

Voxel Assembler

3D Web configurator based on CAD-Data
Weiterbildung OST, MAS Software Engineering

Submitted by
Mauro Hefti
Uitikonerstrasse 33
8902 Urdorf

Roman Schweri
Wagenhauserstrasse 32
8260 Stein am Rhein

Tobias Wiesendanger
Rosenweg 1b
5040 Schöftland

Supervisor
Manuel Bauer

Degree program
MAS-SE 2023-25

1 Preface

This thesis is the result of our joint efforts as part of the Master of Advanced Studies at OST. Over

several months, we, Tobias Wiesendanger, Roman Schweri, and Mauro Hefti, have worked

collaboratively to research, design, and develop the solution presented in this document.

We would like to thank our supervisor, Manuel Bauer, for his valuable guidance and support

throughout this project, as well as our co-supervisor, Tobias Büchel, for his insightful input on our

frontend during the mid-review. We would also like to thank OST for providing us with the knowledge

and foundation that prepared us for this master thesis.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 3 / 108

2 Table of Contents

1 Preface .. 2

2 Table of Contents .. 3

3 List of Abbreviations Used ... 6

4 Introduction .. 7

 Relevance of the Topic and Motivation ... 7

 Mensch und Maschine .. 7

 Role Description ... 7

 Problem Description and Thematic Delimitation .. 8

 Objectives ... 8

 Structure of the Paper ... 8

 High level overview ... 8

5 Project Planning ... 12

 Project Approach Model .. 12

 System Delimitation .. 13

 Project Planning and Execution .. 14

 Prioritization of Tasks and Requirements .. 16

 Risk Management ... 17

 Autonomy and Responsibility .. 18

 Project Management Tools Used .. 18

6 Requirement Specification ... 19

 Functional Requirements .. 19

 Non-Functional Requirements .. 34

7 Domain Model .. 35

 Designs... 36

 User Management .. 36

 Product & Category System .. 38

 Autodesk Automation API / Primary entities .. 40

 Viewable ... 42

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 4 / 108

 Cache System .. 43

 Email System .. 44

 Notification System ... 44

 WorkTask ... 45

 Product Configuration .. 46

 Action System ... 47

 Model Parameter Constraints .. 48

 Settings ... 54

 Versioning introduction .. 55

8 System Architecture & Design ... 61

 Architecture .. 61

 Solution Design ... 69

 Database Design .. 71

 Design Principles .. 72

 Technologies & Frameworks ... 73

 Building Block View .. 75

 Application Flow Sequence Diagram .. 78

9 Implementation .. 79

 Feature Implementation .. 79

 Work Task System & Background Jobs .. 86

 Deployment Strategy .. 88

 Repository Overview ... 89

10 Quality Assurance .. 91

 Testing Strategy .. 91

 Static Analysis and Formatting Tools... 95

 DevOps & Build Automation .. 96

 Technical Debt .. 100

11 Value and Evaluation ... 101

 Value for Users & Companies ... 101

 Technological Complexity .. 102

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 5 / 108

12 Conclusion ... 103

13 Attachments ... 107

 Timereports ... 107

 GitLab Issues .. 107

14 Declaration of Academic Integrity ... 108

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 6 / 108

3 List of Abbreviations Used

Abbreviation Full Name Description

APS Autodesk Platform Service 3rd Party Service

SVF Simple Vector Format Viewer format used

Step
Standard for the exchange of

product data

.iam Inventor Assembly File

.ipt Inventor Part File

.idw Inventor Drawing File

API Application Programming Interface

BOM Bill of Materials

MPC Model Parameter Constraints

Viewable
A format that can be handled

by the Autodesk viewer (SVF)

ADR Architectural Decision Record

CAD Computer Aided Design

EF Core Entity Framework Core

GUID Globally Unique Identifier

URN Uniform Resource Name

CI/CD
Continuous Integration / Continuous

Deployment

MuM Mensch und Maschine

SPA Single Page Application

ECS Elastic Container Services

IaC Infrastructure as Code

Inventor CAD-System Software from Autodesk

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 7 / 108

4 Introduction

 Relevance of the Topic and Motivation

Modern customers expect personalized products rather than one-size-fits-all solutions

Manufacturing sector faces increasing pressure for configurable products.

Time-consuming manual configuration processes and costly quote preparation for products that may

not sell are the norm. Engineering resources are tied up in repetitive customization work.

Traditional CAD-based workflows are inefficient for customer-facing configuration and there is a

need for web-based, accessible tools that non-technical users can operate.

 Mensch und Maschine

Mensch und Maschine (MuM) is a leading Autodesk reseller and solution provider that serves

thousands of customers across various industries including mechanical engineering, manufacturing,

construction, and architecture. As an Autodesk Platinum Partner, MuM not only distributes CAD

software but also develops custom solutions and provides consulting services to help companies

optimize their design and engineering workflows.

For MuM, a web-based configuration solution represents both a business opportunity and a way to

add value to their customer relationships, but we want to make it clear that we did not develop this

web application for them. We had the opportunity to use resources like GitLab and such and for that

we wanted to thank them.

 Role Description

All the team members were highly involved in the planning phase.

Roman Schweri mainly worked in the frontend. He was responsible for building the user interface

and providing a good user experience. In addition, he coordinated with Mauro and Tobias to integrate

missing or fix buggy API endpoints. He contributed to architectural decisions and was also involved

in frontend testing, design refinements and the overall usability of the app.

Mauro Hefti did a lot of the initial setup and later worked mainly in the backend. Most of the

deployment and containerization was done by him.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 8 / 108

Tobias Wiesendanger which provided the initial idea to this master thesis was focused on a lot of

organisational task and preparation before starting. During the project he was focused on the

backend and presenting architectural decisions to the team.

 Problem Description and Thematic Delimitation

Currently customizing products according to the customer needs, takes a lot of time and does not

guarantee selling it. Too much unpaid time is used in a lot of industries.

Because of the complexity and time-consuming work many industries don’t even provide this service

to begin with.

 Objectives

A web-based configurator should be created to no longer need specialized people (CAD-Designer)

and specialized expensive software.

The customer should be able to configure his needs by himself or maybe with a sales representative

without knowing how to operate cad software or even needing to have such software.

The company should be able to go from planning to manufacturing in the shortest time possible, with

the least amount of manpower involved.

By not doing the planning manually no money is lost in that step, when in the end the customer does

not buy the product.

 Structure of the Paper

This thesis is structured to provide a comprehensive overview of the VoxelAssembler project, from

initial planning through implementation and evaluation. First, some thoughts were put into explaining

the main idea and how we want to achieve this, and then the more technical details are explained.

 High level overview

This is a high-level overview of what will be created and what the target of this master thesis is. The

topic is highly complex and will be further explained step by step throughout this document.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 9 / 108

4.7.1 Step 1 CAD-Environment

Customer prepares Product in the CAD Software called Autodesk Inventor.

It is possible to use parametric modeling and logic by leveraging a

technology called iLogic. (simple programming Language)

When finished the product is configurable locally, but a specialized user

and a license for Autodesk Inventor is needed.

4.7.2 Step 2 MuM.VoxelAssembler

The next step for the cad designer is to describe how the configuration

should look like in the frontend. There is a descriptive language called mpc

(model parameter constraints) that allows to define what control should be

used for the parameter and what constraints does it have. (min, max,

interval etc.) Those are all defined in this descriptive language.

To make this user friendly an Inventor-Addin was created to allow doing this visually. The Addin is

shown below working inside of Autodesk Inventor.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 10 / 108

4.7.3 Step 3 App-VoxelAssembler

The frontend then allows to upload this CAD-Data by creating a new

product version for a product.

The model parameter constraints are then interpreted and allow to build

the frontend. On this product version the end-user is now able to

configure his product by using the created controls and then firing an

action on it.

What actions are available is also highly customizable. The product comes with some default, so

called AppBundles. Each of those AppBundle has its own functionality. The most important one

does apply those parameter changes to the model (see next step). More details are explained later

in this documentation.

Below shown is the web interface for App-VoxelAssembler that allows a user to change parameter

values and use actions on it like exporting a pdf.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 11 / 108

4.7.4 Step 4 App-VoxelAssembler

Output can be used to start manufacturing. The output could be a

technical drawing, CAD-Data or whatever the action created.

Below shows one of the possible exports, which is a pdf file from the drawing.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 12 / 108

5 Project Planning

 Project Approach Model

We knew what we need to build. Mainly because Tobias Wiesendanger works in that industry and

talks daily to customers that could use this. Step one was starting off with a kick-off where all team

members were brought up to speed.

We decided on lots of methodologies that day. For good communication we want to do a simple

weekly meeting where each team member presents what he has done that week and what he is

planning on doing.

Each meeting is documented. All meeting notes can be found in the attachments under

“\04_Project_Management\02_Meeting_Notes”.

For planning we decided on using GitLab with Issues. Which lead to us creating milestones and

assigning issues to each one. By having a weekly we had continuous feedback for all members.

At the end of each milestone a testing session was conducted for validation. Those were recorded

and can be viewed in the attachments under “\03_Quality_Assurance\01_Testing_Sessions”.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 13 / 108

 System Delimitation

5.2.1 Context Diagram

This context diagram illustrates the VoxelAssembler system architecture and its interactions with

external actors and services.

5.2.2 System Context / Scope

Inside System Scope:

Frontend Web Application - React-based configurator interface

Backend API - .NET Core REST API

Database - PostgreSQL with Entity Framework Core

Authentication System - .NET Identity endpoints

Configuration Management - Product and category management

Model Parameter Constraints (MPC) system

User Management - Role-based access control (CAD-Designer, End User, Administrator)

Viewable Generation - SVF/SVF2 format creation via APS Derivative Service

Action System - Workflow management for configurations

Export Functionality - PDF, BOM, STEP, native CAD formats

VoxelAssembler Inventor Add-in - Separate tool for preparing assemblies and constraints

iLogic Library - External library for CAD automation

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 14 / 108

Outside System Scope:

Order system to order configured products

Payment Processing - Not included in current scope

Manufacturing Integration - External systems for production

Third-party CAD Systems - Only Inventor is supported

 Project Planning and Execution

5.3.1 Schedule, Milestones, Iterations

We planned with milestones to get a schedule. At the end of each Milestone a testing meeting was

planned.

Preparation & Planning

Prepare everything needed to officially start the master thesis.

Phase 1

This milestone was focused on setting the foundations. User management, Authentication,

Categories, Products and lots of settings were implemented in this Milestone. The Milestone Started

March 31 and was finished on 31 May just in time.

Phase 2

In phase 2 the main functionally evolving around the configuration functionality was implemented.

For this lots of things in the backend had to be implemented, like app bundles, actions, version

management, activities and configuration management. Whatever was finished in the backend was

then implemented in the frontend. Due to time a lot of Phase 3 planned features were already

handled in this milestone. Many tasks were intermingled and had to be implemented together. Phase

2 was planned from June 1 to July 31 and was finished with about a week delay.

Phase 3

Phase 3 is focused on finishing all the must have features. Some more extended functionality for the

configurator was implemented. Things like showing a BOM and a drawing were implemented now.

In the frontend some smaller but visually appealing things were created like the possibility to change

the design by choosing colors. This milestone was running from August 1 to August 31 and

completed in time.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 15 / 108

Small Task

This milestone was constantly changed with small task that we had to keep track of but weren’t that

time consuming. Mostly things found from the testing session were added to this. There is no fixed

end date for this milestone.

Stretch Goals

A lot of stretch goals were planned from the beginning, and even more were defined while

developing. To keep track of them this milestone was used. This one also had due to its nature no

end date and will stay open at the end if not all stretch goals were implemented. Which is highly

likely.

Project completion

This milestone was used to keep track of the finishing tasks that need to be completed for handing

in the master thesis. Like this documentation. This will end with the completion date of the master

thesis which is 15.09.2025.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 16 / 108

5.3.2 Time tracking

For time tracking issues were used. Time spent was constantly logged on a specific issue. To write

a time report and keep track, a small tool was written that outputs a markdown file with time added

together for each team member. All reports can be found here:

“\04_Project_Management\01_Time_Reports”.

At the start we did not estimate time for an issue, which we later changed for most issues. This can

be used to get a velocity for future tasks.

