
Exploring the use of Haskell to Program
Microcontrollers used in Educational Robotics

Platforms
Olivier Lischer

OST Eastern Switzerland University of Applied Sciences
MSE semester project 1

Supervisor: Farhad Mehta
Autumn 2024

Abstract
Nowadays children are introduced to electronics and program-
ming by developing applications for “educational robotic kits”.
These kits allow children to write simple applications for a
robot that interacts with its environment. Because Python or a
block based system like Scratch are beginner friendly, they are
often supported by these kits. Sometimes event C/C++ SDKs
are available for more advanced users. None of the common
kits support a functional programming language and therefore
the children do not have a chance to try a different approach to
programming. Previous research has proved that it is possible
to write a Haskell application on bare metal by implementing
an operating system. With MicroHs, a newer Haskell compiler
is developed, that is based on combinators. The author of Mi-
croHs has already demonstrated that it is possible to write
simple MiroHs applications that run on micro controllers. A
different approach is used in the project Categorifier. It utilizes
the “Compiling to categories” to transform Haskell code into C
code. In this project, MicroHs is used to develop a line following
algorithm that runs on a Raspberry Pi Pico. The Raspberry Pi
Pico controls a PicoGo robot to demonstrate, how a functional
programming language can be used for an educational robotic
kit. While it is possible to develop Haskell applications for de-
vices with little memory, it is rather difficult as the Haskell
runtime must be adjusted and a lot of C code is still required
to get it on to the device.

Keywords: Haskell, education, embedded, robotics

1 Introduction
To introduce children in schools to electronics and program-
ming, “educational robotic kits” are being developed. Tra-
ditionally, systems programming languages such as C/C++
are used for embedded development and controlling hard-
ware. To simplify the process and allow children to focus on
the general concepts, a Scratch-based IDE is often provided
alongside the kit. MicroPython is also often offered as an
option for older children and more advanced use cases.
These technologies all follow the imperative program-

ming paradigm. Children using these technologies are in-
troduced to thinking in an imperative model from an early
stage. Currently, there are no kits available that are targeted

at functional programming languages. This project demon-
strates how a beginner-friendly kit can be programmed using
Haskell, a functional programming language.

In section 2, a review of existing educational robotic plat-
forms is performed while in the following section 3, more
details are given for the Raspberry Pi Pico as it is the chosen
hardware for this project. Furthermore, possible technologies
to run Haskell are introduced.
In section 4, a complete example of how to develop an

application using Haskell for the Raspberry Pi Pico is shown.

2 Review of the current state-of-the-art in
educational robotic platforms

In this section, various educational robotic platforms are
compared. The kits are compared regarding the following
criteria:

• Underlying chip
• Sensors and actuators
• Available programming languages for the kit
• Licensing for hardware and software

2.1 Thymio
Thymio is an educational robot designed by researchers form
the EPFL and produced by Mobsya. Thymio is powered by
the Aseba VM[Mob24].
The primary IDE for developing applications is Aseba

Studio. It supports VPL and Scratch; both graphical ways
to develop applications and Aseba the main language for
Thymio[Pro]. Aseba Studio also communicates with the so-
called Thymio Device Manager (TDM) that compiles the
source to byte code and sends it to the robot.

Furthermore, it is possible to use Python using the Python
package tdmclient to develop applications for Thymio[Tdm].
When there is no option to compile to Aseba or one wants
to communicate with Thymio directly without communi-
cating over the TDM, the Python package thymiodirect
could be used[Thy]. This Python package allows to send
Aseba byte code directly to Thymio. This way, every pro-
gramming language can be used to control the Thymio, as
long as it is possible to compile it to Aseba bytecode. In

2025-09-11 09:09. Page 1 of 1–8.

Olivier Lischer

Figure 1, the interactions between the previously described
parts are graphically recorded.

Aseba
Source

byte
code

TDM

thymio
direct

Aseba
VM PIC

PC Thymio

Figure 1. The Thymio architecture

The robot is based on the PIC24FJ128GB106-I/PT micro
controller. It is further equipped with the following sensors:

• IR proximity sensors
• capacitive touch buttons
• three-axis accelerometer
• microphone (recording or noise detection)
• IR receiver (for remote control)
• wireless module

Additionally, it has three types of actuators: 39 LEDs, two
DC motors and one speaker. To communicate with other
devices, Wi-Fi can be used[Bon].

