters payment details into hosted, pre-built page provided by the PSP.

4. Payment is securely processed.

5. Buyer gets payment confirmation; seller is notified of sale.

6. Possible fees are deducted and PSP transfers payout to the seller’s bank account.

Backend

To support PSP integration, the backend must include the following functionalities:

• Forwarding collected user information to the PSP API for account creation.

• Storing PSP account ID in user database entry.

• API endpoints to process payments.

• Logic to delay payouts until the item is marked as received by buyer.

• Webhook listeners to receive payment status updates from the PSP (e.g., payment
succeeded, failed, payout completed).

Database Model

The following changes to the database models are designed under the assumption that
Stripe Connect is the chosen PSP.

The user table would need to be extended with the phone number, date of birth and
a psp account id field to store the ID of the created PSP account. Additionally, the
existing negotiation table could be adjusted and reused as follows:

Figure 6.18: Updated Negotiation Table

39

https://stripe.com/en-ch/connect

6.9.4 Comparison of PSPs

Following table compares major PSP platforms based on their official documentation.

Stripe Connect
[13, 14]

Adyen for Plat-
forms [15, 16]

PayPal for
Marketplaces
[17, 18]

Onboarding Custom via API or
hosted UI

Custom via API or
hosted UI

PayPal account re-
quired, onboarding
via PayPal UI only

SDKs/Developer
Tools

Server / web /
mobile / terminal
SDKs, REST API,
CLI

Server / web /
mobile / terminal
SDKs, REST API
(advanced/de-
tailed explorer)

Server / web /
mobile / terminal
SDKs, REST/-
GraphQL API

Compliance PCI DSS Level 12 PCI DSS Level 12 PCI DSS Level 12

Payment Methods 120+ payment
methods (includ-
ing TWINT)

100+ payment
methods (includ-
ing TWINT)

10+

Country Avail-
ability

46+ countries 33+ countries 200+ markets

Designed For Small/medium
companies, star-
tups, MVPs

Enterprises, global
platforms

Businesses of all
sizes

Table 6.1: PSP Comparison

6.10 Extension

This section shows ways in which the current architecture could be extended in the
future.

The project follows a modular architecture that promotes maintainability, flexibility
and scalability. New features can be introduced independently, without disrupting exist-
ing functionality. Code quality is enforced through the pre-commit hooks and pipelines
which guarantees that the code adheres to the guidelines.

2Payment Card Industry Data Security Standard; assures that businesses which accept, handle, store
or transfer credit card information operate in a secure manner.

40

6.10.1 Development Environment

To enhance the developer experience and simulate the production environment more
accurately, a possible extension is to run a second instance of all cloud infrastructure
components, serving as the developer environment to support and extend local develop-
ment. Having a mirrored production environment for development purposes would lead
to smoother deployments, reduce the risk of environment-specific bugs and ease of use
for frontend developers.

6.10.2 Backend Microservices

A future improvement would be to split up the backend into multiple services instead of
one big application. This would enhance the scalability, fault isolation and flexibility.

Additionally, the interactions with PubNub could be handled over a separate service
in the backend, instead of handling it in the mobile app. This would lead to less external
systems that the frontend has to interact with.

6.11 Scaling

The following section discusses how the project could be scaled further.

6.11.1 Performance

The backend is the main component that would benefit from scaling or performance
increases, as this is limited on the mobile app side. Following are possible options to
enhance the performance.

ECS Fargate: Autoscaling could be enabled based on CPU and memory utilization.
Thus, the backend API could handle varying loads efficiently. Other solutions like
AWS EKS could also be considered.

RDS: A possibility would be to add read replicas which could take on read-heavy work-
loads. This would reduce the utilization on the primary database.

6.11.2 Platforms

The POSTE app is currently supported on both Android and iOS. However, using KMP,
the app could be made available on many more platforms.

Web: KMP supports the development of web applications, which would allow POSTE
to run in modern web browsers.

Desktop: KMP also supports desktop applications, making it possible to deploy POSTE
on various computer operating systems.

41

Chapter 7

Design

This chapter documents all decisions regarding the user interface and visuals.

7.1 Colors

As the POSTE app is to be used in the OST environment, the colors used in the app
are based on the official OST logo.

Figure 7.1: Main Colors

7.2 Logo

The following logo is used for the app icon and other key placements. The name of the
app, ”POSTE”, is combined with the official OST logo, to create a context between
buying/selling items and OST.

42

Figure 7.2: POSTE App Logo

7.3 Prototyping

To ensure a smooth implementation process and minimize the risk of hasty decisions,
considerable attention is given to the design prototypes. All the designs can be found in
Appendix C.

7.3.1 Low-Fidelity

The focus of the low-fidelity designs lies on showcasing the arrangement of components
and their interactions. It should be intuitive to use and navigate.

7.3.2 High-Fidelity

The high-fidelity prototype shows the precise design of how the app should look like
after implementation. The prototype is made with Figma [19] and the color scheme is
generated based on the colors above using the Material Theme Builder plugin [20] in
Figma. Some variation in the actual implementation is acceptable, but it should closely
resemble the prototype.

43

Chapter 8

Implementation

This chapter describes selected implementations as well as certain technologies, depen-
dencies, philosophies and code examples.

8.1 Frontend

In this section, interesting parts of the frontend implementation are discussed.

8.1.1 App Architecture

The app is structured as seen below:

Figure 8.1: App Structure

The shared code is inside the commonMain package and split up into data, di and
ui. data contains the repository and DTO classes and is split up into domains such as

44

listing and user. The di package holds the configuration for the Koin DI framework.
Lastly, ui houses UI code, including views, viewmodels, theme and custom composables.

8.1.2 Navigation

Implementing the navigation is a key part of any mobile app. At the beginning of this
thesis, the native navigation library of CMP was still experimental, meaning that break-
ing changes may occur frequently [21]. Therefore, an open source navigation library
called Voyager is used. It was originally built for Jetpack Compose, but is fully compati-
ble with CMP. In addition, it seamlessly integrates with Koin, the dependency injection
framework used in this project.

Navigation Structure

POSTE has a navigation bar at root level to allow users to navigate between the most
important functionalities of the app.

Figure 8.2: Navigation Bar

This is realised by using a Voyager Tab Navigator at the root, which contains and
manages the five main tabs displayed in the bottom navigation bar:

1 // commonMain/PosteApp.

2 TabNavigator(HomeTab) {

3 Scaffold(

4 /* ... */

5 content = { CurrentTab () },

6 bottomBar = {

7 val tabNavigationVisible

8 by navStateManager.isTab.collectAsState ()

9

10 AnimatedVisibility(/* ... */) {

11 NavigationBar(/* ... */) {

12 TabNavigationItem(HomeTab)

13 TabNavigationItem(WatchlistTab)

14 TabNavigationItem(CreateTab)

15 TabNavigationItem(ChatsTab ,

16 TestTag.CHAT_ICON_TAB)

17 TabNavigationItem(SettingsTab)

18 }

19 }

20 },

21)

22 }

Listing 8.1: Tab Navigator

45

Each tab is implemented as a ”PosteTab”, a customized version of the Voyager Tab,
to allow the modification of the tab icons. Each ”PosteTab” instance encapsulates its
own Voyager Navigator instance, enabling independent navigation stacks within each
tab section. This design allows users to navigate to deeper screens within any tab while
maintaining separate navigation histories.

Furthermore, a NavigationStateManager is implemented to manage the visibility of
the navigation bar. It ensures that the navigation bar is only displayed when users are
at the root level of each tab, automatically hiding it when navigating to deeper screens.

8.1.3 Chat

The chat is implemented with a real-time messaging platform, enabling functionalities
such as chatting, push notifications and real-time updates. It operates on a publish/-
subscribe model.

As PubNub does not provide an SDK specifically for KMP, the chat functionality is
implemented natively using the Kotlin Chat SDK and Swift Chat SDK for Android and
iOS respectively.

PubNub

The commonMain directory contains the PubNubCommon interface, which provides all func-
tions necessary to communicate with PubNub. These functions enable CRUD operations
on chats and allow subscriptions to chats in order to receive live updates. The actual
implementation of these functions are inside the respective native classes PubNubAndroid
and PubNubImpl in the androidMain and the iosApp, which implement PubNubCommon.

Ultimately, the classes are used by the chat related ScreenModels, the Voyager equiv-
alent of ViewModels. They do not depend on the implementations but rather on the
PubNubCommon interface. The implementations get binded during compilation by the
Koin DI framework.

Figure 8.3: PubNub Implementation

46

Sequences

The flow of the chat is planned using sequence diagrams. They depict the entire flow
with all possible cases and alternative scenarios.

Figure 8.4 illustrates the flow when a buyer initiates a chat session with a seller. When
a buyer clicks a ”MESSAGE SELLER” button, a negotiation is created in the backend,
a chat session is created via PubNub and then the ChatScreen is shown to the user.

Figure 8.4: Start Chat Sequence Diagram

47

Figure 8.5 depicts the comprehensive workflow when a seller confirms payment re-
ceival, leading to transaction completion. If the buyer and seller both marked the package
and payment as received respectively, the negotiation is completed and all chats between
the seller and other potential buyers are deleted. Afterwards, FCM pushes are sent to
the ChatScreens to display the rating UI. Upon rating or choosing to leave the chat,
the cleanup of the chat session is handled. If the opposite party is still a member of
the chat session, the user simply leaves the session. If the user is the only remaining
member, the chat session is deleted entirely.

Figure 8.5: Completion Sequence Diagram

48

In Figure 8.6, the process when a seller decides to delete his listing, is shown. Upon
doing so, a backend call is triggered which closes the listing and deletes all negotiations
associated with it. Then, an FCM push is triggered which disables sending messages
and marks the chat as closed. The buyer and seller can then leave the chat session.

Figure 8.6: Delete Sequence Diagram

49

Figure 8.7 outlines the blocking mechanism and its impact on the chat. When a
seller decides to block a buyer, the system removes the seller from all chats involving
said buyer. The blocked user will still see the chat but interactions with the negotiation
buttons is disabled.

Figure 8.7: Block Sequence Diagram

8.1.4 Instrumented Testing

The implementation relies on instrumented tests. Nevertheless, some unit tests exist,
but they were solely created to test how they function in regards to KMP and CMP.

The following code example shows an instrumented test which tests the tab naviga-
tion. This is done using the Compose UI testing framework [22]. First, the application
context is initialized for Koin, the DI framework. The test initialization uses stub im-
plementations for MSAL and PubNub, but the calls to the local backend are real, which
covers the end-to-end aspect of the tests. Then the UI content to be tested is set. The
TestPosteApp composable function used in this example, is the PosteApp composable
with a custom LifeCycleOwner. This is necessary to prevent iOS UI tests from failing.
Subsequently, the actual testing is conducted. It asserts that the HomeScreen is initially
shown, then simulates a click onto the chat icon in the navigation bar and finally asserts
that the content displayed changed to the ChatScreen.

50

1 // commonTest/NavigationTest.kt

2 @OptIn(ExperimentalTestApi ::class)

3 @Test

4 fun tabNavigateChat_ContentIsChat () =

5 runComposeUiTest {

6 val koinHelper = KoinHelper ()

7 koinHelper.initTestKoin ()

8

9 setContent {

10 TestPosteApp ()

11 }

12

13 onNodeWithTag(TestTag.HOME_CONTENT).assertIsDisplayed ()

14 onNodeWithTag(TestTag.CHAT_ICON_TAB).assertIsDisplayed ()

15 onNodeWithTag(TestTag.CHAT_CONTENT).assertDoesNotExist ()

16

17 onNodeWithTag(TestTag.CHAT_ICON_TAB).performClick ()

18 onNodeWithTag(TestTag.CHAT_CONTENT).assertIsDisplayed ()

19 }

Listing 8.2: Instrumented Test Example

To be able to test if some content is shown, the content to be tested has to be tagged.
The TestTag object, as used above, consists of string constants. These are used to tag
UI components:

1 Column(

2 modifier = modifier.testTag(TestTag.HomeContent)

3) {

4 // HomeScreen content

5 }

Listing 8.3: Usage of test tag

8.2 Backend

This section covers the backend implementation aspects.

8.2.1 API Architecture

As planned, the architecture of the API follows a domain-driven design and is structured
as follows:

51

Figure 8.8: API Project Structure

Each domain contains all the components required. Following is an example of the
listing domain:

Figure 8.9: Listing Domain Setup

52

Schemas

To automate the validation of incoming requests and the corresponding responses, Py-
dantic schemas are used [23]. These schemas define the expected structure and data
types, which ensures consistency and reliability throughout the application. They elim-
inate the need for manual checks, while at the same time improving the code maintain-
ability as well as the error reporting.

Following is an example schema of a listing. Other schemas build on this base schema
to add or modify fields depending on the specific use case, such as creating, updating or
returning detailed responses.

Figure 8.10: Listing Base Schema

Models

Using SQLAlchemy, models which represent the structure of the database tables, are
defined [24]. Each model maps to a table and contains definitions regarding its columns,
relationships and possible constraints. SQLAlchemy’s ORM is used to query and ma-
nipulate the data.

Incoming Pydantic schemas are converted into model instances when creating or
updating data. The model instances are converted back into response schemas when
returning data to clients.

Dependencies

The backend application relies on several SDKs and libraries to provide essential func-
tionality. Below are the most important ones:

boto3: Is the AWS SDK for Python and used to interact with AWS services such as S3
to upload listing images [25].

meilisearch-python: To index new listings and make them available via the search
engine, the Meilisearch Python API client is used [26].

firebase-admin-python: Push notifications need to be triggered in the backend in
certain cases, for this the Firebase Admin Python SDK is required [27].

swiss-qr-bill: To provide the QR-bill generation feature, this library is used to generate
Swiss QR-bill payment slips as SVGs [28].

53

8.2.2 Endpoints

The backend REST API offers about 30 endpoints for clients to interact with. The full
documentation of all the endpoints, including the request and response formats, response
codes and more, can be found on this Notion page. When running the app locally, all
routes can also be inspected by accessing the Swagger UI served at /docs. The following
is an example of such an endpoint.

Endpoint: POST /listings

Content-Type: application/json
Request Body:

1 {

2 "title": "MX Master 3",

3 "description": "Working and in good condition.",

4 "price": "29.99",

5 "condition_id": 2,

6 "category_id": 1

7 }

Listing 8.4: Request Body

Response Body (201 Created):

1 {

2 "id": 42,

3 "title": "MX Master 3",

4 "description": "Working and in good condition.",

5 "price": "29.99",

6 "view_counter": 0,

7 "created_at": "2025 -06 -09 12:11:05.291563",

8 "status_id": 1,

9 "condition_id": 2,

10 "category_id": 1,

11 "owner": {

12 "id": 1,

13 "name": "John Doe",

14 "rating": 2.5

15 },

16 "thumbnail": null

17 }

Listing 8.5: Response Body

Response Codes

• 201 Created

• 400 Bad Request

• 404 Not Found

54

https://www.notion.so/POSTE-REST-API-Endpoints-1d9caa157440800e8689e5e2b8221804?source=copy_link

8.2.3 Integration Testing

The current implementation relies fully on integration tests. These tests cover the full
request and response flow through the different layers. An endpoint is called, after which
the response is verified and the repository is queried to ensure correct data access. The
integration tests are conducted using the pytest framework [29].

