Architektur-Refactoring der
Produktionsplanungs-Software
EVOPRO

Patrick Kehrli

Masterarbeit
MAS in Software Engineering
2023 - 2025

Ostschweizer Fachhochschule (OST)
Referent: Stefan Kapferer

Co-Referent: Thomas Memmel

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Eigenstandigkeitserklarung

Hiermit erklare ich, dass ich die vorliegende Masterarbeit im MAS Software
Engineering mit dem Titel «Architektur-Refactoring der Produktionsplanungs-Software
EVOPRO» selbststandig und ohne unerlaubte fremde Hilfe angefertigt, keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet und die den verwendeten
Quellen und Hilfsmitteln woértlich oder inhaltlich entnommenen Stellen als solche
kenntlich gemacht haben. Weiterhin erklare ich, dass ich keine durch Copyright
geschitzten Materialien (z.B. Bilder) in dieser Arbeit in unerlaubter Weise verwendet
haben und in dieser Arbeit keine Adressen, Telefonnummern und andere personliche
Daten von Personen, die nicht zum Kernteam gehéren, publiziere.

Ich erklare zudem, dass ich flr die Erstellung dieser Arbeit den Kl-gestitzten
Schreibassistenten ChatGPT (GPT-5, OpenAl) als Hilfsmittel zur sprachlichen
Uberarbeitung, Strukturierung und Formulierungshilfe eingesetzt habe. Die inhaltliche
Ausarbeitung, Analyse und Bewertung der Ergebnisse stammen vollstandig von mir.

Daruiber hinaus erklare ich, dass ich fur das Refactoring, insbesondere fir die
Unterstiitzung bei der Code-Erstellung und Uberarbeitung, die Kl-gesttzten
Werkzeuge Junie und ChatGPT verwendet habe.

Ort, Datum Weinfelden, 11.09.2025

Wi

Signer ID; QUGTHWPNRU

Name, Unterschrift: Patrick Kehrli,

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Diese Arbeit untersucht die Neugestaltung der tiber Jahre gewachsenen
Produktionsplanungssoftware EVOPRO mit dem Ziel, Wartbarkeit, Erweiterbarkeit und
Testbarkeit zu verbessern. Ausgangslage war ein monolithisches System mit unklarer
Trennung der Verantwortlichkeiten, hoher Kopplung zwischen Fachbereichen und
geringer Testabdeckung. Dies fuhrte zu Instabilitaten nach Releases und langen
Umsetzungszeiten bei neuen Features.

Im Projekt wurden die Architektur und die geforderten Qualitatseigenschaften
analysiert. Auf Basis etablierter Architekturmuster — insbhesondere Modularen
Monolithen und Clean Architecture — entstanden modulare Strukturen mit klaren
Verantwortlichkeiten und Schnittstellen. Fachlogik wurde in Use Cases gebindelt und
die Architektur durch automatisierte ArchUnit-Tests abgesichert. Zudem entstand ein
schrittweiser Plan zur Umsetzung des Refactorings.

Die prototypische Implementierung ausgewahlter Module zeigt, wie die Architektur
schrittweise modernisiert werden kann. Durch die Trennung von Fachlogik und
Infrastruktur, Use-Case-zentriertes Design und automatisierte Tests konnten
Abhangigkeiten reduziert und die Testbarkeit gesteigert werden. Das Vorgehen ist auf
weitere Module Ubertragbar und bildet die Grundlage einer nachhaltigen
Modernisierung von EVOPRO.

Verfasser: Patrick Kehrli

Referent: Stefan Kapferer

Co-Referent: Thomas Memmel

Veroffentlichung (Jahr): 15.09.2025

Zitation: Patrick Kehrli, 2025, Architektur-Refactoring der

Produktionsplanungs-Software EVOPRO, OST-
Ostschweizer Fachhochschule: Masterarbeit MAS
Software Engineering

Schlagwarter: Refactoring, Softwarearchitektur, Monolith, PPS

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Management Summary

Ausgangslage

Die Produktionsplanungssoftware EVOPRO wurde Uber mehrere Jahre kontinuierlich
erweitert und stark an individuelle Kundenanforderungen angepasst. Fehlende
Architekturleitlinien fihrten zu enger Kopplung, redundanten Strukturen und geringer
Testabdeckung. Dies erschwerte Wartung, Erweiterung und Betrieb.

Relevanz des Themas

In industriellen Produktionsbetrieben ist eine stabile, wartbare und erweiterbare
Softwarearchitektur entscheidend fir zuverlassige Ablaufe. Das Refactoring von
EVOPRO dient als Beispiel, wie ein bestehendes, komplexes System strukturell
erneuert und langfristig zukunftsféhig gemacht werden kann.

Einsatzumfeld und Ziel

EVOPRO wird von Produktionsunternehmen zur automatisierten Planung von
Auftragen und Ressourcen eingesetzt. Ziel der Arbeit war die Uberfiihrung der
bestehenden Architektur in eine modulare, entkoppelte Struktur, die Erweiterbarkeit,
Testbarkeit und Zuverlassigkeit erhoht.

Zentrale Fragestellung

Wie kann eine historisch gewachsene, stark gekoppelte Anwendung in eine modulare
Architektur Uberfuhrt werden, die sowohl den betrieblichen Anforderungen der Kunden
als auch den Entwicklungszielen des Herstellers entspricht?

Vorgehen

Die Arbeit umfasste eine Analyse des Ist-Zustands, die Definition einer Zielarchitektur
auf Basis von Clean Architecture und modularer Monolith-Struktur sowie die
prototypische Umsetzung ausgewahlter Module. Als Methoden kamen Architektur- und
NFA-Analysen, das C4-Modell, sowie Metriken aus SonarQube zum Einsatz.
Technologien waren u.a. Spring Boot, Vaadin, MongoDB, Docker und Azure DevOps.

Erreichte Ziele und Erkenntnisse

Durch die Modularisierung der Module Ressourcen, Produkt und Order sowie die
Einfihrung von Use Cases konnte eine klare Schichtung erreicht werden. ArchUnit-
Tests sichern die Einhaltung der Architekturprinzipien. Die Code-Duplizierung wurde
reduziert, Security-Hotspots eliminiert und eine vollstandige Testabdeckung der Use
Cases erzielt. Damit wurden die definierten Qualitatsziele weitgehend erfullt. Das
Refactoring zeigt, dass auch gewachsene Systeme erfolgreich in eine zukunftsfahige
Architektur Uberfihrt werden kdénnen.

