Voxel Assembler

3D Web configurator based on CAD-Data

Weiterbildung OST, MAS Software Engineering

Submitted by
Mauro Hefti
Uitikonerstrasse 33
8902 Urdorf

Roman Schweri
Wagenhauserstrasse 32
8260 Stein am Rhein

Tobias Wiesendanger
Rosenweg 1b
5040 Schoftland

Supervisor
Manuel Bauer

Degree program
MAS-SE 2023-25

1 Preface

This thesis is the result of our joint efforts as part of the Master of Advanced Studies at OST. Over
several months, we, Tobias Wiesendanger, Roman Schweri, and Mauro Hefti, have worked

collaboratively to research, design, and develop the solution presented in this document.

We would like to thank our supervisor, Manuel Bauer, for his valuable guidance and support
throughout this project, as well as our co-supervisor, Tobias Buichel, for his insightful input on our
frontend during the mid-review. We would also like to thank OST for providing us with the knowledge

and foundation that prepared us for this master thesis.

Masterarbeit, MAS-SE 2023-25

2 Table of Contents

T PTEIACE ..t 2
2 Table Of CONENESoiiiiiiiii e e e e e 3
3 List of AbDreviations USEdoooiiiiiiiiiiiiiie et 6
4 INTOAUCTION ... s 7
4.1 Relevance of the Topic and Motivation ... 7
4.2 Mensch und MasChine ... 7
4.3 ROIE DESCIIPON ..o 7
4.4 Problem Description and Thematic Delimitation..............ccoooiiiiici i, 8
4.5 ODJECHVES ..o 8
4.6 Structure of the Paper........ooo i 8
4.7 HIgh [E€VEl OVEIVIEW ... oo e e e e e e e e e e e e e e e e ar e 8
5 PrOJECE PlaNNiNg. ... e eeiieiiiiiiiiiiit ettt n e e nnnnnes 12
5.1 Project Approach MOEL......... oo 12
5.2 System Delimitationooo i 13
5.3 Project Planning and EXECULIONccoooiiiiii i 14
5.4 Prioritization of Tasks and Requirements............cooooioiii i, 16
5.5 RISKManNagemeENnto eeaee 17
5.6 Autonomy and ResponSiDilityccoooeriiiei oo 18
5.7 Project Management TOOIS USEd..........coouiiiiiiiiiiiii e 18
6 Requirement SPeCIfiCationccooiiiiiiiiiiii e 19
6.1 Functional ReqQUIrEMENTS ... e e s 19
6.2 Non-Functional ReqQUIremMENtScoooiiiiiiii e 34
7 DOM@IN IMOUEL.....eeeeiiieeee e nn e e 35
T DS GNS . e 36
7.2 USEr ManagEmMENT oot e e e e e e et e e e e e e e e e e er e eaaeeennen 36
7.3 Product & Category SYStemMo 38
7.4 Autodesk Automation APl / Primary entiti€s...........ooovvvvieiiiiiiiiiice e 40
7.5 VIBWADIE ... 42

VoxelAssembler Site 3/ 108

Masterarbeit, MAS-SE 2023-25

A T O7- Ted 1= IS V] (= o o PRSP PPRUPR 43
7.7 EMail SYSEEM .. .ot e et e e e e e e e e e e e e e e e e e ana 44
7.8 NOfication System ... 44
7.9 WOTKT@SK .ttt ettt e et e e e e e e e e e e e e e e e aees 45
7.10 Product Configuration.............ooeeiiiiiiiiiiiie e 46
7.11 ACHION SYSIEIM ... e —— 47
712 Model Parameter CoNStraintScooiiiiiiiiii e 48
7.13 RS T=1 111 0T TSP ERRTR PP 54
7.14 Versioning iNtrOdUCHIONoooiiiiiiii 55
8 System ArchiteCture & DESINcooiiiiiiiiiiiiie e 61
8.1 AFCHITECIUIE ... 61
8.2 SOIULION DESIGN.. ..o 69
8.3 Database DeSignccooiiiiiiiiiie e 71
8.4 DeSigN PriNCIPIES ... 72
8.5 Technologies & FrameEWOrKS.........ccooii i 73
8.6 BUIIdING BIOCK VIBW ... 75
8.7 Application Flow Sequence Diagramcccooiiiiiiiiiiiiii e 78
LS I a1 o] 1= 0 0= o1 =1 i) o 1 79
9.1 Feature Implementationoooo e 79
9.2 Work Task System & Background JODSccoiiiiiiiiiiiiiiiieee e 86
9.3 Deployment Strategyccooeeeeeeieeeeee e 88
9.4 RePOSIHOIY OVEIVIEWo 89
10 L@ U= 11V NS0 =1 o o= T 91
10.1 TeStNG StrategY .o oo 91
10.2 Static Analysis and Formatting TOOIS............uuuuiiiimiiii e 95
10.3 DevOps & Build AUtOMatioNcoooiiiiiiiiiieeeeeeee e 96
10.4 TechniCal DEDt ... 100
11 Value and Evaluation ... 101
11.1 Value for Users & COMPANIESccooeviiiiiiieiiieeeeeee et 101
11.2 Technological COMPIEXITY.......cciiieeiiiieiieee e e e e e e e eeaees 102

VoxelAssembler Site 4 /108

Masterarbeit, MAS-SE 2023-25

12 (070131 (1o [P TP 103
13 ATACAMENTS ... 107
13.1 I 41T =] oL o £ PP 107
13.2 GItLAD ISSUES ... e 107
14 Declaration of Academic INtegrityooooimiiiii e 108

VoxelAssembler Site 5/ 108

Masterarbeit, MAS-SE 2023-25

3 List of Abbreviations Used

Abbreviation

Full Name

Description

APS Autodesk Platform Service 3" Party Service

SVF Simple Vector Format Viewer format used

Step Standard for the exchange of
product data

.iam Inventor Assembly File

.ipt Inventor Part File

idw Inventor Drawing File

API Application Programming Interface

BOM Bill of Materials

MPC Model Parameter Constraints

Viewable A format that can be handled
by the Autodesk viewer (SVF)

ADR Architectural Decision Record

CAD Computer Aided Design

EF Core Entity Framework Core

GUID Globally Unique Identifier

URN Uniform Resource Name

clicD Continuous Integration / Continuous

Deployment

MuM Mensch und Maschine

SPA Single Page Application

ECS Elastic Container Services

laC Infrastructure as Code

Inventor CAD-System Software from Autodesk

VoxelAssembler

Site 6/ 108

Masterarbeit, MAS-SE 2023-25

4 Introduction

4.1 Relevance of the Topic and Motivation

Modern customers expect personalized products rather than one-size-fits-all solutions

Manufacturing sector faces increasing pressure for configurable products.

Time-consuming manual configuration processes and costly quote preparation for products that may

not sell are the norm. Engineering resources are tied up in repetitive customization work.

Traditional CAD-based workflows are inefficient for customer-facing configuration and there is a

need for web-based, accessible tools that non-technical users can operate.

4.2 Mensch und Maschine

Mensch und Maschine (MuM) is a leading Autodesk reseller and solution provider that serves
thousands of customers across various industries including mechanical engineering, manufacturing,
construction, and architecture. As an Autodesk Platinum Partner, MuM not only distributes CAD
software but also develops custom solutions and provides consulting services to help companies
optimize their design and engineering workflows.

For MuM, a web-based configuration solution represents both a business opportunity and a way to
add value to their customer relationships, but we want to make it clear that we did not develop this
web application for them. We had the opportunity to use resources like GitLab and such and for that

we wanted to thank them.

4.3 Role Description

All the team members were highly involved in the planning phase.

Roman Schweri mainly worked in the frontend. He was responsible for building the user interface
and providing a good user experience. In addition, he coordinated with Mauro and Tobias to integrate
missing or fix buggy API endpoints. He contributed to architectural decisions and was also involved

in frontend testing, design refinements and the overall usability of the app.

Mauro Hefti did a lot of the initial setup and later worked mainly in the backend. Most of the

deployment and containerization was done by him.

VoxelAssembler Site 7/ 108

Masterarbeit, MAS-SE 2023-25

Tobias Wiesendanger which provided the initial idea to this master thesis was focused on a lot of
organisational task and preparation before starting. During the project he was focused on the

backend and presenting architectural decisions to the team.

4.4 Problem Description and Thematic Delimitation

Currently customizing products according to the customer needs, takes a lot of time and does not

guarantee selling it. Too much unpaid time is used in a lot of industries.

Because of the complexity and time-consuming work many industries don’t even provide this service

to begin with.

4.5 Objectives

A web-based configurator should be created to no longer need specialized people (CAD-Designer)
and specialized expensive software.
The customer should be able to configure his needs by himself or maybe with a sales representative

without knowing how to operate cad software or even needing to have such software.

The company should be able to go from planning to manufacturing in the shortest time possible, with
the least amount of manpower involved.
By not doing the planning manually no money is lost in that step, when in the end the customer does

not buy the product.

4.6 Structure of the Paper

This thesis is structured to provide a comprehensive overview of the VoxelAssembler project, from
initial planning through implementation and evaluation. First, some thoughts were put into explaining

the main idea and how we want to achieve this, and then the more technical details are explained.

4.7 High level overview

This is a high-level overview of what will be created and what the target of this master thesis is. The

topic is highly complex and will be further explained step by step throughout this document.

VoxelAssembler Site 8/ 108

Masterarbeit, MAS-SE 2023-25

4.7.1 Step 1 CAD-Environment

Customer prepares Product in the CAD Software called Autodesk Inventor.
It is possible to use parametric modeling and logic by leveraging a

technology called iLogic. (simple programming Language)

When finished the product is configurable locally, but a specialized user

and a license for Autodesk Inventor is needed.

4.7.2 Step 2 MuM.VoxelAssembler

The next step for the cad designer is to describe how the configuration
should look like in the frontend. There is a descriptive language called mpc
(model parameter constraints) that allows to define what control should be
used for the parameter and what constraints does it have. (min, max,

interval etc.) Those are all defined in this descriptive language.

To make this user friendly an Inventor-Addin was created to allow doing this visually. The Addin is

shown below working inside of Autodesk Inventor.

VoxelAssembler Site 9/ 108

Masterarbeit, MAS-SE 2023-25

4.7.3 Step 3 App-VoxelAssembler
The frontend then allows to upload this CAD-Data by creating a new
product version for a product.
The model parameter constraints are then interpreted and allow to build
the frontend. On this product version the end-user is now able to
configure his product by using the created controls and then firing an

action on it.

What actions are available is also highly customizable. The product comes with some default, so
called AppBundles. Each of those AppBundle has its own functionality. The most important one
does apply those parameter changes to the model (see next step). More details are explained later

in this documentation.

Below shown is the web interface for App-VoxelAssembler that allows a user to change parameter
values and use actions on it like exporting a pdf.

Voxel Assembler Catalog Documentation = English voao% ‘DA

Menu ®

@ Profile
Product with Configure functionality ®

Q configurations

B Work Tasks
General Dimensions
§ Length @
& Settings > S5
59 Products 5
None
Work Tasks Admin
a8 Tabangle ®
&, Users 45 v
@ App Bundles Finish ® oS
e Breitband-Finish v
o :
2 ¥ 3 SRS A E
©Q Actions Depth @
625
Exprt50M] Eoon shet e o0

VoxelAssembler Site 10/ 108

Masterarbeit, MAS-SE 2023-25

4.7.4 Step 4 App-VoxelAssembler

Output can be used to start manufacturing. The output could be a

Below shows one of the possible exports, which is a pdf file from the drawing.

technical drawing, CAD-Data or whatever the action created.

3D Drawing BOM Export @

export_drawingExport.pdf 31.08.2025 15:54 System

Export BOM Export Sheet Metal DXF Export PDF

VoxelAssembler Site 11 /108

Masterarbeit, MAS-SE 2023-25

5 Project Planning

5.1 Project Approach Model

We knew what we need to build. Mainly because Tobias Wiesendanger works in that industry and
talks daily to customers that could use this. Step one was starting off with a kick-off where all team

members were brought up to speed.

We decided on lots of methodologies that day. For good communication we want to do a simple
weekly meeting where each team member presents what he has done that week and what he is

planning on doing.

Each meeting is documented. All meeting notes can be found in the attachments under

“\04_Project_Management\02_Meeting_Notes”.

For planning we decided on using GitLab with Issues. Which lead to us creating milestones and

assigning issues to each one. By having a weekly we had continuous feedback for all members.

At the end of each milestone a testing session was conducted for validation. Those were recorded

and can be viewed in the attachments under “\03_Quality_Assurance\01_Testing_Sessions”.

VoxelAssembler Site 12/ 108

Masterarbeit, MAS-SE 2023-25

5.2 System Delimitation

5.2.1 Context Diagram
This context diagram illustrates the VoxelAssembler system architecture and its interactions with

external actors and services.

Out of Scope Systems

Payment Processing \

l Order System Third-party CAD Systems

Manufacturing Integration

l B Developer I I 2 Company User I I 2 Customer I ® Administrator l

l VoxelAssembler System

Frontend
React

¢

Backend APT
.NET Core REST API

A AA

= |]

CAD Integration Tools

Authentication System
NET Identity

Export Functionality
PDF, BOM, STEP, CAD

Database

MPC System

PostgresaL + EF Core

n
VieWwabls Generst tion Assembly & Constraints Tool
SVF/SVF2 Format 3 A

iLogic Library
CAD Automation

User
Role-based Access Control

Action System
Workflow c
P

roduct & Category

Notification System Cache System Email System
Real-time Notifications Email Templates & Delivery

re

!

o Emallservce Provider sos veratve srvice | Autodesk Inventor

SMTP/SendGrid/etc.

5.2.2 System Context/ Scope

Inside System Scope:

Frontend Web Application - React-based configurator interface

Backend API - .NET Core REST API

Database - PostgreSQL with Entity Framework Core

Authentication System - .NET Identity endpoints

Configuration Management - Product and category management

Model Parameter Constraints (MPC) system

User Management - Role-based access control (CAD-Designer, End User, Administrator)
Viewable Generation - SVF/SVF2 format creation via APS Derivative Service

Action System - Workflow management for configurations

Export Functionality - PDF, BOM, STEP, native CAD formats

VoxelAssembler Inventor Add-in - Separate tool for preparing assemblies and constraints

iLogic Library - External library for CAD automation

VoxelAssembler Site 13/108

Masterarbeit, MAS-SE 2023-25

Outside System Scope:

Order system to order configured products

Payment Processing - Not included in current scope
Manufacturing Integration - External systems for production

Third-party CAD Systems - Only Inventor is supported

5.3 Project Planning and Execution

5.3.1 Schedule, Milestones, Iterations
We planned with milestones to get a schedule. At the end of each Milestone a testing meeting was

planned.

Preparation & Planning

Prepare everything needed to officially start the master thesis.

Phase 1
This milestone was focused on setting the foundations. User management, Authentication,
Categories, Products and lots of settings were implemented in this Milestone. The Milestone Started

March 31 and was finished on 31 May just in time.

Phase 2

In phase 2 the main functionally evolving around the configuration functionality was implemented.
For this lots of things in the backend had to be implemented, like app bundles, actions, version
management, activities and configuration management. Whatever was finished in the backend was
then implemented in the frontend. Due to time a lot of Phase 3 planned features were already
handled in this milestone. Many tasks were intermingled and had to be implemented together. Phase

2 was planned from June 1 to July 31 and was finished with about a week delay.

Phase 3

Phase 3 is focused on finishing all the must have features. Some more extended functionality for the
configurator was implemented. Things like showing a BOM and a drawing were implemented now.
In the frontend some smaller but visually appealing things were created like the possibility to change
the design by choosing colors. This milestone was running from August 1 to August 31 and

completed in time.

VoxelAssembler Site 14 /108

Masterarbeit, MAS-SE 2023-25

Small Task
This milestone was constantly changed with small task that we had to keep track of but weren’t that
time consuming. Mostly things found from the testing session were added to this. There is no fixed

end date for this milestone.

Stretch Goals

A lot of stretch goals were planned from the beginning, and even more were defined while
developing. To keep track of them this milestone was used. This one also had due to its nature no
end date and will stay open at the end if not all stretch goals were implemented. Which is highly

likely.

Project completion

This milestone was used to keep track of the finishing tasks that need to be completed for handing
in the master thesis. Like this documentation. This will end with the completion date of the master
thesis which is 15.09.2025.

Master Thesis Milestones Timeline

Project Completion -
Stretch Goals
Small Tasks

Phase 31

Phase 2

Phase 1

Preparation & Planning _
N i A S N i > 3 >
> & 3 S S S O Q
~ ¥ g S S S v F
Timeline (2025)

I

VoxelAssembler Site 15/ 108

Masterarbeit, MAS-SE 2023-25

5.3.2 Time tracking

For time tracking issues were used. Time spent was constantly logged on a specific issue. To write
a time report and keep track, a small tool was written that outputs a markdown file with time added
together for each team member. All reports can be found here:

“104_Project_Management\01_Time_Reports”.