1 def test_create_listing(

2 test_client , db_session , persisted_user , create_listing_request

3):

4 response = test_client.post(

5 "/listings", json=create_listing_request.model_dump(mode="json")

6)

7 assert response.status_code == status.HTTP_201_CREATED

8

9 json_data = response.json()

10 assert json_data.get("id") == 1

11 # ... (additional response field checks)

12

13 listing = db_session.query(Listing).filter(Listing.id == 1).

one_or_none ()

14 assert listing is not None

15 assert listing.id == 1

16 # ... (additional DB field checks)

Listing 8.6: Integration Test Example

8.3 AWS

The cloud infrastructure is set up as planned in the architecture chapter. All cloud
components are configured via IaC using OpenTofu, which can be found in the according
repository [30].

8.3.1 VPC Resource Map

The following diagram shows the resulting VPC resource map after the infrastructure
has been set up and configured. It shows the relationships between the resources in
the VPC and the traffic flow. Included are public and private subnets which are linked
to the route tables. There is also a default one which can be ignored. Public subnets
connect to an Internet Gateway, private subnets use a NAT Gateway and an S3 VPC
Endpoint provides S3 access.

55

Figure 8.11: VPC Resource Map

8.3.2 Security

The principle of least privilege is followed to ensure secure communication between the
services. Security Groups are used to control and restrict inbound and outbound traffic.
For example, the database only allows traffic on port 5432 from the ECS service. All
other traffic is blocked completely. This setup limits access to and from trusted internal
resources within the environment, significantly reducing the attack surface.

1 resource "aws_vpc_security_group_ingress_rule" "security -group -rds -

ingress" {

2 security_group_id = aws_security_group.security -group -rds.id

3 from_port = 5432

4 to_port = 5432

5 ip_protocol = "tcp"

6 referenced_security_group_id = aws_security_group.security -group -ecs.id

7 }

Listing 8.7: Security Group Example

8.3.3 Remote State

As this is a shared environment, the state of the infrastructure needs to be saved at a
remote location and locked if it is in use. For this, a remote backend is configured where
the state is saved in an S3 bucket and the locks are handled via DynamoDB.

1 terraform {

2 backend "s3" {

3 bucket = "poste -marketplace -terraform -state"

4 key = "terraform.tfstate"

5 profile = "poste"

6 region = "eu-central -1"

7 dynamodb_table = "poste -marketplace -terraform -state -lock"

8 }

9 }

Listing 8.8: Remote State

56

Chapter 9

Results

This chapter highlights the produced results of the marketplace project.

9.1 NFR Validation

The NFRs defined at the start of the project are validated two times throughout the
course of the project. The first time is right after the beta release and the second time
after the final release, the MVP.

9.1.1 Beta Validation

Below are the results of the first NFR validation.

57

ID Measured Accepted

NFR1 The fetching and displaying of the search results, including
the thumbnails, takes around 100-300ms which puts it in the
outstanding landing zone.

✓

NFR2 Multiple stress tests show that 150 search requests per minute
are no problem for the backend and can be processed easily.

✓

NFR3 After inserting 120’000 listings into the database, just shy of
30MB of the available 5GB is used. The database can thus
handle way more than the required amount of entries.

✓

NFR4 Using the AWS ALB as an entry point, the incoming re-
quests are load-balanced between all active backend nodes.
Healthchecks happen periodically, and if a node is unavailable,
the operability is maintained by only sending traffic to healthy
nodes while a replacement is provisioned.

✓

NFR5 A daily backup is made of the database. These backups are
kept for 35 days and a restore can be made at any time.

✓

NFR6 The app did not crash due to user input during all usability
tests.

✓

NFR7 Pre-commit hooks and GitLab pipelines enforce the defined
code guidelines. No changes can be made unless they succeed.

✓

NFR8 The entrypoint of the backend, the ALB, only accepts and
enforces HTTPS. JWT authentication ensures only requests
from the app are processed. Connections to external systems
are secured as well. All the data in the database is automati-
cally encrypted at rest.

✓

NFR9 This is verified by the whole team on an ad hoc basis. No
issues have been found.

✓

NFR10 If any errors occur, a snackbar describing the error is shown
to the user.

✓

NFR11 As seen in the usability test protocols, the general feedback is
positive.

✓

NFR12 The beta release is tested on Android and iOS. The usability
tests are conducted on both operating systems to gather as
much information as possible.

✓

Table 9.1: NFR Validation - Beta

58

9.1.2 MVP Validation

Below is the protocol from the MVP validation of all NFRs.

ID Measured Accepted

NFR1 Revalidated. ✓

NFR2 Revalidated. ✓

NFR4 Revalidated. ✓

NFR5 Revalidated. ✓

NFR6 Revalidated. ✓

NFR7 Revalidated. ✓

NFR8 Revalidated. ✓

NFR9 Revalidated. ✓

NFR10 Revalidated. ✓

NFR11 Revalidated. ✓

NFR12 Revalidated. ✓

Table 9.2: NFR Validation - MVP

9.2 Final Product

The final product implements all use cases defined for the MVP, specifically UC1 through
UC15. All NFRs, as seen in the table above, are validated and accepted as well. In
addition to the defined use cases, several additional, unplanned features are implemented.
These features originate from feedback during meetings or usability testing sessions and
were subsequently refined, estimated and prioritised through an iterative development
process.

59

ID Description

EC1 On the home page, the user can view popular listings (called ”Hot Listings”).
These are randomly selected listings whose view count is over a certain thresh-
old.

EC2 All screens that require fetching of externally hosted data display loading indi-
cators until the data is retrieved, processed and ready to show. This includes
data from the backend, such as user data and listings, and data regarding chats
from PubNub.

EC3 The home page includes a horizontally scrollable overview of all available cat-
egories.

EC4 The app implements a dark mode which can be enabled and disabled in the
app settings.

Table 9.3: Extended Cases

Figure 9.1: MVP App - Home Screen, Search and Listing

60

Figure 9.2: MVP App - Watchlist, Sell, Sell (Scrolled)

61

Figure 9.3: MVP App - Chats overview, Chat, Settings

62

Figure 9.4: MVP App - My Profile and Listings, Blocklist, QR Bill

63

Figure 9.5: MVP App - Selection of screens in dark mode

64

Part VI

Research Documentation

65

Chapter 10

Kotlin Multiplatform

This chapter provides an introduction, as well as a deep-dive into the concepts of the
Kotlin Multiplatform (KMP) technology.

10.1 Overview

Kotlin Multiplatform is a cross-platform technology developed and open-sourced by Jet-
Brains. This technology aims to allow easy sharing and reuse of Kotlin code between
different platforms, while still retaining the advantages of native programming [31].

Today, KMP supports a total of eight different platforms, allowing them all to share
business logic together. Compose Multiplatform (CMP), the sub-branch of KMP, addi-
tionally allows the sharing of UI code based on the Jetpack Compose UI framework and
is supported by four of the eight platforms [32].

Platform Stability Level March 2025

Android Stable

iOS Stable

Desktop (JVM) Stable

Server-Side (JVM) Stable

Web (based on Kotlin/WASM) Alpha

Web (based on Kotlin/JS) Stable

watchOS Best effort

tvOS Best effort

Table 10.1: Kotlin Multiplatform Stability Levels

As seen in the figure below, there are three main ways to share code using KMP.

66

The technology allows developers to share only some specific logic or module with their
applications to isolate critical functions. This aids in keeping big codebases maintainable.

One can also write the entire business and data handling logic using KMP and
then share it with the native UIs. This approach enables products with demanding
performance and strict native UI requirements.

If development speed and a smaller, more central codebase is required, developers
may also ”share up to 100%” of their code using the CMP framework. UI code is then
written only once for the supported platforms and adding native integrations is possible
when needed.

Figure 10.1: Ways to share code in KMP [33]

10.2 Compose Multiplatform

To be able to share UI code across supported platforms, the Compose Multiplatform
(CMP) framework needs to be used. CMP is a declarative and reactive framework, also
created by JetBrains. It extends Google’s Jetpack Compose framework, which allows the
creation of declarative UI’s for Android, by supporting additional platforms including
iOS, Desktop (Linux, MacOS, Windows) and Web. As of the time of writing, the stability
of the supported platforms is as follows:

Platform Stability Level March 2025

Android Stable

iOS Beta3

Desktop (JVM) Stable

Web (based on Kotlin/WASM) Alpha

Table 10.2: Compose Multiplatform Stability Levels

67

To check the current stability levels, consult the official documentation [21].

10.2.1 Features & Constraints

For developers already familiar with Jetpack Compose, creating UI’s is self explanatory,
as CMP leverages its API. However, certain components and functionalities are only
available on Android. This is either because they are Android-specific or because they
have not yet been ported to other platforms. A list of Android-only components can be
found in the official documentation [34]. If such a component is to be used, a developer
can use the Android-only component for Android and implement the same functionality
for the other platforms by using their respective native libraries.

10.2.2 Interrelation with Jetpack Compose

As previously mentioned, CMP and Jetpack Compose are highly similar as they use
the same core concepts and APIs. However, CMP has certain restrictions regarding
platform-specific features and differences compared to Jetpack Compose. The following
list summarizes this, but is not exhaustive:

• Android-only components are not available for the common CMP code.

• Platform-specific APIs are only available on their respective platforms.

• To access resources such as images, fonts and strings, CMP uses the Res class from
the Compose Multiplatform resources library. Jetpack compose on the other hand
uses the R class from the Android resource system.

• The Maps Compose library [35] is not available for CMP as it is Android-specific.

One major difference is how dependencies are handled in the background when building
an application. In CMP, when a build is done for Android, it uses the same dependen-
cies as Jetpack Compose would. For example, if a project has compose.material3 as a
dependency, it uses androidx.compose.material3:material3. But if it is built for an-
other target such as iOS, it uses org.jetbrains.compose.material3:material3. This
does not require any configuration and is done automatically, utilizing Gradle Module
Metadata within the multiplatform artifacts.

10.3 History

JetBrains’ first steps into cross-platform development started with the KotlinConf 2017,
where the ”Kotlin Multiplatform Project” (KMP) was announced, introducing an ex-
perimental project that supported JVM, Android, iOS and JS targets.

On August 31, 2020, the first public alpha of ”Kotlin Multiplatform Mobile” (KMM)
was released, focusing only on mobile development, specifically Android and iOS. It

3As of May 6, 2025, the iOS platform has been marked Stable [5].

68

enabled the sharing of business logic between the two native platforms. This is possible
due to JetBrains’ other technology called Kotlin Native, which allows compilation of
Kotlin code into native libraries [36].

This split between KMP and KMM led to naming confusion in the community, com-
plicating content discovery and leading to a misunderstanding that Kotlin Multiplatform
was primarily mobile-focused. Hence, on July 31, 2023, the decision was made to dep-
recate the ”Kotlin Multiplatform Mobile” (KMM) naming and cover everything under
”Kotlin Multiplatform” (KMP), regardless of the combination of targets [37].

Around the same time, the alpha version of Compose Multiplatform for iOS was
released. Announced at KotlinConf 2023, Compose Multiplatform for iOS now enables
iOS and Android to have shared UI code in addition to the business logic [38].

Since then many improvements have been made for KMP and CMP, even supporting
the sharing of UI code with the web platform [39].

10.4 Concepts

This section introduces the core concepts that define Kotlin Multiplatform [40].

10.4.1 Common Code

As the name suggests, common code is the Kotlin code that is shared between the
platforms. Typically located in the commonMain directory, the compiler takes the source
code and produces platform-specific binaries.

Figure 10.2: Common Code Compilation

Of course, not every Kotlin code can be compiled like this. Platform-specific code
found in the commonMain directory will not compile. For example using the java.util.UUID
package to generate a UUID would not be allowed, since it is a part of the JDK. There-
fore, the native code compiled for other targets would not have access to those JDK
classes.

69

Instead, Kotlin Multiplatform-specific libraries that support all targets, such as
kotlinx.coroutines, can be used.

10.4.2 Targets

The concept of targets define which platforms the common code gets compiled to. In
the example of Figure 10.2, the targets are JVM and native executables like iOS. The
targets are declared in the build.gradle.kts file inside the directory containing the
source sets, commonly named shared or composeApp if CMP is used, of your KMP
project.

1 // shared/build.gradle.kts

2 kotlin{

3 jvm() // Declares JVM target

4 iosArm64 () // Declares 64-bit iPhone target

5 }

Listing 10.1: Target Declaration

These targets can be seen as labels that tell Kotlin how to compile the code, what
kind of binaries to produce and which language constructions and dependencies are
allowed.

10.4.3 Source Sets

A source set is a set of Kotlin source files that has its own dependencies, targets and
compiler options. Source sets have the following properties:

• A unique name in the project.

• A set of Kotlin source files and resources, typically stored in the directory with the
name of the source set.

• A set of compilation targets that determine which language constructions and
dependencies are available in this source set.

• Defines its own dependencies and compiler options.

Kotlin provides some predefined source sets, like the commonMain source set for ex-
ample. Typically the folder structure of the project would look like this:

70

Figure 10.3: Folder Structure

Figure 10.3 shows the source sets commonMain, iosMain and jvmMain. The source
sets can be configured in the same location as the target declaration in Listing 10.1.

1 // shared/build.gradle.kts

2 kotlin{

3 jvm() // Declares JVM target

4 iosArm64 () // Declares 64-bit iPhone target

5

6 // Source Set declaration

7 sourceSets{

8 commonMain{

9 // Configure this source set

10 }

11 ...

12 }

13 }

Listing 10.2: Source Set Configuration

While commonMain handles all declared targets, every other source set is either platform-
specific or an intermediary source set.

Platform-specific Source Set

As mentioned previously, common code or code inside the commonMain source set cannot
contain any platform-specific API. If the project requires such APIs then they need to
be put into platforms-specific source sets, also called platform source sets. Each target
has a corresponding platform source set, which is responsible only for that target. Let’s
say the project targets Android as well as iOS and requires the generation of UUIDs.
The listing below shows that the Android specific source set allows the usage of the JDK
library, since it is only responsible for the Android target and compilation.

71

1 // commonMain/kotlin/common.kt

2 // Doesn ’t compile in common code because iOS does not support JDK

3 fun uuid() {

4 val uuid = java.util.UUID.randomUUID ()

5 }

6

7 // androidMain/kotlin/android.kt

8 // Works because code is in Android source set

9 // and Android target supports JDK libraries

10 fun androidUuid () {

11 val uuid = java.util.UUID.randomUUID ()

12 }

Listing 10.3: Platform-specific API Usage

Kotlin Multiplatform allows for compilation of a singular target, even with multiple
source sets.

