
Using 3D Game Engines to Build Digital
Twins for Industrial Machine Simulation

and Testing

Bachelor Thesis - FS 2025

Department: Computer Science
Field of Study: Software Engineering

Authors

Isaia Brassel
isaia.brassel@ost.ch

Matriculation: 22-173-264

Silvan Kisseleff
silvan.kisseleff@ost.ch

Matriculation: 22-176-135

Advisors

Prof. Dr. Christoph Gebhardt
christoph.gebhardt@ost.ch

Advisor

Thomas Zehnder
thomas.zehnder@avm.swiss

External Partner

Version: 1.0.0
Date: 2025-07-01

mailto:isaia.brassel@ost.ch
mailto:silvan.kisseleff@ost.ch
mailto:christoph.gebhardt@ost.ch
mailto:thomas.zehnder@avm.swiss

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for
Industrial Machine Simulation and Testing

Abstract
Developing control software for industrial machines requires careful planning. However, it is still crucial to test

the software before deploying it on a physical machine. To create meaningful tests, a digital twin that can
simulate the behavior of the real machine is required. Yet, creating such digital twins can be both costly and
complex – and often, they still fall short when it comes to offering realism. In light of these challenges, AVM
Engineering AG approached us with the task of evaluating whether modern game engines are suitable for

developing digital twins of their industrial systems. Our objective was to design a workflow for creating such
digital twins and to demonstrate it using parts of a package distribution machine.Research into digital twins and

3D simulation highlighted the potential game engines provide with their advanced physical simulation
capabilities. To determine the most suitable platform for implementing digital twins, we analyzed and compared
the leading game engines – Unity and Unreal Engine 5. Based on performance, visual fidelity, extensibility, and

licensing terms, we chose Unreal Engine 5. For reliable and standardized data exchange with industrial
equipment, we used OPC UA, the de facto communication standard in industrial automation.To enable

communication between Unreal Engine 5 and industrial controllers, we required a bridge between the OPC UA
server and the game engine. For this, we integrated open62541, an open-source OPC UA implementation in C,

into the game engine. To simplify the communication with the server we created custom Blueprint functions, the
visual scripting language of Unreal Engine, for a simple drag-and-drop experience when building a digital twin.
These building blocks enable read, write and subscribe operations from the game engine to the OPC UA server.

In addition, we investigated the process of converting existing CAD models into assets suitable for use in Unreal
Engine 5. This allows for highly realistic representations of industrial components within the digital twin.The
integration of modern game engine technology with industrial automation tools enables the creation of highly
customized digital twins. In this case, it allowed for a real-time simulation of the control logic developed for the
package distribution machine, providing a safe and efficient environment to test and validate the software under

realistic operating conditions—without the need for the physical system. To showcase the capabilities of our
Blueprint functions and to make our approach to digital twin development more accessible, we designed and
implemented custom models inside Unreal Engine 5.These models were specifically created to replicate key

elements of the package distribution system—most notably, the conveyor belt mechanism. The components not
only illustrate common use cases when it comes to OPC UA communication but also incorporate realistic physics
simulations to closely mimic real-world behavior. User testing confirmed that our construction-based approach is
intuitive and effective, significantly supporting the understanding and development of digital twins for complex

systems.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

II
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Management Summary
Context
In the development of control software for industrial machines, accurate testing is critical before deploying to
physical systems. This testing requires digital twins, virtual representations of machines that simulate real-world
behavior. However, creating such twins has traditionally been expensive, complex, and often lacking in realism,
limiting their usefulness in software validation workflows. Existing digital twin software are either manufacturer
specific only, have high licensing costs or simply fall short in terms of realism. AVM Engineering AG has been
affected by this issue and has been looking for a solution to this problem.

Solution
Research into digital twins highlighted the potential to significantly simplify the development of digital twins by
using game engines. These engines offer a powerful and flexible environment for creating realistic simulations,
making them ideal for building digital representations of industrial machines. Unreal Engine 5, in particular, stands
out due to its advanced graphics, real-time rendering capabilities and sophisticated physics engine, making it a
suitable choice for creating digital twins of industrial machines.

However, Unreal Engine lacks native support for communication with industrial machines. To address this, we
implemented a solution based on the open62541 library, which enables communication to the machines through
OPC UA, a widely adopted standard for industrial automation. We developed a set of reusable Blueprint functions
that allow developers to easily connect Unreal Engine to an OPC UA server, enabling read, write and subscribe
operations for multiple different data types with minimal effort.

To showcase the capabilities of our solution, we created several different example models of industrial machines,
including a conveyor belt, a pneumatic cylinder, sensors and a slide. These components are controlled in real time
using a demo OPC UA server built with Node-RED and a web-based dashboard interface.

Our solution provides a flexible foundation for developers to create and customize their own digital twins. It is
designed to be easily extended and adapted to specific use cases. User testing confirmed that the system is intuitive,
easy to use, and accessible even to those with limited experience in game development or industrial systems.

Future work
Looking ahead, the project can be extended in several impactful ways. Enhancements could include supporting OPC
UA events and alarms for richer real-time interactions, improving the realism of the conveyor belt simulation, and
enabling connections to multiple OPC UA servers for complex systems. Additional opportunities involve integrating
machine vision capabilities and expanding platform support to include Linux. These developments would further
increase the flexibility, realism, and accessibility of digital twin solutions built with Unreal Engine.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

III
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Table of Contents
1 Introduction . 1

1.1 Target audience . 1

2 Glossary . 2

Product description . 3

3 Context . 4
3.1 Situation . 4
3.2 Digital twin . 5
3.3 Open Platform Communications Unified Architecture . 5
3.4 Unreal Engine . 6

4 Deliverables . 7
4.1 Analysis of game engines . 7
4.2 Integration of OPC UA client in the game engine . 7
4.3 Blueprint functions . 7
4.4 Models . 7

4.4.1 Pneumatic cylinder . 7
4.4.2 Conveyor belt . 8
4.4.3 Slide . 8
4.4.4 Combination . 9

5 Related work . 10
5.1 Commercial solutions . 10

5.1.1 Mitsubishi Melsoft Gemini . 10
5.1.2 Azure Digital Twins . 10
5.1.3 Siemens SIMIT . 11
5.1.4 ABB RobotStudio . 11
5.1.5 Visual Components . 11

5.2 Similar projects . 12
5.2.1 Theses and papers focusing on OPC UA communication . 12
5.2.2 Theses and papers focusing on 3D visualization in Unreal Engine . 12

6 Requirements . 14
6.1 Functional requirements . 14

6.1.1 FR1: Connect to OPC UA server . 14
6.1.2 FR2: Read boolean from OPC UA server . 14
6.1.3 FR3: Write boolean to OPC UA server . 15
6.1.4 FR4: Subscribe to boolean from OPC UA server . 15
6.1.5 FR5: Pneumatic cylinder simulation . 16
6.1.6 FR6: Conveyor belt simulation . 16
6.1.7 FR7: Slide simulation . 16
6.1.8 FR8: Spawn packages . 16
6.1.9 FR9: Delete packages . 16

6.2 Non-functional requirements . 17
6.2.1 NFR1: Functionality on Windows and macOS . 17
6.2.2 NFR2: The setup of our project requires no additional installments. 17
6.2.3 NFR3: The documentation is written in a detailed and explanatory way . 17

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

IV
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

6.2.4 NFR4: Simple and easy to understand graphics . 18
6.2.5 NFR5: The project does not require a high-performance computer . 18

Product realization . 19

7 Analysis . 20
7.1 Utility value analysis of game engines . 20

7.1.1 Criteria . 20
7.1.2 Utility value analysis for Unreal Engine . 22
7.1.3 Utility value analysis for Unity . 24
7.1.4 Summary . 25

7.1.4.1 Unreal Engine . 25
7.1.4.2 Unity . 25

7.1.5 Conclusion . 25
7.2 Analysis of OPC UA clients . 26

7.2.1 open62541 . 26
7.2.2 Unified Automation C++ SDK . 26
7.2.3 Softing C++ SDK . 26
7.2.4 Node-OPCUA . 26
7.2.5 opcua-asyncio . 26
7.2.6 Conclusion . 27

8 Architecture . 28
8.1 System context diagram . 28
8.2 OPC UA server . 29

8.2.1 OPC UA server address space . 30
8.2.2 OPC UA server logic . 31
8.2.3 Limitations . 33

8.3 OPC UA client in Unreal Engine . 34
8.4 Reading data from the OPC UA server . 37
8.5 Writing data to the OPC UA server . 39
8.6 Subscriptions . 41

9 Project setup . 45
9.1 Machine specifications . 45
9.2 Installation . 46
9.3 Version Control . 47
9.4 Converting CAD files to Unreal Engine models . 50

10 Models . 55
10.1 Pneumatic cylinder . 56
10.2 Package . 59
10.3 Package spawner . 61
10.4 Sensor . 63
10.5 Conveyor belt . 64

10.5.1 Conveyor belt movement . 66
10.6 Slide . 68

Summary . 70

11 Summary . 71

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

V
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

11.1 Results . 71
11.2 Limitations . 71
11.3 Future work . 72

Appendix . 73
11.4. Test runs . 74

11.4.1. The whole project can be set up according to the README (10.4.2025) . 74
11.4.2. The whole project can be set up according to the README (28.04.2025) . 74
11.4.3. The whole project can be set up according to the README (03.06.2025) . 74
11.4.4. The pneumatic cylinder can be extended and retracted. (03.06.2025) . 75
11.4.5. The pneumatic cylinder can be extended and retracted. (03.06.2025) . 75
11.4.6. The conveyor belt can be started and transports package. (03.06.2025) . 76
11.4.7. The packages slide down the slide. (03.06.2025) . 76
11.4.8. A Blueprint actor with a read operation to the OPC UA Server can be created. (03.06.2025) . . 77
11.4.9. A Blueprint actor with a write operation to the OPC UA Server can be created. (03.06.2025) . 77
11.4.10. A Blueprint actor with a subscription to the OPC UA Server can be created. (03.06.2025) 78

Figures . 79

Bibliography . 83

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

VI
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

1 Introduction
Verifying the behavior of control software for industrial machines is a critical yet challenging task. In most
scenarios, it is neither practical nor cost-effective to set up physical machines solely for software validation. This
creates a strong need for digital twins—virtual representations of machines or components that allow for safe and
efficient testing in simulated environments.

While digital twins can be created in both 2D and 3D, 3D simulations offer distinct advantages. They enable the
realistic modeling of physical behaviors such as gravity and friction which are essential for accurately replicating
real-world machine dynamics. This allows engineers to detect logic errors, evaluate edge cases, and optimize system
performance without physical risks or costs.

Many commercial digital twin solutions are available but often come with high licensing fees, limited customization,
or poor compatibility with existing control software. To overcome these limitations, this thesis explores the use of
a general-purpose 3D game engine with built-in physics simulation to develop a cost-effective, flexible digital twin.

To establish communication between the virtual model and industrial control software, we utilized OPC UA
(Open Platform Communications Unified Architecture)—a widely adopted protocol in automation systems known
for its security and interoperability. This enabled seamless integration with various types of programmable logic
controllers (PLCs) and other control platforms.

The thesis outlines the full development process—from initial design and environment setup to implementing real-
time physics and OPC UA communication—culminating in a functional prototype. The project was carried out in
collaboration with AVM Engineering, whose expertise in automation helped ensure the model’s industrial relevance
and practical applicability.

By using open standards and accessible tools, this work demonstrates a scalable approach to building digital twins,
empowering engineers to validate control systems in realistic 3D environments without the need for costly physical
setups.

1.1 Target audience
This documentation is intended for developers and engineers interested in the creation of digital twins for industrial
machines. The target audience is expected to possess a foundational understanding of programming principles,
3D game engines, and industrial communication protocols such as OPC UA. While the thesis provides brief intro-
ductions to these technologies to establish context, it does not aim to offer an exhaustive tutorial or theoretical
background on each topic. Instead, the focus is on the practical application of these tools in the development
of a functional digital twin prototype, showcasing the integration of physical simulation and real-time control
communication.

In addition to serving as a technical guide, this documentation functions as the primary result-based report for
our bachelor thesis. It is intended for review by our academic advisor, subject matter experts, and any potential
stakeholders or competitors interested in the feasibility and implementation of our approach. By detailing our
methodology, tools, and outcomes, we aim to contribute to ongoing discussions around cost-effective and adaptable
solutions for validating industrial control systems in virtual environments.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 1 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

2 Glossary
Blueprints Visual scripting system that allows developers to create game logic without writing code using a node-

based interface.
Blueprint actor A type of Blueprint that represents an object in the game world, which can have properties,

behaviors, and can be placed in the level.
Blueprint function An implementation of a node in Unreal Engine’s Blueprint system, which can be used to

encapsulate reusable logic or functionality. A Blueprint function can be used in the visual scripting system
Blueprints.

Content Drawer The primary area for creating, importing, organizing, viewing and managing content assets in
Unreal Engine.

Conveyor belt A mechanical system consisting of a continuous loop of material that transports objects or
materials from one location to another, commonly used in manufacturing and logistics.

C++ A high-performance, general-purpose programming language known for its efficiency, object-oriented fea-
tures, and extensive use in game development, system programming, and real-time applications.

Datasmith A plugin for Unreal Engine that facilitates the import of CAD data and other 3D assets into the engine,
enabling seamless integration of complex models into Unreal projects.

Devcontainers A feature in Visual Studio Code that allows developers to create consistent and reproducible
development environments using Docker.

Digital twin Virtual representation of a physical object, system or process to simulate, analyze and optimize
performance.

Git A distributed version control system that helps track changes in code and collaborate with others efficiently.
Homebrew A package manager for macOS that simplifies the installation of software and tools via the command

line.
Node-RED A flow-based development tool for visual programming, allowing users to wire together devices, APIs

and online services using a browser-based flow editor. Used for building an OPC UA server in this project.
OPC UA Open Platform Communication Unified Architecture is a data exchange standard typically used in

industrial machine communication.
open62541 open-source implementation of the OPC UA standard in C designed for industrial automation and IoT

applications.
PLC Programmable Logic Controller is an industrial digital computer designed to automate and control machin-

ery, processes, and production lines.
Pneumatic cylinder A cylinder that can block physical objects that can extend or retract using pneumatic forces.
Unreal Engine Powerful real-time 3D game engine developed by Epic Games, used for game development, virtual

production and immersive experiences.
.NET A free, cross-platform, open-source developer platform for building many different types of applications,

including web, mobile, desktop, gaming, and IoT.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 2 / 85
OST RJ

Part I
Product description

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

3 Context
In this chapter we present the context of our bachelor thesis. Specifically, we introduce key technologies that are
related or relevant to our thesis project and define the deliverables of our work.

3.1 Situation
AVM Engineering AG is a company that specializes in consulting and developing controlling software for industrial
machines for various industrial partners. They are often faced with situations where they develop software without
the ability to visually verify its correctness. Since it is not feasible to set up the industrial machines in their offices
physically, they want to be able to have a digital twin of the machine. Having such a digital twin enables verification
whenever and wherever required. AVM Engineering AG would like to be able to simulate the machine and verify
the behavior of the controlling software visually. The goal is not to fully automate this process but rather have a
good visual representation of it. The testing would be part of the integration and system testing, it is not part of
the unit testing during active development. This would allow AVM Engineering AG to verify the software before
deploying it onto a live machine.

Before this project AVM Engineering AG relied on 2D simulations using an SVG image with movable parts as seen
in Figure 1. Their simulation software then moved these parts accordingly. This approach limited AVM Engineering
AG in several different ways. Firstly the simulation was limited to 2D and therefore a splitting of the conveyor
belt could not be modeled easily. In addition to splitting the conveyor belt, it would also be difficult to introduce
a slide to the simulation. Not only because of the 2D limitation but also because the simulation software was not
able to simulate physical properties like gravity or friction of the belt. An adaptation of the machine layout meant
that the simulation software had to be adapted as well. This was a tedious process and required a lot of time and
effort. Lastly the 2D simulation required a lot of manual reasoning to understand what is going on in the simulation
because the machine in real life is not limited to two dimensions. The 2D view has limitations in visualization,
making it difficult to accurately simulate elements like friction-based slides or sharp 90-degree curves.

Figure 1: Existing 2D simulation which is utilizing a SVG with moveable parts.

Figure 2: Real life example of the package sorting machine constructed in the 2D SVG.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 4 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

3.2 Digital twin
A digital twin is defined as a dynamic virtual copy of a physical asset, process, system or environment that looks
like and behaves identically to its real-world counterpart [1]. The concept of digital twins was introduced in the
1960s by NASA. They wanted a physical replication of their spacecraft at ground level which would match the
specifications of the active spacecraft that would be on a mission. This allowed them to quickly figure out what was
causing problems in the spacecraft in outer orbit and how to resolve them. This implementation was still analog and
physical rather than digital. The first digital twins of a physical object were observed in the 1970s and 1980s also
developed by NASA [2]. They developed simulations of spacecraft equipment to help monitor and predict system
behavior—an effort largely driven by the need to prevent incidents like the Apollo 13 mission failure in 1970. With
the fourth industrial revolution, also known as Industry 4.0, it became much easier and affordable to create digital
twins due to the digitalization and use of automation.

Digital twins reduce maintenance costs and give developers of controlling software a method of verification without
risking physical damage to the machine [1]. A digital twin enables testing of machine designs and iteration on the
design without the need to produce a physical prototype. Training for the specific machine can be done virtually,
increasing safety and quality assurance. Enabling interaction in real time with the machine through the digital twin
enhances production efficiency and minimizes maintenance disruptions by enabling predictive maintenance and
process optimization.

Digital twins can be split up into three classes [3]. The first class is a simple digital model. It is a representation of
an existing or planned physical object that does not use any form of automated data exchange between the physical
object and the digital object. A change of state in the physical object or machine has no direct effect on the digital
object and vice versa. The second class is a digital shadow that has a one-way data flow from the physical object or
machine to the digital one. A change of state in the physical object or machine is reflected in the digital clone, but
not the other way around. The third and final classification is a full digital twin, where data flows in both directions.
A change of state in either the physical or digital object is reflected in both.

For this thesis, we use the term ‘digital twin’ to refer specifically to a digital model, meaning a representation of a
physical object without automated data exchange between the physical and digital counterparts. This distinction
is necessary because, although the concept of a digital twin is applicable, our work does not consider a physical
counterpart of the machine.

