
Controlled Image Generation for Reflecting
Eating Habits in Virtual Avatars

Bachelor Thesis

Department of Computer Science

OST - University of Applied Sciences

Campus St. Gallen

Spring Term 2025

Authors: Aziz Hazeraj, Thashvar Uthayakumar
Advisors: Prof. Dr. Mitra Purandare, Prof. Dr. Christoph Gebhardt
Date: 13.06.2025

Abstract

This thesis explores the use of AI-based image generation to visualize potential physical
changes resulting from adherence to personalized meal plans provided by the Smart Eating
Platform. The central goal is to generate realistic image transformations that reflect antici-
pated changes in body composition, thereby enhancing user engagement and motivation.

To identify suitable image generation techniques, we conducted manual testing of sev-
eral models and selected two open-source methods, ControlNet and Null-text Inversion,
for deeper evaluation. Both were systematically assessed by generating several hundred
images using different combinations of input images, prompt templates, and parameters.
This evaluation led to the identification of an optimal parameter set for each model.

During the course of the project, OpenAI released the GPT-4o image generation model.
Although introduced too late for inclusion in the full evaluation pipeline, it was informally
tested and showed superior performance in both realism and fidelity to the original image.
As a result, GPT-4o was integrated into the final system alongside the two open-source
pipelines.

The full solution consists of a modular system architecture with a Python-based FastAPI
backend and a React.js frontend. The backend pipeline handles parameter validation, con-
verts meal plans into descriptive textual prompts (termed ”reflection in appearance”), and
generates corresponding images using the selected image model. The system supports
both OpenAI’s GPT-4o and Qwen3 as language backends, and allows users to select be-
tween the three image generation pipelines based on their preferences or technical con-
straints.

A user study with nine participants was conducted to evaluate image quality and prompt
adherence. GPT-4o emerged as the most reliable and well-rated model overall. ControlNet
outperformed Null-text Inversion in average ratings, although with greater variability. These
findings validate the decision to include multiple generation backends, providing both high-
fidelity results and privacy-conscious alternatives for local execution.

In summary, this thesis presents a flexible, user-configurable pipeline for meal plan–driven
image transformation, contributing a novel motivational tool to the Smart Eating Platform.

i

Management Summary

This thesis explores how AI-generated images can be used to visualize the physical effects
of personalized nutrition plans, as offered by the Smart Eating Platform. The goal was to
develop a visual feedback system that helps users stay motivated by showing them what
they might look like after following their selected meal plan.

To achieve this, we developed a prototype that lets users upload an image, select a meal
plan, and choose both a language model and an image generation model. The system
then generates a realistic image showing the potential physical transformation, based on
the selected inputs.

Three different AI image generation models were integrated: ControlNet, Null-text Inversion,
and OpenAI’s GPT-4o. Each model offers different advantages—such as realism, adherence
to instructions, or local execution, allowing users to select the option that best fits their needs
or privacy preferences.

The project was carried out within a 16 week timeframe and included research, experimen-
tation, technical implementation, user evaluation and documentation. Despite the limited
time, a fully functioning end-to-end system was delivered.

User testing with nine participants showed that GPT-4o provided the most consistent and
realistic results. However, the inclusion of open-source models ensures that the system
remains flexible and usable even without internet access or external dependencies.

Overall, the solution adds value to the Smart Eating Platform by giving users a more engag-
ing and motivational experience, helping them stay committed to their dietary goals.

ii

Contents

Abstract i

Management Summary ii

1 Introduction 1
1.1 Initial Situation . 1
1.2 Problem Statement . 2
1.3 Objective . 2

2 Background 4
2.1 Denoising diffusion models . 4
2.2 Image Editing with Diffusion Models . 5

2.2.1 InstructPix2Pix . 5
2.2.2 ControlNet . 5
2.2.3 Null-text Inversion . 5
2.2.4 OpenAI GPT-4o . 6
2.2.5 Newer and Other Diffusion Models . 6
2.2.6 Related Work . 6

2.3 Large Language Models . 7
2.3.1 OpenAI . 7
2.3.2 LLMHub . 7

3 Requirements 8
3.1 Functional Requirements . 8

3.1.1 User Interface . 8
3.1.2 Prompt generation . 10
3.1.3 Image Generation . 11
3.1.4 Python Package . 12
3.1.5 API . 13

3.2 Non-Functional Requirements . 14
3.2.1 Landing zones . 14
3.2.2 Performance . 14
3.2.3 Accuracy and Realism . 15

iii

3.2.4 Security and Privacy . 15
3.2.5 Maintainability and Extensibility . 16
3.2.6 Usability . 16
3.2.7 Compatibility . 16

4 Exploration 17
4.1 Initial Testing . 17

4.1.1 Initial Experimentation with Pix2Pix . 17
4.1.2 Initial Experimentation with ControlNet 19

4.2 ControlNet . 20
4.3 Null-text Inversion . 22
4.4 Prompt Engineering . 23

4.4.1 Keyword Discovery and Iterative Refinement 23
4.4.2 Prompt Structure for ControlNet . 24
4.4.3 Prompt Structure for Null-text Inversion 24
4.4.4 Summary . 25

4.5 Systematic Evaluation . 25
4.5.1 Elo Scoring System for Image Evaluation 25
4.5.2 Evaluation of ControlNet . 27
4.5.3 Evaluation of Null-text Inversion . 29

4.6 Incorporating GPT-4o . 30
4.7 Temporal Progression . 31

5 Architecture 33
5.1 System Context . 33
5.2 Container Diagram . 34
5.3 Component Diagram . 35
5.4 Activity Diagram . 36

6 Implementation 39
6.1 Frontend . 39

6.1.1 Design . 39
6.1.2 Implementation . 43

6.2 Python Package . 44
6.2.1 Pipeline . 44
6.2.2 Parameter Validation . 44
6.2.3 Prompt Generation . 44
6.2.4 Image Generation . 46
6.2.5 Package Configuration . 48
6.2.6 Built package . 48

6.3 API . 49
6.3.1 FastAPI . 49
6.3.2 Concurrency . 50

iv

7 Evaluation 51
7.1 User Image Rating . 51

7.1.1 Evaluation Procedure . 51
7.1.2 Aggregated Results . 52
7.1.3 Conclusion . 53

7.2 Qualitative Results . 53
7.2.1 ControlNet . 53

8 Conclusion 59
8.1 Results . 59

8.1.1 Evaluation . 59
8.1.2 Software Deliverables . 60

8.2 Future Outlook . 61

A Technical Documentation 63
A.1 Installation Guide . 63

A.1.1 Torch and CUDA . 63
A.1.2 Install Torch-dependent Package . 64
A.1.3 Install the Wheel Package . 64

A.2 Setup Python package development environment 64
A.3 Test Summary . 65
A.4 Requirement Protocol . 66

A.4.1 Functional Requirements . 66
A.4.2 Non-Functional Requirements . 68

A.5 Prompt Listings . 72
A.6 Used Tools . 73
Controlled Image Generation API – Swagger UI 75

Glossary 82

Bibliography 84

List of Listings 86

List of Tables 87

List of Figures 89

v

Chapter 1

Introduction

This thesis builds on recent developments in AI-based image generation and personalized
health applications. While nutritional platforms offer precise dietary guidance, they often
lack intuitive or emotional feedback. By combining structured dietary input with realistic,
AI-generated visual projections, this work aims to bridge that gap, providing users with a
motivating and personalized view of potential physical change.

1.1 Initial Situation

Recent advancements at the intersection of artificial intelligence (AI), computer vision, and
personal health tracking have led to new possibilities in digital wellness applications and
photorealistic image synthesis. Generative models, particularly Generative Adversarial Net-
works (GANs) and diffusion models, have demonstrated exceptional capabilities in produc-
ing high-fidelity, realistic images of human faces, including tasks such as age progression,
emotional modulation, and facial style transfer [1], [2]. Simultaneously, the growth of per-
sonalized nutrition and fitness applications, such as MyFitnessPal, Noom, and Cronometer,
underscores a societal shift toward proactive health management. These platforms enable
users to track dietary intake, macronutrient distribution, and caloric expenditure, offering a
data-centric view of personal wellness.

One of our academic advisors is the owner of a smart eating platform that exemplifies this
convergence. The platform provides personalized meal plans tailored to individual users’
dietary goals, preferences, and physical activity levels. It dynamically adjusts recipes and
nutritional recommendations based on user feedback, creating a highly individualized di-
etary experience.

Despite the technical sophistication of such platforms, they typically offer feedback in ab-
stract numerical forms, like calories, macronutrients, and target weights. While this data is
clinically useful, it often lacks intuitive appeal. Research in behavioral science and health
communication suggests that visual and narrative feedback significantly enhances user mo-

1

tivation, adherence, and emotional engagement in wellness interventions [3], [4]. Yet, few
platforms offer personalized visual projections of how adherence to a given meal plan might
influence the user’s physical appearance over time.

This thesis explores the potential of controlled image generation, conditioned on individ-
ualized meal plans and user profile data, as a novel approach to bridging this gap. By
transforming a user’s portrait image to reflect projected physical outcomes of dietary behav-
ior (e.g., weight change, muscle development, or improved vitality), such a system can offer
an intuitive and emotionally resonant complement to traditional health data.

1.2 Problem Statement

As users follow their personalized plans on the Smart Eating Platform, visualizing the po-
tential physical effects of their dietary choices can serve as a powerful source of motivation.
By generating realistic previews of anticipated changes, the system encourages continued
engagement and helps users stay committed to their health goals.

Although the foundational technologies for image generation and nutritional analysis are
independently mature, their integration poses a number of significant challenges. One of
the central issues lies in semantic alignment: translating a meal plan, typically formatted as
structured text or JSON, into meaningful conditioning variables for image synthesis requires
careful modeling. Nutritional properties such as caloric intake, protein density, and activity
levels must be mapped to physiologically plausible visual changes, such as alterations in
facial adiposity or muscular definition.

Moreover, physical transformation is inherently a temporal process. The body does not
change instantaneously in response to diet; instead, these changes occur incrementally
over days, weeks, or months. Thus, an effective system should be capable of modeling
and visualizing this progression through temporally coherent sequences of images. This is
particularly important for maintaining user engagement and setting realistic expectations.

Finally, the success of such a tool hinges on the quality of the user interface. Users should
be able to upload meal plans and profile pictures easily and preview and download gen-
erated images. Accessibility, responsiveness, and transparency are all essential design
considerations.

1.3 Objective

This thesis aims to design and develop a controlled image generation system that transforms
a user’s profile picture based on a given meal plan. The goal is to offer a personalized,
interpretable, and temporally dynamic visual representation of potential physical changes
informed by nutritional inputs.

To support this goal, the system was developed as an independent web application. Users
interact with a standalone frontend that enables uploading of structured meal plans and a

2

profile image. Upon submission, this information is sent to a backend pipeline that parses
the meal plan, summarizes its nutritional properties, and generates the modified images.
While this tool is conceptually designed for potential integration with existing smart eating
platforms, such as the one operated by our advisor, it is implemented and evaluated here as
a standalone system to support modularity, experimentation, and clearer analysis.

The system accepts meal plans in structured formats (e.g., JSON) and uses a language-
based analysis pipeline to derive semantically rich interpretations of the nutritional input.
Specifically, the raw meal plan is passed directly to GPT-4o, which performs a qualitative
assessment of the dietary contents, including estimated caloric surplus or deficit, macronu-
trient emphasis (e.g., high-protein, high-carb, or low-fat), and inferred lifestyle activity lev-
els. Based on this analysis, GPT-4o returns a natural language summary describing the
expected visual changes in physical appearance, such as “increased muscle definition,”
“gradual fat loss,” or “visible signs of improved skin tone.”

This textual description of expected physical outcomes is then converted into model-specific
prompts for downstream image generation. Depending on the user’s choice, these prompts
are formatted and routed to one of the supported back-end pipelines: ControlNet, Null-text
Inversion, or GPT-4o image generation. Each model offers different advantages. ControlNet
provides more consistent image structure and layout, Null-text Inversion tends to better fol-
low the intended transformation described in the prompt (sometimes at the cost of identity
preservation), and GPT-4o enables high-quality, natural language-driven edits.

A web-based interface allows users to interact with the system seamlessly. It supports
image and meal plan upload, parameter customization, model selection, and preview and
download functionality.

The implementation is encapsulated within a modular Python package, supporting extensi-
bility and integration with external platforms. This modularity allows for iterative updates to
the meal plan parser, image transformation modules, or user interface. An accompanying
API facilitates potential integration into broader smart health ecosystems.

In synthesizing structured dietary data into visually grounded, personalized outcomes, this
research contributes a novel tool that supports digital health literacy, fosters self-awareness,
and enhances user motivation through AI-driven visualization.

3

Chapter 2

Background

For our thesis, we require two different types of AI models, one one hand, we need language
models. On the other hand, we need models capable of processing a user’s image and
modifying it based on their past diet. Specifically, the model should take an image and the
past diet as inputs and generate a corresponding modified image as output. To achieve this,
we can leverage denoising diffusion models, which are well-suited for high-quality image
generation and transformation tasks.

2.1 Denoising diffusion models

Denoising diffusion models are a class of generative models used for image synthesis. The
generation process begins with a forward diffusion phase, in which noise is gradually added
to a clean image over a fixed number of steps, ultimately transforming it into pure noise.
This process is governed by a predefined noise schedule. In the subsequent reverse dif-
fusion phase, the model learns to iteratively predict and remove the noise at each step,
progressively reconstructing the original image from the noisy input.

Many modern generative image models, including Stable Diffusion, use a mechanism called
Classifier-Free Guidance (CFG) to control the trade-off between fidelity to the conditioning
input (e.g., a text prompt or an image) and the model’s creative freedom.

Originally introduced to improve sampling quality in text-to-image generation, CFG modifies
the denoising process during inference by interpolating between an unconditional and a
conditional output. The level of guidance is controlled by a scalar value called the CFG scale.
Higher values enforce stronger adherence to the conditioning input, while lower values allow
for more variation and deviation.

Depending on the application, the CFG scale can be applied to different types of conditioning
inputs. For instance, in InstructPix2Pix, both an image CFG scale (guiding adherence to the
original image) and a prompt CFG scale (guiding adherence to the textual instruction) can

4

be adjusted independently.

Tuning these parameters allows users to balance prompt sensitivity with identity preservation
or structural consistency, making CFG a critical factor in the behavior and output quality of
many image generation pipelines.

2.2 Image Editing with Diffusion Models

To start off, we looked for base models, which might be able to fulfill our needs. Specifically,
we looked at 3 different models: InstructPix2Pix [5], ControlNet [6] and Null-text Inversion
[7].

2.2.1 InstructPix2Pix

InstructPix2Pix is a diffusion-based image editing framework designed to modify images
based on natural language instructions. Unlike traditional generative models that require
explicit editing masks or guidance signals, InstructPix2Pix fine-tunes a diffusion model to
interpret and apply changes directly from text commands. By training on paired data of
source images, edited images, and textual descriptions, the model learns to perform a wide
range of edits, from simple color adjustments to complex object transformations. Its ability
to generalize across various image domains makes it a versatile tool for interactive editing
applications, reducing the need for manual intervention in image editing.

