
Linear Type Systems
What Are They, and How Are They Used in Programming Languages

Olivier Lischer
OST Eastern Switzerland University of Applied Sciences

MSE Seminar “Programming Languages”
Supervisor: Farhad Mehta

Spring 2025

Abstract
In every programming language, resource management, in-
cluding memory management, is an essential part of the lan-
guage. In C/C++, resource management is done manually and
therefore the responsibility lies with the developer. This gives
you the most control, but it can also lead to errors such as
user-after-free and double-free. In contrast, many so-called
high-level programming languages use an automatic system
with garbage collectors to clean up unused memory. With Rust,
there is a system programming language that offers many ad-
vantages of manual resource management without sacrificing
resource safety. The goal of this paper is to present a type system
for a functional programming language that enables a runtime
system to perform resource management without a garbage
collector. To study the type system for such a functional pro-
gramming language, the simply typed lambda calculus is used
and then extended by a linear type system. This linear type
system already enables a certain resource safety. By adding
ownership typing, the type system enables a garbage collector
free runtime system. A simply typed lambda calculus with a
linear type system was presented, which also features a bor-
rowing type system known from Rust. With the type system
presented, it is possible to implement a functional program-
ming language that does not require a garbage collector and
shifts many errors in resource management to compile time.

Keywords: Linear Types, Type Systems, Memory Manage-
ment

1 Introduction into Memory Management
Every application must manage memory in some way. In
many imperative programming languages like Java, C# and
Python, as well in many functional programming languages,
memory management is abstracted away. Many of them
achieved this by using a garbage collector which removes
memory that is no longer required by the application. How-
ever, a garbage collector is no-deterministic and may inter-
rupt the normal flow of the application. This is not accept-
able to all applications. The alternative is manual memory
management as is done in C/C++. While manual memory
management gives the programmer full control over when
and how memory is allocated or freed, it is also a very dif-
ficult task to implement correctly. Many bugs are caused
by memory related errors like use-after-free or double-free

that are caused by doing manual memory management in-
correctly. With Rust there is a programming language that
uses automatic memory management with no runtime over-
head. This is achieved with the help of the type system and
by carefully tracking the usage of variables. The theoretical
foundation for this system builds upon a linear type system,
that again is backed by linear logic.

As Rust demonstrates, it is possible to get safety by auto-
matic memory management and at the same time no run-
time overhead. However, many functional programming lan-
guages have some type of garbage collector in its runtime sys-
tem. The question arise: is it possible to design a functional
programming language that no longer requires a garbage
collector? By proposing a lambda calculus with a linear type
system, it should be demonstrated, that it is possible to also
implement functional programming languages without a
garbage collector for automatic memory management.
This paper is structured as follows: first there is a theo-

retical introduction into and linear types. Next, motivating
examples are given as to why linear types can also be helpful
in programming languages that also have a garbage collector.
Afterwards, existing linear type systems are presented.

Rust is used as an example for an imperative language, while
Haskell for the functional programming language example.
Followed by a proposal how a lambda calculus can be ex-
tended, so that the memory management could be done
without a garbage collector.

2 Introduction into Linear Type Systems
This section introduces the concept of linear type systems.
First, a simply typed lambda calculus without a linear type
system is established. From there, the existing lambda calcu-
lus is extended with linear types. Linear logic, as introduced
by Jean-Yves Girard[Gir87], forms the basis for linear type
systems. However, the discussion of linear logic is beyond
the scope of this paper.

2.1 The simply typed lambda calculus
First the syntax for a simply typed lambda calculus (STLC)
with sum and product types is established. A type is a type
variable, function, product or a sum. 𝑇,𝑈 ,𝑉 are types, while
𝑋,𝑌, 𝑍 are type variables.

𝑇,𝑈 ,𝑉 := 𝑋 | (𝑈 → 𝑉) | (𝑈 ×𝑉) | (𝑈 +𝑉)
2025-09-11 09:11. Page 1 of 1–8.

Olivier Lischer

A term is variable, introduction or elimination of a func-
tion, product or sum type. 𝑡,𝑢, 𝑣 are terms and 𝑥,𝑦, 𝑧 are
individual variables.
𝑡,𝑢, 𝑣 :=

| 𝑥 : 𝑇
| (𝜆𝑥 : 𝑇 . 𝑣) | (𝑡 𝑢)
| (𝑢, 𝑣) : (𝑈 ×𝑉) | (case 𝑡 : (𝑈 ×𝑉) of {(𝑥,𝑦) → 𝑤})
| (𝑖𝑛𝑙 𝑢) : (𝑈 +𝑉) | (𝑖𝑛𝑟 𝑣) : (𝑈 +𝑉)
| (case 𝑡 : (𝑈 +𝑉) of {𝑖𝑛𝑙 𝑥 → 𝑢; 𝑖𝑛𝑟 𝑦 → 𝑣})

With this in place, the syntax for typing rules can be
established. An assumption list is a list of pairs of variables
to types. Γ and Δ are assumption lists and 𝑛 ≥ 0.

