Oes

Fachhochschule

Semantic Clustering Toolbox

Bachelor Thesis

Department of Computer Science
OST — University of Applied Sciences
Campus Rapperswil-Jona

Spring Term 2025

Author Lukas Derungs
Advisor Dr. Beat Todtli, Dozent am IPM
Project Partner IFSAR - Institute for Social Work and Social Spaces

External Co-Examiner Leo Bittiker
Internal Co-Examiner Prof. Dr. Markus Stolze

Abstract

This thesis presents the design, development, and evaluation of a semantic clus-
tering toolbox intended to support non-technical users in analyzing open-ended
survey responses. The motivation stems from a desire to expedite the labor- and
time-intensive process of survey data analysis in research and evaluation contexts.
The toolbox allows users to upload survey data, perform semantic clustering, ana-
lyze sentiment, and export results through a simplified interface. Developed using a
Design Science Research methodology, it integrates embedding models for semantic
representation, the K-means algorithm for clustering, dimensionality reduction for
visualization, and language models for sentiment analysis. A notable feature of the
system is the inclusion of cluster stability visualizations, which help users interpret
the consistency of clustering outcomes across multiple runs.

The artifact was evaluated through internal clustering metrics, user feedback and re-
quirement validation using real-world survey data provided by the IFSAR research
institute. Results indicate that the toolbox effectively identifies dominant themes
and supports exploratory analysis, while remaining accessible to non-technical users.
Despite its utility, the toolbox has limitations, including sensitivity to input quality
and the inherent subjectivity of interpreting clusters without ground truth labels.
Nonetheless, the artifact fulfills its primary goal and offers a practical foundation
for future enhancements and research.

Overall, this work contributes a practical and extensible tool for the semantic clus-
tering of textual data.

Contents

(L

List of Figures|

[[I_List of Tables|

(LTI List of Acronyms|

IV Glossary|

[I__Introduction

(1.2 Objective of the Thesis|
(1.3 Research Questions| L.

2T rcal and Technical Foundations

[2.1 Design Science Research in Computer Science]
[2.2 Fundamentals and State of the Art in Semantic Clusteringl
[2.3 Prior Work on Semantic Clustering ot Survey Responses|
2.4 Technological Background
[2.4.1 Natural Language Processing]
[2.4.2 Text Representation Using Embeddings|.
[2.4.3 Similarity Measures| o000
[2.4.4 Clustering Algorithms|
[2.4.5 Dimensionality Reduction

Research Methodology and DSR Approach|

[3.1 Design Science Research Cycle]
[3.2 Requirements Analysis and Objective Definition|
[3.2.1 Functional Requirements|
[3.2.2 Non-Functional Requirements|
[3.2.3 Project Scope|
8.3 PFwvaluation Methodso oo

Design of the Artifact|

(4.1 System Architecture] Lo

4.3 Accessibility|
4.4 Input Handling|o
4.5 Model Configuration|
4.6 Embedding Generation| oL
4.7 Clustering Algorithm|
4.8 Cluster Visualization|
4.9 Sentiment Interpretation|o o oL
[4.10 Result Export|
KM.11 Model Selection Rationalel

10
10
10
11

12
12
12
13
14
14
14
14
15
15

16
16
17
17
18
18
18

[> Implementation|
5.1 Technology Stackl
(5.2 Implementation of Core Components|

(5.3 Cluster Stability Analysis]
[5.3.1 Cluster Matching Challenge,
[5.3.2 Cluster matching Algorithm|
[>.3.3 Cluster Assignment|
[5.3.4 Cluster Stability]

[>.4 Packaging and Installation|

b.5 Visualizationl

6 Fvaluation|
[6.1 FEvaluation Setup|
[6.2 Clustering Quality Assessment|.
6.3 User Validationl
6.4 Requirement Validation|

i . [Refection

(7.1 Interpretation of Evaluation Results|.

(.3 Future Workl.

8 Summary|

APDP a

[A Paraphrased Interview Summary|

(B Paraphrased Feedback After MVP Demonstration|

[C Semantic Analysis Prompt|

[D Tools and Technologies Used|

E Additional D onl

(I Example of Cluster Label Algorithm|

|G _Advanced Feature Outlookl

27
27
28
28
29
32
33
33
33
35
36
36
37

40
40
40
41
42

43
43
43
44

46

50

50

50

51

51

51

52

54

List of Figures

(1 Example of the clustering interface with grouped survey data.| 9
R The Three Cycle View of DSR (adapted from [Hevner| [2007])] 16
[3 Domain model of the semantic clustering process.| 20
{4 High-level architecture of the semantic clustering toolbox.|. 21
(5 [lustrative examples ot the visualizations included in the toolbox.| 24
(6 Screenshot of the semantic clustering toolbox graphical user interface| . . 28
[7 Screenshot of the API Key Dialog interface.| 29
(8 UML Class Diagram| 30
[9 Comparing two clusterings| 33
(10 Example of a scatter plot visualizing cluster assignments.| 37
(1T Cluster stability plot.| 38
(12 Example of a silhouette plot visualizing cluster quality| 39

List of Tables

(1 Functional Requirements| 17
[2 Non-Functional Requirements| 18
[3 'Tools and technologies used during the project| 51

List of Acronyms

IFSAR Institute for Social Work and Social Spaces
LLM Large Language Model

API Application Programming Interface

NLP Natural Language Processing

DSR Design Science Research

t-SNE t-distributed Stochastic Neighbor Embedding
MVP Minimum Viable Product

GUI Graphical User Interface

Glossary

This section explains some of the more technical terms amd concepts used in this paper.

Cluster: A group of items (e.g. survey responses) that are similar to each other.
K-means clustering: A popular machine learning algorithm that splits a dataset into
a specified number of clusters (k) by minimizing the within-cluster variance.

Large Language Model (LLM): A generative artificial intelligence model trained on
vast amounts of text to understand and generate human language. Examples include
Google Gemini and ChatGPT.

Embedding (Vector): A list of numbers that represents data. In text analysis, an
embedding captures the meaning of a word or sentence.

Embedding model: A large language model or neural network that transforms text
into a numerical embedding vector.

Token: A token is a unit of text (such as a word or subword) used by language models
to process and measure input length.

Application Programming Interface (API): An interface consisting of defined end-
points that can be accessed by following specific protocols. APIs enable software appli-
cations to request and use services provided by other systems.

API Key: A unique identifier used to authenticate a user and authorize access to a
specific API.

Parquet file: Parquet files are a type of data storage format that organizes information
to improve efficiency in saving space and speeding up data retrieval.

Artifact: A functional software tool developed to solve a specific problem and evaluated
for effectiveness in Design Science Research.

Management Summary

Project Objective

The objective of this project was to develop an intuitive software toolbox that enables
non-technical users to analyze open-ended survey responses. While open-ended responses
often contain rich insights, they are typically difficult to process without time-consuming
manual effort.

Background and Motivation

Organizations frequently use surveys to gather feedback. While multiple choice questions
are easy to evaluate, open-ended responses provide more varied insight but are signifi-
cantly harder to analyze. This project addresses this challenge by offering a tool that
expedites the grouping of semantically similar answers.

Approach

The project followed an iterative development process, beginning with the identification
of a practical problem and moving through solution design, implementation and evalua-
tion.

The resulting toolbox allows users to:
e Upload and analyze open-ended survey responses
e Automatically group similar answers into meaningful categories
e View a visual overview of the main groupings in the data

Understand the general sentiment of responses

e Export results for further analysis or reporting

A special focus was placed on making the tool easy to use, even for people without
technical backgrounds. The Graphical User interface was kept simple while still offering
valuable insights through visualizations.

A notable feature of the tool is its ability to visualize cluster stability across multiple
algorithm runs. This helps users assess whether a grouping is consistent or unreliable
which provides a confidence measure without requiring technical knowledge.

#7 Semantic Clustering v1.0

Upload File | Select the text column: | Text

Select a Model: | ChatGPT v | |Generate Embeddings Configure API keys

Number of Clusters: |14 | Generate Elbow Plot

Scatter Plot of Clustered Data

Y
0
40 °
| Y
- Cluster 1
. ® aa @ JPUQ @ = Cluster 2
[8 ° B Cluster 3
20 ove, [= Cluster 4
eo ‘p Bo == Cluster 5
10 ° [@ = Cluster 6
° ° o% = Cluster 7
0 °c Y Mt . [Cluster 8
h ° 94 e & = Cluster 9
10 @Sﬁ Pad e g =3 Cluster 10
-] B Cluster 11
& og’, °® ,’g&gfgﬁ B Cluster 12
20 X o®% % S ol B Cluster 13
Sme " - Cluster 14
-30 o, 0
o
—40 . .

Scatter Plot Bar Plot Silhouette Plot

Approximate Cluster Meaning
Showing scatter plot.

Export Reset

Figure 1: Example of the clustering interface with grouped survey data.

Results

The toolbox was tested using real-world survey data provided by the IFSAR research
institute.

The evaluation showed:
e Major themes were successfully identified
e Results were interpretable and useful for exploratory analysis

e The interface was well received by non-technical users

Limitations

e The quality of clustering depends on input text clarity (e.g. spelling or off-topic
responses).

e Without labeled data, results must be interpreted subjectively.

e Performance and visualization clarity decrease with very large datasets or high
cluster counts

Future Potential

The toolbox provides a strong foundation for further improvements:
e Integration of more preprocessing features (e.g. spell checking)
e Extended export options and integration with external systems

e Support for larger datasets through performance optimization

1 Introduction

This chapter introduces the motivation and context of the research. It outlines the
problem the thesis aims to solve, formulates the central research questions, and defines
the objectives of the work. Additionally, the chapter provides an overview of the structure
of the thesis and the methodological approach used, with a focus on the Design Science
Research paradigm.

1.1 Motivation and Problem Statement

Researchers at IFSAR regularly conduct surveys that include open-ended questions.
These questions are a valuable part of the data collection process, as they allow par-
ticipants to express their opinions freely and potentially raise issues that the researchers
may not have previously considered. Unlike multiple-choice questions, which restrict re-
sponses to a predefined set of options, open-ended questions can uncover new insights and
provide more qualitative data. However, this flexibility comes at a cost. The analysis of
open-ended responses is typically manual, subjective, and highly time-consuming. While
a multiple-choice question may have only a handful of distinct responses, open-ended
questions can generate a vast number of unique answers — often as many as there are
participants. This significantly complicates the task of aggregating and interpreting the
data, especially when dealing with large sample sizes.

1.2 Objective of the Thesis

The objective of this thesis is to develop and evaluate a software tool that supports the
analysis of open-ended survey responses through semantic clustering.

Semantic clustering refers to the grouping of textual data based on the underlying
meaning of the responses rather than surface-level similarity such as keyword overlap |Ag-
garwal and Zhai [2012]. Modern natural language processing (NLP) techniques — such
as sentence embeddings — make it possible to represent individual responses as high-
dimensional vectors that capture semantic content. By applying clustering algorithms
to these representations, thematically similar responses can be grouped together, even if
they use different words or phrasing.

