
Claudio Bertozzi

Matching and Conflation of Open
Government Data with
OpenStreetMap Data

Matching and Conflation of All The Places Data with
OpenStreetMap Data

Master’s Thesis

OST – Eastern Switzerland University of Applied Sciences
Campus Rapperswil-Jona

Supervision

Prof. Stefan F. Keller

08.2025



Abstract

This thesis addresses the absence of a reliable, openly licensed, repeatable workflow for conflating au-
thoritative POI fromSwiss OGD sourceswith heterogeneousOSMdata—a gap that increases duplication,
staleness, and manual curation cost. The objective was to design and evaluate an auditable end-to-end
pipeline (DiffedPlaces) that ingests brand and retailer feeds from ATP together with contemporaneous
OSM extracts, generates spatially and semantically blocked candidate pairs for Switzerland (Oct 2024–
Aug 2025), and resolves matches via a tunable rule-based scorer and a supervised machine learning
(ML) RandomForestClassifier. Two golden datasets underpinned evaluation: a brand-focused Aldi Süd
Switzerland subset (246 outlets) and a stratified multi-category random sample (200 POI). The evolved
ML matcher achieved Precision 1.0000, Recall 0.9957 (F1 0.9978) on the brand subset and improved F1
on the heterogeneous sample while substantially lowering false positives versus the tuned rule-based
approach. The resulting workflow delivers reproducible, high-precision conflation, reduces audit work-
load, and provides a transferable governance template for integrating additional authoritative OGD feeds
into OSM with transparent quality controls.

Keywords: DiffedPlaces, All The Places (ATP), OpenStreetMap (OSM), Data Conflation, Geospatial Data
Management, Point of Interest (POI), Random Forest Classifier, Automated Data Processing, Open Gov-
ernment Data (OGD).

i



Executive Summary

Public geospatial data dependson reconciliation between authoritative brand / retailer feeds and community-
maintained map features. Fragmented, one-off imports have produced duplicate, stale, or diverging en-
tries that erode trust and inflate manual curation workload. This project delivers a repeatable workflow
that ingests dated Swiss snapshots from ATP alongside current OSM extracts, harmonises tagging into
a taxonomy, and prepares high-recall candidate pairs through joint spatial and semantic blocking. Core
constraints—transparent auditability, commodity hardware (ď 16GBRAM), and extensibility—guided each
design decision, yielding predictable quality. The approach emphasises explainability (structured similar-
ity breakdowns), governance (immutable provenance metadata, deterministic reruns), and incremental
adoption (drop-inmatcher profiles without retooling downstream audit). By explicitly modelling both spa-
tial proximity and semantic compatibility early, the workflow reduces noisy pair proliferation and focuses
human review where residual ambiguity genuinely exists.

Figure 1: Early ideation diagram illustrating envisioned ingestion, matching, audit, and feedback loops.

ii



The workflow operationalises two complementary matchers inside DiffedPlaces (i) a deterministic rules
engine producing interpretable similarity decompositions and (ii) a supervised RandomForestClassifier
(engineered lexical, spatial, semantic, structural features) trained with a staged regimen combining syn-
thetic perturbations and high-precision pseudo-labels. Unified GeoJSON diffs progress through a multi-
layer human-in-the-loop audit (command-line inspection, web-based collaborative review, quorum confir-
mation) before generating a ChangeXML batch for curator validation and upload. Idempotent ingestion,
explicit provenance metadata, and reproducible configuration profiles minimise hidden state; semantic
blocking sharply reduces implausible pair evaluations and thereby lowers false positives upstream of
any machine learning decision boundary. Feature design balances robustness (token-set and character
similarities, distance decay, tag agreement) with parsimony to support later optimisation and potential
model distillation. The architecture isolates concerns (ingest, match, audit, publish) so that performance
tuning or classifier upgrades do not ripple unpredictably into auditing or upload procedures.

Figure 2: Operational pipeline: ingestion (blue), matching (green), auditing (purple), human upload (yel-
low).

iii



Empirical validation on two golden datasets—a brand-focused Aldi Süd Switzerland subset (246 out-
lets) and a stratified multi-category sample (200 POIs)—shows the machine learning matcher attains
near-zero false positives on the brand subset (Precision 1.0000, Recall 0.9957, F1 0.9978) and improves
balanced performance on heterogeneous data (F1 0.8814 vs. 0.8587 for the tuned rule-based approach)
while lowering False Positive Rate. These gains cut auditor review volume in dense urban clusters and
provide a defensible precision baseline for integrating further OGDs feeds. Practical impact includes
shorter publication lead times, higher mapper confidence in suggested merges, and clearer escalation
paths for borderline cases. Remaining limitations include elevated inference latency relative to the rule-
based path, limited golden coverage of rare categories, and absent automated drift detection. Proposed
mitigations—feature pruning, alias expansion, adaptive thresholds, probability calibration, lightweight
model distillation, and periodic drift health reports—outline a clear path to production hardening while
preserving reproducibility and transparency.

Figure 3: Data flow emphasising feedback loops from ingestion through audit back to refreshed snap-
shots.

iv



Acknowledgment

I express sincere appreciation to Prof. Stefan F. Keller for his consistent guidance, critical feedback, and
constructive challenge at each decision point. His ability to connect strategic direction with implemen-
tation detail materially elevated the rigor and practical relevance of this work.

Gratitude is extended to Sacha Brawer for incisive architectural discussions and for helping stress-test
early assumptions around data ingestion, matcher extensibility, and reviewer ergonomics. His perspec-
tive helped sharpen the separation of concerns that underpins the reproducible workflow presented.

Another thanks go to Felix Reiniger of the IFS for hands-on support during iterative test runs and for
engineering-focused collaboration while integrating auditing capabilities into the OSM Auditor environ-
ment.

Finally, thanks are given to all those who provided informal reviews or exploratory usage feedback during
intermediate checkpoints; their observations helped refine clarity, robustness, and maintainability.

v



Contents

1 Introduction 1
1.1 Problem Statement & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Boundaries and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Data Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Previous Work and Challenges 5
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Data Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Generalisation of External Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Centralized Data Integration Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Challenges in OSM Conflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Modern Approaches to POI Matching and Data Integration 12
3.1 Case-Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Objectives & Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Expected Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Overview of POI Matching Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Data Sources & Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Candidate Generation (Blocking) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Derivation and Iterative Validation of High-Level Categories . . . . . . . . . . . . . 17
3.5 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



3.6 Matching Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6.1 Rule-Based Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.2 ML-Based Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.3 Training of Matchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.4 Final Operational Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.5 DB Service CLI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Validation & Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7.1 Golden Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7.2 High-Level Categorization as Hard Blocking . . . . . . . . . . . . . . . . . . . . . . 30
3.7.3 Rule-Based Matcher Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.4 ML-Based Matcher Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.6 Rule-Based vs. ML-Based Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Discussion & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.2 Typical Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.3 Generalisability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.4 Runtime and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.5 Mitigation Strategies for Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.7 Ethical & Licensing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.8 Future Work Direction (Synthesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Section Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Software Project Documentation 38
4.1 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Assumptions and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Out of Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Data Sources Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Entity Resolution Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Similarity Feature Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Blocking Strategy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 Golden Data and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.6 Risk and Complexity Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



4.4.1 High-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Component Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 Iterative Architectural Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.4 Batch Data Flow and Artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.5 Configuration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.6 Extensibility Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.7 Quality Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 Technology Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 Module Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.3 DB Service CLI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.4 Configuration Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.5 Testing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.6 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.7 Error Handling and Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.8 Continuous Improvement Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Results and Further Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.1 Achieved Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.2 Qualitative Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.4 Future Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.5 Sustainability and Community Adoption . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7.1 Phased Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.2 Timeline and Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7.3 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7.4 Governance and Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.5 Tooling and Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.6 Change Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.7 Quality Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Project Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.1 Regular Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.2 Focus on Work Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Software Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9.1 Repository Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.2 Module Responsibilities (Cross-Reference) . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.3 Configuration Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



4.9.4 Execution Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9.5 Primary Data Artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9.6 Extensibility Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9.7 Deployment and Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9.8 Maintenance Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusion and Outlook 63
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Glossary 67

Acronyms 69

A Personal Reflection 70

B Declaration of Independence 73

C Tooling and Platforms Utilized 74

D Category Encoding for ML Matching 77

E Data Sources: Catalog and Taxonomy 79

Glossary 82

Acronyms 84

List of Figures 85

List of Tables 86

References 87

ix



Chapter 1

Introduction

1.1 Problem Statement & Motivation

Despite the continuous growth of OGD portals, the OSM ecosystem still lacks a reliable, repeatable, and
openly licensed workflow to conflate authoritative POIs with the heterogeneous crowd-sourced objects
already present in the global map.

• Practitioners’ pain-point – Municipal OGD stewards struggle to detect duplicates or stale entries
when their official registers are imported into OSM. Inaccuratematches lead to downstreamediting
work and, in the worst case, vandalism accusations by the mapping community.

• Scientific relevance – Record linkage across heterogeneous spatial data is still an open research
field [1, 2]. Existing approaches rarely consider both spatial and semantic similarity at scale for
POIs.

• Societal impact – End-users of routing, tourism, and accessibility apps rely on the freshness of
OSM. Poor conflation quality undermines public trust in open geodata.

The absence of a transparent conflation pipeline therefore affects all stakeholders—OGD providers, OSM
mappers, software developers, and researchers. Subsequent chapters will show how the proposed solu-
tion bridges these needs.

1.2 Vision

Elevator pitch: “Withinminutes, anOGDsteward can publish a freshPOI dataset; theDiffedPlaces
service automatically proposes high-precision matches and conflicts, ready for community re-
view—thus keeping OSM both current and trustworthy.”

1



Chapter 1. Introduction 2

Figure 1.1: DiffedPlaces-centric workflow for POI conflation.

1.3 Objectives

The assignment “Conflation of Point Data with OpenStreetMap” (26 Jan 2025) specifies these objectives:

O1: Extend the DiffedPlaces configuration to ingest Swiss ATP spiders for POIs.

O2: Generate comprehensive diff outputs.

O3: Implement a simple generic matcher based on heuristic measures.

O4: Adapt and refine the PT1 algorithm (“Towards Automatic Points of Interest Matching”, 2020).

O5: Develop a standalone Python package that exposes matching logic and similarity scores.

O6: Design evaluation metrics and validate on high-quality Swiss samples (dense vs. sparse regions;
named vs. unnamed POIs).

O7: Systematically compare simple and advanced approaches with emphasis on false-positive rates.

O8: Integrate the best-performing algorithm into the production DiffedPlaces service and document
its impact.



Chapter 1. Introduction 3

O9: Provide scientific insight into whether advancedmethods are necessary for reliable Swiss POI con-
flation with OSM.

1.4 Boundaries and Constraints

Time & credits The thesis corresponds to 30 ECTS, carried out between October 2024 and the submis-
sion deadline on 10 August 2025.

Data scope Only point geometries are considered; linear or polygonal features (e.g. building footprints)
are excluded.

Licensing All artifacts must remain compatible with the ODbL (for OSM).

Infrastructure The solution must run on commodity hardware (ď 16 GB RAM) and avoid paid cloud
services.

Ethical aspects No personal data are processed; see Section 1.5 for details.

These limits focus the research on the core conflation challenge while ensuring that results can be
adopted by the OSM community without legal frictions.

1.5 Data Ethics

The project processes only openly licensed, non-personal geospatial data from ATP spiders and OSM.
No direct identifiers or sensitive attributes concerning individuals are handled. All inputs are subject to
license compliance checks (notably ODbL) and are stored and processed on commodity hardware with-
out external cloud services. Potential ethical risks (for example, inadvertent inclusion of personal data
in upstream sources) are mitigated through conservative filtering, manual spot checks, and adherence
to community import guidelines.

1.6 Methodological Approach

The work follows an experiment-driven paradigm centred on the provided DiffedPlaces tool:

1. Literature review – Analyse existing POI matching techniques and evaluation metrics (Chapter 2).

2. Baseline experiment – Run DiffedPlaces with deterministic rules on a Swiss test dataset.

3. Error analysis– Identify frequent false-positive/false-negative patterns; derive additional candidate
features.

4. Feature engineering & ML upgrade – Extend the pipeline with Random Forest match; perform grid
search and cross-validation.



Chapter 1. Introduction 4

5. Field validation – Deploy the improved pipeline on the golden data to compare it against the Rule-
Based version.

6. Field Test–Use the approach tomatch aATPspider and use theOSMAuditor to verify thematches.

1.7 Structure of the Thesis

• Chapter 2 surveys the state of the art in spatial record linkage and outlines unresolved challenges
for POI conflation.

• Chapter 3 details the design and implementation of the DiffedPlaces pipeline, including evalu-
ation results.

• Chapter 4 documents the software-engineering aspects—architecture, codebase, CI/CD, and de-
ployment.

• Chapter 5 summarises contributions, discusses limitations, and suggests future research direc-
tions.

• Appendices provide glossary, dataset description, lab notebooks, and user-study protocol.



Chapter 2

Previous Work and Challenges

This chapter reviews previous efforts in OSM data matching and conflation, highlighting key tools and
methodologies that have shaped the field. It also identifies the ongoing challenges in developing a semi-
automated process for regularly updating and reconciling data, setting the stage for the improvements
proposed in this project.

2.1 Related Work

The task of matching and conflating of POIs within geospatial data sources, such as OSM, is an increas-
ingly essential area of research due to the proliferation of POI data from various sources. This section
reviews key contributions to the field, focusing on methods that enhance POI matching, classification,
and the handling of minimal metadata.

"Analyzing the Spatial-Semantic Interaction of Points of Interest in Volunteered Geographic Information"
discuss the complexities inherent in VolunteeredGeographic Information (VGI), particularly in the tagging
and categorization of POIs within OSM. Their study emphasizes how community-driven labeling varies
significantly, influenced by local conventions and contributors’ interpretations, leading to challenges in
consistent POI representation. This research highlights the need for tools that assist in maintaining the
semantic and spatial integrity of POI data by analyzing spatial-semantic interactions and suggesting
optimal tag recommendations. [3]

Research by "Classifying Points of Interest with Minimum Metadata" tackles POI classification under
conditions ofminimalmetadata—namely, only names and coordinates. Traditional methods assume rich
data with attributes like reviews and detailed descriptions. However, their work innovatively employs fea-
ture extraction based on surrounding spatial context and textual cues from names to achieve effective
POI categorization. The approach demonstrates that with strategic use of OSM data and machine learn-
ing, accurate classifications are feasible, filling a notable gap in the literature. [4]

5



Chapter 2. Previous Work and Challenges 6

In the domain of POI matching, "Local POI Matching Based on KNN and LightGBM Method" introduce
an advanced methodology combining KNN for local candidate set construction with re-encoded feature
vectors using TF-IDF and BERT. Their binary classification model, built on LightGBM, outperforms con-
ventional deep learning models like DNNs and SVMs, proving its efficacy in large-scale POI datasets
where noise and redundancy are prevalent. [5]

The systematic review by "Conflating Point of Interest (POI) Data: A Systematic Review of Matching
Methods" underscores the importance of POI conflation as a means to merge datasets that have partial
overlaps or differing attribute focuses. This conflation process is crucial for improving data coverage and
accuracy. They categorize existing POImatchingmethods and identify areas needing further exploration,
particularly the integration of semantic and geometric attributes. [6]

"Mining the Co-existence of POIs in OpenStreetMap for Faulty Entry Detection" contributes by exploring
the co-existence patterns of POIs within OSM to detect errors and enhance data reliability. Their work
utilizes Tobler’s first law of geography to examine spatial dependencies, thus aiding in identifying incon-
sistencies and suggesting corrections. [7]

These foundational studies lay the groundwork for continued advancements in POI data integration, em-
phasizing the necessity of robust algorithms capable of handling minimal data and ensuring the seman-
tic consistency and spatial accuracy of matched POIs across diverse datasets.

2.2 Data Matching

The task POIs conflation begins by identifying pairs of records from two heterogeneous datasets (e.g.
catalogs OGD and OSM) that refer to the * same * real world place. This subsection reviews core chal-
lenges and research strands that the literature has addressed.

Record linkage foundations. Early work on geospatial record linkage adapted generic duplicate detec-
tion techniques, such as the Fellegi-Sunter decision model with Winkler string comparators [2] and the
error-tolerant indexing surveyed by Elmagarmid et al. [1]. These studies laid the algorithmic basis for later,
spatially-aware matching schemes.

Spatial blocking and candidate generation. Because an n ˆ m all-pairs comparison is infeasible for
national-scale datasets, most pipelines first construct *candidate* pairs within a distance threshold
(“blocking”). A recent systematic review shows thresholds ranging from 50 m to 1 km, chosen ad hoc
per use case [6]. Learning-based blocking has also emerged; for example, Xing et al. use a k-nearest-
neighbour pre-filter before a LightGBMmatcher, achieving 99.4 % accuracy on a 100 000+-pair benchmark
[5].



Chapter 2. Previous Work and Challenges 7

Name and type similarity. POI names are short, noisy, and multilingual. Giannopoulos et al. exploit
character n-grams and neighborhood context to classify under-specified POIs and improve type compat-
ibility signals [4]. At the tag-scheme level, Mülligann et al. model the *spatial–semantic interaction* of
OSM amenities, providing an empirical basis for semantic distance functions between categories [3].

Machine-learning matchers. Supervised models now outperform rule-based heuristics when there are
sufficient labels. Piech et al. compared six learners and found random forests to be the most robust in
five cities [8], while Low et al. demonstrated that Gradient Boosting edges out SVMs and rule sets in
an end-to-end conflation framework [9]. Both studies confirm that combining textual, categorical, and
spatial features is critical.

Quality control and validation. Manual inspection remains necessary for gold standard evaluation.
Kashian et al. propose spatial coexistence rules to flag unlikely OSM entries, which can also surface
false positives after matching [7]. In the transportation domain, Bast et al. quantify the performance of
the classifier in the conflation of public transit stations, illustrating how domain-specific quality metrics
drive algorithm choice [10].

Open challenges. Key gaps include (i) reusable and privacy-compliant benchmark datasets, (ii) multi-
lingual name similarity that respects diacritics, (iii) uncertainty propagation from matching into down-
stream analytics, and (iv) annotation tooling that lowers the cost of producing labeled pairs, an essential
prerequisite for state-of-the-art learning approaches.

In summary, data matching is the linchpin of POI conflation: robust candidate generation and multi-
feature similarity modelling directly determine how much value later integration and enrichment steps
can unlock.

2.3 Generalisation of External Data Processing

Motivation

Early integrations of OGDwith OSM relied on bespoke profiles for the osm_conflateworkflow.[11]While
this strategy delivers highly-precise results for a single source, it does not scale to the tens of millions of
POIs now published by projects such as ATP or by national open-data portals. Creating and maintaining
a dedicated profile for every provider quickly becomes a bottleneck, as already observed during the PT1
similarity-matching study[12] and the follow-up PT2 prototype of the DiffedPlaces service.[13]



Chapter 2. Previous Work and Challenges 8

Data-Volume Challenges

• Sheer size of the candidate space – A naïve Cartesian comparison of two data sets with n and m

points produces n ˆ m pairs (complexity Opn mq). Practical POI collections easily exceed 100 000
objects, turning the task into an intractable billion-pair problem. Blocking and k-nearest-neighbour
pre-selection, as surveyed by Sun et al.,[6] reduce the workload by two to three orders of magnitude
while preserving recall.

• High-throughput reads and writes–A single Switzerland-wide ATP spider already yieldsmore than
75 000 candidate POIs; the complete ATP corpus reaches ą20 million rows. Classic PostGIS instal-
lations showed I/O saturation in PT2 load tests, prompting the switch to QuackOSM+DuckDB for
columnar, in-memory analytics.[14]

• Heterogeneous attribute schemas – Street names, brands or wheelchair tags appear under dif-
ferent keys or value conventions. PT1 therefore introduced a mapping layer that normalises every
source into a minimal, unified POI model before any comparison is carried out.[12]

Lessons Learned from PT1 & PT2

1. A feature-vector representation decouples matching logic from raw tags and enables generic ML
classifiers such as the Random Forest used in PT1.[8]

2. Training data must cover the full variety of global OGD; otherwise themodel over-fits to Swiss nam-
ing conventions. PT2 therefore automated dataset generation by sampling ATP spiders in batches
of 200 – 25000 POIs and measuring run-time and memory footprints.[13]

3. In duplicate-detection studies, blocking on coarse spatial buckets is known to cut the candidate
set dramatically and often improves precision without hurting recall [1]

2.3.1 Centralized Data Integration Service

Building on these insights, PT2 proposed a Centralized Data Integration Service (CDIS) that orchestrates
the full pipeline from raw web-scraped feeds to validated OSM upload files.[13]

Architecture. The CDIS is deployed as a Docker-compose stack with three core containers:

DB QuackOSM backed by DuckDB for fast ad-hoc SQL over billions of rows while keeping the footprint
small enough for local development.[14]

Diff A worker that invokes osm_conflate followed by the PT1 classifier to generate human-readable
diff files.[12]

API/UI A lightweight web front-end that exposes diff artifacts.[13]



Chapter 2. Previous Work and Challenges 9

Interoperability & Automation. Data import adapters convert GeoJSON, CSV or API payloads into the
internal POI model at scheduled intervals (cron or message queue). A profile-free matcher is selected
at run-time based on basic source metadata (e. g. country or typical distance error), eliminating manual
configuration for new spiders.