Γ,Δ := 𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛
A typing judgment has the form

Γ ⊢ 𝑡 : 𝑇
and can be read as “Under the assumption Γ the term 𝑡 has
type 𝑇 ”.
Starting with the structural rules. The simplest rule is Id,

which creates a tautology. It states that given that term 𝑥

has type𝑈 , it is true that 𝑥 has type𝑈 .
Id

𝑥 : 𝑈 ⊢ 𝑥 : 𝑈
The next rule is Exchange. It states that the order of the

variables in an assumption list is not relevant.
Γ, 𝑥 : 𝑈 ,𝑦 : 𝑉 , 𝐵 ⊢ 𝑤 :𝑊

Exchange
Γ, 𝑦 : 𝑉 , 𝑥 : 𝑈 , 𝐵 ⊢ 𝑤 :𝑊

By adding more elements to the context, the type of term
does not change. An alternative interpretation is that it is
allowed to discard variables, when they are not used. This is
expressed byWeakening.

Γ ⊢ 𝑣 : 𝑉Weakening
Γ, 𝑥 : 𝑈 ⊢ 𝑣 : 𝑉

That a variable can be used multiple times in a term is
expressed by Contraction. A term 𝑣 is build using the two
variables 𝑥 and 𝑦 of type𝑈 . By replacing 𝑥 and 𝑦 with 𝑧, the
type of 𝑣 does not change.

Γ, 𝑥 : 𝑈 ,𝑦 : 𝑈 ⊢ 𝑣 : 𝑉
Contraction

Γ, 𝑧 : 𝑈 ⊢ 𝑣 [𝑥 := 𝑧;𝑦 := 𝑧] : 𝑉
The remaining 7 rules are logical rules and always come

in an introduction and elimination form. Starting with the
rules for the function type the introduction rule→-I derives
the type for a lambda abstraction respectively functions.

Γ, 𝑥 : 𝑈 ⊢ 𝑣 : 𝑉→-I
Γ ⊢ (𝜆𝑥.𝑣) : (𝑈 → 𝑉)

The elimination rule for function types is the application→-
E. By providing the required input, the lambda abstraction
resolves to a final type.

Γ1 ⊢ 𝑡 : (𝑈 → 𝑉) Γ2 ⊢ 𝑢 : 𝑈
→-E

Γ1, Γ2 ⊢ (𝑡 𝑢) : 𝑉

The second group of logical rules targets product types.
First the introduction rule ×-I, that states how to build a
product type from two single values.

Γ ⊢ 𝑢 : 𝑈 Δ ⊢ 𝑣 : 𝑉×-I
Γ,Δ ⊢ (𝑢, 𝑣) : (𝑈 ×𝑉)

The elimination rule ×-E stats that it is possible to extract
the values from the product type and use them for a new
value.

Γ ⊢ 𝑡 : (𝑈 ×𝑉) Δ, 𝑥 : 𝑈 ,𝑦 : 𝑉 ⊢ 𝑤 :𝑊
×-E

Γ,Δ ⊢ (case 𝑡 of {(𝑥,𝑦) → 𝑤}) :𝑊
The last rule set targets the sum types and consists of two

introduction rule, one for each variant, and one elimination
rule. The introduction rules are used to create a sum type
with the left or the right variant using inl respectively inr.

Γ ⊢ 𝑢 : 𝑈+-I
Γ ⊢ (𝑖𝑛𝑙 𝑢) : (𝑈 +𝑉)

Γ ⊢ 𝑣 : 𝑉
Γ ⊢ (𝑖𝑛𝑟 𝑣) : (𝑈 +𝑉)

The last rule states that regardless of the inner value of
the sum type, the result of the extraction must be always the
same.

Γ ⊢ 𝑡 : (𝑈 +𝑉) Δ, 𝑥 : 𝑈 ⊢ 𝑢 :𝑊 Δ, 𝑦 : 𝑉 ⊢ 𝑣 :𝑊
+-E

Γ,Δ, ⊢ (case 𝑡 of {𝑖𝑛𝑙 𝑥 → 𝑢; 𝑖𝑛𝑟 𝑦 → 𝑣}) :𝑊
All rules for a STLC are summarized in Figure 1.

