
Review of Current Principalled Approaches to System
Programming

Olivier Lischer
OST Eastern Switzerland University of Applied Sciences

MSE Seminar “Programming Languages”
Supervisor: Farhad Mehta

Spring 2024

Abstract
Computers are an essential part of our everyday life. In this
paper, I described based on the Intel’s CPU which hardware
initialization an operating system has to perform and how to
interact with the hardware. Starting from how a computer boots
to memory management and interrupts to multitasking and
finishing with kernel API. The second focus is the language
in which the operating system is written. As most general
purpose operating systems are written in C/C++ the question
arose, if it is possible to write one using functional program-
ming languages and techniques. I described why functional
programming languages are not always suited for systems pro-
gramming, and how one still could use techniques and concepts
from such languages.

Keywords: Systems Programming, Operating Systems, Boot
sequence, Interrupts, Paging, Multitasking, Haskell

1 Introduction
Operating systems are an important part in our every day
life. We are often not even aware that we are interacting
with a kind of operating system. The operating system is the
fundamental software to control our hardware. If the operat-
ing system is faulty, such errors can affect the correctness of
other applications running on top of the operating system.

In this paper, I want to have a look at how a computer boots
up and what tasks the kernel has to perform until a developer
can write its own application for the operating system. To
show how the discussed problem is solved in most modern
operating system, I will mainly use Linux and FreeBSD as
examples. These operating systems, as well as most other
general purpose operating systems, are written in either C or
C++. As C/C++ are often considered “unsafe” programming
languages, it may be interesting to consider alternatives. This
leads to the questions, is it possible to write certain parts
of an operating system in another language? To answer
these questions, I will show if and how the same problem
could be solved usingmethods from functional programming
languages, such as Haskell.
Since many details are CPU dependent, I will focus on

CPUs of the Intel 64 and IA-32 architecture family, as they are
among the most commonly used CPU architectures today.

2 The boot sequence and the bootloader
Each computer has to go thought the boot sequence before
it is ready for use. These steps can be roughly broken down
into the following steps:

1. Motherboard initialization
2. BIOS / UEFI initialization, including Power-On Self

Test
3. Master Boot Record
4. Bootloader
5. Kernel Initialization
6. First User-Mode Process

In this section the steps from the motherboard initializa-
tion up to the bootloader are discussed. The last two steps
are discussed in the other sections.

2.1 Hardware initialization
When the computer is powered on, the motherboard starts
with its own initialization using its firmware. At this point,
how and what happens is very dependent on the manufac-
turer. In case everything worked, the motherboard tries to
get the CPU running.
When the CPU starts, the registers in are set to some

predefined values. On a modern Intel CPU the instruction
pointer is set to 0xFFFFFFF0, the location where the Basic
Input/Output System (BIOS) / Unified Extensible Firmware
Interface (UEFI) should be located . The CPU is running in
Real Address Mode where only 16-bit mode is available, and
starts the execution at this location and runs the BIOS / UEFI
code.

The BIOS’ / UEFI’s responsibility is to perform a Power-on
self-test (POST) to verify that all minimum required compo-
nents are available and working properly. If something is
wrong, the BIOS notifies the user of the error usingmanufacturer-
dependent methods. For example, the UEFI on the “ROG Strix
X570-E Gaming” motherboard displays an error code on a
seven-segment display, while other motherboards notify the
user via a specific beep pattern[ROG, HPD]. However, as
most BIOS / UEFI implementations are closed source, it is
difficult to say, what exactly happens here.

The next important task of the BIOS / UEFI is to determine
the boot device. Most modern BIOS / UEFI implementations
permit a selection of possible boot devices.

2025-09-11 09:09. Page 1 of 1–9.

Olivier Lischer

The very last task in the POST is the INT 0x19 instruction.
This instruction will read the first 512 bytes from the first
sector of the chosen boot device and loads it to the memory
location 0x7c00. After this, the CPU jumps to this location
and starts executing the so called Master Boot Record (MBR).

2.2 Loading and executing the bootloader
As the MBR is only 512 bytes long, the whole bootloader
cannot be placed there. Therefore, the MBR has the task
to load the remaining part of the bootloader from the boot
device.

The remaining task of a bootloader is to load the operating
system. Older operating systems usually have their own
bootloader. It was therefore difficult or even impossible to
install several operating systems on the same machine. The
Multiboot Specification solves this problem by defining an
interface between the bootloader and the operating system.
This means that any multiboot compliant bootloader can
load any mulitboot compliant operating system[Mul].
The OS image, a regular a.out binary file that can be

loaded by any multiboot bootloader, must contain a so-called
Multiboot header. The C code for such a multiboot header
can be seen in Listing 1.