2.2.2 ControlNet

ControlNet enhances the controllability of diffusion models by incorporating additional con-
ditioning inputs such as edge maps, depth maps, and keypoints. This method allows fine-
tuned structural preservation during image generation, making it particularly useful for ap-
plications requiring precise control. By introducing trainable control layers that influence the
diffusion process without disrupting the pretrained generative capabilities, ControlNet en-
sures that outputs adhere closely to user-specified constraints. This framework significantly
improves the practicality of diffusion models for real-world design and editing tasks, offering
a balance between creative flexibility and structural accuracy.

2.2.3 Null-text Inversion

Null-text Inversion is a technique designed to enhance image editing capabilities within dif-
fusion models by refining the text embedding process. Instead of relying solely on direct
textual prompts, this method optimizes the null-text embeddings, the parts of the model
that define what remains unchanged, allowing for more controlled and localized edits. By
aligning the diffusion process with the original image’s latent space, Null-text Inversion en-
sures that modifications affect only the intended areas while preserving overall consistency.
This approach is particularly beneficial for tasks requiring fine-grained alterations, such as

5

facial expression adjustments or background modifications, making it a powerful tool for
high-fidelity image refinement.

2.2.4 OpenAI GPT-4o

OpenAI’s GPT-4o image generation model introduced a novel approach to image generation
based on an autoregressive transformer architecture [8]. Unlike traditional diffusion models,
which iteratively refine a noise vector to converge on an image, autoregressive models gen-
erate images token by token in a sequential manner, modeling pixel or patch dependencies
similarly to how language models generate text.

This architectural difference leads to several practical advantages. Autoregressive models
tend to excel at preserving global coherence and structural alignment with the input, includ-
ing facial identity and background consistency. They are also more capable of producing
exaggerated or expressive visual changes in response to prompts, making them particu-
larly effective in tasks like facial editing, character transformation, and scene conditioning.
However, these more pronounced transformations are not always desirable, especially in
applications where subtle, physiologically realistic changes are preferred.

2.2.5 Newer and Other Diffusion Models

Numerous other models are available online—for example, Flux—but we deliberately nar-
rowed our focus to a curated set of models that we assessed as both high-performing and
practical for our use case. Notably, during the midpoint of our project, OpenAI announced
a new image generation model that significantly outperformed most existing open-source
alternatives.

2.2.6 Related Work

Recent advances in generative AI have led to a range of methods for controllable image
editing and appearance manipulation, many of which are relevant to this thesis. While no
prior work has addressed our specific goal, generating future appearance predictions based
on meal plans, there are several related domains that inform our approach, particularly in
facial editing, attribute-based transformation, and conditional image synthesis.

Attribute-based facial editing A number of early works focused on editing human faces
by altering specific attributes such as age, weight, or facial expression. One notable example
is AttGAN [9], which employs an attribute classifier to guide the generation of facial features
while preserving identity. Similarly, StarGAN v2 [10] supports multi-domain image-to-image
translation and allows users to modify facial attributes such as age or skin tone with high
visual fidelity. These models introduced the idea of localized, semantically meaningful edits,
but typically rely on fixed attribute sets and do not support free-text conditioning.

6

Identity Preservation in Image Editing Identity preservation has emerged as a crucial
challenge in personalized image editing tasks. FaceShifter [11], for example, offers a high-
fidelity face-swapping approach that uses a two-stage architecture to explicitly decouple
identity and pose information. Its design enables realistic and occlusion-aware swaps,
achieving strong identity retention even under extreme conditions. Another significant con-
tribution in this area is DreamBooth [12], which extends diffusion-based image generation
through subject-specific fine-tuning. Given a small number of input images, DreamBooth
adapts the model to recognize and reproduce unique identity features, allowing for person-
alized text-to-image generation. Although computationally more intensive, it delivers high
accuracy in preserving facial characteristics across diverse prompts and contexts.

These methods illustrate different strategies for combining semantic control with identity con-
sistency and underscore the importance of balancing realism, expressiveness, and faithful-
ness in image-based transformation tasks. Our work complements this landscape by com-
paring multiple open-source and proprietary models in terms of prompt adherence, identity
preservation, and applicability in health-oriented use cases.

2.3 Large Language Models

Large Language Models (LLMs) are sophisticated neural architectures trained on massive
amounts of textual data. These models exhibit advanced capabilities in understanding, gen-
erating, and transforming human language, making them indispensable tools for tasks such
as summarization, translation, code generation, semantic reasoning and much more. Within
our image generation pipeline, LLMs play a critical role in interpreting user prompts and con-
verting them into structured, machine-interpretable summaries. In our project, we are using
two large language models: GPT-4o from OpenAI and Qwen3 [13] hosted on the LLMHub.

2.3.1 OpenAI

Our primary language understanding component is the GPT-4o model developed by Ope-
nAI. As a state-of-the-art multimodal LLM, GPT-4o demonstrates exceptional performance
in natural language understanding and generation across diverse contexts.

2.3.2 LLMHub

To enable efficient inference in computationally constrained or cost-sensitive scenarios,
we utilize the Qwen3-30B-A3B-GPTQ-Int4 model hosted on LLMHub. This model is a 4-
bit quantized implementation of the original Qwen3-30B-A3B architecture—a Mixture-of-
Experts model with 30.5 billion parameters, only 3.3 billion of which are dynamically acti-
vated per task. The quantized variant maintains the original model’s 131k token context
window while significantly reducing computational resource requirements, making it suitable
for efficient local deployment and scalable inference in environments where cloud-based
solutions are impractical or costly [13].

7

Chapter 3

Requirements

In this part of the documentation, we will define our requirements for the software part of
this project.

3.1 Functional Requirements

The functional requirements define the core capabilities and behaviors the system must
exhibit to fulfill its intended purpose. These requirements specify how the system should re-
spond to specific inputs, perform particular tasks, and interact with users and other systems.

Each requirement specifies the following details:

• ID: the ID of the Functional Requirement, unique to each FR

• Requirement: The description of the requirement itself.

• Priority: The priority level of the FR

• Input Type: What is the input / How does the requirement start?

• Output/Result: What is the result / output of the requirement?

• Acceptance Critera: What does it need to fulfill, to be declared as done.

3.1.1 User Interface

The following functional requirements are about the possibilities of our User Interface (UI).

8

ID FR 1.1
Requirement The UI must accept a meal plan.
Priority High
Input Type JSON file
Output/Result Meal plan is shown in the meal plan textfield.
Acceptance Criteria Meal plan is shown inside of the meal plan

textfield and is used when calling the API.

Table 3.1: Detailed View of Functional Requirement FR 1.1

ID FR 1.2
Requirement The UI must accept a user’s picture (image

file).
Priority High
Input Type Image file (JPEG/PNG)
Output/Result The image is shown in the image field.
Acceptance Criteria The image is saved in-memory and used when

calling the API.

Table 3.2: Detailed View of Functional Requirement FR 1.2

ID FR 1.3
Requirement The UI must be able to trigger a generation

using its parameters and show the result.
Priority High
Input Type Click on generate button
Output/Result The reflection in appearance and the trans-

formed image are shown.
Acceptance Criteria As soon as the generation is finished, the re-

sults are shown to the user.

Table 3.3: Detailed View of Functional Requirement FR 1.3

9

ID FR 1.4
Requirement The UI must allow users to preview and down-

load the modified images.
Priority High
Input Type Click on resulting image (Triggers download)
Output/Result The transformed image is downloaded.
Acceptance Criteria As soon as the generation is finished, the re-

sult will be shown and the image is download-
able via clicking.

Table 3.4: Detailed View of Functional Requirement FR 1.4

ID FR 1.5
Requirement The UI must not allow users to use Null-text

inversion and LLMHub in combination.
Priority High
Input Type -
Output/Result -
Acceptance Criteria The UI does not allow the usage of LLMHub

with Null-text Inversion in any way.

Table 3.5: Detailed View of Functional Requirement FR 1.5

3.1.2 Prompt generation

The prompt generation requirements define, in what way the meal plan must be processed
inside of the Python package in the Prompt generation part.

ID FR 2.1
Requirement The package must summarize the meal plan

into a few key sentences.
Priority High
Input Type Meal plan data
Output/Result Summary text
Acceptance Criteria The summary is generated and used in the

next step of the prompt generation.

Table 3.6: Detailed View of Functional Requirement FR 2.1

10

ID FR 2.2
Requirement The package must use the summary of the

meal plan to create image model specific
prompts.

Priority High
Input Type Meal plan summary
Output/Result image model specific prompt
Acceptance Criteria The s

Table 3.7: Detailed View of Functional Requirement FR 2.2

ID FR 2.3
Requirement The package must use the selected LLM.
Priority High
Input Type LLM selection
Output/Result Correct model is chosen.
Acceptance Criteria The model, which was chosen in the LLM se-

lection, is used for the whole prompt genera-
tion.

Table 3.8: Detailed View of Functional Requirement FR 2.3

3.1.3 Image Generation

The requirements regarding image transformation are related to the image generation step
in our Python package pipeline.

ID FR 3.1
Requirement The system must use AI-based image pro-

cessing to modify the user’s profile picture
based on the given prompt

Priority High
Input Type Image, Image model specific Prompt gener-

ated from the prompt generation step
Output/Result Transformed image
Acceptance Criteria A transformed image is returned.

Table 3.9: Detailed View of Functional Requirement FR 3.1

11

ID FR 3.2
Requirement The system must use the selected image

model by the user.
Priority High
Input Type Image model selection
Output/Result Correct model is chosen
Acceptance Criteria The image model selection parameter uses

the correct image model

Table 3.10: Detailed View of Functional Requirement FR 3.2

3.1.4 Python Package

This part of the requirements defines the functionality of the Python package.

ID FR 4.1
Requirement The whole image generation pipeline should

be implemented as a Python package.
Priority High
Input Type -
Output/Result -
Acceptance Criteria When the pipeline is implemented as a Python

package

Table 3.11: Detailed View of Functional Requirement FR 4.1

ID FR 4.2
Requirement The package takes in and validates the inputs.
Priority High
Input Type image, meal plan, model selections and API

keys
Output/Result cleanly saved parameters
Acceptance Criteria The inputs are validated and saved in an ob-

ject

Table 3.12: Detailed View of Functional Requirement FR 4.2

12

ID FR 4.3
Requirement The package returns the edited image and a

reflection in appearance.
Priority High
Input Type all package inputs
Output/Result transformed image, reflection in appearance
Acceptance Criteria After generation in the package the reflection

in appearance and the transformed image are
returned.

Table 3.13: Detailed View of Functional Requirement FR 4.3

3.1.5 API

The API is the part of the backend, that connects the Python package to the frontend. It
features several endpoints for most combinations of image model and LLM.

ID FR 5.1
Requirement The API should provide endpoints to integrate

into other platforms (e.g., the smart eating
platform, in this case, it is our frontend), that
want to use the Python package.

Priority High
Input Type -
Output/Result -
Acceptance Criteria There are endpoints to use our Python pack-

age.

Table 3.14: Detailed View of Functional Requirement FR 5.1

ID FR 5.2
Requirement The endpoints should be segregated using the

Interface segregation principle.
Priority Medium
Input Type -
Output/Result -
Acceptance Criteria There are endpoints segregated using the In-

terface Segregation Principle.

Table 3.15: Detailed View of Functional Requirement FR 5.2

13

ID FR 5.3
Requirement The API should be able to handle multiple re-

quests by using a queue and processing each
image generation individually and sequentially.

Priority Medium
Input Type Multiple requests
Output/Result Results from each request
Acceptance Criteria The API is able to accept multiple requests,

enqueues them, and works off each request,
and provides a result for each request.

Table 3.16: Detailed View of Functional Requirement FR 5.3

3.2 Non-Functional Requirements

In this part of the thesis, we will describe the Non-Functional requirements of our software.
While defining our Non-Functional requirements we have tried to be either Specific, Mea-
surable or even both if possible

3.2.1 Landing zones

The table 3.17 displays the landing zones for each described zone. Each zone has three
different values:

• Minimum: A minimum value, which should be the lowest goal to reach for.

• Regular: An average value, which is ideal if reached, but not the best outcome.

• Outstanding: A high target, which is the best outcome, but not the standard.

Description Minimum
(Within)

Regular
(Within)

Outstanding
(Within)

Prompt generation duration 10s 3s 1s
Image model transformation duration 2m 40s 20s
Full pipieline duration 2m 1m 25s

Table 3.17: Landing zones for Non-functional requirements

3.2.2 Performance

In this subsection, we will describe the Non-Functional requirements defined and related to
performance, as visible in the table .

14

ID Requirement
NFR 1.1 One full image generation using the Python package should process and

generate a transformed image within the landing zones 3.17 defined for one
full pipeline duration for a standard input image (512x512 pixels).

NFR 1.2 In the process of the generation of an image, the subprocess Prompt gen-
eration within the Python package, should adhere to the prompt generation
duration defined in the landing zones 3.17 average-length meal plan (30 days
of meals).

NFR 1.3 The image transformation in the image generation step of the Python pack-
age pipeline, should be within the landing zones3.17 defined for a single
image transformation measuring only duration used to generate the image
using an image model. All three models (OpenAI, ControlNet, Null-text In-
version), which are integrated into the Python package, should adhere to the
defined landing zones.

Table 3.18: Non-Functional Requirements for Performance and Efficiency

3.2.3 Accuracy and Realism

ID Requirement
NFR 2.1 The AI-generated profile pictures should be realistic and visually plausible,

avoiding extreme distortions.
NFR 2.2 The system must prevent exaggerated transformations that could mislead

users.
NFR 2.3 The transformation should reflect aspects such as: weight gain, weight loss,

muscle growth, overall athleticism and for example tiredness (all according to
the meal plan constellation).

Table 3.19: Non-Functional Requirements for Accuracy and Realism

3.2.4 Security and Privacy

This part describes the Non-functional requirements related to security and privacy in our
software.

ID Requirement
NFR 3.1 An uploaded image goes through the whole application. When the image

is used to start a generation, the image must be used in-memory and must
never be stored persistently.

Table 3.20: Non-Functional Requirements for Security and Privacy

15

3.2.5 Maintainability and Extensibility

ID Requirement
NFR 4.1 The system should be modular. This means that it should allow and provide

good extensibility.

Table 3.21: Non-Functional Requirements for Maintainability and Extensibility

3.2.6 Usability

This section shows all non-functional requirements, related to usability. In our case it is
related to the UI.

ID Requirement
NFR 5.1 The UI should be simple and intuitive, allowing users to upload images and

meal plans effortlessly. The generation should be able to started with a sim-
ple click and the results should be shown to the user, without the need for
effort.

NFR 5.2 The UI should be responsive and work on both desktop and mobile devices.