2.2 Linear Type Systems
After the STLC is established, the type system can be ex-
tended to be linear. To build a linear type system, four op-
erations from linear logic are needed:⊸, ⊗, ⊕ and !. In the
following, the new linear operators are introduced before
modifying the rules for the STLC.

2.2.1 Linear logic operations. For a non-linear function
𝑓 : 𝑈 → 𝑉 , the argument of type𝑈 can be used any number
of times to construct a 𝑉 . In addition, the resulting value of
type 𝑉 can be used without restriction. To create a linear
function ⊸ is used. In a linear function 𝑓 ′ : 𝑈 ⊸ 𝑉 , the
argument, of type𝑈 can only be used once and the resulting
value of type𝑉 must be used exactly once as well. Therefore,
⊸ is the linear counterpart of →. To develop an intuition,
think about a vending machine. Let

𝐶 := One Coin
𝑊 :=Water
𝑆 := Soda

and some axioms for a vending machine:

𝐶 =⇒ 𝑊

𝐶 =⇒ 𝑆

The linear function𝑤𝑎𝑡𝑒𝑟 : 𝐶 ⊸𝑊 shows that the coin
can only be used once to buy water and is then no longer
available. In contrast, the non-linear function𝑤𝑎𝑡𝑒𝑟 ′ : 𝐶 →
𝑊 shows that the coin can also be used to buy a soda after
the vending machine has dispensed the water.

2025-09-11 09:11. Page 2 of 1–8.

Linear Type Systems

Id
𝑥 : 𝑈 ⊢ 𝑥 : 𝑈

Γ, 𝑥 : 𝑈 ,𝑦 : 𝑉 , 𝐵 ⊢ 𝑤 :𝑊
Exchange

Γ, 𝑦 : 𝑉 , 𝑥 : 𝑈 , 𝐵 ⊢ 𝑤 :𝑊

Γ ⊢ 𝑣 : 𝑉Weakening
Γ, 𝑥 : 𝑈 ⊢ 𝑣 : 𝑉

Γ, 𝑥 : 𝑈 ,𝑦 : 𝑈 ⊢ 𝑣 : 𝑉
Contraction

Γ, 𝑧 : 𝑈 ⊢ 𝑣 [𝑥 := 𝑧;𝑦 := 𝑧] : 𝑉

Γ, 𝑥 : 𝑈 ⊢ 𝑣 : 𝑉→-I
Γ ⊢ (𝜆𝑥.𝑣) : (𝑈 → 𝑉)

Γ ⊢ 𝑡 : (𝑈 → 𝑉) Δ ⊢ 𝑢 : 𝑈
→-E

Γ,Δ ⊢ (𝑡 𝑢) : 𝑉

Γ ⊢ 𝑢 : 𝑈 Δ ⊢ 𝑣 : 𝑉×-I
Γ,Δ ⊢ (𝑢, 𝑣) : (𝑈 ×𝑉)

Γ ⊢ 𝑡 : (𝑈 ×𝑉) Δ, 𝑥 : 𝑈 ,𝑦 : 𝑉 ⊢ 𝑤 :𝑊
×-E

Γ,Δ ⊢ (case 𝑡 of {(𝑥,𝑦) → 𝑤}) :𝑊

Γ ⊢ 𝑢 : 𝑈+-I
Γ ⊢ (𝑖𝑛𝑙 𝑢) : (𝑈 +𝑉)

Γ ⊢ 𝑣 : 𝑉
Γ ⊢ (𝑖𝑛𝑟 𝑣) : (𝑈 +𝑉)

Γ ⊢ 𝑡 : (𝑈 +𝑉) Δ, 𝑥 : 𝑈 ⊢ 𝑢 :𝑊 Δ, 𝑦 : 𝑉 ⊢ 𝑣 :𝑊
+-E

Γ,Δ, ⊢ (case 𝑡 of {𝑖𝑛𝑙 𝑥 → 𝑢; 𝑖𝑛𝑟 𝑦 → 𝑣}) :𝑊

Figure 1. Rules for the simply typed lambda calculus

The ⊗ is the linear product type. For a product (𝑢, 𝑣) :
(𝑈 ⊗ 𝑉), both 𝑢 and 𝑣 can be used, but only once each. The
function𝑤𝑎𝑡𝑒𝑟𝑆𝑜𝑑𝑎 : 𝐶 ⊸ 𝐶 ⊸ (𝑊 ⊗𝑆) can be constructed
using the vending machine example. It says that one can buy
a water and a soda with two coins.
The linear sum type is formed with ⊕. Let 𝑡 : (𝑈 ⊕ 𝑉)

and similar to non-linear sum types, a case distinction is
necessary to proceed further. The intrinsic value of 𝑡 can
only be used once. In the case of a broken vending machine,
there is the function 𝑤𝑎𝑡𝑒𝑟𝑂𝑟𝑆𝑜𝑑𝑎 : 𝐶 ⊸ (𝑊 ⊕ 𝑆). When
a coin is inserted, the vending machine randomly returns
either a water or a soda, but never both at the same time.