1 typedef unsigned int multiboot_uint32_t;

2 struct multiboot_header

3 {

4 /* Must be MULTIBOOT_MAGIC - 0x1BADB002 */

5 multiboot_uint32_t magic;

6 /* Feature flags. */

7 multiboot_uint32_t flags;

8 multiboot_uint32_t checksum;

9 /* These are only valid if MULTIBOOT_AOUT_KLUDGE

is set. */

10 multiboot_uint32_t header_addr;

11 multiboot_uint32_t load_addr;

12 multiboot_uint32_t load_end_addr;

13 multiboot_uint32_t bss_end_addr;

14 multiboot_uint32_t entry_addr;

15 /* These are only valid if MULTIBOOT_VIDEO_MODE is

set. */

16 multiboot_uint32_t mode_type;

17 multiboot_uint32_t width;

18 multiboot_uint32_t height;

19 multiboot_uint32_t depth;

20 };

Listing 1.Multiboot header in Grub

The entry_addr field contains the address to which the
bootloader should jump after initialization in order to start
the operating system. The other fields are required for the
bootloader to load the a.out file and later to initialize the
file. This information is stored in the Multiboot information
structure[Mul].

2.3 Functional programming in bootloaders
The MBR will likely never be written in a language like
Haskell because of the extreme size constraints. Another
problem is, that Haskell (more specific GHC) produces an
executable binary that includes the Haskell Runtime System,

which depends on an existing operating system. The fact that
it is possible to modify GHC so that it can run directly on
bare metal was demonstrated in the development of House
[HJLT05].
Another approach is to write an “executable specifica-

tion” in a functional programming language and verify it.
Such an approach was demonstrated using the riotboot boot-
loader in [YT21]. They formalized the ARM Instruction set
architecture (ISA) and then implemented riotboot in F*, a
general-purpose proof-oriented programming language and
Low*. With Low*, the F* implementation could be compiled
into verified C code[PZR+17].

3 Interrupts
After the bootloader has loaded the kernel, further initializa-
tion is required. To allow external peripheral devices such
as keyboards and mice to interact with the operating sys-
tem, the CPU most somehow react to their events. Also, the
CPU must somehow be able to react to faulty behaviour. In
modern CPUs, this is achieved using interrupts.
The CPU differentiates between two types of interrupts:

CPU exceptions and hardware interrupts. The hardware in-
terrupts that are normally triggered asynchronously by an
I/O device such as a keyboard or mouse while exceptions
are synchronous events that are generated when the CPU
detects one or more predefined conditions[Int].

In the following, two types of interrupts are discussed, first
the CPU exceptions and second the hardware interrupts.

3.1 Handling CPU exceptions
CPU exceptions are similar to exceptions in languages like
Java or C++. If an invalid action is performed, for example
division by zero, the programming language will throw an
exception, and the programmer may catch it. If the CPU itself
tries to perform a division by zero, it will call the division by
zero interrupt handler[Int].
These handlers are not hard coded into the CPU but can

be configured using the interrupt descriptor table (IDT)[Int].
The base address to the interrupt descriptor table is stored
inside the IDTR register.

The structure for the IDT is CPU dependent and can there-
fore vary. The IDT can store up to 256 entries. Depending
on the architecture the offset is either 8 bytes for a 32 bit
architecture or 16 bytes for a 64 bit architecture and is lay
outed in memory as seen in Figure 1[Int].
Each exception corresponds to a specific offset in the in-

terrupt descriptor table. For example, the division by zero
exception has the offset 0. The interrupts with offset 0 up to
21 are well-defined. A selection is given in Table 1. Interrupts
from 22 to 31 are reserved for usage by Intel, and from 32 to
255 are used for hardware interrupts.

Interrupts can be categorized into four types: faults, traps,
interrupts and aborts[Int]. A fault is triggered, if instructions

2025-09-11 09:09. Page 2 of 1–9.

https://www.fstar-lang.org/
https://fstarlang.github.io/lowstar/html/Core.html

Review of Current Principalled Approaches to System Programming

Figure 1. IDT Gate Descriptors[Int]

Offset Description Type
0 Divide Error Fault
3 Break Point Trap
8 Double Fault Abort
14 Page Fault Fault

32 - 255 User Defined Interrupts Interrupt
Table 1. Selection of CPU exceptions

are executed that lead to errors on the CPU itself, for exam-
ple a division by zero. Traps are exceptions that are reported
immediately following the execution of the trapping instruc-
tion. An example for a trap is the breakpoint instruction
INT3. After the instruction is executed, the handler is called.
After the handler is finished, it will return after the causing
instruction. A so called Double Fault, two unhandled faults,
is a non-recoverable error and forces the CPU to shut down.
This is called an abort. The interrupts are the exception that
are triggered by peripheral devices such as keyboards. They
are explained in subsection 3.2.

