Bachelor Thesis
Documentation

3D-Module for ’Algorithm & Data
Structure Visualizer (ADV)’

Semester: Spring 2025

Date: 12.06.2025

Project Team: Christoph Bodschwinna
Philipp Frank

Project Advisor: Thomas Letsch

OST

Eastern Switzerland
University of Applied Sciences

School of Computer Science
OST Eastern Switzerland University of Applied Sciences

Abstract

Introduction

The Algorithms and Data Structures course uses a tool called Algorithm & Data Struc-
ture Visualizer (ADV) to help students better understand the behavior of their code.
During coding exercises, it allows students to step through their algorithms and see a
visual representation of how the code executes. Since the ADV originally supported
only 2D visualizations, a separate standalone tool was developed using JOGL to display
3D landscapes for pathfinding algorithms. The goal of this project was to create a new
module for the ADV that can render 3D landscapes and serve as a replacement for the
standalone JOGL-based solution.

Problem

A central challenge was the efficient handling of large datasets. Until now, the ADV
supported only 2D elements and algorithms that typically generated no more than 20
to 30 snapshots, each with around 10 to 20 elements. In contrast, the new landscape
module needed to process matrices as large as 200 by 200, resulting in up to 40,000 data
points, and support as many as 150 snapshots per session. A previous semester thesis
attempted this before, but the resulting prototype suffered from major performance
limitations and was not suitable for practical use.

Result

The newly developed landscape module supports both automatically generated and man-
ually defined matrices of any size. To enhance user interaction, the generated land-
scapes include mouse and keyboard controls. Like all other ADV modules, it relies on
a snapshot-based communication protocol. To handle the significantly larger data vol-
ume, the protocol was extended to support partial snapshots. This allows the ADV-UI
to construct new snapshots incrementally by applying only the changes to the previous
state, which greatly reduces both data transmission and memory usage. Additionally,
since the ADV had not been maintained for several years, major version upgrades were
performed across the entire application, including updates to Java, JavaFX, and Gradle.

Keywords: Software, 3D Visualization, JavaFX

Acknowledgements

We would like to express our sincere gratitude to everyone who supported us throughout
this bachelor thesis.

Above all, we are especially thankful to Thomas Letsch for his invaluable supervision,
ongoing guidance and constructive feedback throughout the entire process.

ii

Contents

(I Summary|

I Management Summary|

[L1T TIntroductionl.

2 Requirements|

2.1 Functional Requirements|. o oL

P11

Use Case Diagram|o L.

.12

Use Case Description|.

2.2 Non-Functional Requirements|

P21

Verification of Non-Functional Requirements|

[3 Domain Analysis|

BI1

Explanations| oo

[3.2 Additional Explanations| oo

B21 Serverand Clientl.

B.2.2

Projects|

B.2.3

Snapshots|

[4__Architecturel

4.1 Scope and Context|

4.2 Solution Strategy|

T21

dSnapshot vs. Dynamic Landscape Updates]

122

Partial Snapshot|o oo oo oo

12.3

oplitting Elements in the LandscapeModule|

M24

Generating the Landscape Matrix|

125

Ul Matrix Refinement using Bicubic Interpolation|

iii

13
13
14
14
14
14
15

|4.2.6 Landscape Rendering|
|4.2.7 Texture vs. 3D-Objects for Points and Paths|
|4.2.8 Path Rendering Using Bresenham’s Line Algorithm|

4.4.1 Versions Upgrades|
[4.4.2 CI/CD Pipelinel.

4.5.1 Memory Usage|
[4.5.2 3D Elements in Virtual Machinesf

[Quality Measures|
5.1 Definition of Donelo
5.2 SonarQube Cloud|.
5.2.1 Quality Gates|.
[5.3 CI/CD Pipeline|.
0.4 Test Concept| L
0.4.1 Testing Strategyl L L

545 Test Rolesl.

6 Result

6.1 Functional Requirements|. L.
6.2 Non-Functional Requirements|

(III Project Documentation|

(8 Project Plan|
8.1 Processd e

v

28
28
28
29
30
30
30
31
31
31
32
32

33
33
41

42
42
43
43

44

8.3 Guidelines for Documentation| 47
BA Phasd 47
B5 Milestones 47
8.6 Planned Product Releases 49
[8.7 Long-Term Plan / Roadmap|. 50
[8.8 Risk management|.o 51
881 Ruskl 51

8.8.2 Riskmap| o 53
(Bibliography| 55
[List of Illustrations| 57
[List of Tablesl 58
lList of Resources| 59
61
IV Appendix| 62
[9 Example Snapshot)| 63
10 Test Cases 65
11 Test Artefacts| 67

Part 1

Summary

Chapter 1

Management Summary

1.1 Introduction

The Algorithm & Data Structure Visualizer (ADV) is a tool used in the Algorithms
and Data Structures course to help students better understand how their code behaves
through step-by-step visualizations. Until now, the ADV supported only 2D visualiza-
tions. To enable 3D pathfinding exercises, a separate JOGL-based tool had previously
been developed. This project aimed to integrate that functionality into the ADV itself
by developing a new 3D landscape module.

9 Map Viewer — o x
Total Path Weight: 1048350

Figure 1.1: 3D Landscape in the JOGL Tool

One of the key challenges was ensuring the new module could efficiently handle much
larger datasets than before. Whereas existing ADV modules typically processed no
more than 30 snapshots of small 2D structures, the landscape module needed to support
matrices of up to 200x200 elements and over 150 snapshots per session.

1.2 Technologies

The ADV is structured as a client-server application and consists of three multi-module
repositories: one for shared components, one for the Ul, and one for sending data to the
UI. Additionally, a separate repository contains example projects that demonstrate how
to use the various ADV modules. The application is written in Java with JavaFX for
the UI and uses Gradle as its build tool.

Since the application had not been actively maintained for several years, many of its
dependencies were outdated or deprecated. As a first step, the entire codebase was up-
graded from Java and JavaFX version 11 to version 21, and Gradle from version 4 to
8.13.

Previously, Travis CI was used to build and deploy the JAR files of the different reposito-
ries to Bintray, from where they were published to JCenter and Maven Central. However,
Bintray was shut down in 2021, followed by JCenter in 2024. As a result, the CI/CD
pipeline was migrated to GitLab CI. Going forward, JAR files will no longer be deployed
to Maven Central but instead distributed directly within the course environment.

1.3 Result

The newly developed landscape module enables the generation of matrices of any size
or the use of manually defined ones. Like other ADV modules, it relies on a snapshot-
based communication protocol. To support significantly larger datasets, the protocol
was extended to allow partial snapshots. Through this, it is possible to construct new
snapshots incrementally by applying only the differences to the previous state, thereby
reducing data transmission and memory usage. The complete matrix is now sent only
once at the beginning of a session. Additionally, batch updates for drawing points were
introduced to further reduce the number of snapshots and memory consumption.

= (<] (] o

Load Save CloseActive CloseAll About

Available Sessions 14:51:46 - Dijkstra generated

14:51:46 - Dijksti ted
bl > m Speed K o« » N 20 / 41

slow medium fast faster extreme

Personal Note #20

Figure 1.2: New Landscape Module in the ADV

The module supports both keyboard and mouse controls for intuitive 3D navigation
and includes utility functions for calculating distances and weights, which are helpful
for implementing pathfinding algorithms. These features make it well-suited for use in
interactive coding exercises within the ADV environment. Additionally, students and
exercise supervisors can configure the initial landscape setup, including the rotation an-
gle, tilt and the camera’s starting position.

Since the new landscape module processes significantly larger datasets, memory usage
remains an important consideration. This can be controlled by adjusting the matrix size
and the number of snapshots created. The number of snapshots depends on how many
points are updated in each batch. When more points are updated at once, fewer snap-
shots are required. Exercise supervisors should keep this in mind when designing new
exercises to maintain a good balance between performance and resource consumption.

Figure 1.3: Last Snapshot of a Landscape Module

Beyond the module itself, several bugs were fixed, and usability improvements were
introduced. This includes two additional replay speeds and an About page that displays
student contributions.

1.4 Conclusion

This project successfully developed a new landscape module for the ADV application,
adding support for 3D graphics. Additionally, the application was brought up to date
through key technology upgrades, resolving several known bugs and implementing ex-
isting feature requests.

Future improvements may include major version upgrades, such as updating Guice from
version 5 to 7 and migrating JUnit from version 4 to 5. These upgrades would require
extensive structural changes, which is why they were not addressed during this project.
Another valuable enhancement would be enabling snapshot selection via an input field.
Since landscape module sessions can include 100 or more snapshots, allowing users to
jump directly to a specific snapshot would improve usability. Additionally, the partial
snapshot functionality could be expanded to support relations, enabling graph-related
modules to benefit from the same protocol enhancements.

In conclusion, the developed module is a cleaner and improved successor to the prior
standalone JOGL solution and is expected to become a key component in future exer-
cises, helping students gain a deeper understanding of complex algorithms.

Part 11

Product Documentation

Chapter 2

Requirements

2.1 Functional Requirements

2.1.1 Use Case Diagram
Actors
e Student:

— Goal: Implement an algorithm for a provided exercise.
e Exercise Supervisor:

— Goal: Create an exercise for the student to learn about algorithms.
e ADV-UI User:

— Goal: View a landscape and observe the steps an algorithm takes.

Use Case Diagram

Exercise Supervisor

—
\

/ Landscape Module \

/[Create Landscape]
\[Set Initial Controls]

[Ul Keybinds and Mouse Bindings]——

/[Draw Point]
—[Draw Path]

Student

\[Calculate Distance and Weight]

Figure 2.1: Use Case Diagram

ADV-UI User

2.1.2 Use Case Description

All use cases are written in a casual format.

Use Cases

UC-1 Calculate Distance and Weight: The student can use a function to
calculate the distance and another to calculate the weight between two points.