The last operation is called “of course” and is represented
by !. The ! establishes the connection between a non-linear
type and a linear type by allowing it to be used zero, once or
several times. If 𝑢 : (!𝑈), then𝑢 can be used like a non-linear
type without restrictions. In the vending machine example,
a function 𝑤𝑎𝑡𝑒𝑟𝑆𝑜𝑑𝑎𝑂𝑓𝐶𝑜𝑢𝑟𝑠𝑒 : (!𝐶) ⊸ (𝑊 ⊗ 𝑆) can be
found that tells us that one has as many coins as necessary
to buy a water and a soda.

2.2.2 Extending the Simply Typed Lambda Calculus.
First the function rules can be modified, simply by replac-
ing → with ⊸ signalling, that the argument must only be
used once. The same can be done for the product and sum
types by replacing + with ⊕ and × with ⊗. If the rules for
weakening and contraction are removed, a linear type system
is constructed. However, with this type system no useful
software can be written: a functions like double cannot be

written as the input argument is used twice[Wad91].:

(𝜆𝑥.(𝑥, 𝑥)) : 𝑈 ⊸ (𝑈 ⊗ 𝑈)

Therefore, the rulesWeakening and Contraction must be
modified:

Γ ⊢ 𝑣 : 𝑉Weak
Γ, 𝑥 : (!𝑈) ⊢ 𝑣 : 𝑉

Γ, 𝑥 : (!𝑈), 𝑦 : (!𝑈) ⊢ 𝑣 : 𝑉
Cont

Γ, 𝑧 : (!𝑈) ⊢ 𝑣 [𝑥 := 𝑧;𝑦 := 𝑧] : 𝑉
The ! gives the possibility to use an input zero, once or

multiple times. Therefore, the type of the double function
in a linear type system would be:

(𝜆𝑥.(𝑥, 𝑥)) : (!𝑈) ⊸ (𝑈 ⊗ 𝑈)

With all the rules in place, the STLC is extended with a
working linear type system.

Since the lambda calculus is pure and resources such as
memory or files do not exist, linear types are not as useful.
However, since the lambda calculus is the theoretical basis
for all functional programming languages, it still makes sense
to introduce linear types in order to build on them for more
sophisticated programming languages.

3 Motivation for Linear Type Systems
As already written in section 1, memory management is a
difficult task that can lead to various safety-critical prob-
lems. This section describes two common errors in memory
management and how linear types can solve these problems.

2025-09-11 09:11. Page 3 of 1–8.

Olivier Lischer

Id
𝑥 : 𝑈 ⊢ 𝑥 : 𝑈

Γ, 𝑥 : 𝑈 ,𝑦 : 𝑉 , 𝐵 ⊢ 𝑤 :𝑊
Exchange

Γ, 𝑦 : 𝑉 , 𝑥 : 𝑈 , 𝐵 ⊢ 𝑤 :𝑊

Γ ⊢ 𝑣 : 𝑉Weakening
Γ, 𝑥 : (!𝑈) ⊢ 𝑣 : 𝑉

Γ, 𝑥 : (!𝑈), 𝑦 : (!𝑈) ⊢ 𝑣 : 𝑉
Contraction

Γ, 𝑧 : (!𝑈) ⊢ 𝑣 [𝑥 := 𝑧;𝑦 := 𝑧] : 𝑉

Γ, 𝑥 : 𝑈 ⊢ 𝑣 : 𝑉
⊸-I

Γ ⊢ (𝜆𝑥.𝑣) : (𝑈 ⊸ 𝑉)
Γ1 ⊢ 𝑡 : (𝑈 ⊸ 𝑉) Γ2 ⊢ 𝑢 : 𝑈

⊸-E
Γ1, Γ2 ⊢ (𝑡 𝑢) : 𝑉

Γ1 ⊢ 𝑢 : 𝑈 Γ2 ⊢ 𝑣 : 𝑉⊗-I
Γ1, Γ2 ⊢ (𝑢, 𝑣) : (𝑈 ⊗ 𝑉)