Figure 10.4: Source Sets and Targets

With a setup as depicted in Figure 10.4, the compilation target can be set to Android
only. In that case commonMain and androidMain would be the only source files affected
and they would be compiled together into an Android native binary. This binary would
contain the declarations of both commonMain and androidMain.

Important to note is that platform-specific source sets can use the commonMain source
set declarations but never the other way.

Intermediate Source Sets

In some cases, having only common code and platform-specific source sets is not enough
or rather too inefficient. For example, if the project requires multiple Apple targets,
there would be code duplications across the source sets such as iosArm64, macosArm64
and tvosArm64. Using intermediate source sets, also called hierarchical source sets or
simply hierarchies, solves this issue. This is because they enable the compilation of a
selection of targets.

72

Figure 10.5: appleMain Source Set

As Figure 10.5 shows, the appleMain intermediate source set is used to cover all
the Apple targets. This effectively reduces code duplications since the developer needs
to write Apple-specific code only once inside appleMain. Then the target is set to
iosArm64 only and a native executable for iPhones is compiled, containing the decla-
rations of commomMain, appleMain and iosArm64Main. Kotlin creates some commonly
used intermediate source sets per default, like the appleMain for example. These pre-
defined intermediate source sets are part of the default hierachy template:

73

Figure 10.6: Full Hierarchy Template

It is important to note that the difference between androidTarget and androidNa-

tive is that androidTarget gets compiled into JVM bytecode, while androidNative,
using the Kotlin/Native technology, is compiled without a virtual machine. Essentially,
androidTarget is for the normal Android mobile apps, while androidNative is for
writing Android NDK components.

74

10.4.4 Tests

For every Main source set, there is a Test counterpart. These can be common code tests
inside commonTest or platform-specific tests inside iosTest, using the XCTest library
for example. By default, a multiplatform test library called kotlin.test is provided,
giving access to methods like assertEquals.

10.5 Sharing Code

To showcase how code is shared in practice, the base KMP project generated by the
official KMP Wizard will be used as a template. The project targets Android and
iOS with UI code sharing selected, meaning CMP is also employed. After opening the
project, the directory structure looks like this:

Figure 10.7: Test Project Structure

The project has a composeApp folder acting as the base directory for shared code.
Inside there are three source sets: androidMain, commonMain and iosMain. Taking a
look inside the commonMain folder, the file Platform.kt can be found:

1 // commonMain/kotlin/Platform.kt

2 interface Platform {

3 val name: String

4 }

5

6 expect fun getPlatform (): Platform

Listing 10.4: Platform.kt

This file declares a common interface that can be used and implemented by all
platform-specific source sets. It also declares a function with the expect keyword. The
implementation of this function should then return an instance of type Platform.

75

https://kotlinlang.org/api/core/kotlin-test/
https://kmp.jetbrains.com/

expect/actual mechanism The expect keyword is part of the KMP expect/actual
mechanism, allowing access to platform-specifc APIs. This mechanism can be used with
functions, properties, classes, interfaces, enumerations, or annotations. The ”expected”
construct can be used in common code without any actual implementation, as shown
in the example. The implementation is then provided by the platform-specific source
sets, marking them with the actual keyword. For this mechanism to work, the compiler
checks that: [41]

• Every expect declaration in the common source set has a matching actual dec-
laration in every platform-specific source set.

• Expected declarations do not contain any implementation.

• Every actual declaration shares the same package as the corresponding expect

declaration, such as org.example.project.

The actual implementations can be found in the androidMain and iosMain source
sets:

1 // iosMain/kotlin/Platform.ios.kt

2 import platform.UIKit.UIDevice

3

4 class IOSPlatform: Platform {

5 override val name: String = UIDevice.currentDevice.systemName () +

" " + UIDevice.currentDevice.systemVersion

6 }

7 actual fun getPlatform (): Platform = IOSPlatform ()

8

9 // androidMain/kotlin/Platform.android.kt

10 import android.os.Build

11

12 class AndroidPlatform : Platform {

13 override val name: String = "Android ${Build.VERSION.SDK_INT}"
14 }

15 actual fun getPlatform (): Platform = AndroidPlatform ()

Listing 10.5: Platform-specific Implementations

As the code above shows, the expect/actual mechanism allows the usage of platform-
specific APIs.

Sharing UI Code

Since the example project is using CMP to share UI code, a simple composable function
App() can be found in the common code inside commonMain/kotlin/App.kt. This
function builds the UI declaratively using CMP. It supports sharing composable UI code
with iOS out-of-the-box, but the starting point must still be configured per platform.

76

1 // androidMain/kotlin/MainActivity.kt

2 class MainActivity : ComponentActivity () {

3 override fun onCreate(savedInstanceState: Bundle ?) {

4 super.onCreate(savedInstanceState)

5

6 setContent {

7 App() // Main composable function

8 }

9 }

10 }

11

12 // iosMain/kotlin/MainViewController.kt

13 fun MainViewController () = ComposeUIViewController {

14 App() // Main composable function

15 }

Listing 10.6: Platform-specific UI Start

For the example project targeting iOS and Android, this means setting the compos-
able App() function as the content for the Android MainActivity, and for iOS, setting
the content for the MainViewController.

10.6 iOS Integration

This section explains the different approaches of iOS integrations in a KMP app, as well
as the mechanics of the Kotlin-Swift interoperability.

As previously mentioned, source sets are a collection of Kotlin source files. The
platform-specifc source sets, androidMain and iosMain, both only contain Kotlin code.
The androidMain also contains the actual native Android application, specifically the
MainActivity.kt, AndroidManifest.xml and res folder.

But the iosMain source set does not contain the native Swift application, but instead
is responsible for providing easier access to Apple SDKs that have been translated to
Kotlin. Examples of this are the prebuilt libraries used in Listing 10.5 through the
expect/actual mechanism. KMP provides prebuilt libraries for basic Apple SDKs such
as Foundation or Core Bluetooth [42].

The actual iOS application is inside the folder called iosApp, which resides on the
same level as the composeApp folder that contains the source sets.

77

Figure 10.8: iOS App Location

As seen in Listing 10.6, in Android one can use the common code declarations akin to
regular dependencies. In iOS the usage is the same. The MainViewController function
defined in the Listing 10.6 is used in the actual iOS app Swift code as follows:

1 // iosApp/ContentView.swift

2 import ...

3 import ComposeApp // the shared KMP code gets imported here

4

5 struct ComposeView: UIViewControllerRepresentable {

6 func makeUIViewController(

7 context: Context

8) -> UIViewController {

9 // the MainViewController defined in iosMain

10 MainViewControllerKt.MainViewController ()

11 }

12

13 func updateUIViewController(

14 _ uiViewController: UIViewController ,

15 context: Context

16) {}

17 }

18

19 struct ContentView: View {

20 var body: some View {

21 ComposeView ()

22 .ignoresSafeArea (. keyboard)

23 }

24 }

Listing 10.7: iOS App Setup

While at first glance it might seem as simple as the Android counterpart, with just

78

an import statement for the ComposeApp, the situation is more complex for iOS. Swift
code can call a Kotlin library because the Kotlin shared module is integrated into the
iOS app as a native dependency, using one of several methods.

Figure 10.9: iOS Integration Scheme [43]

The above figure shows that the KMP shared module first gets generated into an iOS
framework. This can then be connected to the iOS application, either through Direct
Integration, CocoaPods or Swift Package Manager (SPM).

This dependency can be consumed locally or remotely. Local meaning that the
developer will have full control over the code base and get instant updates for the native
application when the common code changes. With remote integration, a developer can
explicitly separate the code base of the native app and the common code, treating the
dependency like other third-party libraries. Local integration is possible using Direct
Integration, Cocoapod and SPM, while remote integration can be achieved only with
SPM or CocoaPods. This paper will focus on local integration with Direct Integration
and CocoaPods. Further details on remote and iOS integration are available in the
following source: [43].

10.6.1 Direct Integration

This integration method is suitable for KMP projects with following characteristics:

• KMP project targeting iOS has already been set up

• KMP project does not have CocoaPods dependencies

With Direct Integration, the iOS framework gets generated using a script that is config-
ured to run before the Compile Sources build step in Xcode. The script uses the Gradle

79

task embedAndSignAppleFrameworkForXcode to generate the framework. The task does
the following things:

• Copies the compiled Kotlin framework into the correct directory within the iOS
project structure.

• Handles the code signing process of the embedded framework.

• Ensures that code changes in the Kotlin framework are reflected in the iOS app in
Xcode.

Further information regarding Direct Integration, including a setup guide, can be found
here: [44].

10.6.2 CocoaPods Integration

This integration method is suitable for KMP projects with following characteristics:

• Mono repository setup with an iOS project that uses CocoaPods.

• KMP project has CocoaPods dependencies.

Choosing to integrate using CocoaPods allows the iOS app to add dependencies to Pod
libraries and integrates the KMP shared module as a Pod as well.

CocoaPods integration requires the development machine to have a local CocoaPods
installation which in turn also requires Ruby to be installed as well. The biggest con-
figuration change is the inclusion of CocoaPods inside the build.gradle.kts of the
composeApp directory.

1 // composeApp/build.gradle.kts

2 plugins {

3 ...

4 kotlin("native.cocoapods") version "2.1.21"

5 ...

6 }

7 kotlin {

8 cocoapods {

9 // Required properties

10 // Specify the required Pod version here

11 // Otherwise , the Gradle project version is used

12 version = "1.0"

13 summary = "Some description for a Kotlin/Native module"

14 homepage = "Link to a Kotlin/Native module homepage"

15 ...

16 }

17 }

Listing 10.8: CocoaPods Configuration

The CocoaPod plugin creates the Gradle task podspec which generates a Podspec file
for the KMP shared module. This Podspec file includes the script phases that build the
iOS framework during the build process of an Xcode project. Additional information
about CocoaPods integration can be found in following source: [45].

80

10.6.3 Kotlin-Swift/Objective-C Interoperability

The next point to address is how the Kotlin code gets translated into an iOS framework.
KMP was built on top of the Kotlin/Native technology, its purpose being to compile

Kotlin code into native libraries [46]. Kotlin/Native supports Apple targets, for which
Kotlin was made bidirectionaly interoperable with Objective-C [47]. Swift was not con-
sidered at the time, but can still be bridged if its API is exported to Objective-C with
the @objc tag [42].

This technology is what enables KMP to be used together with iOS and is the
backbone of the integrations.

10.7 iOS Dependencies

The described integration methods showcase how KMP code can be called in the native
iOS application and how to use the prebuilt Apple SDKs in the iosMain source set. If
the project requires native capabilites beyond the prebuilt libraries, there are several
ways to make Swift/Objective-C code available to be used inside the Kotlin iosMain

source set.

10.7.1 Cinterop

Cinterop is a tool that enables developers to generate Kotlin bindings for Objective-
C or Swift libraries and frameworks. The tool leverages the Kotlin-Swift/Objective-
C interoperability mentioned in subsection 10.6.3. While there are some differences
between libraries and frameworks, in general these bindings can be generated through
following steps [42]:

1. Download your dependency.

2. Build it to get its binaries.

3. Create a special .def definition file that describes this dependency to Cinterop.

4. Adjust your build script to generate bindings during the build.

10.7.2 CocoaPods

If Cocopods is the chosen iOS integration method, then iOS dependecies can be added
through Pods [42].

81

1 // composeApp/build.gradle.kts

2 kotlin {

3 cocoapods {

4 version = "2.0"

5 //..

6 pod("SDWebImage") {

7 version = "5.20.0"

8 }

9 }

10 }

11

12 // composeApp/iosMain/Example.kt

13 import cocoapods.SDWebImage .*

Listing 10.9: Pod Dependency

Developers may import Pods from various sources [48]:

• From the CocoaPods repository

• On a locally stored library

• From a custom Git repository

• From a custom Podspec repository

10.7.3 Dependency Injection

Another way to use iOS dependencies in Kotlin code is through dependency injection
with frameworks like Koin. This allows for pure native implementations of interfaces
defined in the common code, as seen in the example below by Pavel Puchkov.

1 // shared/src/commonMain /.../ services/Analytic.kt

2 interface Analytic {

3 fun logEvent(event: String)

4 }

5

6 // androidApp/src/main /.../ services/AnalyticImpl.kt

7 class AnalyticImpl(private val logger: Logger): Analytic {

8 override fun logEvent(event: String) {

9 logger.log("...")

10 }

11 }

12

13 // iosApp/iosApp/Services/AnalyticImpl.swift

14 class AnalyticImpl: Analytic {

15 private let logger: Logger

16

17 init(logger: Logger) {

18 self.logger = logger

19 }

20

21

82

https://insert-koin.io/
https://medium.com/@0x6368656174/kotlin-multiplatform-dependency-injection-with-pure-native-services-6897d9c3bcaa

22 func logEvent(event: String) {

23 logger.log(text: "...")

24 }

25 }

Listing 10.10: Dependency Injection Native Services

These implementations can then be provided to the dependency injection container and
used in the common code.

83

Chapter 11

Comparison

This chapter compares Kotlin Multiplatform with native Android development and
MAUI cross-platform development.

11.1 Native Android

Modern native Android development is Kotlin-first, as recommended by Google [49].
This naturally leads to overlaps with Kotlin Multiplatform due to having the same
syntax. Although new concepts need to be applied, as explained in the previous chapter.

Regarding the limitations of native Android development in KMP, it actually does
not limit it at all, since KMP supports all native libraries in the platform-specific source
set with the expect/actual mechanism. However, using this mechanism means there are
as many actual implementations as there are targets in the KMP project.

To avoid this issue, the code would need to be written in the common source set,
but that is where stability problems can occur. For example the, in Android develop-
ment popular, ViewModel package is still experimental when used in combination with
Compose Multiplatform [50]. 4

11.2 MAUI

MAUI, formerly known as Xamarin, is the cross-platform technology developed by Mi-
crosoft. Both KMP and MAUI try to solve the same problem, as do all cross-platform
technologies: to reduce development time, reuse code and reach a wider audience [51].

Following is a comparison between these technologies:

4As of May 6, 2025, the ViewModel package has been marked Stable [5]

84

https://developer.android.com/topic/libraries/architecture/viewmodel

KMP MAUI

Released August 2020 (KMM) June 2004 (Mono) [52]

Programming
Language

Kotlin C#

Supported Plat-
forms • Android

• iOS

• macOS

• Windows

• Web

• watchOS

• tvOS

• Android

• iOS

• macOS

• Windows

[53]

Native Libraries
Supported

Yes Yes [54]

Shared UI Sup-
ported • Android (Stable)

• iOS (Beta)4

• macOS (Stable)

• Windows (Stable)

• Web (Alpha)

• All stable

Table 11.1: KMP vs. MAUI

As the above table shows, MAUI is the more mature technology. MAUI started with
the Mono open-source project that Xamarin was based on. The biggest difference is the
programming language, with KMP using Kotlin and MAUI using C#. But since they’re
both object-oriented, the concepts remain largely the same.