UC-2 Create Landscape: The student and supervisor can create a landscape
by generating one with a seed, without a seed, or by directly providing a matrix
as the landscape.

UC-3 UI Keybinds and Mouse Bindings: The ADV-UI user can navigate the
landscape using keyboard shortcuts (move and zoom) and use the mouse to rotate
and zoom the landscape.

UC-4 Draw Point: The supervisor can change the color of a given point in the
landscape.

UC-5 Draw Path: The supervisor can provide a list of points in the landscape
that are connected, and set the color of the path.

UC-6 Set Initial Controls: The student and supervisor are able to configure
the initial landscape settings such as position, viewing angle and zoom.

Optional Improvements

The following list contains bugs that were either already known or encountered during
implementation, as well as small feature requests that are not part of the core require-
ments. The improvements are intended to be addressed either if time permits or in
parallel with the main use cases.

Bug: The Unicode infinity symbol cannot be used, as it prevents the session from
being saved.

Bug: Flickering occurs when executing a step for the first time in a session.
Bug: Umlauts are not allowed in session names.

Bug: Sessions can be detached via drag and drop, but doing so results in a lost
session or a blank (white) screen.

Bug: Changing the language does not update the labels for the replay speed steps.

Feature: Add a new replay speed step to loop rapidly through a session. This
can serve as a workaround for the flickering issue.

Feature: Add an About page to the application.

Use Case Priority

The following list defines the priority of the previously defined use cases. The date when

they were planned to be implemented can be found in the section [8.6][Planned Product]
[Released

1. [UC-2 Create Landscape)

2. [UC-3 Ul Keybinds and Mouse Bindings|

6. [UC-1 Calculate Distance and Weight]

2.2 Non-Functional Requirements

ID NFR-1

Category Maintainability

Requirement The landscape module in the ADV-Lib and ADV-UI should be au-
tomatically tested.

Measures Tests should cover 80% of the code of the new module.
Measuring Tests will automatically run on every Git commit and will fail if the
technique coverage target isn’t met.
Priority High
Result
Element Missed Instructions+ Cov. = Missed Branches - Cov.
1 ch.hsr.adv.lib.landscape.logic T 99% T 96%
Total 70f1°036 99% 10f33 96%

Figure 2.2: Landscape Module ADV-Lib Code Coverage

Element Missed Instructions+ Cov. Missed Branches Cov.
3 ch.hsr.adv.ui.landscape.presentation 95% 81%
1 ch.hsr.adv.ui.landscape.domain | 100% n/a
1 ch.hsr.adv.ui.landscape.logic H 100% [100%
Total 73 of 1'784 95% 16 0of 92 82%

Figure 2.3: Landscape Module ADV-UI Code Coverage

Table 2.1: Non-Functional Requirement: Maintainability Code Coverage

10

NFR-2

Maintainability

Maintain a clean, understandable and modular codebase that ad-
heres to standard coding practices.

e No new issues reported by SonarQube Cloud

e No style violations reported by Checkstyle

e Analyze code using SonarQube Cloud to detect duplications,
complexity, code smells and maintainability issues

e Run Checkstyle using the project’s defined ruleset to verify
adherence to code formatting and style guidelines

Medium

Y¢ ADV Lib Private

Last analysis: 06/06/2025, 18:19 - 2.8k Lines of Code - Java, XML

A0 A0 A0 A 100% O 819% « 00%
Security Reliability Maintainability Hotspots Reviewed Coverage Duplications

Figure 2.4: ADV-Lib Sonar Overview

Y% ADV-UIl Private

Last analysis: 06/06/2025, 09:49 - 6.1k Lines of Code - Java, XML

A0 A 0 A0 A 100% ()e3s5% < 04%
Security Reliability Maintainability Hotspots Reviewed Coverage Duplications

Figure 2.5: ADV-UI Sonar Overview

Total files checked Total violations Files with violations
4 0 0

Figure 2.6: ADV-Lib Checkstyle Summary

Total files checked Total violations Files with violations
6 0 0

Figure 2.7: ADV-UI Checkstyle Summary

Table 2.2: Non-Functional Requirement: Maintainability Code

11

ID NFR-3

Category Performance

Requirement The system must be able to process a 100x100 matrix and update
the display at a rate of at least 10 snapshots per second.

Measures The main function in a sample code (e.g. DijkstraGeneratedMap)
should maintain an average of 10 updates per second during execu-
tion.

Measuring Run the DijkstraGeneratedMap in the target codebase and measure

Technique execution time of the main function.

Priority High

Result Test Environment
Devise: MacBook Pro

Processor: 2.6 GHz 6-Core Intel Core i7
Memory: 16 GB 2400 MHz DDR4
Student: Software Sequoia 15.5

50 Snapshots are sent per run.
:ch.hsr.landscape.DijkstraGeneratedMap.main()

Figure 2.8: Performance Run 1

:ch.hsr.landscape.DijkstraGeneratedMap.main()

Figure 2.9: Performance Run 2

:ch.hsr.landscape.DijkstraGeneratedMap.main()

Figure 2.10: Performance Run 3

Table 2.3: Non-Functional Requirement: Performance — Matrix Processing Speed

2.2.1 Verification of Non-Functional Requirements

The non-functional requirements (NFRs) that can be verified automatically will be as-
sessed throughout the entire implementation phase. The remaining NFRs will be eval-
uated during week 16.

12

Chapter 3

Domain Analysis

3.1 Domain Model

The following domain model is limited to the scope of the newly added module.

- matrix: byte[][]

- path: List<Point>

- pathColor: Color

- points: Map<Points, Color>

A

+ LandscapeModule(height: int, width: int, cliffy: int)

+ LandscapeModule(height: int, width: int, cliffy: int, seed: int)
+ LandscapeModule(matrix: byte[][])

+ drawPoint(x: int, y: int, c: Color): void

+ drawPath(path: List<Point>, c: Color): void

\ + calcDist(x0: int, y0: int, x1: int, y1: int): double

\ |+ calcWeight(x0: int, yO: int, x1: int, y1: int): double

Client (IDE)
P - - - - - -"-"-"-"-"-"-" - - - - - =-=-=-= ~ <
’
/
Server (ADV-UI) = =
e e - - - o | LandscapeStringifyer DijkstraAlgorithm
7
/ sends A . . :
I ¢ Vi + stringify(moduleGroup: ModuleGroup): + main(args: String[]): void
: = LandscapeParser :: JsonElement
11
: + parse(json: JsonElement): ModuleGroup | | | passled to
uses
[givels © e LandscapeBuilder
11 <
| <
' [= LandscapeLayouter : : + build(advModule: ADVModule): Modulegroup uses
|
11
|
+ layout(moduleGroup: ModuleGroup, 11 =]
'\ flags: List<String>, sessionld: long): Pane | | | LandscapeModule
|
|
|
|
|
|
|
|
|

Figure 3.1: Domain model

13

3.1.1 Explanations

This section provides some clarifications for the domain model.

DijkstraAlgorithm

This class is an example of an algorithm that uses the ADV-UI to display the algorithm.
The main function uses the module to create the landscape, set colors for points, or set a
path. The builder is then called to create the element that is being sent to the ADV-UL

3.2 Additional Explanations

The following section provides explanations that are helpful for understanding the solu-
tion for the project and cannot be shown or explained inside the domain model.

3.2.1 Server and Client

The term server generally refers to the ADV-UI, while client refers to the ADV-User_Codebase
together with the ADV-Lib.

3.2.2 Projects

The ADV consists of four main projects:
e ADV-Commons: Contains classes shared by both ADV-Lib and ADV-UI.
e ADV-UI: Runs the UI that displays the snapshots sent by the client.
e ADV-Lib: A library used in code that sends snapshots to the UL
e ADV-User_Codebase: Holds examples that use the ADV-Lib library.

Both ADV-UI and ADV-Lib depend on ADV-Commons. The ADV-User_Codebase de-
pends on both ADV-UI and ADV-Lib.

Project Structure

All projects, except for the ADV user codebase, follow a structure typical of a multi-
module project. This includes a core module that contains classes used by every other
module and feature modules such as the array module or graph module, which contain
classes specific to their functionality. If a module requires a different parser than the
default, it is added within the corresponding feature module. The ADV user codebase
differs because it consists of a single module where all example code is defined.

14

3.2.3 Snapshots

The ADYV is built around snapshots, which are saved in a session. Each snapshot always
contains all the necessary information to display it in the UL. A snapshot includes an 1D,
a description and a list of modules referred to as moduleGroups. For simplicity, a module
group can be considered as a single module. A snapshot may contain multiple modules,
either of the same type or of different types. Each module includes a list of ADVElements
and ADVRelations. An element defines the text that is displayed, its position, and its
style. This could represent a node in a graph or tree, or an index in an array. A relation
defines a connection between two elements, including its label and visual styling. An
example of a snapshot is provided in the appendix in chapter [9][Example Snapshot]

Sending a snapshot

A socket is used to send the snapshot from the client to the server. Upon arrival, the
server processes the snapshot and adds it to the session to be displayed in the UI.

Server (ADV-UI) ADV.snapshot() Client (IDE)

- ~
/ g N GraphElement
\ GraphRelation

\

Module (Graph)

GraphElement
GraphRelation

—_—_— —_- — —- = -

Figure 3.2: Snapshot

15

Chapter 4

Architecture

The following chapter focuses exclusively on the landscape module and is based on the
arc42 method.[9]

4.1 Scope and Context

The application’s functionality is described in Section [2.I][Functional Requirements| The
scope of this project is limited to adding a new module to handle 3D graphics to the
application, while all other changes are considered optional.