At the start we did not estimate time for an issue, which we later changed for most issues. This can

be used to get a velocity for future tasks.

The final report looks like this:

User Total Time
Tobias Wiesendanger 762h
Mauro Hefti 397h
Roman Schweri 386h

5.4 Prioritization of Tasks and Requirements

During planning, we categorized all requirements into mandatory and optional features. This ensured
a clear focus on delivering a working Minimum Viable Product (MVP) while leaving room for

additional capabilities if time allowed.

5.4.1 Mandatory
The must have features mentioned in section 6 where clearly the mandatory Todo’s. Still, we
sometimes decided to fully build a feature before moving on with a clear commitment to finish the

project.

5.4.2 Optional

Optional requirements were defined as "nice-to-have" features that extend usability, performance,
or integration but were not critical for the MVP. They were placed in a lower priority and only
addressed if milestone progress allowed. In the end we ended up making most of the optional

features and even added more as the project progressed.

VoxelAssembler Site 16 / 108

Masterarbeit, MAS-SE 2023-25

5.5 Risk Management

5.5.1 Risk Analysis

ID Risk Description Impact Likelihood
R1 | Scope too large for a three-student team High Medium
R2 | Third-party APls may change or break Medium Low

R3 | Ateam member may drop out or become unavailable Medium Low

Different customers may require different configurators (no one- _ _
R4 Medium High
size-fits-all solution)

5.5.2 Risk Mitigation Strategies

5.5.2.1 R1 — Scope too large for a three-student team

We have addressed this risk from the start by preparing thoroughly and defining a clear MVP
(Minimum Viable Product) scope. Weekly meetings and milestone planning allow us to track
progress effectively. If needed, we can reduce non-critical features to stay within time and resource
constraints.

5.5.2.2 R2 - Third-party APIs may change or break

We rely on established APlIs that have been in use for several years. Some of these APIs provide
official client libraries maintained by their vendors, reducing the risk of sudden incompatibilities.
Automated testing will help us identify potential issues early, enabling quick responses. Autodesk

also communicates API changes in advance, allowing us to prepare accordingly.
5.5.2.3 R3 - A team member may drop out or become unavailable

We foster a collaborative team environment with shared responsibilities and regular knowledge-
sharing sessions. Code reviews ensure that all members remain familiar with different parts of the

project, minimizing the impact if one member becomes unavailable.
5.5.2.4 R4 - Different customers may require different configurators

We are aware that customers can have varying needs and requirements. To address this, we are
designing a modular and flexible architecture with support for plugins or configuration options. This
will allow us to adapt the configurator for different customer demands without developing entirely

separate solutions.

VoxelAssembler Site 17 /108

Masterarbeit, MAS-SE 2023-25

5.6 Autonomy and Responsibility

We worked independently and took responsibility for our tasks. Whenever we encountered questions
or challenges, we first discussed them among ourselves to find the best possible solution. For idea
generation or to get an additional perspective, we also made use of Al tools such as ChatGPT. For
more fundamental questions that affected the entire project, we consulted our expert, Manuel Bauer.

In addition, for topics related to Autodesk, we were also in contact with Autodesk support.

5.7 Project Management Tools Used

At the beginning of this thesis, we discussed and evaluated many project management and
collaboration tools. We required tools for version control, task tracking, communication, meetings
and documentation. Since we were a small team working remotely, the chosen tools needed to be
easy to use, easily accessible and integrate well with each other. That's why we selected the

following tools.

5.7.1 Version Control, Issue Tracking and Time Planning

For source code management we relied on Git in combination with GitLab. Git provides version
control, so every team member can work independently while keeping our source code
synchronized. GitLab was used as the central collaboration platform because it offers more than just
version control. We used GitLab Issues as our task management tool to track tasks, bugs and to
plan our milestones. For time planning we also used GitLab, since we could track the time directly

on the issues, which provided us a great overview of the time we used for each task.

5.7.2 Communication and Meetings

Since we are not in the same room every day, we had to find a way to communicate as efficient as
possible. For short exchanges we used WhatsApp, which allowed us to clarify minor questions and
call spontaneous meetings. For our weekly meeting we created a Discord channel. This provided us
with the necessary tools such as voice & video chat as well as screen sharing so we could review
code together and keep the meetings as efficient as possible. Meetings with our supervisor were
held using Microsoft Teams, since it’s the standardized tool for professional communication and was

integrated into the infrastructure of OST.

5.7.3 Documentation

For all the documentations we wrote, except this one, such as all our architectural decision records
(“\02_Additional_Product_Documentation\05_Architectural_Decision_Records\”’), meeting
notes, or other relevant documentation, we used Markdown. All three of us know markdown and use
it regularly in their daily work. Markdown allowed us to write documentation and notes in a simple
and lightweight format, while still being able to generate well-structured and easy to read documents.

Another advantage of Markdown is, that it can be easily versioned using Git.

VoxelAssembler Site 18 /108

Masterarbeit, MAS-SE 2023-25

6 Requirement Specification

6.1 Functional Requirements

6.1.1 Must-Have Features

Authentication & Authorization

User Roles: All Users

Allow the user to register, login or reset their password to gain access to the software. Assign user
roles to specific users. Optionally, we allow the user to restrict the domains that can be used for

authentication by creating a domain whitelist. This feature is listed in the optional features section.

APS Authentication

User Roles: Administrator

APS credentials are needed for most of the services used in the software. Allow the user to set their
APS client id, secret and scope. The APS client secret will never be visible in the frontend for security
reasons. If the user wants to update the settings, he needs to paste his APS client secret to be able

to save changes.

Category & Product Management
User Roles: Administrator, Developer
Allow the user to create, update and delete categories & products. Also allow the users to create

versions of products.

Add App Bundles
User Roles: Administrator, Developer
Allow the user to upload app bundles to mirror actions that can be executed on the Autodesk Inventor

instance.

Action system
User Roles: Administrator, Developer
Allow the user to create actions that run specified app bundles. Allow the user to assign an action to

a specific product version and to specific user roles.

VoxelAssembler Site 19/ 108

Masterarbeit, MAS-SE 2023-25

Default Actions
User Roles: All Users
Provide default actions so the user does not have to create the most common actions by himself.
Default actions are:
- Export PDF
- Export Step
- Export BOM
- Export Native
- Calculate Cost (Pricing see below)
- Update Parameters

- Extract Parameters

Initialize Buckets

User Roles: Administrator, Developers

Allow the user to initialize the needed buckets. Buckets are Amazon S3 buckets that contain the files
(CAD-Data, export formats etc.) that can be downloaded by the end user. Files can be deleted from
a bucket. Also, a bucket manager is available to check what buckets exist and what objects are
added to them.

Model Parameter Constraints
User Roles: Administrator, Developer
Provide an Inventor Addin to easily describe parameters that will be visible in the configurator

frontend. Allows to package a CAD-Data zip ready for upload to App-VoxelAssembler.

Configurator

User Roles: All Users

Allow the user to select a product and start the 3D configurator to this product. In here the user shall
be able to run predefined actions like configuring the product or getting the BOM of his configuration.
The user can set input values based on the MPC and run the actions. The user can also view the

3D model, the 2D drawing, the BOM and the exportable files if existing.

Configuration Management
User Roles: All Users

Allow the user to save, delete and share his configurations.

VoxelAssembler Site 20/ 108

Masterarbeit, MAS-SE 2023-25

Account Settings
User Roles: All Users

Allow the user to change his account details and change his login credentials.

Cache Settings

User Roles: Administrator

Provide a cache system that allows to load configurations much faster. The cache notices if a
configuration was already made (1:1) and returns the cached data immediately. This helps a lot for

actions that take a few minutes.

Change Language
User Roles: All Users

Allow the user to change the language. Predefined languages are German and English.

User Documentation
User Roles: All Users
Provide a customer documentation for administrators and users to describe the usage of the
software. Add preparation steps for how to constrain a 3D-CAD Model for VoxelAssembler.

Document good practice.

iLogic Library
User Roles: Administrator, Developer

Provide a library that helps in placing models in 3D-Space.

Pricing
User Roles: All Users
For pricing many different solutions are needed. This will vary a lot depending on the customer.

Prices could come from many different systems. As a base a simple solution should be implemented.

6.1.2 Optional Features
Toggle Categories & Products Visibility
User Roles: Administrator, Developer

Allow the user to control what categories and products are visible in the catalog.

3D Viewer Fullscreen
User Roles: All Users

Allow the user to display the 3D viewer in full screen mode to explore the product better.

VoxelAssembler Site 21/108

Masterarbeit, MAS-SE 2023-25

Design Settings
User Roles: Administrator

Allow the user to set their own corporate identity including logo, company name and company colors.

Anonymous Users

Allow anonymous users to use the configurator with limited functionality.

Domain Whitelist
User Roles: Administrator

Allow the user to create a whitelist with domains that are allowed to register.

Clear Cache
User Roles: Administrator

Allow the user to clear the cached data.

Create Actions from App Bundles

Allow combining multiple app bundles to one action.

3D Viewer Extensions
User Roles: Administrator, Developer

Allow the user to enable & disable extensions of the 3D viewer for specific user roles.

Allow running instance
Keep Autodesk Inventor Instance running to provide a better performance to the user. Allow the user

to toggle this and set the time how long the instance should be running in the Ul.

Manage Bucket Items
User Roles: Administrator
Allow the user to display the content of a bucket as well as to delete the content or the bucket itself.

Allow to check what buckets exist for used credentials.

Add native data to vault

Provide functionality to download native data and to write it to Autodesk Vault.

Configuration sidebar

Provide a collapsible sidebar to display configuration parameter. Add tabs to group the parameters.

VoxelAssembler Site 22 /108

Masterarbeit, MAS-SE 2023-25

Cloud hosting
Host the application on AWS or Azure.

Work Tasks

User Roles: All Users

Provide a system where the user can see his configurations that are currently running, succeeded,
failed, pending or with any other status. Allow the user to load the configuration from there. Allow to

search for certain states.

Work Tasks Administrator

User Roles: Administrator

Provide a system where the admin can see all the configurations that are currently running,
succeeded, failed, pending or with any other status. Allow the Admin to load the configuration from

there. Allow to search for certain states.

Load Configuration
User Roles: All Users

Allow the user to load or import a configuration by a configuration string.

3D Viewer Default Perspective
User Roles: Administrator
Allow the user to set the default perspective of the 3D model. This needs to be possible for each

product version.

User Management
User Roles: Administrator
Provide an overview of all the registered users and their roles. Allow to delete a user, change its role,

resend a confirmation link or directly confirm a user account.

Zip Assembly for VoxelAssembler

Provide functionality to prepare an assembly to upload it in the Ul.

Inventor Add-In with CI/CD

Provide an easy solution to build a new version that creates an installer for customers.

VoxelAssembler Site 23/108

Masterarbeit, MAS-SE 2023-25

6.1.3 Use Cases / User Stories

The main documentation only covers the most relevant and central use case for the domain.

Additional use cases

related to the same domain are provided

in the attachments

(“\02_Additional_Product_Documentation\01_Use_Cases”). For our use case diagrams, we

decided to represent them using UML notation. In addition, we followed the pattern of user stories to

describe the use cases from the user’s perspective as clearly as possible.

6.1.3.1 User Management

As a user,
| want to register,
so that | can login and use the system.

Add User to Role

Customer

<<include>>

>..

\\Regiswr/

User System
g <<include>> N <<include>>
B <<include>> .
Send Confirmation Create Validate Domain in
Email User Account WhiteList
Confirm Registration
VoxelAssembler Site 24 /108

Masterarbeit, MAS-SE 2023-25

6.1.3.2 Product & Category System

As a user (Administrator / Developer),

| want to create a product and add a first version,

so that | can configure the product later.

s S
@
Administrator s System
/ :
Developer <<include>> .. _ Name (de, fr, en)
Description (de, fr, en)
Image
- Create Product
(8] Version
=]
Status
1 Comment
., Version File (ZIP)
<<ir]c|ude.>>
User Notification
6.1.3.3 Cache System

As a user (Administrator / Developer),

| want to select a Cache System,

so that the user have a better experience when configuring products.
o
=

Select Cache
Administrator System
/
Developer
VoxelAssembler Site 25/108

Masterarbeit, MAS-SE 2023-25

6.1.3.4 Notification System

uc1

As a user,
| want to receive notifications when a work tasks is in progress, succeeds or fails,
so that | can stay informed about the status of my tasks and take appropriate action if needed.

N

User System
6.1.3.5 Work Tasks
As a user,
| want to view all my work tasks with status and jump to related configuration,
so that | can easily monitor progress and work effectively.
5 U
=
User = . System
<<extpnd>> <<extend>>
Bpen relgted Eroduct Filter Work Tasks
Configuration
VoxelAssembler Site 26 / 108

Masterarbeit, MAS-SE 2023-25

6.1.3.6 Action System

As a user (Administrator / Developer),
I want to add a action and assign it to a activity,
so that | can assign it to a product version and the users can trigger it on a product version.

Administrator
/
Developer

uc1

N

.

<<include>>

.

Create Action
Version

Assign to
Product Version

System

6.1.3.7 Email System

As a user (Administrator / Developer),

| want to set up or change the email provider configuration (e.g., SMTP, and possibly more in the future),
so that the application can send emails to customers and | can verify the setup with a test email.

(oxemrens)

t Email Provider

—

: \J

Administrator s System
/ ‘.
Developer <<extend>>
Send Test Mail
VoxelAssembler Site 27 /108

Masterarbeit, MAS-SE 2023-25

6.1.3.8 Settings

Design Settings

As a user (Administrator / Developer),
| want configure my organization’s Cl design settings (branding) for the application,

so that the application reflects my organization’s branding consistently across the Ul.

(o)

uct

Administrator
/
Developer

@

.

CompanyName,
Logo,
Colors (Dark / White
Mode)

System

Authentication Settings

As a user (Administrator / Developer),
| want to set the Autodesk Platform Services (APS) authentication settings,

so that the application can securely obtain tokens and access Autodesk APIs on behalf of users/services.

Set APS settings

uc1

Administrator
/
Developer

N

N Clientld,
\ ClientSecret,
Email,
Scopes,
Region

System

VoxelAssembler

Site 28 / 108

Masterarbeit, MAS-SE 2023-25

As a user (Administrator / Developer),
| want to restrict access for specific email domains,

so that only users from allowed domains can register, sign in, or access the application

—
o
= Restrict Email
Domains
Administrator System
/
Developer
Viewer Settings
As a user (Administrator / Developer),
| want to set allow or disallow Autodesk Viewer settings for each user role,
so that | can control which roles are permitted to use different viewer settings in the Autodesk Viewer (Configurator)
Toggle Viewer
Settings
- Administrator . System
o / N
S \
Developer
kS explode
% navTools
N properties
modelStructure
section
measure
bimWalk
settings
fullscreen
VoxelAssembler

Site 29/ 108

Masterarbeit, MAS-SE 2023-25

Inventor Settings

uc1

As a user (Administrator / Developer),
I want configure Inventor provisioning settings,

so that | can control how long an instance stays running, how often it's kept alive, and how frequently the system polls

its status.

Administrator
1
Developer

@

System

VoxelAssembler

Site 30/ 108

Masterarbeit, MAS-SE 2023-25

6.1.3.9 Product Configuration

As a user,
| want to configure a product by setting parameters that fit my needs,
so that | can trigger an action and see the resulting outputs.

(aserens)

@

User ‘ . System
<<extend>> <<extend>>
5 " .
=)
Change Parameter Trigger Action
<<extend>>
View / Download 3D
Produces Outpus Drawi,ng
Bom,
Exports
6.1.3.10 Autodesk Services
App Bundles
As a user (Administrator / Developer),
| want to add a new app bundle,
so that | can use it later in a activity.
= Add App Bundle
g U
=)
Administrator System
/ <<include>> <<include>>
Developer . B

Create Version 1 Upload App Bundle

VoxelAssembler

Site 31 /108

Masterarbeit, MAS-SE 2023-25

Activities

As a user (Administrator / Developer),
| want to add a new activity,
so that | can use it later in a action.

g _//

=)

Administrator System
/ <<include>>
Developer .
Reference
App Bundles
Buckets

As a user (Administrator / Developer),
| want to view all created buckets and all files inside of a bucket and also be able to download directly,
so that so that | can quickly audit storage, troubleshoot issues, and retrieve artifacts without needing cloud-console
access or custom scripts..