3.3 Open Platform Communications Unified Architecture
Open Platform Communications Unified Architecture (OPC UA) is a standard used for the secure exchange of data
in the industrial automation space and is used to control industrial machines. OPC UA [4] is the successor standard
to the Open Platform Communications (OPC) standard. The previous standard is an interoperability standard for
the secure exchange of data in the industrial automation space. It was first released in 1996 with the purpose of
abstracting programmable logic controller (PLC)-specific protocols such as Modbus or Profibus into a standardized
interface. The initial version was specific to the Windows platform. Due to this limitation, a second standard, OPC
UA, was created to be a service-oriented, platform-independent, scalable and extensible standard. OPC UA has
security built into the standard with encryption, authentication and auditing.

OPC UA introduces key features such as discovery of available servers, a hierarchical address space for structured
data, on-demand read/write access, subscriptions for real-time updates, event notifications, and method execution
[5]. OPC UA is hardware independent and can run on traditional PC hardware, cloud-based servers, PLCs, micro-
controllers and more. The new standard can also run on various operating systems such as Windows, macOS,
Android or any distribution of Linux and more.

In OPC UA, the address space is made up of nodes. An OPC UA node is like an entity representing some information
[6]. Each node contains a unique identifier to distinguish between them, which also enables reading or writing

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 5 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

values to and from it [7]. In order to communicate with the server that contains the nodes, a client is required. A
client is responsible for the communication with the server. It opens a connection via the Transmission Control
Protocol (TCP) to the server. TCP is the primary protocol used to communicate with the server but OPC UA also
supports Hypertext Transfer Protocol Secure (HTTPS), Message Queuing Telemetry Transport (MQTT), Advanced
Message Queuing Protocol (AMQP), User Datagram Protocol (UDP) and WebSockets.

3.4 Unreal Engine
Unreal Engine1 is one of the leading real-time 3D creation tools for photorealistic visuals and immersive experi-
ences. It features dynamic physics, lifelike animation capabilities and is extensible to specific needs [8]. The engine
is widely used across various industries, including game development, film production, animation, live events,
automotive design, simulations, and architecture [9].

The community is very large and the engine is used by large corporations as well as by hobbyists. There are
thousands of tutorials [10] online that teach everything from basic usage to very detailed nuances of the engine
and the underlying pipeline.

The developer and maintainer of Unreal Engine is Epic Games [11]. The engine was first showcased in the 1998
first-person shooter video game “Unreal” and has been developed and released ever since then [12]. Unreal Engine
is written in C++ and is highly adaptable and features a high level of portability supporting desktop, mobile, console
and virtual reality applications. The first version of the engine that was downloadable for free was Unreal Engine
4 that was released in April 2014. The latest version, Unreal Engine 5, was released in April 2022 and the source
code is available on Github.

Epic Games uses a royalty pricing model, charging five percent of all revenue that surpasses USD $1 million [11].
Games that are exclusively published on their own game distribution platform Epic Games Store are exempt from
any royalty payments.

A project in Unreal Engine can be programmed in C++ or by using the visual scripting system called Blueprints.
Blueprints is a node-based programming language that allows developers to create game logic without writing code.
It is a powerful tool that enables rapid prototyping and iteration of game mechanics. Blueprints is designed to be
user-friendly and accessible so that even developers with little to no programming experience can manage to create
complex game logic. Unreal Engine provides a vast library of pre-built nodes that can be used directly for most
common tasks. For more advanced tasks, developers can create custom Blueprint functions by implementing them
in C++ and exposing them to the Blueprints system. This approach allows developers to combine the performance
and flexibility of C++ with the ease of use and rapid development capabilities of Blueprints.

1In this thesis, we analyze both Unreal Engine and Unity. We ultimately selecting Unreal Engine. To provide context, we introduce
Unreal Engine here at the beginning.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 6 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

4 Deliverables
In the following, we list the deliverables of our project.

4.1 Analysis of game engines
We will analyze different game engines that are well known and widely used. In the analysis, we will take multiple
factors into account and weigh them against each other. Based on the analysis, it will show why we decided to use
Unreal Engine as the game engine for this project.

4.2 Integration of OPC UA client in the game engine
A major part of the project is to enable developers to create a digital twin of a machine. To achieve this, we need
to integrate an OPC UA client into the game engine in a way that is easy to use and understand. The integration
will be designed for reusability across different projects and machines.

4.3 Blueprint functions
We will leverage the Blueprints system of Unreal Engine to create building blocks, called Blueprint functions.
Blueprint functions are reusable pieces of logic that can be used in the visual scripting system Blueprints to perform
specific tasks or operations. They can be thought of as custom nodes that encapsulate a specific functionality,
making it easier to use and understand within the visual scripting environment of Unreal Engine Blueprints system.
These functions can be created in C++ and are then exposed to the Blueprints system with annotation macros. The
main responsibility of the custom Blueprint functions that we will create is to enable communication with the OPC
UA server without the need to write C++ code. We will abstract the complexity of the OPC UA client and provide a
simple interface for interacting with the server. The building blocks will be reusable and can be extended for more
advanced and specific use cases.

4.4 Models
We will develop some example models. These will be simple implementations of parts of a package transporting
machine. These models serve as a demonstration of how to use the custom Blueprint functions and how to interact
with the OPC UA server. The models will be simple enough to be understandable and easy to use, but complex
enough to demonstrate the capabilities of the custom Blueprint functions we developed.

4.4.1 Pneumatic cylinder
The first model is a pneumatic cylinder. The pneumatic cylinder can be extended and retracted through a pressure
valve. The valve is controlled by an OPC UA server provided by AVM Engineering AG.

When the valve is opened, the cylinder extends and when fully extended, a sensor notifies the server of the final
position. When the valve is depressurized, the cylinder retracts and when fully retracted, a sensor notifies the server
of the final position.

The following two images, represent a mockup of the pneumatic cylinder in two different states. Figure 3 shows
the retracted state and Figure 4 shows the extended state. The images are not part of the simulation, but rather
a mockup.

Figure 3: 2D mockup of a retracted pneumatic cylinder
and its green sensor which will detect the position of

the piston.

Figure 4: 2D mockup of an extended pneumatic cylin-
der and its green sensor which will detect the position

of the piston.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 7 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

4.4.2 Conveyor belt
The second model is a conveyor belt that can be turned on. On top of the conveyor belt, packages can be placed
and they will move as soon as they are in contact with the conveyor belt. Collision will also be a part of the model,
preventing packages from passing through one another. The conveyor belt has a speed that can be set through the
OPC UA server, as well as a target position. The target position is incremented by the server based on the speed
of the conveyor belt at every tick of the server. This target position is then used to determine the position of the
packages on the conveyor belt2.

A mockup of the conveyor belt is shown in Figure 5, where there is a conveyor belt with three packages on top of
it. Additionally, two sensors that are used to detect the packages.

Figure 5: Mockup of a the conveyor belt with three packages and two sensors for detecting packages.

4.4.3 Slide
The third and final model is a slide for packages where gravity and friction must be simulated. Collision should
also occur to prevent packages from sliding through one another.

A mockup of the slide is shown in Figure 6, where there is a slide with two packages on it. The slide has a slope
and the packages will slide down the slide due to gravity. The packages will also collide with each other and will
not be able to go through one another. The slide can be combined with a conveyor belt that feeds the packages into
the slide, as seen in Figure 6.

Figure 6: Mockup of a slide at the end of the conveyor belt. It will hold the packages as they fall of the belt and has
a sensor for counting the amount of packages that slid down.

2We do not use the speed because a real conveyor belt would also use the target position of the servomotor instead of a fixed speed.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 8 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

4.4.4 Combination
In the end, it is possible to combine these models into a single configuration where a pneumatic cylinder could
prevent packages from traveling along the conveyor belt and then at the end of the belt, the packages could slide
down the slide, as seen in Figure 7.

Figure 7: Mockup of the combination of all the models showing a complete machine lineup. The wall that prevents
the packages from moving is meant to represent a pneumatic cylinder. However, since it is difficult to depict in a

2D model, we used a wall instead for this mockup.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 9 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

5 Related work
Digital twins are well established in the industrial context and many different tools already exist today. Most of
the sophisticated products are developed by major brands like Mitsubishi, ABB or Siemens. The drawback of these
software product is, that they charge expensive licensing fees and that their customization usually is limited.

5.1 Commercial solutions
To have an overview over the products of the major brands we created a short summary for each one of them
during our research.

5.1.1 Mitsubishi Melsoft Gemini
Gemini is a well-established software that allows layout planning of entire factories, production, operation flow
simulation, digital twin creation for verification and virtual commissioning [13]. The software allows importing
custom parts into the simulation and writing custom scripts that control the operations of the machine. Mitsubishi
does not publicly announce the price of the software, likely because it is a premium product where the price varies
from customer to customer.

Advantages
• Seamless integration with the Mitsubishi ecosystem: It integrates well with the Mistubishi factory automa-

tion components, reducing the time and complexity of connecting and configuring real-world hardware.
• Support for custom screnarios and visualization: The platform allows for the creation of custom simulation

scenarios, including visualization of production flows, equipment behavior, and process logic, making it useful
for training, testing and optimization.

Disadvantages
• Limited flexibility: Custom use cases involving third-party hardware or non-Mitsubishi platform can be

challenging due to limited native support or more complex integration paths.
• Customization requires technical expertise: While it supports custom usage, implementing deeply cus-

tomized features or complex logic simulations often requires advanced scripting or in-depth knowledge of this
specific tool.

5.1.2 Azure Digital Twins
Azure is a platform-as-a-service (PaaS) and provides a digital twin solution that is very capable and feature-rich
[14]. It allows for the modeling of factory space and machine compositions, enabling the software to simulate
complex situations. Azure Digital Twins cannot directly communicate through OPC UA, which would hinder and
slow down a communication between Azure Digital Twins and an OPC UA server. It uses a pay-what-you-need
pricing model instead of larger upfront licensing fees.

Advantages
• Real time monitoring: Azure Digital Twins serves as a real time monitoring application that visualizes the

current state of the factory.
• Pricing: As mentioned above, they use a pay-what-you-need pricing model. This can turn out cheaper than other

competitors due to its configurable nature, where customers only pay what they really use in their in the project
and not whole packages.

Disadvantages
• Service Limits and Throttling: Azure Digital Twins is limited due to its online nature. Adjustments, bad

connectivity or a bad throughput can have a negative impact on the performance. Although this is not important
for this project, reviewing this shows, that an offline solution will suffer from such connection problems.

• Data Security: Since it is an online service via the Azure cloud, security leaks can always happen. It can never
be as safe as an offline solution since the data could possibly always be accessed via the network traffic. But this

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 10 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

is a topic that Azure takes very seriously and they have a lot of security measures in place to protect the data.
However, it is still a risk that needs to be considered.

5.1.3 Siemens SIMIT
SIMIT from Siemens is also a feature-rich solution that natively supports OPC UA [15]. It focuses on simulating
and testing of industrial machines, but without visualizing the machine and factories in a 3D space. The licensing
is also not publicly available, but is suspected to be similar to Mitsubishi Melsoft Gemini.

Advantages
• Training environment: The platform provides a realistic training environment when the simulations comes to

data. It will return exact measurements of the simulated machines, but it is not possible to view it in 3D. The goal
is to let unfamiliar workers practice on the simulation, before they can work on the real-world machines.

• Comprehensive testing: SIMIT also allows users to do real-world simulations for testing purposes. These are
precise and contain a lot of data about the machine. This can be done in advance of a real-world machine.

Disadvantages
• Integration challenges: similar to Mitsubishi Melsoft Gemini, Siemens SIMIT works perfectly fine with Siemens

machines, but problems can occur when using third-party systems.
• Learning curve: Since Siemens SIMIT is also a standalone product, one would have to learn a lot of new

functions. It is necessary to understand how the software works to avoid real-life casualties.

5.1.4 ABB RobotStudio
ABB RobotStudio is a simulation and offline programming software for industrial robots and machines [16]. It
allows users to create, simulate and optimize robot programs in a virtual environment. The software is designed to
work with ABB robots and controllers, making it a powerful tool for users in the robotics industry.

Advantages
• Strong VR support: RobotStudio has strong support for virtual reality (VR) and augmented reality (AR) appli-

cations. This allows users to visualize and interact with their robot programs in a more immersive way, allowing
also allowing for better training and understanding of the machine.

• Offline programming: RobotStudio allows users to program robots offline, which can save time and reduce
the risk of errors during programming. This is especially useful for complex applications where real-time
programming may not be feasible.

• Integration with ABB robots: RobotStudio is designed to work seamlessly with ABB robots and controllers,
making it a powerful tool for users in the robotics industry. This allows for easy integration and programming
of ABB robots.

Disadvantages
• Limited to ABB robots: RobotStudio is primarily designed for use with ABB robots and controllers, which may

limit its applicability for users working with other brands or types of robots. This can be a significant drawback
for users who require a more flexible solution.

• Cost: RobotStudio is a commercial software, and the cost of licensing can be a barrier for some users. This may
limit its accessibility for smaller companies or individuals who are looking for a more affordable solution.

5.1.5 Visual Components
Visual Components is a 3D simulation software that allows users to create and simulate complex manufacturing
processes [17]. It is designed for use in the manufacturing and industrial sectors, providing tools for modeling,
simulation, and analysis of production systems.

Advantages

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 11 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

• Entire factory simulation: Visual Components allows users to create and simulate entire factories, including
machines, robots, and other components. This enables users to visualize and optimize their production processes
in a virtual environment.

• Protocol support: The software supports a wide range of protocols, including OPC UA, which allows for easy
integration with other systems and devices without any vendor lock-in. This makes it a powerful tool for users
looking to connect their simulation with real-world data.

Disadvantages
• Cost: Visual Components is a commercial software, and the cost of licensing can be a barrier for some users. This

may limit its accessibility for smaller companies or individuals who are looking for a more affordable solution.
• Learning curve: The software can be complex and may require a significant amount of time to learn and master.

This can be a barrier for users who are new to simulation software or who have limited experience in the field.

5.2 Similar projects
Since most of the papers and thesis focus either on the OPC UA communication or the 3D visualization we write
two summaries for either type.

5.2.1 Theses and papers focusing on OPC UA communication
A number of theses center their contributions on the use of OPC UA for connecting digital twins with real-
world industrial systems. These projects typically focus on data communication, control integration, and system
monitoring, often prioritizing backend architecture over immersive visualization.

For instance, the digital twin of a warehouse project integrates OPC UA within Unreal Engine 4.26 specifically
for TwinCAT 3, noting incompatibilities with Unreal Engine 5 [18]. Similarly, the OPC UA client/gateway-based
architecture for SCADA systems develops a hybrid framework emphasizing safety and fatigue monitoring rather
than 3D immersion [19].

Other works explore industrial data exchange through web services, like the real-time two-way data transfer
framework, which employs OPC UA as a data backbone but emphasizes a web-based API for interaction [20].
The thesis Industry 4.0 - Digital twins and OPC UA also applies OPC UA to connect a robotic production cell
with its digital counterpart, but uses Visual Components instead of a real-time 3D game engine [21]. Likewise,
the immersive digital twin and web-based digital twin theses implement OPC UA in Unity to monitor Industry 4.0
processes, with a focus on communication protocols over immersive fidelity [22], [23].

In contrast to these works, our approach uniquely integrates OPC UA directly into Unreal Engine 5, achieving
seamless, secure, and real-time data access. We address the compatibility issues others encountered and provide
not just data connectivity, but also full 3D immersion, bridging industrial machine data with high-performance
visualization in UE5.

5.2.2 Theses and papers focusing on 3D visualization in Unreal Engine
Several projects investigate the visualization capabilities of Unreal Engine 5 (UE5) or Unity in the context of digital
twin development, emphasizing immersive 3D environments, high-fidelity rendering, and simulation tools.

The wind turbine simulation study showcases UE5’s ability to simulate physical conditions like wind speed and
turbine mechanics in a virtual setting. Although visually advanced, this project doesn’t involve live machine
integration via industrial protocols like OPC UA [24]. Similarly, the master thesis on digital twins leverages UE5
and a RESTful API for real-time synchronization but omits OPC UA entirely [25].

Another notable example is the Unreal Engine 5 based digital twin platform, which proposes a modular, user-
friendly architecture for building scalable digital twins. However, it focuses on UI/UX design and development
efficiency rather than backend communication with control systems [26]. The paper Which architecture should be

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 12 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

implemented… discusses scalable data architectures in mixed reality scenarios using IoT data in UE5, yet does not
apply OPC UA for real-time machine interfacing [27].

Additional work like Combining digital twins of robotic systems… integrates high-end simulation tools (e.g.,
VEROSIM [28]) with UE5 to enhance user interaction and physical accuracy, but lacks industrial communication
protocols [29].

Our project distinguishes itself by combining immersive 3D visualization in Unreal Engine 5 with live, industrial-
grade data streaming via OPC UA. We enable real-time, bidirectional communication with physical systems,
resulting in a digital twin that not only looks realistic but also operates in sync with actual machines—a level of
integration not achieved by the visualization-centric projects listed above.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 13 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

6 Requirements
In the following subchapters, we describe the requirements for the building blocks and the simulation. The
requirements are divided into functional and non-functional requirements. The functional requirements describe
the behavior of the simulation and the building blocks. The non-functional requirements describe the quality of
the simulation and the building blocks.

6.1 Functional requirements
In this chapter we describe the functional requirements for the simulation and the Blueprint functions that we
will create. Certain requirements are kept brief, while the most important requirements are described with a fully
dressed requirement template. The template for the use cases is based on Craig Larman’s template [30] for brief
and fully dressed use cases.

6.1.1 FR1: Connect to OPC UA server
Main success scenario

• The Unreal Engine establishes a single connection to the OPC UA server. The connection is accessible from all
components of the simulation and can be shared in order to reduce the number of connections.

Alternate scenario

• If the connection cannot be established, the simulation should clearly display that the connection failed, and the
user should be able to try to connect again.

6.1.2 FR2: Read boolean from OPC UA server
Scope Blueprint functions
Level User-goal
Primary actor Unreal Engine application
Stakeholders and interests

• Developers: The developers want to read a boolean value from the OPC UA server. The developers want to be
notified, if the read was not successful.

• OPC UA server: The server prefers that the client does not overload the server with too many requests.

Preconditions

• Connection to the OPC UA server is established.
• OPC UA node that contains a boolean value exists on the server.

Main success scenario

1. Blueprint function checks if a connection is established.
2. Blueprint function requests the boolean value from the server.
3. Blueprint function receives the response.
4. Blueprint function parses the response to a boolean.
5. Blueprint function passes the boolean back to the callee.