Scalability Measures.

• Spatial proximity filtering partitions incoming POIs and OSM features so that only spatially proxi-
mate pairs enter the candidate pool, reducing PT2 diff processing time from hours to minutes for
a whole country.

• Horizontal scaling is achieved by launching additional Diff workers; DuckDB’s embedded nature
avoids connection bottlenecks.

• All components are stateless except the DB; backups rely on immutable object storage snapshots,
enabling rapid re-deployments.

Data-Quality Safeguards. Everymatch above a configurable confidence threshold is passed to an OSM
Auditor instance for community vetting, keeping the human-in-the-loop principle established by the orig-
inal osm_conflate workflow.[15]

Open Challenges.

1. Random-Forest improvement – The existing PT1 classifier needs deeper feature engineering (e. g.
brand embeddings, hierarchical category encodings) and systematic hyper-parameter tuning to
improve precision and recall.[13]

2. Incremental re-training – Human-validated diffs should be stored as labelled data so that the Ran-
dom Forest can be refreshed regularly without full re-training whenever new ATP ground truth be-
comes available.

3. Complex attribute support – Extending the mapping layer to composite tags such as opening
hours, wheelchair access and multipolygon sites is still open.

4. Scalable national runs – Country-wide conflation jobs continue to stress memory limits; spatial
partitioning and chunked processing are required to meet the performance target in the assign-
ment.

These observations confirm that a well-defined, centralized service is essential to keep pace with the
ever-growing volume and diversity of external geospatial data while maintaining the quality standards
expected by the OSM community.



Chapter 2. Previous Work and Challenges 10

2.4 Challenges in OSM Conflation

Conflation in the context of OSM refers to merging authoritative or community-curated external datasets
with the existing volunteer-contributed map. Typical goals include enriching attributes, detecting omis-
sions, and improving positional accuracy, while preserving the fine-grained provenance and licensing
constraints that make OSM unique. A widely-used practical pipeline is the OSM Conflator script suite,
which automates candidate generation, matching and change-file creation, and can be operated in a fully
scripted or semi-manual review mode [15]. Within this thesis most low-level mechanics of conflation are
therefore delegated to the osm_conflate logic; here we focus on the remaining research challenges
and the relevant state of the art.

Matching quality vs. scalability Early rule-based workflows relied on tight spatial buffers and simple
string metrics. Piech et al. demonstrated that even modest machine-learning models such as Random
Forest already outperform hand-tuned thresholds once sufficiently labelled training data are available
[8]. Nevertheless, these models still inherit the quadratic candidate-pair explosion and require careful
blocking or KNN pre-selection, especially when global country-sized datasets are processed.

Semantic heterogeneity of categories The systematic review by Sun et al. highlights that POI classifi-
cation mismatches (e.g. amenity=restaurant vs. shop=fast_food) are among the most frequent
false-negative causes in conflation pipelines [6]. For this thesis we mitigate the issue by (i) adopting
the high-level category mapping introduced in Section 3.4.1, and (ii) injecting those categories as hard
constraints into the osm_conflate matching stage, thereby reducing both runtime and manual audit
effort.

Data freshness and licence conflicts External OGD feeds can be updated daily, whereas the corre-
sponding OSM geometry may lag behind or follow different update rhythms. The diff-based approach
of osm_conflate preserves historic versions and lets the community review each proposed change
set individually. Remaining licence compatibility checks (e.g. ODbL or local data-sharing agreements)
are handled upstream in the data-ingestion pipeline and are therefore out of scope here.

Open challenges

• Robustness to partial duplicates.Chains of convenience-store branches often share identical names
but differ in opening hours and brand tags. Extending osm_conflate with neighbourhood-based
context features (nearby POIs, road-network density) could reduce such false positives.

• Incremental re-training. The machine-learning matcher should learn from each accepted or re-
jected suggestion. An on-device active-learning loop is preferable over cloud retraining to respect
mapper privacy and network constraints.



Chapter 2. Previous Work and Challenges 11

• Transparent feedback channels. Tight interaction between data providers, the OSM community
and public-sector stakeholders is required for long-term trust; surfacing conflation statistics via
the DiffedPlaces dashboard is one concrete step in that direction.

2.4.1 Summary and Conclusion

This chapter synthesised the state of the art in conflating OGD with OSM. We first revisited classi-
cal record-linkage foundations—including probabilistic matching frameworks and string–similarity met-
rics—before surveying recent, data-driven approaches that combine spatial proximity with textual and
semantic features to align POIs. Throughout, the practical limitations of heterogeneous schemas, diver-
gent attribute completeness and naming conventions were highlighted, underscoring the need for robust
preprocessing, normalisation and quality-assessment steps.

• Baseline methods: Deterministic and probabilistic techniques remain a reliable starting point for
matching, but their effectiveness drops sharply when only minimal or noisymetadata are available.

• Machine-learning advances: Supervised models—especially ensemble learners trained on engi-
neered spatial, lexical and contextual features—deliver markedly higher precision–recall perfor-
mance when an adequately curated training set exists.

• Spatial–semantic alignment: Leveraging neighbourhood context and co-occurrence patterns im-
proves disambiguation of dense urban POIs where geodesic distance alone is insufficient.

• Workflow requirements: A modular pipeline that integrates automated candidate generation, clas-
sification and human-in-the-loop verification is essential for safely importing external datasets such
as ATP into OSM.

In sum, the chapter argues for a hybrid conflation strategy thatmarries geospatial computationwithmod-
ernmachine-learning techniques. These insights directly inform the design decisions of the DiffedPlaces
system and the custom Random Forest Classifier–based matcher introduced in the next chapter, where
we translate the conceptual findings summarised here into an operational toolchain for large-scale, high-
quality data integration.



Chapter 3

Modern Approaches to POI Matching and
Data Integration

This chapter lays out themethodology and experiments for conflating ATPwith OSM: we define the case-
study design (Section 3.1), present the end-to-end workflow (Section 3.2), then detail data sources and
pre-processing (Section 3.3), candidate generation (Section 3.4), feature engineering (Section 3.5), and
the matching approaches (Section 3.6). We validate and evaluate in Section 3.7, discuss limitations in
Section 3.8, and close with a summary (Section 3.9).

3.1 Case-Study Design

This case study evaluates modern POIs matching techniques for integrating ATP data into OSM within
Switzerland using the DiffedPlaces service. The goal is to assess a transparent rule-based matcher
against a supervised alternative under controlled, reproducible conditions, and to deliver upload-ready
artifacts for community review via OSM Conflator/osm_conflate and JOSM Editor.

3.1.1 Objectives & Scope

We aim to provide an evidence-based comparison between two POI matching paradigms within a well-
defined geographic and operational boundary.

• Comparative evaluation: Benchmark a rule-based cascade against a supervised Random Forest
Classifier using identical inputs and candidate sets.

• Operational relevance: Quantify performance under typical Swiss urban and rural settings, includ-
ing cases with sparse or noisy metadata.

12



Chapter 3. Modern Approaches to POI Matching and Data Integration 13

• Actionable outputs: Produce consistent diffs and upload-ready ChangeXML that can be audited
and, where appropriate, integrated into OSM.

Scope. The study is restricted to Switzerland to ensure geographic consistency and to leverage high-
quality local mapping. External inputs originate from ATP; the OSM baseline is a recent country extract
or planet cut filtered to relevant POI tags. Licensing constraints are respected under ODbL [16].

3.1.2 Experimental Design

The experiment is structured to enable fair, repeatable comparison and ablation.

• Dataset selection & preparation. We filter several ATP spiders to Switzerland and extract OSM
nodes/ways with amenity, shop, tourism, leisure, and office tags. Records are normalised (names,
brands, categories) and staged in DuckDB for fast, columnar scans.

• Candidate generation. Spatial proximity filtering (distance/radius queries) combined with coarse
category compatibility reduces pair explosion; details in Section 3.4.

• Algorithms under test.

1. Rule-based: distance threshold, category compatibility, and name similarity with deterministic
tie-breakers.

2. ML-Based Matcher: Random Forest Classifier over lexical, spatial, semantic, and data-quality
signals [8, 9].

• Validation framework. Precision, recall, and F1-Score, plus runtime and throughput; stratified anal-
ysis for urban/rural subsets.

• Ablations & thresholds. Lexical-only vs. lexical+spatial vs. full features, and threshold sweeps for
both matchers to inspect precision–recall trade-offs.

3.1.3 Design Considerations

• Geographic focus. A single-country scope simplifies coordinate sanity checks and reduces hetero-
geneity in address and category conventions.

• Semantic prefiltering. High-level categories reduce candidate pairs and improve disambiguation
(cf. Section 3.4).

• Efficiency & reproducibility.DuckDB enables repeatable, fast preparation; pipelines are idempotent
to support re-runs when upstream or downstream drift occurs (cf. Section 3.2).

• Human-in-the-loop.Outputs are intentionally channelled through auditing tools (e.g., cf_audit) and
final review in JOSM Editor to preserve mapper oversight.



Chapter 3. Modern Approaches to POI Matching and Data Integration 14

• Licensing & ethics. Compatibility with ODbL is enforced; we avoid importing unverifiable or copy-
righted content and document provenance for each external source [16].

3.1.4 Expected Outcomes

• A documented end-to-end workflow from ingestion to upload-ready ChangeXML, with reproducible
settings.

• A comparative analysis quantifying strengths/weaknesses of rule-based versus ML matching on
Swiss POIs.

• Practical guidance on category design, blocking, and thresholding for geographically constrained
conflation.

3.1.5 Threats to Validity

Internal validitymay be affected by labelling errors in ground truth and by covariate shift between cantons;
external validity is limited to datasets similar to ATP and to regionswith comparablemapping density.We
mitigate these risks via stratified evaluation, ablations, and by publishing configuration and data slices
for replication.

3.2 Overview of POI Matching Workflow

This section explains the final matching workflow with the DiffedPlaces service included in detail. There-
fore, this secion walks through every element of Figure 1.1 in the order indicated by the arrows and ex-
plicitly references the colour scheme used in the diagram:

(1) Database Ingestion – blue boxes Fresh extracts of the external OGD feed and the current OSMplanet
file are imported into a localDuckDB instance. This step is deliberately stateless: whenever newer up-
stream data become available, the importer simply truncates and reloads the staging tables, thereby
restarting the entire pipeline without residual side-effects.

(2) POI Matching & Conflation – green boxes Inside the DiffedPlaces service, an enhanced version of
osm_conflate resolves one–to–one, one–to–many andmany–to–one correspondences between
candidate POIs. The matcher can be swapped (cf. rule-based vs. ML-based engines in Section 3.6)
without touching downstream artifacts because every variant emits a unified Changes GeoJSON.
Geometry repair, tag merging and conflict resolution are already carried out at this stage so that
subsequent auditing focuses on semantic correctness rather than syntactic clean-up.

(3) Crowdsourced Validation – purple boxes The Conflator Audit module encapsulates three progres-
sively stricter review layers:
1. the command-line cf_audit helper and its optional GUI wrapper validate,



Chapter 3. Modern Approaches to POI Matching and Data Integration 15

2. a web dashboard for announce & browse that encourages local mappers to comment on or veto
the diff
3. a verified changes queue that must reach a quorum before edits graduate to the next step.

(4) Re-validation & ChangeXML Generation – green boxes Verified patches are re-ingested into the
matcher for a final consistency check. Only if the audit diff is still clean—i. e. no conflicting edits were
introduced on the live OSMdatabase in themeantime—does the pipeline emit a standards-compliant
JOSM Change XML. This additional safeguard protects against accidental reversion of high-quality
community contributions.

(5) Human-in-the-loop Upload – yellow boxes Finally, the generated ChangeXML is opened in the desk-
top JOSM editor, allowing a last visual sanity check and optional manual tweaks (e. g. conflating
neighbouring POIs or aligning building outlines). When the uploader commits the changeset, the of-
ficial OSM database is updated and, after the normal planet-file export cycle, feeds back into step
(1), closing the loop indicated by the dashed blue arrow.

Iterative Operation. Because every stage is idempotent and outputs clearly versioned artifacts, opera-
tors can schedule the entire workflow as a daily or weekly cron job. In practice, two scenarios trigger a
new run:

• Up-streamdrift– the authoritative ATP provider publishes an updated stop list or timetable, causing
the external dataset to diverge from OSM.

• Down-stream edits – large community mapping parties or automated editors significantly reshape
a region, invalidating previous match decisions.

Both cases can lead to a restart of the pipeline with fresh blue input blocks. Consequently, the proposed
architecture achieves continuous integration of heterogeneous POI sources while preserving the essen-
tial human oversight embodied in the purple audit stage.

3.3 Data Sources & Pre-processing

Source description. The pipeline combines retailer and brand feeds from ATP [17] with an OSM base-
line. For ATP, spiders focusedonSwitzerland provide outlet-level POIswith names, categories, addresses,
and coordinates. For OSM, a recent extract (planet cut or country PBF) offers community-curated fea-
tures and tags that reflect on-the-ground reality under the ODbL license [16]. All payloads arrive as GeoJ-
SON, CSV, or API responses and are staged in DuckDB for reproducible, fast scans [14]. A national bound-
ary mask ensures that only features within Switzerland are considered.



Chapter 3. Modern Approaches to POI Matching and Data Integration 16

Attribute normalisation. ATP already provides OSM-like tagging. Therefore, normalization was not a
focus.

Coordinate cleaning / CRS. All geometries are unified in WGS84 (EPSG:4326). Basic sanity checks flag
out-of-bounds coordinates and potential lat/lon swaps, and implausible points are quarantined for later
review rather than silently dropped.

Filtering. The OSM baseline is reduced to features likely to represent POIs (for example, amenity, shop,
tourism, leisure, or office). On the ATP side, known spider-specific noise is removed using conservative
inclusion rules that prefer precision over recall to avoid false positives early in the process.

ATP spider catalogue. The ATP corpus draws from a broad catalogue of brand and institution spiders
with visible presence in Switzerland. It covers major grocery and retail chains (for example, Denner, Mi-
gros, Lidl, Volg, FUST, Jumbo), food and beverage (Five Guys, Dunkin’, L’osteria), health and beauty (Coop
Vitality, Fielmann, Marionnaud, Misenso), mobility and energy (IONITY, Tesla, “Ich tanke Strom”), accom-
modation (Accor, Marriott, Ritz-Carlton, Wyndham), fashion and lifestyle (Adidas, H&M, LEGO, Pandora,
TAG Heuer), as well as public services and municipalities (City of Zurich, Winterthur, emergency meet-
ing points). This breadth ensures coverage across everyday, high-street, and travel-related POIs. A small
sample spider is retained for smoke checks and end-to-end dry runs. The full list of spider identifiers is
provided in Appendix E.

Category system & tag harmonisation. To make heterogeneous sources comparable, both ATP cate-
gories and OSM tags are harmonised into a concise set of high-level classes (for example, retail, gastro,
health, transport, leisure, finance, public, service, education, accommodation, and other). OSM tags such
as amenity, shop, tourism, office, or healthcare are mapped into this taxonomy so that like is compared
with like during conflation. This abstraction reduces incidental differences in naming and tagging into
consistent signals for subsequent matching and evaluation.

Temporal snapshots & provenance. Both ATP and OSM inputs are handled as dated snapshots. Each
snapshot carries a source identifier, retrieval date, and, where available, record-level update timestamps.
This provenance trail supports reproducibility and helps interpret apparent discrepancies that arise from
asynchronous updates across sources [12, 13].

Address handling. Addresses exhibit local spelling conventions and abbreviations. A lightweight nor-
malisation expands common abbreviations, aligns street types, and standardises postal codes and lo-
cality names for Swiss data. The intent is not to overfit to one schema, but to make obviously equivalent
addresses comparable while preserving original strings for audit.



Chapter 3. Modern Approaches to POI Matching and Data Integration 17

Spatial scoping. A country boundary mask focuses the analysis on Switzerland.

Golden data for calibration. A small, curated “golden” subset of retailer outlets (for example, a single
grocery brand) is maintained to calibrate thresholds and to qualitatively validate the end-to-end confla-
tion. This dataset anchors expectations for category mapping, address normalisation, and positional
tolerances without biasing the broader evaluation.

Provide exact snapshot date ranges and OSM extract source; and the boundary dataset version. See
Appendix ?? for the spider identifiers.

3.4 Candidate Generation (Blocking)

The goal of blocking is to keep the subsequent matching tractable while maintaining high recall. Instead
of attempting all Opn ¨ mq pairings, the method constructs a small pool of plausible pairs using simple
spatial cues and light semantics, deferring fine distinctions to later stages.

Spatial blocking. A proximity screen selects OSM features within a plausible neighbourhood of each
ATP outlet. The neighbourhood size reflects typical geocoding uncertainty, store footprint, and urban
context. A national boundary mask (Switzerland) prevents spurious cross-border candidates.

Semantic prefilter. Only records that agree on a high-level category are considered as candidates (for
example, retail with retail, health with health). This prefilter relies on the shared taxonomy described in
Section 3.4.1 and Appendix E. It reduces accidental pairings across unrelated domains while preserving
variety within a category.

Temporal consistency. Candidate generation considers contemporaneous snapshots so that open-
ings, closures, or relocations do not dominate the pool. Snapshot identifiers and retrieval dates recorded
in the data provenance help interpret apparent mismatches that are time-related rather than spatial or
semantic.

This approach reflects common practice in record linkage and POI conflation [6].

3.4.1 Derivation and Iterative Validation of High-Level Categories

The high-level semantic categories (“superclasses”) used for blocking were not adopted wholesale from
any external taxonomy; they were iteratively derived and validated using internal analysis utilities (“dev-
tools”) to ensure (i) coverage across diverse POIs supplied by ATP, (ii) discrimination power (preventing
implausible pairings), and (iii) stability for feature engineering and model training.



Chapter 3. Modern Approaches to POI Matching and Data Integration 18

Tooling. Scripts in the internaldevtoolsdirectory (e.g.,analyze_atp_spiders.py,analyze_atp_category_mapping.py,
analyze_osm_category_mapping.py) were executed over successive dated ATP output snapshots
to:

• Summarise, per spider, the distribution of assigned superclasses.

• Surface counts still falling into the fallback category other (an indicator of mapping gaps).

• Enumerate missing or newly observed underlying OSM-like keys / values for consideration in the
mapping.

• Produce GeoJSON extracts (e.g., atp_other_categories.geojson) of unresolved or ambigu-
ous items for manual inspection.

Initial state (Run 1). Early runs showed substantial leakage into the generic other superclass for cer-
tain spiders. Examples (Run 1 log excerpts): avis (4’818 POIs) and sixt (2’082 POIs) were entirely
classified as other; discover_swiss produced a mixture with a residual other count (log excerpt
indicates non-accommodation remainder); municipal / public-service sources (e.g., winterthur_ch)
also exhibited large other counts (2’016 of 2’224 POIs).

Mapping gap analysis. TheJSON reportatp_missing_main_keys.jsonhighlighted amenity / tourism
/office values absent from the enumeratedmapping (e.g.,bench,bicycle_rental,casino,charging_station,
recycling,toilets,vending_machine,tourism:apartment,office:consulting,office:estate_agent,
office:it). Inclusion or explicit handling of these values reduced misclassification into other and in-
formed the categorical feature list (Appendix D).

Refinement (Runs 2/3). After updating the mapping rules:

• avis and sixt reclassified from other to transport (4’818 and 2’082 POIs respectively).

• discover_swiss consolidated under accommodation (3’957 POIs) once lodging-related tags
were normalised.

• winterthur_ch shifted a large share from other to a dedicated public superclass (2’016 POIs
in Run 2/3 excerpts).

• our_airports: previously classified predominantly asother, re-mapped totransport (70’450+
POIs in a later run excerpt).

Decision criteria. A candidate subclass is promoted to a superclass only if it meets all of: (i) distinct
semantic role affecting downstream matching plausibility (e.g., separating transport from generic
retail reduces false positives between fuel stations and shops), (ii) sufficient volume to justify a blocking



Chapter 3. Modern Approaches to POI Matching and Data Integration 19

partition, and (iii) stable tagging patterns across both ATP and OSM. Otherwise, values are merged into
an existing superclass or retained under other pending further evidence.

Outcome. Iterative refinement reduced the share of POIs falling into other and increased alignment
between brand-specific spiders and their expected semantic classes (e.g., car rental to transport).
This improved blocking precision without materially harming recall.

Feedback loop. Each refinement cycle (1) should run the analysis scripts, (2) inspect large other con-
tributors, (3) update mapping tables / normalization rules, (4) regenerate statistics, and (5) freeze a ver-
sioned mapping for reproducibility across experiments. Deviations (e.g., sudden growth in other) act
as drift signals prompting reassessment of upstream spider outputs or newly emerging tags.

The process ensures that category-based blocking reflects real semantic compatibility rather than brittle
string matches, forming a reliable first-stage filter ahead of similarity scoring and learning-based classi-
fication.

3.5 Feature Engineering

This section outlines the goals, scope, and methodology for crafting features used to decide whether an
POI from ATP corresponds to a feature in OSM. The emphasis is on the ideas and process rather than
implementation specifics; detailed rule heuristics and model-specific signals follow in Section 3.6 and
the validation in Section 3.7.