Literaturquellen

Die Arbeit stlitzt sich auf bewahrte Konzepte aus der Fachliteratur, insbesondere Clean
Architecture (Robert C. Martin), Domain-Driven Design (Eric Evans) und Software
Architecture for Developers (Simon Brown). Ergénzend wurden praxisnahe Quellen wie
die SonarQube- und ArchUnit-Dokumentation sowie Herstellerdokumentationen der
eingesetzten Technologien bericksichtigt.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Inhaltsverzeichnis
1 NI IEUNG ettt 6
1.1 HINtergrund & KONTEXT.......oovviiiiiiiiiiiiiiieeeeeeeeee e 6
1.2 Motivation & Problemstellung..........coovvviviiiiiiiiiiiiiiiiiiiee 6
1.3 Zielsetzung der ArDeIt........ooo i 7
14 Aufbau der Arbeit ..., 7
2 ANAIYSE...coiiii 9
2.1 Stakeholder ANAIYSE ... 9
2.2 ArChIteKtUranalySeooovviiiiiiiiiiiiiiiiieeeee e 13
2.3 Performance ANAIYSE.........coi i 20
24 Code-QUAalItAtSANAIYSE........cvvuiii i 21
2.5 Fazit der ANAIYSEoovviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 23
3 ZIEldefINITION .. 24
3.1 Ubergeordnetes ProjEKEZIElcueicueeicueeceie ettt ee e 24
3.2 ArchiteKtoniSChES ZI€lcouvvviiiiiiiiiiiiiiiii e 24
3.3 (O T = 111 £= 1S4 [L= RPN 28
3.4 ADGIENZUNG ...t 29
3.5 ErfOlgSKONIIOIIE ... 29
3.6 Fazit der Zieldefinitionooeviviiiiiiiiiieeeeeee 29
4 VOIQENENSWEISEot e e e e e e e e e e r e e e e 31
4.1 MethodiSChes VOrgehenooovvviiiiiiiiiiiiiiiiiiieeeee 31
4.2 UMSELZUNGSSCNIEIE .uvviii e 32
4.3 Risiken und Massnahmenoovvvvviiiiiiiiiiiiieeeeeeeee e 33
4.4 ErfolgSKONIIONE ... 34
4.5 Fazit VOrgenNenSWeISE...........couvviiiiiiiiiiiiiiiiiiiieeeeeee 34
5 L0 [0 1S = 174 U] o P 35
5.1 MOAUI RESSOUICENceeviiiiiiiiiiiiiiieeeeeeeee ettt e e e e e e eeeeeees 35
5.2 1Yo o [0 B o T [V T 40
5.3 Y [oTo (B U | 11 = Vo RO PP PPPPPPPPPP 46
6 Ergebnisse UNd Fazit...........ooooiiiiiiiii e 50
6.1 Erreichung der ZielarchiteKtur ..o, 50
6.2 Erflllung der QUAlItALSZIElEoovvviviiiiiiiiiiiiiiiiieeeee 51
7 BT od] 18153 ST 53
LiteratUrVerZEICHNIS. i e e e e e e e e e e e e e e aeaeenene 54
AbbildUNGSVEIZEICANIS ... e 54
10 TabelleNVerzeiChNIS e 54

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

1 Einleitung

Diese Masterarbeit beschaftigt sich mit dem Architektur-Refactoring der
Produktionsplanungssoftware EVOPRO, um deren Stabilitat, Wartbarkeit und
Erweiterbarkeit zu verbessern und damit den steigenden Anforderungen von Kunden
und Entwicklungsteams gerecht zu werden.

1.1 Hintergrund & Kontext

EVOPRO ist eine webbasierte, Produktionsplanung und -steuerung Software (kurz
PPS) respektive ein Advanced Planning and Scheduling System (kurz APS) flr kleine
und mittlere Unternehmen in der Fertigung. lhren Ursprung hat die Losung in einer
Simulation mit Kl-gestiutzter Optimierung, um Produktionsplane zu berechnen und zu
optimieren. Um diese Kernfunktion fir Anwender nutzbar zu machen, wurde
schrittweise eine Webanwendung entwickelt, die den Optimierungskern um
Benutzeroberflachen, Datenhaltung, Integrationsschnittstellen und weitere Funktionen
erganzt.

Die Software unterstiitzt Unternehmen dabei, ihre Produktionsplanung zu optimieren,
Ressourcen effizient einzusetzen und auf kurzfristige Anderungen im
Fertigungsprozess flexibel zu reagieren. Dabei kombiniert EVOPRO die Funktionalitat
klassischer PPS-Systeme mit modernen Optimierungs- und Analyseverfahren.
Technologisch basiert die Anwendung auf einem modernen Stack mit Vaadin? fur das
User Interface (kurz Ul), Spring Boot? im Backend, Docker3 fiir die Containerisierung
und Azure DevOps* fur die Build- und Deployment-Prozesse.

1.2 Motivation & Problemstellung

Die Architektur von EVOPRO ist Gber mehrere Jahre organisch gewachsen. Neue
Funktionen und Kundenanpassungen wurden schrittweise erganzt, ohne dass eine
durchgéngige, Ubergeordnete Architekturstrategie verfolgt wurde. Dies flhrte zu einer
hohen Kopplung zwischen den einzelnen Komponenten und einer unklaren Trennung
fachlicher Verantwortlichkeiten. Fachliche Logik verteilte sich teilweise bis in die

1 vaadin ist ein Java-basiertes Webframework: https://vaadin.com/

2 Spring Boot ist ein Java Framework, dass die Entwicklung von Applikationen
vereinfacht: https://spring.io/

3 Docker ist eine Container-Plattform, die Anwendungen und ihre Abhangigkeiten
isoliert verpackt und so portabel und skalierbar macht: https://www.docker.com/

4 Azure DevOps ist eine Plattform von Microsoft, die integrierte Tools fiir
Softwareentwicklungsteams bereitstellt: Azure DevOps

11. September 2025 n

https://vaadin.com/
https://spring.io/projects/spring-boot
https://www.docker.com/
https://learn.microsoft.com/de-de/azure/devops/user-guide/what-is-azure-devops?view=azure-devops

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Benutzeroberflache, und zentrale Geschéaftsprozesse wurden vorwiegend durch
CRUD-orientierte Services (Create, Read, Update, Delete) abgebildet.

Diese gewachsene Struktur brachte mehrere Nachteile mit sich:

o Erhohtes Risiko von Seiteneffekten: Anderungen in einem Bereich wirkten
sich haufig auf fachlich nicht verwandte Teile der Anwendung aus.

e Erschwerte Testbarkeit: Die fehlende Testabdeckung und die Vermischung
von Logik und Infrastruktur erschwerten die gezielte Absicherung von
Anderungen.

o Begrenzte Erweiterbarkeit: Neue Anforderungen oder kundenspezifische
Erweiterungen konnten nur mit hohem Aufwand und Risiko umgesetzt werden.