Alternate scenario

• If the connection is not established, the Unreal Engine should display an error message.
• If the OPC UA node does not exist, the Unreal Engine should display an error message.
• If the response is not a boolean, the Unreal Engine should display an error message.

Extensions The read request could also be applied to other data types like integers, floats, strings, etc.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 14 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

6.1.3 FR3: Write boolean to OPC UA server
Scope Blueprint functions
Level User-goal
Primary actor Unreal Engine application
Stakeholders and interests

• Developers: The developers want to write a boolean value to the OPC UA server. The developers want to be
notified if the write was not successful.

• OPC UA server: The server prefers that the client does not overload the server with too many requests.

Preconditions

• Connection to the OPC UA server is established.
• OPC UA node with boolean value exists on the server.

Main success scenario

1. Blueprint function checks if a connection is established.
2. Blueprint function sends the write request to the server.
3. Blueprint function receives the response.
4. Blueprint function parses the response to a boolean.
5. Blueprint function passes the boolean back to the callee.

Alternate scenario

• If the connection is not established, the Unreal Engine should display an error message.
• If the OPC UA node does not exist, the Unreal Engine should display an error message.
• If the response is not a boolean, the Unreal Engine should display an error message.

Extensions The write request could also be applied to other data types like integers, floats, strings, etc.

6.1.4 FR4: Subscribe to boolean from OPC UA server
Scope Blueprint functions
Level User-goal
Primary actor Unreal Engine application
Stakeholders and interests

• Developers: The developers want to subscribe to a boolean value from the OPC UA server. The developers want
to be notified if the subscription was not successful.

• OPC UA server: The server prefers that the client does not overload the server with too many requests.

Preconditions

• Connection to the OPC UA server is established.
• OPC UA node with boolean value exists on the server.

Main success scenario

1. Blueprint function checks if a connection is established.
2. Blueprint function sends a subscribe request to the server.
3. Blueprint function is notified as soon as the boolean changes.
4. Blueprint function triggers the callback function with the new boolean value.

Alternate scenario

• If the connection is not established, the Unreal Engine should display an error message.
• If the OPC UA node does not exist, the Unreal Engine should display an error message.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 15 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Extensions The subscription could also be applied to other data types like integers, floats, strings, etc.

6.1.5 FR5: Pneumatic cylinder simulation
Main success scenario The simulation of a pneumatic cylinder is displayed in the Unreal Engine. The cylinder

can be extended and retracted by a boolean value from the OPC UA server. The pneumatic cylinder is animated,
and the user can see the cylinder moving in real time. The cylinder blocks the path of anything that tries to
pass it. The cylinder notifies the server when it is fully extended or retracted.

6.1.6 FR6: Conveyor belt simulation
Main success scenario The simulation of a conveyor belt is displayed in the Unreal Engine. The conveyor belt

can be turned on, or off. Additionally, when turned on, the desired speed can be set. The conveyor belt is
animated and the user can see the belt moving in real time. The belt moves anything that is on top of it.

6.1.7 FR7: Slide simulation
Main success scenario The simulation of a slide is displayed in the Unreal Engine. The slide makes use of friction

and gravity in real-time. Packages that slide down the slide will increase a counter above it, to show how many
packages passed the slide.

6.1.8 FR8: Spawn packages
Main success scenario In the OPC UA server, one can create packages with specific dimensions and a certain

weight. These packages are then spawned in the Unreal Engine. The packages are displayed in the simulation
and can interact with the rest of the simulation. The packages get a unique ID which is used to identify them.

6.1.9 FR9: Delete packages
Main success scenario In the OPC UA server, one can delete packages by specifying the desired package through

the unique package ID. If a package with that ID exists, it is deleted from the simulation. If no package with
that ID exists, nothing happens.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 16 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

6.2 Non-functional requirements
The following non-functional requirements are listed and categorized according to ISO/IEC 25010 [31].

6.2.1 NFR1: Functionality on Windows and macOS
Category Compatibility -> Interoperability
Preconditions Unreal Engine and C++ are installed and set up correctly.
Description The Unreal Engine project, used to design the digital twins, must run on both Windows and macOS.3
Acceptance criteria Users can start the project in Unreal Engine on Windows and macOS, and can work on it or

adapt it further.
Verification process

• Clone the Git repository.
• Setup according to the README.
• Open the project in Unreal Engine.
• Check if the application can complete all processes successfully.

Verification period After every construction sprint, the project will be checked for compatibility on the two
different operating systems.

6.2.2 NFR2: The setup of our project requires no additional installments.
Category Flexibility -> Installability
Preconditions Unreal Engine and C++ are installed and set up correctly.
Description The project, must be easy to set up. The user should be able to run it without additional installments

on Windows and with only a single installment on macOS.
Acceptance criteria A user should be able to clone the Git repository and open the project in Unreal Engine on

Windows with no additional installments and on macOS with a single additional brew installment.
Verification process

• Clone the app from the gitlab repo.
• (macOS: install open62541 via brew.)
• Open the project in Unreal Engine.
• Setup according to the README.
• Run the demo digital twin.

Verification period After every construction sprint.

6.2.3 NFR3: The documentation is written in a detailed and explanatory way
Category Product Quality -> Quality use
Preconditions -
Description The documentation helps developers that are unfamiliar with the project, to develop their own

feature.
Acceptance Criteria A user familiar with Unreal Engine, but new to the project, can create their own digital

twin relying solely on the documentation. He should not need to look up for help online, (excluding unrelated
Unreal Engine knowledge).

Verification process

• Have someone who is familiar with Unreal Engine start up the app.
• Verify they can independently create a digital twin using only the documentation.

Verification period After the “M4 Conveyor belt model is finished” milestone.

3Linux is not supported because our customer has no Linux devices and thus was not the focus of this thesis.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 17 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

6.2.4 NFR4: Simple and easy to understand graphics
Category Interaction Capability -> User Error Protection
Preconditions -
Description Digital twin elements should be visually distinguishable.
Acceptance criteria A user familiar with Unreal Engine can identify static objects, fixed movable objects, freely

movable objects, and contact lasers by observation.
Verification process

• Have someone who is familiar with Unreal Engine start up the app.
• Verify they can correctly identify elements based on appearance.

Verification period After the “M4 Conveyor belt model is finished” milestone.

6.2.5 NFR5: The project does not require a high-performance computer
Category Performance Efficiency -> Resource Utilization
Preconditions The graphic settings are set according to the README.
Description The project should run smoothly on a standard office computer without the need for a good GPU.
Acceptance criteria The Unreal Engine project should run on a basic office computer. We will test this on the

office computers of AVM Engineering AG.
Verification process

• Have someone who is familiar with Unreal Engine from AVM Engineering AG start up the app on their office
computer.

• The whole project should run on at least 30+ FPS.

Verification period After the “M3 Cylinder model is finished” milestone.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 18 / 85
OST RJ

Part II
Product realization

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

7 Analysis
In this chapter, we analyze the game engines and the OPC UA clients to determine the most suitable options for
our thesis project. For this thesis, we considered two game engines: Unity and Unreal Engine 5. These two engines
were selected because they are the most widely used, well-documented, and actively maintained game engines
available today. Both offer advanced physics capabilities, robust 3D rendering, and large, active communities, which
are essential for a project of this scope. Additionally, both engines provide free licenses for educational or non-
commercial use, making them accessible for academic research. Other engines were excluded due to limited feature
sets, smaller communities, lack of long-term support, or restrictive licensing that does not align with the open and
extensible nature required for our thesis.

7.1 Utility value analysis of game engines
To determine the best game engine for our project, we will perform a utility value analysis. First, we will assign
an importance weight to each criterion, ranging from zero to one, where zero means it is not important, and one
means it is essential. Next, we will research each engine’s performance on these criteria and rate how well each
engine meets them, using a scale of one to ten (where one means it does not support the criterion, and ten means
it fully supports it). To calculate the final score, we will multiply the importance weight by the fulfillment rating
for each engine. The engine with the highest total score will be the best fit for our project.

7.1.1 Criteria
To evaluate the best solution, we need criteria for a good rating. These are the criteria we chose:

• Assistance: Are there people we know that have knowledge about this game engine? Since we both have little
knowledge about either game engine, a person that can support and help us in the developing process can be
really helpful.

• License: Since this will be an open source project with no commercial use, a license policy that suits this project
is really important. We want to make this software free to use without any license. Additionally, we want to
minimize potential costs for our external partner AVM Engineering AG.

• Programming language: Preference is given to a game engine that utilizes a programming language with which
both team members are already familiar, or that is similar to languages they know, to facilitate a more efficient
start to the construction phase. It is also important that the programming language is widely supported, with
an extensive selection of libraries and examples available, to minimize the need for developing functionality
from scratch.

• Performance: Since the main goal is to develop digital twins for testing industrial machine logic, high-end
graphics performance is not essential. However, the simulation should still operate smoothly and reliably during
use.

• Compatibility: Broad compatibility across operating systems is essential to ensure that the software can be
developed and executed on both macOS and Windows platforms. This facilitates collaboration and increases the
accessibility of the simulation environment.

• 3D Rendering Capabilities: The visual complexity of the constructions required for this project is relatively
low, and advanced visual effects such as sophisticated shadows or lighting are not essential. However, it remains
important that the engine provides clear and accurate visualization of components and their interactions to
support effective simulation and analysis.

• Community support: AVM Engineering AG plans to use this tool also in the future, so long term support is
crucial. A good support of a capable community is also an important criteria. It helps the development process if
libraries and code is kept updated.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 20 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

• Flexibility: The goal of this thesis is to build a foundation for further development in the area of digital twins.
Therefore, it is important that this foundation is flexible and can be adapted to all sorts of industrial machines.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 21 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

7.1.2 Utility value analysis for Unreal Engine

Criteria Weight Score Total
Assistance 0.15 6 0.9

License 0.25 9 2.25
Programming language 0.15 4 0.6

Performance 0.05 5 0.25
Compatibility 0.1 7 0.7

Graphics 0.05 9 0.45
Community support 0.2 9 1.8

Flexibility 0.05 6 0.3
Total 1 55 7.25

Table 1: Utility value analysis for Unreal Engine.

• Assistance: Our external Partner AVM Engineering AG has developers that use Unreal Engine in their free time
for smaller projects. We could ask for help there, but because they also only have the basic knowledge and are
not directly involved in the project, it would not be feasible to rely on the assistance from these developers. (6)

• License: Unreal Engine provides a free license for smaller companies or individuals [32]. They only require
a license when the company or individual surpasses a gross product revenue of one million USD. For schools
and educational projects there is no license fee. For larger companies it depends on the product if one either
pays a royalty or a seat-based license fee. If the product requires the game engine at runtime like a game or VR
simulation, one has to pay 5% of all gross revenue that is directly attributable to the product, using Unreal Engine.
If the product used Unreal Engine in the process but not at runtime like a movie show, one has to pay a seat-based
licensing fee. Unreal Engine only requires a royalty payment once a substantial amount of revenue is generated
from the product, making it a more financially attractive option. (9)

• Programming language: Unreal Engine uses either C++ or a visual node-based programming called Blueprints.
Silvan has basic knowledge of C++ but has not used the language in a variety of projects. Isaia has not worked
with the language previously and is not very familiar with it. (4)

• Performance: Unreal Engine is optimized for high-end, AAA4 games with advanced graphics, which means it
can be resource-intensive. While it is possible to develop smaller projects and adjust settings to reduce hardware
demands, the engine generally requires more powerful computers to run smoothly. With appropriate optimiza-
tions, it can still perform adequately on standard office machines. (5)

• Compatibility: Unreal Engine runs on Windows macOS, and Linux. The downside is, that it has really limited
support for web [33]. We could not find any long-term support versions of Unreal Engine, but we do not think
that this is necessary because one does not really update the game engines of a game or in this case a simulation.
It is important that a reliable and up-to-date stable version is available for use in this project. (7)

• Graphics: Unreal Engine is famous for its high-quality graphics and realistic rendering. It is widely used for AAA
games, films, architectural visualization, and simulations because of its advanced rendering capabilities. Unreal
Engine uses multiple systems in their engine. Lumen is Unreal Engine’s real-time global illumination system that
provides realistic lighting, dynamic reflections, good performing ray tracing [34]. Furthermore, there is Nanite,
Unreal’s virtualized geometry system, enabling high-detail environments, billions of polygons on screen at once,
no need for level of detail or manual optimizations [35]. Unreal Engine also offers physically-based rendering for

4AAA (pronounced “triple-A”) games are large-scale, high-budget video games produced by major studios, known for their advanced
graphics, complex gameplay, and high production values.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 22 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

realistic materials [36]. Unreal Engine offers advanced graphical capabilities, but many of these features are not
essential for the requirements of this project. (9)

• Community support: Unreal Engine benefits from a large and active community. Numerous tutorials, forums,
and online resources are freely available, making it accessible even for beginners. The community is supported by
Discord servers, subreddits, and comprehensive official documentation, providing extensive support for a wide
range of topics and questions. (9)

• Flexibility: Unreal Engine offers significant power through C++ and the Blueprint system, but its complexity can
make large projects harder to manage. The engine is optimized for high-end visuals by default, which is more than
required for our use case. Unreal Engine 5 lacks native web support, which could limit future deployment options
if AVM Engineering AG wishes to run simulations in a browser. Its strict code conventions and extensive built-in
features can make deep customization more challenging. However, Unreal Engine’s robust built-in physics system
is a strong advantage, as it enables adaptable simulations without requiring custom physics implementations. (6)

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 23 / 85
OST RJ

https://discord.com/invite/unreal-engine-978033435895562280
https://www.reddit.com/r/unrealengine/
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-5-5-documentation

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

7.1.3 Utility value analysis for Unity

Criteria Weight Score Total
Assistance 0.15 8 1.2

License 0.25 4 1
Programming language 0.15 7 1.05

Performance 0.05 8 0.4
Compatibility 0.1 10 1

Graphics 0.05 7 0.35
Community support 0.2 10 2

Flexibility 0.05 8 0.4
Total 1 62 7.4

Table 2: Utility value analysis for Unity.

• Assistance: Our advisor Dr. Christoph Gebhardt has worked with Unity on multiple occasions and could help
us during the development process directly. If the project would be used later on by AVM Engineering AG, they
would have to build up the experience for the game engine first, reducing the score a bit. (8)

• License: Unity comes with a free license for small businesses and individuals that make less than 200,000 USD in
revenue or funding in the prior 12 months [37]. For businesses that make more than 200,000 USD are required to
purchase a Unity Pro license, business with more than 1,000,000 USD, are required to purchase a Unity Industry
license. Our school project would fall under the free plan and our external partner AVM Engineering AG would
have to purchase a Unity Industry license. (4)

• Programming language: Unity uses C# as its main programming language, which both Isaia and Silvan have
prior experience with, though neither is an expert. (7)

• Performance: Unity is generally lightweight but can become demanding depending on the project. It performs
well on a wide range of hardware, from low-end laptops to high-end gaming PCs. (8)

• Compatibility: Unity is compatible with almost every environment. Windows, macOS, Linux, Mobile, Web,
consoles, and more. (10)

• 3D Rendering Capabilities: Unity’s graphics are not as advanced as those of Unreal Engine, but they are more
than sufficient for our needs. Unity offers a high-definition render pipeline with realistic lighting, reflections,
high-quality shadows, physically based rendering, and support for high-quality assets and large-scale environ-
ments [38], [39]. It also provides a universal render pipeline for mobile and cross-platform development. While
less complex than Unreal Engine, Unity’s lightweight design and straightforward architecture offer greater
flexibility in rendering. (7)

• Community support: Unity boasts one of the largest and most diverse developer communities, spanning mobile,
web, and PC platforms. This diversity brings a wide range of perspectives and solutions to various challenges.
A significant advantage is the Unity Asset Store, where users can access and share libraries and models, often
for free [40]. Unity also supports external and custom user-created libraries, which can help reduce development
effort by providing reusable components that may already fit our project needs. (10)

• Flexibility: Unity is quite a flexible game engine. As mentioned above it uses C# and Bolt (visual scripting). A big
plus for Unity is the compatibility across multiple platforms. Unity supports Web, Mobile, and AR/VR. Unity also
supports 2D graphics. It does not force a specific workflow on developers, which makes it flexible for different
programming styles. (8)

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 24 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

7.1.4 Summary
To summarize this analysis we created a list with the most important pros and cons of either game engine.

7.1.4.1 Unreal Engine
Pros
• Free license for non-commercial use
• High-quality and visually appealing graphics
• Extensive built-in tools, making it a highly versatile and powerful engine
• Large community with excellent support

Cons
• Relies on C++ as the primary language, which is complex and has a steeper learning curve
• Limited native support for web platforms
• Heavy and resource-intensive game engine

7.1.4.2 Unity
Pros
• Utilizes C# as its programming language, which is straightforward and user-friendly
• Lightweight game engine with essential and effective built-in features
• Has a large community and an asset store, offering user-created libraries and resources
• Offers native support for web deployment

Cons
• Requires an annual license fee of USD 4,000.
• Graphics quality is not as advanced as Unreal Engine

7.1.5 Conclusion
After presenting the analysis results to AVM Engineering AG, the license cost associated with Unity was deemed a
significant drawback. Considering this and the relatively close utility values of both game engines, we have decided
to proceed with Unreal Engine for this thesis.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 25 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

7.2 Analysis of OPC UA clients
In order to connect to an OPC UA server, we will need a client that handles the request, session and state
management. There are multiple different implementations of the OPC UA standard in different languages.

7.2.1 open62541
open62541 [41] is an open-source implementation of the OPC UA standard in C, using the C99 standard. It is licensed
under the Mozilla Public License Version 2.0 [42], and thus can be used for free even in commercial projects. It runs
on different platforms like macOS, Linux, Windows, or even embedded systems. It has a small memory footprint
and supports subscriptions, read/write operations, method calls, alarms and conditions, events, encryption, and
authentication. Because the client is written in C and Unreal Engine uses C++, it would be possible to directly use
the library in the C++ source code without the need to implement a separate layer for Unreal Engine to talk to the
OPC UA server.

7.2.2 Unified Automation C++ SDK
Unified Automation is a software company specializing in OPC UA technology, providing toolkits, SDKs, and devel-
opment frameworks for industrial communication. Unified Automation distributes a C++ library that is capable
of creating an OPC UA client in order to talk to an OPC UA server. It requires a license for commercial projects
and is closed sourced [43]. The target platform is limited to Windows and Linux. The client supports read/writes,
subscriptions, method calls, and alarms. Since it is a C++ library it could be directly used in an Unreal Engine project
without the need to implement a separate layer for Unreal Engine to talk to the OPC UA server. We consider it a
less suitable alternative to open62541, as it is closed-source, requires a commercial license, and lacks support for
macOS. These limitations make it unsuitable for use in an academic thesis intended for open publication.