3.2 Handling hardware interrupts
Interrupts are an important thing in today’s CPU. They al-
low stopping the current work on the CPU, perform some
arbitrary other work, and the switch back to where it was
previously. For example, the keyboard controller can send
an interrupt when a character key was pressed. The CPU
will receive the interrupt, stop the current execution, and for
instance print the character on screen. Afterwards, the CPU
will return to what it was doing during before the interrupt.
Interrupts are technically similar to CPU exceptions, except
that they can be configured by the kernel.

Modern Intel CPUs consist of an Advanced Programmable
Interrupt Controller (APIC). The APIC receives interrupts
from the interrupt pins of the processor, from internal sources
and from an external I/O APIC or any other external inter-
rupt controller. The local APIC then sends these interrupts to
the processor core for handling. The primary task of the ex-
ternal I/O interrupt controller is to receive interrupts events
from the system and the associated I/O devices and then
forward them to the local APIC. To handle interrupts send

by the local APIC, the processor uses the interrupt and excep-
tion handling mechanism described in subsection 3.1. The
APIC interrupts are received by the processor as interrupts
with an offset starting at 32, while the others are used by
exceptions, as already described in subsection 3.1[Int]. These
interrupts are also referred to as interrupt request (IRQ).

In today’s computer, it can be neglected between the ker-
nel and the firmware of the hardware which interrupt num-
ber / IRQ the I/O device should trigger. Depending on the
assigned IRQ number, the interrupt has a higher or lower
priority. The bits 7:0 in the IRQ indicate the interrupt priority,
whereby a lower number means a higher priority.[Int].

3.3 Reasoning about interrupts
Interrupts are extremely hard to reason about, as an exter-
nal source can alter the control flow and state. This makes
the invariants in low-level concurrent code complicated. In
[FSDG08] they describe how it is possible to reason about in-
terrupts using ownership-transfer semantics. The developed
an Abstract Interrupt Machine (AIM), a theoretical represen-
tation of a computer, and assigned an operational semantics
to each assembler instruction.

Informally, the idea is the following. In a single threaded
system the memory would be divided into two blocks. One
block (called block A) of the global memory is reserved for
interrupt handlers, and the other block is freely usable by
the thread. As an interrupt (handler) can pre-empt a running
task, the block Amust be well-formed and hold its invariants.
When the operation cli to disable interrupts is executed,
the semantic is that the block A becomes also part of block
B. Before the interrupts are activated again using sti the
memory block that was part A, must restore its invariant.
The idea can be seen in Figure 2.

Figure 2. Memory Partition for Handler and Non-
Handler[FSDG08]

This is reminiscent of Resource acquisition is initialization
(RAII), a common pattern in C++. If operations are to be
executed while interrupts are disabled, such an approach
would be possible. The idea is that a resource is acquired
and initialized when an object is created. In this case, the

2025-09-11 09:09. Page 3 of 1–9.

Olivier Lischer

constructor would disable interrupts by calling cli and sav-
ing the current state (registers). If the object goes out of
scope (is destroyed), the destructor would restore the previ-
ous state to reactivate interrupts by calling sti. In Haskell
one could write something similar by writing a function
withoutInterrupts that disables interrupts and saves the
state, executes the provided function and then restores the
state and re-enables the interrupts. This approach does not
prevent a developer from writing invalid code, but by using
the provided constructs, the developer does not think about
how to preserve the invariants.

4 Memory management
After all interrupts have been set up and the kernel can react
to them, the memory should be set up correctly
Normally, the CPU runs multiple applications simultane-

ously. However, an application developer should not care if
there is another application running at the same time. The
application developer should write his own application, as it
is the only one that runs on the CPU. To achieve this, modern
operating systems utilize the paging system from CPUs, as
one can see in the Linux Kernel as well as the documentation
for FreeBSD[Bai].
Paging is the process of translating linear addresses or

virtual addresses, addresses used by the application, to real
physical addresses. These physical addresses are then used
to access the data in the memory or I/O devices. At the
same time, the system verifies that the currently running
process is also allowed to access the given memory location.
This mechanism also has the advantage that it is possible
to provide more virtual memory than the available physical
memory by offloading unused memory to secondary storage
such as hard disks or SSDs.

The mechanism used for paging differs slightly, depending
on the CPU architecture and the used address size. An Intel
CPU has four paging modes:

• 32-bit paging
• PAE paging
• 4-level paging
• 5-level paging

[Int]
In this section, only the 32-bit paging will be discussed, as

the basic concept is the same for all modes.
The CPU has, beside General Purpose Registers, also other

kinds of register. One of them are the Control Registers. Those
are used to enable and disable features on the CPU itself. To
enable the 32-bit paging, mode the register CR0.PG must set
to 1 and the CR4.PAE to 0. PG and PAE corresponds to specific
bits’ in the register[Int].