Γ1 ⊢ 𝑡 : (𝑈 ⊗ 𝑉) Γ2, 𝑥 : 𝑈 ,𝑦 : 𝑉 ⊢ 𝑤 :𝑊
⊗-E

Γ1, Γ2 ⊢ (case 𝑡 of {(𝑥,𝑦) → 𝑤}) :𝑊

Γ ⊢ 𝑢 : 𝑈⊕-I
Γ ⊢ (𝑖𝑛𝑙 𝑢) : (𝑈 ⊕ 𝑉)

Γ ⊢ 𝑣 : 𝑉
Γ ⊢ (𝑖𝑛𝑟 𝑣) : (𝑈 ⊕ 𝑉)

Γ1 ⊢ 𝑡 : (𝑈 ⊕ 𝑉) Γ2, 𝑥 : 𝑈 ⊢ 𝑢 :𝑊 Γ2, 𝑦 : 𝑉 ⊢ 𝑣 :𝑊
⊕-E

Γ1, Γ2, ⊢ (case 𝑡 of {𝑖𝑛𝑙 𝑥 → 𝑢; 𝑖𝑛𝑟 𝑦 → 𝑣}) :𝑊

Figure 2. Rules for a linear type system

Two of the most common errors in memory management
are use-after-free and double-free. When a resource is allo-
cated, e.g. memory, one can use it freely. After the resource
is no longer needed, it should be free. A use-after-free error
can occur after the resource has been released by using a
pointer or reference to the resource even though the resource
is already released. What happens now depends on the type
of resource, the runtime system and many other things. The
situation is similar with double-free error. After a resource
has been released without an error, the application can at-
tempt to release the resource again. Once again, the outcome
is not entirely predictable. Both result from the difficulty of
determining what part in the application is responsible for re-
leasing the assigned resource and invalidating all remaining
pointers and references to the resource.
Even in a purely functional programming language like

Haskell, linear types have advantages. The Linear Haskell
paper[BBN+18] lists two reasons why linear types are useful
in Haskell:

• In-place updates: In the case of mutable arrays, ensur-
ing that the value can be updated in place, allows for
a more efficient implementation of 𝑂 (𝑛) to 𝑂 (1).

• Ensuring correct protocol usage: In the file IO example,
it is enforced that all IO operations only take place on
valid file descriptors.

A concrete example of where Ensuring correct protocol us-
age could be violated is reading the first line of a given file
and printing it to the standard output. This task is solved

Listing 1 with Haskell. The function printFirstLine im-
plements the functionality without bugs. The second func-
tion printFirstLineError uses the same function calls, but
closes the file handle before reading the file, which violates
the protocol and leads to an error at runtime. In a linear type
system, the function hClose could consume the file handle.
By consuming the file handle, the rest of the application is
no longer allowed to use this file handle, thereby preventing
a use-after-free error at compile time.

1 printFirstLine :: FilePath -> IO ()

2 printFirstLine fpath = do
3 fileHandle <- openFile fpath ReadMode
4 firstLine <- hGetLine fileHandle

5 putStrLn firstLine

6 hClose fileHandle

7
8 printFirstLineError :: FilePath -> IO ()

9 printFirstLineError fpath = do
10 fileHandle <- openFile fpath ReadMode
11 hClose fileHandle

12 firstLine <- hGetLine fileHandle

13 putStrLn firstLine

Listing 1. File IO Motivation

The following section 4 presents two programming lan-
guages that offer a linear type system. It is shown that errors
such as those in Listing 1 can be prevented with the help of
linear types.

2025-09-11 09:11. Page 4 of 1–8.

Linear Type Systems

4 Existing Linear Type System
Implementations

This section describes two different programming languages
that already support a linear type system. In subsection 4.1
the functional programming language Haskell is described
how it utilizes linear types. In the section that follows after,
the imperative programming language Rust is described.
Rust is positioned as a systems programming language with
a safe memory management thanks to its type system. A
novelty of Rust is its ownership model to enable automatic
memory management without any runtime overhead.

4.1 Haskell
Linear types are not part of standard Haskell, but an ex-
perimental language extension in GHC, first proposed in
Linear Haskell[BBN+18]. After the paper, a GHC proposal
was created in which the work is now being pursued[Ghc].

Because Haskell is a purely functional programming lan-
guage the ideas from subsection 2.2 can be used without any
major changes. To allow linear functions, the Haskell syntax
must be extended. This was done by adding a new kind of
function type as described in Listing 2.