Thymio’s hardware design is in the public domain under
Creative Commonswhile the software stack is licensed under
LGPL-3.0[Bon, Mob24].

2.2 micro:bit
The micro:bit is a programmable device by BBC and targets
children from the age of eight years or older[Wha]. It is
based on the Arm Cortex M4 32bit and is equipped with
a motion and a temperature sensing sensor. Further, the
micro:bit is capable of communicating with its environment
using Bluetooth and low level radio communication. It also
provides further features[New]:

• nRF52 Application Processor (where the user applica-
tion is run)

• 2 user buttons, 1 system button (reset)
• Display (5×5 array of LEDs)
• Speaker (JIANGSU HUANENG MLT-8530)
• Microphone (Knowles SPU0410LR5H-QB-7 MEMS)
• 19 GPIOs

The micro:bit’s architecture is publicly documented under
https://tech.microbit.org/hardware/.
The micro:bit can be programmed using Microsoft Make-

Code, a block based IDE.More advanced users can use Python
or the C/C++. Micro:bit provides a web editor including a
simulator under https://python.microbit.org/v/3, where the

application can be tested and debugged before transferring
it onto the micro:bit hardware[Mic].

2.3 Makeblock mBot2
The Makeblock mBot2 is a platform based on the CyperPi,
which is produced by the Chinese company Makeblock,
where the actuators are already connected. The CyperPi is
the processing unit that controls how the mBot2 as a whole
interacts with its environment. The CyberPi is based on the
ESP32-WROVER-B and provides a light sensor as well as a
gyroscope. To communicate with its environment, Wi-Fi and
dual-mode Bluetooth are available[Wha22].
The CyperPi is programmed using mBlock 5, a block

based IDE or using Python. The developers of the CyperPi
are providing a Python library called cyperpi to work with
Python. A web based version of mBlock 5 is available under
https://ide.mblock.cc/. There one can switch between block
based programming and Python[Pro22].

2.4 Lego Education Spike
The Lego Education Spike is the successor of the Lego Mind-
storms series that is discontinued. The larger system is based
on the STM32F413 (Architecture: ARM Cortex M4) and has
a gyro sensor included. The system supports Bluetooth for
wireless communication. It also has:

• 5×5 LED matrix
• input / output ports
• buttons
• speaker

The Technic Large Hub can be programmed using a block
based method as well as with Python. For this, the web editor
is provided under https://spike.legoeducation.com/[LEG].

2.5 Arduino Alvik
The Arduino Alvik is based on the Arduino Nano ESP32
microcontroller. The set can communicate using Wi-Fi and
Bluetooth LE. Moreover, the kit is equipped with multiple
sensors:

• RGB color detection
• IMU
• time of Flight distance sensor
• line follower
• capacitive touch sensor

The Arduino Nano ESP32 is open source[Lic24]. Besides
MicroPython, languages such as C/C++ are also available to
program the micro controller[Ard].

2.6 Raspberry Pi Pico
The Raspberry Pi Pico is as a micro controller targeting be-
ginners and advanced developers. There are two versions of
the Raspberry Pi Pico:

• RP2040
• RP2350 (Pico 2)

2025-09-11 09:09. Page 2 of 1–8.

https://tech.microbit.org/hardware/
https://python.microbit.org/v/3
https://ide.mblock.cc/
https://spike.legoeducation.com/

Exploring the use of Haskell to Program Microcontrollers used in Educational Robotics Platforms

Figure 2. Pinout RP2040

The Raspberry Pi Pico series comes with a C/C++ SDK,
that provides a friendly API to use the features from the hard-
ware. Additionally, to C/C++ there is MicroPython available
a well[Ras].
The RP2040, the first version of the pico, is based on the

Arm Cortex M0+ and has 264KB of SRAM and 2MB on-board
flash memory. The Raspberry Pi Pico only has a temperature
sensor built-in, but it comes with 26 multi-function GPIO
pins where various actuators and sensors can be connected
to. The exact pinout can be seen in Figure 2. To flash the
application on the Raspberry Pi Pico, a simple Drag-and-drop
system is available. This makes it attractive for beginners as
well as for experienced developers[Pic].