The final report looks like this:

User Total Time

Tobias Wiesendanger 762h

Mauro Hefti 397h

Roman Schweri 386h

 Prioritization of Tasks and Requirements

During planning, we categorized all requirements into mandatory and optional features. This ensured

a clear focus on delivering a working Minimum Viable Product (MVP) while leaving room for

additional capabilities if time allowed.

5.4.1 Mandatory

The must have features mentioned in section 6 where clearly the mandatory Todo’s. Still, we

sometimes decided to fully build a feature before moving on with a clear commitment to finish the

project.

5.4.2 Optional

Optional requirements were defined as "nice-to-have" features that extend usability, performance,

or integration but were not critical for the MVP. They were placed in a lower priority and only

addressed if milestone progress allowed. In the end we ended up making most of the optional

features and even added more as the project progressed.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 17 / 108

 Risk Management

5.5.1 Risk Analysis

ID Risk Description Impact Likelihood

R1 Scope too large for a three-student team High Medium

R2 Third-party APIs may change or break Medium Low

R3 A team member may drop out or become unavailable Medium Low

R4
Different customers may require different configurators (no one-

size-fits-all solution)
Medium High

5.5.2 Risk Mitigation Strategies

5.5.2.1 R1 – Scope too large for a three-student team

We have addressed this risk from the start by preparing thoroughly and defining a clear MVP

(Minimum Viable Product) scope. Weekly meetings and milestone planning allow us to track

progress effectively. If needed, we can reduce non-critical features to stay within time and resource

constraints.

5.5.2.2 R2 – Third-party APIs may change or break

We rely on established APIs that have been in use for several years. Some of these APIs provide

official client libraries maintained by their vendors, reducing the risk of sudden incompatibilities.

Automated testing will help us identify potential issues early, enabling quick responses. Autodesk

also communicates API changes in advance, allowing us to prepare accordingly.

5.5.2.3 R3 – A team member may drop out or become unavailable

We foster a collaborative team environment with shared responsibilities and regular knowledge-

sharing sessions. Code reviews ensure that all members remain familiar with different parts of the

project, minimizing the impact if one member becomes unavailable.

5.5.2.4 R4 – Different customers may require different configurators

We are aware that customers can have varying needs and requirements. To address this, we are

designing a modular and flexible architecture with support for plugins or configuration options. This

will allow us to adapt the configurator for different customer demands without developing entirely

separate solutions.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 18 / 108

 Autonomy and Responsibility

We worked independently and took responsibility for our tasks. Whenever we encountered questions

or challenges, we first discussed them among ourselves to find the best possible solution. For idea

generation or to get an additional perspective, we also made use of AI tools such as ChatGPT. For

more fundamental questions that affected the entire project, we consulted our expert, Manuel Bauer.

In addition, for topics related to Autodesk, we were also in contact with Autodesk support.

 Project Management Tools Used

At the beginning of this thesis, we discussed and evaluated many project management and

collaboration tools. We required tools for version control, task tracking, communication, meetings

and documentation. Since we were a small team working remotely, the chosen tools needed to be

easy to use, easily accessible and integrate well with each other. That’s why we selected the

following tools.

5.7.1 Version Control, Issue Tracking and Time Planning

For source code management we relied on Git in combination with GitLab. Git provides version

control, so every team member can work independently while keeping our source code

synchronized. GitLab was used as the central collaboration platform because it offers more than just

version control. We used GitLab Issues as our task management tool to track tasks, bugs and to

plan our milestones. For time planning we also used GitLab, since we could track the time directly

on the issues, which provided us a great overview of the time we used for each task.

5.7.2 Communication and Meetings

Since we are not in the same room every day, we had to find a way to communicate as efficient as

possible. For short exchanges we used WhatsApp, which allowed us to clarify minor questions and

call spontaneous meetings. For our weekly meeting we created a Discord channel. This provided us

with the necessary tools such as voice & video chat as well as screen sharing so we could review

code together and keep the meetings as efficient as possible. Meetings with our supervisor were

held using Microsoft Teams, since it’s the standardized tool for professional communication and was

integrated into the infrastructure of OST.

5.7.3 Documentation

For all the documentations we wrote, except this one, such as all our architectural decision records

(“\02_Additional_Product_Documentation\05_Architectural_Decision_Records\”), meeting

notes, or other relevant documentation, we used Markdown. All three of us know markdown and use

it regularly in their daily work. Markdown allowed us to write documentation and notes in a simple

and lightweight format, while still being able to generate well-structured and easy to read documents.

Another advantage of Markdown is, that it can be easily versioned using Git.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 19 / 108

6 Requirement Specification

 Functional Requirements

6.1.1 Must-Have Features

Authentication & Authorization

User Roles: All Users

Allow the user to register, login or reset their password to gain access to the software. Assign user

roles to specific users. Optionally, we allow the user to restrict the domains that can be used for

authentication by creating a domain whitelist. This feature is listed in the optional features section.

APS Authentication

User Roles: Administrator

APS credentials are needed for most of the services used in the software. Allow the user to set their

APS client id, secret and scope. The APS client secret will never be visible in the frontend for security

reasons. If the user wants to update the settings, he needs to paste his APS client secret to be able

to save changes.

Category & Product Management

User Roles: Administrator, Developer

Allow the user to create, update and delete categories & products. Also allow the users to create

versions of products.

Add App Bundles

User Roles: Administrator, Developer

Allow the user to upload app bundles to mirror actions that can be executed on the Autodesk Inventor

instance.

Action system

User Roles: Administrator, Developer

Allow the user to create actions that run specified app bundles. Allow the user to assign an action to

a specific product version and to specific user roles.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 20 / 108

Default Actions

User Roles: All Users

Provide default actions so the user does not have to create the most common actions by himself.

Default actions are:

- Export PDF

- Export Step

- Export BOM

- Export Native

- Calculate Cost (Pricing see below)

- Update Parameters

- Extract Parameters

Initialize Buckets

User Roles: Administrator, Developers

Allow the user to initialize the needed buckets. Buckets are Amazon S3 buckets that contain the files

(CAD-Data, export formats etc.) that can be downloaded by the end user. Files can be deleted from

a bucket. Also, a bucket manager is available to check what buckets exist and what objects are

added to them.

Model Parameter Constraints

User Roles: Administrator, Developer

Provide an Inventor AddIn to easily describe parameters that will be visible in the configurator

frontend. Allows to package a CAD-Data zip ready for upload to App-VoxelAssembler.

Configurator

User Roles: All Users

Allow the user to select a product and start the 3D configurator to this product. In here the user shall

be able to run predefined actions like configuring the product or getting the BOM of his configuration.

The user can set input values based on the MPC and run the actions. The user can also view the

3D model, the 2D drawing, the BOM and the exportable files if existing.

Configuration Management

User Roles: All Users

Allow the user to save, delete and share his configurations.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 21 / 108

Account Settings

User Roles: All Users

Allow the user to change his account details and change his login credentials.

Cache Settings

User Roles: Administrator

Provide a cache system that allows to load configurations much faster. The cache notices if a

configuration was already made (1:1) and returns the cached data immediately. This helps a lot for

actions that take a few minutes.

Change Language

User Roles: All Users

Allow the user to change the language. Predefined languages are German and English.

User Documentation

User Roles: All Users

Provide a customer documentation for administrators and users to describe the usage of the

software. Add preparation steps for how to constrain a 3D-CAD Model for VoxelAssembler.

Document good practice.

iLogic Library

User Roles: Administrator, Developer

Provide a library that helps in placing models in 3D-Space.

Pricing

User Roles: All Users

For pricing many different solutions are needed. This will vary a lot depending on the customer.

Prices could come from many different systems. As a base a simple solution should be implemented.

6.1.2 Optional Features

Toggle Categories & Products Visibility

User Roles: Administrator, Developer

Allow the user to control what categories and products are visible in the catalog.

3D Viewer Fullscreen

User Roles: All Users

Allow the user to display the 3D viewer in full screen mode to explore the product better.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 22 / 108

Design Settings

User Roles: Administrator

Allow the user to set their own corporate identity including logo, company name and company colors.

Anonymous Users

Allow anonymous users to use the configurator with limited functionality.

Domain Whitelist

User Roles: Administrator

Allow the user to create a whitelist with domains that are allowed to register.

Clear Cache

User Roles: Administrator

Allow the user to clear the cached data.

Create Actions from App Bundles

Allow combining multiple app bundles to one action.

3D Viewer Extensions

User Roles: Administrator, Developer

Allow the user to enable & disable extensions of the 3D viewer for specific user roles.

Allow running instance

Keep Autodesk Inventor Instance running to provide a better performance to the user. Allow the user

to toggle this and set the time how long the instance should be running in the UI.

Manage Bucket Items

User Roles: Administrator

Allow the user to display the content of a bucket as well as to delete the content or the bucket itself.

Allow to check what buckets exist for used credentials.

Add native data to vault

Provide functionality to download native data and to write it to Autodesk Vault.

Configuration sidebar

Provide a collapsible sidebar to display configuration parameter. Add tabs to group the parameters.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 23 / 108

Cloud hosting

Host the application on AWS or Azure.

Work Tasks

User Roles: All Users

Provide a system where the user can see his configurations that are currently running, succeeded,

failed, pending or with any other status. Allow the user to load the configuration from there. Allow to

search for certain states.

Work Tasks Administrator

User Roles: Administrator

Provide a system where the admin can see all the configurations that are currently running,

succeeded, failed, pending or with any other status. Allow the Admin to load the configuration from

there. Allow to search for certain states.

Load Configuration

User Roles: All Users

Allow the user to load or import a configuration by a configuration string.

3D Viewer Default Perspective

User Roles: Administrator

Allow the user to set the default perspective of the 3D model. This needs to be possible for each

product version.

User Management

User Roles: Administrator

Provide an overview of all the registered users and their roles. Allow to delete a user, change its role,

resend a confirmation link or directly confirm a user account.

Zip Assembly for VoxelAssembler

Provide functionality to prepare an assembly to upload it in the UI.

Inventor Add-In with CI/CD

Provide an easy solution to build a new version that creates an installer for customers.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 24 / 108

6.1.3 Use Cases / User Stories

The main documentation only covers the most relevant and central use case for the domain.

Additional use cases related to the same domain are provided in the attachments

(“\02_Additional_Product_Documentation\01_Use_Cases”). For our use case diagrams, we

decided to represent them using UML notation. In addition, we followed the pattern of user stories to

describe the use cases from the user’s perspective as clearly as possible.

6.1.3.1 User Management

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 25 / 108

6.1.3.2 Product & Category System

6.1.3.3 Cache System

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 26 / 108

6.1.3.4 Notification System

6.1.3.5 Work Tasks

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 27 / 108

6.1.3.6 Action System

6.1.3.7 Email System

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 28 / 108

6.1.3.8 Settings

Design Settings

Authentication Settings

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 29 / 108

Viewer Settings

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 30 / 108

Inventor Settings

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 31 / 108

6.1.3.9 Product Configuration

6.1.3.10 Autodesk Services

App Bundles

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 32 / 108

Activities

Buckets

6.1.4 User Roles

We decided on four different roles for the users. Currently some roles have almost the same

possibilities but allow later for more differentiation. The following roles were implemented:

- Administrator

- Developer

- Company-User

- Customer

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 33 / 108

6.1.4.1 Administrator

There can be multiple administrators. They can manage all users and have access to all features.

One administrator is by default created. The system makes sure there is always at least one

administrator. It is not possible to delete the last administrator.

6.1.4.2 Developer

The developer has access to most features. A developer is someone that is managing

configurations. He can upload new products and manage them. He can also create new versions

and categories. Some of the features are only visible for developers. As an example, it is possible to

create a new version of a product and show it only to developers until it is published for company

users or customers.

6.1.4.3 Company-User

A company user is someone that is working at the company that is hosting the application. For

example, salespeople could be company users. This role can be used if customers are not allowed

to see each product / version.