In terms of supported platforms, KMP has the edge, being able to target Web,
watchOS and tvOS as well. Native libraries or writing platform-specifc code is sup-

4As of May 6, 2025, the iOS platform has been marked Stable [5].

85

ported by both. In KMP, there are platform-specifc source sets with the expect/actual
mechanism and in MAUI a similar approach with partial classes and methods exists [54].

Regarding shared UI code, KMP is lagging behind with its young and unstable
Compose Multiplatform implementation, while on MAUI’s side, the sharing of UI code
has been deemed stable since the Xamarin days.

86

Chapter 12

In Practice

This chapter discusses the primary use cases for KMP and how companies are already
adopting it. Furthermore, the community is analyzed and compared with other commu-
nities. Lastly, insights into KMP usage in the POSTE application is discussed.

12.1 Use Cases

KMP presents an approach to cross-platform development that enables code sharing
while preserving platform-specific optimizations, or even allows complete native imple-
mentation of the UI. This section examines the primary use cases for implementing
KMP.

12.1.1 Cross-Platform Mobile Application Development

The most prominent use case for KMP is mobile application development. KMP allows
developers to share business logic, data handling and networking code between Android
and iOS. Developers have two options for developing the UI. Either they use KMP in
combination with Compose Multiplatform, while still allowing parts of the UI to be
written natively. The other option is to completely implement the UI natively for all
required platforms.

This approach allows teams to reduce development time and maintenance cost with-
out compromising the user experience. Examples of companies that have already stream-
lined their mobile development processes with KMP can be found in section 12.2.

12.1.2 Unifying Business Logic

Organizations with established platform-specific codebases might want to utilize KMP
to unify their codebase. KMP allows developers to choose the level of code-sharing.
This would allow for incremental migration to a shared common codebase. A possible
approach could look like this:

• Selective extraction of common components without full-scale rewriting

87

• Incremental adoption of cross-platform architecture

• Risk mitigation through phased implementation

• Preservation of platform-specific optimizations during transition

This approach enables organizations to realize cross-platform benefits while avoiding
disruptive and extensive rewrites of functional applications.

12.2 Industry Adoption

Despite being fairly new in the market, KMP has already been adopted by several major
companies. In other words, KMP is already built well enough that multi-billion dollar
companies deem it worthy to invest large amounts of resources into building products
with it.

12.2.1 Forbes

Forbes for example, decided to build their latest mobile app with KMP, with the aim to
reduce development costs and time to market. They decided to build the UI natively for
iOS and Android, using Kotlin for everything else. By doing so, they are able to deliver
features faster and reduce cost. Furthermore, they use open-source libraries built by the
community to further optimize costs. Although KMP offers lots of advantages, Forbes
faced and identified some challenges. They find that [55]:

• most of the cross-platform libraries are not as mature as their native iOS/Android
counterparts

• there are still some performance tradeoffs when compared to optimized native code

• the decision of when to use native or shared approaches has to be made yourself
and can be tricky

12.2.2 McDonald’s

To reduce the amount of code in their Global Mobile App codebases, McDonalds decided
to use KMP (or then called KMM). They selected KMP because most of the other options
are web-based solutions. These need another translation layer, which results in worse
performance and thus mediocre experience for the user. In McDonald’s opinion, KMP
is best suited for projects that are designed around dependency injection and/or clean
architecture.

McDonald’s serves locales worldwide, with lots of them having unique requirements
and different menus. Using KMP they now have all the business, parsing and storage
logic in the same place for both platforms.

88

Figure 12.1: McDonald’s Architecture Diagram [56]

With this architecture, as shown in Figure 12.1 they were able to:

• reduce the time needed to develop a feature

• minimize the time needed by a developer to understand and integrate the required
logic

• reduce the test burden for developers as unit tests are handled for both platforms
simultaneously

• run full end-to-end testing on the business logic and database without having to
build the entire application

In contrast to this, McDonald’s also ran into some challenges. The biggest one is,
that not all libraries have direct Kotlin equivalents. This can be solved using Kotlin’s
expect/actual paradigm for platform-specific code [56].

89

12.3 Community

Kotlin Multiplatform has been growing since 2017 and is becoming increasingly popular.
As a result, a community of developers, organizations and open-source contributors has
cultivated around it, fostering its growth and adoption.

While precise metrics regarding community size remain difficult to find, analysis of
GitHub repositories, conference attendance and forum activity indicate a steady growth,
particularly following Google’s endorsement of Kotlin for Android. Nevertheless, the
community is still smaller than those of established cross-platform frameworks such as
Flutter or .NET MAUI, but it is experiencing increased adoption among enterprises and
independent developers. The Kotlinlang Slack workspace with over 60’000 members has
active discussions in dedicated KMP channels [57]. In addition, KMP-related discussions
and knowledge sharing also take place on platforms such as GitHub, Stack Overflow,
Reddit and Kotlin’s official forums.

The KMP community actively contributes to the ecosystem by developing open-
source libraries and tools. A curated list of libraries and tools can be found on the
Awesome Kotlin Multiplatform repository [58]. Furthermore, the Kotlin web team has
created a website containing all libraries compatible with KMP [59].

12.4 Kotlin Multiplatform in POSTE

This section presents how KMP is used to build the cross-platform mobile app POSTE,
the student marketplace app, and which libraries are employed to complete the product.

The POSTE application shares 100% of its code and is targeting Android and iOS
platforms. This means the UI code, as well as business logic and data handling are all
written in Kotlin inside the common code.

12.4.1 Integration Method

KMP integration with the iOS application is handled through CocoaPods. This re-
quired setting up CocoaPods on the development machines and writing specific scripts
in the Codemagic build pipeline. The reason for this choice was the ability to use Pod
dependencies when required.

12.4.2 UI Code

Since the code is fully shared in POSTE, the Compose Multiplatform framework is
used to write the UI Code. Supporting this decision is the Voyager library, providing
multiplatform navigation and an alternative to, at the time of construction, experimental
ViewModel and Navigation API of CMP.

Additionally, Coil and FileKit are also added to handle async web images and local
file handling for both platforms.

90

https://codemagic.io/start/
https://voyager.adriel.cafe/
https://coil-kt.github.io/coil/
https://filekit.mintlify.app/introduction

12.4.3 Data Handling

To facilitate calls to the backend and the internet in general, JetBrains’ own Ktor pack-
ages are added. Ktor provides a multiplatform HTTP client, enabling POSTE to send
and receive requests easily.

12.4.4 Persistency

The app requires the storing of local key-value pairs, for which the DataStore library
is used. The, in Android development popular, package supports multiplatform usage,
assisted by the expect/actual mechanism [60].

12.4.5 Dependency Injection

The application is split into a Data, DI and UI module with a uni-directional dataflow.
The dependency injection framework Koin is leveraged to provide instances of Data
classes to the UI. Especially significant is the use of dependency injection to enable
native SDK usage in POSTE. Specifically the libraries MSAL for authentication and
PubNub for chat functionality. Following is the simplified code for MSAL in POSTE.

1 // commonMain /.../ di/msal/MsalCommon.kt

2 interface MsalCommon {

3 suspend fun signIn ()

4 suspend fun signOut ()

5 ...

6 }

7

8 // androidMain /.../ di/MsalAndroid.kt

9 import com.microsoft.identity.client .*

10

11 class MsalAndroid(

12 private val activity: Activity ,

13) : MsalCommon {

14 ...

15 override suspend fun signIn () {...}

16 override suspend fun signOut () {...}

17 ...

18 }

19

20 // iosApp/MsalImpl.swift

21 import ComposeApp

22 import MSAL

23 import UIKit

24

25 class MsalImpl: MsalCommon {

26 ...

27 func signIn (){...}

28 func signOut (){...}

29 ...

30 }

Listing 12.1: MSAL Implementation

91

https://ktor.io/docs/client-create-multiplatform-application.html
https://developer.android.com/kotlin/multiplatform/datastore
https://insert-koin.io/
https://learn.microsoft.com/en-us/entra/identity-platform/msal-overview
https://www.pubnub.com/

The code below demonstrates how the implementations of MsalCommon and PubNubCom-

mon are then injected into the dependency container.

1 // commonMain /.../ di/KoinHelper.kt

2 class KoinHelper {

3 ...

4 fun initKoin(

5 pubnub: PubNubCommon ,

6 msal: MsalCommon ,

7) {...}

8 ...

9 }

10

11 // Android , onCreate

12 KoinHelper ().initKoin(

13 PubNubAndroid (),

14 MsalAndroid(this)

15)

16

17 // iOS , init of iOSApp

18 KoinHelper ().initKoin(

19 PubNubImpl (),

20 MsalImpl(parentViewController: rootVC)

21)

Listing 12.2: Native Service with DI

12.4.6 Local Pod

The POSTE app has unique requirements regarding native keyboard behaviour. To
meet those requirements a local CocoaPods Pod is developed and used as a dependency
using the CocoaPods integration.

1 // iosHelperPod/src

2 @objc public class KeyboardObserver: NSObject {

3 @objc public func observeKeyboardState(

4 onKeyboardStateChanged: @escaping (Bool) -> Void

5) { ...}

6 ...

7 }

8

9 // composeApp/build.gradle.kts

10 cocoapods {

11 ...

12 pod("ios_helper") {

13 version = "1.0"

14 source = path(project.file("../ iosHelperPod"))

15 extraOpts += listOf("-compiler -option", "-fmodules")

16 }

17 ...

18 }

19

20

92

21 // iosApp/Podfile

22 target ’iosApp ’ do

23 use_frameworks!

24 platform :ios , ’16.0’

25 pod ’composeApp ’, :path => ’../ composeApp ’

26 pod ’ios_helper ’, :path => ’../ iosHelperPod ’

27 end

Listing 12.3: Local Pod ios helper

This pod can then easily be used in Kotlin code through an import statement.
The CocoaPods integration together with Kotlin/Native interoperability automatically
generates Kotlin bindings, since the Swift code is marked with @objc.

12.4.7 UI/Integration Testing

Additionally POSTE has a requirement for E2E testing, which is met through UI testing
in the commonTest source set. UI testing is possible through the same test libraries as
Jetpack Compose.

93

https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-test.html#what-s-next

Chapter 13

Evaluation and Outlook

This chapter evaluates the Kotlin Multiplatform technologies and looks ahead into the
future of KMP.

13.1 Features

From a theoretical standpoint, Kotlin Multiplatform offers all the features one needs to
be able to develop cross-platform mobile applications.

• The ability to share UI code through CMP

• Easy access to native SDKs through the intuitive expect/actual mechanism or
dependency injection if bigger services are needed

• The flexibility regarding iOS integration with CocoaPods or SPM depending the
requirements of the app

• The ability to only share specific logic

Especially the last point makes KMP attractive for companies meaning to adapt the
technology. The reason being that they can integrate it step-by-step instead of a complete
rewrite or migration of the current product.

13.2 Industry

The research of the industry adoption of KMP revealed satisfactory results. With big
international companies such as McDonald’s and Forbes already using the technology
in production, providing millions with their services, the argument can be made that
KMP is already ripe enough. Important to highlight is that both companies use KMP
for business logic while their UIs remain native.

94

13.3 POSTE Experience

The POSTE app has been developed as a measure of how viable a productive, fully
shared KMP app can be.

Early hurdles were experienced due to, the then still experimental, ViewModel and
Navigation APIs. This lead to the third-party Voyager library being used as a replace-
ment, which fulfilled its purpose as a multiplatform navigation library. The choice of
CocoaPods integration was also met with a fair share of troubles, mainly caused by
the inexperience of the development team regarding CocoaPods and iOS development
in general. But the CocoaPods integration setup also could have been simpler. A bug
was also encountered while writing Compose UI tests, which broke iOS tests completely.
Luckily, a fellow KMP developer had encountered this bug before and opened an issue
in JetBrains’ YouTrack before and provided a workaround. The POSTE development
team left a comment to confirm this bug. Another small caveat for the contemporary
developer is that due to its young age, the AI chat agents such as ChatGPT by Ope-
nAI and LeChat by Mistral simply lack the dataset to provide consistent responses for
questions regarding KMP.

Despite such problems, as a development team experienced in Jetpack Compose,
writing CMP UI code for POSTE was fast and went without any problems. The devel-
oper experience between regular Compose and CMP is practically identical, even to the
point where it was possible to port UI code from a previous native Android app directly
into POSTE. The use of native SDKs in POSTE was made easy by using Koin and
dependency injection to provide native implementations. To be able to use local pods
for small pieces of Swift code, such as native keyboard handling, has been a positive
experience. For most other Apple SDKs the prebuilt libraries in combination with the
expect/actual mechanism was also simple to use.

13.4 Final Assessment

The industry already has adopted KMP as a productive technology in use cases where
business logic must be shared. Regarding 100% shared KMP apps, while the development
of POSTE was not without any problems, most of the issues did not come from KMP
itself, but the team’s inexperience with Swift, CocoaPods and iOS development. The
UI code was written quickly and there are many ways to use native SDKs. Most issues
that are encountered can be googled and there are plenty of articles with code examples.
The YouTrack can also be a valuable source of information for niche bugs.

As of May 6, 2025 KMP version 1.8.0 was released and with it the iOS platform
and various APIs such as ViewModel and Navigation have been marked as stable. This
means that cross-platform mobile development with KMP is now fully stable. This
showcases the continued support of JetBrains for KMP.

With the new release and the aforementioned points, the development team deems
the Kotlin Multiplatform technology viable for use in production.

95

https://youtrack.jetbrains.com/issue/CMP-7419/CompositionLocal-LocalLifecycleOwner-not-present-on-iosSimulatorArm64Test-task

13.5 Future

With the iOS being stable now, JetBrains will look to towards their other platforms that
still remain in Alpha and Beta. This includes Web (Kotlin/Wasm), watchOS and tvOS.
For CMP, Web (Kotlin/Wasm) is still in Alpha. In the future, once all platforms are
stable, it will probably be possible to write the application only once for Android, iOS,
Desktop and Web.

The 1.8.0 release also had an impact on the community. With a stable iOS platform
more independent developers will be convinced to write third-party libraries, further
improving and expanding the KMP ecosystem.

All in all, the new release has been a huge confidence boost for people still on the
fence about this technology and its future as a whole stays promising.

96

Part VII

Project Documentation

97

Chapter 14

Project Plan

This chapter addresses the planning aspect of the project and the tools used.

14.1 Planning

This section focuses on short- and long-term planning, as well as methodologies, respon-
sibilities and the identified risks.

14.1.1 Methodology

The chosen methodology for this project is Scrum+. This OST-original methodology
combines the flexibility of Scrum with the stability of RUP. Scrum is used for short-
term planning and RUP for long-term planning. With a sprint length of two weeks, the
project will have eight sprints in total. These sprints are planned and allocated into the
four RUP phases.

14.1.2 Roles and Responsibility

Following are the role assignments and the respective responsibilities that come with
them. While the responsibilities are clear, the work can be shared and assistance is
provided when needed.