Goals and scope. The feature set is designed to be: (i) robust to noisy inputs (brand aliasing, spelling
variants, partial addresses), (ii) conservative with respect to long-range spatial pairings, (iii) language-
aware for the Swiss context, and (iv) extensible via configurationwithout code changes. Features operate
on candidate pairs after spatial blocking (Section 3.4) and before thematching approaches (Section 3.6).

Methodology. Feature definition followed an iterative, analysis-driven process: (1) inspect data distribu-
tions and frequent error modes, (2) propose simple, explainable signals targeting those errors, (3) sanity-
check their behaviour on curated samples, and (4) retain only signals that generalise across brands, cat-
egories, and regions. Internal analysis utilities supported this loop by reporting coverage, outliers, and
category balance, and by highlighting where signals disagreed—useful for diagnosing false positives and
false negatives early.

Data harmonisation first. Before any pairwise signal is computed, inputs are cleaned and canonicalised
in a non-destructive way: normalised casing and Unicode, punctuation trimming, and token-level simplifi-
cations; duplicatewhitespace collapsing; and safe fallbacks formissing ormalformed fields. Harmonisa-



Chapter 3. Modern Approaches to POI Matching and Data Integration 20

tion intentionally stays lightweight to avoid hiding real inconsistencies that are valuable for downstream
decisions.

Language and naming considerations. Given Switzerland’s multilingual setting, name features aim to
be tolerant to diacritics, common abbreviations, and interchangeable descriptors (for example, “Bahn-
hof”/“Gare”). Brand/operator fields, when present, are treated as complementary signals to free-text
names. Stopword lists and token-set style comparisons prioritise content words over generic terms. The
objective is to recognise the same outlet written in slightly different ways rather than to perfect linguistic
normalisation.

Addresses and spatial context. Address elements are used as weak consistency checks (street agree-
ment, house-number proximity) rather than hard gates due to known incompleteness on either side. Spa-
tial proximity is transformed into monotonic indicators (for example, within distance bands) to stabilise
decisions across urban and rural settings. Where neighbourhoods are dense (stations, malls), the design
prefers features that can down-rank near-duplicates without discarding plausible candidates outright.

Analysis tooling and configuration. Throughout development, lightweight analysis scripts were used
to quantify category coverage, study excluded features, and visualise disagreements between signals.
Together with a configuration-driven category mapping and thresholds, this made the feature layer au-
ditable and easy to adjust as the dataset evolved, without changing the core code.

Similarity assessment methods. Similarity is assessed through complementary lenses rather than a
single metric: token-based and character-based name similarities (for example, token-set and Jaro–
Winkler) emphasise robustness to ordering andminor edits [2, 18]; vector-space comparisons (character
n-gram TF-IDF cosine) capture broader lexical overlap including partial names; address agreement treats
street and house number as supportive cueswith fuzzymatching to accommodate abbreviations; spatial
proximity is translated into bands or smooth decays to stabilise decisions across densities; and seman-
tic agreement (high-level category compatibility) filters implausible pairs early [10]. These views can be
combined by transparent rules or a supervised matcher (Section 3.6), with calibration and validation de-
ferred to Section 3.7.

We compute features for each candidate pair, motivating each signal by its contribution to disambigua-
tion:

Lexical [2, 18]. Normalised name similarity (token-set ratio), Jaro–Winkler, and character n-gram TF-IDF
cosine. Brand/operator equality; common prefix/suffix flags.

Spatial. Haversine distance; within-threshold booleans (e.g., 50 m, 100 m). Same-address heuristic (if
address data present).



Chapter 3. Modern Approaches to POI Matching and Data Integration 21

Semantic. High-level category equality and compatibility; optional neighbourhood context density.

Data-quality flags. Missing house number; missing name; age of source record.

Feature catalogue and normalisation

The final catalogue consolidates the signals above and standardises their ranges for consistent down-
stream use:

• Name token-set ratio in r0, 1s (scaled from a r0, 100s score).

• Jaro–Winkler similarity in r0, 1s.

• Character n-gram TF-IDF cosine in r0, 1s.

• Brand/operator equality as binary flags t0, 1u; shared prefix/suffix overlap ratio in r0, 1s.

• Street-name agreement in r0, 1s (fuzzy similarity on normalised street strings)

• house-number proximity encoded as distance bands (same, ˘1, ˘2+) as t0, 1u indicators.

• Haversine distance d (metres) represented as: (i) band indicators for ď 25, ď 50, ď 100, ď 250,
ď 500, ď 11000, ď 11500 m; and (ii) an optional monotonic decay score s “ expp´d{τq P r0, 1s for
smoothness.

Normalisation policy: all similarity measures are constrained to r0, 1s; boolean cues are t0, 1u. Spatial
distances are not z-scored; they are expressed as bands and/or a bounded decay to avoid dependence
on dataset-specific scales. When fitted statistics are needed (for example, vocabulary or IDF weights),
they are derived on training folds only to prevent leakage.

Importance assessment. Per-feature contribution is assessed without committing to a single estima-
tor: (i) embedded importances from tree-based models (mean decrease in impurity), (ii) permutation im-
portance on held-out folds formodel-agnostic sensitivity, and (iii) stability checks across cross-validation
folds.

In qualitative terms, short-range spatial bands and name similarities are consistently the strongest dis-
ambiguators; high-level category agreement prevents off-type pairings; address and quality flags act as
reliable tie-breakers when present. Detailed, model-specific figures are reported in Section 3.7.

3.6 Matching Approaches

This section details the alternative strategies used to decide whether an POI from ATP corresponds to
an OSM element after spatial blocking (Section 3.4) and feature engineering (Section 3.5). Two com-
plementary paradigms are implemented: (i) a deterministic, interpretable rule-based matcher that com-



Chapter 3. Modern Approaches to POI Matching and Data Integration 22

poses weighted similarity components, and (ii) a supervised Random Forest Classifier-based matcher
that consumes a feature vector (partly reusing the same underlying similarity computations) to predict
match probability. A hybrid decision policy then leverages the strengths of both. Validation procedures
and quantitative evaluation are intentionally deferred to Section 3.7.

3.6.1 Rule-Based Matcher

The rule-based matcher assigns a composite similarity score to each candidate pair and classifies it as
a match if the score exceeds a configurable threshold. Its design goals are (i) transparency (each com-
ponent score and its weight is logged), (ii) robustness to noisy or incomplete tags, and (iii) predictable
behaviour under configuration changes.

Configuration profiles. Three predefined configurations balance precision/recall trade-offs were used
for assessment:

• Standard: balanced weights across geometric (0.15), name (0.20), brand (0.13), operator (0.05),
address (0.08), opening hours (0.05), phone (0.08), website (0.08), and generic tag overlap (0.13);
similarity threshold 0.85.

• Geometry-focused: increases geometric weight (0.30) to favour very close spatial pairs when tex-
tual tags are sparse; threshold 0.85.

• Geometry+Name focused: emphasises geometry (0.30) and name (0.30) while dropping weak or
noisy components (for example, opening hours, website) by setting their weights to None; raised
threshold 0.875 for higher precision in dense areas.

Components with a missing or None weight are excluded from the aggregation (their similarity may
still be computed for diagnostics). A maximum matching distance (global configuration) acts as a hard
spatial gate: if the Haversine distance exceeds this value the pair is immediately rejected with reason
metadata.

Similarity components. For eligible pairs (within distance):

Geom A monotonic decay based on distance, lower-bounded at 0.5 for any pair within the maximum
distance to avoid collapsing scores for otherwise strongly matching attributes. This prevents very
small positional noise from dominating.

Name Primary name similarity, with fallbacks to brand/operator cross-comparisons. Multiple candidate
similarities are computed and the maximum retained. This captures cases where a dataset en-
codes a brand in name while OSM stores it under brand (or vice versa).

Brand / Operator Direct string similarity if both sides provide the tag; otherwise the component yields
None (excluded) rather than zero to avoid penalising missing-but-valuable attributes.



Chapter 3. Modern Approaches to POI Matching and Data Integration 23

Address Constructed by concatenating relevant address tags (street, house number, postcode, city,
country, fallbacks) into canonicalised strings before fuzzy comparison. Address similarity is in-
tentionally down-weighted because of incompleteness and heterogeneous formatting.

Opening hours / Phone / Website Normalised plain-text comparisons after simple sanitisation (for ex-
ample, stripping formatting characters in phone numbers). Each acts as a strong tie-breaker when
present and equal, but does not block matches when absent.

Tag overlap Jaccard-style similarity over the set of remaining informative tags after excluding globally
ignored keys (licence, metadata, volatile counters) and address/contact keys. This measures se-
mantic consistency beyond the explicitly weighted fields.

String comparison methods. Each component uses a method selected in the active configuration:
Jaro–Winkler, character-level Jaccard, Levenshtein ratio, or token-sort ratio (order-insensitive fuzzymatch-
ing). Methods can be disabled per component (none), in which case that component returns None. All
methods output a value in r0, 1s.

Name fallback logic. The matcher collects several similarities: (name, name), (name, brand), (brand,
name), (name, operator), (operator, name). Empty strings are skipped. The best available similarity is
used as the name component, increasing recall where branding choices differ between sources.

Weighting and thresholding. Let C be the set of components with both a numeric score and a defined
weight; the final score is minp1, maxp0,

ř

cPC wcscqq after normalising implicitly by using only the present
weights (i.e., weights of missing components are not redistributed). A pair is classified as a match if the
score exceeds the configuration’s similarity threshold. This design avoids abrupt jumps when optional
attributes (e.g., website) appear, while ensuring their presence still increases confidence proportionally.

Auditing and interpretability. For every evaluated pair thematcher records: rawdistance, per-component
scores, chosen methods, applied weights, final score, threshold, and (if rejected) the reason (distance
gate, lack of sufficient similarity, or competition with a higher-scoring candidate). This metadata under-
pins subsequent error analysis and facilitates reproducible tuning of per-category overrides.

Deterministic candidate resolution. When multiple OSM candidates compete for one source record
within the spatial threshold, the highest final score wins. Ties are resolved deterministically by (i) shorter
distance, (ii) brand/operator exact equality presence count, then (iii) higher raw name similarity before
fallback. Remaining candidates are flagged for manual review rather than auto-rejected to reduce false
negatives.



Chapter 3. Modern Approaches to POI Matching and Data Integration 24

3.6.2 ML-Based Matcher

The ML matcher formulates candidate resolution as supervised binary classification with a Random
Forest Classifier. It consumes a deterministic feature vector whose primitives reuse the exact similarity
functions of the rule-basedmatcher (geometry decay, string similarities, address assembly, tag filtering).
This deliberate reuse removes training/serving skewand ensures that differences in behaviour stem from
learned non-linear combinations instead of divergent preprocessing.

Processing pipeline. For each dataset POI: (1) spatial blocking proposes nearby OSM candidates (Sec-
tion 3.4); (2) the feature calculator derives the ordered feature vector; (3) the pickled forestmodel (reloaded
at the start of each diff run) outputs a match probability; (4) a probability threshold selects at most one
winning candidate (ties: higher probability, then shorter distance, then higher primary name similarity);
(5) the match is registered identically to other strategies.

Exact feature ordering (current implementation). The implemented feature vector is intentionally lean
and its ordering is stable. The first seven features are exactly the rule-based component scores defined in
Section 3.6.1. Subsequent features add compact structural and semantic signals (categorical encoding
details are fully documented in Appendix D, referenced instead of repeating exhaustive lists here):

1–7) Rule-based components (refer Section 3.6.1): geom, name, brand, operator, address, phone,
tag_overlap.

8) source_has_name (1 if dataset POI has non-empty name, else 0).

9) osm_has_name (1 if candidate OSM element has non-empty name, else 0).

10) name_length_ratio (shorter name length divided by longer; neutral 1 if both empty, 0 if only one
empty).

11) tag_count_ratio (min(tag count) / max(tag count); neutral 1 if both zero, 0 if only one zero).

12–24) Tri-state main key features: tag_main_<key> for each top-level configured key sorted alphabeti-
cally (current set e.g.,amenity,aerialway,aeroway,building,craft,emergency,healthcare,
highway, leisure, office, shop, tourism). Value meaning: 0 neither side has the key; 1 only
one side has it; 2 both sides have it (key present on both regardless of differing values).

24–147) Tri-state specific value features: tag_specific_<key>:<value> for every enumerated value in
the configuration (e.g., amenity:restaurant, amenity:cafe, representative shop:* values,
etc.), sorted alphabetically as a single list. Value semantics: 0 neither side has that exact key:value;
1 only one side has it (asymmetric); 2 both sides share the exact key:value (strong semantic agree-
ment).



Chapter 3. Modern Approaches to POI Matching and Data Integration 25

The tri-state (0/1/2) design compresses presence, asymmetry, and agreement for both general keys and
specific categories into one numeric feature each, avoiding proliferation of separate one-hot columns per
side while retaining discriminative power. Persisted models rely on this exact ordering; changes require
retraining.

Relationship to conceptual feature set. Earlier design options (distance band one-hots, per-field ad-
dress similarities, website/ opening hours similarities, interaction terms) are presently not part of the
production vector. They remain future extensions. The current approach reuses only the core rule-based
component scores plus compact semantic coverage through tri-state tag encodings.

Geometry representation. The only geometry-derived feature is the rule-based geom component (a
distance decay with lower bound). Raw distance and band indicators are intentionally omitted to reduce
correlation and dimensionality.

Name / brand / operator / address signals. These appear solely via their aggregated rule-based compo-
nent scores and the two name presence flags plus a length ratio. Fine-grained cross-similarity variants
are reduced to a single composite value (the rule-based component already applies internal fallback
logic). This keeps overfitting risk low when labelled data is sparse.

Tri-state semantic encoding. Eachmain key and each specific key:valuemapping yields a single ternary
feature (0 absent on both, 1 asymmetric, 2 agreement). This compresses presence, asymmetry, and
agreement; the full catalogue of keys/values and rationale is provided in Appendix D.

Derived ratios. name_length_ratio and tag_count_ratio normalise structural differences. Both
are symmetric (P r0, 1s) and return 1 when both sides are empty (neutral) and 0 when only one side is
empty, distinguishing absence from mismatch.

Encoding rules. All component scores are already in r0, 1s. Tri-state semantic features use the closed
set {0,1,2}. No additional presence flags are required because 0 vs. 1 vs. 2 disambiguates absence, asym-
metry, and agreement directly. Missing names affect the name presence flags and indirectly influence
downstream splits.

Handling missing data. Absence patterns are informative: (0 distance band “very close” + missing
brand on both sides + strong name similarity) might still yield a match, whereas (moderate distance
+ generic name + asymmetric category presence) likely does not. Presence flags thus allow the forest to
attach neutral or negative weight according to empirical correlations rather than a priori assumptions.



Chapter 3. Modern Approaches to POI Matching and Data Integration 26

Why a Random Forest. The forest copes well with heterogeneous numeric and categorical mixtures
without the need for scaling, offers competitive accuracy for tabular data, exposes feature importance
for iterative pruning, and keeps inference latency negligible for batch diff processing [?, 19].More complex
ensembles (e.g., gradient boosting) or representation learning approaches were deferred until diminish-
ing returns of the current setup justify added complexity.

Scope. Empirical calibration, threshold tuning, and performance curves are reported separately (Sec-
tion 3.7).

3.6.3 Training of Matchers

This subsection summarises how the two matcher families are tuned and trained. Detailed quantitative
results are deferred.

Rule-based parameter search. The rule-based matcher exposes weights and per-component string
similarity methods. A search resembling grid search over a constrained space of weight vectors and
method choices was executed against high-quality golden data. Golden data must be both precise (low
labelling noise) and exact in spatial / attribute alignment; otherwise weight optimisation overfits arte-
facts. Candidate configurations (e.g., Standard, Geometry-focused, Geometry+Name) were evaluated on
precision / recall trade-offs, and the best-performing sets retained as named profiles. Components prone
to noise in dense urban contexts (e.g., website, opening hours) were selectively disabled (weight None)
in the high-precision profile. Thresholds were then tuned secondarily; distance gating remained fixed by
global configuration.

ML training phases. The ML matcher undergoes staged training:

1. Synthetic bootstrap: An initial training corpus is generated programmatically (artificial positive
pairs via mild perturbations of genuine POIs; artificial negatives via mismatched category swaps,
spatially distant pairs, and near-miss conflicts). This furnishes balanced, diverse examples without
manual labelling overhead and allows early feature sanity checks.

2. Incorporation of deterministic labels: The calibrated rule-based matcher is run over real candidate
sets. Very high-scoring pairs (above a conservative precision-oriented threshold) are appended as
additional positives; very low-scoring pairs (below a low threshold) become negatives. A margin
band in between is excluded to avoid propagating ambiguous labels. When multiple matches are
possible for the same entity, only the highest-scoring pair is retained as a positive match; all other
pairs, regardless of score, are treated as non-matches. This assumption reflects the expectation
that true duplicates in OSM are rare, and it enriches the training data with hard negatives—pairs
that may appear similar but are in fact distinct. This injection introduces authentic noise patterns
absent from purely synthetic generation and measurably improves generalisation.



Chapter 3. Modern Approaches to POI Matching and Data Integration 27

3. Mixed retraining: A train/test split (configurable fraction, stratified) is applied. Hyperparameters
(tree count, depth, minimum samples split / leaf, feature subsampling strategy) follow a defined
parameter set; a grid-like exploration defined in configuration selects a performant combination
(e.g., via accuracy or balanced metrics on validation). The chosen model is persisted (pickle) with
metadata (hyperparameters, timestamp) for reproducibility.

Continuous improvement. Each diff processing cycle reloads the latest persisted model to pick up
improvements without redeploying code. Additional future augmentation sources (e.g., manually audited
discrepancies, active learning queries) can be appended following the same high-confidence label gating
principle.

Complementary roles. The rule-based search ensures an interpretable baseline and supplies high-
confidence pseudo-labels; the MLmodel captures interaction effects and smooths decision boundaries.
Together they reduce manual review volume while maintaining precision.

3.6.4 Final Operational Parameters

This subsection records the concrete deployed (“final”) parameters for (i) the rule-based matcher un-
der its high-precision Geometry+Name focused profile (Section 3.6.1) and (ii) the Phase 2 augmented
Random Forest Classifier (Section 3.6.2). These settings generated the evaluation results discussed in
Section 3.7. Listing them here supports auditability and reproducibility.

Rule-based matcher (Geometry+Name focused). Emphasises geometry and primary name similarity;
disables sparse / noisy components. Only non-null weights contribute (no re-normalisation). A distance
gate rejects pairs beyond the maximum distance before similarity aggregation.

ML matcher (Random Forest). Hyperparameters of the persisted Phase 2 model. Feature ordering /
semantics as per Section 3.6.2. A probability threshold (0.50) selects at most one winning candidate per
source POI; post-calibration analysis indicated this operating point provided a balanced precision/recall
trade-off without further adjustment.

Any future change (e.g., feature pruning, calibration, distillation) should update this subsection with ver-
sioned metadata and justification.

3.6.5 DB Service CLI Interface

A small internal CLI complements the HTTP API for quick admin and developer tasks without starting
the full stack. It reuses the same code paths as the service, favors idempotent operations, and is meant
for setup, diagnostics, and fast iteration.



Chapter 3. Modern Approaches to POI Matching and Data Integration 28

Table 3.1: Final rule-based matcher configuration.

Parameter Value Notes
Maximum distance 1’500 m Hard spatial gate (fixed)
Similarity threshold 0.875 Precision-leaning operating point
Weight (geom) 0.3000 Distance decay score (lower bound applied)
Weight (name) 0.3000 Composite name similarity (fallback logic)
Weight (brand) 0.1000 Brand similarity if present
Weight (operator) 0.0500 Operator similarity if present
Weight (address) 0.1000 Canonicalised address similarity
Weight (phone) 0.0500 Normalised phone similarity
Weight (tag_overlap) 0.1000 Jaccard-style informative tag overlap
Weight (opening_hours) None Disabled (sparse / noisy)
Weight (website) None Disabled (sparse / noisy)
Method (fuzzy_name) jaro_winkler Slight recall lift; higher global threshold
Method (fuzzy_brand) token_sort_ratio Order-insensitive
Method (fuzzy_operator) token_sort_ratio Order-insensitive
Method (fuzzy_address) token_sort_ratio Robust to token reordering
Method (fuzzy_phone) levenshtein After digit normalisation
Method (fuzzy_oh) None Disabled component
Method (fuzzy_website) None Disabled component
Aggregation Weighted sum Non-missing components only
Tie-breakers Distance, brand/operator equality, raw name sim Deterministic order

Table 3.2: Final RandomForestClassifier hyperparameters.

Hyperparameter Value Notes
n_estimators 650 Ensemble size (selected via grid search)
max_features sqrt Subspace sampling per split
max_depth 42 Depth cap controlling variance
min_samples_split 2 Allows deep branching
min_samples_leaf 2 Light regularisation vs. leaf=1
criterion gini Impurity metric
bootstrap true Bagging enabled
random_state 42 Reproducibility seed
n_jobs -1 Full parallelism
Class weighting (none) No custom weights
Feature count 147 Stable, ordered vector
Probability threshold 0.50 Operational decision boundary (balanced)

• Imports & refresh: one-off ATP/OSM ingests and refreshing materialized feature views.