1 data Multiplicity = One | Many

2 type a %1 -> b = a %One -> b

3 type a -> b = a %Many -> b

Listing 2. Function type definition

A function of type a \%1 -> b is a linear function and
must uphold the criteria: “when its result is consumed ex-
actly once, then its argument is consumed exactly once”.
More informally written: In every branch, the argument of
the function must be used exactly once. This corresponds to
the rules ⊸-I and ⊸-E from Figure 2 and would be written
as 𝑎 ⊸ 𝑏 with the syntax from subsection 2.2. The normal
function type a -> b can be still used and is called an un-
restricted function, as its argument and results can be used
without any restrictions. To allow uniform handling of lin-
ear and unrestricted functions the multiplicity-polymorphic
arrow a \%m -> b was introduced.
Linear and multiplicity-polymorphic arrows are never

inferred andmust always be declared. If the type of a function
is not declared, the type of the unrestricted function a -> b
will be inferred. However, the multiplicity of a variable can
be inferred from the context.

1 f :: A %1 -> B

2 g :: B %1 -> C

3
4 h :: A %1 -> C

5 h x = g y

6 where
7 y = f x

8
9 hAnnoted :: A %1 -> C

10 hAnnoted x = g y

11 where

12 %1 y = f x

Listing 3. Linear function examples

The multiplicity of bindings is inferred by the compiler as
follows:

• Top level bindings having multiplicity “Many”
• Recursive bindings having multiplicity “Many”
• Lazy non-variable pattern bindings having multiplic-
ity Many

• In all other cases, the multiplicity is inferred from the
term

So tomake a non-variable pattern bindingwithmultiplicity 1,
the pattern must be strict, like let !(x, y) = rhs, whereas
the let (x, y) = rhs has alwaysmultiplicityMany. Caution
is advised, because the “!” in let !(x, y) = rhs is not the
same as in linear logic! While in linear logic the “!” allows
the variable to be used arbitrarily, in Haskell it indicates a
strict evaluation and therefore infers multiplicity 1.

4.1.1 From linear logic to Haskell. Next the connection
between the operations in Haskell and the SLTC in subsec-
tion 2.2 is established. Haskell’s unrestricted function types
correspond to the function type 𝑈 → 𝑉 and are covered
by the →-I and →-E rules, while the linear function type
𝑈 ⊸ 𝑉 is represented by the rules⊸-I and⊸-E. In Haskell,
all fields in an algebraic data type are linear by default and
are represented by the rules ⊗-I and ⊗-E for product types,
respectively ⊕-I and ⊕-E for sum types. Using the general-
ized algebraic data type (GADT) or the record type syntax,
the multiplicity can be customized. However, the syntax has
no effect on record selectors. For examples of using data
types with linear types, see Listing 4.

1 data T1 a = MkT1 a

2
3 construct :: a %1 -> T1 a

4 construct x = MkT1 x

5
6 deconstruct :: T1 a %1 -> a

7 deconstruct (MkT1 x) = x

8
9 data T2 a b c where
10 MkT2 :: a -> b %1 -> c %1 -> T2 a b c

11
12 data T3 a b c = MkT3 { x %'Many :: a, y :: b, z :: c

}

13
14 x :: T3 a b c -> a

15 y :: T3 a b c -> b

Listing 4. Data types with Linear types in Haskell

4.1.2 Examples in Haskell. In Listing 1 a file IO function
was written using non-linear Haskell. In Listing 5 the same
functionality is implemented again but with linear types
enable and using the linear-base library. The openFile func-
tion creates the file handle. The getLine function takes the
file handle as a linear type, therefore must be used exactly
once. To enable further readings with the same file handle,

2025-09-11 09:11. Page 5 of 1–8.

https://hackage.haskell.org/package/linear-base

Olivier Lischer

the function must return the file handle as a return value.
Finally, the hClose consumes the file handle and returns
unit.

1 linearGetFirstLine :: FilePath -> RIO (Ur Text)

2 linearGetFirstLine fp = Control.do
3 handle <- Linear.openFile fp System.ReadMode
4 (t, handle ') <- Linear.hGetLine handle

5 Linear.hClose handle '

6 Control.return t

7
8 linearPrintFirstLine :: FilePath -> System.IO ()

9 linearPrintFirstLine fp = do
10 text <- Linear.run (linearGetFirstLine fp)

11 System.putStrLn (unpack text)

12
13 -- from linear -base

14 openFile :: FilePath -> IOMode -> RIO Handle
15 hGetLine :: Handle %1 -> RIO (Ur Text , Handle)
16 hClose :: Handle %1 -> RIO ()

Listing 5. Linear File IO in Haskell

The usage of handle after hGetLine or handle' after
hClose results in a compiler error and therefore prevent-
ing possible use-after-free errors.