The second version of the Pico family, the RP2350, is an
upgrade to version 1. The Raspberry Pi Pico 2 is based on the
Cortex-M33 or Hazard3. With 520KB of SRAM and 4MB of
on-board flash memory, the Raspberry Pi Pico 2 has twice as
much memory as version 1. The only sensor is a temperature
sensor[Pic].
There are no starter or educational kits available for the

Raspberry Pi Pic. However, there are prebuilt sets of sensors
and actuators that can be used to develop simple to advanced
applications without tinkering with the hardware.

2.7 Honorable mentions
There are also some RISC based microcontrollers suitable
for education. BeagleBoard is a company developing such
devices with the BeagleV-Ahead and BeagleV-Fire[Boa]. There
exists the PocketBeagle Gorve Kit with which students can
learn the basics of embedded programming[Poc].

2.8 Summary review
In Table 1 all kits and microcontrollers from the previous
sections are recorded and compared in licensing model, the
languages that can be used to control it and if it is in general
an open source (OS) project. It can be seen that Python can

Kit name OS Languages
Thymio YES Block, Python, Aseba
Micro:bit YES C/C++, Block, Python
Makeblock mBot2 NO Block, Python
Lego Education Spike NO Block, Python
Arduino Alvik YES C/C++, Python
RP2040 YES C/C++, Python
RP2350 YES C/C++, Python
beagleboard YES Python

Table 1. Summary over the kits

be used for all platforms. Therefore, if a new programming
language should be used on educational kits, one could pro-
vide a transpiler to Python and gain the possibility to use the
language on many platforms without implementing specific
support for them. For this project, the Raspberry Pi Picos 1
and 2 were chosen because it is open source and is suitable
for beginners. There is a large selection of sensors and actu-
ators as well as ready-made sets that can be used together
with the RP2040 and RP2350.

3 Haskell for the Raspberry Pi Pico
It was shown in section 2 that some kind of block based
programming, Python and C/C++ are very common to de-
velop application for educational kits. None of them support
Haskell by default or any other functional programming lan-
guage. In this section, possible technologies are presented
how Haskell code can be compiled for educational kits. As a
concrete example, the Raspberry Pi Pico Version 1 (RP2040)
is used.

3.1 Compile Haskell
Haskell code must first be compiled to a suitable binary
format before it can be used for any micro controller. This
task is executed by the compiler. At the time of writing, two
Haskell compilers can be considered as actively maintained:

• GHC (de facto standard compiler for Haskell)
• MicroHs

In addition to a compiler that compiles to a binary file,
there is the idea of “Compiling to categories” by Conal Elliott
[Ell17]. The project Categorifier is a GHC compiler plugin
that is a real-world implementation of this idea. This idea is
discussed in detail in subsection 3.4.

3.2 GHC
GHC is the de facto standard compiler for modern Haskell
code. By developing the Haskell operating system “House”,
it was proved that it is possible to develop applications for
bare metal platforms using GHC. The authors achieved the
compilation of Haskell code to bare metal by porting GHC to
the IA-32 architecture[HJLT05]. This is not feasible for this

2025-09-11 09:09. Page 3 of 1–8.

https://github.com/con-kitty/categorifier

Olivier Lischer

project as micro controllers usually do not have the required
amount of memory to run the GHC runtime and the user
application.

3.3 Introduction to MicroHs
MicroHs is an extended subset of Haskell that uses combi-
nators for the runtime execution[Aug24]. The combinators
and the evaluation machinery are based on the paper by D.
A. Turner[Tur79] but are extended with custom ones.

The MicroHs compiler can be instructed to compile the
following targets from Haskell source code:

• combinators
• C file with the combinators stored in an array
• regular executable including the runtime system (RTS)

The first option can be evaluated by any RTS as long as
the RTS supports all combinators. This circumstance can be
used to support any device by porting the current MicroHs
RTS written in C to a suitable language. For this project, the
second option was chosen as it provides the most flexibility
without the need to develop a new RTS.