• Inspect: list tables, feature view versions, and recent run metadata.

• Maintain: clean transient staging tables and related housekeeping.

• Dev utilities: sample rows to CSV/GeoJSON and seed tiny test databases.

• Execution & safety: run via docker compose run –rm db python cli.py <subcommand>
or locally (DuckDB); same config precedence as Section 4.5.4. Imports skip unchanged snapshots
unless –force; migration guards prevent ad-hoc schema drift.



Chapter 3. Modern Approaches to POI Matching and Data Integration 29

• Out of scope: diff generation, model training, and artifact export remain in their dedicated services
to preserve auditing.

3.7 Validation & Evaluation

This section details the empirical methodology used to assess the effectiveness and efficiency of the
proposed conflation workflow. We progressively (i) construct and use a curated golden dataset, (ii) en-
force a high-level semantic categorization as a hard preselection (blocking) stage, (iii) fine tune the legacy
rule-based matcher (PT1/PT2 lineage) via a grid-search style exploration, (iv) evolve an Random Forest
Classifier-based matcher through two training regimes, (v) define the evaluation metrics and validation
protocol, and (vi) compare the rule-based and machine learning (ML) approaches using identical golden
references. Emphasis is placed on reproducibility, isolation of improvements, and avoidance of overfit-
ting to narrow brand-specific patterns.

3.7.1 Golden Dataset

The golden dataset serves as the authoritative reference for external validation and model selection. It
consists of two complementary components:

1. A stratified random sample of 200 POIs (“Random Sample”) drawn from Swiss ATP-sourced can-
didates spanning multiple categories, distance buckets, and urban/rural regions.

2. A domain-specific brand subset for Aldi Süd Switzerland (“Aldi Süd CH”). The dataset size is 246
records.

Sampling Protocol. For the 200-sample subset we first partition candidate pairs by high-level category
(cf. § 3.7.2) and distance bucket (e.g., 0–25m, 25–100m, 100–500m, 500–1’500m) to avoid a proximity
bias, then proportionally sample within each stratum. This guards against overrepresentation of dense
urban groceries or petrol stations.

Annotation Workflow. Annotators labeled candidate pairs (match vs. non-match) using the OSM web
interface and auxiliary map layers for context. Disagreements are adjudicated in a consensus pass with
explicit rationale logging. Ambiguous brand co-location (e.g., shared building footprints) triggers an ad-
ditional check of opening hours, address tokens, and name variants.

Usage. The golden dataset is not used in ML training folds; it is reserved strictly for: (i) early sanity
checks of blocking misclassifications, (ii) threshold calibration for the rule-based matcher, and (iii) final
side-by-side evaluation.



Chapter 3. Modern Approaches to POI Matching and Data Integration 30

3.7.2 High-Level Categorization as Hard Blocking

Prior to feature computation, each incoming POI fromOGD and candidate POIs fromOSM ismapped to a
high-level semantic category (“superclass”). Candidate generation is restricted to pairs sharing the same
superclass. This constitutes a deterministic blocking strategy (hard filter) that reduces the combinatorial
explosion of pairings, lowering false positives and computational cost [1, 10]. Superclasses cluster fre-
quentOSM tagging namespaces (e.g.,amenity=restaurant,shop=supermarket,tourism=hotel)
into domain aggregates (e.g., gastro, retail, accommodation). The taxonomy is extensible to absorb
emerging categories with minimal refactoring.

Observed coverage. After refinement with Swiss ATP data, 23’445 global POIs (7’460 Switzerland) re-
mained categorized as other due to sparse or ambiguous tagging (e.g., airports, GBFS feeds).

3.7.3 Rule-Based Matcher Fine-Tuning

The rule-based matcher combines multiple similarity signals (e.g., name, address, geometry, brand/op-
erator) via feature weights and a global similarity threshold. In the grid search reported here, only method
toggles, feature weights, and the similarity threshold were varied; the maximum candidate distance was
fixed at 1,500m in all runs and was not tuned.

Objective. Rather than rating entire configurations, this analysis isolates the effect of individual com-
parators and weight patterns: which methods and weightings correlate with strong F1 scores (“good”)
and which with noticeable degradation (“bad”)?

Threshold effect. Across 1,200 configurations, the global similarity threshold drives the usual preci-
sion–recall trade-off. A lower threshold (0.800) boosts recall but harms precision and increases error
counts; thresholds in the 0.850–0.875 range yield the best average F1.

Table 3.3: Similarity threshold vs. average metrics (all 1,200 configurations)

Similarity thr. n F1 Precision Recall Avg. errors
0.800 240 0.9297 0.9007 0.9631 47.2
0.825 240 0.9380 0.9239 0.9543 40.8
0.850 240 0.9416 0.9441 0.9401 37.7
0.875 240 0.9409 0.9558 0.9270 37.7
0.900 240 0.9367 0.9612 0.9136 40.0

Comparators: patterns across runs. Name comparators show the largest spread:jaro_winkler tends
to deliver higher recall but noticeably lower precision; token_sort_ratio and levenshtein aremore
balanced and yield the best F1 on average. For address, jaccard has a slight edge.



Chapter 3. Modern Approaches to POI Matching and Data Integration 31

Table 3.4: Comparators (global averages across all configurations)

Field: name n F1 Precision Recall
levenshtein 400 0.9392 0.9503 0.9292
token_sort_ratio 400 0.9389 0.9497 0.9293
jaro_winkler 400 0.9341 0.9114 0.9604

Field: address n F1 Precision Recall
jaccard 600 0.9375 0.9378 0.9392
token_sort_ratio 600 0.9373 0.9365 0.9400

Weights: Top-20 vs. Bottom-20. The 20 best configurations (by F1) differ most from the 20 weakest
in weights for name, opening_hours, and website. Higher name weight and down-weighting sparse fields
correlate with better performance.

Table 3.5: Average feature weights (Top-20 vs. Bottom-20)

Feature Top-20 avg. Bottom-20 avg.
geom 0.28 0.28
name 0.22 0.16
address 0.10 0.10
brand 0.10 0.10
operator 0.05 0.05
phone 0.05 0.05
tag_overlap 0.14 0.16
opening_hours 0.03 0.05
website 0.03 0.05

Concrete patterns (good vs. bad).

• Good: similarity threshold in 0.850–0.875; name comparatortoken_sort_ratioorlevenshtein;
address with jaccard; name weight ě 0.20 (often 0.30 in top runs); opening_hours and website
near zero.

• Bad: similarity threshold “ 0.800 (bottom runs concentrate here; high recall but weak precision and
more errors); name with jaro_winkler combined with a low threshold; over-weighting sparse
fields (opening_hours, website); slightly inflated tag_overlap without measurable gain.

Takeaway. A precision-leaning operating point emerges around thresholds of 0.85–0.875, a name com-
parator that balances precision and recall (token_sort_ratio or levenshtein), and explicit down-
weighting of sparse attributes. The fixed 1,500m radius serves as a coarse candidate filter; most dis-
criminative power comes from text comparators and their weighting.



Chapter 3. Modern Approaches to POI Matching and Data Integration 32

3.7.4 ML-Based Matcher Evolution

We adopt a supervised Random Forest Classifier ([19, 20]) trained on engineered similarity and context
features (147 dimensions, per logs). Two distinct training regimes were executed.

Phase 1 (Artificial PerturbationsOnly). Initial training relied solely on synthetic (artificially altered) pairs
generated from OSM POIs (v2 run). When deployed on the Aldi Süd CH golden subset the model pro-
duced: Precision 0.9637, Recall 0.8230, F1 0.8878, False Positive Rate (FPR) 0.0363 (Real metrics). High
precision but recall degradation indicates domain shift between synthetic perturbations and real-world
divergences (e.g., partial brand names, evolving store metadata) leading to under-detection.

Phase 2 (Augmented with Rule-Based Harvest). The improved pipeline (v7 run) supplements synthetic
data with additional weakly labeled pairs harvested via high-precision rule-based matches, then filtered,
before stratified train/test splitting: Training set 68’573 instances, Test set 17’144 (feature dimension
validated at 147). Grid search over 36 hyperparameter combinations yields best accuracy 0.9643 with
deep trees (max depth 42, 650 estimators, minimal leaf/split values). Applied to the Aldi Süd CH golden
subset: Precision 0.9957, Recall 0.9914, F1 0.9935, FPR 0.00433—eliminating the earlier recall gap while
further reducing false positives.

Table 3.6: Aldi Süd CH: ML Evolution (Real Metrics)

Phase TP FP FN Precision Recall F1
v2 (Artificial Only) 186 7 40 0.9637 0.8230 0.8878
v7 (Augmented) 230 1 2 0.9957 0.9914 0.9935

Observed Gains. Relative F1 improvement: p0.9935 ´ 0.8878q{0.8878 « 11.9 %. False negatives reduced
from 40 to 2 (95% reduction), indicating successful coverage expansion.

3.7.5 Evaluation Metrics

We report the following metrics on held-out golden data (and internal validation splits for ML):

• Precision, Recall, F1-Score: Primary effectiveness indicators balancing omission (FN) and commis-
sion (FP) errors [6].

• False Positive Rate (FPR) = FP / (FP + TN): Critical to avoid introducing incorrect edits into OSM.

• Throughput (records/second): Operational scalability (measured end-to-end excluding network I/O
variability).

The thresholds for deployment are chosen tomaximize F1 subject to an upper bound on FPR (operational
policy).



Chapter 3. Modern Approaches to POI Matching and Data Integration 33

3.7.6 Rule-Based vs. ML-Based Matcher

We contrast the tuned rule-based matcher (best configuration cluster) with the evolved ML model (run
v8) further trained with additional training data using identical golden subsets.

Training Data Differences.

• Rule-Based: Deterministic similarity functions + globally tunedweights/thresholds; no statistical fit-
ting beyond grid search enumeration; relies directly on golden data only for evaluation and threshold
sanity checks.

• ML-Based Phase 1: Trained exclusively on synthetic perturbations; mismatch with real variation
caused recall deficit.

• ML-Based Phase 2: Incorporates additional high-precision pseudo-labeled pairs from rule-based
matches (semi-supervised flavor) + synthetic pairs + internal stratified split; golden data held out
strictly for external validation.

Comparative Metrics (Aldi Süd CH). Focusing on the tuned rule-based matcher versus the ML vari-
ants, the table shows a clear precision-first trend for ML while keeping recall essentially unchanged. On
Aldi Süd CH, the rule-based approach reaches Precision 0.9914 (two false positives), Recall 0.9957 (one
false negative), and F1-Score 0.9935. ML v7 already reduces spurious matches (Precision 0.9957 with
one false positive) with a minor recall change (0.9914) and the same F1-Score 0.9935. ML v8 removes
spuriousmatches entirely (Precision 1.0000), keepsRecall at 0.9957, and yields the best F1-Score 0.9978.

Complementary Sample (Random200). The samepattern appears on the class-agnostic sample: com-
pared to the rule-based baseline (Precision 0.8495, Recall 0.8681, F1-Score 0.8587), ML v8 lifts precision
to 0.9398 with a modest recall decrease to 0.8298, resulting in a higher F1-Score 0.8814.

Table 3.7: Golden-set comparison (Aldi Süd CH and Random 200): confusion matrices and derived met-
rics.

Dataset Approach TP FP FN TN Precision Recall F1 FPR
Aldi Süd CH (246) ML (PT1 baseline) 208 37 0 1 0.8490 1.0000 0.9183 0.9737
Aldi Süd CH (246) Rule-Based (tuned) 230 2 1 13 0.9914 0.9957 0.9935 0.0086
Aldi Süd CH (246) ML (v7) 230 1 2 13 0.9957 0.9914 0.9935 0.0043
Aldi Süd CH (246) ML (v8) 232 0 1 13 1.0000 0.9957 0.9978 0.0000
Random 200 (200) Rule-Based (tuned) 79 14 12 95 0.8495 0.8681 0.8587 0.1505
Random 200 (200) ML (v7) 76 6 17 101 0.9268 0.8172 0.8686 0.0732
Random 200 (200) ML (v8) 78 5 16 101 0.9398 0.8298 0.8814 0.0602

Scalability. ML inference cost remained acceptable; however, a direct runtime comparison table across
increasing dataset sizes is pending.



Chapter 3. Modern Approaches to POI Matching and Data Integration 34

Table 3.8: Runtime by dataset and approach (wall-clock seconds from logs).

Dataset Size (POIs) Approach Runtime (s)
246 (Aldi Süd CH) Rule-Based (tuned) 3.45
246 (Aldi Süd CH) ML (v7) 2044.37
246 (Aldi Süd CH) ML (v8) 1899.75
200 (Random 200) Rule-Based (tuned) 4.63
200 (Random 200) ML (v7) 1584.33
200 (Random 200) ML (v8) 1502.24

3.8 Discussion & Limitations

3.8.1 Interpretation of Results

The progression from legacy rule-based heuristics to tuned weights and then to a multi-feature Random
Forest Classifier yields a monotonic precision improvement on the brand-focused subset while retaining
near-ceiling recall after initial tuning. Precision gains correspond to pruning residual lexical and geo-
graphic false positives; recall stabilization suggests a diminishing pool of structurally hard negatives
(e.g., alias drift, incomplete addresses). On the heterogeneous Random 200 sample, ML variants con-
sciously trade amodest recall decrease for a substantive False Positive Rate contraction—an acceptable
trade-off whenminimizing harmful insertions into OSMhas priority. Semantic superclass blockingmean-
ingfully lowers candidate volume, concentrating matcher effort on plausible pairs and lowering FP risk
through early elimination.

Comparative Metric Trajectories. Precision increases stepwise (baseline Ñ tuned rule-based Ñ ML
v7/v8) while F1 consolidates in a high-performance band. The False Positive Rate collapse reflects both
better discrimination and improved true negative counting after instrumentation adjustments. Residual
errors cluster in categories with sparse or noisy metadata (e.g., mixed-use buildings, recently rebranded
outlets).

Error Surface Evolution. The staged approach—(i) threshold/weight calibration, (ii) synthetic+weakly
labeled augmentation, (iii) iterative retraining—shrinks the joint FP+FN error surface. Gains increasingly
arise from targeted feature refinements (e.g., alias normalization, geometry snapping) rather than global
hyperparameter shifts, indicating diminishing returns of generic grid search.

3.8.2 Typical Failure Modes

• False positives (FP). Co-located chain outlets (e.g., discount grocery adjacent to a logistic pickup
point) sharing high name similarity and overlapping geometry; generic brand tokens (“Express”,
“Center”) spuriously aligned.



Chapter 3. Modern Approaches to POI Matching and Data Integration 35

• False negatives (FN). Multilingual or legacy brand variants (“Aldi Suisse” vs. “Aldi Süd”); address
drift where house numbers changed post-renovation; POIs tagged under alternative but semanti-
cally similar categories resulting in blocking exclusion.

• Sparse metadata. Source entries lacking street names or brand tags reduce discriminative power;
in such cases geometry+name text alone insufficiently separates near duplicates.

• Geometric anomalies. Large building polygons with centroid offsets produce inflated distance-
derived penalties; indoor mall units collapsed to a shared entrance node.

• Temporal staleness. Recently closed or newly opened stores produce asymmetric freshness be-
tween ATP snapshots and OSM edits, yielding transient mismatches.

Illustrative Examples. FP: Two adjacent branded petrol stations where operator tags differ but brand
tokensmatch;model overweights name similarity. FN:Astore renamed locally (shortened alias)while up-
stream data retains the extended name; token reordering plus missing house number reduce combined
similarity below threshold.

3.8.3 Generalisability

The pipeline generalizes to additional countries and POI verticals given: (i) extension of the superclass
taxonomy; (ii) retraining with geographically and linguistically representative samples; and (iii) recali-
bration of decision thresholds respecting new False Positive cost structures. Domain shift (different
addressing schemes, cultural naming patterns) can degrade recall when synthetic perturbations fail to
capture locale-specific variance; incorporating a modest seed of real annotated pairs from the target
domain mitigates this risk.

3.8.4 Runtime and Scalability

Current ML inference exhibits substantially higher wall-clock time than the tuned rule-based approach
due primarily to feature vector construction and evaluation of a large ensemble of deep trees. Early opti-
mization opportunities include: (i) pruning uninformative or redundant features (guided by permutation
importance / SHAP); (ii) batching similarity computations with vectorized primitives; (iii) replacing deep
forests with calibrated gradient boosting or distilled shallow ensembles; (iv) caching deterministic text
similarity scores for repeated tokens. Given that semantic blocking already thins the candidate pool,
marginal runtime gains have leverage in large-scale periodic reruns (tens of thousands of POIs).

3.8.5 Mitigation Strategies for Failure Modes

• Alias expansion. Maintain a curated mapping of brand and chain aliases (locale variants) injected
pre-matching to lift recall without lowering precision.



Chapter 3. Modern Approaches to POI Matching and Data Integration 36

• Adaptive thresholds. Calibrate per-superclass thresholds to reflect heterogeneous FP risk (e.g.,
higher threshold for chains with dense urban clustering).

• Geometry normalization.Snap large polygon centroids to entrances or computeminimumdistance
between polygon edges to reduce artificial distance inflation.

• Active error harvesting.Periodically sample near-threshold non-matches and confirmedmismatches
for annotation to focus augmentation on high-uncertainty regions.

3.8.6 Limitations

• Golden set scope. The golden dataset size (brand-focused + 200 heterogeneous pairs) bounds
statistical confidence; rare categories remain under-sampled.

• Synthetic bias. Artificial perturbations may under-represent real-world noise (e.g., abbreviations,
transliteration issues), potentially inflating internal validation scores.

• Runtime overhead. Current ML latency may constrain interactive auditing; absence of streaming
or incremental inference increases end-to-end cycle time.

• Explainability. While feature importances exist, deep ensemble interactions hinder fine-grained ra-
tionale extraction for individual decisions compared to explicit rule weights.

• Data drift monitoring. No automated drift detection (e.g., population stability index) is yet inte-
grated; degradation risk between scheduled retraining cycles persists.

3.8.7 Ethical & Licensing Considerations

Respect ODbL provenance and source attribution; retain a human-in-the-loop via auditing tools (e.g., OSM
Conflator and cf_audit) for contentiousmerges; avoid automatic application of low-confidencematches.
Logging of decision features must exclude personal data beyond what is already public in OSM. For
external brand datasets, ensure redistribution terms permit derivative conflated outputs.

3.8.8 Future Work Direction (Synthesis)

Focus shifts frombroadmetric elevation to targeted robustness:multilingual normalization, per-category
adaptive thresholds, probabilistic calibration (e.g., Platt scaling) for triage, and light-weight model distil-
lation for runtime reduction. Integrating drift dashboards and automated retraining triggers would com-
plete an MLOps feedback loop.



Chapter 3. Modern Approaches to POI Matching and Data Integration 37

3.9 Section Summary

• Key findings (effectiveness).Superclass (semantic) blockingmarkedly reduces false positives and
compute by constraining candidate pairs; tuned rule-basedmatching achieves high F1, and an aug-
mented Random Forest Classifier further elevates precision while sustaining near-ceiling recall on
brand-focused data and reducing False Positive Rate on heterogeneous samples.

• Key findings (efficiency). ML inference latency remains higher (feature construction + large en-
semble) but is acceptable for batch conflation; optimization potential lies in feature pruning, vec-
torization, and model distillation.

• Data curation. A stratified golden dataset (brand-specific + heterogeneous sample) enabled unbi-
ased external validation and threshold calibration while avoiding training leakage.

• Rule-based tuning insights. Optimal similarity thresholds cluster in the 0.85–0.875 band; over-
weighting sparse fields (website, opening_hours) degrades performance; balanced name compara-
tors (Levenshtein, token_sort_ratio) dominate top configurations.

• MLevolution insights.Augmenting synthetic perturbationswith high-precision pseudo-labeledmatches
closes recall gaps and suppresses residual false positives; marginal future gains likely require tar-
geted feature engineering over broader hyperparameter search.

• Error characteristics.Remaining errors concentrate in sparse-metadata, alias-variant, or co-located
multi-brand scenarios, suggesting focused alias expansion and geometry normalization will yield
outsized returns.

• Operational lessons for DiffedPlaces.Maintain idempotent ingestion in DuckDB; cache determinis-
tic similarity scores; surface per-categorymetrics to support adaptive thresholds; expose auditable
diffs via osm_conflate / cf_audit to keep a human review loop.

• Quality governance. Enforce external validation strictly separated from training folds; implement
drift monitoring (e.g., distribution shift alerts) before expanding geographic scope.

• Limitations.Golden set coverage of rare categories is thin; runtime overhead of the ensemble limits
interactive usage; absence of probabilistic calibration constrains nuanced triage.

• Next steps. (i) Integrate alias dictionary + multilingual normalization; (ii) add per-superclass adap-
tive thresholds and probabilistic calibration; (iii) implement feature importance-driven pruning and
model distillation; (iv) deploy drift dashboards and automated retraining triggers; (v) extend anno-
tated golden data for underrepresented categories.