Die Motivation fur das Architektur-Refactoring entstand einerseits aus den gestiegenen
Kundenanforderungen, andererseits aus den im MAS-Studium im Bereich Software
Engineering gewonnenen Erkenntnissen, wie eine klar strukturierte, modulare und
testgetriebene Architektur gestaltet werden kann.

1.3 Zielsetzung der Arbeit

Ziel dieser Masterarbeit ist es, die bestehende Softwarearchitektur von EVOPRO zu
analysieren, deren Schwachstellen zu identifizieren und auf dieser Basis ein
Architektur-Refactoring durchzufiihren. Das Ergebnis soll eine moderne und wartbare
Architektur sein, die den langfristigen Betrieb sichert und eine flexible Anpassung an
die Bedurfnisse verschiedener Produktionsbetriebe ermoglicht.

Im industriellen Umfeld, in dem EVOPRO eingesetzt wird, sind Zuverlassigkeit und
Stabilitat zentrale Anforderungen. Daher beinhaltet das Refactoring neben der
strukturellen Neuorganisation auch die Erh6hung der Testabdeckung sowie die
Verbesserung der allgemeinen Code-Qualitat. Die neuen Architekturprinzipien sollen
gewahrleisten, dass Erweiterungen und Anpassungen kiinftig stabiler und effizienter
umgesetzt werden kénnen.

Die Umsetzung erfolgt exemplarisch an ausgewéhlten Modulen, um die
Ubertragbarkeit der Architekturprinzipien auf das Gesamtsystem zu demonstrieren. Die
Arbeit orientiert sich dabei an bewahrten Konzepten wie dem Modularen Monolithen
(Brown, Modular Monoliths, 2018) und der Clean Architecture (Martin, 2018) und
kombiniert diese mit praxisorientierten Massnahmen zur Erhéhung der Wartbarkeit und
Qualitat.

1.4 Aufbau der Arbeit
Im Weiteren ist die Arbeit wie folgt strukturiert.

Kapitel 2 analysiert die bestehende Architektur und identifiziert deren Schwachstellen.
Dabei werden sowohl technische als auch strukturelle Defizite betrachtet, die eine

Grundlage fir die spatere Zieldefinition bilden.
11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Kapitel 3 definiert die tbergeordneten und architektonischen Ziele des Refactorings. Es
beschreibt die Leitlinien, Architekturprinzipien und Qualitatsziele, die bei der
Umsetzung bertcksichtigt werden.

Kapitel 4 erlautert das methodische Vorgehen. Es beschreibt die gewahlte
Vorgehensweise, die Umsetzungsschritte pro Modul sowie die Massnahmen zur
Qualitatssicherung und Erfolgskontrolle.

Kapitel 5 dokumentiert die praktische Umsetzung des Refactorings anhand
ausgewahlter Module. Fir jedes Modul werden Ausgangslage, durchgefiihrte Schritte,
technische Herausforderungen, erzielte Ergebnisse und ein Fazit dargestellt.

Kapitel 6 fasst die wichtigsten Ergebnisse zusammen, bewertet das Erreichen der
gesetzten Ziele und gibt einen Ausblick auf mogliche zukiinftige Weiterentwicklungen.

11. September 2025 n

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

2 Analyse

Ziel dieser Analyse ist es, die fachlichen und technischen Grundlagen des Systems
strukturiert zu erfassen und auf dieser Basis eine fundierte Bewertung und
Weiterentwicklung zu erméglichen.

Die Analyse orientiert sich an bewéhrten Methoden aus dem Requirements
Engineering, der Softwarearchitektur und der nicht-funktionalen Anforderungsanalyse.
Sie dient als Grundlage fir die Konzeption einer Zielarchitektur, die den aktuellen und
zukunftigen Anforderungen an das System gerecht wird.

Im Verlauf der Analyse werden folgende Aspekte betrachtet:

e Die Erhebung und Strukturierung fachlicher und technischer Anforderungen

o Die Definition und Abgrenzung des Systemkontexts

¢ Die Modellierung der Domane zur Verdeutlichung zentraler Begriffe und
Zusammenhange

¢ Die Bewertung der bestehenden Architektur mit Fokus auf Starken, Schwéchen
und Verbesserungspotenzialen

¢ Die Identifikation und Bewertung nicht-funktionaler Anforderungen (NFA)

Die Ergebnisse dieser Analyse bieten eine belastbare Basis flr
Architekturentscheidungen, Refaktorierungen oder Erweiterungen des Systems.
Darlber hinaus unterstiitzen sie die Kommunikation zwischen Fachexperten,
Entwicklerteams und weiteren Stakeholdern.

2.1 Stakeholder Analyse

Die Stakeholder Analyse dient dazu, alle relevanten Anspruchsgruppen zu
identifizieren, ihre Interessen und Ziele zu verstehen sowie ihren Einfluss auf das
Projekt einzuschétzen. Sie bildet die Grundlage dafir, Entwicklungsentscheidungen so
zu treffen, dass die unterschiedlichen Erwartungen in Einklang gebracht werden.

Im Fokus steht dabei der Kunde, dessen Anforderungen an Stabilitat, Performance und
Benutzerfreundlichkeit massgeblich fir den Projekterfolg sind. Gleichzeitig werden
interne Stakeholder berlcksichtigt, deren Ziel es ist, durch eine wartbare und
erweiterbare Architektur langfristig die Produktqualitat zu sichern, den Supportaufwand
zu reduzieren und Raum fur Innovationen zu schaffen.

2.1.1 Stakeholdergruppen

Produktionsleitung (Kunde)
Die Produktionsleitung ist verantwortlich fir die operative Planung und Steuerung der
Fertigung. Sie nutzt EVOPRO té&glich und in vollem Funktionsumfang, um

Produktionsplane zu erstellen, zu optimieren und bei Bedarf kurzfristig anzupassen.
Ihre Arbeit ist stark abhéangig von kurzen Lade- und Reaktionszeiten, einer stabilen

11. September 2025 n

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Lauffahigkeit und einer verlasslichen Terminplanung. Schon geringe Verzdgerungen
oder Systemausfalle wirken sich unmittelbar auf die Produktionsleistung aus und
kénnen zu TerminlUberschreitungen, ineffizienter Ressourcennutzung und
Kundenunzufriedenheit fiihren.

In der aktuellen Situation fihren komplexe Planungsprozesse teilweise zu langen
Ladezeiten, die den Arbeitsfluss verlangsamen und Entscheidungen verzdgern.
Zusatzlich kommt es nach Software-Updates vereinzelt vor, dass einzelne Funktionen
nicht mehr ordnungsgemass arbeiten und Fehler verursachen. Diese Probleme
beeintrachtigen die Zuverlassigkeit der Anwendung, erhéhen den Abstimmungsbedarf
zwischen den Beteiligten und kénnen im ungunstigsten Fall zu fehlerhaften Planungen
fuhren.