MicroHs requires a configuration in the form of a C header
file so that a binary can be created for the target platform.
In that configuration files various options can be adjusted. A
selection of possible options are:

• IO functions
• float operations
• heap and stack size

In this configuration initialization, clean up and custom
C functions can be provided as well. In Listing 1 a minimal
working configuration for the Raspberry Pi Pico is shown. It
explicitly disables IO and performs an initialization.

1 #ifndef CONFIG_RASPERRYPICO_H

2 #define CONFIG_RASPERRYPICO_H

3
4 #define WANT_STDIO 0

5 #define WANT_MATH 0

6 #define WANT_MD5 0

7 #define WANT_TICK 0

8 #define WANT_ARGS 0

9 #define GCRED 0

10 #define FASTTAGS 0

11 #define INTTABLE 0

12 #define SANITY 0

13 #define STACKOVL 0

14
15 #define HEAP_CELLS 4000

16 #define STACK_SIZE 500

17
18 #include "pico/stdlib.h"

19 #include <stdio.h>

20
21 void pico_set_led(bool led_on) { gpio_put(

PICO_DEFAULT_LED_PIN , led_on); }

22
23 #define INITIALIZATION

24 void main_setup(void) {

25 stdio_init_all ();

26 gpio_init(PICO_DEFAULT_LED_PIN);

27 gpio_set_dir(PICO_DEFAULT_LED_PIN , GPIO_OUT);

28 for (int i = 0; i < 10; i++) {

29 pico_set_led(true);

30 sleep_ms (100);

31 pico_set_led(false);

32 sleep_ms (100);

33 }

34 }

35
36 void myexit(int n) {

37 while (true) {

38 pico_set_led(true);

39 sleep_ms (250);

40 pico_set_led(false);

41 sleep_ms (250);

42 }

43 }

44 #define EXIT myexit

45
46 #endif /* CONFIG_RASPERRYPICO_H */

Listing 1. Snippet from config-raspberry-pico.h

In addition to the configuration file, a normal C file is
required. The C file combines the evaluation of the runtime
system (eval.c) and the configuration for the target plat-
form.

1 #include "config -raspberry -pico.h"

2 #include "eval.c"

Listing 2. eval-raspberry-pico.c

With that in place, MicroHs code can be compiled for the
target platform.

3.4 Compiling to Categories
Conal Elliott presented in his paper “Compiling to Categories”
that Haskell code can be compiled to any other Cartesian
Closed Category (CCC) using GHC[Ell17]. A GHC compiler
plugin has been developed to enable this. This compiler plu-
gin takes the GHC Core language as input and performs
the transformation to the target category, such as C code, at
compile time. Embedded Domain-Specific Languages (EDSL)
can do the same. However, EDSL often perform the same
work as the compiler at runtime as a library. The advantage
over EDSL is that the transformation is done at compile time
by the compiler, not at run-time by a library. This has the
advantage of maintaining less code and often leads to better
optimized output, since the compiler is optimized for such
cases.
This approach was used by the company Kittyhawk to

control their aircraft. They extended the original plugin and
developed the GHC compiler plugin Categorifier[Pfe24].

3.5 Development of a proof-of-concepts
Before developing an advanced application using MicroHs
and the Raspberry Pi Pico, a proof-of-concepts was developed
to test if and how a working application could be developed.
That included to write a small application that reads and
writes data over GPIO. In the following, the build process for
MicroHs applications on a Raspberry Pi Pico is described.
First, the Haskell code is compiled to a combinators rep-

resentation. This representation is stored inside a C array.
2025-09-11 09:09. Page 4 of 1–8.

https://github.com/con-kitty/categorifier

Exploring the use of Haskell to Program Microcontrollers used in Educational Robotics Platforms

When using Foreign Function Interface (FFI), the MicroHs
compiler will generate the required glue code, so that the
runtime can perform the required conversion between C and
Haskell, and stores it next to the combinators. The FFI mech-
anism will be used, to call C functions from the Raspberry
Pi Pico SDK. If applications require user-defined C functions
that should be callable from the Haskell application, writing
them in an additional header file is the intended way. The
MicroHs compiler will include the required header file auto-
matically into the C combinators file. A reduce example of
such a combinators file can be seen in Listing 3.