7.2.3 Softing C++ SDK
Softing provides a C++ SDK for OPC UA client development, similar to Unified Automation [44]. While it offers
comparable features, it also requires a license for usage, with pricing details not publicly disclosed. The supported
platforms include Windows, Linux, and VxWorks. Given the licensing requirements, lack of macOS support, and
the additional cost, this SDK is less suitable for our project. Consequently, we opted not to use this library as it does
not align with our project’s goals and constraints.

7.2.4 Node-OPCUA
Node-OPCUA is an open-source client/server implementation of the OPC UA standard in JavaScript, using Node.js
[45]. The library is feature rich and supports all required operations and subscriptions. The library is licensed under
MIT [46], and thus can be freely used in commercial projects. Because Unreal Engine uses C++ we would need
to create a separate layer through which we could communicate with the OPC UA server from the engine. This
would be a possible alternative if our preferred solution open61541 would not work. There is also a plugin for
Unreal Engine that enables support for JavaScript in Unreal Engine. The feature is experimental and not widely
used, for this reason we would prefer to not use it for our bachelor thesis. We want to keep the architecture as lean
as possible.

7.2.5 opcua-asyncio
opcua-asyncio is an open-source client/server implementation of the OPC UA standard in Python [47]. The library
is feature rich and supports all required operations and subscriptions. The library is licensed under LGPL Version
3 [48]. Because Unreal Engine uses C++, we would need to create a separate layer, through which we could
communicate with the OPC UA server from the engine. Similar to the approach with Node-OPCUA an extra layer
would mean extra effort, a bigger application, more languages, and overall a less organized project. If using an
additional layer becomes unavoidable, we would still prefer Node-OPCUA due to its open-source nature.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 26 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

7.2.6 Conclusion
We prefer open-source and free use over closed-source and licensing. Additionally, we aim to keep the system
complexity as low as possible to reduce maintenance requirements, while ensuring that the solution remains easily
extensible. For this reason, we decided to use open62541 instead of the other libraries because it is open-source,
free to use in commercial projects, already written in C so it can be compiled and used in the C++ project of the
game engine without the need for an extra layer. Additionally, the library has all the functionality we require to
create a digital twin and is actively maintained and developed. For these reasons, open62541 is the best option in
the context of our project.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 27 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8 Architecture
In this chapter, we summarize decisions, design patterns and explain the architecture of the software components
and how they interact with each other.

8.1 System context diagram
The system context diagram shows the overall architecture of the simulation. The simulation is divided into two
main components: the OPC UA server and the Unreal Engine simulation as seen in Figure 8. The OPC UA server is
responsible for providing the data to the simulation and the Unreal Engine simulation is responsible for rendering
the state of the machines. The tester interacts with the OPC UA server through a web-based dashboard that is
provided by the server. The tester can control the simulation by changing the state of machines. The Unreal Engine
simulation listens to the changes in the OPC UA server and updates the state of the visualized machines accordingly.

Figure 8: System context diagram for the whole setup and interaction between
the Unreal Engine the OPC UA server and a test user.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 28 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.2 OPC UA server
The OPC UA server is implemented using Node-RED. Node-RED is a graphical programming tool that uses a flow-
based programming approach where nodes are used to create application logic. It is based on JavaScript and is
designed for the Internet of Things (IoT) and data flow applications. Node-RED provides a web-based interface as
seen in Figure 9 for creating flows. We use node-red-contrib-opcua in order to define the OPC UA server address
space. In order to interact with the control software we use @flowfuse/node-red-dashboard to create a simple
dashboard that allows us to create simple buttons and sliders to control the simulation as seen in Figure 10. The
dashboard is accessible from any web browser and allows us to control the simulation in real time. While AVM
Engineering AG developed the majority of the server logic and dashboard, we implemented the logic for creating
and deleting packages on the server due to time constraints.

Figure 9: Node-RED editor configuration view for the Cylinder1 of the OPC UA server.

Figure 10: Node-RED editor dashboard view for the Cylinder1 of the OPC UA server.

The OPC UA server is a representation of a PLC used to control the simulation. The server enables the simulation to
read and write values from the OPC UA nodes and to subscribe to value changes. AVM Engineering AG chose Node-
RED to quickly deliver functionality with a simpler server setup, avoiding the complexity and cost of a custom PLC
server. However, this choice limits the server’s ability to handle rapid data changes, creating a bottleneck in our
simulation. Despite this limitation, it does not significantly impact our thesis, as the focus is on implementing and
integrating the OPC UA client with Unreal Engine.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 29 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.2.1 OPC UA server address space
The OPC UA server address space, as explained in Section 3.3, is defined in the Node-RED editor. The address space
is a hierarchical structure that defines the nodes and their data types. We created a simple address space where
each machine is represented by a folder where multiple nodes reside. The nodes have unique node ids that are used
to identify them. The nodes have a data type and a default value that is used to initialize them. In order to add a
new node to the address space, one can simply open the Node-RED editor, and open the Config tab where the node
Compact-Server-Refresh is located. Inside this node one can add the new OPC UA node as seen in Figure 11 an
in Listing 1.

Figure 11: Address space editor where the OPC UA nodes are defined and can be added

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 30 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

const packageManager = namespace.addFolder(part, { browseName: "PackageManager" });

namespace.addVariable({
 organizedBy: packageManager,
 nodeId: "s=PackageWidth",
 browseName: "Package Width",
 dataType: "Float",
 minimalSamplingInterval: 50,
 value: new Variant({ dataType: DataType.Float, value: 1 })
});
namespace.addVariable({
 organizedBy: packageManager,
 nodeId: "s=PackageHeight",
 browseName: "Package Height",
 dataType: "Float",
 minimalSamplingInterval: 50,
 value: new Variant({ dataType: DataType.Float, value: 1 })
});

Listing 1: Snippet of the address space configuration of the package manager where the variables PackageWidth
and PackageHeight are defined

8.2.2 OPC UA server logic
To define custom business logic for the server we created custom Node-RED flows that are used to process the
data. The flows are created using the Node-RED editor and can be easily modified. The flows are responsible for
creating the dashboard and the logic behind the buttons and sliders. For example as seen in Figure 12 the package
manager has four input fields where the dimensions of the package and its weight can be defined. The values are
then sent to the OPC UA server using the OPC UA Item node that is passed back to the OPC UA server. Additionally
it has two buttons, one that when pressed counts up the package counter which is a simple Int32 value to which
the simulation subscribes to. This allows the simulation to be notified whenever a package should be initiated. The
other button is used to delete a package. In order to delete a package a PackageID which is simply the counter value
of the package is required. When the button is pressed the ID set in the input field is sent to the OPC UA server
and the simulation is notified that the package with the given ID should be deleted.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 31 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 12: Flow configuration for the package manager where multiple input fields are defined and two buttons
that increase the respective counter on the OPC UA server.

The input nodes that were configured in Figure 12, also generate a fully functional web dashboard where the values
can be changed as seen in Figure 13.

Figure 13: Dashboard generated by the nodes for the package manager where packages can be created and deleted.

The logic behind the other flows is similar in concept but differ in the details. AVM Engineering AG implemented
the logic and dashboard for the remaining parts of the package sorting system.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 32 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.2.3 Limitations
The OPC UA server is not comparable to a real PLC server. It is a simple server that is used for demonstration
purposes only and was chosen because of its simplicity and ease of use. Many of the limitations of the project
are due to the limitations of the server and not due to the simulation or the building blocks. The server is not
capable of handling rapid data changes and is not designed for real-time data-intensive applications. Instead of
being able to read data changes rapidly we had to implement a cycling timer on the server where the interval of
the server, in which it accepts changes, can be adjusted. In tests we figured out that the minimum interval, where
the server can still perform, is 200 ms which is not ideal for a real-time application, but is sufficient for our use case
and demonstration of the building blocks. Additionally, the server is limited in the number of subscriptions and
connections that it can handle. Due to this, when opening to many subscriptions, an error message is printed to
the screen and to the log as seen in Figure 14. To increase the number of subscriptions, we had to manually adjust
the source files inside the Node.JS packages, by increasing the hard coded amount of subscriptions per connection
as documented in the README file inside the folder /server/.

Figure 14: Subscription error message because the server is limited in the number of subscriptions it can handle

The server interface utilizes Node-RED, which is based on JavaScript. However, JavaScript does not support certain
data types like Int64. As a result, the server cannot handle operations such as reading or writing Int64 values or
performing calculations on them. Despite this limitation, the simulation itself can still read and write Int64 values,
as the necessary building blocks for these operations are implemented and tested. If the server must process Int64
values, a workaround is to split them into two Int32 values. Alternatively, Int32 values can be used directly for
server-side logic. This limitation only affects the server’s ability to process Int64 values and does not impact the
simulation’s functionality.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 33 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.3 OPC UA client in Unreal Engine
Many components inside the Unreal Engine simulation require communication with the OPC UA server. In order
to keep connections minimal, we opted for a shared client between the components. We store the client in the game
instance [49]. In Unreal Engine, a game instance is a global persistent class that exists throughout the game’s entire
runtime, allowing you to store and manage data that needs to persist between levels or maps. The game instance is
created at the beginning when starting the simulation and will not be destroyed until the simulation is shutdown.
This allows us to create a single connection at the beginning and keep it open until the end. The game instance is
accessible from within the components and, thus, the client is accessible from all components.

The OPC UA client is implemented using the open62541 library. The library is a C implementation of the OPC
UA standard. To integrate the C library into Unreal Engine, we precompiled the library on both Windows and
macOS. The binaries together with the header files are imported into the Unreal Engine build pipeline as runtime
dependencies. On Windows the library is linked dynamically and on macOS it is linked statically because at the
time of writing this thesis, the dynamic linking for macOS was not working. Due to this limitation it is required to
install open62541 on macOS with Homebrew in order to use the project. The header files differ for Windows and
macOS. Due to this we adjusted the build script to include the correct header files depending on the platform of
the machine that was running Unreal Engine as seen in Listing 2.

string Open62541Path = Path.Combine(ModuleDirectory, "../ThirdParty/open62541");
if (Target.Platform == UnrealTargetPlatform.Mac)
{
 PublicIncludePaths.Add(Path.Combine(Open62541Path, "macOS/include"));
 PrivateIncludePaths.Add(Path.Combine(Open62541Path, "macOS/include"));
 string Open62541Lib = Path.Combine(Open62541Path, "lib/libopen62541.1.4.10.dylib");
 PublicAdditionalLibraries.Add(Open62541Lib);
 RuntimeDependencies.Add(Open62541Lib);
}
else if (Target.Platform == UnrealTargetPlatform.Win64)
{
 PublicIncludePaths.Add(Path.Combine(Open62541Path, "windows/include"));
 PrivateIncludePaths.Add(Path.Combine(Open62541Path, "windows/include"));
 string Open62541Lib = Path.Combine(Open62541Path, "lib/open62541.lib");
 PublicAdditionalLibraries.Add(Open62541Lib);
 RuntimeDependencies.Add(Open62541Lib);
}

Listing 2: Build script that includes the correct header files and links the correct library depending on the platform.

Additionally for Windows we had to include the winsock2.h and ws2tcpip.h header files in order to use the socket
library as seen in Listing 3. These includes are required in files where read or write operations are executed.

#ifdef _WIN32
 #include <winsock2.h>
 #include <ws2tcpip.h>
#endif

Listing 3: Windows specific includes for the socket library.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 34 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The behavior and configuration of the client is defined in the Source/industrialSimulation/Private/
Industrial_Sim_GameInstance.cpp file as seen in Listing 4. To adjust the behavior of the client, one can change
the settings there manually.

void UIndustrial_Sim_GameInstance::Init()
{
 Super::Init();
 UAClient = UA_Client_new();
 UA_ClientConfig_setDefault(UA_Client_getConfig(UAClient));

 UE_LOG(LogTemp, Log, TEXT("Attempting to connect to OPC UA server at URL: %s"), *ServerURL);

 // adjust to the correct server url
 UA_StatusCode status = UA_Client_connect(UAClient, TCHAR_TO_ANSI(*ServerURL));
 if (status != UA_STATUSCODE_GOOD)
 {
 UE_LOG(LogTemp, Error, TEXT("OPC UA Connection Failed with error code: 0x%X"), status);
 UA_Client_delete(UAClient);
 UAClient = nullptr;

 GetWorld()->GetTimerManager().SetTimerForNextTick(this,
&UIndustrial_Sim_GameInstance::TryShowErrorWidget);
 }
 else
 {
 UE_LOG(LogTemp, Log, TEXT("OPC UA Connection Successful!"));
 }
}

Listing 4: Configuration of the OPC UA client server connection which can be adjusted to the needs. The server
URL can be changed in the GameInstance.

To configure the server connection, we created a custom Blueprint wrapper around the game instance where the
variables can easily be adjusted without the need of recompiling the entire source code. The wrapper is editable
in the Unreal Engine editor by double clicking on the “GameInstance” Blueprint under /All/Content/SimBlank/
Blueprints/, as seen in the following two figures.

Figure 15: Content Drawer inside the Unreal Engine editor.
This is where the GameInstance is located.

Figure 16: OPC UA client connection settings to
configure the error message visualizer and the

server connection url.

)

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 35 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The game instance is accessible through the world context. In order for a custom blueprint to access the client, the
blueprint declaration requires the world context as a meta information as seen in Listing 5.

UFUNCTION(BlueprintCallable, Category = "OPC UA", meta = (WorldContext = "WorldContextObject"))
static FOptionalBool ReadBoolean(UObject* WorldContextObject, const FString& NodeId);
Listing 5: Declaration of a function that is accessible as a Blueprint in the Unreal Engine with the WorldContext

as a meta parameter.

Inside the function definition we can then access the game instance and the client as seen in Listing 6.

UIndustrial_Sim_GameInstance* GameInstance = Cast<UIndustrial_Sim_GameInstance>(
 WorldContextObject->GetWorld()->GetGameInstance()
);
UA_Client* UAClient = GameInstance->GetUAClient();

Listing 6: Code snippet that accesses the game instance from the WorldContext in order to use the global instance
of the OPC UA client.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 36 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.4 Reading data from the OPC UA server
We created custom Blueprint functions that simplify the communication to the OPC UA server for the developers.
The Blueprint functions are accessible from the Unreal Engine editor and can be used with ease as seen in Figure 17.

Figure 17: Example Blueprint configuration that reads a boolean value from the OPC UA server and prints the
value to the screen.

Whenever a developer requires to read a value from the OPC UA server, they can simply add the dedicated Blueprint
function to their existing logic and connect the given input and output pins. The Blueprint function requires the
OPC UA node ID of the value to be read. The world context is automatically passed to the function and is required
in order to access the game instance and the OPC UA client. As seen in Figure 18, the read operation retrieves the
global client instance and then tries to read the value from the server. The read operation is blocking and will wait
until the value is received before triggering the following nodes. The returned status code is checked if the operation
was successful or not. If the operation was not successful, the function will print an error message to the log and to
the screen so that the developer is informed about the error. The status code can be checked manually in the status
code documentation. If the returned value is not of the data type of the dedicated node, e.g. the “Read Boolean”
function expects the data type to be a boolean, a message is printed to the log and to the screen. If everything went
well, the function will return the value making it available for processing in subsequent Blueprint functions.

Figure 18: Flow chart diagram that displays how the read request of the boolean value from the OPC UA server is
handled. This also applies to other data types.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 37 / 85
OST RJ

https://www.open62541.org/doc/v1.4.11.1/statuscodes.html
https://www.open62541.org/doc/v1.4.11.1/statuscodes.html

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

We implemented custom Blueprint functions for the most common OPC UA data types that should cover most of
the use cases. The following table shows the implemented Blueprint functions and the corresponding OPC UA data
types and the Unreal Engine data types.

Blueprint function OPC UA data type Unreal Engine data type
Read Boolean Boolean bool
Read Double Double double
Read Float Float float
Read Int32 Int32 int32
Read Int64 Int64 int64
Read String String FString

Table 3: A list of all the Blueprint functions that can read a specific data type value from the OPC UA server

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 38 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.5 Writing data to the OPC UA server
Besides reading data from an OPC UA server it is also possible to write data to an OPC UA server. Identically to the
reading functions the Blueprint functions for the writing operations are accessible from the Unreal Engine editor
and can be used in the same way. An example for this would be shown in Figure 19.

Figure 19: Example Blueprint configuration that writes a boolean value to the OPC UA server. Home Pos Id is a
variable that represents the OPC UA node ID.

The logic behind a write Blueprint works very similar to the logic behind the read operation. A Blueprint function
can be added to the existing logic and the input pins can be connected. The operation does not return a value like
the read operation. The Blueprint requires the OPC UA node ID to which the operation should write the value to
and the value itself. As seen in Figure 20, the write operation retrieves the global client instance and then tries to
write the value to the server. The status code is checked if the operation was successful or not. If an error occurred,
the Blueprint will print the error message to the log and to the screen. If the status code is as expected, the Blueprint
function is finished and the next Blueprint function gets called.

Figure 20: Flow chart diagram that displays how the write request of the value to the OPC UA server is handled.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 39 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

We implemented custom Blueprint functions for the most common OPC UA data types that should cover most of
the use cases. The following table shows the implemented Blueprint functions and the corresponding OPC UA data
types and the Unreal Engine data types.

Blueprint function OPC UA data type Unreal Engine data type
Write Boolean Boolean bool
Write Double Double double
Write Float Float float
Write Int32 Int32 int32
Write Int64 Int64 int64
Write String String FString

Table 4: A list of all the Blueprint functions that can write a specific data type value to the OPC UA server

We are aware that there are many more data types available in the OPC UA standard. We decided to
implement only the most common ones in order to keep the project simple, understandable and maintainable. If
a developer requires a different data type, they can easily implement it themselves using the existing Blueprint
functions as a reference. The implementation of the Blueprint functions is done in C++ and is accessible
in the Source/industrialSimulation/Private/OPC_UA.cpp file. The declaration can be found in the Source/
industrialSimulation/Public/OPC_UA.h file. For certain data types like the Write String node, we had to convert
the data type to the Unreal Engine specific FString data type. It should be noted that the same could apply to other
data types as well.