Table 3.22: Non-Functional Requirements for Usability

3.2.7 Compatibility

The last part of the non-functional requirements include the compatibility of our system.

ID Requirement
NFR 6.1 The Python package must be compatible with 3.9+.
NFR 6.2 The UI should support major web browsers (Chrome, Firefox, Edge, Safari).

Table 3.23: Non-Functional Requirements for Compatibility

16

Chapter 4

Exploration

This chapter documents the exploratory phase of the project, in which various image gen-
eration models were tested to gain an understanding of their behavior. Before committing
to a systematic evaluation framework, we conducted hands-on experiments with a range
of architectures to better understand their capabilities, limitations, and suitability for visual-
izing diet-induced physical changes. These early trials helped shape our model selection,
interface design, and parameter configurations for the remainder of the thesis.

4.1 Initial Testing

A main part of this thesis is the evaluation of the main three models: InstructPix2Pix, Con-
trolNet and Null-text Inversion. As an initial step, we conducted extensive hands-on testing
with these models to better understand their behavior. These early experiments helped us
identify promising directions and informed the design of our later, more systematic evalua-
tions.

4.1.1 Initial Experimentation with Pix2Pix

In the early stages of this project, we conducted exploratory testing using the Pix2Pix frame-
work to evaluate its potential for controlled image transformation based on semantic input.
Specifically, we experimented with the InstructPix2Pix model, which extends the original
Pix2Pix formulation by conditioning transformations on natural language instructions [5].
Our primary goal was to test whether the model could generate subtle, realistic changes,
such as increased muscularity or weight gain, while maintaining the identity and appearance
of the original person.

For initial evaluation, we used the publicly accessible demo1. This platform allowed us
to quickly iterate on prompts and parameters without the overhead of local deployment.

1https://huggingface.co/spaces/timbrooks/instruct-pix2pix

17

https://huggingface.co/spaces/timbrooks/instruct-pix2pix

Users are provided with only two tunable parameters: the image CFG scale and the prompt
CFG scale. The image CFG controls how closely the output adheres to the original image,
while the prompt CFG controls how strongly the model follows the textual instruction. We
experimented with various combinations, typically varying the image CFG between 1.0 and
2.0, while changing the text CFG between 5.0 and 8.0.

Despite this parameter tuning, we found the model difficult to control in a consistent or mean-
ingful way. Prompts with similar wording often resulted in drastically different outcomes, and
the transformed images frequently deviated from the original identity. In some cases, the
model produced plausible results, where the output reflected the intended transformation
reasonably well, even if facial resemblance to the original subject was only moderately pre-
served (see Figure 4.1). However, in other cases, such as the prompt ”make him chubbier”,
the model generated unrealistic or exaggerated features, such as bloated facial structures
or distorted proportions (see Figure 4.2). These issues persisted even with conservative
CFG settings.

Figure 4.1: Prompt “make him more muscular” yields an acceptable transformation. Original
photo by Charles Etoroma from Unsplash

18

Figure 4.2: Prompt “make him chubbier” results in a distorted and unrealistic image. Original
photo by Charles Etoroma from Unsplash

Overall, InstructPix2Pix lacked the precision and identity retention necessary for our use
case. The unpredictable prompt response and exaggerated outputs made it unsuitable for
visualizing realistic, health-related body transformations. These findings informed our deci-
sion to move toward more controllable and consistent architectures, namely ControlNet and
Null-text Inversion.

4.1.2 Initial Experimentation with ControlNet

Following our evaluation of InstructPix2Pix, we turned our attention to ControlNet, a more
advanced method for conditioning image generation on structured input such as edge maps,
depth maps, and poses. To assess its capabilities, we began with the publicly available web
demo2, which offers a simplified interface for prompt-based image generation using a variety
of conditioning modes.

Initial results were promising. Although the generated images showed substantial changes
from the original inputs, the subject’s core body and facial features were often retained,
resulting in outputs that maintained a recognizable resemblance to the source person. This
marked a clear improvement over InstructPix2Pix, which frequently distorted identity, facial
structure and the overall picture composition.

The demo interface provided a limited number of parameters to control generation. We
experimented with different conditioning methods, including Canny, MLSD, Scribble, Open-
Pose, and Depth. Among these, the Depth mode, particularly with the DPT preprocessor
enabled, delivered the most consistent and visually plausible results. It preserved important

2https://huggingface.co/spaces/hysts/ControlNet-v1-1

19

https://huggingface.co/spaces/hysts/ControlNet-v1-1

facial contours and structural details, which are critical for maintaining subject identity during
transformation.

However, the web interface constrained deeper experimentation. Many advanced parame-
ters, such as the number of diffusion steps, guidance scales, and prompt weighting, were
available only in limited form, and the demo lacked batch processing or reproducibility tools.
To overcome these limitations and allow for more fine-grained control, we transitioned to a
local deployment using the Automatic1111 Stable Diffusion WebUI.

4.2 ControlNet

To gain more granular control over the generation process and overcome the limitations of
the online demo, we installed the Stable Diffusion WebUI by Automatic1111 and integrated
the ControlNet extension. This local setup enabled us to fine-tune key parameters, test var-
ious ControlNet layers, and experiment with custom prompts and models in a reproducible
environment.

Through iterative testing, we adjusted core generation parameters such as the classifier-
free guidance (CFG) scale, the number of inference steps, and the adherence to prompt
weighting. Among these, the most impactful change was reducing the Denoising strength
parameter from its default value of 0.75 to approximately 0.35. This adjustment significantly
improved the identity preservation of the generated images. At this setting, the outputs
retained most of the visual characteristics of the original input image, including background
and clothing, while reflecting only the changes specified in the prompt, such as weight gain
or weight loss. This was a critical breakthrough in our research, as earlier attempts had
failed to achieve both realism and prompt fidelity simultaneously.

In parallel, we explored the impact of different ControlNet conditioning modes—specifically,
scribble-based conditioning and depth maps. To better understand how these influenced
the visual quality and identity preservation of outputs, we generated paired examples un-
der both settings using identical prompts and generation parameters. The differences were
subtle but informative: depth-based conditioning yielded slightly more coherent and realis-
tic facial features (see Figure 4.3, while the scribble-based method introduced minor arti-
facts, particularly in facial regions (see Figure 4.4. These variations were most noticeable in
the expression and symmetry of facial components, even though the overall transformation
strength and structure remained nearly identical. The relatively small difference is likely due
to the low denoising strength, which limits the influence of the conditioning input. Based
on these observations, we opted to use depth conditioning as the default for subsequent
evaluations, as it offered a slight advantage in identity fidelity.

20

Figure 4.3: ControlNet result using depth conditioning. Left to right: input image, depth map,
generated output. Original photo by Paguiloumathi from Pixabay

Figure 4.4: ControlNet result using scribble conditioning. Left to right: input image, scribble
layer, generated output. Original photo by Paguiloumathi from Pixabay

Despite these improvements, we still encountered a major limitation. While body features
and context were now handled effectively, facial realism remained a consistent weakness.
Faces often appeared distorted, asymmetrical, or uncanny, detracting from the overall qual-
ity of the output. At this stage, we were still using the default Stable Diffusion 1.5 base
model.

To address this, we replaced the base model with Juggernaut XL v9, a high-fidelity, realism-
optimized model available via Hugging Face [14]. This change had an immediate and no-

21

ticeable impact. Facial features became significantly more realistic and symmetrical, and
the identity of the subject was preserved to a much higher degree. Compared to previous
results, the images now displayed both the semantic accuracy described in the prompt and
the visual coherence needed for realistic, identity-consistent transformations.

This phase marked the most successful point in our testing pipeline, representing the cul-
mination of iterative improvements to both model selection and parameter tuning. The com-
bination of ControlNet with low denoising strength and Juggernaut XL as the base model
delivered the best balance of prompt adherence, identity preservation, and photorealism
that we had achieved thus far.

4.3 Null-text Inversion

After completing a series of experiments with ControlNet, we turned our attention to Null-text
Inversion, a method introduced by Mokady et al. [7] that allows editing real images by lever-
aging diffusion guidance while preserving key visual features. We aimed to test whether this
approach could offer more semantically coherent and identity-preserving transformations
than earlier methods.

For initial testing, we used the official Jupyter notebook provided by the authors in their
GitHub repository3, which supports Null-text Inversion as an extension of their Prompt-to-
Prompt framework. The workflow requires an input image and a caption describing the
scene or subject. Modifications are made by editing specific words or phrases in the caption,
which then guide the transformation process. For instance, changing ”a slim man in a blue
shirt” to ”a muscular man in a blue shirt” triggers the generator to adjust the body type while
retaining other elements of the image.

The results from this notebook were visually plausible and semantically aligned with the
prompts. However, identity preservation remained inconsistent. Although some edits were
subtle and effective, others introduced noticeable shifts in facial features or proportions.
Compared to ControlNet, Null-text Inversion produced more variable outputs with higher
degrees of randomness and less structural consistency.

Despite these issues, the method showed enough potential that we planned a systematic
evaluation. To do this, we needed the ability to automatically generate a sequence of outputs
using different parameter settings. However, automating the Jupyter notebook proved to be
a major technical obstacle. The notebook relied heavily on global variables and session-
specific states, making it resistant to modularization or scripting. Attempts to rework the
notebook into a Python script or structured module were unsuccessful despite significant
effort.

As a workaround, we decided to use a simplified Null-text Inversion pipeline developed by
one of our advisors. This alternative implementation enabled us to perform batch generation,
which was essential for our evaluation process. However, it came with certain limitations.

3https://github.com/google/prompt-to-prompt

22

https://github.com/google/prompt-to-prompt

Unlike the original notebook, which supported output resolutions up to 1024×1024 pixels,
the advisor’s pipeline was restricted to 512×512 resolution. Furthermore, the only param-
eter exposed to the user was the classifier-free guidance (CFG) scale, reducing flexibility
during experimentation.

Despite these trade-offs, the pipeline allowed us to proceed with systematic image genera-
tion and evaluation. Although we lost some image fidelity and parameter control, the ability
to scale the process was essential for carrying out our planned comparisons and perfor-
mance assessment.

4.4 Prompt Engineering

A critical component of our system is the ability to convert structured dietary data into
prompts suitable for image generation. Since the quality and specificity of the prompt have
a direct impact on the realism and semantic accuracy of the resulting image, we dedicated
a significant portion of our development effort to designing a robust and automated prompt
generation strategy.

To this end, we leveraged a large language model (LLM) as an intermediate layer between
the user’s dietary input and the image generation model. Based on the nutritional character-
istics and inferred lifestyle patterns extracted from the meal plan, the LLM generates a tex-
tual description — a “reflection in appearance” — that summarizes how the person’s physi-
cal features might change. This reflection is then reformulated into model-specific prompts,
tailored to the requirements of each image generation pipeline.

4.4.1 Keyword Discovery and Iterative Refinement

Before designing the final prompt templates, we conducted extensive hands-on testing to
identify which keywords produced the most reliable and semantically appropriate transfor-
mations across different models. Early experiments revealed that some adjectives yielded
more consistent and realistic edits than others, even when the intended transformation was
similar.

For example, prompts containing the word chubby tended to produce more plausible weight
gain effects than alternatives such as heavy. Similarly, combinations like lean and athletic
outperformed simpler descriptors like thin in producing toned, healthy-looking results. These
findings emerged from iterative trials using the image generation models with varying prompt
formulations.

As a result, we compiled a set of effective keywords that consistently triggered the desired
semantic and visual outcomes. These terms were embedded directly into the prompt en-
gineering instructions provided to the language model. By explicitly referencing successful
examples, such as “make the person look lean and athletic with vibrant skin” or “make the
person look extremely obese and less vibrant”, we ensured that the LLM-generated prompts
would include these high-impact keywords.

23

This iterative refinement process improved the stability and quality of the generated images
by equipping the language model with both the semantic context and specific keywords
needed to produce reliable and visually coherent transformations across different image
generation pipelines.

4.4.2 Prompt Structure for ControlNet

ControlNet expects short, descriptive commands that directly communicate the intended vi-
sual change. These prompts typically follow a directive format, e.g., “make the person look
slightly chubbier” or “make the person look lean and athletic with vibrant skin.” To ensure
consistency, we developed a structured instruction that the LLM uses to generate such di-
rectives from the intermediate reflection (see Listing 3). Several examples are embedded in
the instruction to demonstrate the desired output format and vocabulary.

Example instruction to LLM for ControlNet:

“You get information on how a person has changed after following a certain
lifestyle called ’Reflection in appearance’. Create a concise description of how
the person has changed in one precise sentence...”

This approach results in prompt outputs that are concise, semantically aligned with the meal
plan, and reliably compatible with ControlNet’s inference pipeline.

4.4.3 Prompt Structure for Null-text Inversion

Null-text Inversion operates differently: it requires a textual caption of the base image and
performs localized editing based on minimal prompt modifications. Therefore, instead of
generating an entirely new description, the LLM modifies the existing image caption by in-
jecting transformation-related adjectives in front of the subject noun.

For instance, the original caption “a man sitting in a kitchen” might be transformed into “a
slightly chubby man sitting in a kitchen.” To guide the LLM in performing these edits with
consistency, we created an instruction with examples that demonstrate how to rephrase the
caption while keeping sentence length and structure close to the original (see Listing 4).

Example instruction to LLM for Null-text Inversion:

“Using the base prompt given about a person, replace or extend the sentence
using the changes reflecting their appearance. Place the new appearance as
an adjective in front of the subject...”

This formulation preserves the spatial and stylistic integrity of the original image while ap-
plying the semantic transformation with high precision.

24

4.4.4 Summary

Both prompt generation strategies were implemented as part of a backend module that auto-
matically selects the appropriate template based on the user’s choice of image model. This
architecture ensures a seamless and consistent transformation pipeline while minimizing
manual intervention.

By combining language generation with visual conditioning, this prompt engineering ap-
proach enables the system to produce personalized, meaningful, and visually coherent out-
puts from structured nutritional data.

4.5 Systematic Evaluation

To move beyond anecdotal testing and subjective impressions, we conducted a structured
evaluation of the image generation models under controlled conditions. This phase aimed
to assess how different parameter settings influence image quality, realism, and alignment
with the intended appearance changes described in the prompts. By generating and com-
paring a large number of images under consistent conditions, we were able to identify model
behaviors, performance trends, and optimal configurations.

4.5.1 Elo Scoring System for Image Evaluation

To rank the visual quality and prompt alignment of generated images, we implemented an
evaluation interface based on the Elo scoring system. Originally developed by Arpad Elo for
ranking chess players [15], the Elo algorithm has been widely adopted in machine learning
to model relative preferences from pairwise comparisons. A notable example is its use in
reinforcement learning from human feedback, where it enables effective ranking of agent
behaviors without requiring exhaustive comparisons [16]. These characteristics make Elo
particularly suitable for our application, where a large number of images need to be com-
pared efficiently and fairly.