Scrum Master Simon Peier
Responsibility: Leading Scrum meetings, documenting short-term plans

Project Manager: Roger Marty
Responsibility: Writing meeting minutes

Product Owner: Tseten Emjee
Responsibility: Leading refinement meetings and sanitation of the backlog

98

https://public.dhe.ibm.com/software/rational/web/datasheets/version6/rup.pdf

DevOps: Roger Marty
Responsibility: Overview and general responsibility over pipelines and infrastructure

Frontend: Simon Peier
Responsibility: Overview and general responsibility over the mobile app

Backend: Roger Marty
Responsibility: Overview and general responsibility over the backend including ex-

ternal systems

Testing: Tseten Emjee
Responsibility: Overview and general responsibility over testing

Architecture: Tseten Emjee
Responsibility: Overview and general responsibility over the architecture

14.1.3 Meetings

These are the regularly held meetings of the project and their timeslots:

• Sprint Planning / Review: Every two weeks on Monday 10h00 - 11h00

• Refinement Meeting: Every second Monday in Sprint 10h00 - 11h00

• Weekly Sync with Advisor: Every Monday 11h00 - 12h00

14.1.4 Long-Term Plan

The following graphic shows the long-term plan with the planned phases, durations and
milestones. The defined durations and work segments are estimations and may change
throughout the project’s duration.

99

Figure 14.1: Long-Term Plan

100

14.1.5 Milestones

These are the five milestones that mark the key deliverables and completion of phases:

Milestone 01: Requirements 17.03.2025
The first milestone is to establish all requirements for the product. This includes

mandatory requirements for the MVP as well as optional ones.

Planned Deliverables:

• Define functional requirements

• Define non-functional requirements

• Create a domain model consistent with the defined requirements

Milestone 02: Prototype 31.03.2025
This milestone focuses on completing the prototype to ensure that the chosen tech-

nologies are able to work together.

Planned Deliverables:

• Prototype App

– Specification: An Android and iOS app that integrates the cloud-based back-
end and external systems like PubNub and Firebase.

Milestone 03: Beta 19.05.2025
With the Beta milestone, the construction phase is nearing its end and the focus lies

on bug-fixes and implementing final changes.

Planned Deliverables:

• Beta App

– Specification: Near feature-complete with bugs and few features remaining.

Milestone 04: MVP 02.06.2025
This milestone signifies the completion of the MVP and the end of the construction

phase.

Planned Deliverables:

• MVP App

– Specifications: Feature-complete with almost no bugs remaining.

101

Milestone 05: Final Submission 13.06.2025
The final milestone ensures everything is ready for submission.

Planned Deliverables:

• Abstract for brochure

• Poster for bachelor thesis exhibition

• Final Product

– Specifications: MVP with no bugs and maybe optional features included.

• Final Documentation

– Specifications: Complete and submission-ready documentation, proof-read by
all team members.

14.1.6 Short-Term Plans

The short-term plans are the separate sprints of the project. They are planned and
estimated following Scrum methodology and planning poker. Following is a history of
all sprints and short descriptions of the work done.

Sprint 1

Product Documentation

- Setup various tools - Complete project planning (long-term
plan, milestones, risks,...)

- Prepare quality measures

Table 14.1: Short-Term Plan Sprint 1

Sprint 2

Product Documentation

- Create low-fidelity mockups - Create C4 diagrams, domain model,
ERD and other diagrams

- Make technology decisions - Define FRs/NFRs

- Research KMP, cloud, authentication

Table 14.2: Short-Term Plan Sprint 2

102

Sprint 3

Product Documentation

- Design high-fidelity mockups - Create high-level sequence diagrams

- Create app logo

- Setup DEV environments

- Configure CI/CD pipelines

- Make working prototype

Table 14.3: Short-Term Plan Sprint 3

Sprint 4

Product Documentation

- Create AWS infrastructure - Define API endpoints

- Composables created - Review risks

- Setup navigation - Make interim presentation

- MS Entra ID integration

Table 14.4: Short-Term Plan Sprint 4

Sprint 5

Product Documentation

- Implement user, listing and image end-
points

- Adjust certain endpoints

- Create login page

- Integrate material theme

- Create various screen models and UIs

Table 14.5: Short-Term Plan Sprint 5

103

Sprint 6

Product Documentation

- Implement all remaining endpoints - Various small adjustments

- Implement create/detail listing page

- Implement overview page

- Implement watchlist page

- Implement search

- Implement settings page

Table 14.6: Short-Term Plan Sprint 6

Sprint 7

Product Documentation

- Implement chat functionality - Design payment integration concept

- Implement guest login for Apple reviews - Write abstract

- Set up instrumented and integration
tests

- Write management summary

- Conduct usability tests

- Make adjustments based on testing feed-
back

Table 14.7: Short-Term Plan Sprint 7

104

Sprint 8

Product Documentation

- Conduct usability tests - Rework and improve KMP research
chapter

- Implement test feedback improvements - Write implementation chapter

- Improve chat and notification function-
ality

- Document results and review chapter

- Prepare production data - Finish remaining sections

- Submit App Store release - Review and improve documentation

Table 14.8: Short-Term Plan Sprint 8

14.1.7 Risk Management

This section focuses on the project risks that exist and categorizes them according to
their probability and severity. Prevention and mitigation strategies are outlined as well.
The aim is to bring all risks below the acceptance line, i.e. into the green and yellow
zone of the risk matrix.

Changes to risks during the course of the project are recorded in the changelog.

105

Identified Risks

ID Description

Technical Risks

R1 Loss of project data / code

R2 Unauthorized use of interfaces

R3 Unauthorized access to user data

R4 Performance issues

R5 Inadequate code quality

R6 Incompatible technologies

R7 Kotlin Multiplatform is inadequate

Project Risks

R8 Misjudgment of the time schedule

R9 Absence of team member

R10 Lack of team communication

R11 Insufficient knowledge of technologies

R12 Outage of project relevant tools

Table 14.9: Identified Risks

Risk Matrix

Probabilities
Severity

Negligible Marginal Critical Catastrophic

High

Likely

Possible R8

Unlikely R1, R10 R9

Rare R5 R2, R4, R7, R11 R3, R6, R12

Table 14.10: Risk Matrix

106

Risk Handling

ID Prevention Mitigation

Technical Risks

R1 Commit often, local backups Restore from local backup

R2 Do not expose any secrets, keys and
ports

Refresh / deactivate keys and secrets

R3 Implement authentication/authoriza-
tion, encrypt data at rest and in tran-
sit

Deactivate user, rotate tokens

R4 Clean coding, well planned architec-
ture

Review code and architecture

R5 Coding guidelines, linters, pipelines
and pre-commit hooks

Refactoring

R6 Initial research of technologies Rapid change of technologies

R7 Evaluate current status of Kotlin Mul-
tiplatform

Choose an alternative

Project Risks

R8 Time buffer in planning, review
progress of sprints

Adjust scope, prioritize core-functions

R9 Eat healthy, stay fit Smooth transfer of knowledge and
tasks

R10 Sync often, work together Extraordinary meetings

R11 Sufficient time for research Check documentation, ask in forums
or discuss with advisor

R12 Check for alternatives Quickly switch to alternatives

Table 14.11: Risk Handling

107

Risk Changelog

Date Risk Change Cause

01.04.2025 R2 Critical/Unlikely to
Critical/Rare

Azure Authentication imple-
mented with JWT

01.04.2025 R6 Catastrophic/Possible to
Catastrophic/Unlikely

Prototype completion

01.04.2025 R7 Catastrophic/Unlikely to
Critical/Unlikely

Prototype completion

01.04.2025 R8 Critical/Possible to
Marginal/Possible

Passed critical project phase

01.04.2025 R11 Critical/Possible to
Critical/Unlikely

Knowledge gained through pro-
totype completion

20.05.2025 R6 Catastrophic/Unlikely to
Catastrophic/Rare

Proven compatibility through
beta release

20.05.2025 R7 Critical/Unlikely to
Critical/Rare

CMP 1.8.0 release marks iOS
as stable

04.06.2025 R11 Critical/Unlikely to
Critical/Rare

Experience gained with Pub-
Nub on chat feature

Table 14.12: Risk Changelog

14.2 Tooling

This section highlights the tools that are used in this project.

14.2.1 Documentation

The documentation is built with LaTeX and versioned with Git. The remote repository
is on GitLab where the configured pipeline builds the output PDF on every commit.
This enables version control and allows for rolling back to a previous version if needed.

To ensure compliance with the OST guidelines and requirements, the LaTeX template
from the module SE Project is used.

14.2.2 Code

The codebase is divided into frontend, backend and cloud-related code/configuration.
Each of these components has its own repository in the GitLab group. This clear sepa-
ration ensures better organization and maintainability, with each repository having its

108

own pipeline for automatic checks, builds and tests.

14.2.3 Tracking

Jira is used to track sprints, epics, issues and bugs:
(Jira Board)

Clockify is used to track the working hours of each member. Clockify is a time tracking
software which integrates with Jira and is able to generate time reports:
(Clockify Tracker)

14.2.4 Workflow

The steps that each issue goes through are illustrated in the workflow diagram below.
Initially, every issue has the status ”To Do”. As soon as a team member starts working
on an issue, it is moved to ”In Progress” and remains there until the implementation is
complete. Upon completion, the issue transitions to ”In Review” where another team
member reviews the work. When the implementation is acceptable and the review is suc-
cessfully completed, the issue can be marked as ”Done”. In case that the implementation
is not acceptable, the issue is moved back to ”In Progress”.

Figure 14.2: Jira Workflow

14.2.5 Tool and Resource Directory

The following table lists the tools and resources used.

109

https://peier.atlassian.net/jira/software/c/projects/MRKT/boards/3
https://clockify.me/

Task Area Tools

Literature Research and Management Google, LLM5, IEEEtran

Idea Generation LLM5, Miro

Translation DeepL, Google Translate

Designs Figma, Balsamiq, Miro, Canva

Coding Visual Studio Code, Android Studio,
Xcode, LLM5

Text Creation, Editing, Spelling and
Grammar Checking

Latex, DeepL, LLM5

Collaboration and Project Management MS Teams, Jira, Clockify, Miro, Outlook,
GitLab, Notion, WhatsApp

DevOps GitLab, Codemagic, AWS, OpenTofu

Version Control and Code Collaboration GitLab

Table 14.13: Tool and Resource Directory

Use of AI Tools

The usage of AI is acknowledged in this thesis. These tools are used to gather ideas,
refine grammar and sentence structure and assist in solving certain coding problems due
to their efficiency and widespread application in the IT domain.

All AI-generated content undergoes a critical review before being used in this project
due to the potential for errors.

5Depending on the case different LLMs were used including ChatGPT, Claude and Le Chat.

110

Chapter 15

Quality Measures

This chapter covers all methods and tools used to guarantee good quality of the produced
increments and the final product.

15.1 Code

Every project containing code uses linters for static analysis of the code. This reveals
programming errors, bugs and stylistic problems. Code formatters are configured for all
projects to automatically format the code according to guidelines and alert if something
is not up to standard.

To enforce these guidelines as well as good code quality, the linters and formatters
run locally as pre-commit hooks. The linters run again in the repository pipelines for
each commit.

Frontend (KMP) Backend (Python)

Linter ktlint [61] ruff [62]

Formatter ktlint [61] ruff [62]

Table 15.1: Code Quality Tools

15.2 Gitflow

To simplify the scheduled releases during this thesis, the Gitflow strategy is used across
all repositories. Feature branches are created from the develop branch and when finished
merged back into the develop branch. For a release, the develop branch is merged back
into the main branch.

Each merge request requires a review and approval of another developer as well as
successful pipelines before they can be confirmed.

111

Branch Description

Main Branch Always contains the latest stable release of the software which is
used in production environments.

Develop Branch Branched from the main branch in the beginning. If a new release
approaches and the develop branch is stable and pipelines are suc-
cessful, it gets merged into the main branch.

Feature Branch Every issue that gets handled receives a separate feature branch,
branched off from the latest develop branch.
Naming convention: feature/[issueID]-[issueTitle]

Bugfix Branch Every bug that needs to be fixed requires a separate bugfix branch
either from the latest develop branch or directly from the main
branch depending on the severity.
Naming convention: bugfix/[issueID]-[issueTitle]

Table 15.2: Gitflow Branch Description

Figure 15.1: Gitflow Workflow

15.3 DoR / DoD

This section covers the Definition of Ready (DoR) and Definition of Done (DoD) related
to issues in the Scrum environment.

112

Definition of Ready Definition of Done

• Common understanding of the issue

• Acceptance criteria are defined

• Estimated effort is determined

• Can be completed in one sprint

• Acceptance criteria are implemented

• Code adheres to standards and
guidelines

• New code is tested and passing

• Pipelines are successful

• Work is reviewed by another devel-
oper

• Documentation is updated if neces-
sary

Table 15.3: DoR / DoD

15.4 Metrics

Code metrics help with providing insight into the code that is written and can even
improve its quality. However, having too many metrics can be distracting and require
too much effort in this time-limited project. This is why the test coverage is the only
code metric used across the various codebases.

Tests ensure that the code functions as expected and continues to do so after changes.
For each commit, the test coverage is calculated in the CI/CD process and shown to the
developers in the merge requests. They are able to see the change in coverage compared
to the last merge and also its history. Through this, the developers are reminded to
write tests. No specific coverage target percentage is set.

The actual results can be found in subsection 16.3.1.

15.5 Testing

This section focuses on the testing methods that are used in the frontend and backend.

15.5.1 Frontend

Multiple testing variants are used to validate the mobile app.

Unit Tests

Testing begins with unit tests, where specific code sections are tested in isolation to
ensure they function correctly. Unit test were not the focus of this thesis and as such

113

only sample tests to confirm KMP functionality are used.

Instrumented Tests

Instrumented tests verifiy the behavior of the UI on emulated devices. Connecting these
tests to a local backend instance facilitates the end-to-end validation as required by the
task description.

Usability Tests

Usability tests are conducted to gather real-world feedback about the app. After the
beta and MVP release, each member of the group selects a student as a testee, as they
are the target group of POSTE. The tester and testee then work through the usability
testing protocol in a one on one session. The testee has to go through all scenarios and
think out loud, while the tester makes notes. At the end there are also general feedback
questions. The protocol and the results can be found in Appendix B.

All findings are collected and discussed in a meeting where each possible change is
prioritized. To conduct a usability test, following elements are required:

• Team member

• Test participant, must be a student

• Test smartphone containing the latest stable release of the app connected to the
production system

• Prepared and populated production environment

• Private area

• Internet

15.5.2 Backend

The backend utilizes integration tests to ensure that all layers and components work
together correctly. Unit tests were considered initially but were removed, as their main
benefits would have been limited to the service layer. Integration tests were deemed
more appropriate, as they also include the router and repository/client logic.