4.2 Solution Strategy

This section outlines some of the core decisions, while the architectural decisions regard-
ing technology can be found in section [4.4][Architectural Decisions]

4.2.1 Snapshot vs. Dynamic Landscape Updates
For the implementation of the landscape, two approaches were considered.

The first approach was to use the existing snapshot-based system. Its main advantage
is that functionality for replaying, saving and loading sessions is already implemented
and tested. Additionally, integrating the new module into this system would preserve
consistency with the rest of the application. However, this approach has notable perfor-
mance drawbacks: each snapshot transmits the entire dataset, which becomes inefficient
when working with large matrices (e.g., 200x200 elements). Every snapshot must be
fully parsed and stringified, leading to significant overhead. Moreover, when a snapshot
is loaded, the user temporarily loses focus of the 3D element, since the landscape is
re-rendered for each snapshot.

The second approach considered the development of a new protocol independent of the
snapshot mechanism, offering greater flexibility. Instead of sending complete data with
every snapshot, the matrix would be transmitted once at the beginning to render the

16

landscape, followed by incremental updates to draw points and paths. These updates
could be rendered dynamically, significantly improving performance and load efficiency.
However, this approach would not benefit from the existing features of the application,
such as session saving and loading, step-by-step replay, adjustable replay speed, or from
preserving the overall look and feel.

Ultimately, the decision was made to retain the snapshot-based system. Its performance
limitations can be addressed by enhancing the current implementation to support partial
updates, where only the differences relative to the previous snapshot are transmitted.
This ensures that the matrix needs to be sent only once initially, while preserving the
user experience and integration with the current architecture. This solution combines
compatibility with improved efficiency.

4.2.2 Partial Snapshot

Snapshots can include multiple modules simultaneously. To support partial updates to a
module, a consistent identifier is required. This identifier consists of the module’s posi-
tion and name. When both match a module in the previous snapshot, elements without
IDs are added, and elements with the same ID are updated accordingly. Removing ele-
ments is not supported through partial snapshots and requires the creation of a new full
snapshot.

The partial snapshot functionality currently supports only the addition of ADVElements
and new modules. ADVRelations are not supported in this context because they do not
have identifiers and therefore cannot be reliably matched or updated.

To reduce type-related errors while keeping overhead low, the partial snapshot mech-
anism uses an enumeration defined in the core of ADV-Lib to control which data is
transmitted. This ensures consistent behavior and type safety during snapshot trans-
mission.

Partial snapshots rely on the most recent fully processed snapshot stored in the snapshot
store. As a result, they cannot be used as the first snapshot of a session. Attempting to
do so results in an exception, which helps ensure that all required elements are present
and reduces the likelihood of null pointer exceptions. For the same reason, it is not
possible to send multiple partial snapshots at the same time.

17

Server (ADV-Ul) ADV.partialSnapshot() Client (IDE)

PointElement

_— — = = = = = = = = =

Module (Landscape)

LandscapeElement
PointElement
PathElement

update LandscapeConfigElement

_ e m — — _ = = =

Figure 4.1: Partial Snapshot

4.2.3 Splitting Elements in the LandscapeModule

Typically, a module contains multiple elements of the same type, all handled in a uniform
manner. In the case of the landscape module, however, the elements are divided into four
distinct types: point, path, config and landscape. This separation allows each type to
be processed individually and enables selective updates. For example, individual points
or paths can be updated without the need to resend the entire matrix or configuration,
both of which remain unchanged after initialization.

4.2.4 Generating the Landscape Matrix

The landscape matrix is generated using an improved version of the algorithm from
the previous implementation. While the original approach already produced matrices
normalized within the range of —128 to 127, the updated version enhances functionality
by introducing seed-based reproducibility. It retains core features such as randomness,
user-defined terrain complexity, and the influence of surrounding elevation points. With
these improvements, the matrix can be generated consistently across sessions, eliminating
the need for further refinement within the Ul component.

Seeding the Landscape Matrix

The generation process begins by creating a set of seed points, which serve as the basis
for the terrain’s topography. The number of seed points is determined as a proportion of
the total number of cells in the matrix, based on a user-defined parameter that controls
terrain ruggedness.

18

Each seed point has three attributes: a horizontal position, a vertical position (both
within matrix bounds), and an elevation value. These attributes are assigned randomly.
Elevation values may be either positive or negative, allowing the terrain to include
both hills and valleys. This seeded randomness results in a diverse and natural-looking
distribution of terrain features across the matrix.

Calculating Cell Values

After seeding, the algorithm calculates an elevation value for each individual cell in the
matrix. This is done using a weighted average approach. For each cell, the squared Eu-
clidean distance to every seed point is calculated. Each seed’s contribution is weighted
inversely proportional to this distance, so that nearby seeds influence the cell more
strongly than distant ones.

The final elevation value of a cell is computed by averaging the contributions from all
seed points, with each one scaled by its corresponding weight. This produces smooth
and continuous elevation transitions across the landscape. While performing these cal-
culations, the algorithm also tracks the minimum and maximum elevation values. These
are required for the subsequent normalization step.

Normalizing the Matrix

Once all elevation values are computed, the matrix is normalized to ensure a consistent
value range. Positive values are scaled relative to the highest positive elevation, and
negative values are scaled relative to the lowest negative elevation. This dual-scaling
method preserves the contrast between high and low terrain features, ensuring that all
values fall within a defined display range suitable for rendering or further processing.

4.2.5 UI Matrix Refinement using Bicubic Interpolation

The matrix used to represent a landscape can be either automatically generated or
manually created. In both cases, the matrix is sent to the user interface for rendering.
When the matrix is created manually, it must be refined to ensure that the resulting
landscape features smooth hills and valleys. To refine a matrix by a given factor, bicubic
interpolation is used to estimate new values between the original data points. This
approach increases the resolution while preserving smooth transitions in the data.

Coordinate Mapping
Each point in the refined matrix is mapped back to a fractional coordinate in the original

matrix:
row col

xTr = =
factor’ 7 Tfactor
where factor is the refinement factor, and row, col are indices in the refined matrix.

19

Local Neighborhood

For each interpolated point at position (z,y), a 4 x 4 patch of neighboring values is ex-
tracted from the original matrix, centered around (|z], |y]). Border values are clamped
to avoid accessing indices outside the matrix bounds.

Interpolation Method

The interpolation is performed in two steps:

1. Cubic interpolation in the y-direction is applied to each of the 4 rows in the patch,
using the fractional part of y.

2. Cubic interpolation in the z-direction is applied to the 4 intermediate results, using
the fractional part of x.

The cubic interpolation is based on the Catmull-Rom spline, which uses four values
Vo, V1, V2, v3 and a parameter ¢ € [0, 1]:

interpolate(v,t) = v1 +0.5-t- (vg —vg+t- (2v9 — bvy +4vg — vz +t- (3(v1 —v2) +v3—10p)))

This interpolation is applied first in one dimension, then in the other, resulting in a
smooth value for the refined matrix. [12]

4.2.6 Landscape Rendering

To render a landscape, a TriangleMesh is used. Triangle meshes consist of connected
triangles that approximate the surface of 3D objects using flat facets. Each triangle is
defined by three vertices, and each square in the input matrix grid is represented by
two such triangles. A MeshView is then created from the triangle mesh, which allows a
texture to be mapped onto it.

The texture is generated from the same matrix and takes the form of a WritableImage,
with dimensions matching or scaling proportionally to the matrix. This ensures that the
texture resolution remains sharp when applied to the mesh. Pixel colors in the image
are set based on matrix values. Higher elevations are rendered in gray tones to represent
hills, while lower values are colored blue to depict valleys. Finally, the mesh view is
rendered within the scene.

20

4.2.7 Texture vs. 3D-Objects for Points and Paths

To render points and paths on the surface, two approaches were considered.

The first approach draws them directly onto a texture that is then mapped onto the 3D
surface. This method is highly efficient in terms of performance and memory usage, as it
avoids adding extra 3D geometry. It also integrates well with JavaFX’s rendering system
and requires no custom shaders. The main drawback is reduced visual clarity. Since it
relies on texture resolution, fine details like narrow paths or closely spaced points can
appear blurred, especially on curved or steep areas.

The second approach uses 3D objects: spheres for points and cylinders for path seg-
ments, positioned and rotated appropriately in the scene. This results in clearer visuals
with consistent appearance regardless of resolution. Lighting and shading further im-
prove visibility. However, this method adds complexity and increases GPU memory
usage. Converting path segments into scaled and rotated cylinders is more involved, and
performance may suffer with many objects.

Ultimately, the texture-based approach was chosen for its simplicity and performance.
To maintain sharpness, a texture scale can be configured through the module. A fixed
resolution cannot be set directly, because the resolution must remain a multiple of the
matrix dimensions to ensure proper alignment and visual quality. Using a scale fac-
tor guarantees that the generated texture fits the matrix structure precisely while still
allowing resolution adjustments as needed.

4.2.8 Path Rendering Using Bresenham’s Line Algorithm

To visualize a discrete path on a pixel grid, each pair of consecutive points is connected
by a straight line. These lines are rasterized using Bresenham’s algorithm, a method
well-suited for digital environments due to its use of integer arithmetic and efficient
decision logic. Let a path consist of a sequence of points (zo, y0), (Z1,91), -, (Tn,Yn)-
For each pair of points (x;,y;) and (x;41,¥i+1), a discrete approximation of the straight
line is drawn using Bresenham’s algorithm.

Bresenham’s Algorithm

Bresenham’s algorithm computes a line by determining which pixel best approximates
the ideal line at each step. Given two points, the algorithm uses the differences

dr = |r1 —x0|, dy = [y1 — yol

and an error term to decide whether to increment the x-coordinate, y-coordinate, or
both. This avoids floating-point arithmetic, making it efficient for real-time or low-level
rendering tasks. [3]

21

4.3 Software Structure

The following directory trees define the structure of the newly added landscape module
in the ADV-Commons, ADV-Lib and ADV-UI.