Chapter 4

Software Project Documentation

4.1 Vision

The overarching vision of the software part of this thesis is to provide a reproducible, modular and exten-
sible geospatial data conflation service—the DiffedPlaces service—capable of continuously identifying,
classifying, and reconciling differences between heterogeneous POIs datasets (e.g., OSM and external
sources such as ATP) while minimizing manual curation effort. Building on conceptual and experimen-
tal insights from [12, 13], the software aims to close the gap between experimental matching pipelines
and an operational foundation that can: (i) generalizematching logic across categories and jurisdictions,
(ii) surface high-quality candidate updates for human verification, and (iii) feed improvements back into
open data ecosystems.

Key aspirational qualities are:

• Generality: A unified abstraction that supports multiple external source spiders (initially ATP) with-
out code duplication.

• Traceability: Every produced diff item is reproducible from versioned inputs (source snapshots,
configuration, model versions).

• Incremental operation: Ability to run periodic refresh cycles ingesting only deltas where feasible.

• Quality awareness: Embedded evaluation instrumentation (precision / recall / F1-Score) to monitor
drift of rule-based and machine learning components.

• Human-in-the-loop readiness: Outputs structured for subsequent auditing (e.g., via future OSM
Auditor style tooling).

• Sustainability: Lightweight dependencies (e.g., DuckDB for analytical queries) combined with scal-
able components to enable both local research usage and potential community deployment.

38



Chapter 4. Software Project Documentation 39

The vision explicitly separates concerns between data acquisition, normalization, feature engineering,
matching, diff generation, and audit/export to encourage evolvability of individual stages without sys-
temic rewrites.

An intentionally lightweight, iterative (agile-inspired) delivery approach is embraced: incremental vertical
slices (e.g., a single retailer end-to-end) are completed and inspected before broad generalization, reduc-
ing rework and enabling earlier validation of assumptions. Formal heavyweight artifacts are replaced by
evolving configuration, concise architectural notes, and empirical evaluation logs.

4.2 Requirements

This section distills functional and non-functional requirements derived from the thesis objectives, prior
projects [12, 13], and the operational constraints of the DiffedPlaces service.
Requirements were not frozen up-front; instead they evolved iteratively based on feasibility insights from
early vertical slices and feedback gathered during biweekly reviews. Adjustments (e.g., refining fea-
ture engineering scope, deferring real-time ingestion) were captured directly in configuration and golden
dataset expansion rather than in a separate change request process.

4.2.1 Functional Requirements

1. Ingest External Source Data: Support fetching and parsing ATP (initial set) and be extensible to
additional open datasets.

2. Ingest OSM Baseline: Acquire relevant OSM extracts (bbox, country, or thematic) and normalize
them into a common internal schema.

3. Normalization and Cleaning: Standardize names, addresses, categories, and coordinates.

4. Feature Engineering: Compute textual similarity features (e.g., token ratios, Jaro–Winkler), spatial
features (distance, bearing), and categorical compatibility indicators for each candidate pair.

5. Blocking / Candidate Generation: Efficiently generate candidate POI pairs using spatial indexing
(distance/radius queries) and heuristic category constraints to bound complexity.

6. Rule-based Matching: Provide deterministic baseline rules combining distance thresholds and
string similarity to classify matches / non-matches / possible matches.

7. Machine LearningMatching: Train and apply one or more supervisedmodels (e.g., Random Forest,
Gradient Boosting, LightGBM) using engineered features to improve recall/precision balance.

8. Model Evaluation: Compute precision, recall, and F1-Score over curated golden datasets; retain
historical evaluation snapshots for regression detection.



Chapter 4. Software Project Documentation 40

9. Diff Generation: Produce structured diff artefacts enumerating create / update / delete / ambigu-
ous actions relative to OSM baseline.

10. Export for Auditing: Outputmachine- and human-readable artefacts (e.g., CSV / GeoJSON) suitable
for downstream auditing and potential ingestion into an OSM Auditor workflow.

11. Configuration Management: Centralize thresholds, weights, and feature toggles in JSON configu-
ration enabling reproducible experiments.

12. Command Line Interface: Provide scripted entry points for ingest, feature generation, training, in-
ference, and diff publication to enable automation.

13. Logging and Traceability: Log processing steps with input, configuration version, and model iden-
tifier for each run.

14. Golden Data Tooling: Support generation and maintenance of golden datasets (manual curation
assisted by heuristics) for ongoing evaluation.

15. Error Handling: Gracefully handle network timeouts, malformed records, and missing attributes
while flagging impacted diff items for review.

4.2.2 Non-Functional Requirements

• Performance: Process typical national-scale category subsets (e.g., a retailer chain) within a prac-
tical runtime on commodity hardware .

• Scalability: Architectural separation allows horizontal scaling of candidate generation and feature
computation if data volume grows.

• Modularity: Clear separation between ingestion, matching logic, and diff rendering to permit algo-
rithm substitution.

• Extensibility: Adding a new source should require only implementing source-specific extraction and
minimal mapping configuration.

• Reproducibility: Re-runningwith identical inputs and configurationmust yield identical diff outputs.

• Observability: Metrics (counts of candidate pairs, match class distribution, evaluation scores) are
exposed or logged for monitoring.

• Portability: Minimal external dependencies; ability to run via containerization for consistent envi-
ronments.

• Licensing Compliance: Preserve ODbL attribution considerations when generating outputs that re-
flect OSM derived data.



Chapter 4. Software Project Documentation 41

• Maintainability: Code follows consistent naming, documentation headers, and lightweight test cov-
erage for core functions.

4.2.3 Assumptions and Constraints

• Availability of periodically updated ATP snapshots and accessible OSM extracts (e.g., via planet
extracts subset).

• Golden datasets are of limited size; thus model generalization must cope with class imbalance.

• System operates in a batch mode; real-time updates are out of scope for this iteration.

• Manual auditing capacity is limited; precision is prioritized over exhaustive recall for high-impact
categories.

4.2.4 Out of Scope

• Direct automated editing of OSM; outputs remain advisory.

• Full-fledged web-based auditing platform (future integration point with OSM Auditor).

• Global scale full planet conflation in a single batch.

• Integration of a scheduler for regular automated runs.

4.3 Analysis

The analysis focuses on the characteristics of the source datasets, the nature of POI identity resolution,
and constraints influencing architectural and algorithmic choices.

4.3.1 Data Sources Characteristics

OpenStreetMap. OSM provides volunteered geographic information (VGI) with heterogeneous tagging
practices and varying positional and categorical accuracy. Name fields may include branding variants,
language-specific tokens, or disambiguators (e.g., city district) that require normalization. Geometry is
predominantly node-based for many commercial POIs, but polygons and multipolygons occur for large
facilities.

All The Places. ATP aggregates structured retailer/location data via spiders; it tends to offer more
uniform attribute presence for specific brands (e.g., opening hours, operator names) but may lack har-
monized category tags relative to OSM. Geometries are usually single latitude/longitude points. Address
formatting can differ (abbreviations, punctuation) and may require canonicalization.



Chapter 4. Software Project Documentation 42

4.3.2 Entity Resolution Challenges

• Ambiguous Naming: Chains whose brand equals a common word increase false positives.

• Near-Duplicate Clusters: Shopping centers may contain multiple similar branded sub-entities (e.g.,
pharmacy counters) close to a main store.

• Temporal Drift: Store relocations cause stale OSM entries offset from updated external coordi-
nates.

• Category Divergence: Tagging granularity mismatch (e.g., shop=supermarket vs. external clas-
sification taxonomy) complicates category-based blocking.

• Sparse Addresses: Missing housenumbers reduce discriminative power of address similarity met-
rics.

4.3.3 Similarity Feature Rationale

Textual similarity leverages robust string metrics (token set ratio, partial ratio, Jaro–Winkler) to accom-
modate transpositions andminor spelling discrepancies. Geospatial distance provides a strong negative
signal beyond an empirically derived radius of 1’500meters, which was determined as necessary to cap-
ture all matches during the creation of the golden dataset. Category compatibility acts as a prior: improb-
able mappings are penalized. Additional derived signals (e.g., shared address tokens count, normalized
brand canonical form equality) further refine candidate scoring.

4.3.4 Blocking Strategy Considerations

Exhaustive pairwise comparison is infeasible at scale (quadratic growth). Spatial proximity filtering (dis-
tance/radius queries and lightweight spatial indices) constrains candidate generation while preserving
recall. See Section 3.4

4.3.5 Golden Data and Evaluation

Accurate supervised learning requires curated positive and negative examples. An iterative golden dataset
refinement loop was adopted: initial heuristic matches were reviewed manually, false positives and neg-
atives were annotated, and the resulting labeled pairs were reused for model training.

The initial sampling for this datasetwas based on thealdi_sud_ch spider output, which provided a con-
sistent set of POIs from the ATP dataset. From this pool, exactly 200 POIs were selected using Python’s
random_sample function, optionally seeded for reproducibility. This ensured an unbiased, geograph-
ically diverse subset while allowing the sampling process to be repeated identically for debugging or
incremental dataset expansion. The codebase implements this logic directly, making the process trans-
parent and modifiable for future sampling strategies.



Chapter 4. Software Project Documentation 43

To mitigate class imbalance, strategies such as undersampling of easy negatives and feature-threshold
guided sampling were considered and partially applied during dataset generation. This loop aligns with
an agile mindset: each iteration treats the enriched golden dataset plus updated evaluation metrics as
an inspect-and-adapt checkpoint, informing subsequent prioritization—such as introducing additional
similarity features, adjusting sampling parameters, or broadening retailer coverage.

4.3.6 Risk and Complexity Drivers

• Data Volume Variability: Different categories produce widely varying candidate densities.

• Model Generalization: Overfitting to a single retailer brand jeopardizes performance on unseen
chains.

• Operational Reproducibility: Without strict configuration/version control, diff reproducibility de-
grades.

• Human Review Load: Excess ambiguous candidates inflate auditing effort.

These drivers motivate a design emphasizing modular feature computation, traceable configurations,
and tunable thresholds to balance precision and recall.

4.4 Design

The design follows a layered, pipeline-oriented architecture that separates acquisition, normalization,
matching, and diff materialization. This enables independent evolution of algorithms and data connec-
tors while preserving reproducibility.

4.4.1 High-Level Architecture

At a high level the system consists of:

Acquisition Layer Source-specific spiders / fetchers for ATP (extendable) and retrieval of OSM extracts.
Outputs raw snapshot files.

Normalization Layer Transforms raw records into a canonical internal schema: identifiers, geometry,
category mapping, tags/properties.

Feature Engineering Layer Generates similarity features for candidate pairs (textual, spatial, categorical,
address-based, brand equality flags).

Matching Layer Applies rule-based filters then machine learning classifiers to assign labels (match /
non-match / ambiguous) with associated confidence.



Chapter 4. Software Project Documentation 44

Diff Assembly Layer Aggregates labeled pairs to construct proposed create/update/delete actions rel-
ative to OSM. Supports export to CSV / GeoJSON and optional ChangeXML for bulk editing.

Evaluation and Reporting Computes metrics on golden datasets and logs run metadata.

4.4.2 Component Responsibilities

• Configuration & Orchestration

– Centralizes run-time settings (distance thresholds, enabled features, model identifiers) from
environment variables and optional JSON configuration.

– Lives alongside the Docker Compose stack and provides sane defaults for local development
and repeatable experiments. No internal scheduler is bundled; periodic execution is expected
to be triggered externally (e.g., cron, CI), see Out of Scope.

• DB Service (QuackOSM + DuckDB)

– Imports and harmonizes OSM extracts and ATP spider outputs into a unified POI schema;
enforces schema-version tags on every table and view.

– Provides high-throughput analytical queries (spatial filtering, candidate generation, feature
materialization) via DuckDB, optimized for in-memory columnar processing.

– Maintains spatial indices to bound candidate search (distance/radius queries and bounding-
box partitioning) and exposes reusable SQL views consumed by the Diff service.

• Diff Service

– Orchestrates end-to-end conflation for a given spider: data pull Ñ candidate generation Ñ

similarity scoring Ñ match decision Ñ diff creation.

– Integrates osm_conflate for producing human-reviewable .osm and .json diffs; bundles
trace metadata (run id, config hash, model version) into every artefact.

– Hosts the HTTP endpoints used in practice:

* /run_diff/<spider_name> – generate diffs for a specific spider.

* /recheck_diff/<spider_name> – optional re-audit of edited diffs.

• Download Service (Web UI/API)

– Lightweight Flask application that lists and serves produced diffs for inspection and down-
load.

– Acts as a public access point for auditors and downstream tooling; surfaces per-run prove-
nance (run fingerprint, input dataset summaries, counts of TP/FP/FN when available).



Chapter 4. Software Project Documentation 45

• Library Module (Shared Utilities)

– Encapsulates string normalization (case/diacritics folding, punctuation handling), tokeniza-
tion, and standard string similarity functions (e.g., token-set/partial ratios, Jaro–Winkler).

– Provides geodesic distance, category mapping helpers, brand canonicalization, and feature
engineering primitives used by both rule-based and ML matching.

– Centralizes error handling, logging, and metrics emission to keep the services thin and con-
sistent.

• ML Module

– Defines the feature schema, trains the classifier, and persists the full inference bundle (esti-
mator + feature list + preprocessing steps + version).

– Exposes batch inference APIs to the Diff service; supports score calibration and configurable
decision thresholds to trade precision/recall per source.

– Stores model cards and evaluation reports alongside artefacts to document training data,
metrics, and known limitations.

• Import APIs

– Simple HTTP entry points to populate the DB Service:

* /import_osm – ingest OSM extracts into DuckDB.

* /import_atp – ingest ATP spider dumps into DuckDB.

– Validate payloads against the unified POI model and stamp schema/version metadata.

• Export Module

– Renders diff outputs (.osm, .json) and auxiliary audit artefacts (per-run logs, summary ta-
bles) with complete provenance (run id, config hash, model id, input dataset digests).

– Publishes artefacts to the Download Service and optionally to external object storage for long-
term retention.

4.4.3 Iterative Architectural Validation

Rather than finalizing all components up-front, the system was validated incrementally: a minimal viable
path (single-brand ingestion aldi_sud_ch Ñ diff export) established the core abstractions; additional
spiders and features were then integrated to test extensibility.

Refactorings from early runs. (a) The export was consolidated to a single result.json plus an .osm diff
per run, written under diffed_places/<spider>/, and supplemented by inspection artefacts for



Chapter 4. Software Project Documentation 46

matched and unmatched features; exports now preserve raw OSM tags (no “beautification”). (b) The
rule-basedmatcher evolved (v3Ñv4) with a tightened categorymap (e.g., car, car_repair, car_wash
ñ retail) and a fallback from name to brand/operator for divergent labels; return types were made
explicit. (c) The ML-Based Matcher path was gated initially while precision was improved; integration
proceeds as additional labeled data become available.

4.4.4 Batch Data Flow and Artefacts

The typical batch run proceeds through clearly separated data layers and aggregation steps:

1. Acquire source snapshots (Raw Layer): fetch OSM extracts, ATP spider dumps, and optional OGD
payloads.

2. Normalize toCanonical Layer: load into the unifiedPOI schema (DuckDB/QuackOSM), stampschema
& run metadata.

3. Candidate Generation (Blocking): spatial proximity filtering (radius / bounding-box strategies).

4. Feature Engineering: compute textual, spatial, and categorical features for each candidate pair.

5. Matching: classify pairs via Rule-Based or ML-Based Matcher; pass uncertain pairs forward.

6. Aggregation: consolidate labels into reconciliation actions (create/update/skip) for diff construc-
tion.

7. Metrics: if golden labels exist, compute precision/recall/F1 and runtime statistics.

8. Export (Artefacts Layer): write human-reviewable JSON diff and .osm diff for auditing; publish in-
spection artefacts (matched/unmatched GeoJSON) and metrics.

Figure 4.1: End-to-end data flow showing data layers (Raw, Canonical, Artefacts), aggregation steps
(blocking, features, classification, aggregation), and resulting exports (JSON diff, .osm diff, matched/un-
matched GeoJSON, metrics).



Chapter 4. Software Project Documentation 47

4.4.5 Configuration Strategy

Configurations are version-controlled alongside code to guarantee reproducibility. Each run records: con-
figuration hash, data snapshot identifiers, andmodel version. Parameter groups include: distance thresh-
olds, textual similarity cutoffs, feature inclusion flags, model hyperparameters.

4.4.6 Extensibility Mechanisms

The system accepts new data sources, additional ATPs spiders, and new countries with minimal friction
by enforcing clear contracts at each layer and separating the most common onboarding use cases.

Shared contract (applies to all new inputs).

• UnifiedPOImodel: ingestorsmust yieldWGS84 lon/lat and the canonical fields (id,name,brand/operator,
addr_*,phone,website,category_raw,geom,source,country_code,updated_at). Adapters
write to DuckDB via the DB service API.

• Categorymapping: extend the dictionary-basedmapper in the Librarymodule to translatecategory_raw
into high-level classes (retail, gastro, health, transport, . . . ), with unit tests.

• Normalization hooks: reuse shared utilities for case/diacritics folding, tokenization, address pars-
ing, brand canonicalization, and phone/URL cleanup.

A) Adding a new ATP spider (dataset already in ATP, e.g., CH).

• Steps: (1) enable the spider in the run configuration; (2) call/import_atp to load the dump into the
unified schema; (3) extend categorymapping if new tags appear; (4) trigger/run_diff/<spider_name>
in the Diff service; (5) review result.json (JSON diff), the .osm diff, matched/unmatched GeoJSON
and metrics.

• Code impact: typically configuration-only; mapper tweaks if unfamiliar tags/brands surface.

B) Dataset not yet in ATP (become a new ATP spider first).

• Recommended path: contribute an upstream spider to ATP (schema, licensing, scraping). This
keeps a single ingestion strategy and benefits from ATP’s update cadence and QA.

• After upstreaming: proceed as in (A): configure, /import_atp, adjust mappings if needed, then
/run_diff/<spider_name>.

C) Adding a new OGD source (parallel pipeline with broader scope like ATP).

• Importer (ATP-like): implement a lightweight importer that emits the unified POImodel and expose
/import_<ogd> in the DB service.



Chapter 4. Software Project Documentation 48

• Reuse the core: blocking, feature engineering, rule-based and ML matching operate unchanged on
the unified schema.

• Running diffs: add a thin runner in the Diff service (e.g., /run_diff/ogd/<dataset>) or se-
lect the provider via configuration; exports mirror the ATP flow (result.json, .osm diff, matched/un-
matched GeoJSON, metrics).

• Why simple: only the importer is new; downstream logic and auditor-facing artefacts are shared.

D) Extending the feature set (rule-based and ML).

• Feature registry: add pure derived-feature functions with a short registration (name, dtype, depen-
dencies), e.g., token-set ratio, Jaro–Winkler, brand_equal, addr_overlap_count, geodesic_distance_m.

• Pipelines: materialize features in DuckDB views for reproducibility; the rule-based matcher con-
sumes a subset, the ML matcher the full vector.

• Versioning: bump the feature schema version and persist the model bundle (estimator + prepro-
cessing + feature list + version). Old models remain runnable against their pinned schema.

E) Enabling a new country.

• Locale: add language-specific token rules (stopwords, transliteration), brand aliases, and address
normalizers (street abbreviations, postcode formats).

• Spatial partitioning: register the country boundary and choose an appropriate blocking resolution
to keep candidate sets tractable.

• Threshold profiles: define per-country defaults for distance/name thresholds in the rule-based pre-
filter; keep them runtime-configurable.

• Data import: wireOSMextracts for the country intoQuackOSM; ensure adapters setcountry_code
for correct filtering and metrics.

• Validation: seed a golden sample (e.g., 200–1’000 pairs) to recalibrate precision/recall and, if en-
abled, refresh the ML model.

F) Operational wiring.

• Configuration & traceability: all knobs (blocking, thresholds, enabled features/model) live in con-
fig/env; every artefact is stamped with the run fingerprint (config hash + Git commit).

• Testing: each new adapter/mapping ships with fixtures and a smoke run (/run_diff/<name>)
to verify end-to-end exports.

• Scheduling: periodic execution is external (cron/CI); no integrated scheduler is bundled.



Chapter 4. Software Project Documentation 49

4.4.7 Quality Controls

Automated unit tests cover normalization edge cases (address parsing, token cleaning), feature compu-
tations, and classifier prediction invariants (e.g., monotonicity when distance increases).

4.5 Implementation and Testing

Implementation consolidates the architectural concepts into aPython-based codebase (theDiffedPlaces
service) emphasizing modular pipeline steps and containerized deployment.

4.5.1 Technology Stack

• Language: Python for rapid experimentation and rich geospatial/string processing ecosystem.

• Data Handling: DuckDB for analytical queries, standard GeoJSON for interchange.

• String Similarity: Libraries such as TheFuzz / JaroWinkler provide token-based and edit-distance
metrics

• Machine Learning: scikit-learn (e.g., Random Forest)

• CLI / Orchestration: Python entry points with argument parsing to trigger pipeline stages.

• Containerization: Docker images encapsulate runtime dependencies for reproducibility.

4.5.2 Module Structure

Core modules align with the end-to-end design—data access, normalization, blocking/candidate genera-
tion, feature engineering, matching, evaluation, and diff export. Wherever practical, functions follow pure-
input/pure-output semantics (no hidden I/O, deterministic outputs given inputs) to simplify unit testing
and reproducibility. The implementation is deployed via a Docker Compose stack with three cooperating
services.

Service-level architecture (Docker Compose).