4.2 Rust
The Rust compiler tracks where a variable goes out of scope.
As soon as the variable goes out of scope, the compiler knows
the memory bound to the variable can be freed, as no one
uses the memory any more. This tracking is the ownership
model and is based on linear types theory.
There are four kinds of how to use a memory location.

One of them is using pointers and is not considered here,
as it is up to the developer to ensure that no guarantees are
violated. A variable can have ownership of the location and
has therefore the permission to read it, modify it, borrow out
the location to someone else and give the ownership rights
away. Second is a shared reference to the location. The holder
of a shared reference can read from the memory location, but
is not allowed to modify it. As the name implies, there can
be many shared references to a single memory location. The
last option is a mutable reference. With a mutable reference,
the memory location can be read and also written. There
can be only one mutable reference to a memory location at
a given time. In Table 1 a summary of the different memory
access type is listed.

1 fn ownership(a: A) -> B { /**/ }

2 fn shared_reference(a: &A) -> B { /**/ }

3 fn mutable_reference(a: &mut A) -> B { /**/ }

4
5 fn main() {

6 let a = A::new();

7 shared_reference (&a);

8 mutable_reference (&mut a);

9 ownership(a);

10 }

Listing 6.Memory access types examples

4.2.1 An intuition for the ownership model. A child’s
toy can be used to build an intuition for the ownership model.
The owner of the toy is free to use the toy as he wants. This
corresponds to read and write access. The owner may want
to lend out the toy to some other child, resulting in amutable
reference. The second child can once again play with the toy
as its pleased, but must guarantee that the toy remain intact.
While the toy is borrowed, the owner can no longer access it,
as it is no longer in its possession. When the toy is returned,
the owner could decide to make an exhibition for its toy.
During the exhibition, the toy can be viewed by many other
children, but no one can play with it, but only look at it. So
every child has a shared reference. As the child grows older
it decides that another child should become the new owner
(move). The grown up child now has no rights any more to
the toy.

4.2.2 From linear logic to Rust. Because Rust is an im-
perative programming language it is required to perform
additional steps so that the lambda calculus theory can be
applied.
The linear function 𝑓 : 𝑈 ⊸ 𝑉 from the lambda calculus

can be mapped to fn f(u: U): V in Rust. While the value
u can be used multiple times in the function f, from the
outside, u is used once and can no longer be used after f.
To duplicate a value, the Clone trait exists. When a type
implements the Clone trait, the clone function can be called
that allows for duplication of the current value. The Copy
trait is an extension of the Clone trait by that it automatically
calls clone when required.
Rust has sum and product types in form of enum respec-

tively struct, therefore the rules +-I, +-E and ×-I and ×-E
can be used. However, there is no mechanism to restricted
their usage. So Rust has no way to enforce the rules ⊕-I, ⊕-E
and ⊗-I and ⊗-E.

The different memory location access types are required,
to overcome the shortcomings of having stateful computa-
tion. Rust’s type system is not a pure adaptation of linear
types, but rather an extension and is sometimes referred
to as borrowing typing[BBN+18]. This borrowing typing is
similar to the use-types introduced in the paper “Is there a
use for linear logic?”[Wad91]

4.2.3 Examples in Rust. Once again the example with file
IO. The BufReader is a type that provides various function to
read from a source like a file. The BufReader::new function
takes ownership of the file, so file can no longer be used
after the creation of the reader. The BufReader::read_line
function takes a mutable reference to itself indicating that
only one user must be there at this moment. Calling drop is
not required in this function, as reader would be cleaned
up automatically at the end of the function. Trying to read a
second line after calling drop would result in a compiler error,
as reader is consumed by drop and therefore preventing a
use-after-free error.

2025-09-11 09:11. Page 6 of 1–8.

Linear Type Systems

Syntax Name Description Occurrence

a ownership Read, Write, Move exactly once
&a shared reference Read, many times
&mut a mutable reference Read, Write exactly once

Table 1.Memory Location access types

1 fn print_first_line(path: &Path) {

2 let file = File::open(path).unwrap ();
3 let mut reader = BufReader ::new(file);
4 let mut line = String ::new();
5 reader.read_line (&mut line).unwrap ();

6 drop(reader); // Not required

7 println!("{line}")
8 }

9
10 // BufReader ::new(inner: R) -> BufReader <R>

11 // BufReader :: read_line (&mut self , buf: &mut String)

-> Result <usize >

12 // drop <T>(_x: T) -> ()

Listing 7. Linear File IO in Rust

5 Ingredients for a Functional
Programming Language without Garbage
Collection

Memory and resources play no role in the Lambda Calculus.
Therefore, the x can be used freely in the following function:

(𝜆𝑥 . (𝑓 𝑥, 𝑔 𝑥))

It is irrelevant whether f or g is applied first. It is also not im-
portant how often x is used to calculate the results. However,
modern computers do not conform to this model. Depending
on what x, f and g are and do, it may be relevant in which
order and how many times they are used and evaluated. To
address this problem, this section introduces the idea of a
functional programming language based on the Lambda Cal-
culus that uses a linear type system to eliminate the need
for a garbage collector.