4.3.1 ADV-Commons

module-landscape/

| _src/
main/

java/

ig,ch/hsr/adv/commons/landscape/logic/

| domain/
LandscapeConfigElement. java
LandscapeElement. java
LandscapeElementType. java
PathElement. java
PointElement. java

| ConstantsLandscape. java

| LandscapeConfig. java

. _build.gradle

LandscapeConfigElement. java: Defines the element containing the initial land-
scape settings.

e LandscapeElement.java: Contains the definition of the landscape matrix.

e PathElement. java: Represents a path along with its associated color.

e PointElement. java: Represents a single point and its color in the landscape.

e LandscapeElementType. java: Enum listing the supported landscape element types.
e ConstantsLandscape. java: Defines the name of the landscape module.

e LandscapeConfig. java: Record used to represent the initial landscape settings
such as position, viewing angle and zoom.

22

4.3.2 ADV-Lib

module-landscape/

| src/

| main/

L,java/
| ch/hsr/adv/1ib/landscape/logic/

LandscapeBuilder. java
LandscapeGenerator. java
LandscapeModule. java
LandscapeStringifyer. java

| test/
. _build.gradle

e LandscapeBuilder. java: Creates the element that will be sent to the UL

e LandscapeGenerator.java: Generates the matrix used to represent the land-
scape.

e LandscapeModule. java: Provides the module interface for use within coding ex-
ercises.

e LandscapeStringifyer. java: Converts the element into a JSON-formatted string

23

4.3.3 ADV-UI

module-landscape/
| src/
| main/
L,java/
LA,ch/hsr/adv/ui/landscape/
| _domain/
LandscapeContext. java
LandscapePoint. java
| logic/
LA,LandscapeParser.java
| presentation/
LandscapeControl. java
LandscapelLayouter. java
MatrixRefinement. java

| test/
| _build.gradle

e LandscapeContext.java: Contains all data required for rendering the landscape
in the UL

e LandscapePoint.java: Represents a point on the landscape using the appropriate
Color class expected by JavaFX.

e LandscapeParser. java: Parses a JSON-formatted string and reconstructs the
corresponding Java classes.

e LandscapeControl.java: Configures keybindings and mouse interactions for nav-
igating the landscape.

e LandscapeLayouter. java: Generates the landscape and draws points and paths
based on the received data.

e MatrixRefinement.java: Refines the landscape matrix when it has been created
manually.

24

4.4 Architectural Decisions

4.4.1 Versions Upgrades

The application was last actively developed in 2019. As a result, many of the technologies
used at that time are now outdated and no longer supported. This includes Java 11,
JavaFX 11 and Gradle 4.10.2.

To ensure long-term compatibility and access to current features, both Java and JavaFX
were upgraded to version 21, which is the latest long-term support (LTS) release. Gradle
was also updated to version 8.13 to support the newer Java version.

In addition, the dependency injection framework Guice was upgraded to version 5. The
testing framework JUnit remains at version 4, as migrating to JUnit 5 would require
substantial restructuring of the test suite due to its major architectural changes.

4.4.2 CI/CD Pipeline

The existing application also relied on outdated CI/CD tools. Previously, Travis CI was
used to build and test the repositories. If the build was successful, the artifacts were
deployed to Bintray, and from there to jCenter and Maven Central. However, Bintray
was shut down on May 1, 2021, and jCenter was discontinued on August 15, 2024. [2]

Since deploying artifacts to a central repository is no longer necessary, and the applica-
tion is used only locally within the context of the algorithms and data structures course,
it was decided to discontinue publishing artifacts to a central repository.

The build and deployment process is now handled through GitLab pipelines, which per-
form testing, generate code coverage reports, run static code analysis and build artifacts.
SpotBugs and Codecov were replaced with SonarQube Cloud, which integrates smoothly
with GitLab and avoids compatibility issues that had arisen with the updated Gradle
version. SonarQube Cloud combines both static analysis and code coverage reporting in
a single, well-integrated solution.

25

4.5 Encountered Problems

4.5.1 Memory Usage

By default, a Java process is allowed to use up to one-quarter of the system memory.
Since a 3D element with a landscape of up to 200 by 200 consumes significantly more
memory than the previous 2D elements, and because the landscape module requires
bindings for controlling the 3D element, there are listeners on the pane that prevent
the element from being completely removed from memory after the session is closed.
These two factors can cause the ADV-UI to run into an OutOfMemory exception. After
discussing the issue with the advisor, it was decided not to invest the time needed to fix
the problem with the listeners. Instead, a memory monitor was added to check, before
adding or saving a new element, whether the memory usage exceeds 90%. If it exceeds
this threshold, an exception is thrown and a notification is displayed in the ADV-UIL
This prevents the UI from becoming unresponsive. [5]

Additionally, it was tested and confirmed that the application runs successfully on a
laptop with the standard notebook configuration for the OST, which includes 16 GB
of system memory. To give an indication of memory usage: storing 100 snapshots of a
200x 200 matrix requires approximately 1 GB of RAM, while 100 snapshots of a 100x 100
matrix require around 250 MB. The processes of saving and loading can increase memory
usage by a factor of two or even three. [0]

The listeners can be easily identified using a tool like Visual VM. The following image
shows an example of an object in a heap dump, where a landscape of size 200 by 200
was added and then closed.

Name Size
B () int]] 28'696'528 B (30.9%)
01 int[J#1 : 132'387 items 529'568 B
-- <items>
B <references>
EI IR, array in © corn.sun javafx.scene.shape.ObservableFaceArraylmpHT 24B
-- IR, faces in O javafx.scene.shape. TriangleMesh#7 83B
B %, array in O javafx.sceneshape TriangleMesh$Listener#34 32B
" IR, facesSyncer in © javafx.sceneshape.TriangleMesh#7 83B
B IR listener in © com.sun javafx.collections.ArraylistenerHelper$SingleChange#34 24B
E| IR listenerHelper in @ com.sun.javafx.scene shape ObservableFaceArraylmpl#7 24B
-- R faces in © javafx.scene.shape TriangleMesh#7 83B
% array in loop to @ja\rafx.scene.shape.TriangIeMesh$Listener#34 32B
- R observable in @ com.sun.javafx.collections.ArrayListenerHelper$SingleChange#34 24B
- IR observable in © com.sunjavafr.collections.ArrayListenerHelper$SingleChange#34 24B

Figure 4.2: Heap dump of object in memory

26

https://www.ost.ch/de/die-ost/services/ict/standard-notebook
https://visualvm.github.io/

4.5.2 3D Elements in Virtual Machines

During the testing phase of the Linux build, the application was executed within a vir-
tual machine (VM) running Ubuntu on a Windows 11 host system. It was observed
that 3D elements failed to render correctly within this environment, despite 3D graphics
acceleration being enabled and all relevant system dependencies installed.

Subsequent troubleshooting indicated that the limitation was inherent to the virtualized
environment rather than the operating system itself. This was supported by the fact
that in a Windows 11 VM it also did not display the elements correctly. It is important
to note that this issue is isolated to 3D functionality, the remainder of the application
operates correctly in the virtualized environment.

Following a review with the advisor, it was concluded that no corrective action is neces-
sary, as the software is intended to be deployed on native installations of Linux, Windows,
and macOS, platforms on which the 3D rendering operates as expected.

Jun 05, 2025 2:01:35 PM javafx.scene.shape.Mesh <init=>
WARNING: System can't support ConditionalFeature.SCENE3D
Jun 05, 2025 2:01:35 PM javafx.scene.shape.Shape3D <init>
WARNIMNG: System can't support ConditionalFeature.SCENE3D
Jun 05, 2025 2:01:35 PM javafx.scene.paint.Material <init=
WARNING: System can't support ConditionalFeature.SCENE3D

Jun 05, 2025 2:01:35 PM javafx.scene.PerspectiveCamera <init=
WARNING: System can't support ConditionalFeature.SCENE3D

Jun 05, 2025 2:01:35 PM javafx.scene.SubScene <init=

WARNIMNG: System can't support ConditionalFeature.SCENE3D

Jun 85, 2825 2:01:35 PM javafx.scene.SubScene$3 invalidated
WARNING: stem can't support ConditionalFeature.SCENE3D

Figure 4.3: Terminal error encountered in a Linux virtual machine

27

Chapter 5

Quality Measures

5.1 Definition of Done

The criteria below define when a product increment is considered complete, promoting
a shared understanding within the team of what constitutes as done [IJ:

e The required functionality is fully implemented and working.

e All automated tests have been executed and passed.

The code meets all quality gate requirements.

Coding standards and best practices have been followed.

e Documentation is up to date.

The project plan reflects the latest progress.

Time tracking records are accurate and complete.

5.2 SonarQube Cloud

SonarQube Cloud is an open-source platform developed by SonarSource that facilitates
continuous inspection of code quality. It provides a comprehensive set of static code
analysis tools designed to detect bugs, security vulnerabilities and code smells across
multiple programming languages. With seamless integration into popular version control
systems like GitHub and GitLab, SonarQube Cloud enables automatic analysis and de-
livers real-time feedback within the development workflow. This capability supports the
maintenance of high coding standards, identification of technical debt and enhancement
of software maintainability and reliability. Furthermore, SonarQube Cloud generates
detailed reports and metrics, enabling the tracking of code quality trends and helping
prioritize areas for improvement. [7]

28

SonarQube Cloud is incorporated into the development workflow for several important
reasons.

It facilitates early detection and resolution of code issues during the development cycle,
thereby reducing the likelihood of introducing bugs and vulnerabilities into production
environments. The platform offers actionable insights and recommendations that guide
developers in producing cleaner, more maintainable code.

Integration with the CI/CD pipeline enables automated code analysis and ensures con-
sistent enforcement of quality standards throughout the software delivery process. In
addition, SonarQube Cloud provides a variety of metrics, including lines of code, code
duplication, complexity and test coverage, which together offer a comprehensive view of
the codebase’s quality and maintainability.

Analysis of these metrics enables the identification of areas for improvement, facilitates
tracking of code quality over time, and supports continuous optimization of development
practices.