• DB Service (QuackOSM + DuckDB)— Port 5001. Ingests OSM extracts and ATP spider dumps into
a unified POI schema and exposes import endpoints: /import_osm, /import_atp, and optional
/import_<ogd>. Providesmaterialized SQL views for blocking and feature computation. Stateful:
mounts a writable volume for database files and a read-only volume for source data.

– db/:db_app.py (HTTPAPI),data_access.py (DDL/DML helpers), schemamigrations, and
SQL view definitions.



Chapter 4. Software Project Documentation 50

– Responsibilities: schema/version stamping, runmetadata persistence, spatial proximity filter-
ing (distance/radius heuristics without fixed hash grids), candidate queries, and feature table
materialization.

• Diff Service — Port 5002. Orchestrates the conflation run for a given spider or provider: candi-
date pull Ñ similarity scoring Ñ match decision Ñ diff creation. Stateless and horizontally scal-
able; safe to run multiple replicas. Endpoints include /run_diff/<spider_name> (and option-
ally /run_diff/ogd/<dataset>).

– diff/:diff_app.py (HTTPAPI + pipeline),match_rule.py (rule-basedmatcher),match_ml.py
(ML matcher), exporters.

– Responsibilities: pipeline coordination, Rule-Based prefilter, ML-Based Matcher inference, ag-
gregation to actions (create/update/skip), and export of result.json and .osm diff plus
inspection artefacts (matched/unmatched GeoJSON, metrics).

• Download Service (Web UI/API)— Port 5003. Lightweight Flask app listing produced artefacts un-
der diffed_places/ for audit and download; embeds per-run provenance (run fingerprint, input
summaries, counts).

– download/: download_app.py (UI/API), static listing, simple search.

– Responsibilities: browse/download diffs, expose provenance and basic metrics to auditors.

Compose wiring. A shared user-defined network connects the three services. Volumes: (i) data_dir
(read-only sources), (ii) db_store (DuckDB files), (iii) diffed_places (exports). Config is injected via
env vars (e.g., CONFIG_PATH, thresholds, enabled features/model). No scheduler is bundled; periodic
runs are triggered externally.

Code-level modules (inside services).

• Configuration & run fingerprint — reads JSON + env, resolves defaults.

• DataAccess—typed accessors for DuckDB (reads/writes, parameterizedSQL, pagination), schema
migration helpers, and I/O of Parquet for caches or fixtures.

• Normalization—case/diacritics folding, punctuation andwhitespace policy, brand/operator canon-
icalization, URL/phone cleanup, address tokenization, and country-aware normalizers.

• Blocking / Candidate Generation — spatial partitioning; supports per-source overrides of resolu-
tions and block keys.

• Feature Engineering—pure functions that emit derived columnswith a small registry (name, dtype,
dependencies): token-set/partial ratios, Jaro–Winkler,addr_overlap_count,brand_equal, geodesic



Chapter 4. Software Project Documentation 51

distance (m), category compatibility, etc. Features are materialized as DuckDB views for repro-
ducibility.

• Matching

– Rule-Based prefilter: fast acceptance/rejection of trivial positives/negatives using calibrated
name/distance/category thresholds; tunable per country/source.

– ML-Based Matcher: batch inference using a persisted bundle (estimator + preprocessing +
feature list + version) with score calibration and configurable cutoffs.

• Aggregation&Diff Export—converts labels to reconciliation actions and renders human-reviewable
result.json, .osm diff, matched/unmatched GeoJSON, and metrics; every file embeds the run
fingerprint.

• Evaluation & Metrics — if golden labels exist, computes precision/recall/F1 and false-positive rate;
always records runtime and volumemetrics; emits per-spider summaries for the Download service.

Operational notes.

• Stateless vs. stateful: DB Service is stateful (volume-backed); Diff and Download are stateless and
horizontally scalable. Resource limits for Diff can be tuned independently.

• Interfaces are stable: DB exposes import/read views; Diff exposes run endpoints; Download serves
artefacts. Backwards-compatible changes are guarded by schema and feature-version bumping.

• Testing: modules provide unit tests with fixtures; services have smoke tests (end-to-end
/run_diff/<name>) and golden-sample validations for regression safety.

4.5.3 DB Service CLI Interface

A small internal CLI complements the HTTP API for quick admin and developer tasks without starting
the full stack. It reuses the same code paths as the service, favors idempotent operations, and is meant
for setup, diagnostics, and fast iteration.

• Imports & refresh: one-off ATP/OSM ingests and refreshing materialized feature views.

• Inspect: list tables, feature view versions, and recent run metadata.

• Maintain: clean transient staging tables and related housekeeping.

• Dev utilities: sample rows to CSV/GeoJSON and seed tiny test databases.

• Execution & safety: run via docker compose run –rm db python cli.py or locally (DuckDB);
same config precedence as Section 4.5.4. Imports skip unchanged snapshots unless –force; mi-
gration guards prevent ad-hoc schema drift.



Chapter 4. Software Project Documentation 52

• Out of scope: diff generation, model training, and artifact export remain in their dedicated services
to preserve auditing.

4.5.4 Configuration Management

TheDiffedPlaces services are fully parameterized at runtime via a single, repository-trackedconfig.json
that acts as the canonical source of truth for thresholds, feature toggles, data paths and integration be-
havior. The file is read at container start-up; validation is performed before any POI ingestion or OSM
queries are executed to ensure safe, reproducible defaults.

Configuration layers and precedence. To keep deployments predictable yet flexible, configuration is
resolved in four layers (earlier wins on conflicts):

1. Built-in defaults compiled into each service (defensive fallbacks only).

2. Repository config.json (project-wide canonical values).

3. Environment overrides (e.g.,DP_DIFF_DISTANCE_THRESHOLD_M=350) injected bydocker-compose.

4. Optional CLI flags for ad-hoc runs (e.g., –spider ikea_ch).

On boot, the service logs the effective configuration and refuses to start if the file is missing or invalid.
Unknown keys trigger warnings to prevent silent drift.

Reloading and immutability. By default, configuration is immutable per run for reproducibility.

4.5.5 Testing Strategy

Unit Tests. Focus on deterministic components: normalization routines, string preprocessing, feature
calculations, and rule-based match classification boundaries.

Integration Tests. Exercise aminiature dataset flowing through acquisition to diff generation, asserting
invariants (non-empty diff, no duplicate identifiers, distance thresholds respected).

Golden Dataset Evaluation. Periodic model evaluation against curated labels; metric deltas outside
tolerance trigger investigation.

Performance Checks. Sample timing of candidate generation and feature computation to detect acci-
dental algorithmic regressions. However, performance was no high focus.



Chapter 4. Software Project Documentation 53

4.5.6 Test Data

Golden data includes manually validated POI pairs for selected brands/categories. Negative examples
are diversified (geographically close yet distinct entities, name variants of unrelated brands) to discour-
age overfitting.

4.5.7 Error Handling and Logging

Structured logging captures run identifiers, configuration hash, and counts at each pipeline stage (records
ingested, candidates generated, matches classified). Exceptions in external data fetching are retried with
backoff. Ambiguous address parses are flagged rather than silently discarded.

4.5.8 Continuous Improvement Loop

Misclassified diff items discovered during manual review feed back into golden dataset updates, fol-
lowedby retraining and re-evaluation, establishing a data-centric iterative refinement cycle. This feedback
loop constitutes the primary agile mechanism: each cycle yields a potentially shippable improvement
(more accurate matching or reduced ambiguity) validated in the subsequent biweekly review, enabling
empirical prioritization over speculative planning.

4.6 Results and Further Development

This section summarizes achieved software artefacts and outlines prioritized enhancements.

4.6.1 Achieved Results

• Establishedmodular pipeline implementing ingestion, normalization, candidate generation, match-
ing, and diff export.

• Implemented baseline rule-based matcher producing actionable diff candidates with deterministic
thresholds.

• Integrated supervised model(s) improving classification quality over rule-only baseline (relative F1
uplift over rule-only baseline reported in Section 3.7).

• Produced golden dataset generation workflow enabling iterative refinement.

• Added configuration-driven execution enabling reproducible runs across environments.

• Containerized deployment artefacts to reduce environment drift.



Chapter 4. Software Project Documentation 54

4.6.2 Qualitative Observations

Rule-based heuristics provide high precision on unambiguous brand/location clusters but underperform
on dense urban clusters with overlapping categories. Machine learning features extracting nuanced tex-
tual and spatial interactions mitigate this gap. Data quality variance (address sparsity, coordinate noise)
remains the dominant limitation to further gains. The iterative delivery approach ensured that each added
capability (e.g., new similarity feature, additional retailer) was justified by observed error patterns in prior
evaluation cycles rather than speculative completeness.

4.6.3 Limitations

• Limited diversity in golden datasets may bias model toward early-targeted brands.

• Lack of fully automated incremental update mechanism (full recomputation required).

• Absence of integrated human auditing UI (external tooling needed).

• Performance characteristics on nationwide multi-category runs not yet benchmarked systemati-
cally.

4.6.4 Future Enhancements

1. Nationwide Spider Orchestration (CH): Operationalize regular, idempotent runs of all Swiss spi-
ders with a unified scheduler (cron/CI), per-source health checks, delta crawling, and automatic
retry/quarantine of failing sources. Define SLIs/SLOs (freshness, coverage, failure rate) and per-
sist run manifests for reproducibility.

2. Tight Coupling with OSM Auditor: Replace one-off exports with a streaming handoff: stable iden-
tifiers, per-diff task creation, status sync (open/in review/accepted/rejected), and webhooks back
to the pipeline when a review decision lands. Preserve reviewer context (screenshots, before/after
geometry, confidence and features) to support transparent, auditable decisions.

3. Throughput Improvements for ML-Based Matcher: Reduce end-to-end ML-Based Matcher wall
time for one Spider from „20 minutes to ď1 minute (approximately 200 POIs) for the standard
workload by (i) stronger spatial proximity filtering with category pre-filters, (ii) vectorized feature
computation, (iii) batched inference, (iv) caching of expensive features in columnar stores (e.g.,
Parquet), and (v) parallel execution per canton/source. Track CPU time, peakmemory, and cost per
1’000 candidates as primary KPIs.

4. Model Quality & Rule-Base Revision: Grow the golden set with active learning on high-uncertainty
pairs. Recalibrate thresholds and re-tune the rule-based post-processor using the expanded gold
labels; introduce an abstain path for low-confidence cases to route them to human review. Report
per-category precision/recall and calibration error.



Chapter 4. Software Project Documentation 55

5. Scalable Training Pipeline & Monitoring: Decouple training-data generation from model training.
Establish a dedicated pipeline with well-defined stages: (i) sampling/labeling and hard-negative
mining, (ii) feature materialization to a versioned store, (iii) sharded training on large datasets, (iv)
evaluation against fixed public/private gold sets, and (v) model registry with promotion rules. Pro-
vide experiment tracking (hyperparameters, seeds, metrics), resource/throughput monitoring, and
drift alerts; schedule retraining jobs and dashboards for training time, examples/sec, and cost per
1’000 examples.

6. Object-Oriented Refactor of osm_conflate: Rework the command-line oriented implementation
into a small library with clear components (Reader Ñ Blocker Ñ Matcher Ñ Resolver Ñ Writer).
Use dependency injection for swappable strategies (distance metrics, scorers, conflict resolvers),
preserve current OSM profile compatibility via thin adapters, and add unit/integration tests around
each interface.

7. Multi-DB Access & Concurrency: Address the current single-writer/reader limitation of DuckDB by
separating compute from persistence: stage intermediate results to Parquet/Arrow, use a single
writer process (job queue)withmany concurrent readers, ormigrate transactional parts (taskmeta-
data, audit state) to a server database with snapshot isolation. Provide a connection/transaction
policy that guarantees consistency without stalling parallel jobs.

8. Smarter Incremental Runs: Add snapshot differencing and tile-level invalidation so that only af-
fected geographic cells are recomputedwhen sources orosm_extracts change.Maintain per-source
content hashes and bitemporal stamps (ingest time vs. source time) to avoid redundant work and
to enable precise replays.

4.6.5 Sustainability and Community Adoption

Clear documentation, transparent configuration, and minimal external dependencies increase the likeli-
hood of adoption by the wider OSM community. Prioritizing reproducibility and traceability builds trust
in generated diffs, a prerequisite for community-driven validation. Furthermore, the lightweight agile ca-
dence (biweekly inspection of diff quality and metric deltas) reduced risk of large, late-stage integration
surprises and accelerated convergence on stable matching thresholds.

4.7 Project Management

The project focuses on developing and generalizing advanced POI matching methodologies. Building
on PT1 and PT2, the following structured timeline guides delivery, integrating the algorithms into the
DiffedPlaces framework and validating their performance.



Chapter 4. Software Project Documentation 56

4.7.1 Phased Approach

The work is divided into five indicative phases. In practice, boundaries were porous and several tasks
overlapped intentionally to enable earlier feedback (e.g., partial feature engineering began while general-
ization refactoring was still ongoing). This reflects an agile, inspection-driven cadence rather than a rigid
stage-gate model.

Phase 1: Review of the literature and concept refinement (January)

• Conduct an in-depth review of current geospatial data integration and conflation techniques.

• Define evaluation metrics such as precision, recall, and F1 score to measure algorithm perfor-
mance.

• Refine the conceptual framework, using the findings from PT1 and PT2.

Phase 2: Generalization of the DiffedPlaces Framework (February–March)

• Generalize the existing DiffedPlaces framework based on insights and implementations from PT1
and PT2.

• Adapt the framework to support all ATP spiders, ensuring compatibility with various data formats
and enabling applicability across multiple regions and sources.

• Refactor the existing workflows to standardize the generation of diff files, improving scalability and
modularity for further enhancements.

• Validate the generalized framework to ensure seamless integration with the existing pipeline and
datasets.

Phase 3: Algorithm Development (March–May)

• Implement a rule-based algorithm that combines string-based comparison and geospatial proxim-
ity checks.

• Develop advanced algorithm utilizing machine learning techniques (Random Forest).

• Modularize the algorithms as a standalone Python package.

• Integration in the DiffedPlaces service.

Phase 4: Dataset Preparation and Testing (June)

• Prepare datasets by combining high-quality OSM data with external sources.

• Generate synthetic datasets to simulate both matched and unmatched POI pairs.



Chapter 4. Software Project Documentation 57

• Conduct performance benchmarks to refine algorithms for accuracy and efficiency.

Phase 5: Validation and Delivery (July–August)

• Validate the integrated algorithms against the prepared datasets and benchmarks.

• Ensure that the DiffedPlaces service operates efficiently under diverse data and geographic condi-
tions.

• Document the final results and deliver the modular service for public use.

4.7.2 Timeline and Milestones

The initial high-level plan served as a directional guide; actual completion dates for some deliverables
shifted modestly as early empirical findings reprioritized effort (e.g., extending time for candidate gener-
ation optimization reduced later rework in ML feature tuning). External evidence or formal tracking tools
were intentionally minimized; the authoritative progress record resided in the outcomes demonstrated
during biweekly meetings. For Milestones see 4.1.

Phase Task Delivery Date
Phase 1: Literature Re-
view and Concept Re-
finement

Complete literature review
and define performance
metrics and refine concep-
tual framework (based on
PT1/PT2)

26 January 2024

Phase 2: Generalization Integrate algorithms, au-
tomate diff generation,
generalize for all ATP spiders

09 March 2024

Phase 3: Rule-based
Matching

Develop and integrate rule-
based algorithm

20 April 2024

Phase 3: ML Matching Develop and integrate ML-
based algorithm

01 June 2024

Phase 4: Dataset Prepa-
ration and Testing

Prepare and validate datasets
for benchmarking

22 June 2024

Phase 5: Validation and
Delivery

Final validation of integrated
algorithms

20 July 2024

Phase 5: Validation and
Delivery

Deliver and document final re-
sults

10 August 2024

Table 4.1: Timeline and Milestones for Project Execution

4.7.3 Risk Management

Risks were surfaced informally during review meetings and addressed within the next iteration cycle; no
separate risk register was maintained. Key risks and mitigation strategies are as follows:



Chapter 4. Software Project Documentation 58

• DataQuality Issues: Addressed through rigorous preprocessing and validation pipelines using trusted
datasets.

• Integration Challenges: Ensured by modular development and extensive unit testing during inte-
gration into the DiffedPlaces service.

• Performance Bottlenecks: Managed through algorithm optimization and the use of efficient data
processing tools like DuckDB.

4.7.4 Governance and Communication

Given the single-developer setting, governance emphasizes transparency of decisions and reproducibil-
ity of experiments over formal approval gates. Biweekly (every two weeks) stakeholder check-ins consti-
tuted the sole official communication artefact; no external evidence repositories, ticketing dashboards,
or burndown chartswere produced. Key decisions (e.g., threshold adjustments,model retraining triggers)
were captured implicitly in configuration diffs and model artefact versioning.

4.7.5 Tooling and Infrastructure

Core project management enablers (kept deliberately lightweight) include:

• VersionControl: Git repositorymaintaining code, configuration, and golden dataset artefacts (branch-
ing strategy kept lightweight: main only).

• Issue Tracking: Within the meeting notes.

• Automation: Containerized environment definitions (docker-compose) to standardize local execu-
tion and reduce setup variability.

4.7.6 Change Control

Parameter changes (e.g., distance thresholds) and model updates were adopted only after quick com-
parative evaluation on the golden dataset; this fast feedback cycle replaced formal change approval.
Rollback is supported by retaining prior model artefacts and configuration snapshots.

4.7.7 Quality Integration

Quality assurance is embedded continuously rather than deferred: unit tests validate normalization and
feature engineering, while golden dataset evaluations guard against performance drift. Risk mitigation
actions (e.g., expanding negative examples to counter overfitting) are integrated into the operational
backlog rather than treated as incidental tasks.



Chapter 4. Software Project Documentation 59

4.8 Project Monitoring

Given the nature of the DiffedPlaces project as a one-person initiative with a single stakeholder, project
monitoringwas straightforward and focusedon regular communication to ensure alignment andprogress.
Themonitoring strategy relied on consistent meetings and open communication channels. Furthermore,
the defined milestones were tracked during the project.

4.8.1 Regular Meetings

The project started with regular bi-weekly check-ins with the initiator/advisor. Around the midpoint, a
domain expert joined and the cadence shifted to every 3–4weeks to enable deeper reviews. Each session
focused on progress, blockers, and decisions, with concise minutes and action items to keep delivery on
track.

4.8.2 Focus on Work Priorities

During each meeting, the focus was on identifying the key tasks for the upcoming period and discussing
any adjustments needed based on the evolving understanding of project requirements. This iterative
reviewprocess allowed for flexibility and ensured that the project continued to progress efficiently toward
its objectives.

4.8.3 Conclusion

Project monitoring remained intentionally lightweight yet effective due to the narrow stakeholder set and
clearmilestone structure. The cadence of bi-weekly reviews coupledwith explicit artifact-based progress
indicators (produced diff samples, evaluation metric snapshots, updated golden datasets) mitigated
scope drift. Future scaling to a multi-contributor context would require formalizing additional metrics
(lead time, code coverage, model drift alerts) and perhaps adopting a lightweight agile board. A concise
internal metrics log (lead time per feature, diff review turnaround, weekly precision/recall snapshot) was
maintained instead of a separate summary table. This minimalist approach mirrors agile principles: pri-
oritize direct inspection of working software and empirical quality signals over maintaining secondary
tracking artefacts that do not directly contribute to validated learning.

4.9 Software Documentation

This section serves as a navigational and maintenance guide to the DiffedPlaces codebase hosted
at: https://gitlab.com/geometalab/diffedplaces. It complements earlier architectural (Sec-
tion 4.4), implementation (Section 4.5), and requirements (Section 4.2) discussions without repeating
them.

https://gitlab.com/geometalab/diffedplaces


Chapter 4. Software Project Documentation 60

4.9.1 Repository Overview

The repository is organized along the pipeline boundaries already described conceptually in Section 4.4.
Only a concise directory map is given here; detailed per-component responsibilities are documented in
Section 4.5.

db/ # Data ingestion API, schema, candidate + feature SQL views
diff/ # Orchestrated matching + diff export (Rule-Based + ML-Based Matcher)
download/ # Lightweight UI/API to browse produced diff artefacts
lib/ # Shared domain models, normalization + similarity utilities
devtools/ # One-off analytical scripts (category mapping, diagnostics)
diagrams/ # Architecture and data flow diagrams (referenced in text)
tests/ # Unit + integration tests (distributed fixtures)
docker-compose # Multi-service local orchestration configuration
config.json # Canonical configuration (thresholds, feature toggles, paths)

4.9.2 Module Responsibilities (Cross-Reference)

For rationale and deeper behavior see Sections 4.4 and 4.5; only succinct pointers are listed here:

db/ Import endpoints (/import_osm,/import_atp), unifiedPOIs schemamanagement, spatial/block-
ing views, feature materialization.

diff/ Pipeline execution: candidate retrieval, feature retrieval, Rule-Based classification,ML-BasedMatcher
inference, aggregation, export of result.json, .osm diff, inspection GeoJSON, metrics.

download/ Read-only presentation of produced artefacts with provenance (run fingerprint, counts, eval-
uation metrics where available).

lib/ Deterministic utilities: string/address normalization, token similarity (e.g., Jaro–Winkler, token ra-
tios), geodesic distance, category mapping helpers.

devtools/ Exploratory scripts supporting category mapping validation and data quality analysis; not part
of the production execution path.