4.1 The MMU
The Memory Management Unit (MMU) is a part of the CPU
that performs the memory translation. The MMU maps the

memory through two tables: the page directory and the page
table. The page directory is essentially an array of page di-
rectory entries (PDE). Every page directory entry has the
layout as described in Figure 3.

31 12 11 8 7 6 1 0

Page Table Address ignored 0 flags 1

Figure 3. The page directory entry layout

The bits 31:12 refer to the next structure, the page table.
The bit 7 must be 0, otherwise the CPU would work with
another mode (4-MByte pages instead of 4-KByte pages).
The bit 0 indicates, that the page directory entry is available
when set to 1.

The page table is the second paging structure and is similar
to the page directory. The primary difference between them
is that the upper part of the page table entry points to the
page frame, a 4-KByte area of the physical memory, instead of
another paging structure. In Figure 4 one can see the layout
of a page table entry. The bit 0 indicates, again, that the page
frame is available in memory when set to 1. The bits 8:1 store
various flags, such as if the page frame was changed while
loaded.

31 12 11 9 8 1 0

Address of 4KB page frame ignored flags 1

Figure 4. The page table entry layout

To tell the CPU where the page directory lies in memory,
one has to write the base address to the register CR3 The
address to the page directory must be placed into the bits’
from 12 to 31 as shown in Figure 5.

31 12 11 5 4 3 2 0

Page-Directory Base ignored Flags ignored

Figure 5. The CR3 register

TheMMU calculates the following three parts from a given
virtual address[Int]:

• the index of the page directory entry (PDE): the most
significant 10 bits (22 - 31)

• the index of the page table entry (PTE): the next 10
bits (12 - 21)

• the page offset: the least significant 12 bits (0 - 11)
In Figure 6 the translation process from the linear address

to the physical address is depicted. Using the index into the
page directory, it will find the corresponding entry. This

2025-09-11 09:09. Page 4 of 1–9.

Review of Current Principalled Approaches to System Programming

entry allows the MMU to find the correct page directory
entry and from there the right page frame. The page offset is
then used to find the physical address inside the page frame.

Figure 6. Linear-Address Translation to a 4-KByte page
using 32-Bit Paging[Int]

If during the translation an error occurs, the processor
issues a page fault. For why page faults can happen and how
they are handled is discussed in the next section.

4.2 Page fault
A page fault happens, when a process tries to read or write
from a linear memory that is not mapped to physical mem-
ory, or when the process does not have the required access
permissions. A page fault caused because the linear memory
is not mapped to the physical memory is called a pure page
fault and is not considered an error. Pure page faults should
be resolved by the installed page fault handler, as describe
in subsection 3.2. The linear address, that causes the page
fault, is available in the CR2 register[Int], the handler can
resolve the interrupt by loading the appropriated paging
structure and page from the secondary storage and map it
into the memory. As the page is now available, the interrupt
can finish here, and the execution of the interrupted process
can go on.

In all other cases, the kernel can not do anything to resolve
the interrupt. In this case the kernel can not do anything any
more must terminate the process.

4.3 Paging using functional programming
In [HJLT05] the authors describing the memory manage-
ment of the House, an operating system written in Haskell.
House utilizes the Foreign Function Interface (FFI) of Haskell
to perform low level operations. All these low level opera-
tions are abstracted by the H monad. In Listing 2 one can
see the public interface for working with pages and virtual
memory.

1 -- Page interface --

2 type Page a = Ptr a

3
4 allocPage :: H (Maybe (Page a))

5 freePage :: Page a -> H () -- caller must ensure arg

is valid

6 registerPage :: Page a -> b -> (Page a -> H()) -> H

()

7 zeroPage :: Page a -> H()

8 validPage :: Page a -> Bool
9
10 -- Virtual memory interface --

11 type VAddr = Word32

12 minVAddr , maxVAddr :: VAddr

13 minVAddr = 0x10000000

14 maxVAddr = 0xffffffff

15
16 type PTE = Word32

17 type PTable = P.Page PTE

18
19 type PDE = Word32

20 type PDir = P.Page PDE

21 data PageMap = PageMap {fromPageMap ::PDir}

22 deriving (Show , Eq, Ord)
23
24 allocPageMap :: H(Maybe PageMap)