This approach is particularly suited to the problem at hand: researchers at IFSAR
must manually process a wide variety of open-ended survey answers, which is both time-
consuming and difficult to scale. Semantic clustering offers a way to automate part of
this process by surfacing patterns and grouping related answers, thus enabling faster,
more structured analysis without sacrificing the richness of qualitative data.

The tool is developed using the Design Science Research (DSR) methodology, with the
goal of creating a practically relevant and scientifically grounded artifact. The scope of
this work is limited to short- to medium-length German open-ended survey responses and
focuses on clustering as an aid for human interpretation, not as a replacement for expert
analysis.

10

1.3 Research Questions

To guide the development and evaluation of the proposed artifact, this thesis investigates
the following research questions:

RQ1: How can a semantic clustering toolbox be developed to sup-
port non-technical users in analyzing open-ended survey responses?
RQ2: How stable are the resulting clusters across multiple initial-
izations, and how can this stability be visualized to improve user
interpretation?

These questions focus on assessing the capability of modern semantic techniques to im-
prove the analysis of qualitative survey data by automatically identifying meaningful
clusters of responses.

Structure of the Thesis

The remainder of this thesis is structured as follows:

e Chapter 2 presents the theoretical and technical foundations, including an overview
of semantic clustering, natural language processing techniques, and relevant related
work.

e Chapter 3 describes the research methodology based on the Design Science Re-
search framework and outlines the evaluation approach.

e Chapter 4 details the conceptual design of the semantic clustering tool, explaining
architectural decisions and algorithm choices.

e Chapter 5 focuses on the implementation of the artifact, highlighting key compo-
nents and development challenges.

e Chapter 6 reports the evaluation results, analyzing the effectiveness and practical
relevance of the tool.

e Chapter 7 provides a discussion of the findings, contributions, limitations and
offers recommendations for future work.

e Chapter 8 concludes the thesis and summarizes its main outcomes.

11

2 Theoretical and Technical Foundations

This chapter provides the necessary background for the development of the semantic
clustering toolbox. It begins with an overview of DSR as applied in computer science,
outlining its relevance to this project. Following this concepts and recent advances in
semantic clustering and automated data analysis are presented to lay the theoretical
groundwork for the artifact’s design. The chapter then reviews prior research focused
on semantic clustering of survey responses, highlighting the gaps and opportunities ad-
dressed by this thesis. Finally, the chapter introduces the technologies employed in the
implementation of the semantic clustering toolbox.

2.1 Design Science Research in Computer Science

Design Science Research is an approach that focuses on creating and evaluating artifacts
to solve practical problems Hevner et al. [2004]. Tt is especially suited for computer science
research where designing and building useful software tools or systems is the main goal.
Although this thesis does not follow a formal DSR process from start to finish, it is
inspired by the core principles of DSR:

Iterative problem-centered research, artifact creation and evaluation.

The project involved identifying a real-world challenge — the manual analysis of open-
ended survey responses —, designing and implementing a semantic clustering tool to
address this challenge, and evaluating the tool’s effectiveness in practice.

By adopting this approach, the research ensures that the developed solution is both
technically sound and applicable to the needs of researchers analyzing survey data.

2.2 Fundamentals and State of the Art in Semantic Clustering

Semantic clustering is the process of grouping textual data based on the meaning or
semantics of the content, rather than relying solely on surface-level features such as key-
word overlap. This allows for the identification of thematically similar texts even when
different vocabulary or phrasing is used.

The practice of clustering texts by semantic meaning is well-established, with roots trac-
ing back to early research in computational linguistics. For instance, Karen Sparck Jones
Sparck Jones [1965] pioneered methods that used manually constructed thesauri to infer
semantic similarity. Modern approaches have significantly advanced this field by leverag-
ing high-dimensional vector representations generated by neural language models.

Vector Representations of Text At the core of semantic clustering lies the represen-
tation of text as numerical vectors that encode semantic information. With the advent
of distributed representations, approaches like Word2Vec Mikolov et al.| [2013] and GloVe
Pennington et al. [2014] made it possible to encode words into dense vector spaces based
on their co-occurrence statistics in large corpora.

However, word embeddings alone are insufficient for tasks that require understanding
whole sentences or documents. Sentence-level embedding models such as Sentence-BERT
(SBERT') Reimers and Gurevych [2019] extend the capabilities of models like BERT De-
vlin et al| [2019] to produce semantically meaningful representations of longer texts,
making them suitable for clustering applications.

12

Clustering Algorithms Once texts are represented as vectors, clustering algorithms
can be applied to detect groupings of semantically similar responses. The K-means algo-
rithm, used in this thesis, is one of the most popular methods due to its computational
efficiency and intuitive geometric interpretation. It partitions data into k& clusters by
minimizing the within-cluster variance. More advanced techniques, such as hierarchical
clustering and density-based methods like DBSCAN, are also commonly applied, but
K-means remains a strong baseline for many unsupervised NLP tasks.

2.3 Prior Work on Semantic Clustering of Survey Responses

One of the most relevant contributions in recent years comes from |Esmaeilzadeh et al.
[2022|, who propose an end-to-end framework for extracting insights from open-ended
survey responses. Their approach is centered around the use of sentence embeddings gen-
erated by pre-trained transformer models, which are then clustered using context-aware
clustering techniques. The results are visualized through word clouds and representative
terms, making the output more interpretable for users.

While this work demonstrates that semantic clustering can effectively support the in-
terpretation of qualitative survey data, it exhibits several limitations that are relevant
to the present thesis. First, the framework is designed for English-language responses
and does not consider multilingual data. Second, the implementation is briefly described
as an on-device mobile application, but no source code or interface details are provided,
making it difficult to assess its accessibility for non-technical users. Third, the framework
does not address the stability or consistency of generated clusters which is an important
aspect when drawing conclusions from qualitative data groupings.

Other tools and frameworks, such as ClustVis Metsalu and Vilo| [2015], ClustrLab2k13
Patil [2023], and Hugging Face’s text-clustering repository von Werra and Allal [2024], of-
fer components of semantic clustering workflows, including visualization and embedding-
based clustering. However, these tools typically serve general-purpose scenarios and are
not specialized for working with qualitative survey data. They often require command-
line interaction or technical expertise, assume that the input is already embedded in
vector form, lack integrated sentiment analysis and do not provide built-in assessments
of cluster reliability through a stability metric, which limits their practical usability for
users without a technical background.

Rather than adopting one of these tools directly, this thesis builds upon their core ideas
and presents a simplified pipeline for semantic clustering that targets short to medium-
length German survey responses. The toolbox prioritizes accessibility, offering a graphical
interface that enables non-technical users to explore the clustering results. In addition to
the core clustering functionality, it includes visualizations for evaluating cluster stability,
thereby contributing to the interpretability of the findings.

Challenges in Semantic Clustering of Survey Responses Open-ended survey
responses are typically short, unpredictable, and highly variable in language and style.
Multilingual or dialectal variations, such as Swiss German, add further complexity to
semantic representation. Additionally, determining the appropriate number of clusters is
not trivial and often requires iterative approaches. Finally, clusters must be interpretable

13

and useful for human analysts, balancing automation with expert review.

This thesis addresses these challenges by combining state-of-the-art language models with
a clustering approach tailored to the specific needs of qualitative survey analysis, focusing
on usability and practical relevance.

2.4 Technological Background

This section provides an overview of the important technologies that serve as the foun-
dation of the toolbox developed in this thesis. It covers essential concepts from NLP,
methods for representing text as embeddings, techniques to measure similarity between
these representations, and algorithms used for clustering and dimensionality reduction.
Together these components form the computational foundation required to semantically
group and analyze open-ended survey responses.

2.4.1 Natural Language Processing

Natural Language Processing is a subfield of artificial intelligence and focuses on how
computers can process and analyze human language. In the context of this thesis, NLP
techniques are used to transform textual survey responses into representations that ma-
chines can analyze. Processing natural language poses challenges due to the ambiguity
and complexity of the human languages, especially when dealing with informal or mixed
dialect texts such as Swiss German.

2.4.2 Text Representation Using Embeddings

Understanding and comparing textual data requires representing text in a form that
computer models can understand and process effectively. Modern approaches use em-
beddings, which are dense numerical vectors that capture the semantic meaning of text
elements such as words, sentences, or entire documents. Unlike traditional methodes
based on word counts, embeddings position semantically similar texts closer together
in a high-dimensional vector space, enabling models to recognize meaning beyond exact
word matches.

Recent advances in NLP have been driven by transformer-based models like BERT De-
vlin et al. [2019] and its sentence-focused variant SBERT Reimers and Gurevych [2019].
These models generate context-aware embeddings that take into account the surrounding
words and the overall sentence structure, producing semantic representations well-suited
for tasks like classification or clustering. By leveraging these high dimensional embed-
dings, semantic clustering algorithms can group text responses based on meaning, even
when they use different wording or phrasing. Embedding vectors typically range from a
few hundred to over a thousand dimensions. Higher dimensions can differentiate more
subtle semantic features, but increase computational cost.

2.4.3 Similarity Measures

To cluster texts based on their embeddings, it is necessary to quantify the similarity
between vectors. Cosine similarity is one of the most commonly used metrics in NLP,
as it measures the cosine of the angle between two vectors, capturing semantic similarity
regardless of vector magnitude.

14

In this work, the clustering algorithm relies on Euclidean distance, as used by the standard
K-means implementation in scikit-learn| [2025a). While Euclidean distance is sensitive
to vector magnitude, the embeddings used in this system are L2-normalized, this means
each vector is scaled to have a unit length of 1. In such cases, squared Euclidean dis-
tance becomes mathematically proportional to cosine dissimilarity [Patel [2020]. This
makes Euclidean-based clustering behaviorally equivalent to cosine-based clustering for
normalized embeddings, allowing for efficient and semantically meaningful groupings.

2.4.4 Clustering Algorithms

Clustering is the task of grouping similar data points, in this case sentence embeddings,
into tight groups called clusters based on a similarity or distance metric. In the context
of this thesis, the objective is to group survey responses with similar meanings, even if
their surface forms vary significantly.

This thesis uses the K-means algorithm which is a widely adopted and computationally
efficient clustering method. K-means aims to partition the n data points {zg, x1,...,2,}
into k clusters C' = {C4, (%, ...,Cy} by minimizing the within-cluster variance, specif-
ically the sum of squared Euclidean distances between each data point z; and its as-
signed cluster centroid p; (see Equation (1))). The algorithm is initialized with k& random
centroids and iteratively updates cluster assignments and centroids until convergence
scikit-learn| [2025b)].

;lglég(Hx will”) (1)

Adapted from jscikit-learn [2025b]

Although K-means requires the number of clusters & to be specified in advance, it performs
well on normalized text embeddings, making it a suitable choice for this system. Its non-
deterministic initialization behavior also enables repeated trials, which are valuable for
evaluating cluster stability which is a central aspect of this thesis.