4.9.3 Configuration Reference

Central configuration mechanics (precedence, immutability per run, fingerprinting) are defined in Sec-
tion 4.5.4. The file config.json groups: (i) distance and textual similarity thresholds, (ii) feature en-
able/disable flags, (iii) model bundle identifiers, (iv) source inclusion filters (e.g., enabled spiders), (v)
export paths.



Chapter 4. Software Project Documentation 61

4.9.4 Execution Workflow

The concrete runtime sequence maps directly onto the abstract batch flow shown in Figure 4.1: acqui-
sition (db service) Ñ candidate + feature materialization Ñ Rule-Based (or ML-Based) classification Ñ

aggregation Ñ export Ñ metrics logging. Orchestration is performed via HTTP endpoints or scripted in-
vocations; container composition wires shared volumes for data, exports, and persistent DuckDB state.
Repetition of step internals is intentionally avoided here; see Sections 4.4 and 4.5.

4.9.5 Primary Data Artefacts

• Canonical POI Tables: Unified schema instances with stable identifiers and source attribution (pro-
duced by /import_osm and /import_atp).

• Feature Views: Deterministic DuckDB views keyed by candidate pair identifiers encapsulating spa-
tial, textual, and categorical features.

• Diff Exports: A JSON summary (result.json) and an .osm ChangeXML (see glossary entry
ChangeXML) ready for auditing tooling; accompanied bymatched/unmatchedGeoJSON for spatial
inspection.

• Metrics: Precision, recall, F1-Score, volume counts, runtime timings, and configuration fingerprint.

• Golden Dataset: Curated labeled pairs (refer to Analysis Section 4.3 for creation process) feeding
evaluation and (future) ML training.

4.9.6 Extensibility Path

The procedural steps for adding new spiders, external OGDs sources, countries, or features are elabo-
rated in the extensibilitymechanisms subsection of theDesign (Section 4.4). This documentation section
defers to that source to avoid divergent instructions.

4.9.7 Deployment and Operations

Service boundaries, ports, statefulness, and compose wiring are described in Section 4.5. Operationally
the db service is the only stateful component (DuckDB files + imported snapshots); diff and download
are stateless and horizontally scalable. External scheduling (e.g., CI, cron) triggers runs; no embedded
scheduler exists by design.

4.9.8 Maintenance Practices

Sustainable upkeep of the current solution relies on the following practices, documented where applica-
ble in the service README.md files (db/, diff/, download/) and in the Copilot instructions:



Chapter 4. Software Project Documentation 62

• Release and branching: Semantic versioning with tagged releases; short CHANGELOG notes per
release; clear branch conventions (e.g., main stable, feature/* for work in progress).

• Dependency management: Strictly pin Python packages, perform regular updates (monthly/bi-
monthly), and scan container images for vulnerabilities; provide commands and workflow in the
service README.md.

• Consistent runtime: Align on a single Python version across all services; use containers as the
reference environment (docker compose up). Offer a Makefile (e.g., make dev, make test,
make build).

• Configuration hygiene: Describe config.json fields (units, defaults, constraints) and validate at
startup against a JSONSchema; list category-specific thresholds and examples in the README.md.

• Data refresh cycles: Define cadence for OSM/ATP refresh, schedule regular runs of the Swiss spi-
ders, and set artifact retention rules (inputs, diffs, models) with a traceable directory structure doc-
umented per service.

• Testing and CI: Run pytest with a minimum coverage gate, lint/format with ruff/black, and type-
check with mypy; automate via CI (build, test, image scan) and provide pre-commit hooks.

• Observability: Emit structured JSON logs with correlation IDs; expose health and readiness end-
points; track basic metrics (job duration, candidate count, final match rate). Include a lightweight
runbook in the README.md.

• Security hygiene: Keep base images current, scan dependencies, minimize exposed ports, and
pass API keys/secrets via environment variables (never commit them). Add a short checklist in the
README.md.

• ML maintenance: Separate training-data generation from model training; version datasets and
models with metadata; schedule periodic re-training and evaluation against golden sets; store con-
fusion matrices and PR curves.

• Matching quality rules:Maintain category-specific distance thresholds; normalize and cache strings;
validate taxonomy mappings regularly. Ship changes as small PRs with test cases.

• Recovery and backups: Back up critical artifacts (DuckDB files, models, configuration). Document
restore steps in a “Recovery” section of the README.md.

• Copilot instructions: Provide prompt snippets for code style, tests, and performance hints; update
guidance whenever module interfaces or conventions change.

• Documentation currency: For each functional change, update the relevant README.md with con-
fig implications and operational notes; consider Architecture Decision Records (ADR) for major
choices.



Chapter 5

Conclusion and Outlook

5.1 Conclusion

This thesis addressed the conflation of heterogeneous OGDs and the community-driven OSM database
by designing, implementing, and empirically evaluating a modular pipeline centred around the Diffed-
Places service. Building on the lineage and insights of [12, 13], the work advanced three complementary
fronts: (i) a refined semantic blocking taxonomy and supporting tooling reducing spurious candidate
pairings; (ii) a comparative study and iterative enhancement of rule-based versus supervised POI match-
ers; and (iii) an extensible software architecture that integrates data acquisition, feature computation,
model execution, diff generation, and (planned) human auditing.

The research synthesis (Section 2.4.1) established that high-quality POI conflation benefits from hy-
brid spatial–semantic strategies and systematic evaluation. These principles guided the solution design
(Chapter 3). The high-level category derivation and feedback loop (Section 3.4) measurably reduced re-
liance on an over-used fallback class (“other”), increasing precision of downstream similarity computa-
tionswithout compromising recall. This semantic blocking, combinedwith distance constraints, provided
a computationally tractable candidate space while maintaining coverage across diverse domains.

Twomatcher familieswere assessed: a grid-searched rule-based configuration (evolution of the PT1/PT2
heuristic engine) and a supervised Random Forest Classifier. The rule-based approach demonstrated
strengths in interpretability, rapid execution (Table 3.8), and predictable tuning behaviour around similar-
ity thresholds of 0.85–0.875 (Section 3.7.3). However, its precision–recall balance remained sensitive to
sparse or noisy attributes and required manual curation of weights and comparators.

Themachine learning (ML)matcher progressed from an initially high-precision but recall-deficient model
(Phase 1 synthetic-only training) to a substantially improved Phase 2 model through semi-supervised
augmentation (Section 3.7.4). Augmenting synthetic perturbations with carefully filtered pseudo-labelled
pairs closed the recall gap and achieved near-symmetric, very high precision and recall on the Aldi Süd

63



Chapter 5. Conclusion and Outlook 64

CH golden subset. The comparative view (Section 3.7.6) underscores that data diversity and realistic
variation are critical: synthetic perturbations alone did not capture brand naming, temporal drift, or sub-
tle address inconsistencies observed in real data. While the ML model delivered superior effectiveness
metrics (notably lower false positives and near-elimination of false negatives), it incurredmarkedly higher
runtimes, highlighting an efficiency gap for future optimisation.

Architecturally, the DiffedPlaces service facilitated encapsulation of conflation stages, enabling focused
iteration (e.g., swapping matchers) without destabilising ingestion or diff generation layers. The deci-
sion to integrate osm_conflate with minimal adaptation accelerated early diff production and leveraged
an established representation familiar to experienced OSM contributors. Nonetheless, this lightweight
inclusion imposed compatibility constraints (e.g., data model translation steps, limited leverage of en-
riched feature vectors) and duplicated some filtering logic already present upstream. A bespoke confla-
tion writer tightly coupled to the enriched candidate and feature pipeline could reduce transformation
overhead, enable finer-grained provenance annotations, and simplify auditing integration. The trade-off
therefore balances time-to-value through reuse against longer-term maintainability and optimisation po-
tential.

Overall, the thesis demonstrates that (1) systematically engineered semantic blocking materially im-
proves downstream matching quality; (2) a supervised ensemble matcher, when supplied with hetero-
geneous and partially pseudo-labelled training data, can surpass a finely tuned heuristic baseline; and
(3) modular service design expedites experimentation while preserving a clear path toward operational
auditing and validation tooling. Limitations remain in runtime efficiency of the ML path, incomplete au-
tomation of auditing workflows, and partial reliance on external tools whose internal evolution may in-
troduce upstream drift. These limitations inform the outlined outlook.

5.2 Outlook

Future work concentrates on four complementary trajectories: model efficiency, auditing robustness,
data governance (temporal and provenance-aware), and architectural simplification.

Model efficiency and scalability. The current ML inference layer exhibits substantially higher runtime
than the rule-based matcher (Table 3.8). Targeted optimisations include: (i) feature pruning guided by
permutation importance to remove low-contribution similarity signals; (ii) distillation of the Random
Forest Classifier into a gradient-boosted or shallow ensemble variant with comparable discrimination
but reduced depth; and (iii) batch-oriented vectorisation and caching of reusable token normalisations.
Profiling could further identify I/O versus CPU bottlenecks and inform container resource allocation. A
medium-term objective is a latency envelope that narrows the performance gap while preserving preci-
sion and recall.



Chapter 5. Conclusion and Outlook 65

Auditing integration and human-in-the-loop workflows. Completing and hardening the planned auditing
component (e.g., integration with an OSM Auditor-style interface) will operationalise safe data contri-
bution. Priority enhancements include incremental diff review queues, fine-grained provenance (original
attribute tokens, comparator scores), and reviewer feedback capture to seed active learning loops.

Temporal and brand-specific dynamics. Time-dependent divergences (e.g., store openings, relocations,
or spider schedule misalignment) surfaced during exploratory diff generation (e.g., Lidl Switzerland test
runwith newly observed spider errors and temporal data inconsistencies). Formalising snapshot versioning—
storing retrieval timestamps, spider commit hashes, and transformation rule versions—would support
temporal diffing and root-cause analysis of mismatches driven by stale or premature data. Extending
the golden dataset with additional stratified brand subsets (beyond Aldi Süd) can validate generalisabil-
ity and detect category-specific bias.

Architectural refinement. Reassessing the light-touch inclusion of osm_conflate is warranted. A dedi-
cated diff writer leveraging native feature representations might (i) eliminate intermediate format con-
versions, (ii) expose richer confidence and feature attributionmetadata directly in the output, and (iii) sim-
plify maintenance by reducing complexity. A staged migration path could run both implementations in
parallel, benchmarking functional equivalence and community acceptance before deprecating the legacy
path.

Monitoring, profiling, and container ergonomics. Debugging and monitoring inside containers proved
cumbersome. Introducing structured logging, metrics export (e.g., request latency, match distribution,
feature computation time), and lightweight tracing would accelerate diagnosis of bottlenecks. Auto-
mated profiling profiles (CPU,memory) during representativeworkloads can reveal optimisation opportu-
nities, while a dedicated developer profile container (for on-demand brand-specific reprocessing) stream-
lines iterative experimentation.

Active learning and continuous improvement. Once an auditing interface yields labelled confirmations
and rejections, an active learning loop can prioritise low-confidence or disagreement-prone candidate
pairs for manual review, steadily enriching the training corpus with high-value examples. Periodic drift
detection on category distributions and feature value ranges would trigger re-training or mapping adjust-
ments when deviations emerge.

Governance and reproducibility. Versioned configuration bundles (category mappings, comparator set-
tings, model hyperparameters) and immutable training artefacts (hash-addressable datasets) would
strengthen reproducibility claims and facilitate longitudinal benchmarking across future iterations. In-
tegrating automated regression evaluation (precision, recall, F1-Score, and runtime) into the deployment
pipeline will guard against silent performance regressions.

In summary, the project establishes a robust foundation for automated, high-quality conflation of POIs
between OGD and OSM. Advancing toward production-grade reliability entails deepening auditing capa-



Chapter 5. Conclusion and Outlook 66

bilities, optimising ML runtime, enriching temporal handling, and potentially replacing minimal external
tool adaptations with purpose-built components tailored to the enriched feature pipeline.



Glossary

cf_audit Command line auditing tool shipped with the DiffedPlaces conflator 13, 36, 37

ChangeXML XML format understood by JOSM for applying bulk edits 13, 14, 61

CLI Command-line interface enabling direct invocation of selected application functionswithout a graph-
ical user interface vii, viii, 27, 51, 76

conflation The process of merging two or more geospatial datasets into a unified representation 6, 7,
65, 70, 75

DiffedPlaces A service designed to synchronize and reconcile data from various sources with Open-
StreetMap 7, 12, 37–39, 49, 52, 55–59, 63, 64

DuckDB An in-memory SQL database designed for high-performance querying of large datasets 13, 15,
37, 58, 75

F1-Score A metric used to evaluate the performance of a classification model, calculated as the har-
monic mean of precision and recall, balancing false positives and false negatives 13, 32, 33, 38,
39, 61, 65

GeoJSON is a format for encoding a variety of geographic data structures using JavaScript Object No-
tation to represent simple geographical features, along with their non-spatial attributes. 15

JOSM Editor JOSM (Java OpenStreetMap Editor) is a desktop application for editing OpenStreetMap
data. It is a powerful tool for advanced mapping tasks and provides features like aerial imagery
support, plugins, and comprehensive tagging capabilities, enabling users to contribute detailed
and accurate geographic information to the OpenStreetMap database. 12, 13, 75

KNN k-Nearest Neighbors, a machine learning algorithm used for classification and regression 6

LightGBM A gradient boosting framework that uses tree-based learning algorithms for classification
and ranking 6, 39

67



Glossary 68

OSM Auditor A web-based platform for collaborative auditing of diffs in OpenStreetMap (OSM) data. It
enables users to review, validate, and manage differences between datasets, ensuring data accu-
racy and reliability. 38, 40, 41, 54, 65

OSM Conflator is a script tool for merging points from some third-party source with OpenStreetMap
data. 12, 36

osm_conflate A repository containing tools and utilities for conflating external geospatial datawith OSM
data. It provides scripts and configurations, including cf_conflate, to facilitate the comparison,
merging, and validation of data sets to ensure accuracy and consistency in OSM. [15] 12, 37, 64,
65, 71, 75

Overpass API is a specialized query language for extracting data from the OpenStreetMap database.
75

PT1 The previous project, which focused on a matching algorithm utilized for improving the accuracy
of Point of Interest (POI) matching. PT1 provides a generic approach to data matching, making the
integration of new external data sources easier. 55, 56

PT2 The follow-up project to PT1, which enhanced the matching algorithm by introducing generaliza-
tion techniques. PT2 extended the algorithm’s capabilities to handle diverse datasets and improve
scalability for broader data integration. 55, 56

Random Forest Classifier Amachine learningmethod for classification, regression, and other tasks that
operates by constructing multiple decision trees 11–13, 22, 24, 27, 29, 32, 34, 37, 63, 64, 77

TF-IDF Term Frequency-Inverse Document Frequency, a statistical measure used to evaluate the impor-
tance of a word in a document relative to a collection of documents 6, 20, 21

VGI Volunteered Geographic Information, geospatial data provided by individuals voluntarily 5, 41, 75



Acronyms

ATP All The Places 3, 4, 7, 12–19, 21, 28–30, 35, 38, 39, 41–49, 51, 56, 57, 79, 80

CDIS Centralized Data Integration Service 8

ODbL Open Data Commons Open Database License 3, 13–15, 36, 40

OGD Open Government Data 1, 6–8, 10, 11, 14, 30, 47, 61, 63, 65, 76

OSM OpenStreetMap 1, 3–19, 21–24, 26, 28–30, 32, 34–36, 38–46, 48, 49, 51, 52, 55, 56, 63–65, 68, 75,
80, 81, 83

POI Point Of Interest 1–3, 5–8, 10–17, 19, 21, 24, 26, 27, 29, 30, 32, 35, 38, 39, 41, 42, 44, 52–56, 60, 63,
65, 70, 76

69



Appendix A

Personal Reflection

This reflection summarises personal learning outcomes, principal challenges encountered, mitigation
strategies, and professional growth emerging from the project. It intentionally avoids introducing new
technical contributions beyond those documented in the main chapters.

Learning Outcomes

The work deepened practical competence in orchestrating an end-to-end POI conflation workflow: data
acquisition, semantic normalisation, feature engineering, matcher evaluation, and diff generation. A key
insight was the compounding value of early, rigorous taxonomy curation; disciplined semantic blocking
reduced downstream ambiguity and clarified error provenance. Exposure to both heuristic and super-
visedmatcher paradigms reinforced an evidence-based approach tomodel selection: empirical precision–
recall behaviour, rather than architectural novelty, guided adoption decisions.

Software engineering skillsmatured through designingmodular service boundaries (ingestion,matching,
diff writing) that supported iterative substitution (e.g., swapping matcher implementations) with con-
trolled risk. Emphasis on reproducibility—structured logs, versioned mappings, and golden datasets—
highlighted its role in sustaining credible evaluation claims. Managing experimental artefacts (metric
tables, configuration grids) cultivated systematic record-keeping habits beneficial for future applied re-
search.

Key Challenges and Mitigations

Heterogeneous data quality. Inconsistent or sparse attributes (addresses, opening hours) complicated
heuristic weighting. Mitigation: down-weighting empirically unstable fields and enriching training data
with pseudo-labelled examples to diversify pattern coverage.

70



Appendix A. Personal Reflection 71

Synthetic–real gap. Early ML training on purely synthetic perturbations produced over-optimistic preci-
sion and underwhelming recall on real brand data.Mitigation: semi-supervised augmentationwith filtered
high-precision rule-based matches and rigorous hold-out of golden sets.

Temporal drift and spider variability. Test diffs (e.g., Lidl Switzerland) surfaced time-dependent discrep-
ancies and spider-specific extraction errors. Mitigation: manual inspection, logging of snapshot times-
tamps, and scoping a roadmap for explicit temporal provenance capture.

Container debugging ergonomics. Introspecting runtime performance and defects within containers
was cumbersome. Mitigation: ad hoc profiling, structured log augmentation, and planning for dedicated
developer-oriented runtime profiles and future observability tooling.

Tool integration trade-offs.Minimal adaptation of osm_conflate accelerated early output but introduced
conversion overhead and constrained richer attribution emission. Mitigation: clear articulation of a po-
tential migration path toward a native diff writer, preserving short-term velocity while outlining long-term
simplification.

Use of AI-Assisted Tools

AI tools (notably conversational assistants and code completion systems such as ChatGPT and GitHub
Copilot) were leveraged for: (i) rapid scaffolding of boilerplate code or configuration templates; (ii) syn-
thesising alternative phrasings during documentation drafting; and (iii) sanity-checking regular expres-
sions and data transformation snippets. Their effective use required tight human verification loops: gen-
erated suggestions were validated against project-specific constraints (naming conventions, glossary
terms, citation correctness) to avoid subtle inconsistencies or hallucinated references. The exercise re-
inforced disciplined prompt formulation and critical evaluation of AI-produced output, underscoring that
productivity gains hinge on domain oversight rather than unconditional acceptance.

Professional Growth and Perspective

The project strengthened capacity to balance experimentation with operational pragmatism: deciding
when to invest in architectural generality versus delivering a functional baseline for empirical compar-
ison. Exposure to semi-supervised model evolution cultivated a nuanced view of data curation as an
iterative, feedback-driven asset rather than a static prerequisite. Finally, deliberate integration of repro-
ducibility practices and reflective error analysis established habits directly transferable to future applied
data engineering or geospatial integration initiatives.



Appendix A. Personal Reflection 72

Future Personal Development

Future growth areas include deeper optimisation of model serving performance, expansion of active
learning methodologies for human-in-the-loop refinement, and more systematic observability (metrics,
tracing) to shorten diagnostic cycles. Continued refinement of AI tool usage—especially for test gener-
ation and exploratory data summarisation under strict validation—is expected to compound efficiency
while maintaining quality.

Overall, the project provided a comprehensive environment for advancing technical, evaluative, and re-
flective competencies central to robust, data-intensive system development.



Appendix B

Declaration of Independence

I hereby declare that I, Claudio Bertozzi, have completed the present master’s thesis independently and
without unauthorized assistance. All sources used in this thesis, including those quoted or paraphrased,
have been acknowledged and cited according to academic standards.

Furthermore, I acknowledge that I have utilized AI tools, such as ChatGPT by OpenAI, during the prepa-
ration of this thesis. These tools were used to support text formulation, idea development, and content
review. The use of such tools was conducted in accordance with ethical guidelines and the regulations
of my academic institution.

I also confirm that this work has not been submitted, either wholly or in part, for any other degree or
examination at this or any other institution.

Location, Date:

Signature:

73



Appendix C

Tooling and Platforms Utilized

This appendix enumerates the principal tools, platforms, and services employed throughout the project
lifecycle. It complements the Declaration of Independence (Appendix B) by providing transparent disclo-
sure of the technical and AI-assisted environment. The listing is organized by functional role (version
control, authoring, design, data, collaboration, automation) and notes the specific contribution each tool
made. Proprietary tools were used only where an open alternative would have imposed disproportionate
overhead.

Version Control and Project Hosting

Git: Distributed version control for source, configuration, experiment artifacts, and LATEX sources. Granular
branching supported parallel exploration (e.g., matcher variants) and facilitated reproducible re-runs via
commit pinning.