Q

=] \//

Administrator System
/ <<extend>>
Developer :
Donwload Files

6.1.4 User Roles
We decided on four different roles for the users. Currently some roles have almost the same

possibilities but allow later for more differentiation. The following roles were implemented:

- Administrator
- Developer
- Company-User

- Customer

VoxelAssembler Site 32 /108

Masterarbeit, MAS-SE 2023-25

6.1.4.1 Administrator
There can be multiple administrators. They can manage all users and have access to all features.
One administrator is by default created. The system makes sure there is always at least one

administrator. It is not possible to delete the last administrator.

6.1.4.2 Developer

The developer has access to most features. A developer is someone that is managing
configurations. He can upload new products and manage them. He can also create new versions
and categories. Some of the features are only visible for developers. As an example, it is possible to
create a new version of a product and show it only to developers until it is published for company

users or customers.

6.1.4.3 Company-User
A company user is someone that is working at the company that is hosting the application. For
example, salespeople could be company users. This role can be used if customers are not allowed

to see each product / version.

6.1.4.4 Customer
A customer is an external user from a different company than the one that is hosting the app. This

role can be used if some product / versions should be only visible to company users.

VoxelAssembler Site 33/108

Masterarbeit, MAS-SE 2023-25

6.2 Non-Functional Requirements

(separate read/write paths);

sanitized errors

Aspect Requirement (Summary) Target / Acceptance Criteria
) < 3 clicks from login to first configurable
Consistent Ul components; role- .
N o o product; language switch updates Ul and
Usability based visibility; localization;
o T messages;
Intuitive navigation .
Two available languages
. System needs to stay responsive while heavy
o Background jobs for long tasks; . .
Availability . . load, scalability must be possible from small to
resilient real-time updates
large customers
Input validation; isolation of
features (vertical slices); retry Invalid requests return standardized error
Robustness)))
strategy for background jobs, response; no unhandled exceptions reach client
good logging
Cookie-based auth; role-based
. authorization; least privilege Unauthorized -> 401/403; no sensitive data in
Security

error payloads

Logging & Observability

Structured logs for jobs; minimal
noise on success; detailed failure

traces

Each job traceable end-to-end; failed export

diagnosable from logs alone

Maintainability &
Extensibility

Vertical slice architecture;

pluggable actions/exports

Add new action or export by adding one slice +

single registration point

Quality Assurance

Unit + integration tests; code
reviews; automated pipeline
checks

Critical domain services > 60% line coverage;
each write endpoint has at least one integration

test

Localization

Backend + frontend localization;
invariant codes with localized

messages

Language change reflects in Ul and validation

without logout

Scalability (Future-
Oriented)

Logical separation read/write;

background workload isolation

Horizontal scaling possible without redesign

Configuration

Management

Versioned products and
parameters; immutable history for

released versions

Past configurations fully reproducible

VoxelAssembler

Site 34 / 108

Masterarbeit, MAS-SE 2023-25

7 Domain Model

Instead of designing one large domain model, we decided to divide our domain into several sub-
domains. This approach makes the model easier to wunderstand and manage.
The following figure shows all domain sub-domains at a high level. In the subsequent sections, we
will go into more detail about each sub-domain, explaining how the individual entities and value
objects are used. When modeling the domain, we incorporated certain concepts from Domain-Driven
Design (DDD). However, we did not follow the methodology strictly in every aspect but rather applied
the concepts where they provided clear value. To improve readability and consistency, we also follow
a color scheme in our diagrams. Entities are always yellow, value objects are always gray, and
Enums are always green.

In addition, special objects that are not directly part of the domain are shown with dashed outlines.
It is important to note that the domain model does not represent exact database relationships. For
details about those, please refer to the ER diagram.

In the legend of the figure, the corresponding domain business rules are documented.

Domain Model

User Management Product & Category Product Configuration
System
Settings Work Task Cache System
Action System Email System Notification System

Autodesk Services

Legend

Entity Value Object Enumeration

External
Domain Object

VoxelAssembler Site 35/ 108

Masterarbeit, MAS-SE 2023-25

7.1 Designs

For this product a visual appealing interface is important. To address this and for easier
communication what needs to be built, we designed each page beforehand. This way it was a lot of
JDI (Just do it) in the frontend. Al the pages <can be found in
“\02_Additional_Product_Documentation\03_Design_Pages”. Below is an example page

designed in Figma.
@ VOXELASSEMBLER Catalog Documentation <> Configurator Settings Login

A Home > Product Category1 > Product1 Save Favorite Import Share

Product Titel B States v VIv 3D Drawing Bom 3 Task {taskname} finished D

Do you want to load the result? —

il

Tab1 Tab 2 Tab 3

Dropdown control ©

Selection 1 v

Dropdown control ©

Selection 1 v
Number control ©
12345 X
Number control ©
12345 X
Number control ©
12345 X
Number control ©
12345 X
@ Toggle control ¢
L =] + Q 2 A =] 52 = %4
Home " Eiplode Markup
o Toggle control © y

it m
—_—

MuM Voxelassembler v0.0.1

7.2 User Management

In the User Management domain, we handle all aspects of user administration.
Our ApplicationUser entity derives from the IdentityUser provided by the .NET Identity framework
and extends it with additional properties. One important extension is an Enum representing our user
roles. This defines the different roles a user can have within the system. In addition, this domain also
includes Language, which represents the application language. It centrally manages which
languages are available and can be selected in the Ul. Since both UserRole and Language are
closely tied to the backend domain, the backend is also responsible for providing translations for
these Enums. The exact domain rules and constraints are documented in the legend of the domain

diagram.

VoxelAssembler Site 36 / 108

Masterarbeit, MAS-SE 2023-25

User Management

Administrator

Developer

ApplicationUser las a————— UserRole :
CompanyUser
Is

Identity User —: Email Confirmed !
_______ |

German (de)

Language I Englisch (en)

French (fr)

Legend

A ApplicationUser has a UserRole.

A Administrator / Developer has the highest privilege in the Application.
UserRole is an enumeration.

Language is an enumeration.

The Language represents the supported languages of the Application.

A ApplicationUser is a IdentityUser.

The IdentityUser is part of the .NET Identity Framework.

A ApplicationUser is only allowed to access the Application when the Email is confirmed.

VoxelAssembler Site 37 /108

Masterarbeit, MAS-SE 2023-25

7.3 Product & Category System

The Product and Category System define how products are structured and made available to users
At the top level, the application exposes a Catalog. While the catalog itself is not a true domain entity,
it serves as a representation of how categories and products are presented to the user. A Category
can contain either subcategories or products directly, allowing for a hierarchical structure of
categories. Products are not limited to a single category, instead, a Product can appear in multiple

categories at the same time.

7.3.1 Product Version

Every product must have at least one Product Version. A product version belongs to a Category and
carries a Version Number, which is incremented whenever a new version is created. For each
product, there can be at most one version that is marked as active. In addition, every product version
must always include a Viewable, which represents the product’s visible or accessible form. Even if
this viewable is initially only a placeholder and not yet valid, it must exist to ensure the product
version is complete. The exact domain rules and constraints are documented in the legend of the

domain diagram.

7.3.2 Category Version
A Product Version always belongs to a Version Category. In this case the version is more of a type
Version and not used for any traceability. There are four possible values:
e Active — The currently published and visible version of a product.
¢ |nactive — Versions that have been retired and are no longer visible in the catalog.
e Internal — Versions that are visible only to administrators. They are used by product
developers to run early tests without publishing to all users.
e Development — Similar to Internal, these versions are visible only to administrators and
support ongoing development and experimentation.
The visibility of product versions depends on the type of user role:
o Admin users can see products that include versions marked as Internal and Development, in
addition to Active versions.
o Customer and Company users can only see Active versions.
Inactive versions are never visible in the catalog. There is also an important lifecycle rule:
When an administrator adds a new Active version to a product, the previously active version is
automatically downgraded to Inactive. This ensures that at most one version per product is marked

as Active at any time.

VoxelAssembler Site 38 /108

Masterarbeit, MAS-SE 2023-25

Product / Category System

S

Product C F

©

Category A

Has Many

o

Product D F

o

Category B

Product E

& o

Category C — Product F F

1O S S

Category D — Category E — Product F ———— ProductVersion

Product A Has Many- P

Inactive

Y Product B F Ha VersionCategory
Internal

Development

VersionCategory
Inactive

Product Y F

VersionCategory
Inactive

} VersionNumber 3

(&4

VersionCategory
Active

Legend

A Product has a Product Version.

A Product Version has a Version Category.

A Product can be in one or multiple Categories.

A Product can exits as a root Product without a Category.

A Category can have Products or other Sub Categories.

The Catalog shows per default the root level of the tree. Means root Categories and root Products are shown.

In the Catalog we can traverse down to next level. So that means if the User selects Category A. Category A becomes the new root and only Product C and Product D are shown.

A Category and Product has a Visible Flag. Only Visible Categories or Products are shown in the Catalog. If a Category is not visible, the whole Category will not be shown in
the Catalog even if there are visible Products inside.

For a Category to be shown in the Catalog it must contain at least one visible Product.
For Role Administrator or Developer also not Visible Products and Categories are Visible inside the Catalog.

For Role or

per also with VersionCategory Development or Internal are visible inside the Catalog.

For Role C or

pany only P with jory Active are visible.

Every Product can only have at most one ProductVersion with VersionCategory Active.

,,,,, <85 Not Visible
B> Visible

VoxelAssembler Site 39/ 108

Masterarbeit, MAS-SE 2023-25

7.4 Autodesk Automation API / Primary entities

There are four primary entities:

o Activity

e Workltem
e AppBundle
e Engine

From the documentation the relations between the entities are defined like the diagram below.

Autodesk

Workitem —Has One—> Activity

Has

InventorEngineVersiol

IAppBundieDescriptor|

T

Implements

as Many—> AppBundle

Requiredinputs
ProducedOutputs

AppBundle

Inventor2025
Inventor2026

Legend

A Workitem has one Activity.

A Activity has one or many AppBundles.

A AppBundle has one or many Requiredinputs.

A AppBundle has one or many ProducesOutputs.
A Activity has as InventorEngineVersion.

InventorEngineVersion is a enumeration.

Each of the entities is described below.

VoxelAssembler

Site 40/ 108

Masterarbeit, MAS-SE 2023-25

7.4.1 AppBundle

An AppBundle is used for running functionality on the cloud. In the case of VoxelAssembler an
AppBundle is an Inventor-Addin that runs some functionality. In most cases this is a single
functionality. Multiple AppBundles can be used together by combining them with an Activity.

Currently the following AppBundles are available:

- BomExtractor

- Parametrization

- PdfExporter

- PriceCalculator

- SheetMetalDxfExporter

More can be easily added. Also, customer specific AppBundles are possible. VoxelAssembler

provides everything needed for a customer to upload and handle new AppBundles.

AppBundles are managed by Autodesk after uploading. It is not possible to modify them once
uploaded. A new version needs to be created. VoxelAssembler keeps track of each AppBundle in
its Database to also keep track of the outputs each AppBundle produces. Each AppBundle
implements an Interface called "IAppBundleDescriptor” which later allows to read needed In- and
Output.

7.4.2 Activity

An activity is an action that can be executed within an engine. In the case of VoxelAssembler this is
always Inventor. An Activity uses one or more AppBundles. Input parameters must align with the
AppBundles used. There are some other parameters that can be provided like if those parameters

are optional, a description, a localName, if it is a zip and others.

For example, if a configuration activity should be created, CAD-Data is needed, and the new defined

parameters need to be provided. This could look something like this:

VoxelAssembler Site 41 /108

Masterarbeit, MAS-SE 2023-25

ConfigurationActivity

"commandLine": [
"$(engine.path)\\InventorCoreConsole.exe /i \"$(args[InventorDoc].path)\" /al
\"$(appbundles[ChangeParams].path)\" \"$(args[InventorParams].path)\""
1,
"parameters": {
"InventorDoc": {

“vaerb": "get",
"description": "IPT file or ZIP with assembly to process"
¥,
"InventorParams": {
"verb": "get"
"description": "JSON with changed Inventor parameters"
"localName": "params.json"
¥
8
"engine": "Autodesk.Inventor+23",

"appbundles": [
"Inventor.ChangeParams+prod"

1,
"description”: "Change parameters of a part or an assembly (Inventor 2019).",
"id": "ChangeParams"

This defines that there needs to be an input document and a file that provides the parameters.

7.4.3 Workltem

A Workltem is a specification of the processing job for an Activity, and it is submitted to and executed
by the engine. For VoxelAssembler this gets wrapped by WorkTask, which allows to add more
information to it. As an example, a Workltem must deliver an address to download the above
mentioned InventorDoc. This is a S3 signed URL in our case but could be something else.

Note that a Workltem cannot be modified after it has been created.

7.4.4 Engine
An engine executes a Workltem. Autodesk provides multiple engines in the cloud. In our case only
Inventor is used. Currently in the newest Version 2026, which can be later updated. An AppBundle

must be written for a certain engine. Due to API changes problems can arise if those do not align.

7.5 Viewable

A Viewable is what is used by the viewer to show a 3D or 2D(drawing) to the user. Each product
version has a default viewable that allows to display something when the product is loaded the first
time. For each product configuration a new viewable is created. Depending on settings the same

thing is done for a 2D-Drawing that is displayed in its own tab.

VoxelAssembler Site 42 /108

Masterarbeit, MAS-SE 2023-25

7.6 Cache System

The Cache Domain is responsible for managing caching strategies within the application. Our cache
system is designed to support multiple caching strategies. Currently, only a simple cache system is
implemented, which checks in the database whether a given product configuration already exists.
This makes the cache persistent rather than transient like an in-memory cache. The central entity
CacheSetting controls which cache system is active. For now, only the simple cache system can be
selected, but additional implementations can be added in the future and activated through this
setting. The Simple Cache System checks in the database whether a given Product Configuration
already exists. This means the cache is persistent and not transient like an in-memory cache. The
property IsEnabled controls whether the cache is active. When disabled, product configurations are
always resolved directly from the source without checking the cache. To decide if something is
cached the used action is considered. Depending on what the Action produces, a decision must be

made if the cache has everything needed. If yes, the cache is used and if not a WorkTask is triggered.

Cache System

IsEnabled
CacheSetting

Has a
CacheSystem SimpleCache

|

SimpleCacheSystem
Implementation

Legend

CacheSystem is an enumeration.
CacheSetting has a flag IsEnabled which control whether the CacheSystem is used or not.

Every CacheSystem needs a concrete implementation.

VoxelAssembler Site 43/ 108

Masterarbeit, MAS-SE 2023-25

7.7 Email System

The email provider settings implement either SMTP settings or SendGrid settings, controlled by the

email provider type. The email system is designed to be open for additional providers in the future

and can be switched dynamically depending on the selected provider type directly through the UlI.

Currently only Smtp is implemented.

Email System

Smtp
EmailProviderSettings Has a EmailProviderType <
SendGrid
Has One Has One
SmtpSettings SendGridSettings

Legend

A EmailProviderSettings has either SmtpSettings or SendGridSettings depending on
selected EmailProviderType.

EmailProviderType is an enumeration.

7.8 Notification System

A notification always belongs to a user. A notification can either be dismissed or marked as read.

Each notification also indicates its severity level through notification type. Since the notification

domain is tightly coupled to the backend, the notification texts are also translated in the backend.

Notification System

ApplicationUser ——Has Many——— Notification Has a NotificationType

Legend

A ApplicationUser can have zero or multiple Notifications.

NotificationType is an enumeration.

VoxelAssembler

Site 44 / 108

Masterarbeit, MAS-SE 2023-25

7.9 WorkTask

A WorkTask is always assigned to a user. Each WorkTask must have a WorkTask type, which can
be extended as needed. The WorkTask status is a combination of Hangfire statuses and Autodesk

Workltem statuses. A WorkTask must belong either to a product version or to a product

configuration.
WorkTask
RunAction
WorkTaskType <
RecreatePreview
Has a
Enqueued
ApplicationUser —Has many—— WorkTask InProgress
Has a Processing
Has Either \\ Pending
WorkTaskStatus
L J Succeeded
Failed
ProductVersion ProductConfiguration FailedDownload
FailedInstructions
Legend
A ApplicationUser can have zero or multiple WorkTasks.
WorkTaskType is an enumeration.
WorkTaskStatus is an enumeration.
A WorkTask must be have either a ProductConfiguration or a ProductVersion.

VoxelAssembler Site 45/ 108

Masterarbeit, MAS-SE 2023-25

7.10 Product Configuration

For a product version, one or more product configurations can be created. A user can save a product

configuration, which then becomes a UserProductConfiguration.

Bom is short for bill of materials and describes what parts are involved in this configuration. Normally

this is used for processing an order. It tells everyone what needs to be ordered or produced.