1 static unsigned char data[] = {/* Compiled

combinators */};

2 unsigned char *combexpr = data;

3 int combexprlen = 637;

4 #include "mhsffi.h"

5 #include "pico/stdlib.h"

6 void mhs_gpio_get(int s) { mhs_from_Int(s, 1,

gpio_get(mhs_to_Int(s, 0))); }

7 static struct ffi_entry table[] = {

8 { "gpio_get", mhs_gpio_get},

9 { 0,0 }

10 };

11 struct ffi_entry *xffi_table = table;

Listing 3. blinky-comb.c

The building process is summarized in Figure 3.

Blinky.hs

blinky-comb.c eval-rp.cmore-c.h

blinky.uf2

Figure 3. The building process using MicroHs for a Rasp-
berry Pi Pico

In Listing 4 the Haskell code of the first applications is
listed. It turns the default built-in LED on and off as well
as an external LED that is connected via a GPIO pin. The
full source code for the proof-of-concepts can be found on
GitHub.

1 module Blinky(main) where
2 import Prelude
3
4 defaultLed :: Int
5 defaultLed = 25

6
7 gpioLed :: Int
8 gpioLed = 20

9
10 gpioOut :: Int

11 gpioOut = 1

12
13 main :: IO ()

14 main = init >> blinky

15
16 init :: IO ()

17 init = do
18 c_gpio_init gpioLed

19 c_gpio_init defaultLed

20 c_gpio_set_dir gpioLed gpioOut

21 c_gpio_set_dir defaultLed gpioOut

22
23 blinky :: IO ()

24 blinky = do
25 setLed True
26 wait 250

27 setLed False
28 wait 250

29 blinky

30
31 setLed :: Bool -> IO ()

32 setLed on = do
33 c_gpio_put defaultLed $ if on then 1 else 0

34 c_gpio_put gpioLed $ if on then 1 else 0

35
36 wait :: Int -> IO ()

37 wait = c_sleep_ms

38
39 -- C imports omitted

Listing 4. Blinky.hs

As can be seen, it is possible to directly use the C Rasp-
berry Pi Pico SDK using Haskell’s Foreign Function Interface
capabilities. However, to achieve better integration into the
Haskell language, a wrapper around the C function should
be written.

4 Line-following with MicroHs on the
PicoGo Robot

In this section, the process of developing a line-following
robot is described. The PicoGo Robot is used for the hardware.
The full source code of this application can be found at https:
//gitlab.ost.ch/robohs/picohs.

4.1 Streamline the development process
Before starting to develop the application for the PicoGo
Robot, a cmake build script was developed to simplify the
compilation from MicroHs to a binary suitable for the Rasp-
berry Pi Pico. With the cmake approach, there is no manual
building of single compilation steps required, but only two:

• generating building scripts using cmake
• compiling using cmake

To enable faster developing iterations, software is often
used to simulate the target platform. Such a simulator allows
developing the application without copying the binary af-
ter every change to the target platform. For the Raspberry
Pi Pico there is the online simulator wokwi available. As
MicroHs is not standard way to build binaries for these plat-
forms, one had to upload the compiled binary to run it inside
the simulator. However, the platform is not suitable for this

2025-09-11 09:09. Page 5 of 1–8.

https://github.com/liolin/MicroHs/tree/raspberry-pico-experiment/boards/raspberry-pico
https://gitlab.ost.ch/robohs/picohs
https://gitlab.ost.ch/robohs/picohs
https://wokwi.com/

Olivier Lischer

project, as not all required hardware parts are available to re-
produce the desired hardware behaviour. Therefore, testing
must be done by coping the binary on to the hardware.

4.2 Powering the motors
The motors of the PicoGo robot are connected to the micro
controller over GPIO pins. These GPIO pins must be ini-
tialised and configured, as well as the PWM blocks. To hide
these hardware interactions and to save as much memory as
possible, this was done directly in C. The motor state is kept
in the C file as global variables. The operations to control the
motors were implemented in C as well and then exported to
Haskell.
To prevent Haskell users to use the driving functions be-

fore the motor is initialised, the Motor module (Listing 5)
exposes only a smart constructor and wrappers around the
C functions that requires an already constructed motor. The
Haskell user must call init and is then able to drive the
PicoGo as desired.