Scoring Logic Each image begins with an initial score of 1000. When a user selects a
winning image in a battle, the scores of both the winning and losing image are updated
based on the Elo formula:

E =
1

1 + 10(Rloser−Rwinner)/400

R′
winner = Rwinner +K(1− E)

R′
loser = Rloser +K(0− E)

Here, R is the current Elo score, R′ the updated score, E the expected outcome, and K
a constant that controls sensitivity (set to 32 in our system). The greater the difference in

25

Elo scores between two images, the more the result is expected — leading to a smaller
score adjustment. Conversely, unexpected outcomes result in larger changes, rewarding
surprising wins and penalizing unlikely losses more heavily.

Implementation The scoring system is implemented directly in the browser using a React-
based frontend. Each image comparison is presented side-by-side, and the user selects the
better one. When a selection is made, the interface uses the above formula to update the
scores of both images in real time. A persistent leaderboard is maintained locally via browser
storage, and the final results can be exported as a structured JSON file, containing scores
and match counts for each image.

Figure 4.5: User interface for image evaluation using Elo scoring. Original photo by Charles
Etoroma from Unsplash

Why Elo? The Elo system is particularly well suited for our use case, as it does not require
all images to be compared against each other directly. Instead, a robust ranking emerges
from a limited number of comparisons, making it efficient and scalable for large sets of
images. It also captures relative differences between images more effectively than absolute
scoring systems, which may suffer from bias or scale inconsistency.

This method enabled us to conduct rigorous evaluations while maintaining a lightweight
interface. After each rating session, we computed Elo scores per image and then averaged
them by parameter set within each rater’s results to identify the most effective generation
configurations, as seen in Tables 4.1 and 4.2.

26

4.5.2 Evaluation of ControlNet

To identify the most effective ControlNet parameter configuration for image transformation,
we conducted a systematic evaluation of automatically generated images using a structured
pairwise comparison interface. The goal was to determine which combination of parameters
produced the most visually coherent and semantically accurate results across a variety of
prompts and base images.

We defined a total of seven parameter sets, varying key settings such as the classifier-free
guidance (CFG) scale and denoising strength. For each configuration, we generated images
from six different input portraits using eight transformation prompts. This resulted in a total
of 336 unique images (7 weight sets × 8 prompts × 6 images).

The prompts were selected to reflect a range of body transformation scenarios, including:

• athletic lean

• extremely obese

• extremely skinny

• overweight

• rounder belly

• slightly chubbier

• slightly slimmer

• very thin

To evaluate the outputs, we developed a rating interface that allowed us to compare pairs
of images side by side. Each of us chose which of the two images better reflected the
intended transformation while preserving the subject’s identity and realism. This pairwise
comparison approach allowed for fast, intuitive evaluations and enabled the emergence of a
relative ranking across images.

Over the course of one hour, each of us completed approximately 200 pairwise comparisons,
resulting in a total of around 400 comparisons. The outcomes were stored in a structured
JSON file that recorded the Elo rating for each image, along with the number of comparisons
it had been involved in.

The Elo rating system, implemented directly in the evaluation interface, dynamically updated
each image’s score based on the outcome of every comparison. Starting from a baseline
score of 1000, images gained or lost points depending on whether they won or lost a match,
adjusted using a fixed K-factor of 32. This method allowed for relative ranking of images
across all prompts and parameter sets without requiring direct comparison of every possible
image pair.

After the rating sessions, we aggregated the Elo scores by parameter set, computing av-
erage scores across all images belonging to each configuration. The results of both rating

27

rounds are shown below:

Weight Set Average Elo Score
1 1031.48
3 1029.88
6 1015.74
5 1008.25
0 1003.44
2 981.00

Table 4.1: Average Elo Scores by Weight Set (Rater 1)

Weight Set Average Elo Score
1 1012.37
3 1002.25
5 1001.84
6 994.08
2 981.70
0 980.16

Table 4.2: Average Elo Scores by Weight Set (Rater 2)

This structured evaluation provided a solid empirical basis for selecting Weight Set 1 as the
default configuration for ControlNet in our system. Notably, both raters independently ranked
Weight Set 1 as the top-performing configuration, and the relative ordering of other weight
sets showed substantial similarity between the two rating rounds. This agreement across
independent evaluations strengthens the reliability of the ranking and suggests that the per-
formance differences observed between configurations are consistent and reproducible.

Figure 4.6 illustrates a representative output using this configuration. The prompt “make
him slightly chubbier” was applied to a base image of a person using the Depth ControlNet
layer. The result demonstrates a subtle but semantically meaningful transformation, while
retaining facial and contextual features of the input image.

28

Figure 4.6: Transformation using ControlNet with optimal weight set. Prompt: “make him
slightly chubbier”. Original photo by Charles Etoroma from Unsplash

4.5.3 Evaluation of Null-text Inversion

Following the evaluation of ControlNet, we applied a similar assessment methodology to
Null-text Inversion. As described earlier, this approach allows semantic manipulation of
real images through textual inversion and guided diffusion [7]. Since the only adjustable
parameter in the custom pipeline we used was the classifier-free guidance (CFG) scale, the
parameter search space was smaller than in the ControlNet evaluation.

We selected three different CFG values: 1, 2, and 3, corresponding to weight sets 0, 1, and
2 respectively. For each weight set, we generated transformed outputs for three different
source images and seven prompts, resulting in a total of 63 images (3 CFG values × 3
source images × 7 prompts).

The same comparison interface used in the ControlNet evaluation was employed again.
Each rater independently evaluated images by selecting the one that better reflected the
prompt while preserving realism and identity. The outcomes were scored using an Elo-
based ranking algorithm, and the final scores were aggregated by weight set.

Weight Set Average Elo Score
1 1026.11
0 1015.28
2 1004.94

Table 4.3: Average Elo Scores by Weight Set (Rater 1)

29

Weight Set Average Elo Score
1 1049.97
0 1016.60
2 993.57

Table 4.4: Average Elo Scores by Weight Set (Rater 2)

In both evaluations, weight set 1 (CFG = 2) consistently outperformed the other configura-
tions, achieving the highest average Elo scores. These results suggest that a moderate CFG
value strikes the best balance between guiding the diffusion process and allowing enough
variability for effective image transformation.

During this evaluation, we also made a critical observation: framing played a significant role
in the quality of the generated outputs. Images that focused more closely on the face pro-
duced significantly more realistic and identity-preserving results than those that depicted the
full body. Full-body images often suffered from distortion and lacked structural consistency,
while close-ups allowed for more accurate and meaningful edits. This finding, initially noted
during informal testing, was confirmed during the structured evaluation and informed our
later design decisions for prompt and image selection.

While Null-text Inversion still displayed more variability and occasional inconsistencies com-
pared to ControlNet, this evaluation confirmed that, under the right conditions and parameter
settings, it remains a powerful and usable tool in our generation pipeline.

4.6 Incorporating GPT-4o

Around the time we completed our systematic evaluation of ControlNet and Null-text Inver-
sion, OpenAI released its GPT-4o image generation model. In our informal tests with the
GPT-4o image model, the outputs were not only more realistic and detailed, but also re-
tained significantly closer resemblance to the original input faces compared to both Control-
Net and Null-text Inversion. In some cases, however, the visual changes were exaggerated,
such as producing extreme muscularity from a mild prompt, which may not always align with
applications requiring physiological realism, as illustrated in Figure 4.7.

30

Figure 4.7: GPT-4o output showing a detailed but exaggerated transformation. Original
photo by Clive Thibela from Unsplash.

Despite recognizing the superior performance of this model, we chose not to include GPT-4o
in the formal evaluation pipeline. Since the model does not expose configurable parameters
like ControlNet or Null-text Inversion, there was no meaningful way to conduct a comparative
parameter study. Additionally, the image generation API became publicly available only
toward the end of the project, by which time the evaluation framework and documentation
were already near completion.

Nevertheless, we chose to integrate the OpenAI image model into our final frontend imple-
mentation as an optional backend model. This provides users with the flexibility to select
the generation backend that best suits their needs, particularly in cases where ControlNet
or Null-text Inversion do not yield satisfactory results. Including GPT-4o makes the system
more flexible and ready for future developments by allowing newer proprietary models to be
used alongside open-source and locally run alternatives.

4.7 Temporal Progression

At the outset of this thesis, one of our initial goals was to support temporal image progres-
sion, where users could visualize gradual changes in appearance over time based on their
meal plan. The idea was to simulate physical transformation at multiple intervals, such as
after 30 days, 60 days, and 90 days, by repeatedly applying changes to the same image.

31

This would allow users to see the potential long-term effects of sustained eating behavior in
a more narrative and incremental form.

Our initial approach involved taking the already generated output image from the first trans-
formation (e.g. after 30 days), and using it as the input for the next transformation stage (e.g.
to simulate 60 days). This was tested using ControlNet within the Stable Diffusion WebUI.

However, early testing quickly revealed significant limitations with this method. When reusing
an already modified image as input, the resemblance to the original person degraded no-
ticeably with each successive transformation. Facial features and other identity-preserving
details were increasingly distorted or lost altogether. As a result, the outputs no longer re-
flected the continuity of identity needed to represent a realistic temporal progression. Instead
of simulating the gradual outcome of a consistent meal plan, the changes appeared discon-
nected and artificial. Because preserving identity was a key requirement of this system,
and because this approach introduced compounding artifacts that undermined the goal of
progressive visualization, we ultimately decided to discard the temporal chaining approach.

32

Chapter 5

Architecture

The following sections present the C4 architecture diagrams and the activity diagram for our
project, illustrating the system at various levels of abstraction. We have chosen to omit the
Level 4 diagram, as it offers limited additional insight beyond what is already conveyed by
the other three diagrams. The Context, Container, and Component diagrams sufficiently
capture the architectural structure and design rationale of the system.

5.1 System Context

In the following diagram seen in 5.1, we present the system context for our simple UI applica-
tion. Given the minimal complexity of the application, the context diagram highlights a single
primary user who interacts directly with the system. Additionally, two external systems are
involved: LLMHub and OpenAI. From LLMHub, the application integrates a language model
(LLM), while from OpenAI, it utilizes both a language model and an image generation model.

33

Figure 5.1: System Context

5.2 Container Diagram

The following figure 5.2 illustrates the different containers that comprise our application ar-
chitecture. The system is primarily divided into two main containers: a frontend built with
ReactJS, and a backend implemented using FastAPI. The backend integrates our custom
Python package, which encapsulates the core application logic and model interactions.

34

Figure 5.2: Container Diagram

5.3 Component Diagram

The component diagram focuses on the Python package container, which is responsible for
generating the edited image. The process follows a pipeline structure: it begins by validating
the input parameters, then constructs a descriptive prompt by summarizing the meal plan,
and finally uses this prompt to generate the image. This pipeline leverages several AI mod-
els, both local and external. All models involved in this process are represented as gray
hexagons in Figure 5.3.

35

Figure 5.3: Component Diagram

5.4 Activity Diagram

Figure 5.4 illustrates the end-to-end process triggered by a user request, from the frontend
interface to image generation and result delivery in the backend package.

The process begins when a user submits a request by providing a meal plan, an initial
image, and selecting the desired models. This request is received by the backend API,
which enqueues it as a job for background processing. A worker then starts executing the

36

job.

In the Python package, the first step is validating the input parameters. Afterwards, the
prompt generation is started. If the chosen language model is OpenAIs model, the pipeline
determines whether a caption of the original image is required. This is only the case, if we
use Null-text Inversion as the image model, when we do not require a caption, the LLMHub
could also be used. A visual model is invoked to describe the image before the LLM creates
a task-specific prompt in case the caption is required. Otherwise, the LLM directly generates
a prompt either by compromising the meal plan. If a caption was generated, it will be used
to create a prompt similar to the caption. The generated prompt is tailored for the selected
image model.

Depending on the chosen image model (OpenAI, ControlNet, or Null-text Inversion), the
process branches accordingly. For OpenAI models, the input image is converted into a
stream and sent to the API, where null-text optimization may be applied prior to image
generation. For ControlNet, appropriate model objects are instantiated and weights are set
before the generation step. In the end, all branches lead to the generation of a new image.

Once the image generation completes, the system updates the job result status and makes
the result retrievable via polling. The frontend client periodically checks the job status. As
soon as the status is on ”completed”, it fetches the result. After fetching the result, it is
shown in the user interface and can be downloaded.

37

Figure 5.4: Activity Diagram

38

Chapter 6

Implementation

In this part of the thesis, we will describe our implementation of each part of the whole
generation process. There are 3 different main parts, which we have implemented into our
system: the ReactJs frontend, the backend using FastAPI connected to our Python package.
To see a visualization of our architecture, see 5.2.

6.1 Frontend

The frontend is implemented as a single-page application using ReactJS in combination
with the Material UI component library. The primary function of the frontend is to provide an
interface for uploading input data, initiating backend API calls, and presenting the resulting
output. In the following sections, we will describe the design and the implementation in more
detail.

6.1.1 Design

The frontend is implemented as a Single-Page Application (SPA), providing a streamlined
and responsive user experience. All input options are positioned prominently on the main
interface. Figure 6.1 displays the default view of the user interface (UI) in dark mode, with no
inputs provided. As shown in the figure, the interface includes a field for image input, which
supports both drag-and-drop functionality and manual file selection. Below that, users can
upload a meal plan, provided it is in JSON format. At the bottom of the interface, there are
options to select the desired language model (LLM) and image model.

39

Figure 6.1: Plain UI

The same interface design is also available in light mode, as illustrated in Figure 6.2. The
toggle button for switching between dark and light modes is located in the upper right corner
and is represented by either a sun or a moon icon, depending on the current display mode.

40

Figure 6.2: Plain UI in light mode

Now we can start to set our inputs as seen in figure 6.4. First of all, we need an image.
Then we need to upload our meal plan. Finally, we need to set the preferred models.

Figure 6.3: UI with inputs; Photo by Charles Etoroma from Unsplash

41

Before the models can be used, API keys must be configured. This can be done via the
settings menu, accessible by clicking the settings icon located in the upper right corner of
the interface.

Figure 6.4: UI Settings

Once all inputs have been configured, the generation process can be initiated by clicking
the prominent blue ”Generate” button. After the loading phase, the output is displayed at
the bottom of the interface, as illustrated in Figure 6.5. The results consist of two main
components: a ”Reflection in Appearance” and the transformed image. The ”Reflection in
Appearance” provides the user with interpretative feedback on the input meal plan, indicating
both the nature of the reflection and the direction of the applied transformation.

42

Figure 6.5: UI results; Original photo by Charles Etoroma from Unsplash

6.1.2 Implementation

This section describes the implementation of frontend. Everything is written using ReactJs
and complemented with the Material UI component library.

Internally, the application manages several states, including the uploaded image, meal plan
content, API keys, selected model, generation progress, and the generated result. State
management is handled via React’s useState and useRef hooks.

User inputs are submitted to the API using a FormData object containing the uploaded image
file, serialized meal plan string, selected model parameters, and authentication keys. Upon
submission, the frontend sends a POST request to the /generate endpoint of the backend
API. Once a task ID is received, the application enters a polling loop by repeatedly querying
the /status/{task id} endpoint until the task completes or fails.