A drawing helps to understand what needs to be produced. Dimensions are used to describe what
exactly needs to be produced. This can be detailed or just some external dimensions to get a rough

idea about size.

ModifiedCadData is what is produced as output from running a configuration. This is the adjusted

CAD-Data after applying the new defined parameters and can be used to order the product.

ExportFormat is everything else that is produced by AppBundles. For example, a dxf could be
produced which is used by a laser cutting machine to produce a sheet metal part. Also, a price

calculation can be exported and added as ExportFormat.

Product Configuration

Bom

ProductVersion ha ProductConfi

Can Have,
Drawing

Can Have

ModifiedCadData

User
ProductConfiguration

ApplicationUser ha:

ExportFormat ~ —Has a— FormatType
Can Have

ExportFormat —Hasa— FormatType

UNKNOWN

Viewable

Legend

A ProductVersion can have zero or multiple ProductConfigurations.

A ApplicationUser can have zero or multiple UserProductConfigurations.

AUserP g has one ProductConfig

A ProductConfiguration can have zero or one Bom.

A ProductConfiguration can have zero or one Drawing.

A ProductConfiguration can have zero or one ModifiedCadData.
A ProductConfiguration can have zero or multiple ExportFormats.
A ProductConfiguration can have zero or one Viewable.

FormatType is an enumeration.

VoxelAssembler Site 46/ 108

Masterarbeit, MAS-SE 2023-25

7.11 Action System

An Action references exactly one activity and is used to provide all the inputs needed for a Workltem.
For most of the AppBundles some settings can be provided. This is done by providing a string. What

settings can be provided is documented in the customer documentation.

Action System

/ ActionVersion

Has Many
Action as Many———> ActionVersion
Has
ActionSettings Has IdentityRole
Has,

\ ProductVersion

Legend

Action has one or many ActionVersions.
ActionSetting has one ActionVersion.
ActionSetting has one IdentityRole.

ActionSetting has one ProductVersion.

ActionSettings allow to define what actions are available for what UserRole. Each action and its

specific version can be assigned to one of the UserRoles.

Administrator

Select Action 2
Select Action Version v
Version 1 - Export BOM x
Version 1- Export PDF x
Version 1 - Configure x
Version 1 - Export Sheet Metal DXF x

VoxelAssembler Site 47 /108

Masterarbeit, MAS-SE 2023-25

7.12 Model Parameter Constraints

To allow a CAD-User (someone that knows how to use Autodesk Inventor) how the frontend should
look like the concept of model parameter constraints is created. A Json string put into the parameter

constraint defines how this parameter should be presented in the frontend.

Consumes d by Unit/Type Equation Nominal Value Tolerance Model Value Key Esxport Parz| Comment

1.000000 1.000000

The reason why comment was chosen for this, is simple that it is normally not used by the user and
it allows to put whatever in it.
Writing a Json String and doing this in the comment field isn't something that can be expected from
the user. The reason for this is:

1. Most designer don't know JSON

2. Writing multiline comments is not great inside of comment

To handle this a GUI is built as an Inventor Addin.

7.12.1 Language
To allow translation in the frontend many properties use the concept of multiple language strings
with semicolon (;) as the separator between. Sample: "De=Text in Deutsch;Us=Text in Englisch"

Each Parameter is marked with “Allows Language” if translation needs to be supported.

7.12.2 Constraint types
The following types are supported:
e Text
o TextSize
o TextRegEx
e Bool
¢ IntegerRange
¢ DoubleRange
¢ IntegerUnitRange
¢ DoubleUnitRange
e StringList
e StringDictionary

VoxelAssembler Site 48 /108

Masterarbeit, MAS-SE 2023-25

7.12.3 Common Properties

Each ConstraintType has the following Properties:

ParameterConstraint
Id

DisplayName
Description
ConstraintType ConstraintType
DefaultValue Text,
TabValue TextSize,
TabName TextRegEx,
ParameterGroup Bool,
SortOrder IntegerRange,

ActivationParams DoubleRange,

ActivationParamOperator

IntegerUnitRange,

HidelnFrontEnd DoubleUnitRange,

StringList

StringDictionary

ID: Simple internal Name

DisplayName: What will be shown for this parameter in the frontend. (Allows Language)
Description: Description / Tooltip that is shown in the frontend. (Allows Language)
ConstraintType: One of the mentioned constraint types. Helps to decide how to handle it in the
frontend.

DefaultValue: Default value for the parameter. Must be the same type as DefaultUnitld if used.
TabValue: Each parameter can be put into a TabGroup. They are sorted by this value.

TabName: What name should be displayed for the tab. (Allows Language)

ParameterGroup: What name should be displayed for the group. (Groups inside of tab for further
structuring) (Allows Language)

SortOrder: In what order are the parameter groups.

ActivationParams: Parameters that are checked for true/false and then decide if the parameter is
visible or not. Can be multiple parameters separated by;. All parameters need to be of type bool.
ActivationParamOperator: Decides if all the parameters need to be true or if it behaves like an or.
If it is True, then it behaves like an and. All the parameters need to be True.

HidelnFrontend: If True then the parameter will not be shown in the frontend but can be used for

other things like as an activation param.

VoxelAssembler Site 49/ 108

Masterarbeit, MAS-SE 2023-25

7.12.4 Text

Text does not have any additional properties.

7.12.5 TextSize

The Text Size Constraint Definition (ConstraintTypeld: TextSize) restricts the length of the parameter
value.

TextSize has the following additional properties:

MinCharacters: Minimum length of the text.

MaxCharacters: Maximum length of the text.

7.12.6 TextRegEXx

The Text RegEx Constraint Definition (ConstraintTypeld: TextRegEXx) restricts the parameter value
with a RegEx pattern.

TextRegEx has the following additional properties:

RegExPattern: Regular expression pattern that the text needs to match.

7.12.7 Bool

The Boolean Constraint Definition (ConstraintTypeld: Bool) restricts the parameter value to true or
false, 1 or 0 and defines the type of control.

Bool has the following additional properties:

ControlType: Defines the type of control. It can be CheckBox or RadioButton.

BoolValueType: Defines the type of value that is stored. Can be TrueFalse or OneZero.
OptionTrueDisplayName: What should be displayed if the value is true. (Allows Language)
OptionFalseDisplayName: What should be displayed if the value is false. (Allows Language)

7.12.8 IntegerRange

The Integer Range Constraint Definition (ConstraintTypeld: IntegerRange) limits an integer value to
a specific range, and, optional, a specific interval.

IntegerRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

7.12.9 DoubleRange

The Double Range Constraint Definition (ConstraintTypeld: DoubleRange) limits a double value to
a specific range, and, optional, a specific interval.

DoubleRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

VoxelAssembler Site 50/ 108

Masterarbeit, MAS-SE 2023-25

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

7.12.10 IntegerUnitRange

The Integer Unit Range Constraint Definition (ConstraintTypeld: IntegerUnitRange) limits an integer
value to a specific range, and, optional, a specific interval, and includes unit specification.
IntegerUnitRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

Unitld: Unit of the value. These are the units provided by the user. This is converted

to ConstraintUnitld before checking against limits and interval. Possible values:

e 1=nm
e 2=my
e 4=mm
e 8=cm
e 16=m
e 32=km

e 64 =decimal inch

e 128 = decimal feet

e 256 = decimal yards

e 512 =miles

e 1024 = sea miles

e 2048 = Decimal Degrees (full circle = 360.0°)

e 4096 = Radians

e 8192 = Grads (full circle = 400 grads)

e 16384 = Bar

e 32768 = Pascal

e 65536 = Pound-force per square inch

e 131072 = Watts

o 262144 = kW

o 524288 =PS
DefaultUnitld: Default unit of the value. One of the Unitld values, specifying the units of the default
value, which may be the last used Inventor parameter value, or the value provided as
ParameterValue. If ParameterValue is omitted, specify the units of your Inventor model here.
ConstraintUnitld: One of the Unitld values, specifying the units of MaxValue, MinValue, and

Interval.

VoxelAssembler Site 51 /108

Masterarbeit, MAS-SE 2023-25

7.12.11 DoubleUnitRange

The Double Unit Range Constraint Definition (ConstraintTypeld: DoubleUnitRange) limits a double
value to a specific range, and, optional, a specific interval, and includes unit specification.
DoubleUnitRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

Unitld: Unit of the value. These are the units provided by the user. This is converted
to ConstraintUnitld before checking against limits and interval. Possible values: see above
(IntegerUnitRange)

DefaultUnitld: Default unit of the value. One of the Unitld values, specifying the units of the default
value, which may be the last used Inventor parameter value, or the value provided as
ParameterValue. If ParameterValue is omitted, specify the units of your Inventor model here.
ConstraintUnitld: One of the Unitld values, specifying the units of MaxValue, MinValue, and

Interval.

7.12.12 StringList

The String List Constraint Definition (ConstraintTypeld: StringList) limits a string value to a specific
number of string values. This does not allow for any translation. Use the StringDictionary for this.
StringList has the following additional properties:

ListValues: Values to be displayed in the frontend. Example:

"ListValues": [

"Value 1",

"Value 2"

]

PredefinedValueOnly: If True then only the values in ListValues are allowed. If False, then the user
can enter any value.

ControlType: Defines the type of control. Can be ComboBox.

VoxelAssembler Site 52 /108

Masterarbeit, MAS-SE 2023-25

7.12.13 StringDictionary
The String Dictionary Constraint Definition (ConstraintTypeld: StringDictionary) limits a string value
to a specific number of string values but returns the key to the selected dictionary value as the
parameter value. This allows translation.
StringDictionary has the following additional properties:
DictionaryValues: Values to be displayed in the frontend. Example:
"DictionaryValues": {
"Key1": [
{
"Language": "En",
"Text": "Englisch"
12
{
"Language": "De",
"Text": "Deutsch"
12
{
"Language": "Fr",
"Text": "Franz\uOOF6sisch"
}
]
}

ControlType: Defines the type of control. Can be ComboBox.

VoxelAssembler Site 53/ 108

Masterarbeit, MAS-SE 2023-25

7.13 Settings

In the settings domain, we manage various configuration areas:
Authentication settings — control user-related preferences, for example, whether to allow only

restricted email addresses by maintaining a whitelist.

APS credentials — store access details for Autodesk Platform Services, such as client ID, client

secret, and scopes required to generate an OAuth token.

Design settings — define corporate design aspects, including the primary color and other branding

elements.

Inventor settings — cover configurations for provisioning an Inventor machine.

Viewer settings — specify which features are available to users within the Autodesk Configurator.

Settings
Authentication " i
Settings Has ApsCredentials
Explode |
ViewerSettings Has IdentityRole NevToos |
Has a Properties |
\ ModelStructure |
InventorSettings EmailProviderType
Section |
Measure |
DesignSettings
BimWalk |
Fullscreen |
Settings |
Legend
AuthenticationSettings has one ApsCredentials.
ViewerSettings has one Identity Role.
EmailProviderType is an enumeration.

VoxelAssembler Site 54/ 108

Masterarbeit, MAS-SE 2023-25

7.14 Versioning introduction

From the beginning it was defined that each product configuration created should be recreatable.

This way it is also not needed to save any data because it could be recreated at any time.

The diagram below shows the dependency between the objects.

App bundle version 2

. | Aep bundle version
Productversion 1 | Action2 version 1 " Activityversion 2

Product

\| Productversion 2 \| Actionl version 1 - Activityversion 1 - | App bundle version 1

* | App bundle version 1

7.14.1 Product Version

When creating a new product, the first version is automatically created and CAD-Data uploaded to
it. From this point on naming, descriptions and translations can be changed on the product version,
but the CAD-Data cannot be updated. A new version needs to be created. Only then it's possible to

add new CAD-Data. This way we can guarantee that for this version we exactly now what CAD-Data

belongs to it with what parameters.

Product versions can also have 1 of 4 states:
- Active
- Inactive
- Development

- Internal

Only one can be active any time. This is enforced automatically. Active is what is shown to the user.
Other roles allow to see inactive, development and internal. An admin for example has a dropdown
on the configurator that allows to select a development version that should not yet be shown to the

customer.

VoxelAssembler Site 55/ 108

Masterarbeit, MAS-SE 2023-25
This also allows to set different tabs visibility, default views and other things to each version.

Currently it is possible to change the assigned actions and with that breaking the exact recreation.
This allows for some flexibility, by trading in the exact recreation. In the future it is planned to
implement something called Immutability / Optional Immutability. This would allow to lock a product
version so actions can no longer be added, removed or changed in any way. Currently this is not
implemented. The current implementation is what we named optional immutability, but it is not
possible to switch to the other.

Op‘tional Immutab:hty

OFF

Input CAD Data can never change in all cases!

The diagram shows the dependency from the product down to the app bundle. This is how it is

currently implemented. It is possible to switch, add, remove an action at any time.

7.14.2 Action version
Actions are versioned as everything else. After creating an action version, it is no longer possible to
edit it. A new version needs to be created. This makes sure that after a version is created it will

always reference the exact selected activity.

Action

VoxelAssembler Site 56 / 108

Masterarbeit, MAS-SE 2023-25

7.14.3 Activity Version
Activities reference 1 or more app bundles. To make sure they are versionable it is needed to version
app bundles and activities. If a certain activity version is used by an action, it is always possible to

tell what exact version of an app bundle / app bundles it uses.

st Activityversion 2

Activity

Activityversion 1

7.14.4 App bundle Version
If an app bundle changed a new version needs to be uploaded. It is by design not possible to change
a once uploaded app bundle. This is a constraint by Autodesk. We enforce this by making an app

bundle not editable.

.| App bundle version 1

APP bundle

\ App bundle version 2

VoxelAssembler Site 57 /108

Masterarbeit, MAS-SE 2023-25

7.14.5 Versioning samples

Sample 1/ Opt?onal Immutabihtl/ Off

Simple sample of a product called safety door that has one

button in the interface that allows to export a pdf. For this an
appbundle called “ExportPdf" in version 1 exists that is used in

an activity called “Export pdf activity”.

I
Safety door | Safety d:ov version

EXM:L__J Export pdf activity

ExportPdf

version 1

version 1 version 1
Safety Door CAD changed and a new version is needed.
Inactive
|
; Ex F activit ExportPdé
Safety door . Safety door version l P"":;;M epaty poi el
- I,
Active
[
Safety door version Export PDf Export pdf activity . ExportPdt
2 version 1 version 1 version 1
— \ CH—
A new functionallity is introduced. It is now possible to also export the bom.
Inactive
: . - Export PDF {Export pdf activity | | ExportPdf
Safety door Es“‘e‘y 1 Ere—n f——eee—————— >} version 1 :‘*‘_—" verP:on 1 v , version 1
Active
Safety door version Export pdf activity ExportPdf
2 version 1 version 1 version 1
Export BOM Export bom activity o ExportBom
version 1 > version 1 version 1
Site 58 / 108

VoxelAssembler

Masterarbeit, MAS-SE 2023-25

There was a bug in the export functionality which lead to a bugfix and a new version to the app bundle for ExportBom

Safety door

Y

| Export BOM | | Export bom activity | ExportBom
| version 2 1 version 2 | version 2

(I N

: | Safety door version :
: | 3 :
: If only the cad data changed, then (\ :
everything else can sty the same. Export BOM Export bom activity ExportBom :
: version 2 ersion 2 — version 1 :
) S

VoxelAssembler Site 59/ 108

Masterarbeit, MAS-SE 2023-25

The next sample shows how immutability would work. This was not implemented and is an extended

goal. (Issue 174)

Sample 1/ Immutabihty On

Simple sample of a product called safety door that has one
button in the interface that allows to export a pdf. For this an Actions Activities Ao bundl
appbundle called “ExportPdf” in version 1 exists that is used in PO G Cme— e pp Sund’e

an activity called "Export pdf activity'.] I : {

Export pdf activity| : ExportPdf

Safety door verson' H : version 1

There was a bug found in the ExportPdf app bundle. New product version
2 is added and?od(zd

Inactive

)

(Locked : : E Pdf
: Ex f activit : : xport
Safety door Safety d&:or version P':UP:M 5 4 — version 1
Active é S
Locked : i : \
Safety door version : Export PDf i i | Export pdf activity : : | ExportPdf
2 > version 2 [version 2 H : version 2
Ancther button should be added. Because version 2 was already locked : i
down a new product version is needed. :
Inactive :
(adad :
Safety door version Export pdf activity| 1+ ExportPdf
! version 1 0 . version 1
I
Inactive
((Cocked B :
Safety door version Export PDF Export pdf activity | ! H ExportPdf
2 version 2 version 2 H : version 2
—

Active
(T Locked R
ocke : !
Safety doer version Export PDF : ! Export pdf activity ExportPdf
3 version 2 . version 2 version 2

ExportBOM

version 1

version 1

VoxelAssembler Site 60/ 108

Masterarbeit, MAS-SE 2023-25

8 System Architecture & Design

8.1 Architecture

The architecture of our web application is built around a few key components: the Ul, the API, the

database, the Aspire Dashboard for telemetry, various Autodesk services, and a mail server.