25
26 data PageInfo

27 = PageInfo {

28 physPage :: PhysPage ,

29 writable :: Bool ,
30 dirty :: Bool ,
31 accessed :: Bool
32 }

33 deriving (Eq,Show)
34
35 setPage :: PageMap -> VAddr -> Maybe PageInfo -> H

Bool
36 getPage :: PageMap -> VAddr -> H(Maybe PageInfo)

Listing 2. Houses paging interface

PageMap is the data type that provides the entry point
to the translation of virtual addresses to physical addresses.
One can see clearly the representation of the concepts de-
scribed in subsection 4.1 in the Listing 2, with the PageMap
as the representation of the CR3 registers with a pointer to
the page directory entry. Using the getPage one can retrieve
the current state of the page, e.g. is writeable or the phys-
ical address. In the public interface, a function for freeing
a PageMap is missing. As House is written in Haskell and
therefore uses a garbage collector (GC) such a function is
not required. The PageMap will be freed as soon, as no other
part of the system refers to the PageMap.
One could write a virtual memory management system

in any programming language. One difficulty when writing
such a memory management system is, that one has to work
with the raw memory as this happens in most cases using
pointers. In C/C++ the type system can not help as much as
in Haskell with the right pointer type because C/C++ does
performmany implicit casts. The solution proposed in House
may be even extended to not only use type alias but use new
types, to prevent usage of the raw Ptr type.

5 Multitasking
On modern computers, it seems that many applications are
run in parallel. To enable a such a parallel experience, the

2025-09-11 09:09. Page 5 of 1–9.

Olivier Lischer

CPU switches between two process / tasks at speeds such
that it seems that two or more tasks are running in parallel.
This is called multitasking.

In the following I will focus again on the 32-bit archi-
tecture as the 64-bit architecture supports hardware based
context switches only while working in 32-bit mode (pro-
tected mode).

5.1 Context switching on the CPU level
A task can be described as a unit of work that a processor can
dispatch, execute and suspend. More or less anything can be
executed in a task, from the execution of a program to an
operating system service to an interrupt/exception handler.
The CPU itself provides a mechanism to save the state of a
task and to switch from one task to another[Int].

A task consists of two parts: the task execution space and
a task-state segment (TSS). The task execution space consists
of a code segment, a stack segment and one or more data seg-
ments. In addition to the task execution space, the task state
segment also saves the task state. If paging is implemented
for a specific task, the base address of the page directory is
loaded into the CR3 register. The segments, blocks of mem-
ory, are managed using the global descriptor table (GDT). The
GDT is an array of segment descriptors, a so-called segment
descriptor table. There are two types of such tables: exactly
one global descriptor table and many local descriptor tables,
called local descriptor table (LDT). As the name suggests, the
GDT is used globally by all tasks, while LDTs are task-specific
structures. The segments are not saved directly in the GDT,
but are referenced by segment descriptors within the table. A
segment descriptor contains information about the segment,
e.g. the required privilege level or the storage location of the
segment.
Before a task is executed, the current task state must be

saved inside the TSS. The task state consist of the following
items:

• Current execution space, defined by the segment se-
lectors in the segment registers

• State of various registers and flags
• instruction and stack pointer
• link to the previously executed task

After that, the CPU will load the TSS from the new task and
will populate the registers with the values from the TSS.

According to the Intel CPU Manual[Int], the processor
transfers execution to another task in one of four cases:

• the current execution performs a JMP or CALL to a TSS
descriptor in the GDT

• the current execution performs a JMP or CALL to a
task-gate descriptor in the GDT or LDT

• an interrupt or exception vector points to a task-gate
descriptor in the IDT

• the current task executes an IRETwhen theNT (Nested
task) flag in the EFLAGS register is set

While hardware based context switches seems tempting
to use it has major drawbacks. It stores and performs more
checks than often required. As most modern operating sys-
tems do not use segments any more, it is not required to save
them and perform any checks related to them. However, the
CPU saves them and this requires more operations and is
therefore not as fast as the software base context switch.

In the next section will be explained how the Linux kernel
performs task switches.

5.2 Context switching using software (in the Linux
kernel)

For a simple software based context switching, only a few
steps must be implemented:

1. Save the current state on the stack
2. Save the current stack pointer and reload a new stack

pointer
3. Restore the state of the other context
The current state consists of the stack pointer, instruction

pointer and the EFLAGS, general register and any data seg-
ment registers. If the paging structure should be changed
during the context switch, the CR3 register must be reloaded
as well.