6.1.4.4 Customer

A customer is an external user from a different company than the one that is hosting the app. This

role can be used if some product / versions should be only visible to company users.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 34 / 108

 Non-Functional Requirements

Aspect Requirement (Summary) Target / Acceptance Criteria

Usability

Consistent UI components; role-

based visibility; localization;

intuitive navigation

< 3 clicks from login to first configurable

product; language switch updates UI and

messages;
Two available languages

Availability
Background jobs for long tasks;

resilient real-time updates

System needs to stay responsive while heavy

load, scalability must be possible from small to
large customers

Robustness

Input validation; isolation of

features (vertical slices); retry

strategy for background jobs,
good logging

Invalid requests return standardized error

response; no unhandled exceptions reach client

Security

Cookie-based auth; role-based

authorization; least privilege
(separate read/write paths);

sanitized errors

Unauthorized -> 401/403; no sensitive data in
error payloads

Logging & Observability
Structured logs for jobs; minimal
noise on success; detailed failure

traces

Each job traceable end-to-end; failed export
diagnosable from logs alone

Maintainability &

Extensibility

Vertical slice architecture;

pluggable actions/exports

Add new action or export by adding one slice +

single registration point

Quality Assurance

Unit + integration tests; code

reviews; automated pipeline

checks

Critical domain services ≥ 60% line coverage;

each write endpoint has at least one integration

test

Localization
Backend + frontend localization;
invariant codes with localized

messages

Language change reflects in UI and validation

without logout

Scalability (Future-
Oriented)

Logical separation read/write;
background workload isolation

Horizontal scaling possible without redesign

Configuration

Management

Versioned products and

parameters; immutable history for
released versions

Past configurations fully reproducible

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 35 / 108

7 Domain Model

Instead of designing one large domain model, we decided to divide our domain into several sub-

domains. This approach makes the model easier to understand and manage.

The following figure shows all domain sub-domains at a high level. In the subsequent sections, we

will go into more detail about each sub-domain, explaining how the individual entities and value

objects are used. When modeling the domain, we incorporated certain concepts from Domain-Driven

Design (DDD). However, we did not follow the methodology strictly in every aspect but rather applied

the concepts where they provided clear value. To improve readability and consistency, we also follow

a color scheme in our diagrams. Entities are always yellow, value objects are always gray, and

Enums are always green.

In addition, special objects that are not directly part of the domain are shown with dashed outlines.

It is important to note that the domain model does not represent exact database relationships. For

details about those, please refer to the ER diagram.

In the legend of the figure, the corresponding domain business rules are documented.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 36 / 108

 Designs

For this product a visual appealing interface is important. To address this and for easier

communication what needs to be built, we designed each page beforehand. This way it was a lot of

JDI (Just do it) in the frontend. All the pages can be found in

“\02_Additional_Product_Documentation\03_Design_Pages”. Below is an example page

designed in Figma.

 User Management

In the User Management domain, we handle all aspects of user administration.

Our ApplicationUser entity derives from the IdentityUser provided by the .NET Identity framework

and extends it with additional properties. One important extension is an Enum representing our user

roles. This defines the different roles a user can have within the system. In addition, this domain also

includes Language, which represents the application language. It centrally manages which

languages are available and can be selected in the UI. Since both UserRole and Language are

closely tied to the backend domain, the backend is also responsible for providing translations for

these Enums. The exact domain rules and constraints are documented in the legend of the domain

diagram.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 37 / 108

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 38 / 108

 Product & Category System

The Product and Category System define how products are structured and made available to users

At the top level, the application exposes a Catalog. While the catalog itself is not a true domain entity,

it serves as a representation of how categories and products are presented to the user. A Category

can contain either subcategories or products directly, allowing for a hierarchical structure of

categories. Products are not limited to a single category, instead, a Product can appear in multiple

categories at the same time.

7.3.1 Product Version

Every product must have at least one Product Version. A product version belongs to a Category and

carries a Version Number, which is incremented whenever a new version is created. For each

product, there can be at most one version that is marked as active. In addition, every product version

must always include a Viewable, which represents the product’s visible or accessible form. Even if

this viewable is initially only a placeholder and not yet valid, it must exist to ensure the product

version is complete. The exact domain rules and constraints are documented in the legend of the

domain diagram.

7.3.2 Category Version

A Product Version always belongs to a Version Category. In this case the version is more of a type

Version and not used for any traceability. There are four possible values:

 Active – The currently published and visible version of a product.

 Inactive – Versions that have been retired and are no longer visible in the catalog.

 Internal – Versions that are visible only to administrators. They are used by product

developers to run early tests without publishing to all users.

 Development – Similar to Internal, these versions are visible only to administrators and

support ongoing development and experimentation.

The visibility of product versions depends on the type of user role:

 Admin users can see products that include versions marked as Internal and Development, in

addition to Active versions.

 Customer and Company users can only see Active versions.

Inactive versions are never visible in the catalog. There is also an important lifecycle rule:

When an administrator adds a new Active version to a product, the previously active version is

automatically downgraded to Inactive. This ensures that at most one version per product is marked

as Active at any time.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 39 / 108

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 40 / 108

 Autodesk Automation API / Primary entities

There are four primary entities:

 Activity

 WorkItem

 AppBundle

 Engine

From the documentation the relations between the entities are defined like the diagram below.

Each of the entities is described below.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 41 / 108

7.4.1 AppBundle

An AppBundle is used for running functionality on the cloud. In the case of VoxelAssembler an

AppBundle is an Inventor-Addin that runs some functionality. In most cases this is a single

functionality. Multiple AppBundles can be used together by combining them with an Activity.

Currently the following AppBundles are available:

- BomExtractor

- Parametrization

- PdfExporter

- PriceCalculator

- SheetMetalDxfExporter

More can be easily added. Also, customer specific AppBundles are possible. VoxelAssembler

provides everything needed for a customer to upload and handle new AppBundles.

AppBundles are managed by Autodesk after uploading. It is not possible to modify them once

uploaded. A new version needs to be created. VoxelAssembler keeps track of each AppBundle in

its Database to also keep track of the outputs each AppBundle produces. Each AppBundle

implements an Interface called `IAppBundleDescriptor` which later allows to read needed In- and

Output.

7.4.2 Activity

An activity is an action that can be executed within an engine. In the case of VoxelAssembler this is

always Inventor. An Activity uses one or more AppBundles. Input parameters must align with the

AppBundles used. There are some other parameters that can be provided like if those parameters

are optional, a description, a localName, if it is a zip and others.

For example, if a configuration activity should be created, CAD-Data is needed, and the new defined

parameters need to be provided. This could look something like this:

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 42 / 108

This defines that there needs to be an input document and a file that provides the parameters.

7.4.3 WorkItem

A WorkItem is a specification of the processing job for an Activity, and it is submitted to and executed

by the engine. For VoxelAssembler this gets wrapped by WorkTask, which allows to add more

information to it. As an example, a WorkItem must deliver an address to download the above

mentioned InventorDoc. This is a S3 signed URL in our case but could be something else.

Note that a WorkItem cannot be modified after it has been created.

7.4.4 Engine

An engine executes a WorkItem. Autodesk provides multiple engines in the cloud. In our case only

Inventor is used. Currently in the newest Version 2026, which can be later updated. An AppBundle

must be written for a certain engine. Due to API changes problems can arise if those do not align.

 Viewable

A Viewable is what is used by the viewer to show a 3D or 2D(drawing) to the user. Each product

version has a default viewable that allows to display something when the product is loaded the first

time. For each product configuration a new viewable is created. Depending on settings the same

thing is done for a 2D-Drawing that is displayed in its own tab.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 43 / 108

 Cache System

The Cache Domain is responsible for managing caching strategies within the application. Our cache

system is designed to support multiple caching strategies. Currently, only a simple cache system is

implemented, which checks in the database whether a given product configuration already exists.

This makes the cache persistent rather than transient like an in-memory cache. The central entity

CacheSetting controls which cache system is active. For now, only the simple cache system can be

selected, but additional implementations can be added in the future and activated through this

setting. The Simple Cache System checks in the database whether a given Product Configuration

already exists. This means the cache is persistent and not transient like an in-memory cache. The

property IsEnabled controls whether the cache is active. When disabled, product configurations are

always resolved directly from the source without checking the cache. To decide if something is

cached the used action is considered. Depending on what the Action produces, a decision must be

made if the cache has everything needed. If yes, the cache is used and if not a WorkTask is triggered.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 44 / 108

 Email System

The email provider settings implement either SMTP settings or SendGrid settings, controlled by the

email provider type. The email system is designed to be open for additional providers in the future

and can be switched dynamically depending on the selected provider type directly through the UI.

Currently only Smtp is implemented.

 Notification System

A notification always belongs to a user. A notification can either be dismissed or marked as read.

Each notification also indicates its severity level through notification type. Since the notification

domain is tightly coupled to the backend, the notification texts are also translated in the backend.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 45 / 108

 WorkTask

A WorkTask is always assigned to a user. Each WorkTask must have a WorkTask type, which can

be extended as needed. The WorkTask status is a combination of Hangfire statuses and Autodesk

WorkItem statuses. A WorkTask must belong either to a product version or to a product

configuration.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 46 / 108

 Product Configuration

For a product version, one or more product configurations can be created. A user can save a product

configuration, which then becomes a UserProductConfiguration.

Bom is short for bill of materials and describes what parts are involved in this configuration. Normally

this is used for processing an order. It tells everyone what needs to be ordered or produced.

A drawing helps to understand what needs to be produced. Dimensions are used to describe what

exactly needs to be produced. This can be detailed or just some external dimensions to get a rough

idea about size.

ModifiedCadData is what is produced as output from running a configuration. This is the adjusted

CAD-Data after applying the new defined parameters and can be used to order the product.

ExportFormat is everything else that is produced by AppBundles. For example, a dxf could be

produced which is used by a laser cutting machine to produce a sheet metal part. Also, a price

calculation can be exported and added as ExportFormat.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 47 / 108

 Action System

An Action references exactly one activity and is used to provide all the inputs needed for a WorkItem.

For most of the AppBundles some settings can be provided. This is done by providing a string. What

settings can be provided is documented in the customer documentation.

ActionSettings allow to define what actions are available for what UserRole. Each action and its

specific version can be assigned to one of the UserRoles.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 48 / 108

 Model Parameter Constraints

To allow a CAD-User (someone that knows how to use Autodesk Inventor) how the frontend should

look like the concept of model parameter constraints is created. A Json string put into the parameter

constraint defines how this parameter should be presented in the frontend.

The reason why comment was chosen for this, is simple that it is normally not used by the user and

it allows to put whatever in it.

Writing a Json String and doing this in the comment field isn't something that can be expected from

the user. The reason for this is:

1. Most designer don't know JSON

2. Writing multiline comments is not great inside of comment

To handle this a GUI is built as an Inventor Addin.

7.12.1 Language

To allow translation in the frontend many properties use the concept of multiple language strings

with semicolon (;) as the separator between. Sample: "De=Text in Deutsch;Us=Text in Englisch"

Each Parameter is marked with “Allows Language” if translation needs to be supported.

7.12.2 Constraint types

The following types are supported:

 Text

 TextSize

 TextRegEx

 Bool

 IntegerRange

 DoubleRange

 IntegerUnitRange

 DoubleUnitRange

 StringList

 StringDictionary

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 49 / 108

7.12.3 Common Properties

Each ConstraintType has the following Properties:

ID: Simple internal Name

DisplayName: What will be shown for this parameter in the frontend. (Allows Language)

Description: Description / Tooltip that is shown in the frontend. (Allows Language)

ConstraintType: One of the mentioned constraint types. Helps to decide how to handle it in the

frontend.

DefaultValue: Default value for the parameter. Must be the same type as DefaultUnitId if used.

TabValue: Each parameter can be put into a TabGroup. They are sorted by this value.

TabName: What name should be displayed for the tab. (Allows Language)

ParameterGroup: What name should be displayed for the group. (Groups inside of tab for further

structuring) (Allows Language)

SortOrder: In what order are the parameter groups.

ActivationParams: Parameters that are checked for true/false and then decide if the parameter is

visible or not. Can be multiple parameters separated by;. All parameters need to be of type bool.

ActivationParamOperator: Decides if all the parameters need to be true or if it behaves like an or.

If it is True, then it behaves like an and. All the parameters need to be True.

HideInFrontend: If True then the parameter will not be shown in the frontend but can be used for

other things like as an activation param.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 50 / 108

7.12.4 Text

Text does not have any additional properties.

7.12.5 TextSize

The Text Size Constraint Definition (ConstraintTypeId: TextSize) restricts the length of the parameter

value.

TextSize has the following additional properties:

MinCharacters: Minimum length of the text.

MaxCharacters: Maximum length of the text.

7.12.6 TextRegEx

The Text RegEx Constraint Definition (ConstraintTypeId: TextRegEx) restricts the parameter value

with a RegEx pattern.