The Ul serves as the main entry point for users. It communicates exclusively with the APl over HTTP.
For real-time updates, the backend also pushes notifications to the Ul using WebSockets. This
channel is one-way: only the backend can send messages to the Ul, ensuring a clear separation of
responsibilities. Authentication between the Ul and the API is handled using cookie-based

authentication.

At the core lies the API, which connects all parts of the system. It talks to the database, which is
structured into three schemas: the Identity schema powered by the .NET Identity Framework for
authentication and authorization, the VoxelAssembler schema, which holds the main business data
and domain logic and the Hangfire schema, automatically managed by Hangfire for background
processing and asynchronous tasks. Database access requires username and password credentials
for PostgreSQL.

The API also integrates with external systems. For example, it uses an SMTP mail server to send
transactional emails such as password resets and registration confirmations. In the future, we plan

to extend this setup with additional providers like SendGrid to increase flexibility and reliability.

For observability, the backend is instrumented with OpenTelemetry. All telemetry data (traces, logs,
and metrics) are exported via gRPC to the Aspire OTel Collector, which powers the Aspire
Dashboard. Access to Aspire is secured via an API key, ensuring only authorized components can
send telemetry data. This gives us a simple but effective way to monitor the health and performance

of the entire system.

Finally, the application connects to several Autodesk services. These include OSS, Automation
(formerly Design Automation), Model Derivative, Viewer SDK and Authentication, which together
provide the foundation for our product configurator and enable seamless integration with Autodesk’s
ecosystem. All Autodesk service calls are authenticated via OAuth access tokens, ensuring secure

interaction with Autodesk’s APIs.

In summary, the Ul provides the user-facing entry point, the API orchestrates both internal and
external interactions, the database manages core application data and background jobs, telemetry
flows into Aspire for monitoring, and external integrations with mail servers and Autodesk services

round out the system’s capabilities.

VoxelAssembler Site 61/ 108

Masterarbeit, MAS-SE 2023-25

‘&5 Aspire Dashboard

ul

OTLP

API Key HTTP) Autodesk
‘851 VoxelAssembler
Oss
HTTP HTTP DesignAutomation
ul API
WebSockets (TCP) Access Token
Cookie \ ModelDerivate
Authentication
TCP
Username / SMTP
Password
Username /
Password
Identity
< B
(Mail
~———
VoxelAssembler [DB 1
_\ 2 /'
o SMTP
Hangfire
SendGrid
VoxelAssembler Site 62/ 108

Masterarbeit, MAS-SE 2023-25

8.1.1 Authentication

We use cookie-based authentication for our web application. The decision to use cookie
authentication is documented in the attached ADR
(\02_Additional_Product_Documentation\05_Architectural_Decision_Records\001-
authentication-method-cookies).

Our implementation relies on .NET Identity. The API is responsible for issuing and encrypting the
authentication cookie, and for setting it in the Set-Cookie response header.

On subsequent requests, the client automatically sends the cookie back to the server. For requests
targeting protected endpoints, the cookie is decrypted using the Data Protection keys. The system
verifies whether the user is authenticated and then checks the user’s roles to ensure they are
authorized to access the endpoint, meaning they have the required application permissions.

The authentication cookie is configured with the following security settings:

o HttpOnly
e Secure

e SamesSite

uI API SignInManager / UserManager
POST /auth/login { email, password }
Validate user + password
Success / Failure
... it
T J [Success]
Set-Cookie: VoxelAssembler.Identity
1 e —— o
[Failure]
401 Unauthorized
f'..'.i.'.i.'.'..'.Z.'.i.'.'..'.'..'.Z.'.Z.'.'..'.'..'.Z.'.Z.'.'..'.Z.'.Z.'.'..'.I.'.Z.'.Z.'.'..'.Z.'.Z.'.gé
Browser stores cookie (HTTP-only, Secure, SameSite)
uI API SignInManager / UserManager

VoxelAssembler Site 63 /108

Masterarbeit, MAS-SE 2023-25

8.1.2 Autodesk Services (Autodesk Platform Services)

Our application integrates with several Autodesk services through the official SDKs that Autodesk
provides as NuGet packages. These SDKs allow us to communicate with Autodesk APIs in a
straightforward and consistent way.

For authentication, we use the OAuth 2.0 client credentials flow. Autodesk offers a dedicated
Authentication SDK, which we use to obtain an access token. This token is stored in memory and
checked before every request to ensure it is still valid. To avoid issues with tokens expiring mid-
operation, we apply a safety margin of 60 seconds, meaning the token is refreshed one minute
before its official expiration time.

With a valid access token, our application interacts with three main Autodesk services: OSS, Design
Automation, and Model Derivative. The OSS service essentially acts as an Autodesk-provided
wrapper around AWS S3 buckets, giving us a managed way to store and retrieve design files. Design
Automation allows us to run custom processes and scripts on design files directly in the cloud, which
enables automated transformations and workflows. Finally, the Model Derivative service makes it
possible to convert design files into different formats and extract metadata, which we use for

visualization and structured data access.

Autodesk

Oss Buckets

Activities
Bearer
Access Token
API DesignAutomation AppBundles

Clientld
ClientSecret Workitems

Scopes

ClientCredentials
Flow
ModelDerivate Viewable

Authentication

VoxelAssembler Site 64 / 108

Masterarbeit, MAS-SE 2023-25

8.1.2.1 Authentication API
Most Autodesk API’'s need authentication which is one of the building blocks that is used by

VoxelAssembiler.

8.1.2.2 Automation API (formerly Design Automation)

The Automation API allows to run Inventor in the Cloud. By running a Workltem resources in AWS
are used to provide a CAD in the Cloud and run functionality that is normally only available locally
by installing Autodesk Inventor.

By using the Automation API no Installation and no License is needed. Only the used processing

time needs to be paid.

8.1.2.3 Data Management API
The data management API is used for hosting data. It allows to upload CAD-Data and produced

results directly on the cloud. Data is free and not limited.

8.1.2.4 Model Derivative API
The model derivative APl is used for translation. In the case of VoxelAssembler it is currently only

used for creating Viewables which is what is needed to display something in the Viewer.

8.1.2.5 Viewer SDK
The viewer SDK is what is used to display Viewables to the user. It is based on ThreedS but provides

lots of functionality like all the extensions (Measure, Explode, Navigation etc.)

VoxelAssembler Site 65/ 108

Masterarbeit, MAS-SE 2023-25

8.1.3 Db Initializer

The Db Initializer is a console application that we use
extensively in local development, but it also plays a key role
when running in the cloud or in production. Its job is to bring
the database into an initial state: creating schemas,
seeding essential data, and setting up sensible defaults so
that users can start working with the system right away
instead of having to configure everything manually. During
initialization, the database is not only created but also
populated with core application data. This includes user
roles and default accounts for each role, so that you can
log in immediately with testable credentials (passwords
must of course be changed after first login). Authentication
settings are also seeded, ranging from Autodesk
credentials like Client ID, Client Secret, and scopes, to
general application settings such as whitelisted domains.
The initializer goes further by preparing the integration with
Autodesk: it can create initial buckets for storing artifacts,
configure Inventor settings like polling intervals or whether
an instance should be kept alive to avoid cold starts, and
set up default values for the Autodesk viewer and
configurator.

On the application side, it also takes care of Ul defaults
such as company name, logo, and color scheme, as well
as email provider settings by seeding SMTP credentials.
For local testing purposes, the initializer can even create

example products and categories.

Database Seeding

re
ApplicationDbInitializer r

=

Orchestrates

Uses

Creates

Seeding Cgmponents

Sequential Seeding Process

User / User Roles

APS Credentials

Named Buckets

UI Settings

CAD Settings

Viewer Extensions

Email Provider

Product / Categories

-

N

EF Core

Context

\ Daty

VoxelAssemblerDb

yTargets

Almost all this seeded data can later be customized through the Ul, and adding new entities to the

seeding process is straightforward. The initializer itself is instrumented with OpenTelemetry and

exports its telemetry to Aspire, making the entire process transparent and easy to observe.

VoxelAssembler

Site 66 / 108

Masterarbeit, MAS-SE 2023-25

8.1.4 DesignAutomation

Design Automation is a console application that, like a database
initializer, sets up an initial configuration so that users can start with a
default setup right away—without having to configure everything
manually in the Ul first.

The core of the project consists of individual steps, each representing a
specific action (e.g. Create Product, Create Activity, etc.). These steps
are combined into a pipeline. We have multiple pipelines, each composed
of different steps. The most used one is the FullConfigurePipeline, which
runs through all steps. This pipeline has often been used for testing
purposes.

Pipelines and steps are fully extensible and can be expanded as needed.
The process does not only write objects into our database but also
performs initializations directly in Autodesk, such as creating activities or
app bundles. Because of this, it is crucial that the database is already
initialized before the Design Automation project is started.

The choice of which pipeline to execute is determined via command-line

arguments.

Start Pipeline

Delete Activity Step

!

Delete App Bundles Step

I

Create Product Step

!

Create Product Version Step

!

Create And Upload App
Bundle Step

I

Use Existing App Bundles
Step

I

Create Activity Step

!

Create Action Step

I

Create Action Setting Step

Pipeline Complete

VoxelAssembler

Site 67 / 108

Masterarbeit, MAS-SE 2023-25

8.1.5 Work Tasks System

Our WorkTask system is responsible for processing asynchronous, long-running background jobs
and notifying the client about their status. It is designed to be flexible and extensible so that virtually
any kind of long-running job can be implemented with it. To add a new WorkTask, you only need to
implement the IWorkTask interface and the WorkTask system takes care of the rest. In practice, we
primarily use it for jobs related to our product versions and product configurations, which is why a
WorkTask also contains specific properties in this context. Each WorkTask triggers a Handgfire job
and stores its corresponding Job ID. The WorkTask and the Handfire job are created within a single
transaction to ensure consistency and avoid mismatches. A Hangfire Job Status Filter ensures that
whenever the job status changes, the associated work task is also updated so that both remain in
sync. For certain Hangfire statuses, such as Failed, InProgress, or Succeeded, we additionally write
a notification into the database. An Entity Framework interceptor then pushes this notification into a
Channel (from the System.Threading.Channels library).

Finally, a Notification Processor consumes messages from the channel and sends them via SignalR

to the client of the user who originally triggered the work task.

Work Task System

System Enqueue Job

Insert HangfireJob
and WorkTask

Hangfire .
BackgroundProcessor| Dequeue =

Process

Notificationinterceptor——————Produce’
B Update WorkTask
Execute WorkTask K
Implementation
Status change Save
4
v Notification Channel

Hangfire Job 4

langfire vt

k& te new———> Notification
Status Filter Create ne otificatiol
Client [€—nNotify— NotificationProcessor Consu

VoxelAssembler Site 68/ 108

Masterarbeit, MAS-SE 2023-25

8.2 Solution Design

Infrastructure

Application

Service |
Defaults | | Resources

Products
Categories

WebHost ul

The solution is built on a modern architectural foundation that combines Vertical Slice Architecture
with the principles of Clean Architecture. This approach creates a highly organized and maintainable

codebase by emphasizing a clear separation of concerns and a logical flow of dependencies.

The design organizes code by feature, or "vertical slice," rather than by technical layers (e.g.,
Controllers, Services, Data). Each slice represents a distinct business capability (e.g., Product,
Category, ProductVersion) and contains all the necessary components to implement that feature
from the API endpoint down to the database. The solution is divided into distinct projects, each with

a clear responsibility. Key Benefits of this Design are:

High Cohesion: All the code for a single feature is in one place, making it easier to understand,

develop, and maintain.

Low Coupling: Slices are isolated from one another. A change to the "Product” feature is unlikely

to impact the "Category" feature.

Enhanced Maintainability: Adding or changing a feature involves working within a single slice,

minimizing the risk of introducing bugs elsewhere in the system.

VoxelAssembler Site 69/ 108

Masterarbeit, MAS-SE 2023-25

Scalability: The clear separation of concerns and low coupling make it easier to scale development

teams and the application itself.

8.2.1 VoxelAssembler.Domain
This is the core of the application. It contains the business entities, value objects, and domain logic.
It has no dependencies on any other layer, ensuring the business rules are independent of technical

implementation details. This is also checked by an architecture Test.

8.2.2 VoxelAssembler.Application
This project contains the application logic and orchestrates the domain layer to perform tasks. It's

where the vertical slices are most evident. Each feature folder (e.g., /Product, /Category) includes:

Contracts: Interfaces for services (IProductService).
Requests/Responses: Models for interacting with the API (CreateProductRequest,
ProductResponse).

Services: The implementation of the use cases, containing the main logic for the feature.

8.2.3 VoxelAssembler.Infrastructure
This project handles external concerns. It contains implementations for interfaces defined in the
Application layer, such as database access (using Entity Framework Core), file storage, and other

external services.

8.2.4 VoxelAssembler.WebHost

This is the entry point and presentation layer. It contains the ASP.NET Core API controllers. The
controllers are kept thin, with their primary role being to receive HTTP requests, call the appropriate
service in the Application layer, and return an HTTP response. We want to keep this layer free from
business logic to ensure a clean separation of concerns and maintainability.

Because no business logic is tied to this layer, the presentation technology can easily be replaced
or extended. For example, if we decide to expose the system through GraphQL, gRPC, or another
protocol in addition to REST, we can add or replace the WebHost implementation without affecting

the core application logic.

8.2.5 VoxelAssembler.Ul

This project is the frontend React & TypeScript app. It contains all the dependencies and libraries
that were used in the frontend, such as TailwindCSS for styling, Zustand for state management, i18n
for localization, TanstackQuery for data fetching and caching and more.

To ensure a consistent and type-safe integration with the backend, a TypeScript API client is
automatically generated into the Ul project whenever the WebHost is built. This is done using a

NSwag configuration that runs on every WebHost build. By doing so, mismatches between the API

VoxelAssembler Site 70/ 108

Masterarbeit, MAS-SE 2023-25

and the frontend are avoided, duplication of models and types is prevented, and API calls are
simplified and accelerated.

The project aligns with the Application layer’s vertical slice architecture. Every module/feature
contains all elements that are relevant to that feature, such as pages, components, types and hooks.
This increases the application’s maintainability and scalability, making it easier to extend the app in
the future.

8.3 Database Design

In this diagram, we have only included the tables with their PK and FK relationships. The complete
ER diagram can be found in the attachments under
“\02_Additional_Product_Documentation\02_ER_Diagram”. Furthermore, we have only
included the essential tables from the Identity schema and have omitted the Hangfire schema

entirely.

AppBundies sewots O
] 0

e T+ SendaridSetings

EmailProviderSettings = "ﬁ
\a
'

~———"+SmipSetings

14

EmailProviderSettings Entityld

oo

id

EmailProviderSettingsEntityld

ProductCategories &
Categoriesld

Produotsid

PandingUploads

o wid (o] o

ProductObjectDetails

d

Products (D ProductLocalizations

= e H ProductVersionid oid (50

Productid

VoxelAssembler Site 71 /108

ActionVersionid wuta 1] WorkTaskid uuto [«

Masterarbeit, MAS-SE 2023-25

8.4 Design Principles

The VoxelAssembler application follows several key design principles to ensure maintainability,
scalability, and code quality:

e SOLID Principles

e Clean Architecture

¢ Domain-Driven Design (DDD)

e Vertical Slice Architecture

8.4.1 Additional Principles

o KISS (Keep It Simple, Stupid): Solutions favor simplicity over complexity. Complex problems
are broken down into manageable, understandable components. For example, we do not use
any repositories because complexity does not justify the complexity.

o Immutability: Preference for immutable objects and value types where possible to reduce
side effects and improve predictability.

e Fail-Fast: Input validation and error handling using the Result pattern (ErrorOr) to catch
issues early and provide meaningful feedback.

o Testability: Architecture designed to support comprehensive testing through dependency

injection and clear separation of concerns.

These principles work together to create a maintainable, extensible system that can evolve with

changing business requirements while maintaining code quality and developer productivity.

VoxelAssembler Site 72/ 108

Masterarbeit, MAS-SE 2023-25

8.5 Technologies & Frameworks

Our application is a modern web-based system built using a clean and modular architecture. It
follows the principles of Domain-Driven Design and separates concerns across multiple layers.

Below is a breakdown of the technologies and tools used in each area of the system.

Scope Technology / Framework Description / Reason

It provides a fast and interactive SPA. This app
. . was a great chance to improve and deepen our
User Interface React, Typescript, Vite o o
knowledge and skills in React & TypeScript in a

real world scenario.