5.2.1 Quality Gates

The following quality gates have been configured and applied to ADV-Commons, ADV-
Lib, and ADV-UI. These gates are enforced only on newly developed modules, as the
overall project does not currently meet the required thresholds for code coverage and
duplication. These gates are based on default gates from sonar cloud. [§]

ADV-Commons

Maintainability Rating is A

Reliability Rating is A

Security Hotspots Reviewed is 100%

Security Rating is A

ADV-Lib and ADV-UI

e Coverage is more than 80%

Duplicated Lines are less than 3%

Maintainability Rating is A

Reliability Rating is A

Security Hotspots Reviewed is 100%

Security Rating is A

29

5.3

CI/CD Pipeline

The GitLab CI/CD pipelines consist of the following stages:

fetch-jar: Fetching the ADV-Commons JAR from the package registry (ADV-Lib
and ADV-UI)

build: Building the application (ADV-Commons, ADV-Lib and ADV-UI)

checkstyle: Running automated checks to ensure the code adheres to the defined
formatting and style guidelines (ADV-Commons, ADV-Lib and ADV-UI)

sonarcould: Performing code quality analysis using SonarQube Cloud (ADV-
Commons, ADV-Lib and ADV-UI)

publish: Publishing the JAR and POM files to the package registry (ADV-
Commons only)

The pipeline is automatically triggered on every new commit to the main branch and
for each merge request, excluding the publish stage in the case of merge requests. It is
configured in the .gitlab-ci.yml file located at the root of the project directory. The
ADV-User_Codebase repository does not have a pipeline, as it contains no test cases, no
checkstyle configuration file and does not require SonarQQube analysis.

5.4

Test Concept

The test concept outlines the scope, approach, resources and schedule for all testing
activities. It is complemented by the test plan, which details the specific components and
functionalities to be tested, along with the responsibilities assigned to team members.
Together, these elements form the basis for structuring the testing process, efficiently
allocating resources and ensuring effective test execution.

5.4.1 Testing Strategy

The testing strategy encompasses the following key steps:

Identification and definition of test cases
Execution of manual and automated tests
Logging and reporting of defects and issues

Retesting of resolved defects to verify fixes

30

5.4.2 Test Environment
Mac
e OS: macOS Sequoia Version 15.5

e Java: 21.0.6 temurin

e IDE: IntelliJ IDEA 2025.1.1.1

Linux

e OS: Ubuntu 24.04 LTS
e Java: JDK 21

e IDE: IntelliJ IDEA 2025.1.1.1

Windows
e OS: Windows 11 Version 10.0.26100

e Java: 21.0.7 temurin

e IDE: IntelliJ IDEA 2025.1.1.1

5.4.3 Test Deliverables

The test deliverables are:

o Test Artifacts

5.4.4 Test Schedule

Manual testing will be conducted before each milestone (Release 1, Release 2, Final
Product) using the relevant test cases.

Rough Planing
e Week 10: Test Release 1 (no test cases)

o Week 14: Test Release 2 (TC-1 - TC-5)

o Week 16: Test Final Product (all)

31

Detailed Planning

ADV-UI

The ADV-UI will be tested through unit tests where applicable, as well as through
manual testing. The testing strategy includes:

e Functionality: Assessed via unit tests where applicable and executed within the
CI/CD pipeline.

e Code Coverage: Measured using SonarQube Cloud within the CI/CD pipeline.

e Code Style: Verified using Checkstyle and SonarQube Cloud checks integrated
into the CI/CD pipeline.

e UI/UX Controls: Evaluated through manual testing.

The various test cases for the ADV-UI are provided in the appendix, see Section
[Casesl

ADV-Lib
The ADV-Lib will be tested primarily through unit tests. The testing strategy includes:

e Functionality: Assessed via unit tests executed within the CI/CD pipeline.
e Code Coverage: Measured using SonarQube Cloud within the CI/CD pipeline.

e Code Style: Enforced through Checkstyle and SonarQube Cloud checks inte-
grated into the CI/CD pipeline.

5.4.5 Test Roles

The following roles were defined as part of the testing process:
e Lead: Responsible for designing test cases and verifying the execution results.

e Tester: Responsible for executing test cases, reporting bugs, and verifying resolved
issues through retesting.

5.4.6 Test Artefacts

The various test artefacts used throughout the project are documented in the appendix,

see section [[1][Test Artefactsl

32

Chapter 6

Result

6.1 Functional Requirements

All use cases have been successfully implemented. See section [2.1.2|[Use Case Description|
for detailed descriptions.

UC-1 Calculate Distance and Weight

The landscape module provides default functions to calculate the distance between two
points and to determine the corresponding weight. Both are designed to be easily usable
in student code. If they do not behave as needed for a specific case, custom implemen-
tations can be used instead.

double weight = module.calcWeight(pl.x, pl.y, p2.x, p2.y);
double distance = module.calcDist(pl.x, pl.y, p2.x, p2.y);

Figure 6.1: Provided Module Functions

UC-2 Create Landscape

When creating a new landscape module, the session name and texture scale are always
required. The matrix representing the landscape is also initialized during this process.
The texture scale determines the resolution relative to the matrix dimensions. There
are two available approaches for initializing the matrix.

The first approach generates the matrix automatically by specifying the width, height,
a cliffy value and optionally a seed. The width and height define the matrix dimensions,
while the cliffy value controls the frequency and steepness of hills and valleys. Providing
a seed ensures that the same landscape is generated every time, which is useful for
exercises where all participants should work with an identical landscape.

33

LandscapeModule modulel = new LandscapeModule(
sessionName: "Genearted with seed",
textureScale: 3,
width: 100,
height: 100,
cliffy: 0.008,
seed: 100

)i

LandscapeModule module2 = new LandscapeModule(
sessionName: "Generated without seed",
textureScale: 3,
width: 100,
height: 100,
cliffy: 0.015

)i

Figure 6.2: Module Constructors with generated Landscapes

The image below shows the landscape created using the first constructor.

Figure 6.3: Generated Landscape with lower cliffy value

34

The second constructor results in a generated landscape matrix with a higher cliffy value,
producing terrain with steeper slopes and more prominent elevation changes.

Figure 6.4: Generated Landscape with higher cliffy value

The second approach uses a manually created matrix to generate the landscape.

private static final float[][] matrix = {

{6, 0, 0}, // ---> x / East
{127, 8, o}, /7]

{0, 0, O}, /7]

{0, 127, 127}, /v

{0, o, o}, // y / North

{0, 127, 0},

b

Figure 6.5: Manually created Matrix

LandscapeModule module = new LandscapeModule(sessionName: "Manual", textureScale: 10, matrix);

Figure 6.6: Moduel Constructor with provided Matrix

35

The landscape module keeps track of whether the matrix was generated or provided
manually. If it was not generated, the Ul automatically applies a refinement step to
smooth out hills and valleys for rendering purposes. This refinement affects only the
visual representation and has no impact on the algorithms the students implement.

Figure 6.7: Landscape from provided Matrix

UC-3 Ul Keybinds and Mouse Bindings

To interact with the generated landscape, various keyboard and mouse controls are
available:

e A: Move the landscape to the left
e D: Move the landscape to the right

e W: Move the landscape upward

S: Move the landscape downward
e I: Zoom in
e O: Zoom out

Mouse Wheel: Zoom in and out

Mouse Drag: Rotate the landscape around its center

36

UC-4 Draw Point

The landscape module provides a drawPoint function that takes the x and y coordinates
of a point along with its color When this function is called, the point is added to an
internal list that will later be sent to the UI for display.

To trigger the update, the partial snapshot functionality can be used in draw point
mode. This sends all collected points from the list to the Ul in a single batch. This
approach allows efficient batch updates, which is especially helpful for large matrices.
For instance, a 100x 100 matrix contains 10,000 points. Instead of updating the UI for
each individual point, a helper function could update the Ul every 50 points visited.
This reduces the size of the snapshot and lowers memory usage.

The same approach works with manually created matrices. It is easy to configure how
frequently updates are sent, whether for every point, every second point, or based on
another rule.

private void drawPoint(int x, int y) throws ADVException {
module.drawPoint(x, y, Color.white);
if (drawCounter % drawPointBatchSize == 0) {
ADV.partialSnapshot(module, description: "", PartialSnapshotMode.DRAW_POINT);
}

drawCounter++;

Figure 6.8: Helper Function for Batch Updates

37

Points are rendered as part of the texture rather than as 3D objects. Below is an example
showing how the landscape appears when several points have been drawn.

Figure 6.9: Landscape with drawn Points

UC-5 Draw Path

The landscape module includes a drawPath function that takes a list of points and a
color to represent the path. When this function is called, the path is stored internally.
To display it on the landscape, the path must be sent to the UI using the partial snapshot
functionality in draw path mode. This sends the list of points to the Ul and marks them
as a path.

List<Point> result = pathFinder.findPath(start, end);
List<Point> path = result != null ? result : Collections.emptylist();

module.drawPath(path, Color.RED);
ADV.partialSnapshot(module, description: "End", PartialSnapshotMode.DRAW_PATH);

Figure 6.10: drawPath Usage

38

The UI then renders the individual points and connects them using the specified color,
drawing the path directly onto the texture. Below is an example of how such a path
might appear on the landscape.

Figure 6.11: Landscape with a drawn Path

UC-6 Set Initial Controls

To configure the initial position, rotation and zoom of the landscape, a LandscapeConfig
object can be created and passed to the module constructor. This configuration includes
five values: the first sets the rotation angle around the x-axis and the second sets the
rotation around the y-axis. The third and fourth values control the initial movement
along the x-axis (where positive moves the landscape to the right and negative to the
left) and the y-axis (positive moves it down and negative moves it up), respectively.
The fifth value adjusts the initial zoom by moving along the z-axis, with positive values
zooming out and negative values zooming in.