TextRegEx has the following additional properties:

RegExPattern: Regular expression pattern that the text needs to match.

7.12.7 Bool

The Boolean Constraint Definition (ConstraintTypeId: Bool) restricts the parameter value to true or

false, 1 or 0 and defines the type of control.

Bool has the following additional properties:

ControlType: Defines the type of control. It can be CheckBox or RadioButton.

BoolValueType: Defines the type of value that is stored. Can be TrueFalse or OneZero.

OptionTrueDisplayName: What should be displayed if the value is true. (Allows Language)

OptionFalseDisplayName: What should be displayed if the value is false. (Allows Language)

7.12.8 IntegerRange

The Integer Range Constraint Definition (ConstraintTypeId: IntegerRange) limits an integer value to

a specific range, and, optional, a specific interval.

IntegerRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

7.12.9 DoubleRange

The Double Range Constraint Definition (ConstraintTypeId: DoubleRange) limits a double value to

a specific range, and, optional, a specific interval.

DoubleRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 51 / 108

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

7.12.10 IntegerUnitRange

The Integer Unit Range Constraint Definition (ConstraintTypeId: IntegerUnitRange) limits an integer

value to a specific range, and, optional, a specific interval, and includes unit specification.

IntegerUnitRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

UnitId: Unit of the value. These are the units provided by the user. This is converted

to ConstraintUnitId before checking against limits and interval. Possible values:

 1 = nm

 2 = my

 4 = mm

 8 = cm

 16 = m

 32 = km

 64 = decimal inch

 128 = decimal feet

 256 = decimal yards

 512 = miles

 1024 = sea miles

 2048 = Decimal Degrees (full circle = 360.0°)

 4096 = Radians

 8192 = Grads (full circle = 400 grads)

 16384 = Bar

 32768 = Pascal

 65536 = Pound-force per square inch

 131072 = Watts

 262144 = kW

 524288 = PS

DefaultUnitId: Default unit of the value. One of the UnitId values, specifying the units of the default

value, which may be the last used Inventor parameter value, or the value provided as

ParameterValue. If ParameterValue is omitted, specify the units of your Inventor model here.

ConstraintUnitId: One of the UnitId values, specifying the units of MaxValue, MinValue, and

Interval.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 52 / 108

7.12.11 DoubleUnitRange

The Double Unit Range Constraint Definition (ConstraintTypeId: DoubleUnitRange) limits a double

value to a specific range, and, optional, a specific interval, and includes unit specification.

DoubleUnitRange has the following additional properties:

MinValue: Minimum value of the range.

MaxValue: Maximum value of the range.

Interval: Interval of the range.

ControlType: Defines the type of control. Can be Slider or TextBox.

UnitId: Unit of the value. These are the units provided by the user. This is converted

to ConstraintUnitId before checking against limits and interval. Possible values: see above

(IntegerUnitRange)

DefaultUnitId: Default unit of the value. One of the UnitId values, specifying the units of the default

value, which may be the last used Inventor parameter value, or the value provided as

ParameterValue. If ParameterValue is omitted, specify the units of your Inventor model here.

ConstraintUnitId: One of the UnitId values, specifying the units of MaxValue, MinValue, and

Interval.

7.12.12 StringList

The String List Constraint Definition (ConstraintTypeId: StringList) limits a string value to a specific

number of string values. This does not allow for any translation. Use the StringDictionary for this.

StringList has the following additional properties:

ListValues: Values to be displayed in the frontend. Example:

"ListValues": [

 "Value 1",

 "Value 2"

]

PredefinedValueOnly: If True then only the values in ListValues are allowed. If False, then the user

can enter any value.

ControlType: Defines the type of control. Can be ComboBox.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 53 / 108

7.12.13 StringDictionary

The String Dictionary Constraint Definition (ConstraintTypeId: StringDictionary) limits a string value

to a specific number of string values but returns the key to the selected dictionary value as the

parameter value. This allows translation.

StringDictionary has the following additional properties:

DictionaryValues: Values to be displayed in the frontend. Example:

 "DictionaryValues": {

 "Key1": [

 {

 "Language": "En",

 "Text": "Englisch"

 },

 {

 "Language": "De",

 "Text": "Deutsch"

 },

 {

 "Language": "Fr",

 "Text": "Franz\u00F6sisch"

 }

]

 }

ControlType: Defines the type of control. Can be ComboBox.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 54 / 108

 Settings

In the settings domain, we manage various configuration areas:

Authentication settings – control user-related preferences, for example, whether to allow only

restricted email addresses by maintaining a whitelist.

APS credentials – store access details for Autodesk Platform Services, such as client ID, client

secret, and scopes required to generate an OAuth token.

Design settings – define corporate design aspects, including the primary color and other branding

elements.

Inventor settings – cover configurations for provisioning an Inventor machine.

Viewer settings – specify which features are available to users within the Autodesk Configurator.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 55 / 108

 Versioning introduction

From the beginning it was defined that each product configuration created should be recreatable.

This way it is also not needed to save any data because it could be recreated at any time.

The diagram below shows the dependency between the objects.

7.14.1 Product Version

When creating a new product, the first version is automatically created and CAD-Data uploaded to

it. From this point on naming, descriptions and translations can be changed on the product version,

but the CAD-Data cannot be updated. A new version needs to be created. Only then it’s possible to

add new CAD-Data. This way we can guarantee that for this version we exactly now what CAD-Data

belongs to it with what parameters.

Product versions can also have 1 of 4 states:

- Active

- Inactive

- Development

- Internal

Only one can be active any time. This is enforced automatically. Active is what is shown to the user.

Other roles allow to see inactive, development and internal. An admin for example has a dropdown

on the configurator that allows to select a development version that should not yet be shown to the

customer.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 56 / 108

This also allows to set different tabs visibility, default views and other things to each version.

Currently it is possible to change the assigned actions and with that breaking the exact recreation.

This allows for some flexibility, by trading in the exact recreation. In the future it is planned to

implement something called Immutability / Optional Immutability. This would allow to lock a product

version so actions can no longer be added, removed or changed in any way. Currently this is not

implemented. The current implementation is what we named optional immutability, but it is not

possible to switch to the other.

The diagram shows the dependency from the product down to the app bundle. This is how it is

currently implemented. It is possible to switch, add, remove an action at any time.

7.14.2 Action version

Actions are versioned as everything else. After creating an action version, it is no longer possible to

edit it. A new version needs to be created. This makes sure that after a version is created it will

always reference the exact selected activity.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 57 / 108

7.14.3 Activity Version

Activities reference 1 or more app bundles. To make sure they are versionable it is needed to version

app bundles and activities. If a certain activity version is used by an action, it is always possible to

tell what exact version of an app bundle / app bundles it uses.

7.14.4 App bundle Version

If an app bundle changed a new version needs to be uploaded. It is by design not possible to change

a once uploaded app bundle. This is a constraint by Autodesk. We enforce this by making an app

bundle not editable.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 58 / 108

7.14.5 Versioning samples

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 59 / 108

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 60 / 108

The next sample shows how immutability would work. This was not implemented and is an extended

goal. (Issue 174)

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 61 / 108

8 System Architecture & Design

 Architecture

The architecture of our web application is built around a few key components: the UI, the API, the

database, the Aspire Dashboard for telemetry, various Autodesk services, and a mail server.

The UI serves as the main entry point for users. It communicates exclusively with the API over HTTP.

For real-time updates, the backend also pushes notifications to the UI using WebSockets. This

channel is one-way: only the backend can send messages to the UI, ensuring a clear separation of

responsibilities. Authentication between the UI and the API is handled using cookie-based

authentication.

At the core lies the API, which connects all parts of the system. It talks to the database, which is

structured into three schemas: the Identity schema powered by the .NET Identity Framework for

authentication and authorization, the VoxelAssembler schema, which holds the main business data

and domain logic and the Hangfire schema, automatically managed by Hangfire for background

processing and asynchronous tasks. Database access requires username and password credentials

for PostgreSQL.

The API also integrates with external systems. For example, it uses an SMTP mail server to send

transactional emails such as password resets and registration confirmations. In the future, we plan

to extend this setup with additional providers like SendGrid to increase flexibility and reliability.

For observability, the backend is instrumented with OpenTelemetry. All telemetry data (traces, logs,

and metrics) are exported via gRPC to the Aspire OTel Collector, which powers the Aspire

Dashboard. Access to Aspire is secured via an API key, ensuring only authorized components can

send telemetry data. This gives us a simple but effective way to monitor the health and performance

of the entire system.

Finally, the application connects to several Autodesk services. These include OSS, Automation

(formerly Design Automation), Model Derivative, Viewer SDK and Authentication, which together

provide the foundation for our product configurator and enable seamless integration with Autodesk’s

ecosystem. All Autodesk service calls are authenticated via OAuth access tokens, ensuring secure

interaction with Autodesk’s APIs.

In summary, the UI provides the user-facing entry point, the API orchestrates both internal and

external interactions, the database manages core application data and background jobs, telemetry

flows into Aspire for monitoring, and external integrations with mail servers and Autodesk services

round out the system’s capabilities.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 62 / 108

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 63 / 108

8.1.1 Authentication

We use cookie-based authentication for our web application. The decision to use cookie

authentication is documented in the attached ADR

(\02_Additional_Product_Documentation\05_Architectural_Decision_Records\001-

authentication-method-cookies).

Our implementation relies on .NET Identity. The API is responsible for issuing and encrypting the

authentication cookie, and for setting it in the Set-Cookie response header.

On subsequent requests, the client automatically sends the cookie back to the server. For requests

targeting protected endpoints, the cookie is decrypted using the Data Protection keys. The system

verifies whether the user is authenticated and then checks the user’s roles to ensure they are

authorized to access the endpoint, meaning they have the required application permissions.

The authentication cookie is configured with the following security settings:

 HttpOnly

 Secure

 SameSite

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 64 / 108

8.1.2 Autodesk Services (Autodesk Platform Services)

Our application integrates with several Autodesk services through the official SDKs that Autodesk

provides as NuGet packages. These SDKs allow us to communicate with Autodesk APIs in a

straightforward and consistent way.

For authentication, we use the OAuth 2.0 client credentials flow. Autodesk offers a dedicated

Authentication SDK, which we use to obtain an access token. This token is stored in memory and

checked before every request to ensure it is still valid. To avoid issues with tokens expiring mid-

operation, we apply a safety margin of 60 seconds, meaning the token is refreshed one minute

before its official expiration time.

With a valid access token, our application interacts with three main Autodesk services: OSS, Design

Automation, and Model Derivative. The OSS service essentially acts as an Autodesk-provided

wrapper around AWS S3 buckets, giving us a managed way to store and retrieve design files. Design

Automation allows us to run custom processes and scripts on design files directly in the cloud, which

enables automated transformations and workflows. Finally, the Model Derivative service makes it

possible to convert design files into different formats and extract metadata, which we use for

visualization and structured data access.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 65 / 108

8.1.2.1 Authentication API

Most Autodesk API’s need authentication which is one of the building blocks that is used by

VoxelAssembler.

8.1.2.2 Automation API (formerly Design Automation)

The Automation API allows to run Inventor in the Cloud. By running a WorkItem resources in AWS

are used to provide a CAD in the Cloud and run functionality that is normally only available locally

by installing Autodesk Inventor.

By using the Automation API no Installation and no License is needed. Only the used processing

time needs to be paid.

8.1.2.3 Data Management API

The data management API is used for hosting data. It allows to upload CAD-Data and produced

results directly on the cloud. Data is free and not limited.

8.1.2.4 Model Derivative API

The model derivative API is used for translation. In the case of VoxelAssembler it is currently only

used for creating Viewables which is what is needed to display something in the Viewer.

8.1.2.5 Viewer SDK

The viewer SDK is what is used to display Viewables to the user. It is based on ThreeJS but provides

lots of functionality like all the extensions (Measure, Explode, Navigation etc.)

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 66 / 108

8.1.3 Db Initializer

The Db Initializer is a console application that we use

extensively in local development, but it also plays a key role

when running in the cloud or in production. Its job is to bring

the database into an initial state: creating schemas,

seeding essential data, and setting up sensible defaults so

that users can start working with the system right away

instead of having to configure everything manually. During

initialization, the database is not only created but also

populated with core application data. This includes user

roles and default accounts for each role, so that you can

log in immediately with testable credentials (passwords

must of course be changed after first login). Authentication

settings are also seeded, ranging from Autodesk

credentials like Client ID, Client Secret, and scopes, to

general application settings such as whitelisted domains.