After successful completion, the frontend issues a GET request to the /result/{task id}
endpoint to retrieve the base64-encoded output image along with the generated reflection
prompt. The response is decoded and stored in the frontend state to be rendered in the
view. A download button is provided to allow the user to locally save the resulting image.

The application includes client-side validation for required fields and offers convenience fea-
tures such as drag-and-drop image upload, meal plan import from JSON files, and dynamic
form updates based on selected image models. All asynchronous operations are handled
using native async/await patterns to ensure non-blocking behavior and responsive up-
dates.

43

The image upload functionality supports both manual file selection and drag-and-drop inter-
action. Internally, a hidden file input element is programmatically triggered when the user
clicks on the upload area. For drag-and-drop, event handlers capture the dropped file and
convert it into a temporary object URL, which is stored in the application state for preview
and later submission. This functionality ensures compatibility with common user interaction
patterns while maintaining a minimal and reactive component structure.

6.2 Python Package

This section presents the implementation of the Python package developed as the core
component of the system. It details the internal structure, main processing pipeline, and the
methods used to perform the image generation.

6.2.1 Pipeline

The pipeline serves as the central entry point and output interface of the Python package.
It takes a meal plan and an input image as input and returns a modified image reflecting
the desired transformation. Internally, the pipeline comprises three main stages: parameter
validation, prompt generation, and image generation.

In the first stage, the inputs are validated to ensure correctness and compatibility. This
includes checking the format and content of the meal plan, as well as verifying that the image
meets resolution and type requirements. Once validated, the prompt generation constructs
a textual description (prompt) based on the input data, tailored to the requirements of the
selected image model. Finally, the image generation uses this prompt to produce the edited
image.

6.2.2 Parameter Validation

The first step of the pipeline involves validating the parameters received from external input.
Certain parameters are mandatory for the pipeline to function correctly, while others are
optional and only required under specific conditions. This validation step ensures that all
necessary information is present and correctly formatted before further processing begins.
All parameter requirements can be seen in the table 6.1

6.2.3 Prompt Generation

Before an image can be modified, a textual description of the intended transformation must
be created. This description, referred to as the prompt, guides the image generation process
and is tailored to the requirements of the chosen image model. To generate this prompt, the
system uses one of two large language models: either the Qwen3-30B model via LLMHub
or OpenAI’s GPT-4o.

44

Parameter Required Description
image Yes Must be a Pillow(PIL) Image object.
meal plan Yes The meal plan itself.
language model Yes The language model to use. (OpenAI GPT-4o,

LLMHub Qwen3-30B)
image model Yes The image model to use. (OpenAI GPT-Image-1,

Null-text Inversion, ControlNet)
OpenAI api key (No) API key for OpenAI, used to instantiate the client.

Required if model is chosen.
LLMHub api key (No) API key for LLM Hub, used to instantiate the client.

Required if model is chosen.

Table 6.1: Parameter description and requirement

Prompt generation with Qwen3-30B The LLMHub provides us with the Qwen3-30B. We
are mainly using it because of privacy and local-execution reasons. Compared to OpenAI’s
GPT-4o, it works similarly well for our use-case. The only deficit being that it has a average
time of around 14 seconds for generation, which can also fluctuate. This was tested for
exactly 5 requests directly to the Python package and only the prompt generation took us
14 seconds in average using the Qwen3-30B model.

Prompt Generation with GPT-4o We have decided to use GPT-4o, as it is one of the
stronger models, which does not do reasoning. Reasoning can increase the response du-
ration, which then adds more time to our whole pipeline, which we want to avoid if possible.

The prompt generation process is divided into two or three sequential stages, depending
on the needs of the selected image model. First, the system checks whether the image
model requires a caption of the original image. If so, a visual description must be generated
prior to creating the transformation prompt. The second step, which is always required,
involves interpreting the provided meal plan to extract relevant goals or attributes. In the
final step, this information is used to construct a model-specific prompt, taking into account
the prompting and expectations of the chosen image model.

Step 1: Caption Generation The prompt generation process begins with a conditional
check to determine whether the selected image model requires a caption of the original
image. This is particularly relevant for the NTI model, which relies on a dual-prompt-input
approach: a base caption describing the original image and a separate prompt specifying
the desired transformation. Consequently, if NTI is chosen for image generation, a textual
description of the input image must first be created.

To generate such a caption, a visual model capable of describing both the person and the
background in the image is required. However, LLMHub does not currently offer a model with
image captioning capabilities. As a result, Null-text Inversion cannot be used in combination
with LLMHub.

45

Step 2: Interpreting the Meal Plan For image models that do not require a base caption,
the prompt generation process begins with the interpretation of the meal plan. In this step,
the meal plan is submitted to the language model together with a carefully designed instruc-
tion prompt 1. The goal is to produce a concise textual summary that captures the expected
visual changes in a person’s appearance resulting from their dietary habits.

The generated output referred to as the reflection in appearance summarizes the likely phys-
ical effects based on the nutritional content and other user data provided in the meal plan.
For example, a plan consisting of low activity levels, poor nutritional balance, and frequent
unhealthy meals may yield a reflection such as:

Reflection in appearance: gains some weight, looks a little tired, and has less
vibrant skin.

This reflection forms the basis for the final prompt used in the subsequent image generation
step.

Step 3: Constructing the Final Prompt The final step in the prompt generation process
involves composing the actual prompt that will be used for image generation. This requires
an additional request to the selected language model. Since different models expect differ-
ent input formats and levels of detail, image model-specific instructions are provided to the
LLM.

These instructions are implemented as predefined prompt templates, each associated with
a corresponding image model via an extended enumeration structure. Once the image
model is selected, the appropriate template is automatically retrievable and used to guide
the LLM. Each template includes a clear instruction and examples to guide the LLM towards
producing a prompt in the desired structure and tone, all prompts are listed in the Prompt
Listings. A special case arises with the Null-text Inversion model, which builds upon the
previously generated image caption. In this case, the final prompt must extend the original
caption using the reflection in appearance obtained from the meal plan.

With these three steps completed, the final prompt is now ready to use in the image gener-
ation stage. This concludes the prompt generation component of the pipeline.

6.2.4 Image Generation

In this part, we will describe the last part of the pipeline, the image generation. We are using
3 different models, with which the images can be generated. We have integrated OpenAI’s
GPT-Image-1 model, which can be called using an API-key. Then we have two local models:
ControlNet and Null-text Inversion.

OpenAI GPT-Image-1

The integration of the OpenAI GPT-Image-1 is simple. Using OpenAI’s Python library, we
can use the Image API to create an edit request. Before the actual call, we have to create

46

an image stream from the Pillow image, in order to send the image via API, along with the
prompt, which we created in the prompt generation stage of the pipeline. The only parameter
which is accepted, is the level of quality.

Null-text Inversion Integration

As for Null-text Inversion, we are using a pipeline from one of our advisors as the base. The
whole pipeline works as follows:

1. Resizing the image to 512x512 so it fits the underlying Stable Diffusion model.

2. Reversing the diffusion process to approximate the original latent noise of the image
using an inverse scheduler.

3. Do the Null-Text-Optimization

4. Generating new images from the inverted latents using classifier-free guidance, now
optionally conditioned on a modified prompt.

5. Returning both the reconstructed base image and edited variations.

We made several key modifications to the base repository. One significant improvement
was implementing a new way of image resizing. Previously, the image was cropped from
the center, which posed a risk for images with extreme aspect ratios—either very vertical
or very horizontal. This central cropping often removed substantial portions of the image,
potentially excluding critical elements such as faces or other important features. To solve
this issue, we added padding to the image, so that it is a square. So instead of zooming and
cropping, we added padding to the uneven sides.

Another major issue we addressed was the inefficient model loading process. In some
cases, memory was not properly released between requests, resulting in severe perfor-
mance degradation. Image generation times stacked up with ongoing requests, and some-
times exceeded 10 minutes, which was a critical error for us. We had two solutions for this
problem. First of all, we emptied the GPU cache after every generation. Secondly, we mod-
ified the system to bundle the model directly within the package. While the model increases
the overall package size, it offers a trade-off by providing more consistent and predictable
image generation times. Previously, relying on a cached model led to significant variability
in performance. Both of these changes together helped us create a consistent performance.

ControlNet Integration

To integrate ControlNet into our system, we utilized the Python package Auto1111SDK,
which is derived from the same codebase as the Stable Diffusion Web UI. While the full Web
UI is overly complex and resource-intensive for our use case, Auto1111SDK offered a lighter
and more modular alternative, making it suitable for embedding ControlNet functionality
directly into our Python package. Our motivation for adopting a solution similar to the Stable
Diffusion Web UI lies in its comprehensive suite of tools for image editing. It provides a wide

47

range of adjustable parameters and settings, enabling fine-grained control over the image
generation process.

Limitations of Auto1111SDK Although Auto1111SDK initially appeared to be a suitable
solution, it introduced several significant limitations. First, the package has not been actively
maintained for over a year. The most recent update—ControlNet integration—was added
only in an unstable release. While we were fortunate that this feature was included, its im-
plementation is not yet robust. For instance, we were unable to modify all default parameters
through the standard model pipeline interface and had to resort to injecting configurations
directly into the class to achieve the desired behavior.

Additionally, Auto1111SDK lacks support for in-memory image inputs, requiring all images
to be written to disk before processing. This introduced unnecessary I/O overhead and
limited the flexibility of our system. To address this, we also had to manually inject additional
functionality into the class. As we do not want to save any images persistently in any way.

Despite these drawbacks, Auto1111SDK remains the most practical option currently avail-
able for approximating the functionality of the Stable Diffusion Web UI.

6.2.5 Package Configuration

The Python package is structured using a standard pyproject.toml configuration, and a
setup.py with source files organized under a src/ directory and dependencies declared
explicitly. Installation requirements include commonly used libraries for image process-
ing and model integration, such as Pillow, diffusers, and openai. Due to compati-
bility constraints, the version of diffusers is fixed at 0.29.0, as newer versions require
transformers versions that are incompatible with the AutoSDK1111 library. Furthermore,
both torch and the Auto1111SDK have to be installed manually.The installation guide for
the Python package can be viewed here: A.1.

6.2.6 Built package

Python mainly has .whl files and .tar.gz-files as distribution formats. Python .whl files,
also known as wheel files, are the standard built-package format for distributing Python
packages. Unlike source distributions (e.g., .tar.gz), wheel files are precompiled, allowing
for faster and more reliable installations. Our Python package has both of these, but we do
prefer to use the wheel file and have also used the .whl-file in the installation guide.

These are key features of wheel files:

• Binary Distribution: Wheel files contain built distributions, avoiding the need to com-
pile code (such as C extensions) during installation.

• Efficient Installation: Since no build step is required, installing from a wheel is sig-
nificantly faster than from a source distribution.

48

• Platform-Specific: Some wheels are platform- and Python-version-specific if they
include compiled components.

6.3 API

This section describes the implementation of the API responsible for handling controlled im-
age generation requests. The API is implemented in Python using the FastAPI framework.

The API serves as the interface between the client (e.g., the web frontend) and the internal
controlled image generation pipeline. It handles file uploads, parameter collection, task
dispatching, and asynchronous result delivery. Internally, all requests are managed through
a queue-based job processing system to ensure reliable and isolated execution of resource-
intensive tasks.

6.3.1 FastAPI

The API is implemented using FastAPI, a modern web framework that supports asyn-
chronous request handling, and automatic OpenAPI (Swagger) documentation. Addition-
ally, we segregated each endpoint so that it has one responsibility. But, we still have one
generate endpoint for all combinations for testing purposes.

The backend exposes a modular set of REST endpoints grouped by LLM backend and
image generation model:

• POST /generate/: Unified endpoint that supports all combinations of LLMs and im-
age models through parameterized input.

• POST /generate/openai/openai: Uses OpenAI for both prompt and image gener-
ation.

• POST /generate/openai/nto: Uses OpenAI for prompt generation and Null-Text
Optimization (NTO) for image transformation.

• POST /generate/openai/controlnet: Uses OpenAI with ControlNet as the image
model.

• POST /generate/llmhub/openai: Uses LLMHub for prompt generation and OpenAI
for image editing.

• POST /generate/llmhub/controlnet: Uses LLMHub for prompt generation and
ControlNet for image generation.

• GET /status/{task id}: Returns job status and progress information.

• GET /result/{task id}: Returns the generated image (base64-encoded PNG) and
the textual reflection prompt.

49

All endpoints receive input as multipart form data, consisting of an image file, a JSON-
encoded meal plan, API keys, and model configuration parameters. A shared JobQueue

instance is injected into each route using FastAPI’s Depends() pattern, ensuring a clean
separation of concerns and access to globally tracked job states.

Meal Plan The meal plan represents the user’s data extracted from the Smart Eating Plat-
form. To ensure consistency and validity, a dedicated JSON schema ?? was developed.
The final schema includes the following key components:

1. Anonymized user data

2. A detailed listing of meals representing the diet plan

3. Nutritional information, like the macronutrient and micronutrient values

6.3.2 Concurrency

Due to the computational intensity of image generation, particularly when using diffusion-
based models or large language models, the API is designed to decouple request handling
from image processing through an asynchronous job queue.

Each incoming request is encapsulated as a Job object, which holds all relevant input data
and metadata. Jobs are placed into an asyncio.Queue, from which they are consumed by
a dedicated background worker. This worker executes the image generation process se-
quentially in a separate thread using run in executor(), ensuring that the FastAPI event
loop remains non-blocking.

Jobs track their own processing state and status flags. After completion, results are stored
temporarily in memory and can be retrieved through the /result/{task id} endpoint. To
manage memory usage, the system explicitly releases resources via Python’s garbage col-
lector (gc.collect()) following each generation along with the del keyword to dereference
an object.

To prevent GPU overload or memory contention, the system is currently configured to pro-
cess only one job at a time (max concurrent jobs = 1). However, this default setting can
be increased to use parallelization by scaling the number of concurrent worker tasks.

50

Chapter 7

Evaluation

This chapter focuses on the user-centered evaluation of image generation quality using a
structured Likert-scale rating procedure. While prior testing identified technically optimal
parameters and model behaviors, this evaluation captures how the generated images are
perceived by human raters in terms of visual plausibility, identity preservation, and alignment
with the described transformation.

7.1 User Image Rating

To assess subjective image quality, we conducted a complementary evaluation using a 5-
point Likert scale. This approach allowed raters to express how well each image matched
the described physical transformation and preserved the subject’s identity.

7.1.1 Evaluation Procedure

Participants were presented with 18 images, six from each of the three generation pipelines:

• GPT-4o,

• Null-text Inversion,

• ControlNet.

Each image was shown alongside the text prompt describing the intended transformation.
Raters were asked to answer the following question:

“The generated image accurately reflects the appearance changes described in
the text.”

Responses were collected using the Likert scale shown in Table 7.1.