2.4.5 Dimensionality Reduction

High-dimensional data such as sentence embeddings can be challenging to interpret for
humans. Dimensionality reduction techniques transform this complex data into a lower-
dimensional space, making it easier to analyze and visualize while preserving meaningful
structure. Common methods include Principal Component Analysis (PCA) |Jolliffe| [2002],
which identifies directions of greatest variance, and t-distributed Stochastic Neighbor
Embedding (t-SNE) |[Van der Maaten and Hinton| [2008], which focuses on maintaining
local similarities between data points.

In this thesis, dimensionality reduction is applied to visualize clustering results.

15

3 Research Methodology and DSR Approach

This chapter outlines the methodology for this project, focusing on the DSR framework.
It details how DSR principles and processes were applied to iterativly develop, evaluate,
and refine the semantic clustering toolbox. The chapter begins by introducing the DSR
cycle and explaining why it was selected.

3.1 Design Science Research Cycle

Design Science Research is a problem-solving methodology that emphasizes the creation
and evaluation of artifacts intended to solve identified problems in a relevant context.
According to Hevner Hevner| [2007], DSR can be understood through a three-cycle model,
consisting of:

e Relevance Cycle: Connects the research to the application environment and
stakeholders, ensuring the problem and solution are grounded in real-world needs.

e Rigor Cycle: Grounds the research in existing theories, frameworks, and knowl-
edge bases to provide a solid scientific foundation.

e Design Cycle: Encompasses the iterative process of building and evaluating the
artifact to address the problem and implement user feedback.

These three cycles interact continuously throughout the research process, ensuring a
balance between practical relevance, theoretical rigor, and effective design.

Design,
Artjfact

Design
Cycle

Evaluate

Relevance Cycle

Rigor Cycle

Scientific Foundation

Real World - Requirements

- Validation

- Grounding

Figure 2: The Three Cycle View of DSR (adapted from Hevner| [2007]).

Design Science Research was chosen as the projects methodology because it aligns closely
with the objective of this thesis: to develop a practical and user-centric artifact that
addresses a real-world problem. DSR emphasizes the creation, evaluation, and iterative
refinement of an artifact in collaboration with real users, making it suitable for research
that aims to generate a usable tool rather than purely theoretical insights.

16

3.2 Requirements Analysis and Objective Definition

As part of the relevance cycle in the DSR process, a requirements analysis was conducted
to ensure that the developed artifact effectively addresses real user needs. This analysis
involved an interview with a researcher from IFSAR to define the problem domain and
artifact requirements, complemented by a review of the project assignment.

The primary objective of this research is to design and develop a user-centric toolbox
for semantic text clustering that addresses the needs of non-technical users. This arti-
fact aims to facilitate the analysis of open-ended survey responses through interpretable
clustering results. The core objectives of the project are:

e To design an intuitive and accessible clustering toolbox tailored to practical require-
ments.

e To provide comprehensive documentation that supports user adoption and effective
utilization.

e To investigate the impact of random initialization on the stability of k-means clus-
tering results

e To develop visualization techniques for conveying this stability.

3.2.1 Functional Requirements

To develop an artifact that fits these objectives, a set of functional and non-functional
requirements was established. These requirements were gathered from the interview
with the IFSAR researchelﬂ and the provided project assignment [Todtli| [2025]. Table
summarizes the main functional requirements that define the core capabilities of the
semantic clustering toolbox.

1D Name Description

FR1 | Upload file Enable users to upload Excel files containing
survey responses.

FR2 | Generate embeddings | Transform uploaded texts into numerical em-
bedding vectors using a pre-trained model.
FR3 | Cluster embeddings Apply the K-means clustering algorithm to
group similar embeddings.

FR4 | Export results Allow exporting of clustering results to an
Excel file.

FR5 | Visualize clusters Provide visualizations such as scatter plots
to interpret cluster distributions.

FR6 | Sentiment analysis Estimate sentiment for each cluster using a
language model.

FR7 | Cluster stability Visualize stability of clustering across multi-

ple runs with different initializations.

Table 1: Functional Requirements

LA paraphrased summary of the interview is provided in Appendix

17

3.2.2 Non-Functional Requirements

In addition to the functional capabilities, certain non-functional requirements guide the
design and implementation of the toolbox. These address usability and technology con-
straints, ensuring the artifact meets user standards. Table [2| outlines these requirements.

1D Name Description

NFR1| User Accessibility The toolbox should be easy to use, even for
non-technical users.

NFR2 | Technology Stack The toolbox must be implemented in
Python.

Table 2: Non-Functional Requirements

3.2.3 Project Scope

The requirements are categorized into a Minimum Viable Product (MVP) and planned
additions to guide development priorities. This structuring allows for iterative improve-
ments based on user feedback and evolving project needs according to the design cycle.

Minimum Viable Product The MVP defines the essential functionality to deliver a
working and usable system:

e FR1 — Upload Excel files containing the survey responses.
e FR2 — Generate embeddings from texts using a suitable embedding model.
e FR3 — Cluster embeddings with the K-means algorithm.

e R4 — Export clustering results to Excel.

Planned Additions These goals represent planned additions to improve usability and
analytical capabilities:

e FR5 — Visualization of clusters for exploratory analysis.

e FR6 — Sentiment estimation per cluster using language models.

e FR7 — Analysis and visualization of cluster stability over multiple runs.
e Allow selection between different embedding service providers.

e Enable saving of API keys for embedding services across sessions.

e Implement a recommendation system to suggest an optimal number of clusters (e.g.
via elbow plot).

3.3 Evaluation Methods

Evaluating the effectiveness of the semantic clustering toolbox involves a combination of
clustering quality assessment and user validation checks, consistent with the principles of

DSR.

18

Clustering Quality Assessment Internal clustering metrics, such as the silhouette
score [Rousseeuw| [1987] and cluster stability are used to assess cluster quality. While these
metrics do not provide an absolute measure of correctness in a unsupervised setting, they
offer indicators of clustering quality.

User Validation User feedback is essential to validate the interpretability of the clus-
tering results and the usability of the toolbox interface. Interviews and demo sessions
with the researcher from IFSAR, help ensure the clusters visualizations are understand-
able and that the interface is intuitivly supporting the intended user workflow.

Requirement Validation A requirement validation using a real-world dataset of open-
ended survey responses, provided by IFSAR, demonstrates the applicability and useful-
ness of the toolbox. This involves running the full user workflow — from data upload
through clustering and visualization — and assessing whether the arifact fulfills the func-
tional requirements.

Together, these evaluation methods provide an understanding of the artifact’s perfor-
mance. Clustering quality assessment aligns with the rigor cycle by grounding evalua-
tion in established metrics. User validation supports the relevance cycle by ensuring
practical utility and user expectations are met. Finally, the requirement validation re-
flects the design cycle by enabling real-world testing and iterative refinement of the
artifact.

19

4 Design of the Artifact

This chapter presents the conceptual design of the semantic clustering toolbox, grounded
in the iterative and user-centric principles of DSR. The design aims to support non-
technical users in interpreting open-ended survey responses by providing an accessible
and intuitive interface.

A simplified domain model was created during requirements analysis to support the def-
inition of the user workflow and clarify the main entities and interactions in the system

(Figure [3)).

Input File

1

Contains ¥

1.*

Text Columns

Survey Responses

= selects

Result File

Survey responses
Cluster assignments
Cluster stability
Semantic analysis

1
views A
1

User

1

API-Key

selects >

1
selects ¥
1

Language Model

performs ¥

1

Sentiment analysis

Sentiment per cluster

Analyses =

1

Embedding Model

1

Generates ¥

1.*

Embedding Vectors

Embeddings as file

Storage File

1.%

2.*
clustering algorithm ¥

1

Clustering Result
K clusters

1

1

Cluster assignments
Cluster stability

1

1.3

Visualizazions
Silhoeuette plot
Scatter plot
Bar plot

Survey responses
Embedding vectors

Figure 3: Domain model of the semantic clustering process.

20

Based on this model, a user workflow was defined that serves as the foundation for the
artifact’s design cycle. It comprises the following steps:

1. Loading Input File: Uploading open-ended survey responses stored in Excel files.

2. Column and Model Configuration: Choosing the relevant column of responses
and selecting embedding and language model providers.

3. Embedding: Generating embeddings from text data using embedding models ac-
cessed through external APIs.

4. Clustering: Clustering the embeddings to group semantically similar responses.
5. Visualization: Analyzing cluster stability and interpreting cluster quality.

6. Sentiment Analysis: Interpreting cluster sentiment via language models accessed
through external APIs.

7. Export: Exporting results for further analysis.

The following sections elaborate on the system architecture, user interface, accessibility
features and the design rationale for each stage of the workflow.

4.1 System Architecture

The semantic clustering toolbox is designed as a mostly self contained application. Its ar-
chitecture separates user interaction, processing logic, and external services. This modu-
lar design supports extendability and maintainability. A high-level architectural overview
is shown in Figure

Local System

i Texts i
i ! Open Al
: . Embedding Vectors / Sentiments |
i Semantic !
i Clustering Toolbox !
i Texts |
H = Google
i Embedding Vectors / Sentiments :

Figure 4: High-level architecture of the semantic clustering toolbox.

At a conceptual level the system architecture consists of three elements:

e User Interface: Provides a graphical interface for non-technical users to configure
inputs, monitor progress, and review results.

21

e Processing Logic: Performs the semantic clustering workflow by using various
Python libraries and external services.

e External APIs: Accesses external language and embedding model APIs through
an abstracted layer. This design separates provider-specific logic behind a common
interface which enables support for multiple model providers and simplies future
expansion.

To prevent the graphical user interface (GUI) from freezing during compute-intensive
operations or API calls, long-running tasks are executed asynchronously.

4.2 User Interface

In compliance with the GUI is designed to support non-technical users throughout
the entire semantic clustering workflow. Built using the PySide6 The Qt Company| [2025]
framework it offers a clear flow guiding users from data loading to final export without
requiring any command-line interaction. PySide6 was selected for its extensive set of
user-friendly widgets and cross-platform compatibility making it ideal for designing an
artifact for non-technical users.

User feedback is delivered through progress messages and error reports for issues such
as incompatible file types or failed API calls. This design ensures a guided and intuitive
experience that helps users successfully navigate the semantic clustering process.

4.3 Accessibility

To improve usability for non-technical users, the toolbox is designed with installers and
additional documentation (see Appendix [El).
Two installation options are provided to simplify setup:

e Platform-specific installation scripts that automate environment setup and depen-
dency installation, assuming Python 3.11 is pre-installed.

e A standalone Windows executable that enables a simple double-click-to-run expe-
rience without requiring Python or manual dependency management.

In addition, a user guide is included to provide step-by-step instructions from installation
through operation. The guide features annotated screenshots to assist users who may be
unfamiliar with technical details.

4.4 Input Handling

The toolbox accepts both .xlsx files, as outlined by [FRI], and .parquet files, which the
toolbox uses to store previously generated embeddings. A graphical file dialog is provided
to allow users to select a file from their local system. Once loaded, the file is parsed using
the pandas library pandas| [2025]. Its used due to its widespread use in data science
applications and support for Excel input. The toolbox then prompts the user to select
one column containing the open-ended responses to be analyzed.