Produktionsmitarbeiter (Kunde)

Produktionsmitarbeiter sind die Endanwender der in EVOPRO erstellten Arbeitspléane.
Sie greifen taglich auf die Anweisungen und Auftragsinformationen zu, die Uber die
Software bereitgestellt werden. Fir sie steht eine einfache, klare und konsistente
Bedienoberflache im Vordergrund, um ihre Arbeit ohne unnétige Unterbrechungen
durchfiihren zu kénnen.

Aus Sicht der Produktionsmitarbeiter lauft die Anwendung stabil und zuverlassig. Die
Ansichten sind Ubersichtlich gestaltet, und Systemunterbrechungen treten nur sehr
selten auf, sodass der Arbeitsfluss in der Regel nicht beeintrachtigt wird.

Geschaftsleitung (Kunde)

Die Geschéftsleitung auf Kundenseite nutzt EVOPRO in der Regel nicht selbst
operativ, ist jedoch auf die von der Software bereitgestellten Kennzahlen angewiesen,
um strategische Entscheidungen zu treffen. Hohe Verfiigbarkeit, ausreichender Schutz
sensibler Unternehmensdaten und eine schnelle Erstellung aussagekréftiger Reports
sind dabei zentral.

Derzeit stehen die bendtigten Auswertungen und Reports in angemessener Zeit zur
Verfligung. Von Seiten der Geschaftsleitung werden gelegentlich kleinere
Funktionsanpassungen gewunscht, die jedoch nicht kritisch fir den laufenden Betrieb
sind.

Geschaéftsleitung (Eula Software AG)

Die Geschéftsleitung der Eula Software AG, Herstellerin von EVOPRO, definiert die
strategische Ausrichtung des Produkts und priorisiert Entwicklungsressourcen. lhr Ziel
ist es, ein stabiles, wettbewerbsféhiges Produkt anzubieten, das langfristig
Kundenzufriedenheit sichert und gleichzeitig wirtschaftlich nachhaltig ist.

Ein stabiler und wartbarer Systemkern reduziert den Supportaufwand, verkuirzt
Entwicklungszyklen und schafft Raum fir Innovationen. Aktuell fihren haufige Hotfixes

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

und ungeplante Wartungsarbeiten zu einem erhdhten Ressourcenverbrauch, was die
Umsetzung neuer Produktideen verzdgert.

Entwicklungsteam (Eula Software AG)

Das Entwicklungsteam ist fur die Wartung, Weiterentwicklung und technische Qualitat
von EVOPRO verantwortlich. Es verfolgt das Ziel, eine modulare, klar strukturierte
Architektur zu schaffen, die eine schnelle, stabile Umsetzung neuer Funktionen
erma@glicht. Hohe Testabdeckung, klare Schnittstellen und lose Kopplung zwischen
Modulen sind wesentliche Anforderungen, um langfristig Wartbarkeit und
Erweiterbarkeit sicherzustellen.

Gegenwartig leidet die Entwicklung unter einer stark gekoppelten Codebasis, die
Anderungen erschwert und das Risiko von unbeabsichtigten Nebenwirkungen erhoht.
Die fehlende oder unvollstandige Automatisierung von Tests verstarkt dieses Problem.
Die Folge sind zeitintensive Fehlerbehebungen, die Ressourcen fiir Neuentwicklungen
blockieren.

Vertrieb (Eula Software AG & Vertriebs-Partner)

Der Vertrieb ist massgeblich fiir die Markterschliessung und Kundengewinnung
verantwortlich. Wahrend der interne Vertrieb der Eula Software AG in engem
Austausch mit der Entwicklung steht und auch technische Machbarkeiten
bertcksichtigt, konzentrieren sich die Vertriebspartner starker auf die Prasentation von
Funktionen und die Vermarktung.

Hauptziele sind eine Uberzeugende Feature-Pipeline und reibungslose Produktdemos.
Technische Stabilitat wird dann relevant, wenn Probleme in Kundengespréachen
sichtbar werden — etwa durch fehlerhafte Live-Demos oder fehlende Funktionen.
Verzogerte Releases konnen Verkaufschancen mindern und die Glaubwiurdigkeit
gegenlber Bestandskunden beeintrachtigen.

2.1.2 Ziele der Stakeholdergruppen

In der Tabelle 1 werden die Ziele und aktuellen Herausforderungen nach
Stakeholdergruppe beschrieben:

Stakeholder Anforderungen Aktuelle Herausforderungen
Produktionsleitung Kurze Ladezeiten, stabile Lange Ladezeiten, Stabilitat
(Kunde) Lauffahigkeit, zuverlassige nach neuen Releases

Planung
Produktionsmitarbeiter | Intuitive Bedienung, keine
(Kunde) zuverlassiger Zugriff auf

Auftrage
Geschaftsleitung Verfiigbarkeit, Datensicherheit, | Flexibel neue Reports erstellen
(Kunde) schnelles Reporting,

Anbindung an ERP-Systeme

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Entwicklungsteam Wartbarkeit, Testbarkeit, Enge Kopplung im Code,

(Eula) modulare Architektur, einfacher | geringe Testabdeckung, zu viele
Deployment-Prozess Hotfix

Geschaftsleitung (Eula) | Schneller Onboarding- Hoher Ressourcenverbrauch fiir
Prozess, geringer Hotfixes, schleppende
Supportaufwand, hohe Entwicklung neuer Features

Innovationsfahigkeit

Vertrieb (intern & Feature-Vielfalt, stérungsfreie Release-Verzdgerungen, Demo-
Partner) Demos Probleme

Tabelle 1: Ziele nach Stakeholdergruppe

2.1.3 Stakeholder Kategorisierung

Die Einfluss-/Interesse-Matrix in Abbildung 1 zeigt die Positionierung der identifizierten
Stakeholdergruppen bezogen auf das geplante Refactoring der EVOPRO Software.

| e
Beobachten i Eng einbinden
I
|
Hohes ¢ I ®
Produktionsleit
Interesse ° %Kdﬁgf;ﬁ)' ung ' Entwicklungsteam
! o (Eula Software AG)
I
1 Geschaftsleitung
| (Eula Software AG)
———————————————— I———————————————
. |)
Informieren I Zufriedenstellen
e
. Geschiftsleitund
Niedriges g (Kunden) I
- I
Vertrieb
Interesse (Eula Software AG, 1
Partner) I
I
» I
Produktionsmitarbeiter :
(Kunden) I
1
Niedriger Einfluss Hoher Einfluss

Abbildung 1: Interesse-Einfluss Matrix der Stakeholdergruppen

Auffallig ist, dass die Kunden — insbesondere Produktionsleitung und Geschéftsleitung
— trotz ihres hohen Interesses am Projekterfolg mit einem eher geringen Einfluss
kategorisiert sind.