Tailwind allows us to write Ul components
CSS Framework | TailwindCSS faster, since we don’t have to style anything
using CSS.

All team members are very familiar with .NET

and REST. C# is enough powerful to cover all
our needs. NSwag is used to generate the API
API Layer .NET Core, REST, NSwag
client for the frontend so that we can save time
and don’t have to develop any API calls or

models in the frontend ourselves.

We use EF Core as our ORM for data access.
. PostgreSQL (referred to as VoxelAssemblerDb)
Persistence EF Core, PostgreSQL
is used as the main database. A DB initializer

sets up the database schema and seeds data.

We use ASP.NET Core Identity for managing
Authentication & dentit authentication and authorization. Cookie based
enti
Authorization Y authentication is implemented to manage

sessions.

.resx resource files are a common and easy
way to solve localization in .NET. It allows us to
Localization _ manage and deliver localized strings based on
.resx files , .
(backend) the user’s culture. This enables easy support for
multiple languages on server-side responses

and error messages.

VoxelAssembler Site 73/ 108

Masterarbeit, MAS-SE 2023-25

The i18n package is one of the most widely
used, if not the most widely used package for
Localization 180 localization in the React world. Using i18n keys
(frontend) allows us to adapt the Ul texts to the user’s
preferred language in real time, enhancing

accessibility and user experience.

o Used for containerizing our app and making
Containerization | Docker .
deployment possible.

Asynchronous Hangfire Used for long running backend tasks. Mainly for
Tasks creating configurations on aps.

Testing Uit Using xUnit for writing Unit, EtoE and
(backend) Integration tests.

Using MSW allows us to setup a fake API

. without having to start the whole setup and run
Testing

Vitest, MSW the actual server. Using Vitest in combination
(frontend)

gives us a very easy solution to test the frontend

and how it behaves for certain API responses.

Provides distributed tracing, logging, and
metrics collection across our application.
. Exports telemetry data via gRPC to the Aspire
Observability OpenTelemetry o
Dashboard for monitoring APl performance,
background jobs, and external service

integrations like Autodesk services.

These tools allow us in both, the frontend and
the backend, to keep our codes consistent over
) the whole app. We enabled auto format on
_ StyleCop.Analyzers, EsLint,
Code Quality Pretti save, that the source codes look the same for

rettier
everyone. Analyzers throw compiler errors
when the code does not comply with the set

rules.

VoxelAssembler Site 74 /108

Masterarbeit, MAS-SE 2023-25

8.6 Building Block View

8.6.1 Development

For our local development setup, we decided early on to create an Aspire project to make our
development process as efficient as possible. The goal was to have all resources of our application
orchestrated through Aspire. For example, we also integrated our Ul into .NET Aspire. The
PostgreSQL database is provisioned through Aspire as well, along with the API, the database
initializer, and the design automation project.

Aspire provides very simple provisioning of resources and handles service discovery within the local
network. In addition, the dashboard is very useful for quickly analysing errors or restarting services,
since all resources can be controlled from there and all telemetry data is exported to it.

Besides the Aspire setup, we also created a Docker setup. This allows us to start the entire
application via a Docker Compose file. Our own images are built and run as containers, while for

PostgreSQL and Aspire we pull the images directly from Docker Hub.

Local Development

/A .NET Aspire
Aspire Development Server (Orchestrator)

Postgres
DB
ul WebHost
(Vite + React + TS) .NET WebAPI

Aspire Dashboard

DBinitializer DesignAutomation

Pull (DockerHub)

Pull (DockerHub)
Dockerfile Dockerfile Dockerfile

Build Build Build

-*doc ker

Docker Compose

VoxelAssembler Site 75/ 108

Masterarbeit, MAS-SE 2023-25

8.6.2 Cloud Deployment

Our application is deployed in AWS inside a dedicated VPC that is split into public and private
subnets. The public subnet is connected to the internet through an Internet Gateway, while the
private subnet is reserved for internal resources. Within the private subnet, we run a PostgreSQL
RDS database. For security reasons, the database has its own security group and no public IP
address, which means it cannot be reached from outside the VPC.

In the public subnet, we operate our container workloads using Amazon ECS. The ECS cluster hosts
two main services: Aspire and the WebHost, which runs our VoxelAssembler application. In addition
to these services, there are also tasks such as Dblnitializer and DesignAutomation. These are not
long-running services but rather one-time jobs that can be triggered when needed, for example
during initialization. Container images are pulled either from our private VoxelAssembler registry or
from Docker Hub in the case of the Aspire image.

For inter-service communication inside ECS, we use AWS Cloud Map. Each ECS service is
registered within a Cloud Map namespace, which enables service discovery via DNS. This allows
services to communicate with each other reliably inside the VPC. For example, the WebHost service
connects to the Aspire service over gRPC using the Cloud Map service endpoint, without requiring

any public exposure.

VoxelAssembler Site 76 / 108

Masterarbeit, MAS-SE 2023-25

All sensitive configuration details and secrets are managed centrally in AWS Secrets Manager. To
keep track of resource usage and application health, ECS resources are monitored through
CloudWatch.

Incoming traffic is handled by an Application Load Balancer, which also resides in the public subnet.
It listens on port 443 and routes requests based on the host header: requests for
monitoring-voxelassembler.mas-se.net are forwarded to the Aspire service, while those for
voxelassembler.mas-se.net are sent to the WebHost service. Any HTTP requests are automatically
redirected to HTTPS. The TLS certificate for our domain, *.mas-se.net, is stored in AWS Certificate
Manager.

The domain itself was purchased directly through AWS. DNS is managed with Route 53, where we
maintain a hosted zone. The A Record points to the Application Load Balancer, while a CNAME

Record was used for the DNS validation.

LUE) AWS Cloud

N\ 45T N
L e o (& 2]
/ Internet Gateway Cloud Watch Container Registry Secrets Manager Certificate Manager
Public subnet Private subnet
E
ECS o
Aspire Rbc 18889
HTTP 18888 —
/ HTTP 8086/’/"’ &
5 @. 1 WebHost
(VoxelAssembler App)
—
Route 53 * Application Load
Balancer ’i ;‘ Postgres RDS
(HTTPS 443) * = VoxelAssemblerDb
DesignAutomation
g =
TLS Certificate =
Dbinitializer
* Redirect HTTP to HTTPS
* voxelassembler.mas-se.net
monitoring-voxelassembler.mas-se.net

VoxelAssembler Site 77 /108

Masterarbeit, MAS-SE 2023-25

8.7 Application Flow Sequence Diagram

This sequence diagram represents the main flow of our application. It describes how an action is

triggered by clicking an Action Button (Configure) on a product configuration. The diagram shows

the complete interaction between the User, Ul, API, Notification Processor, Database, and the

external service Autodesk. It covers optional cache handling, background job execution with

Hangfire, polling of Autodesk work items, updating product configurations, and sending notifications

back to the Ul.

Ul API NotificationProcessor Database Autodesk
User
Click Action Button (Configure)
Trigger Action
uﬂj [Cache Enabled]
Try Get Existing ProductConfiguration
. ProduetConfiguration
Fulfills Requirements?
opt [Cache Hit]
4 Result {Cache Hit - ProductConfigurationld)
opt [Caghe Miss / Cache Disabled]
Save PrpductConfiguration
5 Result (Cache Miss - ProductConfigurationid)
Crgate WorkTask
Credte Hangfire Job -
loop [Hangfire - Background.Job]
Submit Workltem
loop [Poll]
Poll Workltem Status
Workltem Status
Update WorkTask Status / Log
Saye Notification
On Hangfire Job Status change
Process Workitem Outputs
opt [Viewable]
Create Viewable
Update RroductConfiguration
loop [Motification - BackgrourjdJob]
L SendNotification (SignalR)
3 ul AP| NotificationProcessor Database Autodesk
User
VoxelAssembler Site 78 / 108

Masterarbeit, MAS-SE 2023-25

9 Implementation

9.1 Feature Implementation

All the features and their implementation status are listed in the table below. For some features, that

are bigger than others and need some more explanation, a description of how the feature was

implemented is written below the table.

Feature Name Feature Type Is Implemented
Authentication & Authorization Must-Have
APS Authentication Must-Have
Category & Product Management Must-Have
Add App Bundles Must-Have
Action system Must-Have
Default Actions Must-Have
Initialize Buckets Must-Have
Model Parameter Constraints Must-Have
Configurator Must-Have
Configuration Management Must-Have
Account Settings Must-Have
Cache Settings Must-Have
Change Language Must-Have
User Documentation Must-Have
iLogic Library Must-Have
Pricing Must-Have
Toggle Categories & Products Visibility Optional
3D Viewer Fullscreen Optional
Design Settings Optional
Anonymous Users Optional Ol
Domain Whitelist Optional
Clear Cache Optional
Create Actions from App Bundles Optional
3D Viewer Extensions Optional
Allow running instance Optional L]
Manage Bucket Items Optional
Add native data to vault Optional Ul
Configuration sidebar Optional
Cloud hosting Optional
Work Tasks Optional
Work Tasks Administrator Optional
Load Configuration Optional
3D Viewer Default Perspective Optional
User Management Optional
Zip Assembly for VoxelAssembler Optional
Inventor Add-In with CI/CD Optional

VoxelAssembler

Site 79/ 108

Masterarbeit, MAS-SE 2023-25

9.1.1 Category & Product Management

A category has a name, a description and optional an icon (a default icon will be displayed if no icon
is provided by the user). A category can have a parent category which will result in a tree. This tree
will be visible for the end user on the catalog page.

Products also have a name, description and an optional icon. They can also have a parent category
and will act as leaves. A product is the base to start a configuration. Every product can have n
versions and will have a default version on creating the product. These product versions have states
to control their visibility. These states can be “Active”, “Inactive”, “Internal” or “Development”. Only
administrators and developers can see inactive and development versions. Internal product versions
are visible for company users, developers and administrators. The user can assign actions to a
product version and determine which user roles see which actions in the configurator. This can be

different from product version to product version.

Action settings
Manage actions that are available to the user depending on access rights. Activities are actions that are available on a version.

Administrator Developer Employee Customer

Select Action v Select Action hd Select Action s Select Action A

Select Action Version Ne Select Action Version i Select Action Version v Select Action Version .

Version 1- Export Sheet Metal DXF x
Version 1- Configure x
Version 1- Export PDF *

Version 1- Export BOM x

The user is also able to create a 3D preview for a product version and set the default perspective of
this preview, as well as control the visibility of the tabs in the configurator. A default 3D preview called

Viewable is created automatically.

Version 1

Manage settings related to this version
¥ Show drawing tab
¥ Show BOM tab

¥ Show export tab

Default perspective

VoxelAssembler Site 80/ 108

Masterarbeit, MAS-SE 2023-25

9.1.2 Action System

The user can create a so-called activity. An activity has an Id (may only contain letters), an engine
to run on (Autodesk Inventor engine versions), an optional alias (can be set manually, will be set by
the uploaded bundle if no alias is provided / read from dll by using reflection) and an optional
description. On creating an activity, the user must select one or more app bundle versions. In the
next step, the app automatically reads the selected app bundles and provides parameters.
Parameters can be added manually by the user. These parameters are needed for the Autodesk
services to run certain actions. An example parameter - “InventorDoc” — Controls what document

will be opened. The user can check the parameters content with a JSON viewer built into the app.

Add Activity X Details X
o { J o
{
"localName": "input",
Parameters ‘ "Vel’b”' "get"
+ Add Parameter "name": "InventorDoc",
s "zip": true
Bor pu L © L IEI }
B2
Output 30

After creating an activity, the user must create an action. Actions are the buttons that are displayed
in the configurator. An action has a name and an activity version. After selecting an activity version,
the parameters from before are displayed. The key difference here is, that the user now can set the
value to the parameters. As an example, a BomExtractorlnput parameter requires additional
information in form of a JSON string. The user can paste this JSON string in a JSON helper that will

automatically escape it to properly send it to the backend and to the Autodesk services.

VoxelAssembler Site 81 /108

Masterarbeit, MAS-SE 2023-25

Activity

BomExporterSingleActivity hd

Activity Version

Version 1() v

> InventorDoc
> BomExtractorOutput

v BomExtractorinput

activities.versions.local-name

bomexport.settings.json

activities.versions.verb

get v

common.description

Parameters JSON for BOM Export

v Required

actions.url-json

(o]

After setting the necessary values for each parameter, the user can save the action. After that,
assigning the action to a product version is necessary, to display the action button in the configurator.

This is described in the “Category & Product Management” section.
9.1.3 App Bundles

9.1.3.1 Description
Currently some base AppBundles were implemented. They are called:
e MuM.Inventor.BomExtractor
e MuM.Inventor.Parametrization
¢ MuM.Inventor.PdfExporter
e MuM.PriceCalculator
o MuM.SheetMetalDxfExporter

They are all based on a template that can be found here: Template
More can be added anytime. They could be just for one customer functionality or something that is
useful for multiple. Because of the flexibility VoxelAssembler delivers each customer can have the

functionality he needs.

Each AppBundle must implement an Interface called ‘IAppBundleDescriptor’ which allows to define

Input and Output.

VoxelAssembler Site 82 /108

Masterarbeit, MAS-SE 2023-25

The VoxelAssembler allows to upload those AppBundles. An app bundle has an Id (may only contain
letters), an engine to run on (Autodesk Inventor engine versions), an optional alias (can be set
manually, will be set by the uploaded bundle if no alias is provided / read with reflection from DLL)
and an optional description. The user can upload ZIP packages including the app bundle. App
bundles have versions. For each version added, a new ZIP file must be uploaded. It is not possible

to change the once uploaded ZIP.

9.1.3.2 Installation
There is no installation needed for building AppBundles. If new AppBundles need to be created the

installation of this Template is recommended.

9.1.3.3 CIl/CD
There is currently no CI/CD Pipeline. Still there is some automation. Because each AppBundle must
follow a certain structure, this is automatically done when building. The output are multiple zip files

for each AppBundle. Releases are manually put here. Note that each AppBundle has its own version.

9.1.3.4 Documentation

More documentation can be found directly in the customer documentation.

9.1.4 Inventor Add-In & Model Parameter Constraints
Model Parameter Constraints were implemented as a library with a Cl/ CD Pipeline. This will run on
every commit and build a NuGet package that gets directly pushed to the GitLab registry. This is

mainly done to allow other project to consume this library and having up to date constraint types.

9.1.4.1 Description
The Inventor Add-In is called MuM.VoxelAssembler and is built like a typical Inventor Addin. As

defined by Autodesk an Interface called ApplicationAddInServer must be implemented.

MuM.VoxelAssembler

Info Create constraints Manage Groups Zip assembly Delete constraints

The model parameter constraints NuGet is used to get access to the different constraints. This is an
Inventor Addin used to create Model Parameter Constraints in a Ul friendly way. It also helps to

create a zip that is named correctly and packages everything that is needed for the VoxelAssembler.

9.1.4.2 Installation
There is an installer that copies everything to the right place. The installer can be found in the

Releases.

VoxelAssembler Site 83/ 108

Masterarbeit, MAS-SE 2023-25

9.14.3 CI/CD

The master branch is protected. Create a new branch, like feature/xyz and merge it to master when
finished. Create a tag like release/v0.0.2 to run the pipeline. The pipeline will create a release and
upload the installer to the release. The installer can be found in the Releases.

The installer uses wix to create the msi. Make sure that the ci/cd pipeline runs on a windows machine
and has wixtoolsets available. They should be installed through the NuGet packages and copied by

a target in the csproj file.

9.1.4.4 Testing

There is a project called MuM.VoxelAssembler.Tests which contains tests. Those are mostly used
to check if the produced Json strings are valid. It uses input files for each constraint that has one
parameter with attributes. To run these tests an Inventor installation is needed. The tests cannot run

in the pipeline because of this. A valid license is also needed.

Y
4@ o
°
©
L
® co
© o
@ Co
©
@ Co
@ Co
©
© Dout
© Dout
© int
© inte
@ s
O sy
4 @ Test
CRe
O e
©r
O
Q.
©
o
© -
©
©r
© Text
© Tex
©
4@ Ver
O ve
© Ve
© Ver
OV
°
© ver
© v
©
© Ver
© \e

9.1.4.5 Documentation

The documentation for customers is part of the VoxelAssembler Docusaurus project.

9.1.4.6 Zip Assembly

This is now handled by an external console application. The reason for this is that pack and go uses
Apprentice internally and thus should not be used inside of an add-in. For this to work some things
are important. The PackAndGo project needs to run as AnyCPU and with Prefer 32 bit unchecked.

Also, the app.manifest is needed otherwise an error will be displayed.