1 module Motor

2 (Motor

3 , init
4 , forward

5 , backward

6 , left

7 , right

8 , stop

9 , set

10) where
11 import Prelude
12
13 data Motor = Motor

14
15 init :: IO Motor

16 init = c_motor_init >> return Motor

17
18 forward :: Motor -> Int -> IO ()

19 forward _ = c_motor_forward

20
21 backward :: Motor -> Int -> IO ()

22 backward _ = c_motor_backward

23
24 left :: Motor -> Int -> IO ()

25 left _ = c_motor_left

26
27 right :: Motor -> Int -> IO ()

28 right _ = c_motor_right

29
30 stop _ = c_motor_stop

31
32 type LeftSpeed = Int
33 type RightSpeed = Int
34
35 set :: Motor -> LeftSpeed -> RightSpeed -> IO ()

36 set _ = c_motor_set

37
38 -- C imports omitted

Listing 5.Motor.hs

4.3 Reading the sensors
Similar to the motor, the 5 IR sensors are read through GPIO
pins. Using Programmable Input/Output (PIO) an SPI inter-
face between the IR sensors and the Raspberry Pi Pico was
implemented. The initialization of the PIO application is
done using C macros. As C macros are evaluated only at
the time of compiling, the initialisation must be done in C
regardless how much memory is available.

The Haskell module Sensor in Listing 6 provides a smart
constructor to initialize the sensors similar to the Motormod-
ule. The module also provides the readLine function to read
the sensors and get calibrated values. As C and Haskell can
not exchange arrays, but only pointers and certain primi-
tives, memory must be allocated upfront. It was decided to
allocate the memory during sensor initialization on the C
side and passing a pointer to Haskell when calling the C
function c_sensor_read_line. This has the benefit, that
the memory must be allocated only once at initialization
and no further over head of memory allocation must be paid.
However, care must be taken to not release the allocated
memory for the lifetime of the application or to not read
over the allocated memory buffer.

1 module Sensor

2 (Sensor

3 , LineColor (..)

4 , init
5 , readLine

6) where
7 import Prelude
8 import Foreign

9 import Control.Monad (mapM)
10
11 data Sensor = Sensor

12 data LineColor = Black | White

13
14 init :: IO Sensor

15 init = c_sensor_init >> return Sensor

16
17 readLine :: Sensor -> LineColor -> IO (Int , [Int])
18 readLine _ color = do
19 ptr <- c_sensor_read_line (isWhiteLine color) >>=

newForeignPtr_

20 xs <- withForeignPtr ptr getReadLineValuesWithPtr

21 return (head xs, tail xs)

22
23 isWhiteLine :: LineColor -> Int
24 isWhiteLine White = 1

25 isWhiteLine Black = 0

26
27 getReadLineValuesWithPtr :: Ptr Word16 -> IO [Int]
28 getReadLineValuesWithPtr ptr = mapM (

c_get_value_with_ptr ptr) [0..5]

29
30 -- C imports omitted

Listing 6. Sensor.hs

4.4 Adjusting heap and stack size
The default values for heap and stack size in MicroHs are
not suitable for an embedded device as it targets modern

2025-09-11 09:09. Page 6 of 1–8.

Exploring the use of Haskell to Program Microcontrollers used in Educational Robotics Platforms

computers with a lot of memory. To be able to run a Mi-
croHs application on a micro controller, these values must
be adjusted. To calculate the upper bound for the maximum
number of heap cells Equation 1 can be used.

Heap𝑚𝑎𝑥 =
Memory𝑡𝑜𝑡
size of node (1)

For the Raspberry Pi Pico RP2040 this results in Equation 2

Heap𝑚𝑎𝑥 =
Memory𝑡𝑜𝑡
size of node

=
264𝐾𝐵
16𝐵

= 165000

(2)

The resulting number is the upper bound. The value must be
gradually decreased from there. A working number of heap
cells was at 13000 and stack size at 500.