Dies liegt nicht daran, dass ihre Bedurfnisse fur das Projekt weniger wichtig waren —im
Gegenteil: Das Refactoring hat zum Ziel, die von den Kunden geforderte Stabilitat,
Zuverlassigkeit und Flexibilitat zu erreichen. Der geringe Einfluss bezieht sich
ausschliesslich auf die operative Umsetzung des Refactorings. Entscheidungen tber
die konkrete Architektur, die Priorisierung der Massnahmen und die technische
Vorgehensweise liegen primar beim Entwicklungsteam und der Geschéftsleitung der

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Eula Software AG. Diese Stakeholdergruppen verfiigen sowohl iiber das notwendige
Fachwissen als auch tber die Entscheidungskompetenz, um die Umsetzung inhaltlich
zu steuern.

Damit macht die Matrix deutlich: Die Kunden stehen im Zentrum der Motivation fur das
Refactoring, Uben aber keinen direkten Einfluss auf die technische Ausgestaltung aus.
Die Verantwortung liegt bei den internen Stakeholdern, die im Sinne der Kunden die
Architektur nachhaltig verbessern.

2.1.4 Fazit Stakeholder Analyse

Die Stakeholder Analyse verdeutlicht, dass insbesondere die Produktionsleitung der
Kunden ein hohes Interesse am Refactoring von EVOPRO hat. Fir sie sind vor allem
Ladezeiten, Stabilitat und Erweiterbarkeit entscheidend, um im téaglichen Betrieb
zuverlassig arbeiten und auf neue Anforderungen reagieren zu konnen. Aufgrund ihrer
operativen Rolle verfugt die Produktionsleitung jedoch nur Gber geringen Einfluss auf
die technische Umsetzung und ist daher auf die Initiative der Eula Software AG
angewiesen.

Aus Sicht aller beteiligten Anspruchsgruppen besteht der grésste Handlungsbedarf in
der Verbesserung der drei nicht-funktionalen Anforderungen Wartbarkeit, Testbarkeit
und Erweiterbarkeit. Es zeigt sich, dass eine splrbare Steigerung der Performance
ebenfalls hohe Relevanz besitzt, um Ladezeiten zu reduzieren und Arbeitsprozesse
effizienter zu gestalten.

Das Refactoring bietet damit die Gelegenheit, genau diese Kernaspekte gezielt zu
adressieren und so nicht nur die Kundenzufriedenheit zu erhéhen, sondern auch den
internen Entwicklungs- und Supportaufwand nachhaltig zu reduzieren.

2.2 Architekturanalyse

2.2.1 Systemkontext

EVOPRO ist ein webbasiertes APS (Advanced Planning System), das
Produktionsbetriebe bei der termin- und ressourcengerechten Planung unterstitzt. Das
System wird von unterschiedlichen Rollen im Kundenunternehmen genutzt (v. a.
Produktionsleitung und Produktionsmitarbeitende) und steht im Austausch mit externen
Diensten fur die Authentifizierung sowie mit betrieblichen Drittsystemen (z. B.
Enterprise-Resource-Planning, kurz ERP). Die Anwendung lauft in einer
Cloud-Umgebung und speichert Daten in einer verwalteten Datenbank.

Abbildung 2 zeigt den Kontext geméass C4 Modellierung (Brown, Software Architecture
for Developers Vol. 2, 2016) auf einen Blick: zentrale Benutzergruppen, angebundene
Fremdsysteme und die wichtigsten Kommunikationsbeziehungen.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Produktions-
Geschaéftsleitung . Mitarbeiter
[P]
Shatinh :’:’ heid Auftrags- und Ressourcen . S N
: r:’; e%]sc e En Sg cel tlnﬁ?n. erfassung. Planung und Sleh_t welche Auftrage er zu
udgetierung und Controlling Statusbearbeitung. erlgdlge_F hatsutnttj meldgt Sen
jeweiligen Status zuriic

Produktionsleiter

EVOPRO PPS
[Software System]
Softwarelosung zur automatisierten
— —» Produktionsplanung in industriellen < : =
EVOPRO-Vertrieb der So e Fertigungsumgebungen) - EVOPRO-Entwicklung
[Person] [Person]
. A < :
Verkauf und Inbetriebnahme Entwickelt, wartet und betreibt
der Software | die Software

_Entv

1AM ERP

[Synchronisiert Mitarbeiter- und Auftragsdaten
(extern)]

& <= YCLOAK PROFFIX

FORTERRO

{identity & Access Management (extern)]

Abbildung 2: EVOPRO Systemkontext

Akteure und externe Systeme (Uberblick):

e Benutzergruppen: Produktionsleitung (Planung und Steuerung),
Produktionsmitarbeitende (Abarbeitung/Aktualisierung), Geschaftsleitung
(Auswertungen/Entscheidungen), EVOPRO-Vertrieb (Demo/Inbetriebnahme),
EVOPRO-Entwicklung (Entwicklung/Wartung)

o Externe Services:
— Identity & Access Management: z. B. Keycloak fir Anmeldung und Rollen.
— ERP-System: Austausch von Stammdaten und Auftrdgen (Import/Export via
RESTful API GUber HTTPS).

Zentrale Datenflisse:

Die Benutzer melden sich tber ein externes ldentity-&-Access-Management (IAM) an,
das fir Authentifizierung und rollenbasierte Autorisierung zustandig ist. Nach
erfolgreicher Anmeldung greifen sie auf die verschiedenen Funktionen von EVOPRO
zu. Fur den Austausch betriebsrelevanter Informationen wie Stammdaten oder
Auftrage kommuniziert EVOPRO direkt mit dem ERP-System der Kunden tber
standardisierte Web-Schnittstellen (RESTful API tber HTTPS). Dabei werden Daten

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

bidirektional Ubertragen, sodass sowohl EVOPRO als auch das ERP jederzeit auf
aktuelle Informationen zugreifen kénnen.

2.2.2 Container-Diagramm

Das Containerdiagramm (Brown, Software Architecture for Developers Vol. 2, 2016) in
Abbildung 3 zeigt die zentralen Bausteine von EVOPRO und deren Interaktion
innerhalb des Systems. Die Architektur ist auf dieser Ebene in klar abgegrenzte
Container unterteilt, die jeweils flr eine definierte Aufgabe zustandig sind und tUber
wohldefinierte Schnittstellen miteinander kommunizieren.