If one would decide to extend the existing supported data types with additional ones, it is important to note that
after extending the files, the project has to be recompiled in order for the changes to take effect. Existing usages of
the Blueprint functions could be invalidated due to the recompilation. We highly suggest to restart Unreal Engine
after serious changes to the source code to avoid any caching issues with Unreal Engine.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 40 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

8.6 Subscriptions
Some components in the simulation need to act when a certain value changes in real-time. One could simply poll
the OPC UA server for changes, but this is inefficient and can lead to performance issues. Instead, we use OPC UA
subscriptions [50] to get notified when a value changes. The OPC UA subscriptions differs from a traditional server-
to-client communication like WebSockets because the server does not know the client. The client has to request
what OPC UA node should be monitored, but the client has to periodically check if any changes happened to the
OPC UA node. In open62541, this is done by calling UA_Client_run_iterate() periodically.

In our simulation, we setup a global timer that calls this function every 0.099 seconds with a very short blocking
timeout of one millisecond in order to keep the simulation smooth and performant as seen in Figure 21. This results
in a polling interval of 0.1 seconds. The timer is setup in the game mode as soon as the simulation is started and
is destroyed when the simulation is stopped. This ensures that the simulation is always checking for changes but
components that are interested in the subscriptions do not have to setup a timer to call the function themselves.
The UA_Client_run_iterate() requires the active OPC UA client instance. For this reason we access the game
instance where the OPC UA client is stored and give the OPC UA client as a parameter to the blueprint function. If
the interval or the blocking time should be changed, open BP_SimGameMode and adjust the values as needed inside
the Unreal Engine editor.

Figure 21: Blueprint function configuration that sets up a timer to call the UA_Client_run_iterate() function
periodically in order to check for changes in the active subscriptions.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 41 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

To subscribe to a certain OPC UA node, a Blueprint actor is required to have a OPCUASubscriber as a local variable
as seen in Figure 22. The OPCUASubscriber is an instance that stores all the information about the subscription and
is responsible to trigger the correct callback whenever the value changes.

Figure 22: The custom created variable of type OPCUASubscriber that holds the information about the subscription
and the callback function.

The variable requires an instance which has to be initiated with the Create OPCUASubscriber Blueprint function.
Then the instance can subscribe to a node with the Blueprint function Subscribe to a Boolean Node using the
OPC UA node ID and specify the callback that should be triggered whenever the value changes as seen in Figure 23.
The custom event that can be called has the updated value as a parameter which can be processed further according
to the requirements. Additionally, it also has an additional parameter called Source Timestamp. This parameter
is a timestamp that represents the time when the value was requested for change by another OPC UA client, not
when the server received and applied the change. In our example, this would be the time when a value is changed
in the web-based dashboard. This timestamp is important for real-time systems like the conveyor belts that have to
do some calculations considering the timespan between two datapoints. In Figure 23, it triggers a further custom
event depending on the value of the new boolean.

A more advanced usage of the subscriptions is seen in the conveyor belt as seen in Section 10.5.

Figure 23: Blueprint function configuration that setups a subscription to a boolean OPC UA node with a callback
function that either retracts or extends the pneumatic cylinder.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 42 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The Subscribe to Boolean Blueprint function is responsible for creating the subscription and setting up the
monitored item. If the setup fails, a visual error message is displayed on the screen and printed to the log informing
the developer of the error.

In Figure 24, we show the sequence diagram of the subscription process with the example of a pneumatic cylinder
where the cylinder is extended and then retracted. The OPC UA client is created in the game instance and the
subscription is initiated in the Blueprint actor. The subscriber periodically checks for new notifications from the
monitored item due to the periodic call inside the game mode as documented at the beginning of this sub-chapter.
The desired position is manually set in the dashboard or is automatically set via the PLC software. If a notification
is received, the subscriber calls the callback function with the new value. The callback function then processes
the new value and triggers the custom events that turn the correct sensors on or off depending on the value of
the boolean.

Figure 24: Sequence diagram that shows the entire interactions between the simulation and the OPC UA server.
Shows the process of the pneumatic cylinder that creates a subscription to a boolean node and the process of

receiving a notification from the server that triggers the respective callback function.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 43 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

As with the read operations, we provided custom Blueprint functions for the most common OPC UA data types,
enabling subscriptions to data changes for typical use cases. Table 5 shows the implemented Blueprint functions
and the corresponding OPC UA data types and the Unreal Engine data types.

Blueprint function OPC UA data type Unreal Engine data type
Subscribe to Boolean Node Boolean bool
Subscribe to Double Node Double double
Subscribe to Float Node Float float
Subscribe to Int32 Node Int32 int32
Subscribe to Int64 Node Int64 int64
Subscribe to String Node String FString

Table 5: A list of all the Blueprint functions that can subscribe a specific data type value from the OPC UA server

We are aware that there are many more data types available in the OPC UA standard. We decided to implement
only the most common ones in order to keep the project simple, understandable and maintainable. If a developer
requires a different data type, they can easily implement it themselves using the existing Blueprint functions
as a reference. The implementation of the Blueprint functions is done in C++ and is accessible in the Source/
industrialSimulation/Private/OPCUA_Subscriber.cpp file. The declaration can be found in the Source/
industrialSimulation/Public/OPCUA_Subscriber.h file. For certain data types like the Subscribe to String
Node, we had to convert the data type to the Unreal Engine specific FString data type. It should be noted that the
same could apply to other data types as well.

If one would decide to extend the existing supported data types with additional ones, it is important to note that
after extending the files, the project has to be recompiled in order for the changes to take effect. Existing usages of
the Blueprint functions could be invalidated due to the recompilation. We highly suggest to restart Unreal Engine
after serious changes to the source code to avoid any caching issues with Unreal Engine.

In order to bind the callback function to the subscription, we use Unreal Engine dynamic delegates as seen in
Listing 7. Currently the new value and the source timestamp are passed to the callback function. If other parameters
are required, they can be added to the delegate function declaration in Source/industrialSimulation/Public/
OPCUA_Subscriber.h. Note that the delegate function name has to match the number of logical parameters. So if you
add a third parameter, the delegate function name has to change from DECLARE_DYNAMIC_DELEGATE_TwoParams to
DECLARE_DYNAMIC_DELEGATE_ThreeParams. Currently Unreal Engine supports up to eight parameters in a dynamic
delegate.

DECLARE_DYNAMIC_DELEGATE_TwoParams(FOnOPCBooleanChanged, bool, NewValue, const FDateTime&,
SourceTimestamp);
DECLARE_DYNAMIC_DELEGATE_TwoParams(FOnOPCFloatChanged, float, NewValue, const FDateTime&,
SourceTimestamp);
DECLARE_DYNAMIC_DELEGATE_TwoParams(FOnOPCDoubleChanged, double, NewValue, const FDateTime&,
SourceTimestamp);
DECLARE_DYNAMIC_DELEGATE_TwoParams(FOnOPCStringChanged, const FString&, NewValue, const
FDateTime&, SourceTimestamp);
DECLARE_DYNAMIC_DELEGATE_TwoParams(FOnOPCInt32Changed, int32, NewValue, const FDateTime&,
SourceTimestamp);
DECLARE_DYNAMIC_DELEGATE_TwoParams(FOnOPCInt64Changed, int64, NewValue, const FDateTime&,
SourceTimestamp);

Listing 7: Declaration of the dynamic delegates that are used to bind the callback functions to the subscription.
Only the new value and the source timestamp are passed to the callback function. If other parameters are required,

they can be added to the delegate function declaration.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 44 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

9 Project setup
In this chapter, we guide how to install and setup the Unreal Engine in order to use it for a project.

9.1 Machine specifications
Unreal Engine is a powerful game engine that requires a decent machine to run. We opted to use low graphics
settings in order reduce the minimal specifications required to run the project. We tested the project on the following
machines and got fluent performance with a minimum of 45 frames per second (FPS) in the editor:
• MacBook Pro 14″ (2021) with Apple M1 Pro, 16 GB RAM
• MacBook Pro 16″ (2021) with Apple M1 Pro, 16 GB RAM
• Custom tower PC with AMD Ryzen 9 3900X 3.8 GHz, 32 GB RAM, NVIDIA RTX 2070 Super
• Dell Precision 7780 with Intel i9-13950HX 2.2 GHz, 64 GB RAM, NVIDIA RTX 3500 Ada
• Dell Precision Workstation 7760 with Intel Xeon W-11955M 2.6 GHz, 64 GB RAM, NVIDIA RTX A3000
• HP Zbook Fury 16 G11 with Intel i9-14900HX, 128 GB RAM

The project was mainly developed and tested on the two MacBook Pro machines. The other machines were tested
at the end of the project to ensure the project runs on the machines AVM Engineering AG uses.

Recommended specifications:
• OS: Windows 11+ or macOS 14.5+ (no support for older versions or other OS)
• 16+ GB RAM
• M1 Pro or better
• optionally a dedicated GPU with 4+ GB VRAM

If the project is not running smoothly on the machine, the graphics settings can be changed in the editor. To do
so, open the “Settings” menu in the top right corner of the editor and select “Engine Scalability Settings”. This will
open a menu where one can change the graphics settings as seen in Figure 25. We recommend to set the settings
to “Low” or “Medium” for a fluent experience.

Figure 25: Engine Scalability Settings in the Unreal Engine editor with the recommended settings for maximum
performance.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 45 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

We used a Blueprint function that automatically sets the quality to “Low” in order to ensure a fluent experience
when the project is started as seen in Figure 26. If this is not desired the node can be removed from the game mode
Blueprint called BP_SimGameMode. This blueprint is located in the folder Content/SimBlank/Blueprints.

Figure 26: Blueprint functions to set the engine scalability to low by default.

9.2 Installation
Unreal Engine is free to download [51]. Follow the link and download the Epic Games launcher in order to install
the Unreal Engine to the computer. One is required to create and log in to an Epic Games account to be able to use
the engine. Once logged in, navigate to the Unreal Engine tab and click on the “Library” tab in order to select and
install the Unreal Engine with the version 5.5.4. After downloading the correct version one can start the engine as
seen in Figure 27.

Figure 27: Starting screen in Epic Games client for Unreal Engine.

Once installed the project can be started by opening /unreal/industrialSimulation.uproject with Unreal
Engine. When loaded, one can see the Unreal Engine editor. In the following legend, we explain the editor interface
as seen in Figure 28.
1. Tab bar and menu bar → used to select general tools and configure the editor windows.
2. Toolbar → displays a group of commands providing quick access to commonly used tools and operations.
3. Viewport → displays the current loaded level and enabling to perform modifications to the world.
4. Outlier → displays all of the actors placed in to the level in a hierarchical tree.
5. Details → displays the details of the selected actor from the outlier menu.
6. Content Drawer → primary area for creating, importing, organizing viewing and managing content assets.
7. Bottom Toolbar → contains access to the output log, a shortcut to compile C++ code and access to the revision

control feature.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 46 / 85
OST RJ

https://www.unrealengine.com/en-US/download

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 28: Unreal Engine editor interface for modeling a 3D level in the Selector Mode.

We strongly recommend completing a tutorial before starting this project to familiarize yourself with the editor,
shortcuts, and basic architecture. Check out this tutorial to get started.

In order to use the project, set up the rest of the project as described in the README file in the root folder of the
project.

9.3 Version Control
Unlike a traditional source code projects, a game engine projects contains many different assets in binary format.
Git, the most used version control software, cannot understand the binary changes and thus cannot propose any
data merges. When working on the project with multiple people, it is important to pull the changes from the Git
server before starting to work on the project. Because the assets are in binary form, Git is only able to keep one
of two different versions of the same asset resulting in possible lost changes when not handled with care. To avoid
this, communicate with each other on which assets work is being done and pull early and often.

To track changes Unreal Engine has an integrated source control feature.

To enable version control one can simply press on “Revision Control” in the bottom left corner where one can setup
the Git configs. Note that it is easier if the Git project is setup the command line tool and then attach Unreal Engine
to the existing Git project config rather than starting a project from the UI.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 47 / 85
OST RJ

https://www.youtube.com/watch?v=1XjgLKrb4_M

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 29: Settings window for the Unreal Engine Revision Control setup.

Now whenever one has changes, the version control system not only requires to user to save them but also check
them in for the source control. To do so click again on the “Revision Control” tab and then click “Submit Content”.
This will open a dialog allowing one to specify the commit message for the changes.

Figure 30: Submit content in Unreal Engine
to the revision control via user interface.

Figure 31: Select files and write a message for the
commit in the Unreal Engine user interface.

Alternative to using the “Revision Control” feature, one could also manually track changes using the command line
tool. To do so, open the command line tool and navigate to the project folder. Once there, one can track the changes
using the following command:

show changed files
git status
add a specific changed file
git add <PATH_TO_FILE>

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 48 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

add a meaningful commit message
git commit -m "<COMMIT_MESSAGE>"

Because the changes are mostly in binary form, it is important to make meaningful commit messages that state
what and why things changed.

The changes are now tracked but need to be pushed to the Git server, this cannot be done through the UI so one
will still be required to open the command line tool in order to push the commits.

push changes to server
git push

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 49 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

9.4 Converting CAD files to Unreal Engine models
Rather than modeling the objects in Unreal Engine, one can leverage CAD models that are already available for
real-world industrial machines. These CAD models are highly detailed and can be used in Unreal Engine with some
conversion steps. There are multiple ways to convert CAD files to Unreal Engine models. Here, we will explain the
two most common ways to do so.

There is a limitation with both approaches because the importers used, as of Unreal Engine 5.5.4, only work for
the Microsoft Windows platform [52].

Datasmith Plugin in CAD software

For most CAD software, there is a plugin available that allows to export the CAD model into the Datasmith format
that is developed by Epic Games specifically for Unreal Engine [53]. The Datasmith file format is a binary file that
contains all the information about the model and can be used in Unreal Engine. This Datasmith file can be imported
into Unreal Engine by simply dragging and dropping it into the content drawer. This will automatically create all
the materials and textures that are used in the model [54].

Direct import of CAD files

Unreal Engine also supports the direct import of CAD files in certain file formats with the use of the “Datasmith
CAD Importer”-plugin as seen in Figure 32. With this plugin, one can import CAD files directly into Unreal Engine
without the need for a plugin in the CAD software. The plugin supports the most common CAD file formats [53].

Figure 32: Datasmith CAD Importer plugin that can be enabled in the plugin manager of Unreal Engine. The plugin
is responsible for converting CAD files to Unreal Engine models.

As a demonstration, we used a CAD model that we could freely download from GrabCAD [55]. The model is a
conveyor belt and is contained in a single “.STEP” file. This file format stands for “Standard for the Exchange of
Product Data” and is also known as ISO 10303 [56]. It is a common file format for CAD models because it contains
the complete information about the model not just the geometry. The file can be imported into Unreal Engine by
either simply dragging and dropping it into the content drawer or by using the import button under the “Add Object
to the Project” button as seen in Figure 33.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 50 / 85
OST RJ

https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types
https://grabcad.com/library/belt-conveyor-148

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 33: Import button to convert a CAD file to a Unreal Engine model.

After selecting the file and the location where the model should be imported, a dialog will open where one can
select the import settings as seen in Figure 34. The settings are set to default values and should be sufficient for
most cases.

Figure 34: Import settings for the CAD file. The settings are set to default values and should be sufficient for
most cases.

The import process will start and can take a while depending on the size of the model. The import process will
create a new folder in the selected location with the name of the CAD file. This folder will contain all the assets
that are used in the model. The folder as seen in Figure 35 will contain a “Datasmith Scene” which is a file that
contains the information about the constellation of the model and the different parts that were just imported.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 51 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 35: Imported CAD model in the content drawer. The folder contains all the assets that are used in the model
and is represented by the Datasmith Scene file.

The Datasmith Scene file can be placed in the world by simply dragging and dropping it into the viewport. This
will spawn the model in the world as seen in Figure 36.

Figure 36: CAD model in the scene. The model here is by default on its side but can be rotated and moved like any
other object in Unreal Engine.

The Datasmith Scene file has to be converted in to a Blueprint Actor in order to apply logic to the model. This can
be done by selecting all the child components of the Datasmith Scene object in the Outlier tab on the right side and
clicking on “Convert Selection to Blueprint Class” as seen in Figure 37. A dialog will open where one can select the
name and location of the Blueprint class and the creation method. Select “Harvest Components” in order to create
a new Blueprint class that contains the components but does not copy and logic. Note that depending on the CAD
model hierarchy the conversion process will automatically create different scene root components for the model.
This is not a problem but can be confusing. One can simply select the different meshes and move them to the same
root component and delete the other root components to clean up the hierarchy. This is not necessary but makes
it easier to work with the model.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 52 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 37: Convert Datasmith Scene to Blueprint Class by selecting all the child components and clicking on
“Convert Selection to Blueprint Class”.

With the resulting Blueprint class one can now add logic to the model as seen in Figure 38 and use it in the project
as any other Blueprint class like the example models we created for demonstration purposes. The Blueprint class
can be placed in the level by simply dragging and dropping it into the viewport.

Figure 38: Converted CAD model to Blueprint Class. The class contains all the components of the model and logic
can be added to it.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 53 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

For demonstration purposes, we added a simple collision box to the model and a direction arrow to show the
direction of the conveyor belt. The collision box is used to detect when a package is placed on the conveyor belt
and the direction arrow is used to calculate the vector that is applied to the package. The logic is very simple and
can be seen in Figure 39.

Figure 39: Logic of the converted CAD model. It detects when a package is inside the collision box and applies a
force to the package in the direction of the conveyor belt.

In some cases there will be no collision mesh on the converted model. This will have the result that objects can
pass through the mesh instead of being blocked like a physical barrier. If this is the case, select and edit the mesh
in question. In the mesh editor, select “Auto Convex Collision” from the “Collision” dropdown menu as seen in
Figure 40. A new panel will appear on the right hand side where the settings for the collision mesh can be defined
and with the button “Apply” a collision mesh will be generated. Save the changes and objects should now be blocked
by the new collision mesh.

Figure 40: Mesh from the converted CAD model where there is no collision mesh. Menu open that generates a
collision mesh automatically.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 54 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10 Models
In this chapter, we are going to describe the implemented models in the project. It will demonstrate how to use
them and explain how they are implemented. The models are implemented in Unreal Engine 5.5.4 and are located
in the folder unreal/industrialSimulation/Content/SimBlank/Blueprints.

In the Unreal Editor the models can be found in the content drawer as seen in Figure 41. These models can be
dragged into the world to be used in the simulation.