51

Rating Option Score
Strongly agree +2
Agree +1
Neutral 0
Disagree –1
Strongly disagree –2

Table 7.1: Likert Scale Options and Score Encodings

A total of nine raters completed the form, resulting in 162 individual evaluations.

7.1.2 Aggregated Results

To analyze the distribution of ratings across the models, we visualized the results using a
boxplot (Figure 7.1). Each box represents the interquartile range (25th to 75th percentile),
with the horizontal line indicating the median and the cross (×) marking the mean. Whiskers
extend to the minimum and maximum values within 1.5 times the interquartile range.

Figure 7.1: Boxplot of Likert Ratings by Model

The results show that GPT-4o achieved the highest ratings overall, with a median of 1 and a
mean rating of 0.94. This indicates that most raters agreed or strongly agreed that GPT-4o’s
outputs accurately reflected the described transformations while maintaining the subject’s
identity. The relatively narrow interquartile range and low variance suggest a high level of
consistency across different prompts and input images.

52

ControlNet outperformed Null-text Inversion in terms of average rating, with a mean of 0.37.
Its median was 1, and the ratings ranged across the full Likert spectrum from –2 to +2.
The broad distribution implies that while some outputs were well-received, others failed to
meet expectations. This mixed performance reflects the model’s sensitivity to prompt qual-
ity and parameter tuning, consistent with earlier findings in our exploration and Elo-based
evaluations.

Null-text Inversion received the lowest mean rating, at 0.00, and a median of 0. The in-
terquartile range spans from –1 to 1, indicating that evaluations were balanced between
mildly positive and mildly negative. This suggests a high degree of inconsistency: while
some results were acceptable, many failed to convincingly reflect the intended changes or
preserve identity. Given its theoretical strength in semantic editing, the practical shortcom-
ings observed here may reflect suboptimal parameter selection for the specific image, image
resolution constraints, or the general challenge of text-conditioned inversion.

7.1.3 Conclusion

The boxplot analysis complements and reinforces the Elo-based evaluation. GPT-4o demon-
strated the strongest performance both in rating level and consistency, making it the most
reliable option from a user perception standpoint. ControlNet, although less consistent,
showed a higher average score than Null-text Inversion, indicating greater practical effec-
tiveness in this specific use case. These results validate the decision to offer GPT-4o as
a fallback model while retaining the open-source pipelines for local, privacy-sensitive, or
customizable deployments.

7.2 Qualitative Results

While the Likert-scale evaluation provided a structured and quantitative assessment of user-
perceived image quality, it is equally important to examine the outputs from a qualitative per-
spective. This section presents representative examples from each generation pipeline that
were used in the user study described above. These examples illustrate the visual strengths
and limitations of each model in terms of identity preservation, realism, and alignment with
the described transformation.

Each image was paired with a reflection in appearance describing the intended physical
change. The following subsections provide a model-wise overview, showcasing selected
samples and discussing the typical visual behavior observed across the test set.

7.2.1 ControlNet

ControlNet produced some of the most visually detailed and realistic outputs overall. In
many cases, facial features, textures, and lighting were rendered with a high degree of
photorealism, resulting in images that felt natural and credible (see Figure 7.2). This strong
baseline realism made ControlNet outputs appear more grounded than those from GPT-4o.

53

However, the model showed inconsistent responsiveness to prompts. Depending on the
wording, some images reflected the intended transformation very clearly, while others showed
little to no change from the input (see Figure 7.3).

Figure 7.2: ControlNet example: Realistic transformation with subtle changes. Original
photo by Timothy Barlin from Unsplash.

Figure 7.3: ControlNet example: Realism is high, but prompt adherence is not given. Origi-
nal photo by Reza Biazar from Unsplash.

54

Null-text Inversion

Null-text Inversion offered more visibly prominent transformations when it succeeded, often
altering body or facial features in a way that clearly reflected the prompt. Its outputs tended
to be slightly less detailed than those of ControlNet but were generally photorealistic and
semantically aligned with the intended change (see Figure 7.4).

That said, consistency was a limitation. Some outputs changed the subject’s identity signif-
icantly, such as adding facial hair or altering bone structure, which undermined the realism
and coherence of the transformation (see Figure 7.5).

Figure 7.4: Null-text Inversion example: Noticeable transformation with good identity preser-
vation. Original photo by Reza Biazar from Unsplash.

55

Figure 7.5: Null-text Inversion example: Transformation is strong, but identity preservation
is poor. Original photo by Ransford Quaye from Unsplash.

GPT-4o

GPT-4o generated images that were technically impressive, with smooth, artifact-free tex-
tures and high fidelity to the prompt (see Figure 7.6. The model excelled at prompt adher-
ence as virtually every output reflected the described transformation in a clear and unam-
biguous way.

However, this strength also introduced a tendency toward exaggeration. In several cases,
the model over-interpreted relatively mild prompts. For instance, a request to “make him gain
some weight” resulted in extreme obesity, with the subject appearing nearly unrecognizable
or comical in proportion (see Figure 7.7). Moreover, some images had an “AI-generated”
appearance, overly perfect textures, artificial symmetry, or lighting that made them feel less
natural than ControlNet’s or Null-text Inversion’s outputs.

56

Figure 7.6: GPT-4o example: Clear prompt adherence and high resemblance, not overly
exaggerated. Original photo by Ransford Quaye from Unsplash.

57

Figure 7.7: GPT-4o example: Prompt adherence is strong, but the result is exaggerated.
Original photo by Jurica Koletić from Unsplash.

Summary of Observations

The following qualitative patterns emerged from the user evaluation examples:

• ControlNet delivered the most natural and photorealistic results but was less respon-
sive to subtle prompts. When changes did occur, they were often well-integrated and
realistic.

• Null-text Inversion provided stronger transformations than ControlNet but was in-
consistent in preserving subject identity. Realism was acceptable, but less refined in
detail.

• GPT-4o offered unmatched prompt adherence and visual clarity but often exaggerated
the requested transformation. Some outputs lacked the nuanced realism of the other
models, instead showing a synthetic or AI-generated feel.

These examples support the earlier quantitative findings and highlight the trade-offs be-
tween realism, controllability, and prompt sensitivity inherent to each approach.

58

Chapter 8

Conclusion

With this chapter, we conclude our thesis. We begin by elaborating on the results we have
achieved, followed by a discussion of the improvements derived through the course of this
work.

8.1 Results

This thesis explored the integration of controlled image generation into a personalized nu-
trition platform. Our core contribution is the development and evaluation of a system that
visualizes the physical outcomes of a dietary plan by transforming user images based on
AI-generated predictions. This approach combines language and image models to provide
users with intuitive, personalized, and motivational visual feedback.

This section summarizes the key findings from our experimental and user-based evalua-
tions.

8.1.1 Evaluation

The primary result of this thesis is the successful application of image models to modify
avatars in a manner that reflects a person’s dietary habits. Through comprehensive evalu-
ation, we assessed the performance and effectiveness of several models in achieving this
goal.

Our focus centered on two open-source models: ControlNet and Null-text Inversion. While
we initially considered using InstructPix2Pix, early experimentation revealed it to be unsuit-
able for our requirements. In contrast, ControlNet and Null-text Inversion showed consider-
able promise. We subsequently adopted a systematic evaluation methodology, generating
several hundred images using a defined set of base images, weights, and prompts.

To determine the optimal weight configuration, we compared images derived from identical
base inputs and prompts. By employing an Elo rating system to rank these transformations,

59

we were able to quantitatively distinguish between weight sets and identify the most effective
configuration for each model.

The Likert-scale evaluation provided strong evidence for the relative strengths and weak-
nesses of each model. GPT-4o achieved the highest ratings overall, with a mean score of
0.94 and a median of 1, indicating that most raters agreed or strongly agreed that its out-
puts reflected the target transformations while maintaining visual realism and identity. The
model’s narrow interquartile range and low variance further suggest consistent performance
across different inputs and prompts.

ControlNet followed with a mean score of 0.37. While its median rating was also 1, indi-
cating that several outputs were positively received, the wider spread across the full Likert
scale—from –2 to +2—points to mixed quality. This variability is consistent with the findings
from our earlier Elo-based analysis and reflects the model’s sensitivity to parameter tuning
and prompt formulation.

Null-text Inversion scored lowest, with a mean rating of 0.00 and a median of 0. The in-
terquartile range extended from –1 to +1, suggesting a more neutral perception overall.
This indicates a significant inconsistency in performance: although some images adhered
well to the transformation prompt, many did not convincingly maintain identity or semantic
relevance. These results align with our earlier qualitative findings that Null-text Inversion of-
ten produces prompt-aligned outputs at the expense of identity preservation and structural
fidelity.

Midway through our project, OpenAI released a proprietary image model which significantly
exceeded our expectations. This model consistently produced high-quality outputs with
strong prompt adherence while preserving the identity of the subject, although some mi-
nor inconsistencies in background fidelity were noted.

8.1.2 Software Deliverables

Among our deliverables is a custom Python package developed to facilitate image editing
within the Smart Eating Platform. To enhance testing and usability, we implemented a user
interface and integrated the package with a FastAPI backend. This backend queues incom-
ing requests and processes them sequentially to maintain performance consistency.

Each endpoint corresponds to a specific combination of image and language models, ad-
hering to the Interface Segregation Principle from the SOLID principles. This design choice
ensures modularity and facilitates maintainability.

The Python package itself is composed of several distinct stages:

• Parameter Validation: Ensures input data is complete and consistent.

• Prompt Generation: Constructs a ”reflection in appearance” from a user’s meal plan.
This intermediate form translates the dietary input into a model-specific visual trans-
formation prompt.

60

• Image Generation: Utilizes the generated prompt to transform the input image using
the selected model.

The final output includes both the generated image and the associated reflection in appear-
ance, providing a cohesive and interpretable representation of the transformation.

All of our functional requirements, which we have defined in 3.2 have been met. But the
non-functional requirements have not fully been met. There are two main exceptions here,
which we could not meet. The first one being the limitation of Python version 3.10. Due to
the dependency on the Python library Auto1111SDK, we are limited to Python 3.10 and do
not support newer Python versions.

8.2 Future Outlook

This section outlines potential improvements and extensions to our current implementation.
Several features could not be included due to time constraints, but they represent promising
directions for future development.

One key enhancement would be the integration of Null-text Inversion with LLMHub. Cur-
rently, LLMHub does not support this feature because it requires a textual caption derived
from the base image. Unfortunately, the Qwen3 language model used in our project lacks
image captioning capabilities. An alternative approach would have involved using an open-
source visual model capable of generating image descriptions, thereby enabling the use of
Null-text Inversion.

Another significant improvement would be the adoption of websockets in place of tradi-
tional API endpoints for backend communication. During the latter stages of the project,
we realized that image generation was more time-consuming than initially anticipated. Our
current backend processes requests sequentially in a queue, which introduces latency. Im-
plementing a websocket-based architecture could enable real-time communication and sta-
tus updates. However, this approach was not pursued due to our limited experience with
websockets and the late-stage nature of this realization.

A final area for enhancement involves conducting a more comprehensive evaluation of al-
ternative image generation models. Due to time limitations and the need to maintain focus,
we restricted our exploration to a narrow subset of models. With more time, broader experi-
mentation could have led to improved results and more informed model selection.

Beyond the immediate application within the Smart Eating Platform, this thesis illustrates the
growing feasibility of integrating generative AI into health and wellness tools. As generative
models become more accessible and customizable, we expect systems like ours to play a
larger role in behavior-driven applications, offering users more intuitive, emotionally resonant
feedback that traditional metrics alone cannot provide.

In summary, while our implementation achieved its core objectives, there are numerous op-
portunities to improve and expand the system. Future work could address these limitations

61

to enhance performance, usability, and scalability.

62

Appendix A

Technical Documentation

A.1 Installation Guide

The following section is the installation guide for the Python package, to be able to use the
API. Download and install a Python 3.10.x from python.org. Python version 3.10.11 is the
latest version, that has an installer.

The following commands create and activate a new Python virtual environment:

py -3.10 -m venv venv_cig

.\venv_cig\Scripts\activate.ps1

Update pip before installing any packages:

pip install pip --upgrade

A.1.1 Torch and CUDA

Torch is a library from Meta, dedicated to AI. CUDA is a library from NVIDIA that allows code
to interface with NVIDIA GPU hardware.

Note: Simple Torch installations do not use CUDA. For CUDA support, Torch must be com-
piled with the appropriate CUDA libraries. Likewise, torchvision has CUDA-enabled pack-
ages.

System-level CUDA drivers are managed via tools like nvidia-smi.exe, which shows the
installed CUDA version. As of June 2025, our system-level CUDA version is 12.2.

To ensure compatibility and avoid conflicts, we install a specific CUDA runtime within the
Python environment:

python -m pip install --verbose nvidia-cuda-runtime-cu11

63

https://www.python.org
https://www.python.org/downloads/release/python-31011/

Install CUDA-enabled Torch and torchvision:

python -m pip install --verbose torch==2.1.0 torchvision --index-url https://download.pytorch.org/whl/cu118

Validation

Verify the installation of Torch and CUDA:

py

>>> import torch

>>> print("Torch version:", torch.__version__)

>>> print("Is CUDA enabled?", torch.cuda.is_available())

Expected output:

Torch version: 2.1.0+cu118

Is CUDA enabled? True

A.1.2 Install Torch-dependent Package

Now install a Torch-based dependency:

pip install git+https://github.com/saketh12/Auto1111SDK.git

A.1.3 Install the Wheel Package

Install the prebuilt wheel file, you can find the file inside of the python package folder under
the /dist folder:

pip install .\controlled_image_generation_ost-0.1.0-py3-none-any.whl

Ensure the path to the .whl file is correctly specified.

Acknowledgment

Part of this guide references material from the Auto1111SDK GitHub repository:
Auto1111SDK Installation Guide.

A.2 Setup Python package development environment

Before being able to develop, the full installation guide must be done.

To setup a local development environment, we need the the full package structure findable
in the final gitlab repo. When inside the package directory, activate your virtual environment,
if needed and use the command:

64

https://github.com/Auto1111SDK/Auto1111SDK/blob/main/automatic1111sdk_on_windows_w_gpu.md

With virtual environment:

pip install -e

Without virtual environment:

py -3.10 pip install -e

This command links your package to the virtual environments libraries. This way you can
use the Python package dynamically, without having to install the build file to your system
after each change.

To build the package use the following command, when you are inside of the Python package
folder (if you have a virtual environment activate it before using the command):

with virtual environemnt:

build

without virtual environment

py -3.10 -m build

A.3 Test Summary

This section shows and covers all tests that we have concluded using our API and our
Python package. Our tests mainly evolve around the use of our API, which in turn uses the
Python package. The tests have been written using pytest with FastAPI and are black-box
tests derived from functional requirements

65

Test ID Test Description Status
T1 Test generate API without segregation using OpenAI as

language and image model
Finished &
Passed

T2 Test generate API for OpenAI and Null-text Inversion Finished &
Passed

T3 Test generate API for OpenAI and ControlNet Finished &
Passed

T4 Test generate API for OpenAI and OpenAI Finished &
Passed

T5 Test generate API for LLMHub and OpenAI Finished &
Passed

T6 Test generate API for LLMHub and ControlNet Finished &
Passed

T7 Handling 18 generation requests, while generating in the
background.