Produktions-
Mitarbeiter

[Person]

Produktionsleiter
ek

Geschaftsleitung
[Person]
Auftrags- und Ressourcen
erfassung. Planung und Sieht welche Auftrage er zu
Statusbearbeitung. erledigen hat und meldet den
jeweiligen Status zurlick

Strategische Entscheidungen,
Budgetierung und Controlling

h 4 y 3
LXX
IAM Applikation r"““;‘g
[Container: Java) cartame
{identity & Access Management (extern)) < Leite [‘ Anf & “’ ' £ Ul (Vaadin) und ‘ De e glert OP"m'efu‘;:f,,':':s";,‘"m‘”
5 CLOAK SYEIBRNE Backend-Logik (Spring Boot) Planungsiogix
Anam A
> ol
rt Date | L n hreibt
r te D
A
ERP
[Synchronisiert Mitarbeiter- und Auftragsdaten Konfiguratior MOHSODB
extorn)] und Anp ng [Container: MongoDB]
PROFFIX Jer ¢ are Persistente Speicherung der Daten
FORTERRO / .

EVOPRO-Vertrieb

[Person]

Verkauf und Inbetriebnahme
der Software

Abbildung 3: EVOPRO Container-Diagramm

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Applikation (Spring Boot & Vaadin)

Die zentrale Webanwendung biindelt sowohl die Benutzeroberflache (Vaadin) als auch
die Backend-Logik (Spring Boot). Sie stellt samtliche Funktionen fir die Planung,
Auftragserfassung, Ruckmeldungen und Auswertungen bereit. Dariber hinaus
koordiniert sie den Datenaustausch mit den internen Komponenten, delegiert
Planungsaufgaben und steuert alle Lese- und Schreibzugriffe auf die Datenbank.

Planung

Eine spezialisierte Komponente, die Planungsauftrdge entgegennimmt und
automatisch optimierte Produktionspléne erstellt. Die Berechnungslogik ist vom
restlichen System entkoppelt, sodass Anderungen oder Erweiterungen an der
Planungsfunktionalitat unabhangig von der Hauptanwendung umgesetzt werden
koénnen.

MongoDB

Die persistente Speicherung samtlicher fachlicher und technischer Daten erfolgt in
einer MongoDB-Instanz. Sie verwaltet unter anderem Stammdaten, Planungsstande,
Konfigurationen und Rickmeldungen. Der Zugriff erfolgt ausschliesslich tber die
Applikations- oder Planungskomponente, wodurch Datenkonsistenz und
Zugriffskontrolle gewahrleistet werden.

Betriebshinweis

Die Applikation und Planungs-Komponente werden als Docker-Container in Azure
betrieben (pro Kunde eine Instanz). Die Datenhaltung liegt zentral in MongoDB Atlas,
wobei der Zugriff verschlisselt und mandantenspezifisch getrennt ist.

2.2.3 Komponentenmodell

Das aktuelle Komponentenmodell (Brown, Software Architecture for Developers Vol. 2,
2016) von EVOPRO in Abbildung 4 zeigt eine monolithische Webanwendung auf Basis
von Spring Boot und Vaadin, die in klassische technische Schichten unterteilt ist. Diese
Schichtung — bestehend aus Ul, Service, Domain/Data, Repository, technischen
Hilfskomponenten und Konfiguration — ist grundsétzlich sinnvoll, wurde im Laufe der
Zeit jedoch durch pragmatische Erweiterungen und das Fehlen verbindlicher Leitlinien
teilweise inkonsistent umgesetzt.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Produktions-

1AM Security R Ul (vaadin) ERP Integration
oy B o s et

T T_OAK pevdeakneter T Keyloakis igisionile Auharerung anazzroberfiche fr alle e ommun ket mit eroffs e
€ spring vaadin}> € spring

T s ’ 4

I

I

I /

v o - 4 A

Konfiguration
e s Service Layer | e _
Techrische Kan guratoen Corenecs s e bk
et g,

EVOPRO-Vertrleb -

Repository
e S P o
Mongabe-Zugifsschich: vorain-Objeize” T camponens e

e it
C spring radellumwandlung Ul <> Domain

st atisch

A

Abbildung 4: EVOPRO Ist-Komponentenmodell

Ein zentrales Problem besteht darin, dass Doméanenobjekte unkontrolliert durch
samtliche Schichten ,wandern®. Die gleiche Klasse wird in Ul, Service und
Persistenzschicht verwendet, was zu hoher Kopplung fithrt und Anderungen an einem
Ort haufig unerwartete Nebeneffekte in anderen Bereichen ausldst. Die Services selbst
bilden nur selten vollstandige Anwendungsfélle ab, sondern erfiillen tberwiegend
CRUD-Funktionen. Fachliche Logik verteilt sich so auf mehrere Klassen und dringt
teilweise bis in die Frontend-Implementierung vor, was gezieltes Testen erschwert und
das Risiko von Regressionen bei Anderungen erhoht.

Hinzu kommt, dass der separate Planungsservice fachlich eng an den Monolithen
gekoppelt ist, dabei aber angepasste Kopien zentraler Domanenklassen enthdlt. Diese
Redundanz steigert den Pflegeaufwand und birgt ein erhdhtes Inkonsistenzrisiko.
Technische Komponenten wie die MongoDB-Converter — die in erster Linie der
Schema-Migration dienen, etwa bei der Umstellung von primitiven Typen auf Value
Objects — sind ein niitzliches Werkzeug, werden aktuell jedoch ohne klar definierten
Decommission-Plan eingesetzt. Dadurch besteht das Risiko, dass temporar gedachte
Konverter langfristig im System verbleiben und die Komplexitat unnétig erhéhen.

In der Praxis fuhren diese strukturellen Schwachen dazu, dass kleine Anderungen
grosse Auswirkungen haben, neue Releases instabil werden kénnen und

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Performanceprobleme auftreten, etwa wenn synchrone ERP-Abfragen direkt im Ul-
Flow ausgefuhrt werden. Trotz dieser Herausforderungen bietet die bestehende
Schichtung eine solide Grundlage, deren Potenziale aktuell jedoch nicht vollstandig
ausgeschopft werden.

2.2.4 Domanen-/ Klassenmodell

Das aktuelle Domanenmodell von EVOPRO dargestellt in Abbildung 5 orientiert sich
stark an den im Produktionsumfeld benétigten fachlichen Entitaten. Es umfasst
zentrale Konzepte wie Auftradge, Produkte mit zugehorigen Stlicklisten, Ressourcen wie
Maschinen und Mitarbeitende, Prozesse und Operationen, sowie erganzende
Strukturen zur Abbildung von Kunden, Adressen und Rollen. Die Modellierung bildet
die fachlichen Anforderungen grundsétzlich vollstandig ab und deckt sowohl
produktionsrelevante als auch betriebswirtschaftliche Aspekte ab.