15.6 Pipelines

Each repository in the project GitLab group has its own pipeline. These pipelines run
on every commit to the repository and before/after each merge request. All repositories
containing code run at least a linter, tests and calculate the metrics. Depending on the
repository there are additional stages for deployment or security.

The exact implementation of the pipelines is described in chapter 6.

114

Chapter 16

Project Monitoring

This chapter focuses on the tracking and evaluation of the project progress.

16.1 Time Tracking Reports

Jira is used to keep track of tasks in the form of issues and combined with Clockify to
track the time spent on them per project member. These tools enable the export of
following detailed time reports:

• Total Time (Link)

• Sprint 1 (Link)

• Sprint 2 (Link)

• Sprint 3 (Link)

• Sprint 4 (Link)

• Sprint 5 (Link)

• Sprint 6 (Link)

• Sprint 7 (Link)

• Sprint 8 (Link)

16.2 Time Tracking Statistics

This section shows statistics and reports about the logged working hours. The total
available time is 1’080 hours, meaning 360 hours per team member. The spent hours
must not exceed 1’296 hours.

115

https://app.clockify.me/shared/67b8799662be0c6c2feab7ff
https://app.clockify.me/shared/67b8795948a8e07c47097484
https://app.clockify.me/shared/67ea9dbcacd0b378979dca24
https://app.clockify.me/shared/67ea9df2b86b640b5ed5aeee
https://app.clockify.me/shared/68075c7d54f14405750db88b
https://app.clockify.me/shared/6818c89c6f3d376602244433
https://app.clockify.me/shared/682ca152fa221513a5d0bc88
https://app.clockify.me/shared/683d9772ba82f90db3dc1f9b
https://app.clockify.me/shared/6846a4bf632b964aebc9f17c

16.2.1 Work Distribution

The below pie chart shows the total hours each team member has accumuluated through-
out the thesis.

Figure 16.1: Work Distribution

16.2.2 Work History

The following graph shows the progression of the hours logged.

Figure 16.2: Work History

16.2.3 Overview Epics

At the beginning of the thesis, epics were defined, to which all issues are assigned ac-
cordingly. The following illustration shows the amount of assigned issues each epic has.

Even though this does not represent the workload of an epic, it still shows where
most of the work was done.

116

Figure 16.3: Overview Epics

16.2.4 Project Timeline

Due to assigning all issues to their respective epic, it is possible to track when an epic
was worked on, as seen below. This can then be compared to the long term plan which
shows the similarities between the planned and actual progress.

Figure 16.4: Project Timeline

117

16.2.5 Milestone Fullfilment

At the beginning of the thesis five milestones were defined. They represent important
steps in the project, such as the MVP release for example. It can be said that all
milestones were achieved on time and no delays occured.

16.3 Repository Analytics

The following sections display important and interesting statistics regarding the project
repositories.

16.3.1 Test Coverage

The test coverage is the only metric in this project that is measured and monitored. No
specific target percentage is defined, but the information is still shown to the developers.

The frontend test coverage does not include instrumented tests.

Figure 16.5: Frontend Test Coverage

Figure 16.6: Backend Test Coverage

16.3.2 Commits

Following figures show the commit history of the various repositories. The two main
repositories, frontend and backend, have all commits spread out throughout the con-
struction phase. The infrastructure commits mainly happened in the beginning and
stopped once the infrastructure was stable.

118

Figure 16.7: Frontend Commit History

Figure 16.8: Backend Commit History

Figure 16.9: Infrastructure Commit History

119

Part VIII

Closing Thoughts

120

Chapter 17

Conclusion

The conclusion first discusses our opinion and experience on using KMP and PubNub.
Then the success of this thesis is evaluated and finally possible progressions of the ap-
plication are discussed.

17.1 KMP

This thesis allowed us to evaluate the maturity of KMP and CMP and gain deep insights,
firstly by researching and secondly hands-on when implementing the POSTE app.

The development of POSTE with KMP and CMP was not without problems, but
most of the issues were due to the team’s inexperience with iOS development. Although
certain APIs and libraries of KMP were still in beta while developing, we were always
able to solve the problems. Either through the use of alternative libraries or by searching
the internet for solutions.

On May 6th 2025, KMP version 1.8.0 was released, which marked the iOS platform
and various APIs, such as ViewModel and Navigation, as stable.

We believe that the future of KMP looks promising. JetBrains’ approach to let de-
velopers choose the extent of code sharing also enables companies to gradually transition
to KMP. As more and more companies start to use it, more features and libraries will
be available and still existing platform incompatibilities will be rectified. Otherwise,
still existing incompatibilities can always be bypassed by implementing affected parts
natively.

17.2 Chat Implementation with PubNub

Implementing the chat functionality with PubNub turned out to be more challenging
than initially expected. PubNub offers two different SDKs: the standard PubNub SDK
and the PubNub Chat SDK. Since the Chat SDK includes prebuilt functionality tailored
for chat applications, we chose it to streamline development.

However, we soon encountered limitations. We could have used the standard SDK,
which is highly flexible and allows full customization, but this requires developers to

121

build all chat features from scratch. With the limited scope of this project, this was not
feasible.

Another challenge was the lack of a multiplatform Chat SDK. As a result, we had to
implement the chat features natively using the Swift Chat SDK for iOS and the Kotlin
Chat SDK for Android. Although both SDKs offer the same core functionality, they
differ significantly in how they are used. The Kotlin SDK relies on a callback-based
approach, which led to deeply nested and difficult-to-maintain code. In contrast, Swift’s
use of async/await resulted in a much cleaner and more readable implementation, which
we found to be easier to understand.

We also noticed that the documentation is, in some parts, incomplete and we had
to find solutions elsewhere. Worth mentioning is the PubNub AI, which consistently
provided usable answers to our questions.

On a last note, the chats feel slower than expected. While it is possible that the
issue lies within our implementation, we largely followed the recommended guidelines
and best practices, making us believe the performance issue might not be on our end.

For future projects, we would opt for a better alternative.

17.3 Evaluating Success

The objective of this project was to create a solution that provides students and em-
ployees of the OST with a marketplace app to buy and sell goods which are not used
anymore. Furthermore, KMP was to be used to provide users with an Android and iOS
app and to evaluate the maturity of the technology.

Based on this goal, 18 use cases and one precondition were defined, alongside 12
NFRs to ensure quality. For the MVP, use cases UC1 to UC15 were mandatory, as well
as the precondition. The NFRs all had to be validated and accepted. The MVP was
defined, so that upon meeting all requirements, the goal and aim of this project would
be achieved.

Furthermore, extensive research into KMP was conducted before starting develop-
ment, to ensure that it is sufficient for our requirements.

Reviewing the documented results, the project was successful. All MVP requirements
have been met and some additional features have also been implemented to provide users
with a better product.

17.4 Future and Outlook

With completing the necessary use cases and some additional features, one could think
the application is complete. This is not the case. As with everything, there always is
room for improvement. The optional use cases ”UC16 Report User”, ”UC 17 Bidding
Process” and ”UC18 Set Listing Alerts” remain open. In addition, several ideas on how
to improve the application even further came up during the course of the project. The
list below provides an overview of said ideas:

122

• UC16: Allow users to report other users to POSTE. This would allow for moder-
ation of misbehaving users.

• UC17: Implement functionality to allow a bidding process on listings.

• UC18: Allow the user to save searches and receive alerts for new listings that
match them.

• Allow users to delete their account via settings.

• Add camera functionality on listing creation, meaning that users could directly
take pictures of their article when creating a listing.

• Divide the chat overview into two sections, one for buying items and one for selling.

123

Chapter 18

Personal Reports

Below are the personal reports of each team member.

18.1 Roger Marty

Looking back, this bachelor thesis was a success in my opinion. The collaboration and
communication between all group members was solid and no problems occurred in the
group, as was the case in previous projects.

What I really liked was the assignment of the various tasks according to our strengths
and interests. As I like working in the backend, as well as with cloud infrastructure and
DevOps related things, I was able to take on all those responsibilities. Meanwhile Tseten
and Simon could fully focus on the mobile app part.

But still there are certain areas that could be improved. The main one would be to
define the DoD more strictly and in detail. Some implementations and issues were com-
plex and consisted of a lot of logic. As a result, sometimes only the main component was
built, after which the issue was marked as completed. Later, it turned out that certain
minor details were overlooked. These then had to be fixed, which cost extra time.

In the middle of the construction phase there was also a problem with Meilisearch.
Their AMI was used to set up and configure the search engine. However, suddenly the
AMI was not available anymore. I opened a thread in their Discord and an issue on
GitHub was also created. After a few days they were able to fix the problem and the
AMI was available again. But sadly there were some problems with the image and it
could not be used. Luckily, we still had an instance running and just had to make sure
that it does not get deprovisioned by IaC changes.

In the early implementation phases it sometimes happened that the frontend had
to wait for the backend endpoints. This is not something unusual when developing the
frontend and backend in parallel, but I quickly saw that we have to do something about
that. To combat this, I started to define all API contracts as early as possible, so the
frontend could mock and already implement them.

124

Personally, I feel like the time estimation, which was an area to improve in the last
project, got quite a bit better. Many issues were completed in the estimated time frame.

Even though my main focus was not on the frontend, I still participated in it and
it was really interesting to work with a relatively young technology such as KMP. It
revealed unexpected challenges, that may not be apparent in the beginning.

Of course another highlight was to work so much with AWS and it was an important
learning experience for me.

125

18.2 Simon Peier

This thesis marks my first experience using cross-platform technology to develop mo-
bile applications. Having previous experience in developing Android apps using Jetpack
Compose, I found the transition to KMP to be relatively straightforward.

In the course of the project, we encountered several challenges. Most of these challenges
were related to getting code to work on iOS as well. For example, when I implemented
the chat using PubNub, I had to ensure that the Swift class properly aligned with the
Kotlin interface it inherited from. I am proud to say that, despite these hurdles, we were
able to successfully overcome all technical challenges.

As we already have successfully worked on previous projects together, communica-
tion and collaboration went smoothly. We were able to plan tasks according to personal
strengths and interests, with Roger working on the backend and cloud infrastructure,
while Tseten and me concentrated on the frontend development. Being able to focus on
the frontend provided an excellent opportunity for me to improve my skills and broaden
my skillset, particularly since most of my previous development experience was in back-
end technologies.

My personal highlight was implementing the search page with its filter and sorting
capabilities. I was positively surprised how fast the search, using Meilisearch in the
background, returned results.

Overall, I consider this bachelor thesis highly successful and the final product re-
markably impressive, especially considering our time constraints. The project provided
extensive learning opportunities, both theoretical and practical, and contributed signif-
icantly to my professional development.

126

18.3 Tseten Emjee

This bachelor thesis has personally been quite a challenge. I was confident in my mo-
bile development abilites, having experience in native Android development and cross-
platform development with Xamarin/MAUI as well. But learning KMP, a new technol-
ogy, on the go while developing a decently sized app at the same time really pushed my
limits.

There have been many fails and oversights during development, especially while writing
the Swift-only iOS implementations for MSAL and PubNub. But while it may sound
strange, I like to fail. That is where I can improve the most. Some of the big lessons
include the realisation that we were developing a multiplatform app, meaning that of
course the app needs to work on both platforms. This may seem obvious but in the mids
of battle it is easy to just keep coding while confirming that the code works only on one
platform and then getting surprised that it breaks on the other. There is a balance to
be striked between coding and testing on both platforms.

Regarding project and time management, I have realised that I did not really con-
sider the time it took to integrate a completed feature into the rest of the application,
resulting in issues being judged too optimistically.

Overall, I really enjoyed working on this bachelor thesis. Having chosen the topic our-
selves was also a big motivation factor. I am happy to have learned another way to
develop cross-platform mobile apps and deepen my understanding of iOS, Swift and
CocoaPods.

127

Chapter 19

Note of Thanks

We would like to express our deepest gratitude to our advisor, Martin Seelhofer, for his
time and effort. In addition to the term project, we were also fortunate enough to carry
out this bachelor thesis with him. Together, we were able to develop and refine the idea
behind this work.

Weekly meetings were conducted which helped us when challenges or questions arised.
But even outside of meetings we always had the opportunity to contact him regarding
urgent matters and received quick responses.

We would like to extend our thanks to our co-examiner Paul Sevinç and proofreader
Mirko Stocker. During the interim presentations they provided us with insightful ques-
tions and constructive feedback.

128

Part IX

Lists

129

Bibliography

[1] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development (3rd Edition). Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2004.

[2] ISO25000, “ISO/IEC 25010,” https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010?linkId=100000045879485&utm pview=8, 2022, [Online; ac-
cessed 04-March-2025].

[3] ADR, “About MADR,” https://adr.github.io/madr/#example, 2025, [Online; ac-
cessed 08-March-2025].

[4] JetBrains, “Create a multiplatform app using Ktor and SQLDelight,”
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-
sqldelight.html#create-a-project, 2025, [Online; accessed 10-June-2025].

[5] E. Petrova, “Compose Multiplatform 1.8.0 Released: Compose Multiplatform for
iOS Is Stable and Production-Ready,” https://blog.jetbrains.com/kotlin/2025/
05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-
and-production-ready/, 2025, [Online; accessed 07-June-2025].

[6] Google, “Guide to app architecture,” https://developer.android.com/topic/
architecture/, 2025, [Online; accessed 28-May-2025].

[7] I. Carrión, “Exploring App Architectures in Kotlin,” https://carrion.dev/en/posts/
app-architecture/, 2025, [Online; accessed 04-June-2025].

[8] V. Tarasov, “KMP: Modular Architecture,” https://medium.com/@vptarasov/
kmp-modular-architecture-faabbdf58197, 2024, [Online; accessed 04-June-2025].

[9] Y. Zhanymkanov, “FastAPI Best Practices,” https://github.com/zhanymkanov/
fastapi-best-practices, 2025, [Online; accessed 04-June-2025].

[10] Netflix, “dispatch,” https://github.com/Netflix/dispatch, 2025, [Online; accessed
04-June-2025].

[11] K. W lodarczyk, “Fast API — Repository Pattern and Service Layer,”
https://medium.com/@kacperwlodarczyk/fast-api-repository-pattern-and-service-
layer-dad43354f07a, 2025, [Online; accessed 04-June-2025].

130

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?linkId=100000045879485&utm_pview=8
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?linkId=100000045879485&utm_pview=8
https://adr.github.io/madr/#example
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html#create-a-project
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html#create-a-project
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/
https://developer.android.com/topic/architecture/
https://developer.android.com/topic/architecture/
https://carrion.dev/en/posts/app-architecture/
https://carrion.dev/en/posts/app-architecture/
https://medium.com/@vptarasov/kmp-modular-architecture-faabbdf58197
https://medium.com/@vptarasov/kmp-modular-architecture-faabbdf58197
https://github.com/zhanymkanov/fastapi-best-practices
https://github.com/zhanymkanov/fastapi-best-practices
https://github.com/Netflix/dispatch
https://medium.com/@kacperwlodarczyk/fast-api-repository-pattern-and-service-layer-dad43354f07a
https://medium.com/@kacperwlodarczyk/fast-api-repository-pattern-and-service-layer-dad43354f07a

[12] A. W. Services, “Amazon ECS networking best practices,” https:
//docs.aws.amazon.com/AmazonECS/latest/developerguide/networking-best-
practices.html, 2025, [Online; accessed 12-June-2025].