The initializer goes further by preparing the integration with

Autodesk: it can create initial buckets for storing artifacts,

configure Inventor settings like polling intervals or whether

an instance should be kept alive to avoid cold starts, and

set up default values for the Autodesk viewer and

configurator.

On the application side, it also takes care of UI defaults

such as company name, logo, and color scheme, as well

as email provider settings by seeding SMTP credentials.

For local testing purposes, the initializer can even create

example products and categories.

Almost all this seeded data can later be customized through the UI, and adding new entities to the

seeding process is straightforward. The initializer itself is instrumented with OpenTelemetry and

exports its telemetry to Aspire, making the entire process transparent and easy to observe.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 67 / 108

8.1.4 DesignAutomation

Design Automation is a console application that, like a database

initializer, sets up an initial configuration so that users can start with a

default setup right away—without having to configure everything

manually in the UI first.

The core of the project consists of individual steps, each representing a

specific action (e.g. Create Product, Create Activity, etc.). These steps

are combined into a pipeline. We have multiple pipelines, each composed

of different steps. The most used one is the FullConfigurePipeline, which

runs through all steps. This pipeline has often been used for testing

purposes.

Pipelines and steps are fully extensible and can be expanded as needed.

The process does not only write objects into our database but also

performs initializations directly in Autodesk, such as creating activities or

app bundles. Because of this, it is crucial that the database is already

initialized before the Design Automation project is started.

The choice of which pipeline to execute is determined via command-line

arguments.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 68 / 108

8.1.5 Work Tasks System

Our WorkTask system is responsible for processing asynchronous, long-running background jobs

and notifying the client about their status. It is designed to be flexible and extensible so that virtually

any kind of long-running job can be implemented with it. To add a new WorkTask, you only need to

implement the IWorkTask interface and the WorkTask system takes care of the rest. In practice, we

primarily use it for jobs related to our product versions and product configurations, which is why a

WorkTask also contains specific properties in this context. Each WorkTask triggers a Hangfire job

and stores its corresponding Job ID. The WorkTask and the Hangfire job are created within a single

transaction to ensure consistency and avoid mismatches. A Hangfire Job Status Filter ensures that

whenever the job status changes, the associated work task is also updated so that both remain in

sync. For certain Hangfire statuses, such as Failed, InProgress, or Succeeded, we additionally write

a notification into the database. An Entity Framework interceptor then pushes this notification into a

Channel (from the System.Threading.Channels library).

Finally, a Notification Processor consumes messages from the channel and sends them via SignalR

to the client of the user who originally triggered the work task.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 69 / 108

 Solution Design

The solution is built on a modern architectural foundation that combines Vertical Slice Architecture

with the principles of Clean Architecture. This approach creates a highly organized and maintainable

codebase by emphasizing a clear separation of concerns and a logical flow of dependencies.

The design organizes code by feature, or "vertical slice," rather than by technical layers (e.g.,

Controllers, Services, Data). Each slice represents a distinct business capability (e.g., Product,

Category, ProductVersion) and contains all the necessary components to implement that feature

from the API endpoint down to the database. The solution is divided into distinct projects, each with

a clear responsibility. Key Benefits of this Design are:

High Cohesion: All the code for a single feature is in one place, making it easier to understand,

develop, and maintain.

Low Coupling: Slices are isolated from one another. A change to the "Product" feature is unlikely

to impact the "Category" feature.

Enhanced Maintainability: Adding or changing a feature involves working within a single slice,

minimizing the risk of introducing bugs elsewhere in the system.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 70 / 108

Scalability: The clear separation of concerns and low coupling make it easier to scale development

teams and the application itself.

8.2.1 VoxelAssembler.Domain

This is the core of the application. It contains the business entities, value objects, and domain logic.

It has no dependencies on any other layer, ensuring the business rules are independent of technical

implementation details. This is also checked by an architecture Test.

8.2.2 VoxelAssembler.Application

This project contains the application logic and orchestrates the domain layer to perform tasks. It's

where the vertical slices are most evident. Each feature folder (e.g., /Product, /Category) includes:

Contracts: Interfaces for services (IProductService).

Requests/Responses: Models for interacting with the API (CreateProductRequest,

ProductResponse).

Services: The implementation of the use cases, containing the main logic for the feature.

8.2.3 VoxelAssembler.Infrastructure

This project handles external concerns. It contains implementations for interfaces defined in the

Application layer, such as database access (using Entity Framework Core), file storage, and other

external services.

8.2.4 VoxelAssembler.WebHost

This is the entry point and presentation layer. It contains the ASP.NET Core API controllers. The

controllers are kept thin, with their primary role being to receive HTTP requests, call the appropriate

service in the Application layer, and return an HTTP response. We want to keep this layer free from

business logic to ensure a clean separation of concerns and maintainability.

Because no business logic is tied to this layer, the presentation technology can easily be replaced

or extended. For example, if we decide to expose the system through GraphQL, gRPC, or another

protocol in addition to REST, we can add or replace the WebHost implementation without affecting

the core application logic.

8.2.5 VoxelAssembler.UI

This project is the frontend React & TypeScript app. It contains all the dependencies and libraries

that were used in the frontend, such as TailwindCSS for styling, Zustand for state management, i18n

for localization, TanstackQuery for data fetching and caching and more.

To ensure a consistent and type-safe integration with the backend, a TypeScript API client is

automatically generated into the UI project whenever the WebHost is built. This is done using a

NSwag configuration that runs on every WebHost build. By doing so, mismatches between the API

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 71 / 108

and the frontend are avoided, duplication of models and types is prevented, and API calls are

simplified and accelerated.

The project aligns with the Application layer’s vertical slice architecture. Every module/feature

contains all elements that are relevant to that feature, such as pages, components, types and hooks.

This increases the application’s maintainability and scalability, making it easier to extend the app in

the future.

 Database Design

In this diagram, we have only included the tables with their PK and FK relationships. The complete

ER diagram can be found in the attachments under

“\02_Additional_Product_Documentation\02_ER_Diagram”. Furthermore, we have only

included the essential tables from the Identity schema and have omitted the Hangfire schema

entirely.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 72 / 108

 Design Principles

The VoxelAssembler application follows several key design principles to ensure maintainability,

scalability, and code quality:

 SOLID Principles

 Clean Architecture

 Domain-Driven Design (DDD)

 Vertical Slice Architecture

8.4.1 Additional Principles

 KISS (Keep It Simple, Stupid): Solutions favor simplicity over complexity. Complex problems

are broken down into manageable, understandable components. For example, we do not use

any repositories because complexity does not justify the complexity.

 Immutability: Preference for immutable objects and value types where possible to reduce

side effects and improve predictability.

 Fail-Fast: Input validation and error handling using the Result pattern (ErrorOr) to catch

issues early and provide meaningful feedback.

 Testability: Architecture designed to support comprehensive testing through dependency

injection and clear separation of concerns.

These principles work together to create a maintainable, extensible system that can evolve with

changing business requirements while maintaining code quality and developer productivity.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 73 / 108

 Technologies & Frameworks

Our application is a modern web-based system built using a clean and modular architecture. It

follows the principles of Domain-Driven Design and separates concerns across multiple layers.

Below is a breakdown of the technologies and tools used in each area of the system.

Scope Technology / Framework Description / Reason

User Interface React, Typescript, Vite

It provides a fast and interactive SPA. This app

was a great chance to improve and deepen our

knowledge and skills in React & TypeScript in a

real world scenario.

CSS Framework TailwindCSS

Tailwind allows us to write UI components

faster, since we don’t have to style anything

using CSS.

API Layer .NET Core, REST, NSwag

All team members are very familiar with .NET

and REST. C# is enough powerful to cover all

our needs. NSwag is used to generate the API

client for the frontend so that we can save time

and don’t have to develop any API calls or

models in the frontend ourselves.

Persistence EF Core, PostgreSQL

We use EF Core as our ORM for data access.

PostgreSQL (referred to as VoxelAssemblerDb)

is used as the main database. A DB initializer

sets up the database schema and seeds data.

Authentication &

Authorization
Identity

We use ASP.NET Core Identity for managing

authentication and authorization. Cookie based

authentication is implemented to manage

sessions.

Localization

(backend)
.resx files

.resx resource files are a common and easy

way to solve localization in .NET. It allows us to

manage and deliver localized strings based on

the user’s culture. This enables easy support for

multiple languages on server-side responses

and error messages.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 74 / 108

Localization

(frontend)
i18n

The i18n package is one of the most widely

used, if not the most widely used package for

localization in the React world. Using i18n keys

allows us to adapt the UI texts to the user’s

preferred language in real time, enhancing

accessibility and user experience.

Containerization Docker
Used for containerizing our app and making

deployment possible.

Asynchronous

Tasks
Hangfire

Used for long running backend tasks. Mainly for

creating configurations on aps.

Testing

(backend)
xUnit

Using xUnit for writing Unit, EtoE and

Integration tests.

Testing

(frontend)
Vitest, MSW

Using MSW allows us to setup a fake API

without having to start the whole setup and run

the actual server. Using Vitest in combination

gives us a very easy solution to test the frontend

and how it behaves for certain API responses.

Observability OpenTelemetry

Provides distributed tracing, logging, and

metrics collection across our application.

Exports telemetry data via gRPC to the Aspire

Dashboard for monitoring API performance,

background jobs, and external service

integrations like Autodesk services.

Code Quality
StyleCop.Analyzers, EsLint,

Prettier

These tools allow us in both, the frontend and

the backend, to keep our codes consistent over

the whole app. We enabled auto format on

save, that the source codes look the same for

everyone. Analyzers throw compiler errors

when the code does not comply with the set

rules.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 75 / 108

 Building Block View

8.6.1 Development

For our local development setup, we decided early on to create an Aspire project to make our

development process as efficient as possible. The goal was to have all resources of our application

orchestrated through Aspire. For example, we also integrated our UI into .NET Aspire. The

PostgreSQL database is provisioned through Aspire as well, along with the API, the database

initializer, and the design automation project.

Aspire provides very simple provisioning of resources and handles service discovery within the local

network. In addition, the dashboard is very useful for quickly analysing errors or restarting services,

since all resources can be controlled from there and all telemetry data is exported to it.

Besides the Aspire setup, we also created a Docker setup. This allows us to start the entire

application via a Docker Compose file. Our own images are built and run as containers, while for

PostgreSQL and Aspire we pull the images directly from Docker Hub.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 76 / 108

8.6.2 Cloud Deployment

Our application is deployed in AWS inside a dedicated VPC that is split into public and private

subnets. The public subnet is connected to the internet through an Internet Gateway, while the

private subnet is reserved for internal resources. Within the private subnet, we run a PostgreSQL

RDS database. For security reasons, the database has its own security group and no public IP

address, which means it cannot be reached from outside the VPC.

In the public subnet, we operate our container workloads using Amazon ECS. The ECS cluster hosts

two main services: Aspire and the WebHost, which runs our VoxelAssembler application. In addition

to these services, there are also tasks such as DbInitializer and DesignAutomation. These are not

long-running services but rather one-time jobs that can be triggered when needed, for example

during initialization. Container images are pulled either from our private VoxelAssembler registry or

from Docker Hub in the case of the Aspire image.

For inter-service communication inside ECS, we use AWS Cloud Map. Each ECS service is

registered within a Cloud Map namespace, which enables service discovery via DNS. This allows

services to communicate with each other reliably inside the VPC. For example, the WebHost service

connects to the Aspire service over gRPC using the Cloud Map service endpoint, without requiring

any public exposure.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 77 / 108

All sensitive configuration details and secrets are managed centrally in AWS Secrets Manager. To

keep track of resource usage and application health, ECS resources are monitored through

CloudWatch.

Incoming traffic is handled by an Application Load Balancer, which also resides in the public subnet.

It listens on port 443 and routes requests based on the host header: requests for

monitoring-voxelassembler.mas-se.net are forwarded to the Aspire service, while those for

voxelassembler.mas-se.net are sent to the WebHost service. Any HTTP requests are automatically

redirected to HTTPS. The TLS certificate for our domain, *.mas-se.net, is stored in AWS Certificate

Manager.