GitLab: DiffedPlaces repository

Source Authoring and Editing

Visual StudioCode: Primary editor for source code (Python, configuration, scripts) and centralized editing
of LATEX files, leveraging syntax-aware linting and integrated terminals.

Overleaf: Collaborative review of the main LATEX thesis document, ensuring consistent formatting with
the institutional class file while enabling asynchronous supervisory feedback.

74



Appendix C. Tooling and Platforms Utilized 75

Diagramming and Visualization

draw.io (diagrams.net): Creation of architecture, data flow, and configuration diagrams (e.g., system
overview, conflation pipeline) exported to vector or optimized raster formats placed under version con-
trol.

Data Processing, Storage, and Query

DuckDB: In-process analytical querying for intermediate tabular feature inspection (cf. glossary entry
DuckDB).

Geospatial and Conflation Tooling

osm_conflate: External conflation utilities leveraged for initial diff generation scaffolding (see osm_conflate).

JOSM Editor: Manual inspection and spot validation of selected diffs (see JOSM Editor).

Overpass API: Targeted extraction of OSM entities for test and validation cases (see Overpass API).

AI-Assisted Productivity

GitHub Copilot: In-line code completion and LATEX phrasing suggestions, accelerating boilerplate gener-
ation (configuration templates, repetitive transformation code) under human review to prevent halluci-
nated identifiers.

ChatGPT: Conversational brainstorming for alternative matcher feature formulations, explanatory text
drafts, and refinement of section structuring. All outputs were critically validated; no uncited external
claims were accepted without corroboration. (Declaration of usage: Appendix B).

Research and Literature

Google Scholar and Google: Discovery of background literature on geospatial conflation, volunteered
geographic information (VGI), and machine learning similarity measures; bibliographic metadata cross-
checked against maintained entries in the project bibliography.bib. No uncited search results were
included.



Appendix C. Tooling and Platforms Utilized 76

Automation and Experiment Support

Shell Scripting / CLI: Reproducible invocation of ingestion, feature computation, and evaluation routines
through parameterized scripts; ensured consistent environment variable handling and artifact place-
ment.

Ethical and Quality Safeguards

Human oversight remained mandatory for AI-suggested content, particularly to enforce glossary term
consistency (e.g., POI, OGD) and citation validity. Any autogenerated proposal lacking a verifiable source
was rejected or explicitly flagged for later verification.

Reproducibility Note

All substantive artifacts (code, configurations, diagrams, and generated feature lists) are under ver-
sion control, enabling reconstruction of reported behaviors via commit references. Where transient ex-
ploratory tools were used without persistent outputs, they are disclosed above for completeness.



Appendix D

Category Encoding for ML Matching

This appendix documents the categorical one-hot / multi-level encoding referenced in Section 3.6.2. It
is derived directly from the configuration (no external sources) and is used to create the combined tag
features consumed by the Random Forest Classifier. For each OSM key listed, two tiers of encodings are
generated:

1. Main key presence (12 features): one feature per primary key (e.g., amenity, shop). Value mean-
ings: 0 (absent in both), 1 (present in exactly one of the pair), 2 (present in both).

2. Specific key:value presence (124 features): one feature per enumerated value (e.g.,amenity:restaurant,
shop:supermarket). Same 0/1/2 encoding.

The current configuration yields 136 categorical features (12 main, 124 specific). Together with the seven
rule-based similarity components, two name presence flags, and two derived ratios this produces a fea-
ture vector length of 147.

Main Keys

amenity, tourism, emergency, shop, office, highway, craft, leisure, aeroway, aerialway,
healthcare, building

Specific Key:Value Entries

amenity:restaurant,amenity:cafe,amenity:bar,amenity:pub,amenity:fast_food,amenity:pharmacy,
amenity:hospital,amenity:clinic,amenity:doctors,amenity:dentist,amenity:school,
amenity:college,amenity:university,amenity:kindergarten,amenity:fuel,amenity:bus_station,
amenity:bus_stop,amenity:railway_station,amenity:taxi,amenity:parking,amenity:cinema,
amenity:theatre,amenity:sports_centre,amenity:park,amenity:bank,amenity:atm,amenity:library,

77



Appendix D. Category Encoding for ML Matching 78

amenity:townhall,amenity:courthouse,amenity:fire_station,amenity:police,amenity:post_office,
amenity:post_box, amenity:hairdresser, amenity:car_repair, amenity:dry_cleaning,
amenity:veterinary,amenity:bicycle_rental,amenity:bureau_de_change,amenity:car_rental,
amenity:car_wash,amenity:casino,amenity:charging_station,amenity:compressed_air,
amenity:fountain,amenity:kick-scooter_rental,amenity:money_transfer,amenity:music_venue,
amenity:payment_terminal,amenity:recycling,amenity:toilets,amenity:vending_machine,
amenity:bicycle_parking,amenity:motorcycle_parking,amenity:public_bookcase,amenity:waste_basket,
amenity:drinking_water, amenity:parking_entrance, tourism:hotel, tourism:hostel,
tourism:guest_house,tourism:motel,tourism:museum,tourism:artwork,tourism:attraction,
tourism:camp_site,tourism:apartment,tourism:information,tourism:picnic_site,emergency:fire_hydrant,
emergency:defibrillator,emergency:phone,emergency:disaster_help_point,emergency:life_ring,
shop:convenience,shop:bakery,shop:hairdresser,shop:supermarket,shop:car_repair,
shop:clothes,shop:florist,shop:kiosk,shop:farm,shop:sports,shop:butcher,shop:beauty,
shop:bicycle,shop:shoes,shop:optician,shop:furniture,shop:electronics,shop:jewelry,
shop:car, shop:mall, shop:department_store, shop:doityourself, shop:mobile_phone,
shop:copyshop,shop:perfumery,shop:interior_decoration,shop:dry_cleaning,shop:pet,
shop:hardware,shop:gift,shop:newsagent,shop:toys,shop:deli,shop:tattoo,shop:books,
shop:chemist,shop:pharmacy,shop:cosmetics,office:government,office:company,office:insurance,
office:financial,office:consulting,office:estate_agent,office:it,highway:bus_stop,
highway:traffic_signals,highway:crossing,highway:turning_circle,highway:parking

Usage in Feature Vector

For each pair (source, OSM) the encoding assigns 0/1/2 as described. This compact ternary represen-
tation replaces a larger set of separate one-hot indicators (e.g., separate binary features for each side)
and allows the classifier to learn symmetric relations ("both have" vs. "only one has") with a single split.
Category signals supplement, rather than replace, lexical and geometric similarities.



Appendix E

Data Sources: Catalog and Taxonomy

This appendix summarizes the ATP spider identifiers used and the high-level category taxonomy ref-
erenced in Section 3.3. It supports provenance and repeatability without introducing implementation
details.

E.0.1 ATP spider identifiers

The following list enumerates the ATP spider identifiers used for Swiss outlets. Identifiers correspond to
the upstream data sources configured in the project.

accor - activ_fitness_ch - adidas - adlo - aesop - alamo - aldi_sud_ch - alstom
- american_vintage - anicura - apple - audi - avis - bauhaus_ch - bern_ch -
best_in_parking - bmw_group - boconcept - boels - bonita - bottega_veneta - bp
- burger_king - c_and_a - calvin_klein - carhartt_wip - casino - century_21
- claires - clever_fit - coffee_fellows - coinstar - coop_vitality_ch -
credit_agricole - dean_and_david - decathlon_ch - deichmann - denner_ch - depot
- discover_swiss - dm - dominos_pizza_ch - douglas_ch - dunkin_ch - eathappy
- ecco - ernst_young - exxon_mobil - eyes_and_more - fairmont - fielmann_ch
- fit_active - five_guys_ch - fjallraven - foot_locker - ford - fressnapf_ch
- fust_ch - g_star_raw - gant - gbfs - gifi - global_sample_spider_200ch -
google_offices - grandvision - guess - hard_rock - hermes - hertz - hilton - hm
- hollister - hooters - hugo_boss - hyundai_ch - ich_tanke_strom - ikea - ikks -
intermarche - ionity - joe_and_the_juice - jumbo_ch - just_over_the_top - jysk
- kate_spade - kaufland - kik - kiko_milano - koerperformen - landi_ch - lego
- levis - lhw - lidl_ch - little_free_library - livique_ch - losteria - lovisa
- lush - madame_frigo_ch - man_truck_and_bus - marionnaud - marriott_hotels
- maserati - mcdonalds - medbase_ch - mephisto - mercedes_benz_group - meta -

79



Appendix E. Data Sources: Catalog and Taxonomy 80

migros_ch - misenso_ch - mitsubishi_ch - mol - moncler - moneygram - montblanc
- mueller - national - natuzzi - nespresso - newyorker - nh_hotel_group -
nike - nissan - nkd - nordsee - notfalltreffpunkte_ch - old_wild_west -
omegawatches - optical_center - ottos_ch - our_airports - pandora - pokawa -
porsche - prada - pret_a_manger - pricewaterhousecoopers - puma - ralph_lauren
- rebel_architette - renault - revolution_laundry - rituals - ritz_carlton -
rotpunkt_apotheken_ch - rsg_group - scania - seat - shell - sixt - skechers
- skoda - societe_generale - soeder_ch - sostrene_grene - stadt_zuerich_ch
- storebox - suitsupply - sushi_daily - swing_kitchen - tag_heuer - tedi -
tesla - the_body_shop - tiffany - timberland - toyota - travelex - trek_bikes
- undiz - update_fitness_ch - valora - vans - versace - volg_ch - volkswagen
- volvo - warhammer - waterdrop - western_union - winterthur_ch - worldcat -
wycon_cosmetics - wyndham

E.0.2 Category overview

The high-level category taxonomy used for harmonising ATP categories and OSM tags comprises the
following classes:

• gastro: Food and drink establishments like restaurants, cafes, bars, and fast food.

• health: Healthcare facilities including hospitals, clinics, pharmacies, and medical practices.

• education: Educational institutions like schools, universities, and kindergartens.

• transport: Transportation-related facilities like fuel stations, parking, and public transport.

• leisure: Entertainment and leisure venues like cinemas, theaters, parks, and sports centers.

• finance: Financial services including banks and ATMs.

• public: Public services and government buildings.

• service: Service providers like hairdressers, repair shops, and professional services.

• retail: Retail stores and shopping establishments.

• accommodation: Lodging facilities like hotels, hostels, and camp sites.

• other: Points of interest that do not fit into other categories.

E.0.3 Snapshots and sources

For reproducibility, record the specific inputs used in this study:

• ATP snapshot dates: 6. June 2025



Appendix E. Data Sources: Catalog and Taxonomy 81

• OSM extract: Geofabrik, Switzerland, 6. June 2025

• Boundary dataset: Swiss Country boundaries GeoJSON, commit/date 05. Februar 2025



Glossary

cf_audit Command line auditing tool shipped with the DiffedPlaces conflator 13, 36, 37

ChangeXML XML format understood by JOSM for applying bulk edits 13, 14, 61

CLI Command-line interface enabling direct invocation of selected application functions without a
graphical user interface vii, viii, 27, 51, 76

conflation The process of merging two or more geospatial datasets into a unified representation 6, 7,
65, 70, 75

DiffedPlaces A service designed to synchronize and reconcile data from various sources with
OpenStreetMap 7, 12, 37–39, 49, 52, 55–59, 63, 64

DuckDB An in-memory SQL database designed for high-performance querying of large datasets 13, 15,
37, 58, 75

F1-Score A metric used to evaluate the performance of a classification model, calculated as the
harmonic mean of precision and recall, balancing false positives and false negatives 13, 32, 33,
38, 39, 61, 65

GeoJSON is a format for encoding a variety of geographic data structures using JavaScript Object
Notation to represent simple geographical features, along with their non-spatial attributes. 15

JOSM Editor JOSM (Java OpenStreetMap Editor) is a desktop application for editing OpenStreetMap
data. It is a powerful tool for advanced mapping tasks and provides features like aerial imagery
support, plugins, and comprehensive tagging capabilities, enabling users to contribute detailed
and accurate geographic information to the OpenStreetMap database. 12, 13, 75

KNN k-Nearest Neighbors, a machine learning algorithm used for classification and regression 6

LightGBM A gradient boosting framework that uses tree-based learning algorithms for classification
and ranking 6, 39

82



Glossary 83

OSM Auditor A web-based platform for collaborative auditing of diffs in OpenStreetMap (OSM) data. It
enables users to review, validate, and manage differences between datasets, ensuring data
accuracy and reliability. 38, 40, 41, 54, 65

OSM Conflator is a script tool for merging points from some third-party source with OpenStreetMap
data. 12, 36

osm_conflate A repository containing tools and utilities for conflating external geospatial data with
OSM data. It provides scripts and configurations, including cf_conflate, to facilitate the
comparison, merging, and validation of data sets to ensure accuracy and consistency in OSM. [15]
12, 37, 64, 65, 71, 75

Overpass API is a specialized query language for extracting data from the OpenStreetMap database.
75

PT1 The previous project, which focused on a matching algorithm utilized for improving the accuracy
of Point of Interest (POI) matching. PT1 provides a generic approach to data matching, making
the integration of new external data sources easier. 55, 56

PT2 The follow-up project to PT1, which enhanced the matching algorithm by introducing
generalization techniques. PT2 extended the algorithm’s capabilities to handle diverse datasets
and improve scalability for broader data integration. 55, 56

Random Forest Classifier A machine learning method for classification, regression, and other tasks
that operates by constructing multiple decision trees 11–13, 22, 24, 27, 29, 32, 34, 37, 63, 64, 77

TF-IDF Term Frequency-Inverse Document Frequency, a statistical measure used to evaluate the
importance of a word in a document relative to a collection of documents 6, 20, 21

VGI Volunteered Geographic Information, geospatial data provided by individuals voluntarily 5, 41, 75



Acronyms

ATP All The Places 3, 4, 7, 12–19, 21, 28–30, 35, 38, 39, 41–49, 51, 56, 57, 79, 80

CDIS Centralized Data Integration Service 8

ODbL Open Data Commons Open Database License 3, 13–15, 36, 40

OGD Open Government Data 1, 6–8, 10, 11, 14, 30, 47, 61, 63, 65, 76

OSM OpenStreetMap 1, 3–19, 21–24, 26, 28–30, 32, 34–36, 38–46, 48, 49, 51, 52, 55, 56, 63–65, 68, 75,
80, 81, 83

POI Point Of Interest 1–3, 5–8, 10–17, 19, 21, 24, 26, 27, 29, 30, 32, 35, 38, 39, 41, 42, 44, 52–56, 60, 63,
65, 70, 76

84



List of Figures

1 Early ideation diagram illustrating envisioned ingestion,matching, audit, and feedback loops. ii
2 Operational pipeline: ingestion (blue), matching (green), auditing (purple), human upload

(yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
3 Data flow emphasising feedback loops from ingestion through audit back to refreshed

snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1.1 DiffedPlaces-centric workflow for POI conflation. . . . . . . . . . . . . . . . . . . . . . . . 2

4.1 End-to-end data flow showing data layers (Raw, Canonical, Artefacts), aggregation steps
(blocking, features, classification, aggregation), and resulting exports (JSONdiff, .osmdiff,
matched/unmatched GeoJSON, metrics). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

85



List of Tables

3.1 Final rule-based matcher configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Final RandomForestClassifier hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Similarity threshold vs. average metrics (all 1,200 configurations) . . . . . . . . . . . . . . 30
3.4 Comparators (global averages across all configurations) . . . . . . . . . . . . . . . . . . . 31
3.5 Average feature weights (Top-20 vs. Bottom-20) . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Aldi Süd CH: ML Evolution (Real Metrics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Golden-set comparison (Aldi Süd CH and Random 200): confusion matrices and derived

metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Runtime by dataset and approach (wall-clock seconds from logs). . . . . . . . . . . . . . 34

4.1 Timeline and Milestones for Project Execution . . . . . . . . . . . . . . . . . . . . . . . . . 57

86



References

[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection: A survey,” IEEE
Transactions on Knowledge and Data Engineering, vol. 19, no. 1, pp. 1–16, 2007.

[2] W. E. Winkler, “String comparator metrics and enhanced decision rules in the fellegi-sunter model
of record linkage,” Proceedings of the Section on Survey Research Methods, American Statistical
Association, pp. 354–359, 1990.

[3] C. Mülligann, K. Janowicz, M. Ye, and W. Lee, “Analyzing the spatial-semantic interaction of points
of interest in volunteered geographic information,” in Spatial Information Theory (COSIT 2011),
Proceedings of the 10th International Conference, Belfast, ME, USA, September 12–16, 2011, ser.
Lecture Notes in Computer Science, vol. 6899. Springer, 2011, pp. 350–370.

[4] G. Giannopoulos, K. Alexis, N. Kostagiolas, and D. Skoutas, “Classifying points of interest with
minimum metadata,” in ACM SIGSPATIAL International Workshop on Location-Based
Recommendations, Geosocial Networks, and Geoadvertising (LocalRec). Chicago, IL, USA: ACM,
2019, pp. 1–4.

[5] X. Xing, F. Zhao, H. Lin, and S. Qiang, “Local poi matching based on knn and lightgbm method,” in
2nd International Conference on Computer Science, Electronic Information Engineering and
Intelligent Control Technology (CEI). IEEE, 2022, pp. 455–460.

[6] K. Sun, Y. Hu, Y. Ma, R. Zhou, and Y. Zhu, “Conflating point of interest (poi) data: A systematic
review of matching methods,” Computers, Environment and Urban Systems, 2023.

[7] A. Kashian, K.-F. Richter, A. Rajabifard, and Y. Chen, “Mining the co-existence of pois in
openstreetmap for faulty entry detection,” in 3rd Annual Conference of Research@Locate,
Melbourne, Australia, 2016, pp. 1–8.

[8] M. Piech, A. Smywinski-Pohl, R. Marcjan, and L. Siwik, “Towards automatic points of interest
matching,” ISPRS International Journal of Geo-Information, vol. 9, no. 5, p. 291, 2020.

[9] R. Low, Z. D. Tekler, and L. Cheah, “An end-to-end point of interest (poi) conflation framework,”
ArXiv, vol. abs/2109.06073, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:237491615

87

https://api.semanticscholar.org/CorpusID:237491615


References 88

[10] H. Bast, P. Brosi, and M. Näther, “Similarity classification of public transit stations,” in ACM
SIGSPATIAL, 2020.

[11] Zverik, “Osm conflator,” https://wiki.openstreetmap.org/wiki/OSM_Conflator, 2024.

[12] C. Bertozzi, “Matching and conflation of open government data with openstreetmap data,” OST –
Eastern Switzerland University of Applied Sciences, Tech. Rep., 2024.

[13] ——, “Matching and conflation of open government data with openstreetmap data,” OST – Eastern
Switzerland University of Applied Sciences, Tech. Rep., 2024.

[14] DuckDB, “Duckdb documentation,” https://duckdb.org/docs/, 2024, accessed: 2024-08-27.

[15] mapsme, “osm_conflate,” https://github.com/mapsme/osm_conflate, 2024.

[16] O. Knowledge, “Open data commons open database license,”
https://opendatacommons.org/licenses/odbl, 2024.

[17] A. T. P. Community, “All the places,” https://wiki.openstreetmap.org/wiki/All_the_Places, 2024.

[18] SeatGeek, “Thefuzz,” https://github.com/seatgeek/thefuzz, 2023.

[19] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

[20] scikit learn, “scikit-learn,” https://github.com/scikit-learn/scikit-learn, 2023.

https://wiki.openstreetmap.org/wiki/OSM_Conflator
https://duckdb.org/docs/
https://github.com/mapsme/osm_conflate
https://opendatacommons.org/licenses/odbl
https://wiki.openstreetmap.org/wiki/All_the_Places
https://github.com/seatgeek/thefuzz
https://doi.org/10.1023/A:1010933404324
https://github.com/scikit-learn/scikit-learn

	1 Introduction
	1.1 Problem Statement & Motivation
	1.2 Vision
	1.3 Objectives
	1.4 Boundaries and Constraints
	1.5 Data Ethics
	1.6 Methodological Approach
	1.7 Structure of the Thesis

	2 Previous Work and Challenges
	2.1 Related Work
	2.2 Data Matching
	2.3 Generalisation of External Data Processing
	2.4 Challenges in OSM Conflation

	3 Modern Approaches to POI Matching and Data Integration
	3.1 Case-Study Design
	3.2 Overview of POI Matching Workflow
	3.3 Data Sources & Pre-processing
	3.4 Candidate Generation (Blocking)
	3.5 Feature Engineering
	3.6 Matching Approaches
	3.7 Validation & Evaluation
	3.8 Discussion & Limitations
	3.9 Section Summary

	4 Software Project Documentation
	4.1 Vision
	4.2 Requirements
	4.3 Analysis
	4.4 Design
	4.5 Implementation and Testing
	4.6 Results and Further Development
	4.7 Project Management
	4.8 Project Monitoring
	4.9 Software Documentation

	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Outlook

	Glossary
	Acronyms
	A Personal Reflection
	B Declaration of Independence
	C Tooling and Platforms Utilized
	D Category Encoding for ML Matching
	E Data Sources: Catalog and Taxonomy
	Glossary
	Acronyms
	List of Figures
	List of Tables
	References