Figure 41: All the Blueprint models accessible in the content drawer.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 55 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.1 Pneumatic cylinder
The pneumatic cylinder has a piston inside a casing that can be extended and retracted. To add the model to the
world drag the respective model from the content drawer into the active world as seen in Figure 42.

Figure 42: Placing the Blueprint model of a pneumatic cylinder in the world via drag and drop from the content
drawer

The piston is by default in the upright position, but can be rotated and moved to the desired position. For this either
press “E” or click on the two rotating arrows in the top left corner of the viewport to enter the rotation mode.
Alternatively, the rotation can be set in the details panel on the right side of the screen as seen in Figure 43

Figure 43: Rotating the pneumatic cylinder in the rotating mode, which can be selected in the top right corner

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 56 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The controls of the pneumatic cylinder requires three different OPC UA nodes. A boolean node indicating if the
pneumatic cylinder is extended or not, where true indicates that it should be extended and false indicates that it
should be retracted. Next it requires two boolean nodes indicating if the pneumatic cylinder is extended or retracted.
These boolean nodes are used to communicate to the OPC UA server the actual state of the pneumatic cylinder,
while the first node is used to control the pneumatic cylinder. In order to set these node IDs, select the pneumatic
cylinder and inside the details panel scroll down to the section “OPC UA” as seen in Figure 44. The Is Retracted
Node Id is the node ID of the boolean node indicating if the pneumatic cylinder is in the retracted position or not.
Is Extended Node Id is the node ID of the boolean node indicating if the pneumatic cylinder is in the extended
position or not. Should Extend Node Id is the node ID of the boolean node indicating if the pneumatic cylinder
should be extended or not. Next to the OPC UA settings there is also a section called “Settings” where the speed
of the pneumatic cylinder can be set. The speed is defined as cm/centiseconds. We use centiseconds so that the
animation is smoother and more precise but still not too computationally demanding. Setting the speed to 0.1 means
the piston will move at a rate of ten centimeters per second. Lastly the Extract Distance is the distance the piston
will extend. This value can be adjusted but it should be noted that the piston itself has a certain length, if the value
is set to a value larger than the length of the piston it will visually break out of the casing. The Extract Distance
is set in centimeters and the default value is 50 centimeters.

Figure 44: All the possible settings for the pneumatic cylinder. These are the variables that are used behind the
scenes in the Blueprint functions.

Whenever a pneumatic cylinder is dragged into the world, these variables have to be set in order for it to work.
The specific OPC UA node ID has to exist in the OPC UA server. If missing or if the OPC UA node ID cannot be
found, an error message will appear on screen and in the log as seen in Figure 45. The error code can manually be
checked in the status code documentation.

Figure 45: This Error message that, we created, is displayed on the screen when the node IDs are not set or not
found on the OPC UA server or if the type of the node is not correct.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 57 / 85
OST RJ

https://www.open62541.org/doc/v1.4.11.1/statuscodes.html

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

To view the internal logic of the pneumatic cylinder, double click on the model in the content drawer. This will open
the Blueprint editor as seen in Figure 46. The logic is divided into three different sections. The first section is the
“Setup” section where the model is set up. It calculates the extended and retracted position with the use of vector
math. Additionally, it also sets up the subscription to the OPC UA server and defines the callback whenever the
value changes. The next section is the actual callback for when the value for the “Should Extend Node Id” changes.
When it should extend it sets the target position to the extended position and turns off the retracted state. When it
should retract, it sets the target position to the retracted position and turns off the extended state. Lastly a timer is
setup with a static interval that moves the actual piston. The logic for that is located in the third section where the
direction, current position and target position are considered to figure out in which direction for how many units
the piston should be moved. After moving the piston in the right direction it checks if it already reached the target
position. If true it turns off the timer and waits until it is turned on again. This logic allows us to move the piston
in a smooth way, and stay performant because we do not need to check every frame if the piston should be moved.
Furthermore, it also allows us to change direction even during the movement. Due to the speed variable, we can
control how fast the piston should move.

Figure 46: The whole Blueprint logic of the pneumatic cylinder, separated in setup where the subscription and
other internal variables are set, the callbacks for when the value changes and the actual movement of the piston.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 58 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.2 Package
The package is a simple box that consists of a width, height, depth and weight. These variables can be set when
dragging the package to the world in the details panel as seen in Figure 47.

Figure 47: Placing the Blueprint package in the world via drag and drop from the content drawer.

The package has a construction script where the width, height, depth and mass are set as seen in Figure 48. The
dimensions are in meters and the mass in kilogram.

Figure 48: Construction script of the package where the width, height, depth and mass are set to the values of the
variables.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 59 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The package is a physical object that has physics enabled. This means that the object will only be moved with
physical forces and allows properties like friction and gravity to have an impact on the object. Additionally, to
define other physical properties a physical material is used as seen in Figure 49.

Figure 49: Physical material properties of the package. It has a low friction in order to move smoothly on the
conveyor belt.

The same material is used for the conveyor belt surface as seen in Section 10.5. This combination creates a low-
friction environment where objects move smoothly without being excessively slowed down. The friction is not
set to zero to avoid an unrealistic “ice-like” effect, where objects would continue sliding indefinitely. After experi-
menting with various values, we found that the chosen settings allow objects to move at the intended speed while
maintaining realistic behavior.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 60 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.3 Package spawner
In order to allow dynamically spawned packages during run-time, a package spawner is implemented. This model
is a simple box that can be placed in the world as seen in Figure 50.

Figure 50: Placing the Blueprint package spawner in the world via drag and drop from the content drawer.

The package spawner has a setting in the details panel where the Z offset can be set as seen in Figure 51. The Z
offset is the vertical offset of the package spawner where the package will be spawned. The Z offset is in centimeters
and the default value is 100 meaning that the package will be spawned one meter above the package spawner.

Figure 51: Settings for the package spawner where the Z offset of where the packages will be spawned can be set.

The package spawner listens to the OPC UA server for a counter node of type Int32. Whenever the counter node is
increased, a new package will be spawned at the Z offset. The spawner reads the width, height, depth and mass of
the package from the OPC UA server and sets the values of the package accordingly. The package spawner creates
the package in the world and saves a reference to the package together with the package ID, which in this case is
the value of the counter node. The reference and the package ID is saved in a map, where the key is the package
ID and the value is the reference to the package. This allows us to easily manage the packages and enables the
simulation to delete them later on. In addition to the counter node, the package spawner also listens to a separate
Int32 node that indicates which package should be deleted. Whenever the value of the delete node is changed,
the package spawner will check if the package ID exists in the map. If it does, it will remove the package from the

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 61 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

world and delete the reference in the local map. This constellation allows us to spawn packages and delete them
dynamically during the simulation without being limited to the order of when the packages were created.

The logic can be viewed in detail in the Blueprint editor as seen in Figure 52.

We did not expose the OPC UA node IDs like in the other object because there should only be one instance of the
package spawner in our use case.

Figure 52: Blueprint logic of the package spawner that spawns and deletes packages dynamically during runtime.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 62 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.4 Sensor
The sensor is a box with a collision box that can be placed in the world as seen in Figure 53. In the “OPC UA”
settings of the details panel, the OPC UA node ID for the boolean node indicating whether the sensor is triggered
is specified. The sensor will trigger whenever an object with collision turned on enters the beam in front of the
sensor. When the object leaves the beam the sensor will be triggered again turning off the signal on the OPC UA
server as seen in Figure 54.

Figure 53: Placing the Blueprint sensor in the world via drag and drop from the content drawer.

Figure 54: Blueprint logic of the sensor that writes true to a boolean node in the OPC UA server when an object
enters the beam and false when it leaves the beam. The node ID can be set in the details panel of the sensor.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 63 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.5 Conveyor belt
The conveyor belt is a simple box that moves packages along a path. To make it look more like a conveyor belt we
added a texture that moves with the exact speed of the packages. The conveyor belt can be placed in the world as
seen in Figure 55.

Figure 55: Conveyor belt model being dragged into the world from the content drawer. The settings for the conveyor
belt can be set in the details panel on the right side of the screen.

The conveyor belt can be formed by using splines. A spline in Unreal Engine is a curved path defined by control
points, which can be used to create smooth and flexible shapes or movement paths for objects just like conveyor
belts. The spline points can be selected and adjusted as seen in Figure 56. The spline points can be moved around
to create the desired shape of the conveyor belt. To add a new spline point, you can right click on the spline and
select “Duplicate Spline Point” or press and hold “ALT” and drag out from an existing spline point from either one
of the axis arrows. The conveyor belt will automatically adjust to the new spline points and create linear segments
between them.

Figure 56: Conveyor belt splines being raised forming a linear path for packages to move along.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 64 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The conveyor belt includes an option to toggle walls on or off. The walls are used to prevent packages from falling
off the conveyor belt. If a mix between walls and no walls is required, drag multiple conveyor belts into the world
and set the walls on the desired conveyor belts as seen in Figure 57.

Figure 57: Multiple conveyor belts with different wall settings forming one long conveyor belt. The first and last
conveyor belt have no walls, while the middle conveyor belt has walls.

Additionally, the conveyor belt requires an OPC UA node of type Boolean that indicates if the conveyor belt is
turned on or not. To control the speed of the conveyor belt, an OPC UA node of type Float is required. This float
indicates the target position of the conveyor belt in centimeters. The conveyor belt will move towards this target
position in a smooth way. These settings can be set in the details panel as seen in Figure 58.

Figure 58: Settings of the conveyor belt. Walls toggles between having walls or not, the Conveyor on Node is the
OPC UA node ID of the boolean node indicating if the conveyor belt is turned on or not and Conveyor Position
Node is the OPC UA node ID of the float node indicating the target position of the conveyor belt in centimeters.

Whenever a conveyor belt is dragged into the world, these variables have to be set in order for it to work. The
specific OPC UA node ID has to exist in the OPC UA server. If missing or if the OPC UA node IDs cannot be found,
an error message will appear on screen and in the log as seen in Figure 45.

To view the internal logic of the conveyor belt, double click on the model in the content drawer. This will open the
Blueprint editor as see in Figure 59.

In the construction script the logic is set up to calculate the spline points and the direction of the conveyor belt. It
adds the meshes of the conveyor belt and the walls if they are enabled.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 65 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.5.1 Conveyor belt movement
In the event graph, the logic is divided into multiple different sections. The first section is the “Setup” section where
the model is set up. It sets up the subscriptions to the OPC UA server for the specified OPC UA nodes and defines
the callback whenever the value changes. Furthermore, it handles the change of the target position. The target
position refers to on what position around the conveyor belt the starting point would be. Whenever the target
position changes, the system compares the new target position and timestamp with the previous position and the
timestamp of the last change to calculate the conveyor belt’s velocity. The velocity is calculated as the difference
between the new target position and the previous position divided by the difference between the new timestamp
and the previous timestamp. This allows us to calculate the velocity of the conveyor belt in a smooth way, without
having to check every frame if the target position has changed. When the conveyor belt is running, it will try to
move all the packages on top of it every frame.

The second section is the “Set speed of conveyor material” section. This has nothing to do with the movement of
the packages and just exists to move the material (texture), with the exact same speed as the packages.

The third section is the “Run every tick” section. This section gets executed every tick and checks if the conveyor
belt is on. If it is, the next section “Move items on conveyor belt” get started.

The section “Move items on conveyor belt” is the fourth section. This contains the whole logic to move the packages
along the conveyor belt. We had to ensure, that the packages always follow the conveyor belt, so we could not
just set an initial direction when the packages first touch the conveyor belt. We made the packages follow the
conveyor belt’s spline, which runs along its center. To achieve this, we calculate the vector from each package to
the nearest point ahead of it on the spline. Here the movement velocity, calculated in the setup section, gets applied
on the packages. The movement velocity is set every frame in order to minimize the velocity loss that occurs due
to friction and other forces acting on the packages.

The final section, “Stop packages on conveyor belt,” handles the event triggered when the conveyor belt is turned
off. When the conveyor belt is turned off, it set the velocity of all packages on top of the conveyor belt to zero, so
that they do not move anymore.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 66 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 59: The whole Blueprint logic of the conveyor belt, separated in setup where the subscriptions to the OPC
UA server are set up, the callbacks for when the value changes and the actual movement of the conveyor belt.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 67 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

10.6 Slide
The slide is a simple box with walls around it and a slope where the packages can slide down. The slide additionally
has a sensor in front of it that detects when a package is about to slide down. Above the slide there is a floating text
that displays the counter of the packages that passed the sensor. To add the model to the world drag the respective
model from the content drawer into the active world as seen in Figure 60.

Figure 60: Placing the Blueprint slide in the world via drag and drop from the content drawer.

Due to the simple nature of the slide there is no need to set any variables or settings in the details panel. In order
for the packages to slide down smoothly and avoid being stuck on the slope, the floor has a physical material where
friction is set to zero. This allows the packages to slide down and not being slowed down by friction. This is true
for both the slope and the floor at the end of the slides where the packages can be collected.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 68 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

The logic for the slide is very minimal as well. There is only a collision detection at the sensor in front of the slide.
Whenever something enters the sensor it counts up an internal counter. The value of the counter is displayed in
the floating text above the slide. The counter is reset whenever the simulation is restarted. The logic can be viewed
in the Blueprint editor as illustrated in Figure 61.

Figure 61: Blueprint logic of the slide that counts up the packages that passed the sensor and displays the counter
in a floating text above the slide.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 69 / 85
OST RJ

Part III
Summary

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

11 Summary
This chapter summarizes the project and gives an overview of the results. It also provides a brief outlook on future
work and alternative approaches.

11.1 Results
The project successfully demonstrated that game engines like Unreal Engine can be used to develop a digital twin.
We successfully integrated an OPC UA client into Unreal Engine with open62541 and utilized it to communicate
with an OPC UA server. To simplify the development process, we created reusable building blocks by abstracting
the communication to the server into simple Blueprint nodes that enable a developer, with minimal knowledge
of the underlying programming language C++, to create complex logic to interact with the server. We enabled
the developers to read data from the server, write data to the server and subscribe to data changes enabling them
to build real time systems. We demonstrated the use of these building blocks with various different models. We
utilized the powerful physical simulation capabilities of Unreal Engine 5 to simulate the behavior of physical
objects. We explained the process of transforming a CAD model into a format that can be used in Unreal Engine and
demonstrated the process with a simple example where we converted a simple CAD model into an Unreal Engine
actor and added some basic logic to it. We also showed how to use version control with Git and demonstrated how
to work in a team with multiple developers on the same project.

With our project as a base it should be possible to create a digital twin of a real-world system that can be used for
simulation, testing, analysis and optimization. The project also serves as a foundation for future work in this area,
as it provides a solid base for further development and experimentation with digital twins in Unreal Engine.

11.2 Limitations
Although we could leverage the powerful physical simulation capabilities of Unreal Engine, we still had to make
some compromises in the accuracy of the simulation. For instance, the conveyor belt simulation is not as accurate
as it could be. Instead of a moving surface with high friction that transports the objects on top of it, we had to move
the objects themselves by applying force to them to simulate the movement of the conveyor belt. This was due to
the fact that Unreal Engine does not support moving surfaces with high friction out of the box. If more time could
have been spent on the project, we could have implemented a custom solution to achieve this.

Additionally, the OPC UA server we used for the project was not a real-world server, but rather a mock server that
we created for testing purposes. By using Node-RED, we were able to create a simple OPC UA server that could
be used to test the communication with the Unreal Engine client. However, this server is limited in its capabilities
and in its throughput. This meant that we could only update data at a certain rate before the server would struggle
to keep up with the requests. Due to this limitation, we had to limit the granularity of the data that updates for
example the conveyor belt target position. Also it limited the amount of subscriptions per connection that we could
have. This setting was not directly configurable in the Node-RED OPC UA server, so we had to work around it by
manually adjusting the generated source files of the server. If not adjusted the client would be limited to a maximum
of ten subscriptions which would not be sufficient for a more complex system. These bottlenecks do not affect the
Unreal Engine client itself and our implementation of the Blueprint functions that interact with the server. If a real-
world OPC UA server is used, these limitations would not be present and the client would be able to handle more
complex systems with more data and more subscription.

Unreal Engine is a powerful but also very complex tool. It has a steep learning curve and requires a lot of time
to get used to it. The project was a good opportunity to learn how to use the engine and explore its capabilities.
However, for a realistic digital twin project, it would be highly recommended to have a some prior knowledge of
the engine and its features especially the physics engine and the Blueprint system. Then it would be possible to
create a more complex and realistic digital twin with more precision.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 71 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

We acknowledge that the models that we created as a demonstration of the Blueprint functions are not very detailed
in the way they look. This is due to the fact that we did not have CAD models available for the objects and had
to create them from scratch without any prior knowledge of the modeling tools in Unreal Engine. The models are
sufficient to demonstrate the functionality of the Blueprint functions and the communication with the OPC UA
server, but they do not represent a realistic digital twin of a real-world system. We explored the workflow of how to
convert a CAD model into a format that can be used in Unreal Engine and demonstrated the process with a simple
example.

The OPC UA client that we used in Unreal Engine, open62541, is a powerful library that provides a lot of function-
ality for OPC UA communication. However, we encountered a lot of issues when we tried to compile the library
for Unreal Engine. This was because the build for macOS was partially broken and the build for Windows was not
compatible with the pregenerated binary for macOS. Due to this we had to include some OS-specific code in the
project to handle the differences between the two platforms and require the user to install the library manually on
macOS. This is not ideal but until the library is fixed, this is the only way to make it work on both platforms.

11.3 Future work
The project serves as a foundation for future work in the area of digital twins in Unreal Engine. There are many
possibilities to extend the project and create more complex and realistic digital twins. Some ideas for future work
include:

Support OPC UA events and alarms: Changes in a system can be communicated via events and alarms. These
notifications are asynchronous and can be used to trigger actions. The delivery of these events also utilizes the
subscription and monitor mechanism of OPC UA like the subscriptions for data changes. New Blueprint functions
could be created to handle these events and alarms which would trigger actions in the Unreal Engine client. This
would allow for more complex interactions with the server and would also enable to build a digital twin that
represents a real-world system with real-time data and events in order to visualize the system and its current state.

More realistic conveyor belt simulation: As mentioned in the shortcoming section, the conveyor belt simulation
is not as accurate as it could be. A more realistic simulation could be implemented where the surface of the conveyor
belt actually moves and transports the objects on top of it due to high friction. This would require more extensive
knowledge of the Unreal Engine physics engine.