VoxelAssembler Site 84 /108

Masterarbeit, MAS-SE 2023-25

9.1.4.7 Screenshots (Dark & Light Theme)

Group Name

ParameterGroupSortOrder
1

ParameterGroup

Language Text
En - DefaultChangeMe

9.1.5 iLogic Library

9.1.5.1 Description

MuM.ILogicLibrary is an extended library designed to enhance the capabilities of iLogic in Autodesk
Inventor. It provides a set of utilities for automating and configuring assemblies, facilitating operations
such as transforming occurrences, managing rotations, translations, and logging, especially within

Autodesk Platform Service.

9.1.5.2 Features
e Translation and Rotation: Perform absolute and relative movements of occurrences in an
assembly.
e Logging: Offers advanced logging mechanisms to trace actions and track operations during
iLogic script execution.
e Autodesk Platform Service Compatibility: Fully compatible with Autodesk Platform Service

environments, allowing iLogic automation to function seamlessly both locally and in the cloud.

9.1.5.3 Installation

How to install is described here.

VoxelAssembler Site 85/ 108

Masterarbeit, MAS-SE 2023-25

9.1.5.4 CI/ICD
This project creates a NuGet package that can be referenced in AppBundles. In this case it is at

least used for the parametrization AppBundle. Make sure to add this to the project:

iLogicLibrary

<PropertyGroup>
yLocallLockFileAssemblies>true</CopyLocallockFileAssemblies>

This makes sure that the DLL file is included while building. Otherwise, it might be missing in the

AppBundle output, because it is not directly referenced in the code.

9.1.5.5 Documentation

The documentation can be found here.

9.2 Work Task System & Background Jobs

For all the long running task that can be triggered by an action, an entity called WorkTask was
implemented. When talking about the Automation API, Autodesk call their own task Workltem. It is

important to understand the difference of implementation.

9.2.1 WorkTask
WorkTask is what we call the Handfire job. Those are kept track by the VoxelAssembler.

The WorkTask starts a Workltem and keeps track of the state by polling.

WorkTaskld is a GUID and looks something like this: 5f514de7-1017-4386-9301-34e161dfbc7d

9.2.2 Workltem
Workltem is what Autodesk calls their tasks running on Autodesk Platform Service. WorkTask

is a wrapper around them that allows to keep track of them in the VoxelAssembler.

Workltemld is a string and looks something like this: 39c50d3a3e17482db113adb62807515f

9.2.3 Trigger

Webhost Endpoint ActionService ProductConfigurationService

[TryGetCachedProductConfigu

Checks if all required outputs
are available!

ationdsync

ring
WorkTaskType.
WorkTaskentity

Now only one cache system is implemented, but more could be added using the interface
ICacheSystem. An endpoint reacts on an action clicked, checks if cache has everything needed for
this action. If yes, a positive response is sent back and directly loaded. If no cache was found or at

least is not complete a negative is sent back and a Workltem is started. This is handled by Handfire.

VoxelAssembler Site 86/ 108

Masterarbeit, MAS-SE 2023-25

WorkItemWorkTask

[Executedsyne }_.[Getdctionversion]»[GetProductersion]__,{“:gi,";“"s"‘“‘ﬁ‘;’;i?‘"]——» Bulddsync Build WorkItem-Request
Create WorkItem request.

A

argName = “InventorDoc”

objectkey = ProductVersion.ObjectKey

objectKey = localVame

After this a polling is started to check for the state of this Workltem.

Polling Loop (while true):
GetWorkItemStatusdsync(...)

Status?
Pend:ng FailedInstrucet:
(update InProgress(upol Success (9ot Failed(throw o
status) ate status) to Handle) except}on) SR .row
exception)

VoxelAssembler Site 87 /108

Masterarbeit, MAS-SE 2023-25

On success the following steps are done:

Success branch CompleteUploads
v
{ WaitFordllResults
v
[Collect Outputs
v
e N\
Start Translation (2D / 3D) Create Viewables
N\ _J
|
'a I
Save proo(uct conﬁigumtion
_ J

9.3 Deployment Strategy

For deployment, we decided to bundle the Ul and the API together and ship them as a single
Docker image. This approach follows a lock-step deployment strategy, meaning that the Ul cannot
be deployed independently of the API (and vice versa). While this results in a stronger coupling
between the two components, it also simplifies operations: the Ul does not need to be served

separately, and we avoid dealing with CORS or cross-origin configuration issues.

In the future, we may revisit this decision and host the Ul independently e.g. in a CDN to achieve

more flexibility.
The Docker build process works as follows:

First, the npm packages for the Ul are restored.
Next, the Ul is built, producing static assets.
Afterwards, the .NET API is built.

The compiled static Ul output is copied into the wwwroot folder of the API project.

W~

The entry point of the container is the Web API, which then serves both the backend endpoints and

the static Ul files.

VoxelAssembler Site 88 /108

Masterarbeit, MAS-SE 2023-25

9.3.1 Database Initializer / Design Automation

Both the Database Initializer and the Design Automation project are built and delivered as Docker
containers. The Database Initializer is used to apply schema changes and seed initial data such as
users and roles, while the Design Automation container handles Autodesk-specific automation tasks.
Each container can be executed directly in the CI/CD pipeline or manually when needed, ensuring

consistent execution across all environments.

9.4 Repository Overview

This is a high-level overview of the repositories that were created and used during the master thesis.

Each of those are later explained in more detail where needed.

9.4.1 Documentation
Internal documentation repository containing decision logs, Ul drafts, and feature definitions. Those
are now used for this documentation and are no longer maintained. Start here to get an overview of

the project. Documentation

9.4.2 Customer Documentation
Customer-facing documentation on how to use the VoxelAssembler and its API. This repository is
used to generate the documentation on the website. Here all the information is stored that is relevant

to the customer. CustomerDocumenation

9.4.3 App-VoxelAssembler
Main application repository for the VoxelAssembler project. This repository contains the main
application code and is used to build the VoxelAssembler application. Mainly consists of the frontend

and backend code. Also includes all the tests written. App-VoxelAssembler

9.4.4 MuM.VoxelAssembler
Repository that contains the Inventor-Addin that is used to add model parameter constraints to

parameter in a graphical way. MuM.VoxelAssembler

9.4.5 ModelConstraintLibrary
Repository for managing model constraints. This is used as a library for many other repositories. A
NuGet is built from this repository and then consumed by other projects.

ModelConstraintLibrary

9.4.6 MuM.iLogicLibrary
Provides an extended iLogic library for Autodesk Inventor. Used by configurations. This is used by
the customer to create their own configurations. How this can be used is described in the customer

facing documentation. MuM.iLogicLibrary

VoxelAssembler Site 89/ 108

Masterarbeit, MAS-SE 2023-25

9.4.7 API Test Client

Repository containing a test client for API interactions. API Test Client

9.4.8 AppBundles

Contains all the developed app bundles used for APS. There is currently a repository for the default
app bundles. There are high changes this will later be extend on a per customer basis. If a customer
needs some other functionality running on APS a new app bundle can be developed. More details

in the accordingly topic. AppBundles
9.4.9 TaskAndlssue-board

Repository used for tracking tasks and issues. Also, Milestone planning was done here. Issue-Board

9.4.10 Infrastructure

This repository contains the Infrastructure as Code (laC) setup for running App-VoxelAssembler on
Amazon Web Services (AWS). It uses Terraform as the provisioning tool and defines all necessary
AWS resources in a reproducible and version-controlled manner.

The repository serves as the single source of truth for creating, updating, and managing the cloud

infrastructure that App-VoxelAssembler depends on.

VoxelAssembler Site 90/ 108

Masterarbeit, MAS-SE 2023-25

10 Quality Assurance

10.1 Testing Strategy

The VoxelAssembler application uses a three-tier testing strategy designed to maximize confidence
in system reliability while maintaining efficient development workflows. Our approach prioritizes
integration testing as the primary testing methodology, supplemented by targeted unit tests and end-
to-end tests that validate real external service integrations.

Rather than following the traditional test pyramid with many unit tests, fewer integration tests, and
minimal E2E tests, we employ an adapted strategy where integration tests form the primary
foundation, supported by focused unit tests and comprehensive end-to-end tests that validate

external APl integrations.

3rd Party Services E2 E TeStS

Use Cases with different Input
Data

Integration Tests

System Boundaries

Encapsulated Business Logic U nit TeStS

VoxelAssembler Site 91/108

Masterarbeit, MAS-SE 2023-25

10.1.1 Unit Tests

In the beginning, we had planned to write more unit tests to cover isolated business logic. However,
as the project progressed, we decided to focus more on covering individual business use cases
through integration tests instead, since we no longer saw much benefit in adding additional unit tests.
We kept the existing unit tests, as they are still useful in certain cases, such as architecture tests
(e.g., checking which projects reference each other) or logic that would otherwise require extensive
setup in an integration test. For these unit tests, we typically use an in-memory database, which
allows us to keep the setup lightweight while still validating the logic in isolation.

Technical components used for testing for unit tests can be found in chapter:

Projects:
VoxelAssembler.Application.Tests

VoxelAssembler.Architecture. Tests

10.1.2 Integration Tests

For our integration tests, we use the WebApplicationFactory to spin up our API in a realistic test
environment. Alongside this, we start a PostgreSQL database in Docker and seed it with the
necessary data to simulate real-world scenarios. The tests are executed against the running API
using an HttpClient, where we log in, obtain a session cookie, and then include this cookie in

subsequent requests to ensure proper authentication and authorization handling.

Our goal is to cover all business use cases end-to-end within this controlled environment. This
includes both positive scenarios (verifying that valid operations succeed) and negative scenarios (for
example, ensuring that user roles and permissions are correctly enforced). By doing so, we can
validate not only the business logic but also the full request/response flow, data persistence, and

security aspects.
Technical components used for testing for integration tests can be found in chapter:

Projects:

VoxelAssembler.\WebHost. Tests

VoxelAssembler Site 92 /108

Masterarbeit, MAS-SE 2023-25

10.1.3 End-to-End Tests

The end-to-end (E2E) tests are structured in the same way as the integration tests and are treated
similarly in the codebase, which keeps the overall testing approach consistent and easy to maintain.
The main difference is that, unlike integration tests which work against our own system boundaries,
the E2E tests call real Autodesk services. This allows us to validate not only our own business logic
and API contracts, but also the correct interaction with external systems in a production-like scenario.
As a result, these tests provide an additional layer of confidence that our solution works reliably in
real-world conditions.

E2E tests use of the same components as the integration tests.

Projects:

VoxelAssembler.\WebHost. Tests

10.1.4 Ul Tests

In addition to unit, integration and end-to-end tests, we added Ul tests to validate the user interface.
The purpose of these tests is to make sure that the user interactions work as expected. Currently,
only a few tests are written, such as authentication & authorization, category & product management,
user management, account settings and email provider settings. More tests will be added in the

future.

The tests are written with Vitest, since it's a very fast and lightweight testing framework and since
we’re already using Vite as build tool, it was the obvious choice for us to use Vitest here. To simulate
API requests, we use the MSW (Mock Service Worker) package which allows us to prepare API
responses so we can easily verify how the frontend reacts to different APl responses. This setup

provides a good and valid feedback during the development of the frontend.

We also discussed about using Playwright to have real browser-based Ul tests. This would allow us
to automate full user workflows across different browsers in a production-like environment. Since
Playwright comes with a much higher setup and maintenance effort, we decided to move that to the
Stretch-Goals milestone. It is something that we would implement in the future development of the

application.

Project:

VoxelAssembler.Ul (/src/test)

VoxelAssembler Site 93/108

Masterarbeit, MAS-SE 2023-25

10.1.5 Test Results

The complete test reports can be found in the attachment under "03_Quality_Assurance".

268
Backend
Integration
Tests

52
Backend
Unit Tests

21
UI Tests

10.1.6 Reviews

At the beginning, we had planned to only allow code contributions through merge requests to enforce
reviews from the start. However, we quickly realized that this approach was somewhat cumbersome
in the early phases of the project, when development speed and flexibility were more important. As

a result, we introduced a shared dev branch that everyone could push to directly.

Even though this branch was not protected by a formal policy, we agreed as a team that every
developer would test their changes locally and run the tests before pushing. This ensured a baseline

level of quality and reduced the risk of breaking the shared development branch.

Once the project reaches completion, we will merge the dev branch into the main branch, which is
protected by a policy that prevents direct pushes. From that point on, contributions will only be
possible through merge requests. Each merge request automatically triggers a validation build,
which runs the tests and verifies that the solution can be built successfully before the changes are

merged. This ensures that code quality and stability are maintained.

10.1.7 Testing Sessions / Manual Tests

After each milestone, we conducted dedicated testing sessions as a team. For this, we scheduled a
meeting where we tried out the newly implemented functionality together. Most of the time, this was
done directly through the Ul, but occasionally we also executed manual API calls against the
backend to validate specific scenarios.

The outcome of these testing sessions was usually a set of issues capturing functionality that did not
yet work as expected. In addition, the sessions often sparked valuable discussions about user
experience for example, how certain workflows could be simplified or made more intuitive for end
users. These insights helped us refine the product beyond pure correctness and focus on usability

as well.

VoxelAssembler Site 94 /108

Masterarbeit, MAS-SE 2023-25

To ensure transparency and allow others to revisit the findings later, we recorded all testing sessions.
Testing sessions were documented and can be found as an attachment in

“\03_Quality_Assurance\01_Testing_Sessions”.

10.2 Static Analysis and Formatting Tools

To ensure a consistent and maintainable codebase, we enforce strict quality and architectural rules
across both the backend (.NET) and the frontend (React/TypeScript).

10.2.1 Backend

Analyzers

We rely on the default Roslyn analyzers together with StyleCop.Analyzers to enforce coding
standards and detect potential issues early. All analyzers are included via centralized build props,

making sure that every project follows the same rules.

Build enforcement
With TreatWarningsAsErrors enabled, the build only succeeds when no analyzer warnings remain.

This prevents “warning debt” from creeping into the codebase.

Package management
We use Centralized Package Management so that package versions stay aligned across all

projects, reducing inconsistencies and version conflicts.

Code style & formatting
General style and formatting rules (e.g., avoiding var, prefixing private fields with _) are enforced

through .editorconfig. The same configuration also controls the severity of analyzer rules.

Architecture validation

Using NetArchTests.Rules, we validate architectural boundaries through unit tests. For example, in
our Clean Architecture setup, dependencies are only allowed to flow inward:

The Domain layer must not depend on Application, Infrastructure, or Web layers.

The Application layer must not depend on Web.

VoxelAssembler Site 95/ 108

Masterarbeit, MAS-SE 2023-25

10.2.2 Frontend (React/TypeScript)
Prettier

Handles automated formatting to keep the codebase clean and consistent.

ESLint
Enforces coding standards, detects potential bugs, and ensures code quality in

TypeScript/JavaScript.

10.3 DevOps & Build Automation

10.3.1 Branch Policies

In our development workflow, we enforce strict branch policies to maintain code quality and
consistency. The main branch is protected, which means developers are not allowed to push
changes directly to it. Instead, all changes must go through a merge request.

When a merge request is created, the pipeline automatically runs the test suite. Only if all tests pass
successfully can the merge request be completed. This ensures that no failing or unstable code is
introduced into the main branch.

Looking ahead, we are considering additional measures to further strengthen our process. One idea
is to require at least one reviewer, apart from the author, to approve a merge request before it can
be merged. Another possible extension would be to introduce a merge request checklist, covering
items such as confirming that new tests have been written, linking the relevant issue, and verifying

other quality requirements.

10.3.2 Merge Request

Validate

1 | Git Merge Request (dev / main) l—‘rnggor—l

gitlab-ci (Stage validate)

dotnet test

Run Tests

As soon as a merge request is created, the validate stage defined in the .gitlab-ci.yml file is executed.
During this stage, the entire .NET solution is built, and the test suite is run. Test results are collected
in the JUnit format using the Coverlet library. GitLab requires this format to display test results and

statuses directly in the Test Explorer of the merge request.

VoxelAssembler Site 96/ 108

Masterarbeit, MAS-SE 2023-25

To complete and merge a request, the pipeline must run successfully — meaning the solution builds
without errors and all tests passes. This ensures that only working and verified code can be
integrated into the protected branch.

At the moment, we are not yet able to measure or enforce a minimum code coverage threshold.
However, this gap has been explicitly tracked as part of our technical debt and is planned to be
addressed in the future.

10.3.3CI/CD
Continuous Integration
o Git Tag .
U7 | (webhosv1.0.0) Trigge

gitlab-ci (Stage ci)

dotnet test l
Run Tests ——
npm test

y
docker build l
Build / Push
Docker Image
docker push (latest) }—
docker push (1.0.0) }—

Y

Update ECS

Service
\4

€ €

AWS ECS AWS ECR
Service

A new version of an application can be released by creating a Git tag, following the principles of
Semantic Versioning. Creating such a tag triggers the Cl stage defined in the .gitlab-ci.yml file.