The domain itself was purchased directly through AWS. DNS is managed with Route 53, where we

maintain a hosted zone. The A Record points to the Application Load Balancer, while a CNAME

Record was used for the DNS validation.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 78 / 108

 Application Flow Sequence Diagram

This sequence diagram represents the main flow of our application. It describes how an action is

triggered by clicking an Action Button (Configure) on a product configuration. The diagram shows

the complete interaction between the User, UI, API, Notification Processor, Database, and the

external service Autodesk. It covers optional cache handling, background job execution with

Hangfire, polling of Autodesk work items, updating product configurations, and sending notifications

back to the UI.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 79 / 108

9 Implementation

 Feature Implementation

All the features and their implementation status are listed in the table below. For some features, that

are bigger than others and need some more explanation, a description of how the feature was

implemented is written below the table.

Feature Name Feature Type Is Implemented
Authentication & Authorization Must-Have ☒
APS Authentication Must-Have ☒
Category & Product Management Must-Have ☒
Add App Bundles Must-Have ☒
Action system Must-Have ☒
Default Actions Must-Have ☒
Initialize Buckets Must-Have ☒
Model Parameter Constraints Must-Have ☒
Configurator Must-Have ☒
Configuration Management Must-Have ☒
Account Settings Must-Have ☒
Cache Settings Must-Have ☒
Change Language Must-Have ☒
User Documentation Must-Have ☒
iLogic Library Must-Have ☒
Pricing Must-Have ☒
Toggle Categories & Products Visibility Optional ☒
3D Viewer Fullscreen Optional ☒
Design Settings Optional ☒
Anonymous Users Optional ☐
Domain Whitelist Optional ☒
Clear Cache Optional ☒
Create Actions from App Bundles Optional ☒
3D Viewer Extensions Optional ☒
Allow running instance Optional ☐
Manage Bucket Items Optional ☒
Add native data to vault Optional ☐
Configuration sidebar Optional ☒
Cloud hosting Optional ☒
Work Tasks Optional ☒
Work Tasks Administrator Optional ☒
Load Configuration Optional ☒
3D Viewer Default Perspective Optional ☒
User Management Optional ☒
Zip Assembly for VoxelAssembler Optional ☒
Inventor Add-In with CI/CD Optional ☒

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 80 / 108

9.1.1 Category & Product Management

A category has a name, a description and optional an icon (a default icon will be displayed if no icon

is provided by the user). A category can have a parent category which will result in a tree. This tree

will be visible for the end user on the catalog page.

Products also have a name, description and an optional icon. They can also have a parent category

and will act as leaves. A product is the base to start a configuration. Every product can have n

versions and will have a default version on creating the product. These product versions have states

to control their visibility. These states can be “Active”, “Inactive”, “Internal” or “Development”. Only

administrators and developers can see inactive and development versions. Internal product versions

are visible for company users, developers and administrators. The user can assign actions to a

product version and determine which user roles see which actions in the configurator. This can be

different from product version to product version.

The user is also able to create a 3D preview for a product version and set the default perspective of

this preview, as well as control the visibility of the tabs in the configurator. A default 3D preview called

Viewable is created automatically.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 81 / 108

9.1.2 Action System

The user can create a so-called activity. An activity has an Id (may only contain letters), an engine

to run on (Autodesk Inventor engine versions), an optional alias (can be set manually, will be set by

the uploaded bundle if no alias is provided / read from dll by using reflection) and an optional

description. On creating an activity, the user must select one or more app bundle versions. In the

next step, the app automatically reads the selected app bundles and provides parameters.

Parameters can be added manually by the user. These parameters are needed for the Autodesk

services to run certain actions. An example parameter - “InventorDoc” – Controls what document

will be opened. The user can check the parameters content with a JSON viewer built into the app.

After creating an activity, the user must create an action. Actions are the buttons that are displayed

in the configurator. An action has a name and an activity version. After selecting an activity version,

the parameters from before are displayed. The key difference here is, that the user now can set the

value to the parameters. As an example, a BomExtractorInput parameter requires additional

information in form of a JSON string. The user can paste this JSON string in a JSON helper that will

automatically escape it to properly send it to the backend and to the Autodesk services.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 82 / 108

After setting the necessary values for each parameter, the user can save the action. After that,

assigning the action to a product version is necessary, to display the action button in the configurator.

This is described in the “Category & Product Management” section.

9.1.3 App Bundles

9.1.3.1 Description

Currently some base AppBundles were implemented. They are called:

 MuM.Inventor.BomExtractor

 MuM.Inventor.Parametrization

 MuM.Inventor.PdfExporter

 MuM.PriceCalculator

 MuM.SheetMetalDxfExporter

They are all based on a template that can be found here: Template

More can be added anytime. They could be just for one customer functionality or something that is

useful for multiple. Because of the flexibility VoxelAssembler delivers each customer can have the

functionality he needs.

Each AppBundle must implement an Interface called ‘IAppBundleDescriptor’ which allows to define

Input and Output.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 83 / 108

The VoxelAssembler allows to upload those AppBundles. An app bundle has an Id (may only contain

letters), an engine to run on (Autodesk Inventor engine versions), an optional alias (can be set

manually, will be set by the uploaded bundle if no alias is provided / read with reflection from DLL)

and an optional description. The user can upload ZIP packages including the app bundle. App

bundles have versions. For each version added, a new ZIP file must be uploaded. It is not possible

to change the once uploaded ZIP.

9.1.3.2 Installation

There is no installation needed for building AppBundles. If new AppBundles need to be created the

installation of this Template is recommended.

9.1.3.3 CI/CD

There is currently no CI/CD Pipeline. Still there is some automation. Because each AppBundle must

follow a certain structure, this is automatically done when building. The output are multiple zip files

for each AppBundle. Releases are manually put here. Note that each AppBundle has its own version.

9.1.3.4 Documentation

More documentation can be found directly in the customer documentation.

9.1.4 Inventor Add-In & Model Parameter Constraints

Model Parameter Constraints were implemented as a library with a CI / CD Pipeline. This will run on

every commit and build a NuGet package that gets directly pushed to the GitLab registry. This is

mainly done to allow other project to consume this library and having up to date constraint types.

9.1.4.1 Description

The Inventor Add-In is called MuM.VoxelAssembler and is built like a typical Inventor Addin. As

defined by Autodesk an Interface called ApplicationAddInServer must be implemented.

The model parameter constraints NuGet is used to get access to the different constraints. This is an

Inventor Addin used to create Model Parameter Constraints in a UI friendly way. It also helps to

create a zip that is named correctly and packages everything that is needed for the VoxelAssembler.

9.1.4.2 Installation

There is an installer that copies everything to the right place. The installer can be found in the

Releases.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 84 / 108

9.1.4.3 CI/CD

The master branch is protected. Create a new branch, like feature/xyz and merge it to master when

finished. Create a tag like release/v0.0.2 to run the pipeline. The pipeline will create a release and

upload the installer to the release. The installer can be found in the Releases.

The installer uses wix to create the msi. Make sure that the ci/cd pipeline runs on a windows machine

and has wixtoolsets available. They should be installed through the NuGet packages and copied by

a target in the csproj file.

9.1.4.4 Testing

There is a project called MuM.VoxelAssembler.Tests which contains tests. Those are mostly used

to check if the produced Json strings are valid. It uses input files for each constraint that has one

parameter with attributes. To run these tests an Inventor installation is needed. The tests cannot run

in the pipeline because of this. A valid license is also needed.

9.1.4.5 Documentation

The documentation for customers is part of the VoxelAssembler Docusaurus project.

9.1.4.6 Zip Assembly

This is now handled by an external console application. The reason for this is that pack and go uses

Apprentice internally and thus should not be used inside of an add-in. For this to work some things

are important. The PackAndGo project needs to run as AnyCPU and with Prefer 32 bit unchecked.

Also, the app.manifest is needed otherwise an error will be displayed.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 85 / 108

9.1.4.7 Screenshots (Dark & Light Theme)

9.1.5 iLogic Library

9.1.5.1 Description

MuM.ILogicLibrary is an extended library designed to enhance the capabilities of iLogic in Autodesk

Inventor. It provides a set of utilities for automating and configuring assemblies, facilitating operations

such as transforming occurrences, managing rotations, translations, and logging, especially within

Autodesk Platform Service.

9.1.5.2 Features

 Translation and Rotation: Perform absolute and relative movements of occurrences in an

assembly.

 Logging: Offers advanced logging mechanisms to trace actions and track operations during

iLogic script execution.

 Autodesk Platform Service Compatibility: Fully compatible with Autodesk Platform Service

environments, allowing iLogic automation to function seamlessly both locally and in the cloud.

9.1.5.3 Installation

How to install is described here.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 86 / 108

9.1.5.4 CI/CD

This project creates a NuGet package that can be referenced in AppBundles. In this case it is at

least used for the parametrization AppBundle. Make sure to add this to the project:

This makes sure that the DLL file is included while building. Otherwise, it might be missing in the

AppBundle output, because it is not directly referenced in the code.

9.1.5.5 Documentation

The documentation can be found here.

 Work Task System & Background Jobs

For all the long running task that can be triggered by an action, an entity called WorkTask was

implemented. When talking about the Automation API, Autodesk call their own task WorkItem. It is

important to understand the difference of implementation.

9.2.1 WorkTask

WorkTask is what we call the Hangfire job. Those are kept track by the VoxelAssembler.

The WorkTask starts a WorkItem and keeps track of the state by polling.

WorkTaskId is a GUID and looks something like this: 5f514de7-1017-4386-9301-34e161dfbc7d

9.2.2 WorkItem

WorkItem is what Autodesk calls their tasks running on Autodesk Platform Service. WorkTask

is a wrapper around them that allows to keep track of them in the VoxelAssembler.

WorkItemId is a string and looks something like this: 39c50d3a3e17482db113adb62807515f

9.2.3 Trigger

Now only one cache system is implemented, but more could be added using the interface

ICacheSystem. An endpoint reacts on an action clicked, checks if cache has everything needed for

this action. If yes, a positive response is sent back and directly loaded. If no cache was found or at

least is not complete a negative is sent back and a WorkItem is started. This is handled by Hangfire.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 87 / 108

After this a polling is started to check for the state of this WorkItem.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 88 / 108

On success the following steps are done:

 Deployment Strategy

For deployment, we decided to bundle the UI and the API together and ship them as a single

Docker image. This approach follows a lock-step deployment strategy, meaning that the UI cannot

be deployed independently of the API (and vice versa). While this results in a stronger coupling

between the two components, it also simplifies operations: the UI does not need to be served

separately, and we avoid dealing with CORS or cross-origin configuration issues.

In the future, we may revisit this decision and host the UI independently e.g. in a CDN to achieve

more flexibility.

The Docker build process works as follows:

1. First, the npm packages for the UI are restored.

2. Next, the UI is built, producing static assets.

3. Afterwards, the .NET API is built.

4. The compiled static UI output is copied into the wwwroot folder of the API project.

The entry point of the container is the Web API, which then serves both the backend endpoints and

the static UI files.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 89 / 108

9.3.1 Database Initializer / Design Automation

Both the Database Initializer and the Design Automation project are built and delivered as Docker

containers. The Database Initializer is used to apply schema changes and seed initial data such as

users and roles, while the Design Automation container handles Autodesk-specific automation tasks.

Each container can be executed directly in the CI/CD pipeline or manually when needed, ensuring

consistent execution across all environments.

 Repository Overview

This is a high-level overview of the repositories that were created and used during the master thesis.

Each of those are later explained in more detail where needed.

9.4.1 Documentation

Internal documentation repository containing decision logs, UI drafts, and feature definitions. Those

are now used for this documentation and are no longer maintained. Start here to get an overview of

the project. Documentation

9.4.2 Customer Documentation

Customer-facing documentation on how to use the VoxelAssembler and its API. This repository is

used to generate the documentation on the website. Here all the information is stored that is relevant

to the customer. CustomerDocumenation

9.4.3 App-VoxelAssembler

Main application repository for the VoxelAssembler project. This repository contains the main

application code and is used to build the VoxelAssembler application. Mainly consists of the frontend

and backend code. Also includes all the tests written. App-VoxelAssembler

9.4.4 MuM.VoxelAssembler

Repository that contains the Inventor-Addin that is used to add model parameter constraints to

parameter in a graphical way. MuM.VoxelAssembler

9.4.5 ModelConstraintLibrary

Repository for managing model constraints. This is used as a library for many other repositories. A

NuGet is built from this repository and then consumed by other projects.