[13] Stripe, “Stripe Connect,” https://stripe.com/en-ch/connect, 2025, [Online; ac-
cessed 28-May-2025].

[14] ——, “Stripe Connect Documentation,” https://docs.stripe.com/connect, 2025,
[Online; accessed 28-May-2025].

[15] Adyen, “Adyen for Platforms,” https://www.adyen.com/platform-payments, 2025,
[Online; accessed 28-May-2025].

[16] ——, “Adyen for Platforms Documentation,” https://docs.adyen.com/adyen-for-
platforms-model/, 2025, [Online; accessed 28-May-2025].

[17] PayPal, “PayPal for Marketplaces,” https://www.paypal.com/us/enterprise/
industry-solutions/platforms-and-marketplaces, 2025, [Online; accessed 28-May-
2025].

[18] ——, “PayPal for Marketplaces Documentation,” https://developer.paypal.com/
docs/multiparty/, 2025, [Online; accessed 28-May-2025].

[19] Figma, “Figma,” https://www.figma.com/, 2025, [Online; accessed 16-April-2025].

[20] “Material Theme Builder Plugin,” https://www.figma.com/community/plugin/
1034969338659738588/material-theme-builder, 2025, [Online; accessed 16-April-
2025].

[21] Jetbrains, “Stability of supported platforms,” https://www.jetbrains.com/help/
kotlin-multiplatform-dev/supported-platforms.html#compose-multiplatform-ui-
framework-stability-levels, 2024, [Online; accessed 04-March-2025].

[22] JetBrains and K. Foundation, “Testing Compose Multiplatform UI,” https://
www.jetbrains.com/help/kotlin-multiplatform-dev/compose-test.html, 2025, [On-
line; accessed 05-June-2025].

[23] Pydantic, “Pydantic,” https://docs.pydantic.dev/latest/, 2025, [Online; accessed
05-June-2025].

[24] M. Bayer, “The Python SQL Toolkit and Object Relational Mapper,” https://
www.sqlalchemy.org/, 2025, [Online; accessed 07-June-2025].

[25] A. W. Services, “Boto3 - The AWS SDK for Python,” https://github.com/boto/
boto3, 2025, [Online; accessed 05-June-2025].

[26] Meilisearch, “Meilisearch Python,” https://github.com/meilisearch/meilisearch-
python, 2025, [Online; accessed 05-June-2025].

131

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/networking-best-practices.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/networking-best-practices.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/networking-best-practices.html
https://stripe.com/en-ch/connect
https://docs.stripe.com/connect
https://www.adyen.com/platform-payments
https://docs.adyen.com/adyen-for-platforms-model/
https://docs.adyen.com/adyen-for-platforms-model/
https://www.paypal.com/us/enterprise/industry-solutions/platforms-and-marketplaces
https://www.paypal.com/us/enterprise/industry-solutions/platforms-and-marketplaces
https://developer.paypal.com/docs/multiparty/
https://developer.paypal.com/docs/multiparty/
https://www.figma.com/
https://www.figma.com/community/plugin/1034969338659738588/material-theme-builder
https://www.figma.com/community/plugin/1034969338659738588/material-theme-builder
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#compose-multiplatform-ui-framework-stability-levels
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#compose-multiplatform-ui-framework-stability-levels
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#compose-multiplatform-ui-framework-stability-levels
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-test.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-test.html
https://docs.pydantic.dev/latest/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/meilisearch/meilisearch-python
https://github.com/meilisearch/meilisearch-python

[27] Firebase, “Firebase Admin Python SDK,” https://github.com/firebase/firebase-
admin-python, 2025, [Online; accessed 05-June-2025].

[28] C. Paroz, “Python library to generate Swiss QR-bills,” https://github.com/
claudep/swiss-qr-bill, 2025, [Online; accessed 05-June-2025].

[29] holger krekel and pytest-dev team, “pytest: helps you write better programs,” https:
//docs.pytest.org/en/stable/, 2025, [Online; accessed 04-June-2025].

[30] L. Projects, “Open-Source Infrastructure as Code,” https://opentofu.org/, 2025,
[Online; accessed 06-June-2025].

[31] JetBrains, “Kotlin Multiplatform Development,” https://www.jetbrains.com/help/
kotlin-multiplatform-dev/get-started.html, 2025, [Online; accessed 04-March-2025].

[32] ——, “Stability of supported platforms,” https://www.jetbrains.com/help/kotlin-
multiplatform-dev/supported-platforms.html, 2024, [Online; accessed 04-March-
2025].

[33] ——, “Kotlin multiplatform,” https://www.jetbrains.com/kotlin-multiplatform/,
2025, [Online; accessed 04-March-2025].

[34] Jetbrains, “Android-only components,” https://www.jetbrains.com/help/kotlin-
multiplatform-dev/compose-android-only-components.html, 2024, [Online; ac-
cessed 04-March-2025].

[35] Google, “Maps Compse Library,” https://developers.google.com/maps/
documentation/android-sdk/maps-compose, 2025, [Online; accessed 05-March-
2025].

[36] E. Petrova, “Kotlin Multiplatform Mobile Goes Alpha,” https://
blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha/,
2020, [Online; accessed 04-March-2025].

[37] ——, “Update on the Name of Kotlin Multiplatform,” https://blog.jetbrains.com/
kotlin/2023/07/update-on-the-name-of-kotlin-multiplatform/, 2023, [Online; ac-
cessed 04-March-2025].

[38] S. Agner, “Compose Multiplatform for iOS Is in Alpha,” https:
//blog.jetbrains.com/kotlin/2023/05/compose-multiplatform-for-ios-is-in-alpha/,
2023, [Online; accessed 04-March-2025].

[39] A. Zamulla, “Compose Multiplatform 1.6.10 - iOS Beta, Web Alpha, Lifecy-
cle, Navigation, and More,” https://blog.jetbrains.com/kotlin/2024/05/compose-
multiplatform-1-6-10-ios-beta/, 2024, [Online; accessed 04-March-2025].

[40] JetBrains, “The basics of Kotlin Multiplatform project structure,” https://
kotlinlang.org/docs/multiplatform-discover-project.html, 2025, [Online; accessed
05-March-2025].

132

https://github.com/firebase/firebase-admin-python
https://github.com/firebase/firebase-admin-python
https://github.com/claudep/swiss-qr-bill
https://github.com/claudep/swiss-qr-bill
https://docs.pytest.org/en/stable/
https://docs.pytest.org/en/stable/
https://opentofu.org/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html
https://www.jetbrains.com/kotlin-multiplatform/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-android-only-components.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-android-only-components.html
https://developers.google.com/maps/documentation/android-sdk/maps-compose
https://developers.google.com/maps/documentation/android-sdk/maps-compose
https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha/
https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha/
https://blog.jetbrains.com/kotlin/2023/07/update-on-the-name-of-kotlin-multiplatform/
https://blog.jetbrains.com/kotlin/2023/07/update-on-the-name-of-kotlin-multiplatform/
https://blog.jetbrains.com/kotlin/2023/05/compose-multiplatform-for-ios-is-in-alpha/
https://blog.jetbrains.com/kotlin/2023/05/compose-multiplatform-for-ios-is-in-alpha/
https://blog.jetbrains.com/kotlin/2024/05/compose-multiplatform-1-6-10-ios-beta/
https://blog.jetbrains.com/kotlin/2024/05/compose-multiplatform-1-6-10-ios-beta/
https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/multiplatform-discover-project.html

[41] ——, “Expected and actual declarations,” https://kotlinlang.org/docs/
multiplatform-expect-actual.html, 2024, [Online; accessed 06-March-2025].

[42] ——, “Adding iOS dependencies,” https://www.jetbrains.com/help/kotlin-
multiplatform-dev/multiplatform-ios-dependencies.html, 2025, [Online; accessed
07-June-2025].

[43] ——, “iOS integration methods,” https://www.jetbrains.com/help/kotlin-
multiplatform-dev/multiplatform-ios-integration-overview.html, 2025, [Online;
accessed 08-June-2025].

[44] ——, “Direct integration,” https://www.jetbrains.com/help/kotlin-multiplatform-
dev/multiplatform-direct-integration.html, 2025, [Online; accessed 08-June-2025].

[45] ——, “CocoaPods overview and setup,” https://www.jetbrains.com/help/kotlin-
multiplatform-dev/multiplatform-cocoapods-overview.html, 2025, [Online; ac-
cessed 08-June-2025].

[46] ——, “Kotlin/Native,” https://kotlinlang.org/docs/native-overview.html, 2025,
[Online; accessed 08-June-2025].

[47] ——, “Kotlin-Swift interopedia,” https://github.com/kotlin-hands-on/kotlin-swift-
interopedia, 2025, [Online; accessed 08-June-2025].

[48] ——, “Add dependencies on a Pod library,” https://www.jetbrains.com/help/
kotlin-multiplatform-dev/multiplatform-cocoapods-libraries.html, 2025, [Online;
accessed 08-June-2025].

[49] Google, “Android’s Kotlin-first approach,” https://developer.android.com/kotlin/
first, 2025, [Online; accessed 12-June-2025].

[50] JetBrains, “Common ViewModel,” https://www.jetbrains.com/help/kotlin-
multiplatform-dev/compose-viewmodel.html, 2024, [Online; accessed 09-March-
2025].

[51] ——, “What is cross-platform mobile development?” https://www.jetbrains.com/
help/kotlin-multiplatform-dev/cross-platform-mobile-development.html#is-cross-
platform-mobile-development-right-for-you, 2025, [Online; accessed 09-March-
2025].

[52] J. O. Castro, “OSS .NET implementation Mono 1.0 released ,” https:
//arstechnica.com/uncategorized/2004/06/3949-2/, 2004, [Online; accessed 09-
March-2025].

[53] Microsoft, “What is .NET MAUI?” https://learn.microsoft.com/en-us/dotnet/
maui/what-is-maui?view=net-maui-9.0, 2025, [Online; accessed 09-March-2025].

133

https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://kotlinlang.org/docs/multiplatform-expect-actual.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ios-dependencies.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ios-dependencies.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ios-integration-overview.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ios-integration-overview.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-direct-integration.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-direct-integration.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-cocoapods-overview.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-cocoapods-overview.html
https://kotlinlang.org/docs/native-overview.html
https://github.com/kotlin-hands-on/kotlin-swift-interopedia
https://github.com/kotlin-hands-on/kotlin-swift-interopedia
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-cocoapods-libraries.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-cocoapods-libraries.html
https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-viewmodel.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-viewmodel.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/cross-platform-mobile-development.html#is-cross-platform-mobile-development-right-for-you
https://www.jetbrains.com/help/kotlin-multiplatform-dev/cross-platform-mobile-development.html#is-cross-platform-mobile-development-right-for-you
https://www.jetbrains.com/help/kotlin-multiplatform-dev/cross-platform-mobile-development.html#is-cross-platform-mobile-development-right-for-you
https://arstechnica.com/uncategorized/2004/06/3949-2/
https://arstechnica.com/uncategorized/2004/06/3949-2/
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-9.0

[54] ——, “Invoke platform code,” https://learn.microsoft.com/en-us/dotnet/maui/
platform-integration/invoke-platform-code?view=net-maui-9.0, 2022, [Online; ac-
cessed 09-March-2025].

[55] C. King, “Forbes Mobile App Shifts To Kotlin Multiplatform,” https:
//www.forbes.com/sites/forbes-engineering/2023/11/13/forbes-mobile-app-
shifts-to-kotlin-multiplatform/, 2023, [Online; accessed 09-March-2025].

[56] McDonalds, “Mobile multiplatform development at McDonald’s,” https:
//medium.com/mcdonalds-technical-blog/mobile-multiplatform-development-
at-mcdonalds-3b72c8d44ebc, 2023, [Online; accessed 19-March-2025].

[57] Slack, “Kotlin Lang Slack,” https://kotlinlang.slack.com/, 2025, [Online; accessed
10-March-2025].

[58] J. Konstantin Tskhovrebov, “Awesome Kotlin Multiplatform,” https://github.com/
terrakok/kmp-awesome, 2025, [Online; accessed 11-March-2025].

[59] Jetbrains, “Jetbrains Klibs.io,” https://klibs.io/, 2025, [Online; accessed 11-March-
2025].

[60] M. erabi, “Local Preferences in Kotlin Multiplatform Using DataStore,”
https://medium.com/@mohaberabi98/local-preferences-in-kotlin-multiplatform-
using-datastore-c23ec677a35f, 2025, [Online; accessed 07-June-2025].

[61] J. Leitschuh, “ktlint-gradle,” https://github.com/JLLeitschuh/ktlint-gradle, 2025,
[Online; accessed 23-February-2025].

[62] Astral, “ruff,” https://github.com/astral-sh/ruff, 2025, [Online; accessed 02-June-
2025].