22

4.5 Model Configuration

Following successful file and column selection the toolbox prompts users to configure the
embedding and language models used throughout the semantic clustering process. The
model configuration is presented through a dropdown menu. Users are able to choose
between supported providers (OpenAl and Google) for both embedding and cluster sen-
timent analysis tasks. Providers and models are selected by the criteria discussed in
Section and Section API key management is handled via a dedicated dialog
accessible from the interface.

During development, an additional input field was considered to allow users to switch
between model variants offered by the supported providers. This feature would have
enabled users to choose between different models based on dataset size or desired embed-
ding quality. However, to avoid overwhelming non-technical users unfamiliar with the
distinctions between models, it was decided not to implement this option. This design
choice prioritizes a ease of use over advanced customization.

4.6 Embedding Generation

Once the text column is selected and model configuration is complete, the toolbox
prompts the user to begin the embedding phase, in which each response is converted
into a numerical vector representation using the selected model providers external API.
For a brief explanation of embeddings, refer to Section [2.4.2]

The resulting vectors are stored in memory within a pandas DataFrame. This temporary
representation is automatically cleared if the user changes the input column, uploads a
new file, or initiates a new embedding process. To support reuse and avoid redundant
API calls users are prompted to save the generated embeddings to a local .parquet file.
This format was chosen for its fast serialization performance.

Before executing embedding requests, the toolbox presents a cost estimation dialog that
displays the estimated token usage and expected API costs based on the current dataset
and selected model. This allows users to stay informed about their spending and prevents
accidental high-cost operations.

Since embedding involves potentially long-running API requests, this is one of the pro-
cesses that are executed asynchronously. Users are notified of the progress through a
progress bar while error handling ensures that API-related issues such as connectivity
failures are caught and reported within the interface.

4.7 Clustering Algorithm

In line with functional requirement [FR3] the toolbox clusters the embedded survey re-
sponses using the K-means algorithm. The algorithm itself was previously described in

Section 2.4.4
Users initiate clustering by specifying the desired number of clusters k£ and selecting

any of the visualization options. To support the selection of £ the toolbox includes an
elbow plot that visualizes how the within-cluster variance changes across a range of k

23

values, helping identify the point where increasing k yields minimal improvement. Ad-
ditionally the toolbox integrates an extended variant of K-means known as X-means
Pelleg et al.| [2000], which automatically estimates a suitable value for k by optimizing
the Bayesian Information Criterion. This suggested cluster count is presented to users as
guidance for those less familiar with tuning clustering parameters for a complex dataset.

4.8 Cluster Visualization

To support interpretability of the clustering results and fulfill functional requirements
and the toolbox provides multiple visualization options that allow users to
explore both the quality and stability of clustering outcomes.

Three types of plots are integrated into the design:

Scatter Plot : This plot presents the clustered embeddings projected into two di-
mensions using a dimensionality reduction technique called t-SNE [Van der Maaten and|
. By preserving local relationships from the high-dimensional space t-SNE
allows K-means clusters to appear as distinct groups in a two dimensional illustration.
Transparency is used to encode the stability of cluster assignments across multiple runs
which helps users identify data points with uncertain or inconsistent clustering.

Bar Plot : The bar chart represents each data point’s membership proportions across
clusters over multiple clustering runs. Data points are grouped by their most frequent
cluster assignment which illustrates the overall stability of clusters and potential overlaps
between semantically similar groups.

Silhouette Plot : Illustrates the silhouette coefficient for each data point, reflecting
how similar it is to its own cluster compared to the nearest neighboring cluster. This plot
allows users to assess the tightness and separation of clusters Rousseeuw] [1987].

These visualizations render the clustering results interpretable to human users and sup-
port the evaluation of both cluster quality and stability

Silhouette plot
T

Stacked Bar Chart of Cluster Membership Proportions
Scatter Plot of Clustered Data 10 a P Prop

Cluster label

T T T T T T
Cluster 1 Cluster 2 -08 -06 -04 -02 00 02 04 08
60 40 20 0 0) &0 a0 Datapoints, Grouped by Cluster Silhouette coefficient values

(a) Scatter Plot (b) Bar Plot (c) Silhouette Plot

Figure 5: Illustrative examples of the visualizations included in the toolbox.

These visualizations are shown here in simplified form to illustrate the intended design.
Full-size versions and detailed explanations are provided in Section [5.5

24

4.9 Sentiment Interpretation

To provide additional interpretability of the clustered survey responses, the toolbox in-
cludes an optional sentiment analysis step. Rather than evaluating sentiment at the
level of individual responses, the system estimates sentiment on a cluster level based on
the content of the cluster. This design decision further supports the goal of forming se-
mantically meaningful groupings with summaries as defined by

Each cluster is interpreted using an external language model that infers the overall
sentiment expressed across the clusters responses. The resulting sentiment is displayed
alongside each cluster in the export, allowing users to quickly identify a clusters approx-
imate sentiment.

As mentioned by the IFSAR researcher in the MVP demonstration interview (see ap-
pendix [B)), this functionality significantly increases the toolboxes usability and marks
another step in the relevance cycle.

4.10 Result Export

To support analysis and reporting the toolbox includes functionality for exporting the
clustering results as specified in Users can export the final results to a structured
Excel file containing the following information per data point:

e The original survey response.

e The assigned cluster label.

e The confidence of the assignment across multiple runs.

e The sentiment associated with the cluster (if sentiment analysis is enabled).

These outputs provide a human-readable summary of the clustering results that can be
integrated into existing analysis workflows. This export capability was deemed as an im-
portant feature by the ISFAR researcher during requirement gathering and contributes
to the utility and usability of the designed artifact.

4.11 Model Selection Rationale

The toolbox currently supports using models from OpenAl and Google. They were
selected based on embedding quality, pricing, and API availability.

Embedding Models

This section outlines the main embedding models considered and explains the rationale
for their inclusion.

OpenAl: OpenAl’s embedding models have been shown to work effectively with cluster-
ing methods such as K-means [Petukhova et al.|[|2025]. In January 2024, OpenAl released
the text-embedding-3 series (OpenAll [2024] which significantly outperforms the ada-002

25

model used by Petukhova et al.|[2025]. This series includes two variants: text-embedding-
3-small and text-embedding-3-large. According to the MTEB benchmark [Enevoldsen
et al. [2025], the large model offers slightly better performance but incurs a roughly
sixfold increase in token cost. Given that survey responses are typically short and em-
bedding quality is critical for semantic clustering, text-embedding-3-large was chosen as
the default model.

Google: At the time of this research, Google’s text-embedding-004 model Lee et al.|[2024]
was ranked at the top of the MTEB leaderboard. In March 2025, it was superseded by the
experimental gemini-embedding-exp-03-07 (also referred to as gemini-embedding-001) Lee
et al. [2025]. Despite its strong performance the new model remains in a experimental
phase and is subject to restrictive rate limits |Google [2024], making it unsuitable until
the full release. The toolbox therefore defaults to text-embedding-004 with a transition
to gemini-embedding-001 recommended once it exits the experimental stage. Notably
text-embedding-004 is scheduled for deprecation in November 2025 Google| [2025¢].

Language Models

For the sentiment analysis descibed in and by [FR6| the toolbox utilizes large lan-
guage models (LLMs) from the same providers as the embedding models to simplify user
experience by avoiding multiple API keys.

OpenAl: As of April 2025, OpenAl's GPT-4.1 series represents the latest generation
of models. The toolbox defaults to the gpt-4.1-mini variant which balances high-quality
language understanding with significantly improved response speed and lower costs com-
pared to the full gpt-4.1 model OpenAl [2025a]. This choice aligns with the design goal
of delivering timely insights while maintaining cost efficiency for practical deployment.

Google: Google’s Gemini 2.5 series is a recent advancement in language models (Google
[2025a], with the gemini-2.5-flash model currently in limited preview since May 2025
Google|[2025b]. Due to its experimental status and usage restrictions the toolbox presently
utilizes the stable gemini-2.0-flash model. This choice ensures reliability during the re-
search phase with an recommended update to the latest model upon full release.

This model selection approach supports the overarching DSR. principles of relevance and
rigor by balancing state-of-the-art capabilities with practical constraints such as cost.

26

5 Implementation

This chapter details the practical realization of the semantic clustering toolbox intro-
duced in the design chapter. Building on the architectural and functional specifications
previously outlined, the concrete technologies used to implement the toolbox are now
described. The implementation follows the three-layered structure defined during design:

e User Interface: A graphical interface built to support non-technical users in con-
figuring inputs, initiating processing, and reviewing clustering results.

e Processing Logic: The core backend workflow responsible for transforming raw
survey data into meaningful clusters, leveraging NLP libraries and clustering algo-
rithms.

e External APIs: An abstraction layer that integrates language and embedding
models from third-party providers, ensuring modularity and ease of future exten-
sion.

The following sections present the technology stack, describe the implementation of each
core component, and discuss deployment considerations.

5.1 Technology Stack

The semantic clustering toolbox is implemented in Python, fulfilling the non-functional
requirement that specifies Python as the development language.
The primary technologies and libraries used in the implementation include:

e Python 3.11: The release of Python used during the development.
e PySide6: A Python binding of the Qt toolkit used to build the GUI.
e Pandas: Used for data import preprocessing and manipulation of survey responses.

e NumPy: Provides support for numerical operations and array handling during
data processing and algorithm implementation.

e Scikit-learn: Supplies the used implementation of the K-means clustering algo-
rithms, along with evaluation metrics like silhouette scores.

e Matplotlib: Used for data visualization like plotting cluster distributions that are
displayed within the GUI.

e OpenAl and Google Generative ATl APIs: Accessed via respective Python
client libraries to obtain language model embeddings and other NLP functionalities.

Additional tools such as tiktoken for token management, dotenv for environment config-
uration, and Pylnstaller for packaging are discussed in their respective sections.

Together these technologies fulfill the toolbox’s requirements for data processing, user-
friendly interaction, and integration with external services.

27

5.2 Implementation of Core Components

This section presents the detailed implementation of the semantic clustering toolbox’s
core components, following the architectural structure defined in Section of the design
chapter.

The implementation is divided into three main parts:

e User Interface, which facilitates interaction for non-technical users.
e Processing Logic, which manages data transformation and clustering.

e External API Integration, which handles communication with language and
embedding models.

Each part is discussed in detail below, describing the implementation of the design.

5.2.1 User Interface

The GUI of the semantic clustering toolbox is designed to provide a simple and intuitive
experience for non-technical users. It is implemented using the PySide6 framework as
outlined in Section (4.2l

The interface includes file selection dialogs, parameter input fields, progress indicators,
and a result visualization panel. These components guide users through the workflow
described in Chapter [f] without requiring programming knowledge.

87 Semantic Clustering v1.0 - [m] e
1
Upload File | Select the text column: 2 v

Select a Model: ChatGPT | |Generate Embeddings 3 10 Configure API keys

Number of Clusters: |2 4 :’ Generate Elbow Plot

6 Scatter Plot Bar Plot Silhouette Plot

8 Approximate Cluster Meaning
Welcome! Upload a file to start. 7
9 Export Reset

Figure 6: Screenshot of the semantic clustering toolbox graphical user interface.