4.5 Line following algorithm
The algorithm itself can be written in pure Haskell. It calcu-
lates the power for each motor (left and right) so that the car
is moving along the line. An example for such an algorithm
can be found in Listing 7.

1 module Drive(main) where
2 -- Imports and constants omitted

3
4 data Car = Car Motor Sensor

5 type State = (Int , Int)
6
7 main :: IO ()

8 main = initCar >>= flip appLoop (0, 0)

9
10 initCar :: IO Car

11 initCar = do
12 motor <- M.init
13 sensor <- S.init
14 return $ Car motor sensor

15
16 appLoop :: Car -> State -> IO ()

17 appLoop car@(Car motor sensor) st = do
18 (position , _) <- S.readLine sensor Black

19 let (pd, st ') = update st position

20 uncurry (M.set motor) (calcMotorConfig pd)

21 appLoop car st'

22
23 calcMotorConfig :: Int -> (Int , Int)
24 calcMotorConfig pd = if pd < 0 then (maxSpeed + pd,

maxSpeed) else (maxSpeed , maxSpeed - pd)

25
26 update :: State -> Int -> (Int , State)

27 update (prop , int) pos = (pd, (p, i))

28 where
29 p = calcProportional pos

30 d = calcDerivative prop p

31 i = calcIntegral int p

32 pd = calcPowerDifference p d i

33
34 calcProportional :: Int -> Int
35 calcProportional position = position - 3000

36
37 calcDerivative :: Int -> Int -> Int
38 calcDerivative x0 x1 = x1 - x0

39
40 calcIntegral :: Int -> Int -> Int

41 calcIntegral x0 v = clamp (-5000, 5000) x0 + v

42
43 calcPowerDifference :: Int -> Int -> Int -> Int
44 calcPowerDifference proportional derivative integral

= clamp (-maxSpeed , maxSpeed) $ prop + der +

int

45 where
46 toInt = fromInteger . truncate
47 prop = toInt $ fromIntegral proportional * p

48 der = toInt $ fromIntegral derivative * d

49 int = toInt $ fromIntegral integral * i

Listing 7. Drive.hs

5 Further work
In this project, MicroHs was used to develop an application
for amicro controller. Currently, theway to develop aHaskell
application for an embedded device using MicroHs is not yet
suitable for children. First of all, a student has to write C code
to interact with the hardware and they have to think about
how to handle memory. Furthermore, manual adjustments
to the runtime system are required in order to enable the
execution of the application on low-memory devices. That
could be improved by implementing MicroHs configurations
that provide all the necessary C functions to interact with the
hardware and wrapping them using a Haskell FFI wrapper.
Moreover, MicroHs is still a young project with a relatively
small user base. So it is possible, that there are smaller bugs
in the MicroHs compiler or runtime system. This can be
improved by contributing to the project by using it, creating
issues or submitting pull requests.

An alternative approach would be the idea “Compiling to
Categories” using the GHC plugins “concat” and “categori-
fier”. These plugins are able to generate appropriate C code.
A “Raspberry Pi Pico Category” must be prepared in advance,
so that the children can concentrate on writing applications
for their device.

6 Conclusion
As it was shown in section 4 was demonstrated, it is possible
to control a robot using Haskell. However, interacting with
the hardware still requires a significant amount of C code.
Nonetheless, one could write the business logic in Haskell
while limiting the hardware interactions to C.

Writing Haskell programs for the Raspberry Pi Pico is
difficult because the tooling around MicroHs is not well
developed yet. To make matters worse, the current process
is to compile to C and from there to a binary. This adds an
abstraction layer and makes debugging more difficult.

While, there is a simulator available for the Raspberry Pi
Pico, the selection of available hardware components was
not sufficient for this project. Therefore, the binary muse be
regularly copied to the board for testing. This adds additional
developing overhead and requires that the physical compo-
nents are available and attached to the micro controller.

2025-09-11 09:09. Page 7 of 1–8.

Olivier Lischer

With regard to teaching children the fundamentals of func-
tional programming, this method is not yet sufficiently de-
veloped. Developing an application using MicroHs for the
Raspberry Pi Pico requires C/C++ knowledge and requires
manual adjustments to the MicroHs runtime.