Support multiple OPC UA servers simultaneously: The current implementation uses a single connection to a
single OPC UA server. If a more complex system that consists of multiple subsystems is to be represented, it would
be necessary to support multiple OPC UA servers simultaneously. This would also require an adaptation of the
current Blueprint functions to enable them to specify which server the communication should be done with.

Integrate machine vision capabilities: Many industrial systems rely on machine vision technologies. A basic
implementation could involve a barcode scanner that reads and processes barcodes on objects. More advanced
functionality might include using a camera to interpret handwritten labels, such as address labels, on items.

Support Linux devices: Currently, the project supports only Windows and macOS platforms. To make the project
more inclusive and accessible, Linux support should be added. This would involve compiling the open62541 library
for Linux and updating the build pipeline to accommodate Linux-specific requirements.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 72 / 85
OST RJ

Part IV
Appendix

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

11.4. Test runs
Here we display all the testing that was done during the project. For privacy reasons we did not state the names of
the testers but instead assigned them numbers.

11.4.1. The whole project can be set up according to the README (10.4.2025)
Description In this test the instructions for the set up of the project are tested. The user should be able to set up

the project with just the README.
Preconditions The newest version of the repository is cloned.
Tester Test_User_1
Test steps

Step Description Result
1 Setup the whole project by only following the instructions in the README of the whole project

and the README of the server.
Failed

Table 6: Manual user test on setting up the whole project.

Result The tester was not able to start our project in Unreal Engine with just the help of our README. For the
whole setup to work, the .NET developer pack and the .NET sdk is needed. This had to be found out during
the debugging process.

Tester feedback The description is well written besides the fact, that the .NET developer pack was missing.

11.4.2. The whole project can be set up according to the README (28.04.2025)
Description In this test the instructions for the set up of the project are tested. The user should be able to set up

the project with just the README.
Preconditions The newest version of the repository is cloned.
Tester Test_User_2
Test steps

Step Description Result
1 Setup the whole project by only following the instructions in the README of the whole project

and the README of the server.
Failed

Table 7: Manual user test on setting up the whole project.

Result The tester successfully set up and ran the entire project in Unreal Engine. However, our README lacked
sufficient setup instructions. Specifically, it did not mention the requirement for Visual Studio, which led to a
crash. The tester had to consult the crash report to identify this missing dependency.

Tester feedback Everything worked as described. The tester would have liked a link to Visual Studio, so he does
not have to look into the crash report.

11.4.3. The whole project can be set up according to the README (03.06.2025)
Description In this test the instructions for the set up of the project are tested. The user should be able to set up

the project with just the README.
Preconditions The newest version of the repository is cloned.
Tester Test_User_3
Test steps

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 74 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Step Description Result
1 Setup the whole project by only following the instructions in the README of the whole

project and the README of the server.
Successful

Table 8: Manual user test on setting up the whole project.

Result The tester successfully set up and ran the entire project in Unreal Engine.
Tester feedback Everything worked as described. The tester would have appreciated a hint about also installing

the C++ plugins in Visual Studio.

11.4.4. The pneumatic cylinder can be extended and retracted. (03.06.2025)
Description In this test the functionality and correctness of the pneumatic cylinder is tested. It can extend and

retract based on a switch of the OPC UA server.
Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be

opened on the OPC UA server.
Tester Test_User_1
Test steps

Step Description Result
1 Drag the pneumatic cylinder Blueprint from the content drawer into the world. Successful
2 Configure the Should extend Node ID, the Is Retracted Node ID and the Is Extended

Node ID to match a pneumatic cylinder on the server.
Successful

3 Run the application and tab out to the dashboard window in the browser. Successful
4 Switch the pneumatic cylinder to ON so it gets extended. Successful
5 Switch the pneumatic cylinder to OFF so it gets retracted. Successful

Table 9: Manual user test for the pneumatic cylinder

Result The pneumatic cylinder in the simulation extends when the switch is on ON. As soon as the cylinder is
extracting, the Home Position in the dashboard gets switched to OFF and the Output is switched to ON. When
the cylinder is fully extracted the End Position in the dashboard gets switched to ON and the Output gets
turned to OFF.

Tester feedback Everything worked as described. The tester was not able to identify the OPC UA node IDs, that
were required to be set in the simulation on first sight.

11.4.5. The pneumatic cylinder can be extended and retracted. (03.06.2025)
Description In this test the functionality and correctness of the pneumatic cylinder is tested. It can extend and

retract based on a switch of the OPC UA server.
Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be

opened on the OPC UA server.
Tester Test_User_3
Test steps

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 75 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Step Description Result
1 Drag the pneumatic cylinder Blueprint from the content drawer into the world. Successful
2 Configure the Should extend Node ID, the Is Retracted Node ID and the Is Extended

Node ID to match a pneumatic cylinder on the server.
Successful

3 Run the application and tab out to the dashboard window in the browser. Successful
4 Switch the pneumatic cylinder to ON so it gets extended. Successful
5 Switch the pneumatic cylinder to OFF so it gets retracted. Successful

Table 10: Manual user test for the pneumatic cylinder

Result The pneumatic cylinder in the simulation extends when the switch is on ON. As soon as the cylinder is
extracting, the Home Position in the dashboard gets switched to OFF and the Output is switched to ON. When
the cylinder is fully extracted the End Position in the dashboard gets switched to ON and the Output gets
turned to OFF.

Tester feedback Everything worked as described. The tester was familiar with Unreal Engine and had no troubles
to find the necessary fields.

11.4.6. The conveyor belt can be started and transports package. (03.06.2025)
Description In this test the functionality and correctness of the conveyor belt is tested. It can be started via the

Node-RED dashboard and transports packages. The conveyor belt can also be reversed.
Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be

opened on the OPC UA server.
Test steps
Tester Test_User_1

Step Description Result
1 Drag the conveyor belt Blueprint from the content drawer into the world. Successful
2 Configure the Conveyor on Node, Cycle Time Node, Conveyor Position Node with the

nodes of the Conveyor1 on the Dashboard.
Successful

3 Drag the package spawner Blueprint from the content drawer into the world underneath the
start of the conveyor belt so the packages later can fall onto the belt.

Successful

4 Run the application and tab out to the dashboard window in the browser. Successful
5 Create a package with the help of the package manager view in the dashboard. Use the values

50 for width, height and depth. Use 10 for kilograms.
Successful

6 Set Conveyor Speed to 50 and start the conveyor belt switching Conveyor to ON. Successful

Table 11: Manual user test for the conveyor belt.

Result The conveyor belt is running. It transports the package in the direction the conveyor belt faces.
Tester feedback Everything worked as intended, and the steps were described precisely.

11.4.7. The packages slide down the slide. (03.06.2025)
Description In this test the ability of the package to slide down the slide is tested. The slide is not controlled via

the Node-RED dashboard and is something that works on its own. For package spawn the server is still needed.
Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be

opened on the OPC UA server.
Test steps
Tester Test_User_1

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 76 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Step Description Result
1 Drag the slide Blueprint from the content drawer into the world. Successful
2 Drag the package spawner Blueprint form the content drawer into the world in a way the

packages can fall right onto the slide and slide down.
Successful

3 Run the application and tab out to the dashboard window in the browser. Successful
4 Create a package with the help of the package manager view in the dashboard. Use the values

50 for width, height and depth. Use 10 for kilograms.
Successful

5 CSet Conveyor Speed to 50 and start the conveyor belt switching Conveyor to ON. Successful

Table 12: Manual user test for the package slide

Result The package slide down the slide and increase its counter by one.
Tester feedback Everything worked as intended, and the steps were described precisely.

11.4.8. A Blueprint actor with a read operation to the OPC UA Server can be created. (03.06.2025)
Description In this test the functionality and accessability of the creation of a new Blueprint actor together with

an OPC UA read operation is tested. The user is able to access a boolean value from an existing node on the
server side of the Node-RED server.

Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be
opened on the OPC UA server.

Test steps
Tester Test_User_1

Step Description Result
1 Create a new Blueprint actor and name it BP_TestActorRead. Successful
2 Add the mesh TestMesh to the Blueprint actor. Successful
3 In the Event Graph create the logic to read a boolean from a node of the Node-RED server.

The logic should get triggered with the event Event BeginPlay.
Successful

4 Read the boolean value and print it out using the Print String Blueprint function, when the
level is started.

Successful

Table 13: Manual user test on creating a read operation with Blueprint

Result The level can be started and the BP_TestActorRead makes a read call to the Node-RED server. It then prints
out the value it reads, this should be either True or False, depending on the node the user chose to read.

Tester feedback Everything worked as intended, and the steps were described precisely.

11.4.9. A Blueprint actor with a write operation to the OPC UA Server can be created. (03.06.2025)
Description In this test the functionality and accessability of the creation of a new Blueprint actor together with

an OPC UA write operation is tested. The user is able to write a boolean value to an existing node on the Node-
RED server.

Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be
opened on the OPC UA server.

Test steps
Tester Test_User_1

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 77 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Step Description Result
1 Create a new Blueprint actor and name it BP_TestActorWrite. Successful
2 Add the mesh TestMesh to the Blueprint actor. Successful
3 In the Event Graph create the logic to write a boolean value to a node of the Node-RED server.

The logic should get triggered with the event Event BeginPlay.
Successful

4 Check if the boolean value changes on dashboard of the Node-RED server. Successful

Table 14: Manual user test on creating a write operation with Blueprint

Result The level can be started and the BP_TestActorWrite makes a write call to the Node-RED server. The value
on the dashboard of the Node-RED server should change from False to True or from True to False depending
on the node the user selected.

Tester feedback Everything worked as intended, and the steps were described precisely.

11.4.10. A Blueprint actor with a subscription to the OPC UA Server can be created. (03.06.2025)
Description In this test the functionality and accessability of the creation of a new Blueprint actor together with

an OPC UA subscription is tested. The user is able to subscribe to a boolean value of an existing node on the
Node-RED server.

Preconditions The project is running in Unreal Engine, the OPC UA server is working and the dashboard can be
opened on the OPC UA server.

Test steps
Tester Test_User_1

Step Description Result
1 Create a new Blueprint actor and name it BP_TestActorSub. Successful
2 Add the mesh TestMesh to the Blueprint actor. Successful
3 In the Event Graph create the logic to subscribe to a boolean value of a node of the Node-

RED server. The logic should get triggered with the event Event BeginPlay.
Successful

4 Every time the subscribed value changes, the logic should print the value using the Print
String Blueprint function.

Successful

Table 15: Manual user test on creating a subscription operation with Blueprint

Result The level can be started and the BP_TestActorWrite makes a write call to the Node-RED server. The value
on the dashboard of the Node-RED server should change from False to True or from True to False depending
on the node the user selected.

Tester feedback Everything worked as intended, and the steps were described precisely.

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 78 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figures
Figure 1 Existing 2D simulation which is utilizing a SVG with moveable parts. 4

Figure 2 Real life example of the package sorting machine constructed in the 2D SVG. 4

Figure 3 2D mockup of a retracted pneumatic cylinder and its green sensor which will detect the
position of the piston. 7

Figure 4 2D mockup of an extended pneumatic cylinder and its green sensor which will detect the
position of the piston. 7

Figure 5 Mockup of a the conveyor belt with three packages and two sensors for detecting
packages. 8

Figure 6 Mockup of a slide at the end of the conveyor belt. It will hold the packages as they fall of
the belt and has a sensor for counting the amount of packages that slid down. 8

Figure 7 Mockup of the combination of all the models showing a complete machine lineup. The wall
that prevents the packages from moving is meant to represent a pneumatic cylinder.
However, since it is difficult to depict in a 2D model, we used a wall instead for this
mockup. 9

Figure 8 System context diagram for the whole setup and interaction between
the Unreal Engine the OPC UA server and a test user. 28

Figure 9 Node-RED editor configuration view for the Cylinder1 of the OPC UA server. 29

Figure 10 Node-RED editor dashboard view for the Cylinder1 of the OPC UA server. 29

Figure 11 Address space editor where the OPC UA nodes are defined and can be added 30

Figure 12 Flow configuration for the package manager where multiple input fields are defined and
two buttons that increase the respective counter on the OPC UA server. 32

Figure 13 Dashboard generated by the nodes for the package manager where packages can be created
and deleted. 32

Figure 14 Subscription error message because the server is limited in the number of subscriptions it
can handle . 33

Figure 15 Content Drawer inside the Unreal Engine editor.
This is where the GameInstance is located. 35

Figure 16 OPC UA client connection settings to
configure the error message visualizer and the
server connection url. 35

Figure 17 Example Blueprint configuration that reads a boolean value from the OPC UA server and
prints the value to the screen. 37

Figure 18 Flow chart diagram that displays how the read request of the boolean value from the OPC
UA server is handled. This also applies to other data types. 37

Figure 19 Example Blueprint configuration that writes a boolean value to the OPC UA server. Home
Pos Id is a variable that represents the OPC UA node ID. 39

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 79 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 20 Flow chart diagram that displays how the write request of the value to the OPC UA server
is handled. 39

Figure 21 Blueprint function configuration that sets up a timer to call the UA_Client_run_iterate()
function periodically in order to check for changes in the active subscriptions. 41

Figure 22 The custom created variable of type OPCUASubscriber that holds the information about
the subscription and the callback function. 42

Figure 23 Blueprint function configuration that setups a subscription to a boolean OPC UA node with
a callback function that either retracts or extends the pneumatic cylinder. 42

Figure 24 Sequence diagram that shows the entire interactions between the simulation and the OPC
UA server. Shows the process of the pneumatic cylinder that creates a subscription to a
boolean node and the process of receiving a notification from the server that triggers the
respective callback function. 43

Figure 25 Engine Scalability Settings in the Unreal Engine editor with the recommended settings for
maximum performance. 45

Figure 26 Blueprint functions to set the engine scalability to low by default. 46

Figure 27 Starting screen in Epic Games client for Unreal Engine. 46

Figure 28 Unreal Engine editor interface for modeling a 3D level in the Selector Mode. 47

Figure 29 Settings window for the Unreal Engine Revision Control setup. 48

Figure 30 Submit content in Unreal Engine
to the revision control via user interface. 48

Figure 31 Select files and write a message for the
commit in the Unreal Engine user interface. 48

Figure 32 Datasmith CAD Importer plugin that can be enabled in the plugin manager of Unreal
Engine. The plugin is responsible for converting CAD files to Unreal Engine models. 50

Figure 33 Import button to convert a CAD file to a Unreal Engine model. 51

Figure 34 Import settings for the CAD file. The settings are set to default values and should be
sufficient for most cases. 51

Figure 35 Imported CAD model in the content drawer. The folder contains all the assets that are used
in the model and is represented by the Datasmith Scene file. 52

Figure 36 CAD model in the scene. The model here is by default on its side but can be rotated and
moved like any other object in Unreal Engine. 52

Figure 37 Convert Datasmith Scene to Blueprint Class by selecting all the child components and
clicking on “Convert Selection to Blueprint Class”. 53

Figure 38 Converted CAD model to Blueprint Class. The class contains all the components of the
model and logic can be added to it. 53

Figure 39 Logic of the converted CAD model. It detects when a package is inside the collision box and
applies a force to the package in the direction of the conveyor belt. 54

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 80 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 40 Mesh from the converted CAD model where there is no collision mesh. Menu open that
generates a collision mesh automatically. 54

Figure 41 All the Blueprint models accessible in the content drawer. 55

Figure 42 Placing the Blueprint model of a pneumatic cylinder in the world via drag and drop from
the content drawer . 56

Figure 43 Rotating the pneumatic cylinder in the rotating mode, which can be selected in the top
right corner . 56

Figure 44 All the possible settings for the pneumatic cylinder. These are the variables that are used
behind the scenes in the Blueprint functions. 57

Figure 45 This Error message that, we created, is displayed on the screen when the node IDs are not
set or not found on the OPC UA server or if the type of the node is not correct. 57

Figure 46 The whole Blueprint logic of the pneumatic cylinder, separated in setup where the
subscription and other internal variables are set, the callbacks for when the value changes
and the actual movement of the piston. 58

Figure 47 Placing the Blueprint package in the world via drag and drop from the content drawer. . . 59

Figure 48 Construction script of the package where the width, height, depth and mass are set to the
values of the variables. 59

Figure 49 Physical material properties of the package. It has a low friction in order to move smoothly
on the conveyor belt. 60

Figure 50 Placing the Blueprint package spawner in the world via drag and drop from the content
drawer. 61

Figure 51 Settings for the package spawner where the Z offset of where the packages will be spawned
can be set. 61

Figure 52 Blueprint logic of the package spawner that spawns and deletes packages dynamically
during runtime. 62

Figure 53 Placing the Blueprint sensor in the world via drag and drop from the content drawer. 63

Figure 54 Blueprint logic of the sensor that writes true to a boolean node in the OPC UA server when
an object enters the beam and false when it leaves the beam. The node ID can be set in the
details panel of the sensor. 63

Figure 55 Conveyor belt model being dragged into the world from the content drawer. The settings
for the conveyor belt can be set in the details panel on the right side of the screen. 64

Figure 56 Conveyor belt splines being raised forming a linear path for packages to move along. 64

Figure 57 Multiple conveyor belts with different wall settings forming one long conveyor belt. The
first and last conveyor belt have no walls, while the middle conveyor belt has walls. 65

Figure 58 Settings of the conveyor belt. Walls toggles between having walls or not, the Conveyor on
Node is the OPC UA node ID of the boolean node indicating if the conveyor belt is turned on
or not and Conveyor Position Node is the OPC UA node ID of the float node indicating the
target position of the conveyor belt in centimeters. 65

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 81 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Figure 59 The whole Blueprint logic of the conveyor belt, separated in setup where the subscriptions
to the OPC UA server are set up, the callbacks for when the value changes and the actual
movement of the conveyor belt. 67

Figure 60 Placing the Blueprint slide in the world via drag and drop from the content drawer. 68

Figure 61 Blueprint logic of the slide that counts up the packages that passed the sensor and displays
the counter in a floating text above the slide. 69

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 82 / 85
OST RJ

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

Bibliography
[1] “What are Digital Twins?.” Accessed: Mar. 11, 2025. [Online]. Available: https://unity.com/topics/digital-twin-

definition

[2] “The Past: History of Digital Twins.” Accessed: May 29, 2025. [Online]. Available: https://foundtech.me/
history-of-digital-twins-in-industry-past-and-future/?lang=en

[3] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital Twin in manufacturing: A categorical
literature review and classification,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018, doi: https://doi.
org/10.1016/j.ifacol.2018.08.474.