Figure [6] illustrates the main window of the toolbox, showcasing the important elements:

1. File Selection Dialog: Allows users to browse and select input survey files in the
supported formats.

28

9.
10.

. Column Selector Dropdown: Enables the user to choose the specific column

containing open-ended survey responses for analysis.

Model Provider Selection: Allows users to choose the model provider (discussed
in Section {4.5)).

Clustering Parameters Panel: Users can configure the number of clusters k£ and
display the elbow plot, as described in Section [£.7]

Results Visualization Area: Displays the different supported plots.

. Visualization Creation Buttons: Generates the respective visualizations de-

scribed in Section 4.8

Status Message and Progress Bar: Displays status messages to guide the user
and provides real-time feedback during asynchronous operations.

. Sentiment Analysis Button: Starts the sentiment analysis process.

Export Button: Enables saving the clustering results to external files.

API Key Dialog: Opens the API key dialog.

API Key Dialog

This dialog, presented in Figure [7, provides a dropdown to select the provider, a input
field for entering the corresponding API key, and buttons to add or remove stored keys.
API keys are saved locally as environment files within an API_keys directory which
enables persistent authentication across sessions. To avoid accidental user errors the
interface validates key content (e.g. ASClI-only), confirms overwrites and displays error
messages for any issues encountered during saving or deletion.

" Configure API Key X
Select Model:
ChatGPT v
API Key:
Add Remove

Figure 7: Screenshot of the API Key Dialog interface.

5.2.2 Processing Logic

This subsection details the core internal workflow of the semantic clustering toolbox,
covering the steps from raw data preprocessing to clustering and sentiment analysis.

29

The internal architecture supporting this workflow is illustrated in the UML class di-
agram shown in Figure [§ which depicts the main classes such as the main application
class and worker classes that handle asynchronous tasks.

Semantic_Clustering_APP
APIKeyDialog : QDialog - Ul Widgets «enumeration»

add_key() - embedding_df: pandas df ModelType
remove_key() 1 |-text_df: pandas df ChatGPT

- run_worker() Gemini

- update_ui()

- save or load data()

1
1
BaseWorker : QObject

«signal» progress(object)

«signal» result(object)

«signal» finished()

«signal» error(str)

ClusterWorker EmbeddingWorker SentimentWorker PlotWorker
- embeddings_df: pandas df - text_df: pandas df - text_df: pandas df - plot_type: str
- n_clusters: int - model_name: str - model_name: str - data: dict
+ run() +run() - max_tokens: int - extra: dict
+ run() «override» «signal» result(object, object, str)
+ run()

Figure 8: UML Class Diagram

The subsequent sections describe these components in context as the processing pipeline
progresses.

Asynchronous Execution

To prevent the GUI from freezing during long-running operations, the toolbox executes
these tasks asynchronously using worker classes built on PySide6’s QThread. All work-
ers, except the ClusterWorker, report progress to the GUI which enables the use of a
progress bar to inform users about the task completion status.

Four specialized worker classes handle computationally intensive or API-related tasks:
¢ EmbeddingWorker — Handles embedding API calls.
e ClusterWorker — Performs the clustering process.
e SentimentWorker — Executes semantic analysis APT calls.
e PlotWorker — Generates the requested visualizations.

The main application class, Semantic_Clustering_ APP, temporarily disables the GUI
functions during asynchronous operations to prevent conflicting interactions.

30

Preprocessing

To prepare this data for semantic processing the following preprocessing steps are applied:
e Rows with missing values or empty strings in the selected column are removed.
e All remaining entries are cast to string format.

To prevent errors due to unclusterable input the system verifies that the selected column
contains more than one unique value. If this condition is not met the user is prompted
to select a different column.

Finally column names are normalized by replacing special characters and truncating the
name to a maximum of 40 characters. This ensures consistent and safe names for output
files and intermediate results.

Embedding Generation

The preprocessed textual responses are converted into vector embeddings using external
language models accessed through the OpenAl and Google Generative AI APIs. The
embedding generation process is executed asynchronously by the EmbeddingWorker
class (see Figure , this follows the procedure outlined in Section |4.6

To handle large datasets efficiently and reduce API usage costs, the system implements a
batching mechanism that splits the input texts into batches of 100 entries. These batches
are formatted as lists to comply with the API requirements.

Clustering

Once embeddings are generated, the toolbox applies the K-means clustering algorithm
to group semantically similar responses, fulfilling functional requirement [FR3] The clus-
tering process is executed asynchronously by the ClusterWorker class. The number of
clusters k can be set by the user or estimated automatically using the X-means method

described in Section [4.7l.

To assess the stability of the clustering results the algorithm is executed 100 times on the
same dataset with different random initializations. For the purpose of this chapter, each
of these executions is referred to as a single clustering run. This approach supports the
evaluation of cluster stability and independence from initialization, as outlined in [FR7]
Since cluster stability analysis is one of the main objective of this thesis, the specific
algorithm used for this evaluation is described separately in Section [5.3]

The toolbox utilizes the scikit-learn| [2025a] implementation of k-means with the following
parameters to ensure truly random centroid initializations:

e n_clusters — Specified by the toolbox user.
e init — Set to "random” for fully random initializations.
e n_init — Set to 1 to ensure only a single initialization per clustering run.

All other parameters use their default values.

31

Sentiment Analysis

As described in the toolbox performs sentiment analysis on survey responses us-
ing language models accessible through external APIs. This process is managed asyn-
chronously by the Sentiment Worker class, and was previously outlined in Section 4.9

The SentimentWorker aggregates texts within each cluster into a newline-separated
string, adding entries iteratively until reaching a maximum token limit (default: 3000 to-
kens). The semantic analysis leverages a zero-shot learning approach, where the model is
given only instructions on the task without any labeled examples. This approach avoids
introducing bias from predefined example data. The exact prompt template used for this
analysis is detailed in Section [C] of the appendix.

Error Handling

Error handling mechanisms are implemented throughout the processing pipeline. Invalid
inputs, API failures, and unexpected conditions trigger error messages that are displayed
within the GUL

5.2.3 External API Abstraction

The toolbox interfaces with two external API providers: OpenAl and Google Generative
AT Tt uses the official OpenAl [2025b] Python library to access OpenAl’s embedding and
chat completion endpoints, and the official (Google APIs [2025] GenAl Python library
to interact with Google Gemini’s embed_content and generate_content endpoints. These
APIs are used in two stages of the processing pipeline:

1. generating vector embeddings from raw input texts.
2. producing semantic summaries or sentiment labels for clustered data.

Further details on these processes are provided in Section [5.2.2]

Custom Model Providers

Throughout the toolbox, models are referenced exclusively via the ModelType enum.
This abstraction allows for the integration of new language or embedding models through
a simple two-step process:

1. Inclusion of the new model identifier within the ModelType enum.

2. Implementation of the corresponding embedding or semantic analysis function, fol-
lowing the specifications or templates provided in the model_api_clients.py file.

Each custom function is linked to the appropriate model using decorators which auto-
matically register them in two internal dictionaries: one for embedding functions and
another for semantic analysis functions. This implementation decouples the core logic
of the toolbox from model-specific details, ensures it does not need to be altered when
adding custom models.

32

5.3 Cluster Stability Analysis

An essential goal of this project, as outlined in [FR7] is to make clustering stability both
measurable and visually interpretable by evaluating how consistent the K-means results
are across multiple runs with different initializations. The project assignment by [Todtli
[2025] defined it as:

"The goal of this research is to make the concepts of “stability” and the “independence of
clusters from the clustering initialization” tangible and to develop a quantitative measure
that captures this stability”.

5.3.1 Cluster Matching Challenge

A considerable challenge in evaluating clustering stability is identifying corresponding
clusters across different clustering runs. Figure [9] illustrates this issue using a simplified
example: two sets of clustered datapoints, each produced by a separate clustering run.
Although the cluster labels differ between clustering A and clustering B, an observer
can easily see that the red cluster in clustering A corresponds to the blue cluster in
clustering B. In practice datasets are rarely this clear-cut. Real-world data often contains
overlapping or ambiguous cluster boundaries, and individual datapoints may be assigned
to different clusters across runs. Under such conditions identifying stable, corresponding
clusters becomes substantially more complex.

Clustered Data with Mixed Colors Clustered Data with Mixed Colors
2 [] Clusters 2 L] _ Clusters
«® o @ Clusterl «® % o ® Clusterl
[® Cluster2 @' ® Cluster2
?h& ._ . ® Cluster3 ._#hs : » ® Cluster3
o . -.“.-:.i— L] 01 g -.“.:.‘— L]
[] L]
- -2
= -4 ® o = —4 $ o
selle o sslle o
L] []
" °3qAeh " 2 ‘34-'!’ (9
. . - or'v ']
- * @ .
-8 ¢ -8 ¢ - - . _
o0 2 tupe 0
n“.-ﬁ\
-10 -10 Wb . 0
s B8y
B -4 -2 0 2 -6 —4 -2 0 2
x x
Clustering A Clustering B

Figure 9: Comparing two clusterings

5.3.2 Cluster matching Algorithm

To address this issue, a sequence-based algorithm is used. This algorithm builds on the
assumption that corresponding clusters do exist across runs, and therefore does not per-
form well when the underlying data does not support a meaningful clustering structure,
for example in cases where the datapoints form a network in which each point has ap-
proximately equal distance to all its neighbors.

The core idea is that if stable, corresponding clusters exist, then there must be data-
points near the center of each cluster that consistently remain grouped together across
clustering runs. The greater the number of such consistently co-assigned datapoints, the
more stable the cluster is considered to be.

33

In the context of this section, a sequence refers to the ordered list of cluster assign-
ments that a single datapoint receives across multiple clustering runs. For example, if a
datapoint is assigned to cluster 2 in the first run, cluster 3 in the second, and cluster 2
again in the third, its sequence would be [2, 3, 2]. The algorithm collects these sequences
from all datapoints and counts how frequently each unique sequence occurs. The most
common sequences indicate groups of datapoints that consistently cluster together across
runs, revealing stable and corresponding clusters.

The algorithm proceeds by reassigning cluster labels based on the k& most frequent as-
signment sequences, where k is the total number of clusters. It assigns the label 0 to the
cluster corresponding to the most frequent sequence, label 1 to the second most frequent,
and so on. Next, it iterates through these frequent sequences in order. For each sequence,
if a label at any run index r is greater than the assigned label for that sequence, the
algorithm performs a simultaneous replacement of all occurrences of the larger label with
the assigned label in both the cluster results and the sequence matrix, for that run. If
the label at run r is smaller than or equal to the assigned label, no action is needed.
This means the label was either already correctly reassigned in an earlier step or is al-
ready correct. A pseudo-code implementation of the relabeling algorithm is depicted in
Algorithm [1}

34

Notation:
e N: number of datapoints
e R: number of clustering runs

k: number of clusters

C € NY*!: cluster assignments for each datapoint across R runs

S e NSXR: k most frequent cluster assignment sequences across R runs
e i: new cluster label (0 <17 < k)
e 7: run index (column index of C' and S), (0 <r < R)

e s: sequence index (row index of S), (0 < s < k)

Algorithm 1 Cluster Matching via Frequently Assigned Sequences

Require: C' € NV*E cluster results > N datapoints clustered over R runs
Require: S € N¥*® frequency ordered sequences > k& most frequent sequences across R
Ensure: Labels in C' are relabeled for consistency across different run

1: =20

2: for each s in S do

3: for each run r in s do

4 if i < S, then

5 Simultaneously replace © — S, and Sy — @ in row r of C
6: Simultaneously replace ¢ — S, and Sy — 4 in row r of .S
7 end if

8 end for

9: 1 +=1

10: end for

11: return updated C'

Result: Cluster labels in C' are relabeled so that corresponding clusters are assigned the
same label across all runs.
Section [F]in the Appendix presents a small example illustrating the algorithm.