The first job executed in this stage runs the test suite, ensuring that no release is created without
passing tests. Once this step succeeds, only the Docker image that corresponds to the created tag
will be built.

VoxelAssembler Site 97 /108

Masterarbeit, MAS-SE 2023-25

Each application is released independently by tagging it with the application name and version, for
example:

o webhost/1.0.0 — Backend API together with the Ul

o db-initializer/1.0.0 — Prepares and seeds the database

e designautomation/1.0.0 — Handles Autodesk-specific automation tasks

During pipeline execution, we install the AWS CLI to fetch an authentication token for AWS ECR
(our container registry). With this token, we perform a docker login to the registry and then push the
generated image.
For each application release, two tags are pushed to the registry:

e the semantic version from the Git tag (e.g. webhost:1.0.0)

o the latest tag (e.g. webhost:latest)

This way, deployments can either follow the moving latest tag for automatic updates, or pin to a

specific version tag to allow rollbacks and stable releases.

The version is embedded directly in the Docker image during the build process and then passed as
an environment variable to the Ul. This allows the application to display its current version directly in

the interface, making it easier for users and developers to confirm which release is deployed.

After the Docker image has been pushed, we update the AWS ECS service in the respective cluster.
This triggers a redeploy of the service, ensuring that the newest image is used. The deployment is
performed as a rolling update, so that new tasks are started with the updated image while old ones

are gradually stopped, guaranteeing zero downtime for the application.

10.3.4 Infrastructure

We decided to manage our cloud infrastructure as code in a dedicated repository (laC). For this, we
are using Terraform with the AWS provider to describe our AWS resources. Currently, we are running
on a private AWS cloud, but the goal was to manage everything through Terraform so that we can
later provision the same AWS setup quickly on another AWS account.

Our rule is that the infrastructure must only be changed or extended through Terraform, never directly
in AWS.

At the moment, the Terraform state is stored locally. In the future, proper state management needs
to be set up, for example via AWS S3. We have already captured this as a technical debt issue.
Another missing piece is a CI/CD pipeline that ensures terraform fmt has been run (code formatting
check) and then executes terraform plan and terraform apply. Currently, we deploy the infrastructure

manually via the CLI.

VoxelAssembler Site 98 /108

Masterarbeit, MAS-SE 2023-25

Infrastructure as Code (laC)

N\g

[.
/ Terraform \

Plan Apply

-/
jo) aWsS

10.3.5 Monitoring

For centralized monitoring we use OpenTelemetry, which enables us to collect logs, traces, and
metrics across the system. Within the application we have added extensive logging at meaningful
points and relay on the provided instrumentation from ASP.NET Core, EntityFrameworkCore,
Hangfire etc. This gives us valuable metrics and traces out-of-the-box, without requiring much
additional setup.

For production usage, we plan to integrate the Aspire Dashboard. Microsoft provides the dashboard
as a standalone Docker image, which makes it easy to get started. Although it is currently still
somewhat limited (for example, it does not yet support connecting to external storage), there are
active efforts in the community to extend its capabilities. The deciding factor for us was the simplicity
and usability of Aspire, which allows us to quickly adopt monitoring without heavy setup. If Aspire
should eventually turn out to be insufficient, we can still switch to a service such as Elastic Cloud.
Since the destination for our telemetry data can be changed easily in the code, this migration path
is straightforward.

Looking ahead, we may add custom metrics on top of the built-in instrumentation to better analyse
user behaviour and gain deeper insights into how the system is being used. This improvement has
already been captured as part of our technical debt.

For authentication with the OpenTelemetry Collector (via gRPC), we use an API key. While OAuth
would also be supported, API keys provide a simple and effective solution in our setup. Access to
the dashboard Ul itself is protected with a standard username/password combination. All sensitive
credentials, including the API key and the Ul password, are securely stored in the AWS Secrets

Manager.

VoxelAssembler Site 99/ 108

Masterarbeit, MAS-SE 2023-25

10.3.6 Health Checks
In our API, we use the standard ASP.NET Core health checks.
e The endpoint /alive returns whether the API itself is healthy.
¢ The endpoint /health additionally checks dependencies such as the PostgreSQL database
connection. The response is a JSON document containing all evaluated health check entries.
Our goal is to extend this further by implementing custom health checks for all external
dependencies, such as the SMTP server and Autodesk services. We have also captured this in the

related technical debt issue.

10.3.7 Resilience

Resilience Third Party (APS)

Some APS calls have rate limits that need to be handled. This is done for most API Call’s but not yet
all of them. This can easily be further extended by using the existing resilience pipeline built with

Polly.

Some APS calls are eventual consistent, meaning if they are used to fast after each other, then they
can fail. API calls like that were also extended with a resilience pipeline that does retries. Some of
the tests we have were run for multiple hours to check them and many, before flaky tests, worked

now without errors.

10.4 Technical Debt

We tracked all our technical debt in a dedicated GitLab issue, ensuring that nothing would be
forgotten over the course of the project. This issue served as a central backlog for topics that we

identified but decided not to address immediately.

Once the team decided to tackle a specific technical debt item, it was extracted into its own GitLab
issue with a proper description, estimation, and any necessary technical details. This approach
allowed us to manage technical debt in the same structured way as regular features or bug fixes,

making it visible, plannable, and actionable rather than leaving it as hidden work.

VoxelAssembler Site 100/ 108

Masterarbeit, MAS-SE 2023-25

11 Value and Evaluation

11.1 Value for Users & Companies

Today’s customers increasingly expect products tailored to their specific needs instead of standard,
off-the-shelf solutions. Almost every company in the mechanical and manufacturing sector faces
demands for configurable products, creating both opportunities and challenges. Today most
companies spend a lot of time to create those specialised products, which might be needed for an

offer, which then might not even sell.
For example:

¢ Machinery and Equipment: Customers often require machines in specific sizes, capacities,
or with optional add-ons that fit their production line or workshop layout.

¢ Industrial Components: Pumps, valves, and drive systems frequently need to be adapted to
precise flow rates, pressures, or space limitations.

e Automotive and Transportation: Vehicle components, cargo systems, or specialized
attachments are often configured to meet customer-specific operational needs.

e Construction and Metalwork: Staircases, railings, ventilation systems, or steel structures are
rarely identical across projects, requiring custom dimensions and features.

¢ Consumer Goods: From custom bicycles to tailored home appliances, even end-users expect

products that reflect their personal requirements.

So, for users the value is to be able to configure the product for themselves anytime they want.

For companies the value is saving time configuring products, by doing that for the customer or letting

the customer do that by themselves or even together (sales representative with customer).

Even if the product cannot be fully customized within the configurator itself, it can still serve as the
starting point for the engineering process. The generated result can be downloaded and further
refined in a CAD system, allowing engineers or designers to make final adjustments before

production.

VoxelAssembler Site 101/ 108

Masterarbeit, MAS-SE 2023-25

11.2 Technological Complexity

11.2.1 Code Metrics

We measured the lines of code (LoC) in the project using the cloc tool. To ensure accurate results,
we excluded common build, dependency, and IDE directories (e.g., node_modules, dist, .git, bin) as
well as automatically generated code such as the NSwag client. Additionally, blank lines and
commented lines are excluded from the count, so the analysis only reflects the manually written
source code and not generated files, build artifacts, metadata, or non-executable lines.

Ex. Output from App-VoxelAssembler repository:

TypeScript

XML

sVe

MSBuild script

INI

css
Markdown
YAML

HTML
JavaScript
Dockerfile

App-VoxelAssembler ModelConstraintLibrary

Typescript C# C#
13'010 LoC 29'476 LoC 306 LoC

D

MuM.Base.AppBundles

JSON C#
2075 LoC 1712 LoC

MuM.VoxelAssembler

XAML C#
2261 LoC 2924 LoC

API Test Client

Bruno
311 Requests

MuM.ILogicLibrary

C#
466 LoC

D

Infrastructure

HCL
1530 LoC

)

VoxelAssembler

Site 102/ 108

Masterarbeit, MAS-SE 2023-25

12 Conclusion

12.1.1 Technical Review

From a technical perspective, the architecture and implementation of VoxelAssembler proved to be
robust and well-suited for the project goals. By combining Clean Architecture, Domain-Driven
Design, and Vertical Slice Architecture, we achieved a modular, testable, and maintainable system
where each feature could be developed independently. This separation of concerns facilitated clear

responsibilities within the team and enabled a consistent development flow.

The integration with Autodesk Platform Services worked as expected and confirmed that CAD
automation in the cloud is a viable approach. The abstraction via AppBundles, Activities, and Actions

allowed us to implement reusable workflows with minimal coupling.

The deployment strategy using Docker and AWS ECS provided reproducibility and scalability.
Infrastructure as Code via Terraform allowed consistent environments, although manual steps for
Terraform state management remain a pending improvement. Monitoring with OpenTelemetry and
Aspire was helpful during development but Aspire still shows limitations for long-term production

monitoring.

The chosen testing strategy with a strong focus on integration and E2E tests proved particularly
valuable, given the complexity of external services. Nevertheless, unit test coverage remains
comparatively low, and automation around CI/CD pipelines could have been established earlier to

catch regressions sooner.

Performance and responsiveness of the configurator met expectations. The cache system
significantly reduced repeated processing times for identical configurations, but further optimizations

can and should be introduced later.

In summary, the technical foundation of VoxelAssembler is sound, extensible, and demonstrates
that complex CAD automation can be successfully delivered as a modern web application. At the
same time, certain technical debts (monitoring maturity, AppBundle versioning risks, test coverage

gaps) have been identified and provide opportunities for future improvement.

VoxelAssembler Site 103/ 108

Masterarbeit, MAS-SE 2023-25

12.1.2 Learning Outcome

12.1.2.1 Tobias Wiesendanger

Building web applications is not my daily business. For me this was the first time where | could apply
a lot of the things learned in school or privately. Also writing tests is not something | do daily, which
used up a lot of time, but while progressing showed how important they are.

| learned how to coordinate a team of multiple people, communicate clearly and create issues that

allow to work independently.

I never had the challenge to create something like a client for the frontend. We used NSwag for this
which worked great and was a learning experience for me. It allowed us to quickly create a client

that could be used directly in the frontend.

At my workplace we often face the challenge to make a project compile and onboard other
developers. This is where aspire shine and was used in this project. | learned a lot of its features,

but also, it's shortcomings like using it in tests.

12.1.2.2 Roman Schweri

I’'m working actively as a web developer since six years. But since we’re using .NET and Blazor for
every web application in my company, | never really had a project where backend and frontend are
strictly separated. | enjoyed being responsible for the frontend only, while knowing that the backend
is built structured and organized. Therefore, VoxelAssembler was the first project, where | was a
fulltime frontend developer, which was nice. | enjoyed deepening my knowledge in React, TypeScript
and TailwindCSS and already started to add it to the tech stack in my company. A big learning was
to not start coding blindly but taking a step back and plan the whole project as good as possible.
This starts from writing down the key features, to creating use cases, talking about tech stack and
choose the proper one instead of always go with the one “we used since day one”.

Also new to me was the usage of packages like Hangfire and NSwag, that I'll definitely consider
using in my works project from now on, since they provide such a great user & developer experience.
I never really written tests or did anything about CI/CD pipelines. | learned that even though it can
be really time consuming to implement, it can pay out in the mid-long term when a pipeline tells you,
that your new code broke the existing one and therefore cannot be merged or deployed.

Overall, it was a great experience where | can take a lot into my daily business. | really enjoyed
working with Mauro and Tobias, since we all three have a similar way of thinking and all three want

to achieve the same result.

VoxelAssembler Site 104 / 108

Masterarbeit, MAS-SE 2023-25

12.1.2.3 Mauro Heffti

Looking back, | got to explore quite a few new things in this project. | had worked with CI/CD
before, but it was my first time using GitLab and its Cl pipelines, which gave me a new perspective
on automation and deployment flows. | also dived into Aspire for the first time, not just testing it out,
but actually building a real project with it and even hooking up a Ul integration inside Aspire.
Another highlight was working with AWS hosting for the first time. It gave me insights into how
AWS services are structured and managed, and how they compare to Azure, which | was more
familiar with before.

On the backend side, | learned how to use resource files (resx) for translation, which turned out to
be really nice to use and well integrated in the framework. And with Handfire, | got some solid
hands on experience, not only running background jobs but also experimenting with job filters to
customize how they behave. All in all, it was a great mix of first time experiences and deeper dives,

and | came away with a bunch of practical knowledge that | can carry into future projects.
12.1.3 Lessons Learned

12.1.3.1 Tobias Wiesendanger

| learned very early how important it is to write tests from the beginning. We benefited a lot from this
while further developing. Breaking changes were detected quickly. What | would change regarding
to this, is making the CI / CD pipeline work sooner. We ignored it a while before fixing it. Running

the tests after each commit helps a lot.

We decided during the project to do testing sessions. During those all were present, one was clicking
and everybody pointed out things. This allowed us to find many bugs from small to medium. Many
issues were created from those sessions and then quickly fixed.

Many projects | start daily are not planned in detail and code is written quickly, which often leads to
many problems due to design decisions. In this project | learned how good a project can work out if

everything is already planned beforehand.

12.1.3.2 Roman Schweri

| learned to plan your software as good as possible and wait with the actual coding until other
important things are very clear. It reduces the time you need to adapt in a later stage a lot. Also, unit
and integration tests, combined with a good branching strategy and well-designed pipelines are a
very powerful tool that | completely underestimated in the past. | also tended to code until perfection,
before | deploy it to actual users to test. Having the testing sessions for each milestone helped a lot
with the continuation with the project, since | could fix bugs, that potentially made upcoming features
a lot harder & buggier, early on. I'll definitely start to make user tests more often and in an earlier

stage.

VoxelAssembler Site 105/ 108

Masterarbeit, MAS-SE 2023-25

12.1.3.3 Mauro Heffti

One takeaway for me was around our branching strategy. | actually liked that we could push straight
into the dev branch, it helped us move forward quickly without much overhead. Still, | realized that
in the long run it's usually better to go through merge/pull requests and have at least one reviewer.
That way you get more visibility into what everyone is working on, PR discussions can bring up
interesting ideas, tests are guaranteed to run, and changes are challenged before they land in the
main branch. Once something is pushed directly, it's far less likely to be questioned.

Another lesson was about integration testing with Aspire. It's a great tool, but | noticed it’s still a bit
in its early stages, and some key features are missing, like being able to hook into the startup
configuration or access the service provider. That's why | think it was the right decision for us to
switch back to WebApplicationFactory, which gave us more flexibility and reliability for our integration
tests. | also worked with Aspire Standalone Monitoring and saw some limitations there. Important
features are still missing, such as proper deployment behind a reverse proxy or persistence of
monitoring data. Because of that, I'd say it's not really suited for production use at this point and
maybe that’s not even Microsoft’s intention right now. There are open issues about these topics, so

the ecosystem is clearly still evolving.

VoxelAssembler Site 106 / 108

Masterarbeit, MAS-SE 2023-25

13 Attachments

13.1 Timereports

Every working hour was logged by each team member. This was documented by adding them to a
certain issue. We wrote a small tool to combine all these logged times to a report. They can be found

as an attachment in 04_Project_Management\01_Timereports.

13.2 GitLab Issues

Each GitLab Issue was exported directly from GitLab to provide a summary that can be provided
with this documentation. We still highly suggest to check the Issues directly in the corresponding
repository. The exported Issues can be found in
“\02_Additional_Product_Documentation\04_GitLab_Issues_Export”.

VoxelAssembler Site 107 / 108

Masterarbeit, MAS-SE 2023-25

14 Declaration of Academic Integrity

Hiermit erklaren wir, dass wir die vorliegende Masterarbeit im MAS Software Engineering mit dem
Titel «VoxelAssembler - 3D Web configurator based on CAD-Data» selbststandig und ohne
unerlaubte fremde Hilfe angefertigt, keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet und die den verwendeten Quellen und Hilfsmitteln wértlich oder inhaltlich entnommenen
Stellen als solche kenntlich gemacht haben. Weiterhin erklaren wir, dass wir keine durch Copyright
geschutzten Materialien (z.B. Bilder) in dieser Arbeit in unerlaubter Weise verwendet haben und in
dieser Arbeit keine Adressen, Telefonnummern und andere personliche Daten von Personen, die

nicht zum Kernteam gehdren, publizieren.

Ort, Datum Rapperswil-Jona, 14.09.2025

Name, Unterschrift: Tobias Wiesendanger T.\IJ:O.SQAAM&/

Name, Unterschrift: Mauro Hefti /y/\“

Name, Unterschrift: Roman Schweri %

VoxelAssembler Site 108 /108

rs
Stempel

rs
Stempel

rs
Stempel