5.1 Linear Types combined Ownership typing
Using the example of Rust, a programming language with au-
tomatic memory management that does not have a garbage
collector, it is known that one possibility is to track the usage
of variables. Rust does this by checking whether a memory
location has an owner. If a memory location no longer has
an owner, it can be safely freed. In Rust, these checks are
carried out by the so-called “Borrow Checker”. The following
describes an idea that relies solely on linear types and clever
cloning under the hood.
The general idea is that data is moved to the function to

be called by default. In the function (𝜆𝑥 . 𝑓 𝑥), the argument x
is moved directly into the function f. There are no allocation
or deallocations required. In the case of a function of type
(!𝑇) ⊸ (𝑈 ,𝑉), where the argument can be used zero or

many times, the original argument is deallocated when the
function exited. If the argument is used multiple times, it
should be cloned so that new individual copies of the value
exists. An example of such a function could be the following:

(𝜆𝑥. (𝑓 𝑥, 𝑔 𝑥)) : (!𝑇) ⊸ (𝑈 ,𝑉)

Another type of functions is of type (!𝑇) ⊸ (!𝑈), where the
input is unrestricted and the output is also unrestricted. The
input can be handled as in the other cases before, and the
output does require no special handling, as the output only
indicates where the value may be used as an input argument.
As seen in this section, it is only necessary to track the

lifetime of each variable to enable memory management sim-
ilar to Rust. However, this is currently only an idea without
a proof.

6 Conclusion and other work
The goal was to give an introduction to linear type systems
and present how the lambda calculus can be extended to use a
linear typed system. Further, programming languages should
be studied to present how they use linear types to ensure
that a selection of resource related bugs can be caught at
compile time. Last, ingredients for a functional programming
language that does not require a garbage collector were
presented.
In section 2 the simply typed lambda calculus was intro-

duced. After the basic operations of linear logic were pre-
sented, a linear type system for the simply typed lambda
calculus was developed.

The connection between the theory and existing program-
ming languages was then established in section 4 using
Haskell and Rust. Further, it was presented, how a specific
use-after-free bug can be caught at compile time. Once in
Haskell and once in Rust.
In section 5 the idea of a pure language was presented

that combines a linear type system with tracking the lifetime
of variables. With this idea, it should be possible to replace
a garbage collector with routines inserted by the compiler
inserted free resources that are no longer used.
This paper provided an introduction to linear logic and

liner types. However, certain operations from linear logic
have been omitted, as they are not crucial for understanding
linear type systems. For a more detailed consideration, the
work of Jean-Yves Girard should be taken into account. Only
a brief idea was presented in the last part. So far, this has not

2025-09-11 09:11. Page 7 of 1–8.

Olivier Lischer

been proven theoretically, nor is there any proof in the form
of a prototype.
The best way to prove that the concept of a functional

programming language works without a garbage collector
would be to implement one.

There are other type system that may solve this problem
as well. One such a type system is the unique type system
used by the Clean programming language. It would be an
interesting question whether, and how, the Clean runtime
system could be modified to eliminate the garbage collector.

References
[BBN+18] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton,

Simon Peyton Jones, and Arnaud Spiwack. Linear Haskell: Prac-
tical linearity in a higher-order polymorphic language. Pro-
ceedings of the ACM on Programming Languages, 2(POPL):1–29,
January 2018.

[Ghc] Ghc-proposals/proposals/0111-linear-types.rst at master · ghc-
proposals/ghc-proposals. https://github.com/ghc-proposals/ghc-
proposals/blob/master/proposals/0111-linear-types.rst.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1–101, January 1987.

[Wad91] Philip Wadler. Is there a use for linear logic? SIGPLAN Not.,
26(9):255–273, May 1991.

2025-09-11 09:11. Page 8 of 1–8.

	Abstract
	1 Introduction into Memory Management
	2 Introduction into Linear Type Systems
	2.1 The simply typed lambda calculus
	2.2 Linear Type Systems

	3 Motivation for Linear Type Systems
	4 Existing Linear Type System Implementations
	4.1 Haskell
	4.2 Rust

	5 Ingredients for a Functional Programming Language without Garbage Collection
	5.1 Linear Types combined Ownership typing

	6 Conclusion and other work
	References