5.3.3 Cluster Assignment

Each datapoint is assigned to the cluster it was most frequently associated with across
all clustering runs. This approach can result in some clusters not being assigned any
datapoints, as no datapoint had that cluster as its most frequent assignment. As a
result, the final output may contain fewer than the original k clusters, although all k
clusters will still appear in the percentage breakdown.

35

5.3.4 Cluster Stability

Cluster stability measures the consistency of cluster assignments across multiple runs
of the clustering algorithm. It provides insight into how reliably datapoints belong to
the same cluster, helping to identify stable, well-defined groups versus ambiguous or
overlapping ones. By quantifying stability, users can better interpret the robustness of
the clustering results and prioritize clusters or datapoints for further analysis.

stability = M x (1 Cax i 1)

kE—1
Here, M represents the main cluster percentage, which is the proportion of clustering
runs in which a datapoint was assigned to its most frequent cluster. d denotes the number
of distinct clusters the datapoint was assigned to, k is the total number of clusters, and «
is a weighting parameter between 0 and 1 that controls the penalty for being assigned to
multiple different clusters. By default the toolbox uses a = 0.2 to avoid over-penalizing
such cases.

The stability of each cluster is then quantified as the average stability of its assigned
datapoints, reflecting how consistently those datapoints were grouped together across
runs.

5.4 Packaging and Installation

To facilitate user setup, two installation methods were implemented:

e Platform-specific installation scripts automate the environment setup and de-
pendency installation. These scripts assume Python 3.11 is pre-installed and handle
all necessary configuration steps.

e Standalone Windows executable, created using Pylnstaller Cortesi| [2025] to
provide a simple double-click-to-run experience. This executable bundles the appli-
cation along with all required dependencies, eliminating the need for users to install
Python or manually manage dependencies.

The source code and installation scripts are available on GitLab at https://gitlab.
ost.ch/lukas.derungs/ba

36

https://gitlab.ost.ch/lukas.derungs/ba
https://gitlab.ost.ch/lukas.derungs/ba

5.5 Visualization

As previously described in Section the toolbox generates three different plot types for
the evaluation of clustering results. These were implemented using Python’s matplotlib
and scikit-learn libraries.

Scatter Plot

Clustered data points are projected into two dimensions using the scikit-learn implemen-
tation of t-SNE. The plot colors points by their most frequent cluster assignment and
uses transparency to encode stability: Points consistently assigned to the same cluster
across multiple runs are more opaque, while less stable points are more transparent. This
visualization helps identify cluster structure and unstable or ambiguous datapoints.
Figure [10] shows a scatter plot generated by the toolbox.

Clusters 1 through 6 exhibit relative stability which is indicated by many opaque points,
while clusters 7 through 14 are all mixed with mostly transparent datapoints indicating
instability and possibly simmilar topics.

Scatter Plot of Clustered Data

% ° H Cluster 1
3 (fa ® B Cluster 2
g] . B Cluster 3
3 L [Cluster 4
"~ ‘. 3 Cluster 5
g@ o) & == Cluster &
=] O.C' 3 Cluster 7
‘j o ‘o. [Cluster 8
[] s ‘ [Cluster 9
L o aBa [Cluster 10
_ i) L] = Cluster 11
= H o L] B Cluster 12
5 Pod B Cluster 13
W] 13 B Cluster 14
s
Rl []
[]

Figure 10: Example of a scatter plot visualizing cluster assignments.

37

Stacked Bar Plot

This visualization shows each datapoint’s cluster membership proportions across multiple
clustering runs using stacked bars. The Y-axis indicates the percentage of runs in which
a datapoint was assigned to each cluster. Along the X-axis, datapoints are grouped
by their most frequent cluster assignment and sorted within each group based on how
consistently they belonged to that cluster. This plot displays the stability of cluster as-
signments and reveals overlapping clusters.

Figure [11| shows a bar plot generated by the toolbox.

Cluster 1 appears stable, with all its datapoints assigned to it in almost 100% of runs.
Clusters 2 and 3 show a stable core, but also include datapoints that were assigned to
other clusters frequently.

Cluster 4 shows substantial overlap with Cluster 2, as its datapoints were assigned to
Cluster 2 in approximately 40%

Cluster 5 seems to be mostly stable with overlaps with clusters 2 and 4.

Cluster 6 appears very unstable, all of the datapoints assigned to it only belonged to
cluster 6 in about 35% to 40% of runs.

- Stacked Bar Chart of Cluster Membership Proportions

09 A
08 A
07 A

Hm Cluster 1
= Cluster 2
3 Cluster 3
[Cluster 4
mmm Cluster 5
B Cluster &

06 A

05 A

Proportion of runs

04 4

034

02 A

014

0o -

s et 2 et ®
W d\\"‘c\o""

Figure 11: Cluster stability plot.

38

Silhouette Plot

The silhouette coefficient is computed for each datapoint to assess cluster cohesion and
separation. The silhouette scores are calculated using scikit-learn’s silhouette_samples
and silhouette_score functions. Bars representing scores are grouped and colored by clus-
ter, with the average silhouette score indicated by a red vertical line. This plot visually
conveys cluster quality.

Figure [12| shows a silhouette plot generated by the toolbox.
In this example all clusters contain a few data points with negative silhouette scores which

indicates that these points are closer to the centroids of other clusters than to their own.

Silhouette plot

I Cluster 1
= Cluster 2
3 Cluster 3
== Cluster 4
B Cluster 5

Cluster label

08 -06 -04 -02 00 02
Silhouette coefficient values

Figure 12: Example of a silhouette plot visualizing cluster quality.

All plots use consistent color schemes and labeling enabling intuitive comparison across
the different visualizations.

39

6 Evaluation

This chapter evaluates the semantic clustering toolbox developed in this thesis. Follow-
ing the DSR methodology outlined in Section [3.3] the artifact is assessed through both
technical metrics and user-centered validation. The evaluation includes a requirement
validation based on authentic survey data and aims to measure the artifact’s real-world
usability.

6.1 Evaluation Setup

The evaluation was designed to assess the toolbox’s technical performance and usability.
This follows the DSR framework by incorporating both the rigor and relevance cycles.
Evaluation Objectives

The main objectives were:
e To assess the clustering quality and interpretability of the generated results.

e To validate the usability and workflow of the toolbox for non-technical users.

Dataset

A real-world dataset of open-ended survey responses provided by IFSAR was used for
testing. The dataset consists of 1600 anonymized responses related to various topics and
reflects a realistic usage scenario.

Methods

The evaluation employed the following methods:

e Clustering quality: Evaluated using internal metrics such as silhouette score and
cluster stability.

e User validation: Conducted through an interview and demo session focusing on
usability and interpretability.

e Requirement validation: A full end-to-end workflow was tested using the pro-
vided survey data to simulate real-world use.

6.2 Clustering Quality Assessment

To evaluate how effectively the toolbox identifies meaningful groupings in textual data,
two internal clustering metrics were used: silhouette score Rousseeuw| [1987] and cluster
stability. While these metrics do not establish correctness in an unsupervised setting,
they serve as established indicators of clustering quality and help determine whether the
artifact produces interpretable, semantically coherent clusters. This assessment aligns
with the rigor cycle of DSR by grounding evaluation in quantitative methods.

The silhouette scores ranged between 0.1 and 0.4 depending on the number of clusters,

40

with higher values generally observed for lower k. These scores suggest low to moder-
ate tightness and separation among clusters. Cluster stability was assessed by running
the K-means algorithm 100 times with different random initializations, as described in
Section The stability analysis revealed that a few larger clusters exhibited high
stability (average stability above 0.75) which indicating consistent structure. However
most clusters showed low average stability (many below 0.2) which suggests that their
boundaries are less robust.

These results suggest that frequently mentioned topics tend to form larger, more sta-
ble clusters which makes them easily recognizable across runs. In contrast less commonly
expressed sentiments are distributed among smaller, less stable clusters. This indicates
that the toolbox is especially effective at highlighting dominant themes while still offering
a degree of structure for analyzing more nuanced or minority perspectives.

6.3 User Validation

User validation was conducted through two semi-structured interviews with a researcher
from IFSAR, one during the requirements gathering phase (see Section and another
after the MVP was implemented. These interactions were essential for aligning the ar-
tifact with real user needs, evaluating its practical usability and ensuring the artifact

fulfills NFRIL

Feedback After MVP Demonstration

In a follow-up meeting the MVP was demonstrated to the same researcher | The user
confirmed that the core functionality (including file upload, clustering and export fea-
tures) met expectations and addressed the primary use case of analyzing open-ended
survey responses.

Some areas for improvements were also identified:

e Sentiment analysis: The researcher expressed strong interest in leveraging a
language model to provide sentiment information for each cluster. The researcher
noted that this feature would substantially increase the artifacts usefulness and help
with future analysis of the exported results.

e Column selection: Manual selection of the relevant column for clustering was
requested as most of their surveys are stored in multi-column Excel files.

This feedback provided valuable input for refining the artifact in subsequent iterations
and confirmed that the MVP fulfilled the primary workflow needs of its intended users.

2A paraphrased summary of the interview is provided in Appendix

41

6.4

Requirement Validation

The requirement validation outlined in Section [3.3| tested the semantic clustering toolbox
against the functional requirements defined in Section [3.2] The following summarizes
how each requirement was met using the IFSAR survey dataset.

This

FR1 - Upload files: The toolbox successfully imported the 1600 survey responses
from an Excel file.

FR2 - Generate embeddings: Text responses were transformed into embeddings
using the chosen model.

FR3 - Cluster embeddings: K-means clustering was applied successfully.
FR4 - Export results: Clustering outcomes were exported to an Excel file.
FRS5 - Visualize clusters: Visualizations were able to be generated.

FR6 - Sentiment analysis: The integrated language model provided sentiment
estimations for clusters.

FR7 - Cluster stability: Multiple runs confirmed cluster stability.

evaluation confirmed the artifact’s compliance with the core functional require-

ments, demonstrating its practical readiness for real-world use. An interpretation of the
clustering results of the requirement validation can be found in Section

42

7 Discussion and Reflection

This chapter provides a discussion and reflection on the findings from the evaluation of
the semantic clustering toolbox and the development process. Building on the results
and user feedback presented in the previous chapter, it interprets the significance of these
outcomes and their implications for the project’s objectives.