Next, I want to show how Linux implemented the context
switch on a conceptual level. After the scheduler has decided
which task should run next, the function context_switch
is called to actually perform the switch. In Listing 3 a simpli-
fied version of the context_switch from the Linux Kernel
can be seen. The function operates on the running queue
(rq), the previously running task, prev and the task that
should run as next. First, various preparations have to be
done, generic ones as well as architecture dependent ones.
Depending on the mode of the next and previously running
task different configurations must be happened. The field mm
keeps track of the current configured memory paging setup.
For example, if the next task is a kernel task, the paging
system is not required to be updated as the kernel always
works with the real physical memory addresses. However,
the kernel must keep track of the current configured paging
setup as it could be a required information in the next task.
After all preparations, the switch happens inside switch_to.
Inside the switch_to function is architecture specific code
executed.

1 static __always_inline struct rq *

2 context_switch(struct rq *rq, struct task_struct *

prev ,

3 struct task_struct *next , struct
rq_flags *rf)

4 {

5 prepare_task_switch(rq, prev , next);

6 arch_start_context_switch(prev);

7
8 if (!next ->mm) { // to kernel

9 enter_lazy_tlb(prev ->active_mm , next);

10
11 next ->active_mm = prev ->active_mm;

2025-09-11 09:09. Page 6 of 1–9.

Review of Current Principalled Approaches to System Programming

12 if (prev ->mm) // from user

13 mmgrab_lazy_tlb(prev ->active_mm);

14 else
15 prev ->active_mm = NULL;

16 } else { // to user

17 membarrier_switch_mm(rq, prev ->active_mm , next ->

mm);

18 switch_mm_irqs_off(prev ->active_mm , next ->mm,

next);

19 lru_gen_use_mm(next ->mm);

20
21 if (!prev ->mm) { // from kernel

22 rq->prev_mm = prev ->active_mm;

23 prev ->active_mm = NULL;

24 }

25 }

26
27 switch_mm_cid(rq, prev , next);

28 switch_to(prev , next , prev);

29 return finish_task_switch(prev);

30 }

Listing 3. Context switch in Linux

For the 32-bit architecture of an Intel 86 CPU the following
happens:

• pushing various registers to the stack
• pushing the EFLAGS to the stack
• switch the stack by switching the stack pointer
• popping the EFLAGS from the stack
• popping the registers from the stack

A simplified version of the switch on an 32-bit Intel CPU can
be seen in Listing 4.

1 /*

2 * %eax: prev task

3 * %edx: next task

4 */

5 .pushsection .text , "ax"

6 SYM_CODE_START(__switch_to_asm)

7 /*

8 * Save callee -saved registers

9 * This must match the order in struct

inactive_task_frame

10 */

11 pushl %ebp

12 pushl %ebx

13 pushl %edi

14 pushl %esi

15 pushfl

16
17 /* switch stack */

18 movl %esp , TASK_threadsp (%eax)

19 movl TASK_threadsp (%edx), %esp

20
21 popfl

22 /* restore callee -saved registers */

23 popl %esi

24 popl %edi

25 popl %ebx

26 popl %ebp

27
28 jmp __switch_to

29 SYM_CODE_END(__switch_to_asm)

30 .popsection

Listing 4. Context Switch using software

After the context switch happened clean up work must be
done, such as releasing locks and the new task takes over.

5.3 Task switching using continuations
In [KS07] the authors describe how continuations could be
used to perform system calls.

1 data Req r = Exit -- destruction of the process

2 | Read (Char -> CC r (Req r))

3 | Write Char (() -> CC r (Req r))

4
5 interpret world pcb Exit = do liftIO (sClose (

psocket pcb))

6 return world

7 interprt world pcb (Read k) = return world {jobQueue

= jobQueue world ++ [JQBlockedOnRead pcb k]}

8
9 service p req = shiftP p (\k -> return (req k))

10
11 cat p = do input <- service p Read
12 service p (Write input)

13 cat p

Listing 5. Simplified system calls structure

The Read request from Listing 5 contains a continuation
that should be executed after the successful read. The type
of the continuation shows that it should consume the read
character and the yielding a new continuation as an answer.
This is normally the Exit request to terminate the process.
The Write request works similarly but writes a character
and executes a continuation that does not have any input
arguments.
Using the function service a user application can per-

form a system call and therefore a context switch. Using this
simple interface, one can write a really basic user application
cat.
The system calls are handled in the interpret function

that is invoked by the scheduler. The scheduler passes an
old world and expect a new world from interpret. The
world data structure would be the whole state of the oper-
ating system, such as job queue. Additionally, to the world
the interpret takes the process control block (PCB) that de-
scribes various resources that are allocated to the current
process as well as the request from the user application.
In the House operating system, they also use a continua-

tion like system.[HJLT05]While continuations can be a good
abstraction, in the end one has to resemble to C / assembly to
change the register on the CPU itself. The alternative would
be to use the hardware context switch mechanism provided
by the Intel CPUs. However, this would limit the written
software to Intel CPUs and can not be run anywhere else.