Finished &
Passed

T8 Test failing generate API for LLMHub and Null-text Inver-
sion

Finished &
Passed

T9 Failing test if meal plan is empty Finished &
Passed

T10 Failing test, try random task id pulling Finished &
Passed

T11 Failing test, try pulling job status, after fetching result. Finished &
Passed

Table A.1: Test cases in API with Python package

A.4 Requirement Protocol

The requirement protocol lists all requirements defined in the chapter 3 consisting of func-
tional and non-functional requirements.

A.4.1 Functional Requirements

This subsections shows the acceptance list A.4.1 for all functional requirements.

FR ID Description Acceptance Cri-
teria

Test Method Status

1.1 UI must accept a meal plan. Does accept meal
plan.

Manual Done

1.2 UI must accept a user’s picture
(image file).

Does accept im-
age

Manual Done

Continued on next page

66

Table A.2 continued from previous page
FR ID Description Acceptance Cri-

teria
Test Method Status

1.3 UI must trigger generation us-
ing parameters and show re-
sult.

Does trigger with
inputs, concluded
by output.

Manual Done

1.4 UI must allow preview and
download of modified images.

Result is down-
loadable

Manual Done

1.5 UI must not allow Null-text in-
version and LLMHub in combi-
nation.

Null-text inversion
is not visible when
LLMHub is chosen
and if it is already
chosen, automat-
ically switches
to OpenAI as
soon as LLMHub
is chosen while
Null-text Inversion
is selected.

Manual Done

2.1 Package must summarize the
meal plan into key sentences.

Key sentences are
generated using
the meal plan and
the summarization
prompt.

Manual / Derived
from test results
and prints

Done

2.2 Package must use summary
to create image model specific
prompts.

Image model spe-
cific prompts are
created.

Manual/ Derived
from test re-
sults and prints
that prompts are
model specific.

Done

2.3 Package must use the selected
LLM.

The selected LLM
is used in the
package.

Manual / Derived
from test prints

Done

3.1 System must use AI-based
image processing to modify
user’s profile picture.

Yes, the system is
using AI-based im-
age processing.

- Done

3.2 System must use the selected
image model by the user.

Yes, the system
uses the selected
image model.

Derived from test
results and prints.

Done

Continued on next page

67

Table A.2 continued from previous page
FR ID Description Acceptance Cri-

teria
Test Method Status

4.1 Image generation pipeline im-
plemented as a Python pack-
age.

The whole pipeline
to generate one
image using a
meal plan was
implemented as a
Python package

Manual Done

4.2 Package takes in and validates
inputs.

Derived from pos-
itive and negative
meal plan test re-
sults that it is vali-
dated.

Derived from test
results.

Done

4.3 Package returns edited image
and reflection in appearance.

The package does
return both, the
edited image and
a reflection in ap-
pearance.

Derived from test
results.

Done

5.1 API provides endpoints to inte-
grate into other platforms.

The API provides
endpoints, that
can be used.

Derived from test
results.

Done

5.2 Endpoints segregated using In-
terface Segregation Principle.

The endpoints
are segregated
into 5 different
endpoints, with no
unnecessary API
parameters.

Derived from test
results

Done

5.3 API handles multiple requests
using a queue and processes
sequentially.

Yes, multiple
requests can
be sent over all
endpoints. They
are enqueued
and worked off
sequentially.

Derived from test
results T7

Done

Table A.2: Functional Requirements with Acceptance Criteria
and Test Columns

A.4.2 Non-Functional Requirements

This subsections shows the acceptance list A.4.1 for all non-functional requirements.

68

ID Description Acceptance Cri-
teria

Test Method Status

NFR
1.1

Full image generation com-
pletes within defined landing
zones for pipeline duration (min
2m, reg 1m, out 25s) using all
model combinations. Calculate
average over 5 different image
generations.

Pipeline duration
measured and
within landing
zone thresholds.

Defined method
for all NFR 1.1
iterations.

Done

NFR
1.1a

Full image generation com-
pletes within defined landing
zones for pipeline duration (min
2m, reg 1m, out 25s) using
OpenAI’s LLM and OpenAI’s
Image model.

Pipeline duration
measured and
within landing
zone thresholds.

Well within regular
at around average
35 seconds.

Done

NFR
1.1b

Full image generation com-
pletes within defined landing
zones for pipeline duration (min
2m, reg 1m, out 20s) using
OpenAI’s LLM and ControlNet

Pipeline duration
measured and
within landing
zone thresholds.

Within regular with
average around
50 seconds.

Done

NFR
1.1c

Full image generation com-
pletes within defined landing
zones for pipeline duration (min
2m, reg 1m, out 20s) using
OpenAI’s LLM and Null-text In-
version

Pipeline duration
measured and
within landing
zone thresholds.

Within the min-
imum landing
zone, close to reg-
ular with average
around 66 sec-
onds. Depends
a lot on image
with big variance
between images.

Done

NFR
1.1d

Full image generation com-
pletes within defined landing
zones for pipeline duration (min
2m, reg 1m, out 25s) using
LLMHub’s Qwen3 and Ope-
nAI’s image model.

Pipeline duration
measured and
within landing
zone thresholds.

Within regular with
average around
50 seconds.

Done

NFR
1.1e

Full image generation com-
pletes within defined landing
zones for pipeline duration (min
2m, reg 1m, out 20s) using
LLMHub’s Qwen3 and Control-
Net.

Pipeline duration
measured and
within landing
zone thresholds.

Around 64 sec-
onds average
within minimum
zone and close to
regular zone.

Done

Continued on next page

69

Table A.3 continued from previous page
ID Description Acceptance Cri-

teria
Test Method Status

NFR
1.2

Prompt generation subprocess
completes within defined land-
ing zones (min 10s, reg 3s,
out 1s) for an average (30 day)
meal plan. Calculate average
over 5 requests.

Prompt generation
time measured
and within landing
zones.

Define Method for
all NFR1.2

Done

NFR
1.2a

Prompt generation subprocess
completes within defined land-
ing zones (min 10s, reg 3s, out
1s) for average meal plan using
OpenAI.

Prompt generation
time measured
and within landing
zones.

Close to regular
within minimum
with average
around 4 seconds.

Done

NFR
1.2b

Prompt generation subprocess
completes within defined land-
ing zones (min 10s, reg 3s, out
1s) for average meal plan using
LLMHubs Qwen3.

Prompt generation
time measured
and within landing
zones.

Not within landing
zones with an av-
erage around 14.5
seconds.

Failed

NFR
1.3

Image transformation step
completes within landing
zones (min 2m, reg 40s, out
20s) for all integrated models
(OpenAI, ControlNet, Null-text
Inversion).

Transformation
duration per
model measured
and within landing
zones.

Defines method
for all NFR 1.3

Done

NFR
1.3a

Image transformation step
completes within landing
zones (min 2m, reg 40s, out
20s) for OpenAI.

Transformation
duration per
model measured
and within landing
zones.

Withing regular
zone with aver-
age around 32
seconds.

Done

NFR
1.3b

Image transformation step
completes within landing
zones (min 2m, reg 40s, out
20s) for ControlNet.

Transformation
duration per
model measured
and within landing
zones.

Withing minimum
zone with aver-
age around 48
seconds, close to
regular zone.

Done

NFR
1.3c

Image transformation step
completes within landing
zones (min 2m, reg 40s, out
20s) for Null-text Inversion.

Transformation
duration per
model measured
and within landing
zones.

Withing minimum
zone with aver-
age around 67
seconds.

Done

Continued on next page

70

Table A.3 continued from previous page
ID Description Acceptance Cri-

teria
Test Method Status

NFR
2.1

AI-generated profile pictures
are realistic and visually plau-
sible, without extreme distor-
tions.

Visual inspection
and user feedback
confirm realism.

Done with Evalua-
tion forms.

Done

NFR
2.2

System prevents exaggerated
transformations that could mis-
lead users.

No extreme
or misleading
transformations
observed in out-
puts.

Done with Evalua-
tion Forms.

Done

NFR
2.3

Transformations reflect weight
changes, muscle growth, ath-
leticism, tiredness according to
meal plan.

Generated images
show expected vi-
sual cues per meal
plan.

Done with Evalua-
tion Forms.

Done

NFR
3.1

Uploaded images are pro-
cessed in-memory only; no
persistent storage of images.

No image files
saved on disk or
persistent storage
during processing.

Manually checked
and implemented
in a way that noth-
ing is saved per-
sistently.

Done

NFR
4.1

System is modular and allows
easy extensibility.

Codebase struc-
tured in modules
with documented
extension points.

Code architecture
review and devel-
oper feedback.

NFR
5.1

UI is simple and intuitive; users
can upload images and meal
plans easily; generation starts
with one click; results shown
without extra effort.

User testing con-
firms ease of use
and straightfor-
ward workflow.

Testing with user
new to the system.

Done

NFR
5.2

Web UI is responsive and
works well on desktop and mo-
bile devices.

UI layout adapts
correctly on vari-
ous screen sizes
and devices.

Responsiveness
tested manually.

Done

NFR
6.1

Python package compatible
with Python 3.9 and newer.

Package installs
and runs without
errors on Python
3.9+.

Due to dependen-
cies we are lim-
ited to only Python
3.10.x

Failed

NFR
6.2

UI supports major browsers:
Chrome, Firefox, Edge, Safari.

UI functions cor-
rectly on all listed
browsers.

Cross-browser
compatibility
tested.

Done

Continued on next page

71

Table A.3 continued from previous page
ID Description Acceptance Cri-

teria
Test Method Status

Table A.3: Acceptance Checklist for Non-Functional Require-
ments

A.5 Prompt Listings

text_generation_prompt = (

"You get a meal plan from a person and predict how their nutrition could

reflect on their appearance. Focus only on appearance changes - no

comments about food/meal plans. Keep responses very short. Avoid

details about skin beyond 'vibrant' (use examples below). Consider

per-meal nutrient averages. Examples: \n\n30 days Meal Plan: Very bad

food, poor nutrients, high calories, low activity → Reflection: gains

little weight, looks tired \n\n120 days Meal Plan: Poor food, low

activity → Reflection: gains some weight, tired appearance \n\n120 days

Meal Plan: Protein-rich, good nutrients, high activity → Reflection:

muscle gain, vibrant skin, lean \n\n120 days Meal Plan: Low calories,

small portions, medium activity → Reflection: weight loss, vibrant

skin, skinny"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

Listing 1: Text generation prompt for appearance reflection based on meal plans

chatgpt_prompt = (

"You get information on how a person has changed after following a certain

lifestyle called 'Reflection in appearance', create a concise

description of how the persons has changed in one precise sentence. We

want to use it as a prompt for an image model, so follow the given

example. Example: Reflection in appearance: Her athletic and lean

physique reflects her commitment to a meal plan that's well-structured

and varied, focusing on balanced nutrition for a high activity level

and a vibrant skin. The person looks very healthy. new prompt: Make the

person look lean and athletic with a vibrant skin."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

Listing 2: OpenAI GPT4-o prompt for generating final prompt used in image generation

72

controlnet_prompt = ("You get information on how a person has changed after

following a certain lifestyle called 'Reflection in appearance', create a

concise description of how the persons has changed in one precise sentence.

We want to use it as a prompt for an image model, so follow the given

example. Try to use the keywords as in these examples: Reflection in

appearance: Her athletic and lean physique reflects her commitment to a

meal plan that's well-structured and varied, focusing on balanced nutrition

for a high activity level and a vibrant skin. The person looks very

healthy. new prompt: Make the person look lean and athletic with a vibrant

skin. Reflection in appearance:gains weight, looks more tired. new prompt:

Make the person look obese and looking tired Reflection in appearance:

gains significantly more weight, less vibrant skin new prompt: Make the

person look extremely obese and less vibrant skin."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

Listing 3: ControlNet prompt for generating for appearance reflection based on meal plans

null_text_inversion_prompt = ("Using the base prompt given about a person,

replace or extend the sentence using the changes reflecting their

appearance. Place the new appearance as an adjective in front of the

subject: man will become, slightly chubby man. black woman will become

athletic and lean black woman. Do not change the base sentence too much.

Don't enlarge the sentence too much, as it does not work with longer

sentences. For example: base prompt: A black woman standing in a library in

front of windows. new prompt: A lean and athletic black woman standing in a

library in front of windows."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

Listing 4: Null-text Inversion prompt for generating for appearance reflection based on meal
plans

A.6 Used Tools

In this subsection we list all tools, which were used in this project:

73

Use-case Used tools
Text generation, Text editing,
Text improvement,

ChatGPT, Deepl Write, Write-
full, Overleaf AI

Coding, Code generation, code
improvement, code editing

VSCode, Pycharm, ChatGPT,
PerplexityAI, Claude

Idea generation ChatGPT, PerplexityAI, Claude
Literature research Citavi, Arxiv, Google scholar,

PerplexityAI, ChatGPT
Translation ChatGPT, DeepL
Documentation LATEX, Overleaf
Communication tools Outlook, Teams, GitLab, Jira
Data analysis and visualization Excel, ChatGPT

Table A.4: Used tools

74

Controlled Image Generation API
/openapi.json

default

POSTPOST /generate/llmhub/controlnet Generate Image With Llmhub Controlnet

Try it out

No parameters

Request body multipart/form-data

image *
string($binary) Input image file (PNG or JPG)

mealplan *
string Meal plan in JSON string format

llmhub_api_key *
string LLMHub API key

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422
Validation Error

Media type

application/json

Schema

No links

POSTPOST /generate/llmhub/openai Generate Image Wwith Llmhub Openai

Try it out

No parameters

Request body multipart/form-data

 0.1.0 OAS3

Parameters

required

required

required

required

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

image *
string($binary) Input image file (PNG or JPG)

mealplan *
string Meal plan in JSON string format

llmhub_api_key *
string LLMHub API key

openai_api_key *
string OpenAI API key

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422
Validation Error

Media type

application/json

Schema

No links

POSTPOST /generate/openai/controlnet Generate Image With Openai Controlnet

Try it out

No parameters

Request body multipart/form-data

image *
string($binary) Input image file (PNG or JPG)

mealplan *
string Meal plan in JSON string format

openai_api_key *
string OpenAI API key

Responses

Code Description Links

200
Successful Response

No links

required

required

required

required

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

required

required

Code Description Links

Media type

application/json
Controls Accept header.