References
[Ard] Arduino Alvik. https://www.arduino.cc/education/arduino-

alvik/.
[Aug24] Lennart Augustsson. MicroHs: A Small Compiler for Haskell.

In Proceedings of the 17th ACM SIGPLAN International Haskell
Symposium, pages 120–124, Milan Italy, August 2024. ACM.

[Boa] Board Selection. https://www.beagleboard.org/boards.
[Bon] Michael Bonani. 1 Laboratoire de Systèmes Robootiques.
[Ell17] Conal Elliott. Compiling to categories. Proceedings of the ACM

on Programming Languages, 1(ICFP):1–27, August 2017.
[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew

Tolmach. A principled approach to operating system construc-
tion in Haskell. In Proceedings of the Tenth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’05, pages
116–128, New York, NY, USA, September 2005. Association for
Computing Machinery.

[LEG] LEGO® Education SPIKE™ Prime Technical Specifications.
https://assets.education.lego.com/v3/assets/blt293eea581807678a/bltf512a371e82f6420/5f8801baf4f4cf0fa39d2feb/techspecs_techniclargehub.pdf?locale=en-
us.

[Lic24] Licensing for products based on Arduino.
https://support.arduino.cc/hc/en-us/articles/4415094490770-
Licensing-for-products-based-on-Arduino, July 2024.

[Mic] The micro:bit runtime DAL/CODAL.
https://tech.microbit.org/software/runtime/.

[Mob24] Mobsya/aseba. https://github.com/Mobsya/aseba, August 2024.
[New] The newmicro:bit V2. https://support.microbit.org/support/solutions/articles/19000119052-

details-of-micro-bit-v2.
[Pfe24] Greg Pfeil. Sellout/compiling-anything-to-categories.

https://github.com/sellout/compiling-anything-to-categories,
February 2024.

[Pic] Pico-series Microcontrollers - Raspberry Pi Documentation.
https://www.raspberrypi.com/documentation/microcontrollers/pico-
series.html.

[Poc] PocketBeagle®Grove Kit. https://www.beagleboard.org/boards/pocketbeagle-
grove-kit.

[Pro] Programming with Thymio Suite.
https://www.thymio.org/products/programming-with-thymio-
suite/.

[Pro22] Programming Software. https://support.makeblock.com/hc/en-
us/articles/7048529365271-Programming-Software, June 2022.

[Ras] Raspberry Pi Documentation - Microcontrollers.
https://www.raspberrypi.com/documentation/microcontrollers/.

[Tdm] Tdmclient: Communication with Thymio II robot via the Thymio
Device Manager. https://github.com/epfl-mobots/tdm-python.

[Thy] Thymiodirect: Communication with Thymio II robot via serial
port or TCP. https://github.com/epfl-mobots/thymio-python.

[Tur79] D. A. Turner. A new implementation technique for applicative
languages. Software: Practice and Experience, 9(1):31–49, January
1979.

[Wha] What is the micro:bit? https://microbit.org/get-started/what-is-
the-microbit/.

[Wha22] What is CyberPi. https://support.makeblock.com/hc/en-
us/articles/7047875941399-What-is-CyberPi, June 2022.

2025-09-11 09:09. Page 8 of 1–8.

	Abstract
	1 Introduction
	2 Review of the current state-of-the-art in educational robotic platforms
	2.1 Thymio
	2.2 micro:bit
	2.3 Makeblock mBot2
	2.4 Lego Education Spike
	2.5 Arduino Alvik
	2.6 Raspberry Pi Pico
	2.7 Honorable mentions
	2.8 Summary review

	3 Haskell for the Raspberry Pi Pico
	3.1 Compile Haskell
	3.2 GHC
	3.3 Introduction to MicroHs
	3.4 Compiling to Categories
	3.5 Development of a proof-of-concepts

	4 Line-following with MicroHs on the PicoGo Robot
	4.1 Streamline the development process
	4.2 Powering the motors
	4.3 Reading the sensors
	4.4 Adjusting heap and stack size
	4.5 Line following algorithm

	5 Further work
	6 Conclusion
	References