Die Entitaten sind in einem objektorientierten Klassenmodell dargestellt, das im
Wesentlichen als Datenstruktur dient und in allen Schichten der Anwendung
wiederverwendet wird. Domanenobjekte enthalten neben den Attributen teilweise auch
fachliche Logik, werden jedoch ohne klare Abgrenzung zwischen interner
Reprasentation, Persistenzmodell und externen Schnittstellen eingesetzt. Dadurch
werden dieselben Klassen sowohl im Ul als auch in den Services und Repositories
verwendet.

Ein auffalliges Merkmal ist die enge Verflechtung zwischen einzelnen
Domanenobjekten. Beziehungen wie zwischen Auftragen, Produkten, Prozessen und
Ressourcen sind direkt modelliert und flihren zu einer starken Kopplung. Diese
Kopplung erhéht die Komplexitat bei Anderungen, da Anpassungen an einer Entitat
haufig Anpassungen an mehreren weiteren Klassen erforderlich machen.

Zudem spiegeln einzelne Teile des Domanenmodells Strukturen wieder, die auch im
Planungsservice vorhanden sind. Hierbei handelt es sich jedoch nicht um gemeinsame
zentrale Modelle, sondern um teilweise angepasste Kopien, die inhaltlich eng verwandt
sind. Diese Duplizierung birgt die Gefahr von Inkonsistenzen, wenn Anderungen nicht
synchron in allen betroffenen Bereichen erfolgen.

Insgesamt zeigt das Domé&nenmodell eine breite Abdeckung der relevanten
Geschaftsobjekte, weist jedoch eine sehr enge Kopplung und eine fehlende Trennung
zwischen den verschiedenen Verwendungskontexten auf. Dies erschwert die gezielte
Weiterentwicklung, die Einfiihrung neuer Funktionen und kann bei Anderungen zu
unbeabsichtigten Seiteneffekten flhren.

11. September 2025

acatanType

name. sing &

OnCaiTypa

<nume sring =

—
p—

-

Enum

User Ciass

Avsiract Closs

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

P e r—

conraem

“iastisms: sty

sl strmg o
“phaneNumber ting [

T~

B
Customer

~nr sy
~amat simg

~phaneurber g

+ b e
~ sreet Strng

= crostlumoar: $wi0g
= s Stng

ey sy

+ oy Simna

e

 amount: doutle
< s date
p—

< sinite. boul

« mumber sking
- name.ching
- starDale. dote
« engoaie aaie
* mizned toot
= canceied: bost

« rtemat booi

[T —— |

Faymeninn
R——

+ nsment boot
 varrany: bocl

= cocurty. bond

~ paymeTorm i

peration

“number: sirng

o
. A

Vi e
~iromDate: dz0 1= ~lasiName: stog EmployecPbeses:
st ot ~dogariment Degartont |, | M N

cproducealy doue ~—y e oate
- I
—

OnCall —_ " v
tDete: date s ProductType 0. + tolowUpDste: dsts 1 o “quantmyapengent baol
o o i B B

coanrban”’ ! 1 st e
\ ~end tate
-

IU—

Sp—

A
L. .
crepeston \
P e | o

WacnineType

————rects——0 " wname sting

[tiroses
—sarcae
o

EE

pr——

p—— 1 camaut soune

= “mameshot streg

uembes siring

]

amaunt bigDecimal

ot e

e -amWNCHF bigDscimd

actoeToBase: dautie

+

TaskSis
[——

- appainimest: dale

| opan, precucms—g, .

Maasurunt

RavanusTypa

~deteOPyment. dale

[e——
(= aue0)- bon
.
— ~
~— \,,_
—
T~
Saweiios
+ slelgle dale

* salePice: doutle
+ @scount doudie
 caklatBACOTTRUBONRE: d0UDle

‘cumancyType

Abbildung 5: EVOPRO Ist-Klassenmodell

—

AbstactEnmy
- Onjectid

nenas

ApsuacrTypeEnity

+ nams: simg
+ dsacnption sty

+ actwer bool
3
edinds
|
Asaronzants
e N -
 mandatoryFialds: Mag<Stnng Obyect= - valug: g
Machine Macnmedaspeint

sproducts Let<Product

mascspscty: sounie
“cpariment. Deputient 1 ~maxCapaciylin MazsursUnk

doutie

+schedule: ListTImeenca- mexjobDela; Duralion

)
~
~ Dusston
+dueaton: oubis

~tmuni: Tment

—

1 2name: stng

Userrouts
nama smng

user

“Mraviame: srng

.

“nams: sang

11. September 2025

19

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

2.2.5 Fazit Architekturanalyse

Insgesamt zeigt die Architekturanalyse von EVOPRO ein System, das auf einer
prinzipiell soliden technischen Schichtung und einem umfassenden Domanenmodell
basiert, dessen Potenzial jedoch durch gewachsene Strukturen und fehlende
Abgrenzungen zwischen den Schichten eingeschrankt wird. Die Analyse der
Komponentenebene verdeutlicht, dass Domanenobjekte ohne klare Schnittstellen Uber
alle Schichten hinweg verwendet werden und Services nur selten vollstandige
Anwendungsfalle abbilden. Dies fihrt zu hoher Kopplung, erschwert gezieltes Testen
und erhéht das Risiko von Instabilitdten und Performanceproblemen. Auf Ebene des
Doméanenmodells wird diese Kopplung durch direkte, teils komplexe Beziehungen
zwischen den Entitaten verstarkt, wahrend redundante Modellteile im Planungsservice
zusatzlich Inkonsistenzrisiken bergen. Diese strukturellen Gegebenheiten erklaren,
warum Anderungen am System oftmals weitreichende Auswirkungen haben und neue
Releases vereinzelt zu unerwarteten Fehlern oder Leistungsverlusten fuhren.

2.3 Performance Analyse

Die Analyse der Serverreaktionszeiten in Abbildung 6 in zwei unterschiedlichen
Systeminstanzen zeigt deutliche Unterschiede in der Performance. Wahrend in System
A (ohne ERP-Anbindung) die meisten Ansichten nahezu verzdgerungsfrei geladen
werden, treten in System B (mit ERP-Anbindung) spurbare Verzdgerungen auf.
Besonders auffallig ist dies in der Mitarbeitertibersicht, die in System B Uber drei
Sekunden bendtigt und damit rund 20-mal l&nger I&dt als in System A, obwohl dort
weniger Mitarbeitende verwaltet werden.

Die Ursache fir diese Abweichungen liegt in der Architektur der Anwendung: In
System B werden beim Offnen der Mitarbeiteransicht direkte Abfragen an das ERP-
System ausgefihrt, um aktuelle Mitarbeiter- und Produktdaten zu laden. Diese
synchrone Kopplung verlangert nicht nur die Antwortzeiten erheblich, sondern wirkt
sich auch negativ auf die Skalierbarkeit und Wartbarkeit der Anwendung aus.