Schema

422
Validation Error

Media type

application/json

Schema

No links

POSTPOST /generate/openai/nto Generate Image With Openai Nto

Try it out

No parameters

Request body multipart/form-data

image *
string($binary) Input image file (PNG or JPG)

mealplan *
string Meal plan in JSON string format

openai_api_key *
string OpenAI API key

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422
Validation Error

Media type

application/json

Schema

No links

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

required

required

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0

Code Description Links

POSTPOST /generate/openai/openai Generate Image With Openai Openai

Try it out

No parameters

Request body multipart/form-data

image *
string($binary) Input image file (PNG or JPG)

mealplan *
string Meal plan in JSON string format

openai_api_key *
string OpenAI API key

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422
Validation Error

Media type

application/json

Schema

No links

POSTPOST /generate/ Generate Image

Try it out

No parameters

Request body multipart/form-data

image *
string($binary) Input image file (PNG or JPG)

mealplan *
string Meal plan in JSON string format

],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

required

required

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

required

required

llm_mode *
integer Model for Prompt generation (0 = openai, 1 = llmhub)

image_model *
integer Model for Image generation (0 = openai, 1 = nto, 2 = controlnet)

openai_api_key *
string OpenAI API key

llmhub_api_key *
string LLMHub API key

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422
Validation Error

Media type

application/json

Schema

No links

GETGET /status/{task_id} Get Status

Try it out

Name Description

task_id *
string

(path)

task_id

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

required

required

required

required

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

Example Value

"string"

Code Description Links

422
Validation Error

Media type

application/json

Schema

No links

GETGET /result/{task_id} Get Result

Try it out

Name Description

task_id *
string

(path)

task_id

Responses

Code Description Links

200
Successful Response

Media type

application/json
Controls Accept header.

Schema

No links

422
Validation Error

Media type

application/json

Schema

No links

Schemas

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

Parameters

required

Example Value

"string"

Example Value

{
 "detail": [
 {
 "loc": [
 "string",
 0
],
 "msg": "string",
 "type": "string"
 }
]
}

{
image*

[...]
mealplan*

[...]
llm_mode*

[...]
image_model*

[...]
openai_api_key*

[...]
llmhub_api_key*

[...]

}

Body_generate_image_generate__post
Image
Mealplan
Llm Mode
Image Model
Openai Api Key
Llmhub Api Key

{
image*

[...]
mealplan*

[...]
llmhub_api_key*

[...]

}

Body_generate_image_with_llmhub_controlnet_generate_llmhub_controlnet_post
Image
Mealplan
Llmhub Api Key

{
image*

[...]
mealplan*

[...]
openai_api_key*

[...]

}

Body_generate_image_with_openai_controlnet_generate_openai_controlnet_post
Image
Mealplan
Openai Api Key

{
image*

[...]
mealplan*

[...]
openai_api_key*

[...]

}

Body_generate_image_with_openai_nto_generate_openai_nto_post
Image
Mealplan
Openai Api Key

{
image*

[...]
mealplan*

[...]
openai_api_key*

[...]

}

Body_generate_image_with_openai_openai_generate_openai_openai_post
Image
Mealplan
Openai Api Key

{
image*

[...]
mealplan*

[...]
llmhub_api_key*

[...]
openai_api_key*

[...]

}

Body_generate_image_wwith_llmhub_openai_generate_llmhub_openai_post
Image
Mealplan
Llmhub Api Key
Openai Api Key

{
detail

[...]

}

HTTPValidationError
Detail

{
loc*

[...]
msg*

[...]
type*

[...]

}

ValidationError
Location
Message
Error Type

82

Glossary

Classifier-Free Guidance (CFG) A technique used in diffusion models to control the strength
of conditioning inputs by interpolating between unconditional and conditional predic-
tions. Higher CFG values enforce stronger adherence to the prompt.

ControlNet An extension to diffusion models that introduces additional conditioning inputs,
such as edge maps or depth maps, to guide and constrain image generation with
greater structural precision.

Elo Rating A relative ranking method originally developed for chess, adapted here to com-
pare image generation outputs by assigning scores based on pairwise comparisons.

FastAPI A modern Python web framework used to build the backend of the system. It
facilitates fast, asynchronous request handling for serving image generation APIs.

GPT-4o A multimodal large language model by OpenAI that supports text and image in-
put/output. Used in this project to generate natural language prompts from structured
meal plans and to produce image-based transformations.

InstructPix2Pix A diffusion-based model fine-tuned for image editing through natural lan-
guage instructions. It enables realistic transformations of images by interpreting and
applying changes specified in textual prompts.

Large Language Model (LLM) A deep learning model trained on vast text data to perform
tasks such as language generation, summarization, translation, and prompt construc-
tion. Used in this thesis for semantic interpretation of meal plans.

Likert Scale A psychometric scale commonly used in surveys to capture subjective ratings.
In this thesis, it was used to evaluate the quality and realism of generated images.

Null-text Inversion A diffusion-based image editing technique that modifies the null-text
embeddings to allow for precise, localized edits in an image without changing the
global structure.

83

Prompt Engineering The practice of crafting precise and effective natural language prompts
to guide AI models toward desired outputs, particularly important for controlling se-
mantic image transformations.

84

Bibliography

[1] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2019, pp. 4401–4410.

[2] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional
image generation with clip latents, 2022. arXiv: 2204.06125 [cs.CV]. [Online]. Avail-
able: https://arxiv.org/abs/2204.06125.

[3] A. Bandura, “Health promotion by social cognitive means,” Health Education & Behav-
ior, vol. 31, no. 2, pp. 143–164, 2004.

[4] S. Michie, M. M. van Stralen, and R. West, “The behavior change wheel: A new
method for characterising and designing behaviour change interventions,” Implemen-
tation Science, vol. 6, no. 1, p. 42, 2011.

[5] T. Brooks, A. Holynski, and A. A. Efros, Instructpix2pix: Learning to follow image
editing instructions, 2023. arXiv: 2211.09800 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/2211.09800.

[6] L. Zhang, A. Rao, and M. Agrawala, Adding conditional control to text-to-image dif-
fusion models, 2023. arXiv: 2302.05543 [cs.CV]. [Online]. Available: https://
arxiv.org/abs/2302.05543.

[7] R. Mokady, A. Hertz, K. Aberman, Y. Pritch, and D. Cohen-Or, Null-text inversion for
editing real images using guided diffusion models, 2022. arXiv: 2211.09794 [cs.CV].
[Online]. Available: https://arxiv.org/abs/2211.09794.

[8] OpenAI, Introducing gpt-4o’s image generation capabilities, https://openai.com/
index/introducing-4o-image-generation/, Accessed: 2025-06-03, 2024.

[9] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, Attgan: Facial attribute editing by
only changing what you want, 2018. arXiv: 1711.10678 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/1711.10678.

[10] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, Stargan v2: Diverse image synthesis for multiple
domains, 2020. arXiv: 1912.01865 [cs.CV]. [Online]. Available: https://arxiv.
org/abs/1912.01865.

85

https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2211.09800
https://arxiv.org/abs/2211.09800
https://arxiv.org/abs/2211.09800
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2211.09794
https://arxiv.org/abs/2211.09794
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/
https://arxiv.org/abs/1711.10678
https://arxiv.org/abs/1711.10678
https://arxiv.org/abs/1912.01865
https://arxiv.org/abs/1912.01865
https://arxiv.org/abs/1912.01865

[11] L. Li, J. Bao, H. Yang, D. Chen, and F. Wen, Faceshifter: Towards high fidelity and oc-
clusion aware face swapping, 2020. arXiv: 1912.13457 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/1912.13457.

[12] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, Dreambooth:
Fine tuning text-to-image diffusion models for subject-driven generation, 2023. arXiv:
2208.12242 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2208.12242.

[13] A. Yang, A. Li, B. Yang, et al., Qwen3 technical report, 2025. arXiv: 2505.09388
[cs.CL]. [Online]. Available: https://arxiv.org/abs/2505.09388.

[14] RunDiffusion, Juggernaut xl v9, https://huggingface.co/RunDiffusion/Juggernaut-
XL-v9, Accessed: 2024-05-01, 2023.

[15] A. E. Elo, The Rating of Chessplayers, Past and Present. Arco Publishing, 1978.

[16] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, “Deep
reinforcement learning from human preferences,” in Advances in Neural Information
Processing Systems (NeurIPS), vol. 30, 2017.

86

https://arxiv.org/abs/1912.13457
https://arxiv.org/abs/1912.13457
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://huggingface.co/RunDiffusion/Juggernaut-XL-v9
https://huggingface.co/RunDiffusion/Juggernaut-XL-v9

List of Listings

1 Text generation prompt for appearance reflection based on meal plans 72
2 OpenAI GPT4-o prompt for generating final prompt used in image generation . 72
3 ControlNet prompt for generating for appearance reflection based on meal

plans . 73
4 Null-text Inversion prompt for generating for appearance reflection based on

meal plans . 73

87

List of Tables

3.1 Detailed View of Functional Requirement FR 1.1 9
3.2 Detailed View of Functional Requirement FR 1.2 9
3.3 Detailed View of Functional Requirement FR 1.3 9
3.4 Detailed View of Functional Requirement FR 1.4 10
3.5 Detailed View of Functional Requirement FR 1.5 10
3.6 Detailed View of Functional Requirement FR 2.1 10
3.7 Detailed View of Functional Requirement FR 2.2 11
3.8 Detailed View of Functional Requirement FR 2.3 11
3.9 Detailed View of Functional Requirement FR 3.1 11
3.10 Detailed View of Functional Requirement FR 3.2 12
3.11 Detailed View of Functional Requirement FR 4.1 12
3.12 Detailed View of Functional Requirement FR 4.2 12
3.13 Detailed View of Functional Requirement FR 4.3 13
3.14 Detailed View of Functional Requirement FR 5.1 13
3.15 Detailed View of Functional Requirement FR 5.2 13
3.16 Detailed View of Functional Requirement FR 5.3 14
3.17 Landing zones for Non-functional requirements 14
3.18 Non-Functional Requirements for Performance and Efficiency 15
3.19 Non-Functional Requirements for Accuracy and Realism 15
3.20 Non-Functional Requirements for Security and Privacy 15
3.21 Non-Functional Requirements for Maintainability and Extensibility 16
3.22 Non-Functional Requirements for Usability 16
3.23 Non-Functional Requirements for Compatibility 16

4.1 Average Elo Scores by Weight Set (Rater 1) 28
4.2 Average Elo Scores by Weight Set (Rater 2) 28
4.3 Average Elo Scores by Weight Set (Rater 1) 29
4.4 Average Elo Scores by Weight Set (Rater 2) 30

6.1 Parameter description and requirement . 45

7.1 Likert Scale Options and Score Encodings 52

88

A.1 Test cases in API with Python package . 66
A.2 Functional Requirements with Acceptance Criteria and Test Columns 68
A.3 Acceptance Checklist for Non-Functional Requirements 72
A.4 Used tools . 74

89

List of Figures

4.1 Prompt “make him more muscular” yields an acceptable transformation. Orig-
inal photo by Charles Etoroma from Unsplash 18

4.2 Prompt “make him chubbier” results in a distorted and unrealistic image. Orig-
inal photo by Charles Etoroma from Unsplash 19

4.3 ControlNet result using depth conditioning. Left to right: input image, depth
map, generated output. Original photo by Paguiloumathi from Pixabay 21

4.4 ControlNet result using scribble conditioning. Left to right: input image, scrib-
ble layer, generated output. Original photo by Paguiloumathi from Pixabay . . 21

4.5 User interface for image evaluation using Elo scoring. Original photo by
Charles Etoroma from Unsplash . 26

4.6 Transformation using ControlNet with optimal weight set. Prompt: “make him
slightly chubbier”. Original photo by Charles Etoroma from Unsplash 29

4.7 GPT-4o output showing a detailed but exaggerated transformation. Original
photo by Clive Thibela from Unsplash. 31

5.1 System Context . 34
5.2 Container Diagram . 35
5.3 Component Diagram . 36
5.4 Activity Diagram . 38

6.1 Plain UI . 40
6.2 Plain UI in light mode . 41
6.3 UI with inputs; Photo by Charles Etoroma from Unsplash 41
6.4 UI Settings . 42
6.5 UI results; Original photo by Charles Etoroma from Unsplash 43

7.1 Boxplot of Likert Ratings by Model . 52
7.2 ControlNet example: Realistic transformation with subtle changes. Original

photo by Timothy Barlin from Unsplash. 54
7.3 ControlNet example: Realism is high, but prompt adherence is not given.

Original photo by Reza Biazar from Unsplash. 54
7.4 Null-text Inversion example: Noticeable transformation with good identity preser-

vation. Original photo by Reza Biazar from Unsplash. 55

90

7.5 Null-text Inversion example: Transformation is strong, but identity preserva-
tion is poor. Original photo by Ransford Quaye from Unsplash. 56

7.6 GPT-4o example: Clear prompt adherence and high resemblance, not overly
exaggerated. Original photo by Ransford Quaye from Unsplash. 57

7.7 GPT-4o example: Prompt adherence is strong, but the result is exaggerated.
Original photo by Jurica Koletić from Unsplash. 58

91

	Abstract
	Management Summary
	Introduction
	Initial Situation
	Problem Statement
	Objective

	Background
	Denoising diffusion models
	Image Editing with Diffusion Models
	InstructPix2Pix
	ControlNet
	Null-text Inversion
	OpenAI GPT-4o
	Newer and Other Diffusion Models
	Related Work

	Large Language Models
	OpenAI
	LLMHub

	Requirements
	Functional Requirements
	User Interface
	Prompt generation
	Image Generation
	Python Package
	API

	Non-Functional Requirements
	Landing zones
	Performance
	Accuracy and Realism
	Security and Privacy
	Maintainability and Extensibility
	Usability
	Compatibility

	Exploration
	Initial Testing
	Initial Experimentation with Pix2Pix
	Initial Experimentation with ControlNet

	ControlNet
	Null-text Inversion
	Prompt Engineering
	Keyword Discovery and Iterative Refinement
	Prompt Structure for ControlNet
	Prompt Structure for Null-text Inversion
	Summary

	Systematic Evaluation
	Elo Scoring System for Image Evaluation
	Evaluation of ControlNet
	Evaluation of Null-text Inversion

	Incorporating GPT-4o
	Temporal Progression

	Architecture
	System Context
	Container Diagram
	Component Diagram
	Activity Diagram

	Implementation
	Frontend
	Design
	Implementation

	Python Package
	Pipeline
	Parameter Validation
	Prompt Generation
	Image Generation
	Package Configuration
	Built package

	API
	FastAPI
	Concurrency

	Evaluation
	User Image Rating
	Evaluation Procedure
	Aggregated Results
	Conclusion

	Qualitative Results
	ControlNet

	Conclusion
	Results
	Evaluation
	Software Deliverables

	Future Outlook

	Technical Documentation
	Installation Guide
	Torch and CUDA
	Install Torch-dependent Package
	Install the Wheel Package

	Setup Python package development environment
	Test Summary
	Requirement Protocol
	Functional Requirements
	Non-Functional Requirements

	Prompt Listings
	Used Tools
	Controlled Image Generation API – Swagger UI

	Glossary
	Bibliography
	List of Listings
	List of Tables
	List of Figures