[4] “What is OPC?.” Accessed: Mar. 11, 2025. [Online]. Available: https://opcfoundation.org/about/what-is-opc/

[5] “Unified Architecture - Landingpage.” Accessed: Mar. 11, 2025. [Online]. Available: https://opcfoundation.org/
about/opc-technologies/opc-ua/

[6] “What is a OPC-UA node?.” Accessed: May 29, 2025. [Online]. Available: https://stackoverflow.com/
questions/55050908/what-is-a-node-in-opc-ua#:~:text=the%20node%20concept%20of%20OPC,what%20they%
20are%20used%20for.

[7] “OPC UA specification - 2 Terms, definitions and abbreviated terms.” Accessed: Mar. 11, 2025. [Online].
Available: https://reference.opcfoundation.org/Core/Part1/v105/docs/2

[8] Engine Unreal, “Unreal Engine,” Retrieved from Unreal Engine: https://www.unrealengine.com/en-US/unreal-
engine-5, 2018, Accessed: Mar. 11, 2025. [Online]. Available: https://d1.awsstatic.com/awsmp/solutions/mk-
sol-files/media-entertainment/AWSMP-MandE-Game-Tech-Datasheet-Epic-Games.pdf

[9] “Unreal Engine.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.unrealengine.com/en-US

[10] “Learn Unreal Engine.” Accessed: Mar. 12, 2025. [Online]. Available: https://dev.epicgames.com/community/
unreal-engine/learning?sort_by=views_count

[11] “About Epic Games.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.epicgames.com/site/en-US/
about?lang=en-US

[12] “Unreal Engine.” Accessed: Mar. 12, 2025. [Online]. Available: https://en.wikipedia.org/wiki/Unreal_Engine

[13] “Mitsubishi Melsoft Gemini 3D.” Accessed: Mar. 06, 2025. [Online]. Available: https://emea.mitsubishielectric
.com/fa/products/software-overview/melsoft-gemini

[14] “Azure Digital Twin.” Accessed: Mar. 06, 2025. [Online]. Available: https://azure.microsoft.com/en-us/
products/digital-twins

[15] “Siemens SIMIT.” Accessed: Mar. 06, 2025. [Online]. Available: https://www.siemens.com/global/en/products/
automation/industry-software/simit.html

[16] “ABB RobotStudio.” Accessed: Apr. 01, 2025. [Online]. Available: https://new.abb.com/products/robotics/de/
software-digitale-loesungen/robotstudio

[17] “Visual Components.” Accessed: Apr. 01, 2025. [Online]. Available: https://www.visualcomponents.com/

[18] K. Rongiers, “Digital Twin of the Vertical Warehouse Application.” Accessed: Mar. 11, 2025. [Online]. Avail-
able: https://www.theseus.fi/handle/10024/861994

[19] “An OPC UA client gateway-based architecture for SCADA systems with automatic mental fatigue detection
application.” Accessed: Jun. 04, 2025. [Online]. Available: https://summit.sfu.ca/item/36074

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 83 / 85
OST RJ

https://unity.com/topics/digital-twin-definition
https://unity.com/topics/digital-twin-definition
https://foundtech.me/history-of-digital-twins-in-industry-past-and-future/?lang=en
https://foundtech.me/history-of-digital-twins-in-industry-past-and-future/?lang=en
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://opcfoundation.org/about/what-is-opc/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://stackoverflow.com/questions/55050908/what-is-a-node-in-opc-ua#:~:text=the%20node%20concept%20of%20OPC,what%20they%20are%20used%20for.
https://stackoverflow.com/questions/55050908/what-is-a-node-in-opc-ua#:~:text=the%20node%20concept%20of%20OPC,what%20they%20are%20used%20for.
https://stackoverflow.com/questions/55050908/what-is-a-node-in-opc-ua#:~:text=the%20node%20concept%20of%20OPC,what%20they%20are%20used%20for.
https://reference.opcfoundation.org/Core/Part1/v105/docs/2
https://d1.awsstatic.com/awsmp/solutions/mk-sol-files/media-entertainment/AWSMP-MandE-Game-Tech-Datasheet-Epic-Games.pdf
https://d1.awsstatic.com/awsmp/solutions/mk-sol-files/media-entertainment/AWSMP-MandE-Game-Tech-Datasheet-Epic-Games.pdf
https://www.unrealengine.com/en-US
https://dev.epicgames.com/community/unreal-engine/learning?sort_by=views_count
https://dev.epicgames.com/community/unreal-engine/learning?sort_by=views_count
https://www.epicgames.com/site/en-US/about?lang=en-US
https://www.epicgames.com/site/en-US/about?lang=en-US
https://en.wikipedia.org/wiki/Unreal_Engine
https://emea.mitsubishielectric.com/fa/products/software-overview/melsoft-gemini
https://emea.mitsubishielectric.com/fa/products/software-overview/melsoft-gemini
https://azure.microsoft.com/en-us/products/digital-twins
https://azure.microsoft.com/en-us/products/digital-twins
https://www.siemens.com/global/en/products/automation/industry-software/simit.html
https://www.siemens.com/global/en/products/automation/industry-software/simit.html
https://new.abb.com/products/robotics/de/software-digitale-loesungen/robotstudio
https://new.abb.com/products/robotics/de/software-digitale-loesungen/robotstudio
https://www.visualcomponents.com/
https://www.theseus.fi/handle/10024/861994
https://summit.sfu.ca/item/36074

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

[20] “Real-time two-way data transfer with a digital twin via web interface.” Accessed: Jun. 04, 2025. [Online].
Available: https://aaltodoc.aalto.fi/items/08de97f7-5af6-435a-b189-c21c8254fd94

[21] “Industry 4.0 - Digital Twins and OPC UA.” Accessed: Jun. 04, 2025. [Online]. Available: https://ntnuopen.
ntnu.no/ntnu-xmlui/handle/11250/2561319

[22] “An Immersive Digital Twin Applied to a Manufacturing Execution System for the Monitoring and Control
of Industry 4.0 Processes.” Accessed: Jun. 04, 2025. [Online]. Available: https://www.mdpi.com/2076-3417/14/
10/4125

[23] “An Immersive Digital Twin Applied to a Manufacturing Execution System for the Monitoring and Control
of Industry 4.0 Processes.” Accessed: Jun. 04, 2025. [Online]. Available: https://www.mdpi.com/2076-3417/14/
10/4125

[24] J. V. Sørensen, Z. Ma, and B. N. Jørgensen, “Potentials of game engines for wind power digital twin
development: an investigation of the Unreal Engine,” Energy Informatics, vol. 5, no. 4, p. 39, doi: 10.1186/
s42162-022-00227-2.

[25] R. Piha, “Unreal Twins,” 2024. Accessed: Apr. 01, 2025. [Online]. Available: https://diglib.uibk.ac.at/download/
pdf/10338423.pdf

[26] “Design of a UE5-based digital twin platform.” Accessed: Jun. 04, 2025. [Online]. Available: https://arxiv.org/
abs/2407.03107

[27] “Which architecture should be implemented to manage data from the real world, in an Unreal Engine 5
simulator and in the context of mixed reality?.” Accessed: Jun. 04, 2025. [Online]. Available: https://arxiv.org/
abs/2305.09244

[28] “Verosim solutions.” Accessed: May 31, 2025. [Online]. Available: https://www.verosim-solutions.com/

[29] “Combining Digital Twins of Robotic Systems with State-of-the-Art Game Engines for Enhanced
Visualization and User Interfaces.” Accessed: Jun. 04, 2025. [Online]. Available: https://largestructurepr
oduction.sdu.dk/thesis/combining-digital-twins-of-robotic-systems-with-state-of-the-art-game-engines-for-
enhanced-visualization-and-user-interfaces/

[30] Craig Larman, UML and Patterns - Use Cases. pp. 63–72. Accessed: Mar. 18, 2025. [Online]. Available: https://
www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf

[31] “ISO/IEC 25010.” Accessed: Mar. 24, 2025. [Online]. Available: https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010

[32] “Unreal Engine 5 - Licensing options.” Accessed: May 31, 2025. [Online]. Available: https://www.unrealengine.
com/en-US/license

[33] “Unreal Engine 5 - WebGPU support.” Accessed: May 31, 2025. [Online]. Available: https://forums.
unrealengine.com/t/anyone-interested-in-webgpu-support-for-unreal-engine-5/1910658

[34] “Unreal Engine 5 - Lumen.” Accessed: May 31, 2025. [Online]. Available: https://dev.epicgames.com/
documentation/en-us/unreal-engine/lumen-global-illumination-and-reflections-in-unreal-engine

[35] “Unreal Engine 5 - Nanite.” Accessed: May 31, 2025. [Online]. Available: https://dev.epicgames.com/
documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine

[36] “Unreal Engine 5 - Physics.” Accessed: May 31, 2025. [Online]. Available: https://dev.epicgames.com/
documentation/en-us/unreal-engine/physics-in-unreal-engine

[37] “Unity - Licenses.” Accessed: May 31, 2025. [Online]. Available: https://unity.com/products

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 84 / 85
OST RJ

https://aaltodoc.aalto.fi/items/08de97f7-5af6-435a-b189-c21c8254fd94
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2561319
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2561319
https://www.mdpi.com/2076-3417/14/10/4125
https://www.mdpi.com/2076-3417/14/10/4125
https://www.mdpi.com/2076-3417/14/10/4125
https://www.mdpi.com/2076-3417/14/10/4125
https://doi.org/10.1186/s42162-022-00227-2
https://doi.org/10.1186/s42162-022-00227-2
https://diglib.uibk.ac.at/download/pdf/10338423.pdf
https://diglib.uibk.ac.at/download/pdf/10338423.pdf
https://arxiv.org/abs/2407.03107
https://arxiv.org/abs/2407.03107
https://arxiv.org/abs/2305.09244
https://arxiv.org/abs/2305.09244
https://www.verosim-solutions.com/
https://largestructureproduction.sdu.dk/thesis/combining-digital-twins-of-robotic-systems-with-state-of-the-art-game-engines-for-enhanced-visualization-and-user-interfaces/
https://largestructureproduction.sdu.dk/thesis/combining-digital-twins-of-robotic-systems-with-state-of-the-art-game-engines-for-enhanced-visualization-and-user-interfaces/
https://largestructureproduction.sdu.dk/thesis/combining-digital-twins-of-robotic-systems-with-state-of-the-art-game-engines-for-enhanced-visualization-and-user-interfaces/
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.unrealengine.com/en-US/license
https://www.unrealengine.com/en-US/license
https://forums.unrealengine.com/t/anyone-interested-in-webgpu-support-for-unreal-engine-5/1910658
https://forums.unrealengine.com/t/anyone-interested-in-webgpu-support-for-unreal-engine-5/1910658
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-global-illumination-and-reflections-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-global-illumination-and-reflections-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/physics-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/physics-in-unreal-engine
https://unity.com/products

Bachelor Thesis Using 3D Game Engines to Build Digital Twins for Indus-
trial Machine Simulation and Testing

[38] “Unity - Features.” Accessed: May 31, 2025. [Online]. Available: https://docs.unity3d.com/6000.1/
Documentation/Manual/FeatureSets.html

[39] “Unity 3D - Physics.” Accessed: May 31, 2025. [Online]. Available: https://docs.unity3d.com/6000.1/
Documentation/Manual/PhysicsOverview.html

[40] “Unity Asset Store.” Accessed: May 31, 2025. [Online]. Available: https://assetstore.unity.com/

[41] “open62541.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.open62541.org/

[42] “Mozilla Public License Version 2.0.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.mozilla.org/
en-US/MPL/2.0/

[43] “C++ Based OPC UA Client & Server SDK (Bundle).” Accessed: Mar. 12, 2025. [Online]. Available: https://
www.unified-automation.com/products/server-sdk/c-ua-server-sdk.html

[44] “OPC UA Clients & Server Integration in C++ Applications based on Windows.” Accessed: Mar. 12, 2025.
[Online]. Available: https://industrial.softing.com/products/opc-ua-and-opc-classic-sdks/opc-ua-c-sdks-for-
windows.html

[45] “Node-OPCUA.” Accessed: Mar. 12, 2025. [Online]. Available: https://node-opcua.github.io/

[46] “The MIT License - Open Source Initiative.” Accessed: Mar. 12, 2025. [Online]. Available: https://opensource.
org/license/mit

[47] “opcua-asyncio.” Accessed: Mar. 12, 2025. [Online]. Available: https://github.com/FreeOpcUa/opcua-asyncio

[48] “GNU Lesser General Public License.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.gnu.org/
licenses/lgpl-3.0.html

[49] “UGameInstance.” Accessed: Mar. 17, 2025. [Online]. Available: https://dev.epicgames.com/documentation/
en-us/unreal-engine/API/Runtime/Engine/Engine/UGameInstance

[50] “UA Part 4 Services - 5.13.1 Subscription model.” Accessed: Mar. 18, 2025. [Online]. Available: https://reference.
opcfoundation.org/Core/Part4/v104/docs/5.13.1

[51] “Download Unreal Engine.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.unrealengine.com/en-
US/download

[52] “Datasmith Limitations.” Accessed: May 14, 2025. [Online]. Available: https://dev.epicgames.com/
documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types?application_version=5.4#
exportpluginsformacos

[53] “Datasmith File Formats.” Accessed: May 14, 2025. [Online]. Available: https://dev.epicgames.com/
documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types

[54] “Datasmith.” Accessed: May 14, 2025. [Online]. Available: https://dev.epicgames.com/documentation/en-us/
unreal-engine/datasmith-plugins-for-unreal-engine

[55] “GrabCAD.” Accessed: May 14, 2025. [Online]. Available: https://grabcad.com/library/belt-conveyor-148

[56] “STEP File Format.” Accessed: May 14, 2025. [Online]. Available: https://www.adobe.com/creativecloud/file-
types/image/vector/step-file.html

Authors: Isaia Brassel, Silvan Kisseleff
Version: 1.0.0

Page: 85 / 85
OST RJ

https://docs.unity3d.com/6000.1/Documentation/Manual/FeatureSets.html
https://docs.unity3d.com/6000.1/Documentation/Manual/FeatureSets.html
https://docs.unity3d.com/6000.1/Documentation/Manual/PhysicsOverview.html
https://docs.unity3d.com/6000.1/Documentation/Manual/PhysicsOverview.html
https://assetstore.unity.com/
https://www.open62541.org/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.unified-automation.com/products/server-sdk/c-ua-server-sdk.html
https://www.unified-automation.com/products/server-sdk/c-ua-server-sdk.html
https://industrial.softing.com/products/opc-ua-and-opc-classic-sdks/opc-ua-c-sdks-for-windows.html
https://industrial.softing.com/products/opc-ua-and-opc-classic-sdks/opc-ua-c-sdks-for-windows.html
https://node-opcua.github.io/
https://opensource.org/license/mit
https://opensource.org/license/mit
https://github.com/FreeOpcUa/opcua-asyncio
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/Engine/UGameInstance
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/Engine/UGameInstance
https://reference.opcfoundation.org/Core/Part4/v104/docs/5.13.1
https://reference.opcfoundation.org/Core/Part4/v104/docs/5.13.1
https://www.unrealengine.com/en-US/download
https://www.unrealengine.com/en-US/download
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types?application_version=5.4#exportpluginsformacos
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types?application_version=5.4#exportpluginsformacos
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types?application_version=5.4#exportpluginsformacos
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-supported-software-and-file-types
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-plugins-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/datasmith-plugins-for-unreal-engine
https://grabcad.com/library/belt-conveyor-148
https://www.adobe.com/creativecloud/file-types/image/vector/step-file.html
https://www.adobe.com/creativecloud/file-types/image/vector/step-file.html

	Introduction
	Target audience

	Glossary
	Product description
	Context
	Situation
	Digital twin
	Open Platform Communications Unified Architecture
	Unreal Engine

	Deliverables
	Analysis of game engines
	Integration of OPC UA client in the game engine
	Blueprint functions
	Models
	Pneumatic cylinder
	Conveyor belt
	Slide
	Combination

	Related work
	Commercial solutions
	Mitsubishi Melsoft Gemini
	Azure Digital Twins
	Siemens SIMIT
	ABB RobotStudio
	Visual Components

	Similar projects
	Theses and papers focusing on OPC UA communication
	Theses and papers focusing on 3D visualization in Unreal Engine

	Requirements
	Functional requirements
	FR1: Connect to OPC UA server
	FR2: Read boolean from OPC UA server
	FR3: Write boolean to OPC UA server
	FR4: Subscribe to boolean from OPC UA server
	FR5: Pneumatic cylinder simulation
	FR6: Conveyor belt simulation
	FR7: Slide simulation
	FR8: Spawn packages
	FR9: Delete packages

	Non-functional requirements
	NFR1: Functionality on Windows and macOS
	NFR2: The setup of our project requires no additional installments.
	NFR3: The documentation is written in a detailed and explanatory way
	NFR4: Simple and easy to understand graphics
	NFR5: The project does not require a high-performance computer

	Product realization
	Analysis
	Utility value analysis of game engines
	Criteria
	Utility value analysis for Unreal Engine
	Utility value analysis for Unity
	Summary
	Unreal Engine
	Unity

	Conclusion

	Analysis of OPC UA clients
	open62541
	Unified Automation C++ SDK
	Softing C++ SDK
	Node-OPCUA
	opcua-asyncio
	Conclusion

	Architecture
	System context diagram
	OPC UA server
	OPC UA server address space
	OPC UA server logic
	Limitations

	OPC UA client in Unreal Engine
	Reading data from the OPC UA server
	Writing data to the OPC UA server
	Subscriptions

	Project setup
	Machine specifications
	Installation
	Version Control
	Converting CAD files to Unreal Engine models

	Models
	Pneumatic cylinder
	Package
	Package spawner
	Sensor
	Conveyor belt
	Conveyor belt movement

	Slide

	Summary
	Summary
	Results
	Limitations
	Future work

	Appendix
	Test runs
	The whole project can be set up according to the README (10.4.2025)
	The whole project can be set up according to the README (28.04.2025)
	The whole project can be set up according to the README (03.06.2025)
	The pneumatic cylinder can be extended and retracted. (03.06.2025)
	The pneumatic cylinder can be extended and retracted. (03.06.2025)
	The conveyor belt can be started and transports package. (03.06.2025)
	The packages slide down the slide. (03.06.2025)
	A Blueprint actor with a read operation to the OPC UA Server can be created. (03.06.2025)
	A Blueprint actor with a write operation to the OPC UA Server can be created. (03.06.2025)
	A Blueprint actor with a subscription to the OPC UA Server can be created. (03.06.2025)

	Figures
	Bibliography