134

https://learn.microsoft.com/en-us/dotnet/maui/platform-integration/invoke-platform-code?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/platform-integration/invoke-platform-code?view=net-maui-9.0
https://www.forbes.com/sites/forbes-engineering/2023/11/13/forbes-mobile-app-shifts-to-kotlin-multiplatform/
https://www.forbes.com/sites/forbes-engineering/2023/11/13/forbes-mobile-app-shifts-to-kotlin-multiplatform/
https://www.forbes.com/sites/forbes-engineering/2023/11/13/forbes-mobile-app-shifts-to-kotlin-multiplatform/
https://medium.com/mcdonalds-technical-blog/mobile-multiplatform-development-at-mcdonalds-3b72c8d44ebc
https://medium.com/mcdonalds-technical-blog/mobile-multiplatform-development-at-mcdonalds-3b72c8d44ebc
https://medium.com/mcdonalds-technical-blog/mobile-multiplatform-development-at-mcdonalds-3b72c8d44ebc
https://kotlinlang.slack.com/
https://github.com/terrakok/kmp-awesome
https://github.com/terrakok/kmp-awesome
https://klibs.io/
https://medium.com/@mohaberabi98/local-preferences-in-kotlin-multiplatform-using-datastore-c23ec677a35f
https://medium.com/@mohaberabi98/local-preferences-in-kotlin-multiplatform-using-datastore-c23ec677a35f
https://github.com/JLLeitschuh/ktlint-gradle
https://github.com/astral-sh/ruff

List of Figures

1 Used Technologies . vi
2 MVP App - Home Screen, Search and Listing vii

4.1 Use Case Diagram . 7

5.1 Domain Model Diagram . 14

6.1 C4 Context Diagram . 24
6.2 C4 Container Diagram . 25
6.3 C4 Component Diagram . 26
6.4 CID Login Flow . 27
6.5 CID Create Listing . 28
6.6 CID Search . 29
6.7 CID Chat . 30
6.8 Typical App Architecture [6] . 30
6.9 Planned Project Structure inside composeApp 31
6.10 Backend Architecture . 32
6.11 Entity Relationship Diagram . 33
6.12 Frontend Pipeline - GitLab . 34
6.13 Frontend Pipeline - Codemagic Android 34
6.14 Frontend Pipeline - Codemagic iOS . 34
6.15 Backend Pipeline . 35
6.16 AWS Pipeline . 35
6.17 Cloud Infrastructure Diagram . 37
6.18 Updated Negotiation Table . 39

7.1 Main Colors . 42
7.2 POSTE App Logo . 43

8.1 App Structure . 44
8.2 Navigation Bar . 45
8.3 PubNub Implementation . 46
8.4 Start Chat Sequence Diagram . 47
8.5 Completion Sequence Diagram . 48
8.6 Delete Sequence Diagram . 49

135

8.7 Block Sequence Diagram . 50
8.8 API Project Structure . 52
8.9 Listing Domain Setup . 52
8.10 Listing Base Schema . 53
8.11 VPC Resource Map . 56

9.1 MVP App - Home Screen, Search and Listing 60
9.2 MVP App - Watchlist, Sell, Sell (Scrolled) 61
9.3 MVP App - Chats overview, Chat, Settings 62
9.4 MVP App - My Profile and Listings, Blocklist, QR Bill 63
9.5 MVP App - Selection of screens in dark mode 64

10.1 Ways to share code in KMP [33] . 67
10.2 Common Code Compilation . 69
10.3 Folder Structure . 71
10.4 Source Sets and Targets . 72
10.5 appleMain Source Set . 73
10.6 Full Hierarchy Template . 74
10.7 Test Project Structure . 75
10.8 iOS App Location . 78
10.9 iOS Integration Scheme [43] . 79

12.1 McDonald’s Architecture Diagram [56] . 89

14.1 Long-Term Plan . 100
14.2 Jira Workflow . 109

15.1 Gitflow Workflow . 112

16.1 Work Distribution . 116
16.2 Work History . 116
16.3 Overview Epics . 117
16.4 Project Timeline . 117
16.5 Frontend Test Coverage . 118
16.6 Backend Test Coverage . 118
16.7 Frontend Commit History . 119
16.8 Backend Commit History . 119
16.9 Infrastructure Commit History . 119

B.1 Usability Tests - Beta . 147
B.2 Usability Tests - MVP . 148

C.1 Low-Fidelity Designs - Search, Listings, Profile 149
C.2 Low-Fidelity Designs - Watchlist . 150
C.3 Low-Fidelity Designs - Sell . 150

136

C.4 Low-Fidelity Designs - Chats . 151
C.5 Low-Fidelity Designs - Settings . 151
C.6 High-Fidelity Designs 1 . 152
C.7 High-Fidelity Designs 2 . 152
C.8 High-Fidelity Designs 3 . 153
C.9 High-Fidelity Designs 4 . 154
C.10 High-Fidelity Designs 5 . 154

137

List of Tables

1 Glossary . xvi
2 Acronyms . xvii

4.1 Actors . 6
4.2 Casual Format Use Cases . 8
4.3 NFR1 . 10
4.4 NFR2 . 10
4.5 NFR3 . 11
4.6 NFR4 . 11
4.7 NFR5 . 11
4.8 NFR6 . 11
4.9 NFR7 . 12
4.10 NFR8 . 12
4.11 NFR9 . 12
4.12 NFR10 . 12
4.13 NFR11 . 13
4.14 NFR12 . 13

6.1 PSP Comparison . 40

9.1 NFR Validation - Beta . 58
9.2 NFR Validation - MVP . 59
9.3 Extended Cases . 60

10.1 Kotlin Multiplatform Stability Levels . 66
10.2 Compose Multiplatform Stability Levels 67

11.1 KMP vs. MAUI . 85

14.1 Short-Term Plan Sprint 1 . 102
14.2 Short-Term Plan Sprint 2 . 102
14.3 Short-Term Plan Sprint 3 . 103
14.4 Short-Term Plan Sprint 4 . 103
14.5 Short-Term Plan Sprint 5 . 103
14.6 Short-Term Plan Sprint 6 . 104

138

14.7 Short-Term Plan Sprint 7 . 104
14.8 Short-Term Plan Sprint 8 . 105
14.9 Identified Risks . 106
14.10Risk Matrix . 106
14.11Risk Handling . 107
14.12Risk Changelog . 108
14.13Tool and Resource Directory . 110

15.1 Code Quality Tools . 111
15.2 Gitflow Branch Description . 112
15.3 DoR / DoD . 113

139

Listings

8.1 Tab Navigator . 45
8.2 Instrumented Test Example . 51
8.3 Usage of test tag . 51
8.4 Request Body . 54
8.5 Response Body . 54
8.6 Integration Test Example . 55
8.7 Security Group Example . 56
8.8 Remote State . 56
10.1 Target Declaration . 70
10.2 Source Set Configuration . 71
10.3 Platform-specific API Usage . 72
10.4 Platform.kt . 75
10.5 Platform-specific Implementations . 76
10.6 Platform-specific UI Start . 77
10.7 iOS App Setup . 78
10.8 CocoaPods Configuration . 80
10.9 Pod Dependency . 82
10.10Dependency Injection Native Services . 82
12.1 MSAL Implementation . 91
12.2 Native Service with DI . 92
12.3 Local Pod ios helper . 92

140

Part X

Appendix

141

Appendix A

Task Description

Following is the original task description as it was received.

142

143

144

145

Appendix B

Usability Tests

This chapter shows the usability tests that were conducted for the beta and MVP release.
The tests contain multiple scenarios a testee has to go through, with notes taken at each
step. At the end there are general questions about the experience.

146

Figure B.1: Usability Tests - Beta

147

Figure B.2: Usability Tests - MVP

148

Appendix C

Designs

This chapter contains all mockups of the app that were created.

C.1 Low Fidelity

Following are the low fidelity mockups that were made to get a feeling of what the app
should look like.

Figure C.1: Low-Fidelity Designs - Search, Listings, Profile

149

Figure C.2: Low-Fidelity Designs - Watchlist

Figure C.3: Low-Fidelity Designs - Sell

150

Figure C.4: Low-Fidelity Designs - Chats

Figure C.5: Low-Fidelity Designs - Settings

C.2 High Fidelity

After the low fidelity designs, more accurate ones were made using Figma, which resemble
how the final product should look like.

151

Figure C.6: High-Fidelity Designs 1

Figure C.7: High-Fidelity Designs 2

152

Figure C.8: High-Fidelity Designs 3

153

Figure C.9: High-Fidelity Designs 4

Figure C.10: High-Fidelity Designs 5

154

Appendix D

Meeting Minutes

This chapter contains the summarized form of all notes taken during the weekly meetings
together with the advisor, Martin Seelhofer. The full version is located on the Miro board
used for this project.

19.02.2025

Kick-Off Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: RJ — 8.125

Agenda:

• First meeting regarding bachelor thesis

• Introduction of all project members

• Discussion of task definition and initial questions

• Feedback and possible improvements based on the semester thesis

Decisions:

• Justify decisions, especially those regarding technologies, more scientifically

• Better usage of footnotes

155

https://miro.com/app/board/uXjVIeVGukg=/?share_link_id=328186762045

24.02.2025

1. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Share progress of inception phase

• Discuss project planning

Decisions:

• Do not act as middle-man regarding payments but instead use QR code bill solution

• Separate chapter for KMP research in documentation as well as a separate docu-
ment

• Check if Switch edu-ID or OST Microsoft login is feasible

03.03.2025

2. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Share progress of inception phase

• Discuss questions and make decisions

Decisions:

• No market analysis needed for this thesis

• Integration of a native library is an interesting aspect of KMP

156

10.03.2025

3. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier
Location: MS Teams Meeting

Agenda:

• Discuss questions that were being clarified

• Show progress of documentation with focus on research chapter and FRs/NFRs

Decisions:

• Specify certain NFRs more precisely

• Interim presentation to be held on the 14th April

• Continue with AWS, even though OST would cover some Azure costs

• Decision regarding Firebase Authentication or OST Microsoft integration remains
open, Switch edu-ID is off the table

17.03.2025

4. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Progress update after completion of first elaboration sprint

• Discuss questions and make decisions

Decisions:

• OST Microsoft account integration is realisable and ticket is opened

• Own payment process is fine, though concept/research about payment providers
is required in separate section which covers changes required for the integration of
such a provider and major differences between popular payment providers

157

24.03.2025

5. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Present and talk about low/high fidelity designs

• Discuss questions and make decisions

Decisions:

• Instrumented tests can be done manually or locally before release due to CI limi-
ations

• Check if PubNub supports rich text features

31.03.2025

6. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Present prototype

• Discuss emerged problems with KMP, especially CocoaPods

• Discuss questions and make decisions

Decisions:

• OST logo can be used freely because it is an internal project

• Meeting held regurarly on 14th April, interim presentation postponed due to
scheduling conflicts

• Date for bachelor exam provisionally set on July 2nd or 3rd

158

14.04.2025

7. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Show progress of first construction week

• Discuss requirements and expectations for interim presentation

Decisions:

• Next weekly meeting will be skipped due to public holiday

• Date for bachelor exam will be discussed at interim presentation

22.04.2025

Interim Presentation

Attendees: Martin Seelhofer, Mirko Stocker, Paul Sevinç, Roger Marty, Simon Peier,
Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Conduct interim presentation

• Questions and feedback

Decisions:

• Bachelor exam will be held on June 25th

• Presentation feedback

– Justify why KMP was chosen in the end and what alternatives exist

– Explain why backend is written in a different language and why Python

– Mention SSO earlier in presentation

– Statistic about actual use of common code vs. platform-specific code

159

28.04.2025

8. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Discuss interim presentation feedback

• Revise the E2E testing criteria

• Show progress

Decisions:

• Create some instrumented tests of user journeys using production backend

• Implement on iOS and Android but not in pipeline

• Add testing insights to KMP research

05.05.2025

9. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Show progress of second construction sprint

• Discuss authentication flow

Decisions:

• -

12.05.2025

10. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

160

Agenda:

• Show construction progress

• Discuss instrumented test problem

• Ask questions regarding submission and poster

Decisions:

• Find source or open bugfix regarding instrumented test issues

• Open ticket to request test user for OST MS Entra ID

19.05.2025

11. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Show progress of beta

• Showcase the features

• Code review/overview

Decisions:

• Mention backend technology decision in documentation and that it wasn’t the
focus and not that important

26.05.2025

12. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Present and demonstrate beta release

• Show general progress and what is left to do

161

Decisions:

• OST MS Entra ID cannot be used for Apple review process because all accounts
require 2FA

• Instead implement a hidden button where password is required, if correct it by-
passes backend Authentication

• Check if and how good the app works on tablets and if it should be supported or
not

02.06.2025

13. Weekly Meeting

Attendees: Martin Seelhofer, Roger Marty, Simon Peier, Tseten Emjee
Location: MS Teams Meeting

Agenda:

• Show construction progress towards MVP

• Demonstrate chat feature

• Discuss questions

Decisions:

• Mention Stripe Connect in payment integration concept

• More detailed demonstration after MVP release

162

	I Abstract
	II Management Summary
	III Glossary and Acronyms
	IV Introduction
	Task Definition
	Motivation
	General Conditions

	V Product Documentation
	Requirements
	Functional Requirements
	Actors
	Use Case Diagram
	Use Case Descriptions

	Non-Functional Requirements
	Performance Efficiency
	Reliability
	Maintainability
	Security
	Interaction Capability
	Flexibility

	Domain Analysis
	Domain Model
	User
	Listing
	Chat & Message
	Blocklist
	Watchlist
	SavedSearch

	Architecture
	Technology Decisions
	Frontend Dependency Injection
	Frontend UI Framework
	Frontend Navigation Framework
	Backend API Framework
	Backend ORM
	Database
	Infrastructure as Code
	Cloud and Infrastructure
	Authentication
	Push Notifications
	Messaging
	Search
	CI/CD

	C4 Model
	Context
	Container
	Component

	Component Interaction Diagrams
	Login Flow
	Create Listing
	Search
	Chat

	Frontend
	Backend
	Database
	CI/CD
	Frontend
	Backend
	AWS

	Infrastructure
	PSP Integration Concept
	Planned Implementation
	Motivation for PSP
	PSP Integration
	Comparison of PSPs

	Extension
	Development Environment
	Backend Microservices

	Scaling
	Performance
	Platforms

	Design
	Colors
	Logo
	Prototyping
	Low-Fidelity
	High-Fidelity

	Implementation
	Frontend
	App Architecture
	Navigation
	Chat
	Instrumented Testing

	Backend
	API Architecture
	Endpoints
	Integration Testing

	AWS
	VPC Resource Map
	Security
	Remote State

	Results
	NFR Validation
	Beta Validation
	MVP Validation

	Final Product

	VI Research Documentation
	Kotlin Multiplatform
	Overview
	Compose Multiplatform
	Features & Constraints
	Interrelation with Jetpack Compose

	History
	Concepts
	Common Code
	Targets
	Source Sets
	Tests

	Sharing Code
	iOS Integration
	Direct Integration
	CocoaPods Integration
	Kotlin-Swift/Objective-C Interoperability

	iOS Dependencies
	Cinterop
	CocoaPods
	Dependency Injection

	Comparison
	Native Android
	MAUI

	In Practice
	Use Cases
	Cross-Platform Mobile Application Development
	Unifying Business Logic

	Industry Adoption
	Forbes
	McDonald's

	Community
	Kotlin Multiplatform in POSTE
	Integration Method
	UI Code
	Data Handling
	Persistency
	Dependency Injection
	Local Pod
	UI/Integration Testing

	Evaluation and Outlook
	Features
	Industry
	POSTE Experience
	Final Assessment
	Future

	VII Project Documentation
	Project Plan
	Planning
	Methodology
	Roles and Responsibility
	Meetings
	Long-Term Plan
	Milestones
	Short-Term Plans
	Risk Management

	Tooling
	Documentation
	Code
	Tracking
	Workflow
	Tool and Resource Directory

	Quality Measures
	Code
	Gitflow
	DoR / DoD
	Metrics
	Testing
	Frontend
	Backend

	Pipelines

	Project Monitoring
	Time Tracking Reports
	Time Tracking Statistics
	Work Distribution
	Work History
	Overview Epics
	Project Timeline
	Milestone Fullfilment

	Repository Analytics
	Test Coverage
	Commits

	VIII Closing Thoughts
	Conclusion
	KMP
	Chat Implementation with PubNub
	Evaluating Success
	Future and Outlook

	Personal Reports
	Roger Marty
	Simon Peier
	Tseten Emjee

	Note of Thanks

	IX Lists
	Bibliography
	List of Figures
	List of Tables
	List of Listings

	X Appendix
	Task Description
	Usability Tests
	Designs
	Low Fidelity
	High Fidelity

	Meeting Minutes