LandscapeConfig config = new LandscapeConfig(angleX: 75, angleY: 20, moveX: @, moveY: 50, moveZ: 500);
LandscapeModule module = new LandscapeModule(sessionName: "Manual", textureScale: 10, matrix, config);

Figure 6.12: LandscapeConfig Usage

These settings only affect the landscape’s position when it is first rendered and do not
impact the subsequent key or mouse controls used to interact with it.

39

Optional Improvements

Most of the optional improvements were done as well.

Resolved Issues and Implemented Features
e Bug: The Unicode infinity symbol cannot be used.

This issue could no longer be reproduced after upgrading Java and JavaFX.

e Bug: Umlauts are not allowed in session names.

Like the previous issue, this bug was resolved implicitly through the Java and
JavaFX version upgrades.

e Bug: Loosing sessions when detached via drag and drop.

The detachable session feature was disabled to enable proper event forwarding for
landscape mouse interaction. This change also naturally resolved the issue of losing
sessions when detaching them via drag and drop.

e Feature: Add a new replay speed step to loop rapidly through a session.

Two new replay speed settings were introduced: faster, which provides optimal
replay speed for landscape module snapshots and extreme, which allows for very
fast execution as a workaround for the flickering issue.

> Speed

slow medium fast faster extreme

Figure 6.13: Replay Speed Steps

e Feature: Add an About page to the application.

A new button was added to the upper navigation bar in the ADV-UI, opening an
About page that shows which students contributed to specific features.

40

(i]
About

34 - Genearted with seed | 08:39:04 - Generated without seed | 08:40:32 - Manual = 09:

List of contributors
Algorithm & Data Structure Visualizer (ADV):
- Muriéle Trentini
- Michael Wieland
ADV-Tree-Module:
- Fabian Meier
- Jan Winter
ADV-Landscape-Module:
« Christoph Bodschwinna

- Philipp Frank

Figure 6.14: About Page

Open Issues

e Bug: Flickering occurs when executing a step for the first time in a session.

e Bug: Changing the language does not update the labels for the replay speed steps.

6.2 Non-Functional Requirements

The following NFRs were successfully implemented and met:
e NFR-1: Tests should cover 80% of the code of the new module.

e NFR-2: Maintain a clean, understandable and modular codebase that adheres to
standard coding practices.

e NFR-3: The system must be able to process a 100x100 matrix and update the
display at a rate of at least 10 snapshots per second.

Details of the results can be found in section [2.2|[Non-Functional Requirements]

41

Chapter 7

Conclusion

7.1 Result Reflection

This project aimed to develop a new module for the Algorithm & Data Structure Vi-
sualizer (ADV) with support for 3D graphics. It will replace the previous standalone
solution built with JOGL and should directly integrate into the existing ADV system.
The new module needs to be able to support algorithms such as Dijkstra and A* on 3D
terrain.

A key challenge was the need to handle large datasets efficiently. Until now, the ADV
had only supported 2D elements and algorithms that typically produced no more than
30 to 40 snapshots. In contrast, the landscape module needed to handle matrices of up
to 200 by 200 in size, resulting in 40,000 data points. From the beginning, performance
was a central concern.

An earlier semester thesis had already demonstrated that JavaFX could be used to ren-
der 3D content within the ADV application. However, the resulting prototype suffered
from significant performance issues and was not suitable for practical use. This project
aimed to avoid those limitations and deliver a responsive and reliable implementation.

The new landscape module can generate matrices of any size or work with manually de-
fined ones. Like other ADV modules, it uses a snapshot-based communication protocol.
To accommodate larger datasets, the protocol was extended to support partial snap-
shots. This allows the ADV-UI to construct new snapshots incrementally by applying
only the differences to the previous state, reducing both data transmission and memory
usage. As a result, the complete matrix only needs to be transmitted once at the start.
Furthermore, the module also supports batch updates for drawing points, minimizing
the number of snapshots and overall memory requirements. These enhancements were
essential for achieving a performant and efficient solution.

The module offers both keyboard and mouse controls for intuitive navigation, making
it easy for students and instructors to create interactive 3D exercises that integrate
seamlessly with the ADV system. Utility functions for calculating distances and weights
between points are also included to support algorithm development.

42

In addition to the new module, the project introduced several general improvements to
the ADV application. As the system had not been maintained for several years, many
of its technologies were outdated. Java and JavaFX were upgraded from version 11
to version 21, and Gradle was updated to the latest release. Several bugs were fixed,
including issues related to special characters such as the infinity symbol and umlauts.
The update also added new replay speeds and introduced an About page that displays
student contributions to specific features.

7.2 Outlook

Future improvements could include additional major version upgrades. Two key candi-
dates are updating Guice from version 5 to version 7 and migrating JUnit from version
4 to version 5. These upgrades would require structural changes throughout the appli-
cation, which is why they were not included in this project.

Another useful feature would be enabling snapshot selection via an input field. Cur-
rently, users can only navigate snapshots using next and back buttons. With the land-
scape module, sessions can contain 100 or more snapshots, so being able to jump directly
to a specific snapshot by entering its number would improve usability.

The partial snapshot functionality could also be extended to support ADVRelations.
This would allow other modules that work with graph data to benefit from the same
protocol enhancements introduced for the landscape module.

Additionally, the snapshot cleanup process in the landscape module could be improved
to ensure all bindings are removed when a snapshot is deleted. This would help fully
release the memory used by the module without requiring a complete restart of the ADV
application.

Finally, the remaining open issues could be reviewed and resolved in future development
efforts.

7.3 Closing Statement

In conclusion, this project achieved its goal and successfully developed a new landscape
module for the ADV application, enabling support for 3D graphics. Additionally, the
application was upgraded to use modern technologies where possible, several known
bugs were resolved and existing feature requests were implemented. The result is a more
robust and versatile tool that will hopefully continue to be widely used in future exercises
to help students better understand complex algorithms.

43

Part 111

Project Documentation

44

Chapter 8

Project Plan

8.1 Process

For this project, it was decided to use Scrum-+, a hybrid framework that integrates Scrum
with the Rational Unified Process (RUP). This approach was chosen for its ability to
combine RUP’s structured, long-term planning and phased development with Scrum’s
adaptability and short-term planning. Scrum+ enables teams to maintain a clear fo-
cus on overarching project objectives while staying flexible to accommodate evolving
requirements.

8.1.1 Iteration

Each iteration will last two weeks, with a new Sprint starting on Tuesday morning.
Sprint Planning, Sprint Retrospective, and Sprint Reviews will take place biweekly.
Additionally, the refinement meeting will be integrated into the weekly Scrum meeting.
Instead of daily Scrum meetings, it has been decided to hold them weekly. The weekly
team meeting without the advisor is scheduled for Sundays at 18:00, while the meeting
with the advisor will be held on Thursdays at 15:00. Both meetings will generally be
conducted online.

8.1.2 Time tracking & Issue management

Time tracking and issue management will be managed using [Jira Cloud. All recorded
times will be rounded to the closest 15-minute increment.

45

https://www.atlassian.com/software/jira/guides/getting-started/introduction#what-is-jira-software

8.1.3 Roles
The roles and tasks are defined according to Atlassian Scrum roles/ and the book ‘Clean
Agile: Back to Basics‘. [4] [11]
Scrum Master
The Scrum Master is responsible for:
e Organizing Scrum processes and Sprint planning
e Leading Scrum meetings
e Verify meeting protocol
e Assisting the Project Owner with backlog management

This role will be taken on by Philipp Frank.

Project Owner
The Project Owner is responsible for:
e Managing the backlog, including prioritization
e Organizing meetings
e Communicating with the advisor
e Ensuring timely submission of documentation

This role will be taken on by Philipp Frank.

Project Manager

The Project Manager is responsible for:
e Ensuring adherence to established guidelines
e Maintaining a functional development pipeline
e Monitoring and maintaining quality standards

This role will be taken on by Christoph Bodschwinna.

Developer
Developers are responsible for:
e Working on assigned project tasks

Both team members will share this role.

46

https://www.atlassian.com/agile/scrum/roles

8.2 Guidelines for Code

To ensure consistency with the rest of the application, the coding guidelines are adopted
from the previous project and will be enforced using Checkstyle.

8.3 Guidelines for Documentation

The documentation guidelines follow the principles outlined in WRITE THE DOCS.
These include using descriptive text for hyperlinks instead of generic phrases like "Click
here’. Examples should be included where relevant. Additionally, the language should be
consistent throughout the documentation, maintaining uniform capitalization. Proper
indentation should also be applied in LaTeX documentation. [10]

8.4 Phase

The phases are aligned with the milestones.
1. Inception 17.02.2025 - 23.02.2025
2. Elaboration 24.02.2025 - 30.03.2025
3. Construction 31.03.2025 - 01.06.2025

4. Transition 02.06.2025 - 13.06.2025

8.5 Milestones

The milestones are scheduled for Sundays.

M1 Project Setup

Date: 02.03.2025
Objectives:

1. Set up repositories for code and documentation.

2. Define project guidelines.

3. Assign team roles.

4. Identify and evaluate potential risks.

5. Configure Jira Cloud for issue management and time tracking.

6. Develop the initial project plan.

47

https://www.writethedocs.org/guide/writing/docs-principles/

M2 Requirements

Date: 16.03.2025
Objectives:

1. Define the functional requirements through use cases.
2. Establish verifiable non-functional requirements.
3. Conduct the domain analysis.

4. Set up the development environment.

M3 End of Elaboration

Date: 30.03.2025
Objectives:

1. Define the testing strategy.
2. Establish the system architecture.
3. Define quality assurance process.

4. Complete the prototype.

M4 Release 1

Date: 27.04.2025
Objectives:

1. Complete Release 1.

2. Create an Enterprise Architect model of the code for Release 1.

M5 Release 2

Date: 25.05.2025
Objectives:

1. Complete Release 2.

2. Update Enterprise Architect to reflect the current state of the code.

48

M6 Final Submission

Date: 13.06.2025
Objectives:

1. Complete Final Product.
2. Update Enterprise Architect to reflect the final state of the code.
Finalize the project documentation.