ModelConstraintLibrary

9.4.6 MuM.iLogicLibrary

Provides an extended iLogic library for Autodesk Inventor. Used by configurations. This is used by

the customer to create their own configurations. How this can be used is described in the customer

facing documentation. MuM.iLogicLibrary

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 90 / 108

9.4.7 API Test Client

Repository containing a test client for API interactions. API Test Client

9.4.8 AppBundles

Contains all the developed app bundles used for APS. There is currently a repository for the default

app bundles. There are high changes this will later be extend on a per customer basis. If a customer

needs some other functionality running on APS a new app bundle can be developed. More details

in the accordingly topic. AppBundles

9.4.9 TaskAndIssue-board

Repository used for tracking tasks and issues. Also, Milestone planning was done here. Issue-Board

9.4.10 Infrastructure

This repository contains the Infrastructure as Code (IaC) setup for running App-VoxelAssembler on

Amazon Web Services (AWS). It uses Terraform as the provisioning tool and defines all necessary

AWS resources in a reproducible and version-controlled manner.

The repository serves as the single source of truth for creating, updating, and managing the cloud

infrastructure that App-VoxelAssembler depends on.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 91 / 108

10 Quality Assurance

 Testing Strategy

The VoxelAssembler application uses a three-tier testing strategy designed to maximize confidence

in system reliability while maintaining efficient development workflows. Our approach prioritizes

integration testing as the primary testing methodology, supplemented by targeted unit tests and end-

to-end tests that validate real external service integrations.

Rather than following the traditional test pyramid with many unit tests, fewer integration tests, and

minimal E2E tests, we employ an adapted strategy where integration tests form the primary

foundation, supported by focused unit tests and comprehensive end-to-end tests that validate

external API integrations.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 92 / 108

10.1.1 Unit Tests

In the beginning, we had planned to write more unit tests to cover isolated business logic. However,

as the project progressed, we decided to focus more on covering individual business use cases

through integration tests instead, since we no longer saw much benefit in adding additional unit tests.

We kept the existing unit tests, as they are still useful in certain cases, such as architecture tests

(e.g., checking which projects reference each other) or logic that would otherwise require extensive

setup in an integration test. For these unit tests, we typically use an in-memory database, which

allows us to keep the setup lightweight while still validating the logic in isolation.

Technical components used for testing for unit tests can be found in chapter:

Projects:

VoxelAssembler.Application.Tests

VoxelAssembler.Architecture.Tests

10.1.2 Integration Tests

For our integration tests, we use the WebApplicationFactory to spin up our API in a realistic test

environment. Alongside this, we start a PostgreSQL database in Docker and seed it with the

necessary data to simulate real-world scenarios. The tests are executed against the running API

using an HttpClient, where we log in, obtain a session cookie, and then include this cookie in

subsequent requests to ensure proper authentication and authorization handling.

Our goal is to cover all business use cases end-to-end within this controlled environment. This

includes both positive scenarios (verifying that valid operations succeed) and negative scenarios (for

example, ensuring that user roles and permissions are correctly enforced). By doing so, we can

validate not only the business logic but also the full request/response flow, data persistence, and

security aspects.

Technical components used for testing for integration tests can be found in chapter:

Projects:

VoxelAssembler.WebHost.Tests

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 93 / 108

10.1.3 End-to-End Tests

The end-to-end (E2E) tests are structured in the same way as the integration tests and are treated

similarly in the codebase, which keeps the overall testing approach consistent and easy to maintain.

The main difference is that, unlike integration tests which work against our own system boundaries,

the E2E tests call real Autodesk services. This allows us to validate not only our own business logic

and API contracts, but also the correct interaction with external systems in a production-like scenario.

As a result, these tests provide an additional layer of confidence that our solution works reliably in

real-world conditions.

E2E tests use of the same components as the integration tests.

Projects:

VoxelAssembler.WebHost.Tests

10.1.4 UI Tests

In addition to unit, integration and end-to-end tests, we added UI tests to validate the user interface.

The purpose of these tests is to make sure that the user interactions work as expected. Currently,

only a few tests are written, such as authentication & authorization, category & product management,

user management, account settings and email provider settings. More tests will be added in the

future.

The tests are written with Vitest, since it’s a very fast and lightweight testing framework and since

we’re already using Vite as build tool, it was the obvious choice for us to use Vitest here. To simulate

API requests, we use the MSW (Mock Service Worker) package which allows us to prepare API

responses so we can easily verify how the frontend reacts to different API responses. This setup

provides a good and valid feedback during the development of the frontend.

We also discussed about using Playwright to have real browser-based UI tests. This would allow us

to automate full user workflows across different browsers in a production-like environment. Since

Playwright comes with a much higher setup and maintenance effort, we decided to move that to the

Stretch-Goals milestone. It is something that we would implement in the future development of the

application.

Project:

VoxelAssembler.UI (/src/test)

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 94 / 108

10.1.5 Test Results

The complete test reports can be found in the attachment under "03_Quality_Assurance".

10.1.6 Reviews

At the beginning, we had planned to only allow code contributions through merge requests to enforce

reviews from the start. However, we quickly realized that this approach was somewhat cumbersome

in the early phases of the project, when development speed and flexibility were more important. As

a result, we introduced a shared dev branch that everyone could push to directly.

Even though this branch was not protected by a formal policy, we agreed as a team that every

developer would test their changes locally and run the tests before pushing. This ensured a baseline

level of quality and reduced the risk of breaking the shared development branch.

Once the project reaches completion, we will merge the dev branch into the main branch, which is

protected by a policy that prevents direct pushes. From that point on, contributions will only be

possible through merge requests. Each merge request automatically triggers a validation build,

which runs the tests and verifies that the solution can be built successfully before the changes are

merged. This ensures that code quality and stability are maintained.

10.1.7 Testing Sessions / Manual Tests

After each milestone, we conducted dedicated testing sessions as a team. For this, we scheduled a

meeting where we tried out the newly implemented functionality together. Most of the time, this was

done directly through the UI, but occasionally we also executed manual API calls against the

backend to validate specific scenarios.

The outcome of these testing sessions was usually a set of issues capturing functionality that did not

yet work as expected. In addition, the sessions often sparked valuable discussions about user

experience for example, how certain workflows could be simplified or made more intuitive for end

users. These insights helped us refine the product beyond pure correctness and focus on usability

as well.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 95 / 108

To ensure transparency and allow others to revisit the findings later, we recorded all testing sessions.

Testing sessions were documented and can be found as an attachment in

“\03_Quality_Assurance\01_Testing_Sessions”.

 Static Analysis and Formatting Tools

To ensure a consistent and maintainable codebase, we enforce strict quality and architectural rules

across both the backend (.NET) and the frontend (React/TypeScript).

10.2.1 Backend

Analyzers

We rely on the default Roslyn analyzers together with StyleCop.Analyzers to enforce coding

standards and detect potential issues early. All analyzers are included via centralized build props,

making sure that every project follows the same rules.

Build enforcement

With TreatWarningsAsErrors enabled, the build only succeeds when no analyzer warnings remain.

This prevents “warning debt” from creeping into the codebase.

Package management

We use Centralized Package Management so that package versions stay aligned across all

projects, reducing inconsistencies and version conflicts.

Code style & formatting

General style and formatting rules (e.g., avoiding var, prefixing private fields with _) are enforced

through .editorconfig. The same configuration also controls the severity of analyzer rules.

Architecture validation

Using NetArchTests.Rules, we validate architectural boundaries through unit tests. For example, in

our Clean Architecture setup, dependencies are only allowed to flow inward:

The Domain layer must not depend on Application, Infrastructure, or Web layers.

The Application layer must not depend on Web.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 96 / 108

10.2.2 Frontend (React/TypeScript)

Prettier

Handles automated formatting to keep the codebase clean and consistent.

ESLint

Enforces coding standards, detects potential bugs, and ensures code quality in

TypeScript/JavaScript.

 DevOps & Build Automation

10.3.1 Branch Policies

In our development workflow, we enforce strict branch policies to maintain code quality and

consistency. The main branch is protected, which means developers are not allowed to push

changes directly to it. Instead, all changes must go through a merge request.

When a merge request is created, the pipeline automatically runs the test suite. Only if all tests pass

successfully can the merge request be completed. This ensures that no failing or unstable code is

introduced into the main branch.

Looking ahead, we are considering additional measures to further strengthen our process. One idea

is to require at least one reviewer, apart from the author, to approve a merge request before it can

be merged. Another possible extension would be to introduce a merge request checklist, covering

items such as confirming that new tests have been written, linking the relevant issue, and verifying

other quality requirements.

10.3.2 Merge Request

As soon as a merge request is created, the validate stage defined in the .gitlab-ci.yml file is executed.

During this stage, the entire .NET solution is built, and the test suite is run. Test results are collected

in the JUnit format using the Coverlet library. GitLab requires this format to display test results and

statuses directly in the Test Explorer of the merge request.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 97 / 108

To complete and merge a request, the pipeline must run successfully — meaning the solution builds

without errors and all tests passes. This ensures that only working and verified code can be

integrated into the protected branch.

At the moment, we are not yet able to measure or enforce a minimum code coverage threshold.

However, this gap has been explicitly tracked as part of our technical debt and is planned to be

addressed in the future.

10.3.3 CI / CD

A new version of an application can be released by creating a Git tag, following the principles of

Semantic Versioning. Creating such a tag triggers the CI stage defined in the .gitlab-ci.yml file.

The first job executed in this stage runs the test suite, ensuring that no release is created without

passing tests. Once this step succeeds, only the Docker image that corresponds to the created tag

will be built.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 98 / 108

Each application is released independently by tagging it with the application name and version, for

example:

 webhost/1.0.0 – Backend API together with the UI

 db-initializer/1.0.0 – Prepares and seeds the database

 designautomation/1.0.0 – Handles Autodesk-specific automation tasks

During pipeline execution, we install the AWS CLI to fetch an authentication token for AWS ECR

(our container registry). With this token, we perform a docker login to the registry and then push the

generated image.

For each application release, two tags are pushed to the registry:

 the semantic version from the Git tag (e.g. webhost:1.0.0)

 the latest tag (e.g. webhost:latest)

This way, deployments can either follow the moving latest tag for automatic updates, or pin to a

specific version tag to allow rollbacks and stable releases.

The version is embedded directly in the Docker image during the build process and then passed as

an environment variable to the UI. This allows the application to display its current version directly in

the interface, making it easier for users and developers to confirm which release is deployed.

After the Docker image has been pushed, we update the AWS ECS service in the respective cluster.

This triggers a redeploy of the service, ensuring that the newest image is used. The deployment is

performed as a rolling update, so that new tasks are started with the updated image while old ones

are gradually stopped, guaranteeing zero downtime for the application.

10.3.4 Infrastructure

We decided to manage our cloud infrastructure as code in a dedicated repository (IaC). For this, we

are using Terraform with the AWS provider to describe our AWS resources. Currently, we are running

on a private AWS cloud, but the goal was to manage everything through Terraform so that we can

later provision the same AWS setup quickly on another AWS account.

Our rule is that the infrastructure must only be changed or extended through Terraform, never directly

in AWS.

At the moment, the Terraform state is stored locally. In the future, proper state management needs

to be set up, for example via AWS S3. We have already captured this as a technical debt issue.

Another missing piece is a CI/CD pipeline that ensures terraform fmt has been run (code formatting

check) and then executes terraform plan and terraform apply. Currently, we deploy the infrastructure

manually via the CLI.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 99 / 108

10.3.5 Monitoring

For centralized monitoring we use OpenTelemetry, which enables us to collect logs, traces, and

metrics across the system. Within the application we have added extensive logging at meaningful

points and relay on the provided instrumentation from ASP.NET Core, EntityFrameworkCore,

Hangfire etc. This gives us valuable metrics and traces out-of-the-box, without requiring much

additional setup.

For production usage, we plan to integrate the Aspire Dashboard. Microsoft provides the dashboard

as a standalone Docker image, which makes it easy to get started. Although it is currently still

somewhat limited (for example, it does not yet support connecting to external storage), there are

active efforts in the community to extend its capabilities. The deciding factor for us was the simplicity

and usability of Aspire, which allows us to quickly adopt monitoring without heavy setup. If Aspire

should eventually turn out to be insufficient, we can still switch to a service such as Elastic Cloud.

Since the destination for our telemetry data can be changed easily in the code, this migration path

is straightforward.