Furthermore, it addresses the limitations encountered during the study and outlines op-
portunities for future improvements. Through this reflective analysis, the chapter aims to
provide an understanding of the project’s contributions, challenges, and potential future
directions.

7.1 Interpretation of Evaluation Results

The evaluation results indicate that the semantic clustering toolbox fulfills its intended
purpose of supporting the analysis of open-ended survey responses. While the silhouette
scores suggest only moderate cluster quality, the system proved effective in identifying
dominant themes within the dataset. This can be seen in the results of the case-study.
The generated clusters were considered largely meaningful and often shared a consistent
sentiment. However there were also responses that did not fit the topic of the cluster that
they were assigned. This typically occurred when the response in question got assigned
to two clusters the same amount of times or when it contained spelling errors or off-topic
statements that didnt seek to anwser the survey question. Further it is important to ac-
knowledge that, in the absence of ground truth labels, the correctness of these groupings
remains subjective and open to interpretation.

As no additional feedback from IFSAR on the final toolbox version was received by
the time of writing, it is not possible to conclusively evaluate whether the user interface
satisfies However, given that only minor GUI changes were made since the MVP
demonstration, and that the interface was previously well-received, it can be reasonably
assumed that the system remains intuitive and usable in a real-world setting. Moreover,
non-IFSAR users have tested the toolbox and were able to use it effectively with the
provided documentation (see Appendix , providing informal validation of its usability.

Taken together, these findings suggest that the toolbox is well-suited for identifying over-
arching patterns in survey responses while still offering a degree of structure for less
common or nuanced sentiments. This aligns with the artifact’s intended role of support-
ing exploratory analysis, even if the precision of individual assignments is not always
perfect.

7.2 Limitations

While the evaluation demonstrated the toolbox’s practical utility, several limitations be-
came apparent during development and testing.

First, the clustering performance depends heavily on the quality of the input data. Re-
sponses that are off-topic, written in dialect, or contain spelling errors can reduce the
effectiveness of the embedding process and through that clustering accuracy. This was

43

evident in the requirement validation, where some datapoints were misclassified due to
off-topic input.

Second, the silhouette score provided only a limited view of clustering quality when large
values for k& were used. Even when the silhouette score suggested a poor clustering, the
exported result often appeared to form meaningful groupings upon manual inspection.
Without access to ground truth labels, it remains difficult to objectively assess whether
the clusters reflect meaningful groupings. This introduces a level of subjectivity that
cannot be fully avoided in unsupervised data analysis.

Third, the language model often failed to follow instructions during sentiment infer-
ence. It had a tendency to list topics instead of focusing solely on sentiment, even when
explicitly prompted not to do so. This behavior might be mitigated through the use of a
specially fine-tuned model or by applying more prompt engineering.

Another limitation relates to the handling of user interviews. While insights from the
IFSAR researcher were recorded in the form of paraphrased notes, no formal transcripts
were produced. A full transcription could provide a more traceable basis for evaluating
usability and impact.

These limitations show areas where the accuracy of the artifact could be further im-
proved.

7.3 Future Work

While the current version of the semantic clustering toolbox achieves its core goals, several
areas for future improvements have been noted during development and evaluation.

e Handling of input: The clustering quality is affected by responses that include
spelling mistakes, dialect, or irrelevant content. Future versions could incorporate
more thorough preprocessing, such as spell-checking or filtering of low-quality re-
sponses to improve embedding quality.

e Evaluation with labeled data: Due to the lack of ground truth the evalua-
tion remains largely subjective. Having a dataset that was correctly clustered by
a group of experts beforehand would enable an objective validation of clustering
performance.

e Performance optimization: For larger numbers the plotting of visualziation
and clustering can be time intensive which could be reduced with more efficient
implementations.

e Improved visualization: While the current visualizations effectively convey the
intended insights for smaller numbers of clusters k, larger values (greater than 20)
can lead to cluttered graphics. Future improvements could include interactable
visualizations or alternative methods that avoid displaying every single cluster to
maintain clarity.

e Advanced features: Many possible features were omitted in favour of ease of use.
Future versions could include an "advanced” mode that offers greater control for
experienced users (see appendix |G| for details).

44

e Export capabilities: Additional export options for the generated visualizations
could be implemented to support use cases where users wish to save visual results.

e Update Models: As mentioned in Section .11} the landscape of Embedding and
Language models evolves quickly, a new iteration should definitely include newer,
updated models.

These directions could offer promising future steps for extending the flexibility, perfor-
mance and usability of the toolbox in future iterations.

45

8 Summary

This thesis presented the design, development and evaluation of a semantic clustering
toolbox aimed at supporting non-technical users in analyzing open-ended survey re-
sponses. Motivated by the challenges of expediting a time-consuming data analysis task
in research settings, the project followed a Design Science Research methodology to it-
eratively build and assess a functional artifact. The toolbox integrates state-of-the-art
language and embedding models, the K-means clustering algorithm and dimensionality
reduction techniques into a user-friendly application featuring simple visualizations. Its
core functionalities — including file upload, semantic embedding, clustering, sentiment
analysis, visualization and export — were validated through a requirement validation us-
ing real survey data and user feedback. Evaluation results indicate that while subjective
interpretation remains a factor, the system successfully identifies major themes in survey
data and enables meaningful exploratory analysis. In addition, the evaluation of cluster
stability across multiple initializations showed that larger clusters representing dominant
topics tend to remain consistent, supporting confidence in the interpretability of the re-
sults. Several limitations were identified, such as sensitivity to input quality and the lack
of objective evaluation due to missing ground truth labels. These findings informed a set
of directions for future work, including improved preprocessing, more robust evaluation
methods, and support for advanced features.

Overall, the semantic clustering toolbox makes a practical contribution to the field of

semantic clustering of textual data by offering an accessible and extensible tool for ex-
ploring textual survey data, particularly for non-technical users.

46

References

Charu Aggarwal and Chengxiang Zhai. A survey of text clustering algorithms. Mining
Text Data, 08 2012. doi: 10.1007/978-1-4614-3223-4 4.

David Cortesi. Pyinstaller documentation, 2025. URL https://pyinstaller.org/en/
stable/. Accessed: 2025-06-01.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding, 2019. URL https:
//arxiv.org/abs/1810.04805.

Kenneth Enevoldsen, Isaac Chung, and et. al Imene Kerboua. Mmteb: Massive mul-
tilingual text embedding benchmark. arXw preprint arXiw:2502.13595, 2025. doi:
10.48550/arXiv.2502.13595. URL https://arxiv.org/abs/2502.13595.

Saeid Esmaeilzadeh, Marek Rei, and Sebastian G. Bosnjak. Providing automatic insights
into open-ended responses with semantic clustering. In Artificial Intelligence in Edu-
cation: 23rd International Conference, AIED 2022, Durham, UK, July 27-31, 2022,
Proceedings, Part I, pages 526-532. Springer International Publishing, 2022. ISBN
9783031116445. doi: 10.1007/978-3-031-11644-5. URL http://dx.doi.org/10.1007/
978-3-031-11644-5|

Google. Google embedding models, 2024. URL https://ai.google.dev/gemini-api/
docs/models#text-embedding. Accessed: 2025-06-01.

Google. Google gemini 2.5 announcement blog, 2025a. URL https://blog.google/
technology/google-deepmind/gemini-model-thinking-updates—-march-2025/
#gemini-2-5-thinking. Accessed: 2025-06-06.

Google. Google gemini 2.5 flash documentation, 2025b. URL https://cloud.google.
com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash. Accessed: 2025-
06-06.

Google. Google models retirement plan, 2025c. URL https://cloud.google.com/
vertex-ai/generative-ai/docs/learn/model-versions. Accessed: 2025-06-01.

Google APIs. Google apis github organization. https://github.com/googleapis/
python-genai, 2025. GitHub repository, accessed 2025-06-03.

Alan Hevner. A three cycle view of design science research. Scandinavian Journal of
Information Systems, 19, 01 2007.

Alan R Hevner, Salvatore T March, and et. al Park. Design science in information systems
research. MIS quarterly, 28(1):75-105, 2004.

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

Jinhyuk Lee, Zhuyun Dai, and et al. Xiaoqi Ren. Gecko: Versatile text embeddings dis-
tilled from large language models, 2024. URL https://arxiv.org/abs/2403.20327.

Jinhyuk Lee, Feiyang Chen, and et al. Sahil Dua. Gemini embedding: Generalizable
embeddings from gemini, 2025. URL https://arxiv.org/abs/2503.07891.

47

https://pyinstaller.org/en/stable/
https://pyinstaller.org/en/stable/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2502.13595
http://dx.doi.org/10.1007/978-3-031-11644-5
http://dx.doi.org/10.1007/978-3-031-11644-5
https://ai.google.dev/gemini-api/docs/models#text-embedding
https://ai.google.dev/gemini-api/docs/models#text-embedding
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/model-versions
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/model-versions
https://github.com/googleapis/python-genai
https://github.com/googleapis/python-genai
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2503.07891

Tauno Metsalu and Jaak Vilo. Clustvis: a web tool for visualizing clustering of mul-
tivariate data using principal component analysis and heatmap. Nucleic Acids Re-
search, 43(W1):W566-W570, 05 2015. ISSN 0305-1048. doi: 10.1093/nar/gkv468.
URL https://doi.org/10.1093/nar/gkv468.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

OpenAl. Openai release, 2024. URL |https://openai.com/index/
new-embedding-models-and-api-updates/. Accessed: 2025-06-01.

OpenAl. Openai platform - 4.1 index. https://openai.com/index/gpt-4-1/, 2025a.
Accessed: 2025-06-02.

OpenAl. openai-python: Openai python api library. https://github.com/openai/
openai-python, 2025b. GitHub repository, accessed 2025-06-03.

pandas. pandas library, 2025. URL https://pandas.pydata.org/. Accessed: 2025-06-
05.

Ajay Patel. Relationship ~ between cosine similarity and eu-
clidean distance, 2020. URL https://ajayp.app/posts/2020/05/
relationship-between-cosine-similarity-and-euclidean-distance/. Ac-

cessed: 2025-06-05.

Ashish Gupta Patil. Clustrlab2k13. https://github.com/code2k13/ClustrLab2k13,
2023. GitHub repository, Accessed: 2025-05-28.

Dan Pelleg, Andrew Moore, et al. X-means: Extending k-means with e cient estimation
of the number of clusters. In ICML’00, pages 727-734. Citeseer, 2000.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors
for word representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans,
editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.
org/D14-1162/.

Alina Petukhova, Joao P. Matos-Carvalho, and Nuno Fachada. Text clustering with
large language model embeddings. International Journal of Cognitive Computing
in Engineering, 6:100-108, 2025. ISSN 2666-3074. doi: https://doi.org/10.1016/
j-ijece.2024.11.004. URL https://www.sciencedirect.com/science/article/pii/
S52666307424000482.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks, 2019. URL https://arxiv.org/abs/1908.10084.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53-65, 1987.

scikit-learn. scikit kmeans reference, 2025a. URL https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.KMeans.html. Accessed: 2025-06-02.