Complete the A0 poster.

AN

Finalize the abstract.

8.6 Planned Product Releases

Prototype

Release Date: 30.03.2025
The prototype aims to help the team become familiar with the application and JavaFX

while also serving as a platform for creating smaller proof-of-concept implementations.
Release 1

Release Date: 30.04.2025

Release 1 includes the following features:

e |[UC-2 Create Landscape]

Release 2

Release Date: 25.05.2025

Release 2 builds upon Release 1 and includes:

e (UC-3 Ul Keybinds and Mouse Bindings|

e [UC-4 Draw Point
o [UC-5 Draw Pathl

Final Product

Release Date: 13.06.2025
The final product builds upon Release 2 and includes:

e |UC-1 Calculate Distance and Weight|
o [[CGSel Tonal]

49

8.7 Long-Term Plan / Roadmap

The project timeline spans from February 17 to June 13, 2025, with the final documen-

tation due on the last day.
wo7 wos
31.03 - 06.04 07.04 -13.04
vi I v« B v
1 Business Modelling

|11 [Rough ProjectPlan(RuD) __ —p 1 _______| | | | | |

2 Requirements

2.1 |Non Functional Requirements
2.2 |Functional Requirements
Domain Model
3 Architecture
3.1 |Define Architecture
3.2 |Prototype
4 Implementation
4.1 |Version Upgrades

4.2 |Release 1 implementation
4.3 |Release 2 implementation
4.4 |Final Product

5 Test
|51 [TestingofFRENFR | [| | | | | |
6 Project Management
6.1 |Planning

6.2 |Risk Management
6.3 |Documentation

6.4 [AD Poster

6.5 |Abstract

Project Plan
Start Date 17.02.2025
End Date 13.06.2025

71
7.2 |Repository setup
7.3 |CI/CD setup

7.4 |Test environment setup | #

Milestones: Legend:

M1 Project Setup
M2 Requirements
M3 End of Elaboration Construction
M4 Release 1 Transition
M5 Release 2

M6 Final Product

Tooling setup

:
3

Figure 8.1: Roadmap for W01 to W08

50

Project Plan
Start Date 17.02.2025
End Date 13.06.2025 wog 2 wi3 wis wWie w17

14.04 - 20.04 21.04 - 27.04 28.04- 04.05 05.05-11.05 12.05-18.05 19.05-25.05 26.5-01.06 02.06 - 08.06 09.06 - 15.06

] | [| o | | [0
1 Business Modelling
11 [RoughProjectPlon(iup) |||

2 Regquirements

2.1 |Non Functional Requirements
2.2 |Functional Requirements

2.3 |Domain Model

3.1 |Define Architecture —

3.2 |Prototype

Implementation

Version Upgrades

4.2 |Release 1 implementation
4.3 |Release 2 implementation
Final Product
Test

a —
Testing of FR & NFR - | W]]

Project Management

Planning
6.2 |Risk it
6.3 |Documentation
6.4 |AD Poster
Abstract

7.1 |Tooling setup

7.2 |Repository setup
7.3 |CIfCD setup
7.4 |Test environment setup

Figure 8.2: Roadmap for W09 to W17

8.8 Risk management

8.8.1 Risk

ID R1
Risk Lack of Knowledge
Comment Limited experience with certain technologies (e.g., JavaFX).

Preventive Action | Begin researching potential challenges early and develop a pro-
totype to gain familiarity.

Corrective Action | Seek assistance from teammates. While tasks are typically han-
dled individually, team members should collaborate and provide
support when needed.

Severity Medium
Probability High

Table 8.1: Risk Table: Lack of Knowledge

o1

ID

R2

Risk

Unexpected Limitation of Resources

Comment

Unexpected absence of team members (e.g., illness, work emer-
gency) or failure of critical devices (e.g., laptop). The additional
effort required should not exceed 8 hours.

Preventive Action

All team members must regularly document and push their
progress to ensure continuity.

Corrective Action

Features beyond Release 1 will be dropped or their scope reduced
if necessary.

Severity High
Probability Low
Table 8.2: Risk Table: Unexpected Limitation of Resources
ID R3
Risk Use of Deprecated Functionality
Comment Deprecated functions or services are being used.

Preventive Action

Develop a prototype to identify deprecated functionality.

Corrective Action

Identify and transition to supported alternatives.

Severity

Medium

Probability

High

Table 8.3: Risk Table: Use of Deprecated Functionality

92

8.8.2 Risk map

Following are the definitions for the risk map.

Probability

Probability represents the likelihood of the risk occurring during the project, expressed
as a percentage.

e Very High: 75%-100%

High: 50%-75%
Medium: 30%-50%

Low: 10%-30%

Very Low: 1%-10%

Severity

Severity indicates the estimated time required to resolve the damage caused by the
occurrence of a risk, measured in hours.

e Very High: 8h+

High: 4h-8h
Medium: 2h-4h

Low: 0.5h-2h

Very Low: 0h-0.5h

93

Very Low

Low

Medium i Probability /
Severi

Very High

Figure 8.3: Riskmap

54

Bibliography

[1]

2]

Atlassian. What is the Definition of Done? https://www.atlassian.com/agile/
project-management/definition-of-done) 2024. Accessed: 2025-03-20.

Stephen Chin. Into the sunset on may 1st: Bintray, gocenter, and chartcenter.
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-
chartcenter/. Accessed: 2025-06-06.

John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D.
Foley, Steven K. Feiner, Kurt Akeley. Computer Graphics: Principles and Practice.
Addison-Wesley, 2014.

Robert C. Martin. Clean Agile: Back to Basics. Pearson, 2019.

Oracle. Memory management. https://docs.oracle.com/en/graalvm/jdk/
21/docs/reference-manual/native-image/optimizations-and-performance/
MemoryManagement/#overview—1. Accessed: 2025-06-05.

OST. Minimale notebook-konfiguration fiir standard-anwendungen. https://www.
ost.ch/de/die-ost/services/ict/standard-notebook. Accessed: 2025-06-05.

SonarSource. SonarQube Cloud Documentation. https://docs.sonarsource.
com/sonarqube-cloud/, 2025. Accessed: 2025-06-07.

SonarSource. SonarQube Cloud Quality gates. https://docs.sonarsource.com/
sonarqube-cloud/improving/quality-gates/, 2025. Accessed: 2025-06-07.

Dr. Gernot Starke. arc42 Documentation. https://arc42.org/overview, 2024.
Accessed: 2025-03-20.

Write the Docs. Documentation principles. https://www.writethedocs.org/
guide/writing/docs-principles/}, 2024. Accessed: 2025-03-20.

Dave West. What are the three scrum roles? https://www.atlassian.com/agile/
scrum/roles. Accessed: 2025-03-20.

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,
2007.

95

https://www.atlassian.com/agile/project-management/definition-of-done
https://www.atlassian.com/agile/project-management/definition-of-done
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://docs.oracle.com/en/graalvm/jdk/21/docs/reference-manual/native-image/optimizations-and-performance/MemoryManagement/#overview-1
https://docs.oracle.com/en/graalvm/jdk/21/docs/reference-manual/native-image/optimizations-and-performance/MemoryManagement/#overview-1
https://docs.oracle.com/en/graalvm/jdk/21/docs/reference-manual/native-image/optimizations-and-performance/MemoryManagement/#overview-1
https://www.ost.ch/de/die-ost/services/ict/standard-notebook
https://www.ost.ch/de/die-ost/services/ict/standard-notebook
https://docs.sonarsource.com/sonarqube-cloud/
https://docs.sonarsource.com/sonarqube-cloud/
https://docs.sonarsource.com/sonarqube-cloud/improving/quality-gates/
https://docs.sonarsource.com/sonarqube-cloud/improving/quality-gates/
https://arc42.org/overview
https://www.writethedocs.org/guide/writing/docs-principles/
https://www.writethedocs.org/guide/writing/docs-principles/
https://www.atlassian.com/agile/scrum/roles
https://www.atlassian.com/agile/scrum/roles

List of Figures

(1.1 3D Landscape in the JOGL Tool| 2
1.2 New Landscape Module in the ADV| 4
[1.3 Last Snapshot of a Landscape Module| 5
2.1 Use Case Diagram|, 8
[2.2 Landscape Module ADV-Lib Code Coverage|. 10
2.3 Landscape Module ADV-UI Code Coveragel 10
2.4 ADV-Lib Sonar Overviewl 11
2.5 ADV-Ul Sonar Overviewl.« v v 11
2.6 ADV-Lib Checkstyle Summary| 11
2.7 ADV-UI Checkstyle Summary|. 11
2.8 Performance Run 11. 12
2.9 Performance Run 2.o o 12
2.10 Performance Run 3l. 12
BI Domainmodell 13
3.2 Snapshot| 15
4.1 Partial Snapshot|o 18
4.2 Heap dump of object in memory|, 26
4.3 Terminal error encountered in a Linux virtual machinel 27
6.1 Provided Module Functionsl 33
6.2 Module Constructors with generated Landscapes 34
6.3 Generated Landscape with lower cliffty value| 34
6.4 Generated Landscape with higher clifty value] 35
6.5 Manually created Matrix|. L. 35
6.6 Moduel Constructor with provided Matrix| 35
6.7 Landscape trom provided Matrix| 36
[6.8 Helper Function for Batch Updates| 37
6.9 Landscape with drawn Points| 38
[6.10 drawPath Usage] 38
[6.11 Landscape with a drawn Path|. 39
[6.12 LandscapeConfig Usage| 39

o6

[6.13 Replay Speed Steps|. 40

6.14 About Page| 41
8.1 Roadmap tor WO1 to WOS[. 50
8.2 Roadmap for W09 to W17|. 51
8.3 Riskmap|. e 54
9.1 Visual representation ot the snapshot in the ADV-UIl 63

o7

List of Tables

2.1 Non-Functional Requirement: Maintainability Code Coverage] 10
2.2 Non-Functional Requirement: Maintainability Code] 11
[2.3 Non-Functional Requirement: Performance — Matrix Processing Speed| . . 12
8.1 Risk Table: Lack of Knowledge| 51
[8.2 Risk Table: Unexpected Limitation of Resources| 52
8.3 Risk Table: Use of Deprecated Functionality|. 52
R4 Tist of Tools and Resources 59

o8

List of Resources

Task Area

Tools

Literature Research and Man-
agement

ChatGPT, Google

Translation

DeepL, Google Translate, Leo.org

Coding

ChatGPT, IntelliJ IDEA Ultimate, Visual Studio
Code

Text Creation, Optimization,
Spell and Grammar Check

ChatGPT, DeepL, LanguageTool, IntelliJ TeXiFy-
IDEA Plugin

Collaboration and Project
Management

GitLab, Jira, Outlook, Teams

DevOps

GitLab, SonarQube Cloud

Code Quality and Static
Analysis

Checkstyle, Jacoco, SonarQube Cloud

Table 8.4: List of Tools and Resources

29

Glossary

A* (A-star) is a pathfinding algorithm that finds the shortest route between two points
using a combination of actual distance traveled and estimated distance to the goal.