Looking ahead, we may add custom metrics on top of the built-in instrumentation to better analyse

user behaviour and gain deeper insights into how the system is being used. This improvement has

already been captured as part of our technical debt.

For authentication with the OpenTelemetry Collector (via gRPC), we use an API key. While OAuth

would also be supported, API keys provide a simple and effective solution in our setup. Access to

the dashboard UI itself is protected with a standard username/password combination. All sensitive

credentials, including the API key and the UI password, are securely stored in the AWS Secrets

Manager.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 100 / 108

10.3.6 Health Checks

In our API, we use the standard ASP.NET Core health checks.

 The endpoint /alive returns whether the API itself is healthy.

 The endpoint /health additionally checks dependencies such as the PostgreSQL database

connection. The response is a JSON document containing all evaluated health check entries.

Our goal is to extend this further by implementing custom health checks for all external

dependencies, such as the SMTP server and Autodesk services. We have also captured this in the

related technical debt issue.

10.3.7 Resilience

Resilience Third Party (APS)

Some APS calls have rate limits that need to be handled. This is done for most API Call’s but not yet

all of them. This can easily be further extended by using the existing resilience pipeline built with

Polly.

Some APS calls are eventual consistent, meaning if they are used to fast after each other, then they

can fail. API calls like that were also extended with a resilience pipeline that does retries. Some of

the tests we have were run for multiple hours to check them and many, before flaky tests, worked

now without errors.

 Technical Debt

We tracked all our technical debt in a dedicated GitLab issue, ensuring that nothing would be

forgotten over the course of the project. This issue served as a central backlog for topics that we

identified but decided not to address immediately.

Once the team decided to tackle a specific technical debt item, it was extracted into its own GitLab

issue with a proper description, estimation, and any necessary technical details. This approach

allowed us to manage technical debt in the same structured way as regular features or bug fixes,

making it visible, plannable, and actionable rather than leaving it as hidden work.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 101 / 108

11 Value and Evaluation

 Value for Users & Companies

Today’s customers increasingly expect products tailored to their specific needs instead of standard,

off-the-shelf solutions. Almost every company in the mechanical and manufacturing sector faces

demands for configurable products, creating both opportunities and challenges. Today most

companies spend a lot of time to create those specialised products, which might be needed for an

offer, which then might not even sell.

For example:

 Machinery and Equipment: Customers often require machines in specific sizes, capacities,

or with optional add-ons that fit their production line or workshop layout.

 Industrial Components: Pumps, valves, and drive systems frequently need to be adapted to

precise flow rates, pressures, or space limitations.

 Automotive and Transportation: Vehicle components, cargo systems, or specialized

attachments are often configured to meet customer-specific operational needs.

 Construction and Metalwork: Staircases, railings, ventilation systems, or steel structures are

rarely identical across projects, requiring custom dimensions and features.

 Consumer Goods: From custom bicycles to tailored home appliances, even end-users expect

products that reflect their personal requirements.

So, for users the value is to be able to configure the product for themselves anytime they want.

For companies the value is saving time configuring products, by doing that for the customer or letting

the customer do that by themselves or even together (sales representative with customer).

Even if the product cannot be fully customized within the configurator itself, it can still serve as the

starting point for the engineering process. The generated result can be downloaded and further

refined in a CAD system, allowing engineers or designers to make final adjustments before

production.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 102 / 108

 Technological Complexity

11.2.1 Code Metrics

We measured the lines of code (LoC) in the project using the cloc tool. To ensure accurate results,

we excluded common build, dependency, and IDE directories (e.g., node_modules, dist, .git, bin) as

well as automatically generated code such as the NSwag client. Additionally, blank lines and

commented lines are excluded from the count, so the analysis only reflects the manually written

source code and not generated files, build artifacts, metadata, or non-executable lines.

Ex. Output from App-VoxelAssembler repository:

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 103 / 108

12 Conclusion

12.1.1 Technical Review

From a technical perspective, the architecture and implementation of VoxelAssembler proved to be

robust and well‑suited for the project goals. By combining Clean Architecture, Domain‑Driven

Design, and Vertical Slice Architecture, we achieved a modular, testable, and maintainable system

where each feature could be developed independently. This separation of concerns facilitated clear

responsibilities within the team and enabled a consistent development flow.

The integration with Autodesk Platform Services worked as expected and confirmed that CAD

automation in the cloud is a viable approach. The abstraction via AppBundles, Activities, and Actions

allowed us to implement reusable workflows with minimal coupling.

The deployment strategy using Docker and AWS ECS provided reproducibility and scalability.

Infrastructure as Code via Terraform allowed consistent environments, although manual steps for

Terraform state management remain a pending improvement. Monitoring with OpenTelemetry and

Aspire was helpful during development but Aspire still shows limitations for long‑term production

monitoring.

The chosen testing strategy with a strong focus on integration and E2E tests proved particularly

valuable, given the complexity of external services. Nevertheless, unit test coverage remains

comparatively low, and automation around CI/CD pipelines could have been established earlier to

catch regressions sooner.

Performance and responsiveness of the configurator met expectations. The cache system

significantly reduced repeated processing times for identical configurations, but further optimizations

can and should be introduced later.

In summary, the technical foundation of VoxelAssembler is sound, extensible, and demonstrates

that complex CAD automation can be successfully delivered as a modern web application. At the

same time, certain technical debts (monitoring maturity, AppBundle versioning risks, test coverage

gaps) have been identified and provide opportunities for future improvement.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 104 / 108

12.1.2 Learning Outcome

12.1.2.1 Tobias Wiesendanger

Building web applications is not my daily business. For me this was the first time where I could apply

a lot of the things learned in school or privately. Also writing tests is not something I do daily, which

used up a lot of time, but while progressing showed how important they are.

I learned how to coordinate a team of multiple people, communicate clearly and create issues that

allow to work independently.

I never had the challenge to create something like a client for the frontend. We used NSwag for this

which worked great and was a learning experience for me. It allowed us to quickly create a client

that could be used directly in the frontend.

At my workplace we often face the challenge to make a project compile and onboard other

developers. This is where aspire shine and was used in this project. I learned a lot of its features,

but also, it’s shortcomings like using it in tests.

12.1.2.2 Roman Schweri

I’m working actively as a web developer since six years. But since we’re using .NET and Blazor for

every web application in my company, I never really had a project where backend and frontend are

strictly separated. I enjoyed being responsible for the frontend only, while knowing that the backend

is built structured and organized. Therefore, VoxelAssembler was the first project, where I was a

fulltime frontend developer, which was nice. I enjoyed deepening my knowledge in React, TypeScript

and TailwindCSS and already started to add it to the tech stack in my company. A big learning was

to not start coding blindly but taking a step back and plan the whole project as good as possible.

This starts from writing down the key features, to creating use cases, talking about tech stack and

choose the proper one instead of always go with the one “we used since day one”.

Also new to me was the usage of packages like Hangfire and NSwag, that I’ll definitely consider

using in my works project from now on, since they provide such a great user & developer experience.

I never really written tests or did anything about CI/CD pipelines. I learned that even though it can

be really time consuming to implement, it can pay out in the mid-long term when a pipeline tells you,

that your new code broke the existing one and therefore cannot be merged or deployed.

Overall, it was a great experience where I can take a lot into my daily business. I really enjoyed

working with Mauro and Tobias, since we all three have a similar way of thinking and all three want

to achieve the same result.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 105 / 108

12.1.2.3 Mauro Hefti

Looking back, I got to explore quite a few new things in this project. I had worked with CI/CD

before, but it was my first time using GitLab and its CI pipelines, which gave me a new perspective

on automation and deployment flows. I also dived into Aspire for the first time, not just testing it out,

but actually building a real project with it and even hooking up a UI integration inside Aspire.

Another highlight was working with AWS hosting for the first time. It gave me insights into how

AWS services are structured and managed, and how they compare to Azure, which I was more

familiar with before.

On the backend side, I learned how to use resource files (resx) for translation, which turned out to

be really nice to use and well integrated in the framework. And with Hangfire, I got some solid

hands on experience, not only running background jobs but also experimenting with job filters to

customize how they behave. All in all, it was a great mix of first time experiences and deeper dives,

and I came away with a bunch of practical knowledge that I can carry into future projects.

12.1.3 Lessons Learned

12.1.3.1 Tobias Wiesendanger

I learned very early how important it is to write tests from the beginning. We benefited a lot from this

while further developing. Breaking changes were detected quickly. What I would change regarding

to this, is making the CI / CD pipeline work sooner. We ignored it a while before fixing it. Running

the tests after each commit helps a lot.

We decided during the project to do testing sessions. During those all were present, one was clicking

and everybody pointed out things. This allowed us to find many bugs from small to medium. Many

issues were created from those sessions and then quickly fixed.

Many projects I start daily are not planned in detail and code is written quickly, which often leads to

many problems due to design decisions. In this project I learned how good a project can work out if

everything is already planned beforehand.

12.1.3.2 Roman Schweri

I learned to plan your software as good as possible and wait with the actual coding until other

important things are very clear. It reduces the time you need to adapt in a later stage a lot. Also, unit

and integration tests, combined with a good branching strategy and well-designed pipelines are a

very powerful tool that I completely underestimated in the past. I also tended to code until perfection,

before I deploy it to actual users to test. Having the testing sessions for each milestone helped a lot

with the continuation with the project, since I could fix bugs, that potentially made upcoming features

a lot harder & buggier, early on. I’ll definitely start to make user tests more often and in an earlier

stage.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 106 / 108

12.1.3.3 Mauro Hefti

One takeaway for me was around our branching strategy. I actually liked that we could push straight

into the dev branch, it helped us move forward quickly without much overhead. Still, I realized that

in the long run it’s usually better to go through merge/pull requests and have at least one reviewer.

That way you get more visibility into what everyone is working on, PR discussions can bring up

interesting ideas, tests are guaranteed to run, and changes are challenged before they land in the

main branch. Once something is pushed directly, it’s far less likely to be questioned.

Another lesson was about integration testing with Aspire. It’s a great tool, but I noticed it’s still a bit

in its early stages, and some key features are missing, like being able to hook into the startup

configuration or access the service provider. That’s why I think it was the right decision for us to

switch back to WebApplicationFactory, which gave us more flexibility and reliability for our integration

tests. I also worked with Aspire Standalone Monitoring and saw some limitations there. Important

features are still missing, such as proper deployment behind a reverse proxy or persistence of

monitoring data. Because of that, I’d say it’s not really suited for production use at this point and

maybe that’s not even Microsoft’s intention right now. There are open issues about these topics, so

the ecosystem is clearly still evolving.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 107 / 108

13 Attachments

 Timereports

Every working hour was logged by each team member. This was documented by adding them to a

certain issue. We wrote a small tool to combine all these logged times to a report. They can be found

as an attachment in 04_Project_Management\01_Timereports.

 GitLab Issues

Each GitLab Issue was exported directly from GitLab to provide a summary that can be provided

with this documentation. We still highly suggest to check the Issues directly in the corresponding

repository. The exported Issues can be found in

“\02_Additional_Product_Documentation\04_GitLab_Issues_Export”.

Masterarbeit, MAS-SE 2023-25

VoxelAssembler Site 108 / 108

14 Declaration of Academic Integrity

Hiermit erklären wir, dass wir die vorliegende Masterarbeit im MAS Software Engineering mit dem

Titel «VoxelAssembler - 3D Web configurator based on CAD-Data» selbstständig und ohne

unerlaubte fremde Hilfe angefertigt, keine anderen als die angegebenen Quellen und Hilfsmittel

verwendet und die den verwendeten Quellen und Hilfsmitteln wörtlich oder inhaltlich entnommenen

Stellen als solche kenntlich gemacht haben. Weiterhin erklären wir, dass wir keine durch Copyright

geschützten Materialien (z.B. Bilder) in dieser Arbeit in unerlaubter Weise verwendet haben und in

dieser Arbeit keine Adressen, Telefonnummern und andere persönliche Daten von Personen, die

nicht zum Kernteam gehören, publizieren.

 Ort, Datum _____________________________________

Name, Unterschrift: ___________________________

Name, Unterschrift: ___________________________

Name, Unterschrift: ___________________________

Rapperswil-Jona, 14.09.2025

Tobias Wiesendanger

Mauro Hefti

Roman Schweri

rs
Stempel

rs
Stempel

rs
Stempel