6 Kernel API and user applications
An application developer should never bother how the kernel
performs memory management or do I/O. For example, if the
application develop wants to read a file from the file system,
he will instruct the kernel to read the file and returning its

2025-09-11 09:09. Page 7 of 1–9.

Olivier Lischer

content. This is usually done using so called system calls, the
API to the kernel.

6.1 UNIX / POSIX API
Most operating systems provide a standard C library called
libc. Many system calls are hidden behind such a library /
API.

To open a file using the libc under Linux, one could use
the open function.

1 int open(const char *pathname , int flags , ...

2 /* mode_t mode */);

Listing 6. Open a file using libc

From the man page:
On success, open(), openat(), and creat()
return the new file descriptor (a non-negative
integer). On error, -1 is returned and errno is
set to indicate the error.

This function has two problems: the return value is a int
that acts as a file descriptor and the error code at the same
time. Also, nothing prevents the developer to use the error
code, a negative integer, to use as a file descriptor.

In the next section, I want to show how one could design
an API that is more expressive and forces the developer to
check the return value.

6.2 Alternative kernel API
In subsection 5.3 I already discussed how [KS07] modelled
a minimal system call API using continuations in Haskell.
Such an API could be easily extended to support all kinds of
system calls. Because Haskell is a strongly typed language
and its type system is more expressive than C’s, failures
could also be modelled within the type system level.
To indicate that a read could fail, one could use the type

Either.
1 type Result a = Either Error a

2 data Error

3 data FileDescriptor

4 data Req r = Exit -- destruction of the process

5 | Read (Result Char -> CC r (Req r))

6 | Write Char (Result () -> CC r (Req r))

7 | Open String (Result FileDescriptor ->

CC r (Req r))

Listing 7.Model failure on type system level

As one can see in Listing 7, in the case of a successful read,
the kernel would call the continuation using a Right and a
character. In the error case Left and an error type could be
used.

The system call to open a file can be modeled in the same
way. In contrast to the Linux version one is forced to look
at the result and can not access the file descriptor without
prior checks, something that is not possible in standard C.

While it is not feasible to change the fundamental library
written in C to a library written in Haskell, one could still use
some design principles from Haskell. The function signature

for open could be changed to something in like in Listing 8.
While the compiler does still not enforce checking the return
value for success, the return value is not a plain integer
anymore but capsuled inside a result structure together with
the information for success or failure.

1 struct Result {

2 int success; // 0 = false , otherwise true

3 int errno;

4 int fileDescriptor;

5 }

6
7 Result open(const char * pathname , int flags , ...

8 /* mode_t mode */) ;

Listing 8. Alternative open in C

7 Relevancy
Computer Systems are a fundamental part of our daily lives
(Windows, Linux, OS X, ...) as they power our everyday
computers and smartphones. It is therefore helpful and useful
to have a basic understanding of how our devices work. This
is one part I have tried to achieve in this article.

I have also tried to show how certain parts of an operating
system can be implemented in a functional programming
language or using techniques that are common using func-
tional programming. As the user expected that the devices
to function reliable in every situation and at all times, the
system must work as smoothly as possible. In certain use
cases, it is even necessary for the entire software stack to be
verified as correct. Such applications can be in the aerospace
or medical sectors. In such cases, the seL4 kernel could be a
possible option, as it is already verified[KEH+09].
However, proving a system written in an imperative lan-

guage can be a difficult task. Since many imperative lan-
guages like C allow side effects during the execution of a
function, it is not guaranteed that the same function will pro-
duce exactly the same system as an output for a given input.
In a pure programming language like Haskell, one tries to
avoid site effects wherever possible. If it is nevertheless nec-
essary, one can only perform site effects explicitly and note
this in type system. In addition, the side effects are limited to
all input and output operations. All other functions can be
proven with the help of proof assistants such as Isabelle/HOL
or Coq.

8 Conclusion
It is not possible today to write the complete operating sys-
tem in a language like Haskell. The direct interactions with
the hardware make it impossible to use Haskell alone for
such a task. However, it is possible to write operating sys-
tems mostly in another language than C/C++, and fallback
to C/C++ where required, as seen in the following selection
of non C/C++ based operating systems:

• Redox using Rust
• MirageOS using OCaml

2025-09-11 09:09. Page 8 of 1–9.

https://www.redox-os.org/
https://mirage.io/

Review of Current Principalled Approaches to System Programming

• House using Haskell (abandoned)
But where pure languages like Haskell are a good fit is

to implement a executable specification for verification pur-
poses.
The abstract specification describes what a given system

should do, without making any assumption how it should
do it. Using Haskell, one could then write a executable speci-
fication. Its purpose is to fill in the detail that are left open in
the abstract specification. The last step is to write an imple-
mentation. Such an implementation could be written using
C. The crucial task here is the translation from C to a proof
assistant as Isabelle/HOL. The developer of the seL4 kernel
used this approach.
Another strategy could be to keep the low-level interac-

tions in C, but all hardware independent task could bewritten
in a more high-level language. In this case, the high-level
language would call the C functions through a foreign func-
tion interface. This way, only a small portion of code must
be written in C. This approach was used in the development
of the House operating system.