ADYV stands for ‘Algorithm & Data Structure Visualizer*.

Bintray was a platform for hosting and distributing software packages and binaries. It
was commonly used to publish artifacts for Java projects before being sunset by
JFrog in 2021.

Dijkstra ’s algorithm is a graph traversal method used to find the shortest path between
nodes. Unlike A*, it does not use heuristics and guarantees the shortest path in
weighted graphs.

Enterprise Architect is a modeling and design tool used for creating UML diagrams
and software architecture documentation.

Gradle is a build automation tool used for managing dependencies, compiling code,
and packaging software, primarily in Java-based projects.

Guice is a lightweight dependency injection framework for Java, developed by Google.

JavaFX is a framework for building rich desktop applications in Java. It supports
modern Ul components, styling and 3D graphics, making it suitable for visually
complex applications.

JCenter was a popular artifact repository for Java and Android libraries, hosted by
Bintray. It was deprecated in 2021, and developers have since migrated to alter-
natives like Maven Central.

JOGL (Java OpenGL) is a wrapper library that allows OpenGL functionality to be
used in Java applications.

Maven Central is the primary repository for open-source Java libraries and depen-
dencies.

60

Snapshots are data packages that captures the current state of one or more ADV
modules. They are used to transfer relevant data to the UI for visualization.

Sockets are low-level network interfaces used for communication between two systems
over a network. They allow data to be sent and received through established
connections, such as client-server communication.

61

Part 1V

Appendix

62

Chapter 9

Example Snapshot

The following figure shows how the JSON snapshot of the graph module is rendered in
the ADV-UL

Close Active Close All About

Available Sessions 12:36:18 - Multiple Edges

12:56:18 - Multiple Edges » Speed 171

slow medium fast faster extreme

Personal Note #1

Insert edges

Figure 9.1: Visual representation of the snapshot in the ADV-UI

63

© 00 N O U s W N =

I I R R N e
W N~ O © ® N O A W N~ O

24
25
26
27
28
29
30
31
32
33
34

Below is the JSON data that produces this visual output:

{

"snapshotId": 1,
"snapshotDescription": "Insert edges",
"moduleGroups": [
{
"moduleName": "graph",
"elements": [
{
nid": 1,
"fixedPosX": 200,
"fixedPosY": 200,
"content": "A"
¥o
{
"id": 2,
"fixedPosX": 200,
"fixedPosY": 100,
"content": "B"
}
]
"relations": [
{
"isDirected": false,
"sourceElementId": 1,
"targetElementId": 2,
"label": "10"
}
1,
"flags": [],
"metaData": {},
"position": "DEFAULT"
}
]
}

64

Chapter 10

Test Cases

ID TC-1

Lead Philipp Frank

Title Keyboard Controls

Precondition The ADV-UI is running with a landscape module session.
Steps

e Press the A key to move the landscape left

Press the D key to move the landscape right

Press the W key to move the landscape up

Press the S key to move the landscape down

Press the I key to zoom in

e Press the O key to zoom out

Expected Result

All key controls work.

ID TC-2

Lead Philipp Frank

Title Mouse Controls

Precondition The ADV-UI is running with a landscape module session.
Steps

e Scroll the mouse wheel to zoom in and out

e Drag with the mouse to rotate the landscape around its
center

Expected Result

All mouse controls work.

65

ID TC-3

Lead Philipp Frank

Title Draw Point

Precondition The ADV-UI is running with a landscape module session.
Steps

e Click through the first three snapshots

Expected Result

The points are rendered at the correct positions and in the spec-
ified color.

ID TC-4

Lead Philipp Frank

Title Draw Path

Precondition The ADV-UI is running with a landscape module session.
Steps

e Go to the last snapshot

Expected Result

The path is rendered at the correct position and in the specified
color.

ID TC-5

Lead Philipp Frank

Title About Page
Precondition The ADV-UI is running.
Steps

e Click the ‘About‘ button

Expected Result

- The About page opens and displays the contributions.

ID TC-6

Lead Philipp Frank

Title ADV-UI JAR execution
Precondition The ADV-UI JAR is build.
Steps

e Navigate to the directory where the ADV-UI JAR was built

e Start the application using the following command:
java -jar adv-ui-3.0.jar

Expected Result

The ADV-UI starts successfully.

66

Chapter 11

Test Artefacts

Test Artefacts for Release 2

Mac

1D TC-1

Date 25.05.2025
Tester Philipp
Result Passed

1D TC-2
Date 25.05.2025
Tester Philipp
Result Passed

1D TC-3
Date 25.05.2025
Tester Philipp
Result Passed

1D TC-4
Date 25.05.2025
Tester Philipp
Result Passed

1D TC-5
Date 25.05.2025
Tester Philipp
Result Passed

Linux

1D TC-1

Date 25.05.2025
Tester Christoph
Result Passed

1D TC-2
Date 25.05.2025
Tester Christoph
Result Passed

1D TC-3
Date 25.05.2025
Tester Christoph
Result Passed

1D TC-4
Date 25.05.2025
Tester Christoph
Result Passed

1D TC-5

Date 25.05.2025
Tester Christoph
Result Passed

Windows

1D TC-1

Date 25.05.2025
Tester Christoph
Result Passed

1D TC-2

Date 25.05.2025
Tester Christoph
Result Passed

1D TC-3

Date 25.05.2025
Tester Christoph
Result Passed

68

ID TC-4
Date 25.05.2025
Tester Christoph
Result Passed

ID TC-5
Date 25.05.2025
Tester Christoph
Result Passed

Test Artefacts for Final Product

Mac

1D TC-1

Date 08.06.2025
Tester Philipp
Result Passed

1D TC-2
Date 08.06.2025
Tester Philipp
Result Passed

1D TC-3
Date 08.06.2025
Tester Philipp
Result Passed

1D TC-4
Date 08.06.2025
Tester Philipp
Result Passed

1D TC-5

Date 08.06.2025
Tester Philipp
Result Passed

1D TC-6

Date 08.06.2025
Tester Philipp
Result Passed

69

Linux

1D TC-1

Date 08.06.2025
Tester Christoph
Result Passed

1D TC-2
Date 08.06.2025
Tester Christoph
Result Passed

1D TC-3
Date 08.06.2025
Tester Christoph
Result Passed

1D TC-4
Date 08.06.2025
Tester Christoph
Result Passed

1D TC-5

Date 08.06.2025
Tester Christoph
Result Passed

1D TC-6

Date 08.06.2025
Tester Christoph
Result Passed

Windows

1D TC-1

Date 08.06.2025
Tester Christoph
Result Passed

1D TC-2

Date 08.06.2025
Tester Christoph
Result Passed

70

TC-3

08.06.2025

Christoph

Passed

TC-4

08.06.2025

Christoph

Passed

TC-5

08.06.2025

Christoph

Passed

TC-6

08.06.2025

Christoph

Passed

71

	I Summary
	Management Summary
	Introduction
	Technologies
	Result
	Conclusion

	II Product Documentation
	Requirements
	Functional Requirements
	Use Case Diagram
	Use Case Description

	Non-Functional Requirements
	Verification of Non-Functional Requirements

	Domain Analysis
	Domain Model
	Explanations

	Additional Explanations
	Server and Client
	Projects
	Snapshots

	Architecture
	Scope and Context
	Solution Strategy
	Snapshot vs. Dynamic Landscape Updates
	Partial Snapshot
	Splitting Elements in the LandscapeModule
	Generating the Landscape Matrix
	UI Matrix Refinement using Bicubic Interpolation
	Landscape Rendering
	Texture vs. 3D-Objects for Points and Paths
	Path Rendering Using Bresenham's Line Algorithm

	Software Structure
	ADV-Commons
	ADV-Lib
	ADV-UI

	Architectural Decisions
	Versions Upgrades
	CI/CD Pipeline

	Encountered Problems
	Memory Usage
	3D Elements in Virtual Machines

	Quality Measures
	Definition of Done
	SonarQube Cloud
	Quality Gates

	CI/CD Pipeline
	Test Concept
	Testing Strategy
	Test Environment
	Test Deliverables
	Test Schedule
	Test Roles
	Test Artefacts

	Result
	Functional Requirements
	Non-Functional Requirements

	Conclusion
	Result Reflection
	Outlook
	Closing Statement

	III Project Documentation
	Project Plan
	Process
	Iteration
	Time tracking & Issue management
	Roles

	Guidelines for Code
	Guidelines for Documentation
	Phase
	Milestones
	Planned Product Releases
	Long-Term Plan / Roadmap
	Risk management
	Risk
	Risk map

	Bibliography
	List of Illustrations
	List of Tables
	List of Resources
	Glossary

	IV Appendix
	Example Snapshot
	Test Cases
	Test Artefacts