48

https://doi.org/10.1093/nar/gkv468
https://arxiv.org/abs/1301.3781
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/gpt-4-1/
https://github.com/openai/openai-python
https://github.com/openai/openai-python
https://pandas.pydata.org/
https://ajayp.app/posts/2020/05/relationship-between-cosine-similarity-and-euclidean-distance/
https://ajayp.app/posts/2020/05/relationship-between-cosine-similarity-and-euclidean-distance/
https://github.com/code2k13/ClustrLab2k13
https://aclanthology.org/D14-1162/
https://aclanthology.org/D14-1162/
https://www.sciencedirect.com/science/article/pii/S2666307424000482
https://www.sciencedirect.com/science/article/pii/S2666307424000482
https://arxiv.org/abs/1908.10084
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

scikit-learn. scikit documentation, 2025b. URL https://scikit-learn.org/stable/
modules/clustering.html#k-means. Accessed: 2025-06-02.

Karen Sparck Jones. Experiments in semantic classification. Mechanical Translation
and Computational Linguistics, 8(1):1-10, 1965. URL https://mt-archive.net/
MT-1965-Sparck-Jones.pdfl

The Qt Company. Pyside6 documentation, 2025. URL https://doc.qt.io/
qtforpython/. Accessed: 2025-06-01.

Beat Todtli. Project assignment, 2025. see Apendix E, provided by OST.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Leandro von Werra and Lobna Ben Allal. text-clustering. https://github.com/
huggingface/text-clustering, 2024. Accessed: 2025-05-28.

49

https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://mt-archive.net/MT-1965-Sparck-Jones.pdf
https://mt-archive.net/MT-1965-Sparck-Jones.pdf
https://doc.qt.io/qtforpython/
https://doc.qt.io/qtforpython/
https://github.com/huggingface/text-clustering
https://github.com/huggingface/text-clustering

Appendices

A Paraphrased Interview Summary

This appendix provides a paraphrased summary of an interview conducted with a re-
searcher from IFSAR during the early project phase. The interview aimed to clarify
domain-specific challenges, user needs, and functional expectations for the semantic clus-
tering toolbox. While no formal transcript was recorded, the following points summarize
the requirements discussed:

e Problem Context: The researcher pointed out the recurring task of analyzing
open-ended survey responses.

e User Base: The tool should be usable by researchers with limited programming
experience.

e Core Features: The ability to upload survey data, generate semantic clusters,
and export results were considered core functionalities.

e Visualization: The inclusion of visualizations was considered important for as-
sessing the quality of clustering results.

e Data Format: Survey responses were typically stored in Excel files, establishing
this as the preferred input format.

This paraphrased summary serves as the basis for the functional and non-functional
requirements presented in Section [3.2]

B Paraphrased Feedback After MVP Demonstration

A follow-up meeting was held to demonstrate the MVP to the same IFSAR researcher.
The following points summarize the user’s reactions and suggestions:

e The user confirmed that the core functionality met expectations and expressed
confidence in its practical utility.

e There was strong interest in the integration of a language model for the analysis of
cluster sentiment.

e The ability to manually select the relevant column for clustering was identified as
a necessary improvement.

e [t was noted that some survey responses contained Swiss-German dialect, suggesting
a potential challenge for language models.

20

C Semantic Analysis Prompt

This section shows the prompt used to guide the language model in summarizing clus-
ters by extracting their shared meaning in a concise sentence, avoiding listing individual
details.

The prompt:

You will be shown a list of semantically similar text items. Your task is to distill the
shared meaning into a short sentence (ideally under 15 words) that captures the core
intent or unifying concept. Focus on why these items belong together, not what they
each individually discuss. Avoid listing examples or summarizing each item. Instead,
express the underlying motivation, value, or problem they collectively address.

cluster item A

cluster item B

cluster item C

cluster item D

cluster item E

What is the shared topic or meaning?

D Tools and Technologies Used

This table provides an overview of the main tools, libraries and technologies employed
throughout the project.

Tool Purpose of Use

Visual Studio Code Writing and managing the LaTeX document

Spyder 5.0.4 (Python | Developing and executing scripts

IDE)

ChatGPT Assistance with document structure, phrasing and
spelling

Python 3.11.1 Main programming language for implementation

PySide6 Python library used for developing the GUI

Pandas, Scikit-learn, | Python libraries for data processing, clustering, di-

Matplotlib mensionality reduction and plotting

OpenAl / Google | Generating semantic text embeddings and infer-

Generative APIs ring sentiment

Git Version control during development

Table 3: Tools and technologies used during the project

E Additional Documentation

The userguide, the installation instructions and the project assignment are provided on
the OST SharePoint: [SharePoint

51

https://ostch-my.sharepoint.com/:f:/g/personal/lukas_derungs_ost_ch/ErB8221KX1NMvbbc2-ymr5wBX5csBSUiN4LJz3pRRyz5PQ?e=FXWtJe

F Example of Cluster Label Algorithm

This section depics a small example of the custer label algorithm described in Sec-
tion [5.3.2

Algorithm 2 Cluster label algorithm for reference

Require: C' € NV*E cluster results > N datapoints clustered over R runs
Require: S € NE*® frequency ordered sequences > k& most frequent sequences across R
Ensure: Labels in C' are relabeled for consistency across different run

1: =20

2: for each s in S do

3: for each run r in s do

4 if i < S, then

5 Simultaneously replace ¢ — S, and Sy — @ in row r of C
6: Simultaneously replace ¢ — S, and Sy — 4 in row r of .S
7 end if

8 end for

9: 1 +=1
10: end for

11: return updated C'

Let the initial cluster result matrix C' and the top k = 3 most frequent sequences S be:

1201 2
201 20 1201 2
C=11 201 2 S=12 01 2 0
0120 2 0120 2
20110
i=0
s=0
r=20
Ser =1
i < Sgr, simultaneously replace labels Sy, (1) and 7 (0) in column r (0) across S and C"
1 o
S[I, T] — |9 replace 01 9
O _1_
1 o
2 2
Clr]= |1| ZEefel g
0 1
2 _2_

52

next iteration of r (r =1), S5, = 2
i < Sy, simultaneously replace labels Sy, (2) and 7 (0) in column 7 (1) across S and C"

2 0
S[:,1] = |o| IPRe2e0 iy
1 1

2 0
0 2
C[Z, 1] — |9 replace 20 0
1 1
0 2

next iteration of r (r = 2), Ss =0
i < Sgr, Ssr (0) and ¢ (0) are equal, no change in column r (2):

The next two iterations are the same to what we have already seen, so we will directly
look at the result after both of them.

iterations r (r = 3), Ss =1

iterations r (r = 4), S = 2

i < Sy, simultaneously replace labels Sy, and i in column r (3,4) across S and C
This results in these matrices after the first iteration of s:

(1 2 0 1 2] [0 0 0 0 O]
S22 0120 = 22122
01 2 0 2] 112 1 0]
[1 2 0 1 2] [0 0 0 0 O]
20120 2.2 1 2 2
cClt 2012 —- (00000
0120 2 11210
2 0 1 1 0] 2 2 1 0 2]

for the next iteration of s = 1:

1=1
s=1
r=20
Sy =2

Now we repeat the previous steps for each » = 0..4 but in row s = 1

1 < S, simultaneously replace labels S, = 2 and ¢ = 1 in column r = 0 across .S and C'
1 < S, simultaneously replace labels S, = 2 and ¢ = 1 in column r = 1 across .S and C'
1 < Sg, Se» =1 and 7 = 1 are equal, no change in column r = 2

1 < Sy, simultaneously replace labels Sy, = 2 and ¢ = 1 in column r = 3 across S and C'
1 < S, simultaneously replace labels S, = 2 and ¢ = 1 in column r = 4 across S and C'
This results in these matrices after the second iteration of s:

53

000O0®O 00 00O
221 2 2 11111
clioo00o00 — 000O0O
11210 222 20
2210 2 11101

in the last iteration of s = 2:
all S, are smaller than or equal to ¢ = 2, nothing changes.
This results in the final return Matrix C"

G

000O0O
11111
C=100 00 0
222 20
11101

Advanced Feature Outlook

As mentioned in Section [7.3], a future version of the toolbox could include an ”advanced
mode” that offers additional features for experienced users.
Below are a few potential features that could be included:

Custom Embedding Models: Allow selection of specific embedding models, such
as Sentence-BERT variants, additional external APIs, or even user-defined models,
to create a better semantic representation to the dataset.

Language Model Selection: Enable selection of language models for different
new tasks such as keyword extraction or summarization.

Choose Clustering Algorithm: Provide algorithms beyond K-means, such as
DBSCAN, HDBSCAN, or hierarchical clustering, to better accommodate varying
datasets.

Dimensionality Reduction selection: Support selection of dimensionality re-
duction techniques (e.g. PCA, t-SNE, UMAP) to better match the clustering ap-
proach and visualization requirements.

Parameter Fine-Tuning: Allow adjustment of algorithm parameters, such as the
number of runs, initialization methods, embedding batch size, or « in the stability
calculation.

More Export Options: Extend export functionality to include formats like
.JSON, .CSV or direct API integrations.

Interactive Filtering: Add the ability to filter the displayed datapoints based on
user-defined criteria, such as cluster membership, stability thresholds or sentiment.

54

	I List of Figures
	II List of Tables
	III List of Acronyms
	IV Glossary
	Introduction
	Motivation and Problem Statement
	Objective of the Thesis
	Research Questions

	Theoretical and Technical Foundations
	Design Science Research in Computer Science
	Fundamentals and State of the Art in Semantic Clustering
	Prior Work on Semantic Clustering of Survey Responses
	Technological Background
	Natural Language Processing
	Text Representation Using Embeddings
	Similarity Measures
	Clustering Algorithms
	Dimensionality Reduction

	Research Methodology and DSR Approach
	Design Science Research Cycle
	Requirements Analysis and Objective Definition
	Functional Requirements
	Non-Functional Requirements
	Project Scope

	Evaluation Methods

	Design of the Artifact
	System Architecture
	User Interface
	Accessibility
	Input Handling
	Model Configuration
	Embedding Generation
	Clustering Algorithm
	Cluster Visualization
	Sentiment Interpretation
	Result Export
	Model Selection Rationale

	Implementation
	Technology Stack
	Implementation of Core Components
	User Interface
	Processing Logic
	External API Abstraction

	Cluster Stability Analysis
	Cluster Matching Challenge
	Cluster matching Algorithm
	Cluster Assignment
	Cluster Stability

	Packaging and Installation
	Visualization

	Evaluation
	Evaluation Setup
	Clustering Quality Assessment
	User Validation
	Requirement Validation

	Discussion and Reflection
	Interpretation of Evaluation Results
	Limitations
	Future Work

	Summary
	Appendices
	Paraphrased Interview Summary
	Paraphrased Feedback After MVP Demonstration
	Semantic Analysis Prompt
	Tools and Technologies Used
	Additional Documentation
	Example of Cluster Label Algorithm
	Advanced Feature Outlook