A third possible approach is to write the code in any high-
level language and compile it to C.
In section 5 I described how multitasking and context

switches works. One can build great abstractions with the
help of continuations. However, the essential work for the
switching still has to be done with assembler, as the CPU
registers have to be changed manually. Unless, one uses
the hardware mechanism, which is only provided by Intel
CPUs, to switch context, as the update of the registers is
done automatically by the CPU.
In subsection 6.2 I showed how a more expressive API

could be designed, that forces the API user to check the
return values. However, such an API is only possible if the
functions to handle system calls are also written in Haskell.
Otherwise, one would only write a thin abstraction layer
around the real system calls.
In general, one can say, it is not required to write a com-

plete operating system using C/C++. While one will always
must write some minimal assembler instructions, these can
always abstracted away using FFI. A promising alternative
to C/C++ is Rust. As Rust allows one to directly interact
with the hardware, it also has an expressive type system and
many useful features from the ML programming language
family such as pattern matching that allows to write simple
and expressive code.

References
[Bai] Danilo Baio. Chapter 7. Virtual Memory System.

https://docs.freebsd.org/en/books/arch-handbook/vm/.
[FSDG08] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying

low-level programs with hardware interrupts and preemptive
threads. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’08,
pages 170–182, New York, NY, USA, June 2008. Association for
Computing Machinery.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew
Tolmach. A principled approach to operating system construc-
tion in Haskell. In Proceedings of the Tenth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’05, pages
116–128, New York, NY, USA, September 2005. Association for
Computing Machinery.

[HPD] HP Desktop PCs - Computer beeps or a light blinks dur-
ing startup | HP® Support. https://support.hp.com/us-
en/document/ish_1997210-1528385-16.

[Int] Intel. Intel® 64 and IA-32 Archi-
tectures Software Developer Manuals.
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-
ick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: Formal verification of an OS
kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pages 207–220, Big Sky Montana
USA, October 2009. ACM.

[KS07] Oleg Kiselyov and Chung-chieh Shan. Delimited Continuations
in Operating Systems. In Boicho Kokinov, Daniel C. Richardson,
Thomas R. Roth-Berghofer, and Laure Vieu, editors, Modeling
and Using Context, volume 4635, pages 291–302. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[Mul] Multiboot Specification version 0.6.96.
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html.

[PZR+17] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi,
Tahina Ramananandro, Peng Wang, Santiago Zanella-Béguelin,
Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bharga-
van, Cédric Fournet, and Nikhil Swamy. Verified Low-Level
Programming Embedded in F*. Proceedings of the ACM on Pro-
gramming Languages, 1(ICFP):1–29, August 2017.

[ROG] ROG Strix X570-E Gaming | Motherboards | ROG Global.
https://rog.asus.com/motherboards/rog-strix/rog-strix-x570-e-
gaming-model/helpdesk_manual/motherboards/rog-strix/rog-
strix-x570-e-gaming-model/.

[YT21] Shenghao Yuan and Jean-Pierre Talpin. Verified functional pro-
gramming of an IoT operating system’s bootloader. In Proceed-
ings of the 19th ACM-IEEE International Conference on Formal
Methods and Models for System Design, MEMOCODE ’21, pages
89–97, New York, NY, USA, December 2021. Association for
Computing Machinery.

2025-09-11 09:09. Page 9 of 1–9.

https://programatica.cs.pdx.edu//House/

	Abstract
	1 Introduction
	2 The boot sequence and the bootloader
	2.1 Hardware initialization
	2.2 Loading and executing the bootloader
	2.3 Functional programming in bootloaders

	3 Interrupts
	3.1 Handling CPU exceptions
	3.2 Handling hardware interrupts
	3.3 Reasoning about interrupts

	4 Memory management
	4.1 The MMU
	4.2 Page fault
	4.3 Paging using functional programming

	5 Multitasking
	5.1 Context switching on the CPU level
	5.2 Context switching using software (in the Linux kernel)
	5.3 Task switching using continuations

	6 Kernel API and user applications
	6.1 UNIX / POSIX API
	6.2 Alternative kernel API

	7 Relevancy
	8 Conclusion
	References