Die Vergleichbarkeit der beiden Systeme ist insofern eingeschréankt, als System A
mehr aktive Auftrdge und Mitarbeitende, daftir aber deutlich weniger Maschinen und
Produkte aufweist wie in Tabelle 2 dargestellt wird. Dennoch ist der
Performanceunterschied signifikant, da die betroffene Ansicht in System B trotz
geringerer Datenmenge erheblich langsamer reagiert.

: . Ohne ERP-Anbindung Mit ERP-Anbindung
Hinweis
(System A) (System B)
Aktive Auftrage 87 19
Mitarbeitende 38 16
Maschinen 2 40

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

: . Ohne ERP-Anbindung Mit ERP-Anbindung
Hinwelis
(System A) (System B)
Produkte 45 291

Tabelle 2:Vergleich der zwei Systeme

Ein weiterer Befund betrifft die Ansicht der Produktionsplanung: Diese bendtigt in
beiden Systemen zwischen finf und sechs Sekunden Ladezeit. Die Ursache hierfr
liegt in der aufwendigen Generierung der Ansicht und ist nicht unmittelbar in der
Architektur begriindet. Daher steht diese Optimierung nicht im Fokus der vorliegenden
Arbeit.

Server Response Time der jeweiligen Sichten
Mitarbeiter
Produkte
Nachkalkulation

Mitkalkulation

Ansicht

Status

Projekte

7
[
/
I
planung IR
[
I
|

Home

o
-
[~

3 4 5 6 7
Zeitin Sekunden

W Mit ERP-Anbindung Ohne ERP-Anbindung

Abbildung 6: Server Response Time der aktuelle EVOPRO Applikation

2.4 Code-Qualitatsanalyse

Die statische Codeanalyse mit SonarQube® in Abbildung 7 zeigt, dass EVOPRO in
Bezug auf Sicherheit ein sehr gutes Ergebnis erreicht (Rating A, keine offenen Issues).

5 vgl. Quelle: Offizielle Dokumentation: https://www.sonarsource.com

11. September 2025

https://www.sonarsource.com/

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Quality Gate ® Last analysis 16 minutes ago
v
Passed
New Code Overall Code
Security Reliability Maintainability
0 Open issues A 13 Open issues D 757 openissues A
Accepted issues Coverage Duplications
0 ® 0.0% O 28% :
Valid issues that were not fixed On 12k lines to cover On 32k lines

Security Hotspots

n E

Abbildung 7: Ubersicht der SonarQube Qualitats Analyse

Auch die Maintainability wird insgesamt mit A bewertet, weist jedoch 757 offene
Maintainability-Issues auf, die sich in Summe zu einer geschéatzten technischen Schuld
von mehreren Arbeitstagen addieren. Die Analyse der Maintainability Overview in
Abbildung 8 verdeutlicht, dass der Grossteil der Klassen im griinen Bereich liegt,
jedoch einzelne Klassen mit deutlich hherem Wartungsaufwand existieren. Besonders
grosse Klassen mit tiber 300 Zeilen Code sind dabei haufiger betroffen und
verursachen jeweils mehrere Stunden potenziellen Korrekturaufwand.

Maintainability Overview @ Color: Maintainability Rating Size: Maintainability Issues

See the data presented on this chart as a list ‘,A“ - [c D ‘\E)

Zoom: 100%

4h 10min

3h 20min

Technical Debt

N

h 30min

Th 40min

50min

Abbildung 8: Maintainability Overview der SonarQube Qualitatsanalyse

In der Kategorie Reliability wird die Codebasis mit D bewertet, was auf 13 offene
Issues zuriickzufiihren ist. Diese sind tber verschiedene Module verteilt und weisen
Uiberwiegend einen geringen bis mittleren Behebungsaufwand auf. Die Reliability
Overview in Abbildung 9 zeigt, dass vor allem mittelgrosse Klassen mit 100 bis 250

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Zeilen Code in diesem Bereich auffallen und Gberwiegend in den gelben bis orangen
Bewertungsbereich fallen.
Reliability Overview @ Color: Reliability Rating Size: Reliability Issues

See the data presented on this chart as a list [103} B c @O mE

Zoom: 100%

ort

5min

Reliability Remediation Effc

Abbildung 9: Reliability Overview der Sonar Qube Qualitats Analyse

Auffallig ist die vollstandige Abwesenheit automatisierter Tests im analysierten
Quellcode (0 % Test Coverage bei rund 12 000 zu testenden Zeilen). Dies bedeutet,
dass mogliche Regressionen oder Seiteneffekte bei Anderungen nur schwer
automatisiert erkannt werden kénnen. Darlber hinaus weist der Code einen moderaten
Anteil an Duplikationen auf (2,8 % bei rund 32 000 Zeilen Code).

Im Bereich Security Hotspots wurden elf Stellen identifiziert, die potenziell
sicherheitsrelevant sein kénnten, jedoch nicht zwingend Sicherheitsliicken darstellen.
Hierbei handelt es sich um Codeabschnitte, die in einem sicherheitskritischen Kontext
stehen und manuell geprift werden missen.

Insgesamt bestatigen die Ergebnisse, die in der Architekturanalyse identifizierten,
strukturellen Schwachen: eine teilweise hohe Komplexitat einzelner Klassen, Code-
Duplizierungen und fehlende Testabdeckung. Diese Faktoren wirken sich direkt auf die
Wartbarkeit und Stabilitdt der Anwendung aus.

2.5 Fazit der Analyse

Die Analyse verdeutlicht, dass EVOPRO zwar auf einer soliden technischen Basis
steht, jedoch durch enge Kopplungen, fehlende Schichtentrennung und mangelnde
Testabdeckung in seiner Wartbarkeit und Stabilitéat eingeschrénkt ist. Besonders
kritisch wirken sich die synchrone ERP-Anbindung und die fehlenden automatisierten
Tests aus. Damit wird klar, dass die Hauptursachen fur Instabilitaten und hohen
Wartungsaufwand weniger in den Funktionen selbst, sondern in strukturellen
Schwaéchen der Architektur liegen.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

3 Zieldefinition

3.1 Ubergeordnetes Projektziel

Das Architektur-Refactoring von EVOPRO verfolgt das Ziel, eine zukunftsfahige,
modulare und wartbare Architektur zu schaffen, die langfristig den Betrieb sichert, die
schnelle Umsetzung neuer Kundenanforderungen ermdglicht und den Wartungs- und
Supportaufwand deutlich reduziert.

Wesentliche Leitlinien dabei sind:

® Klare Entkopplung von Komponenten und Schichten, um Abhangigkeiten zu
minimieren und Anderungen sicherer umzusetzen.

® Saubere Trennung von Verantwortlichkeiten durch eindeutige Architektur- und
Code-Strukturen.

® Hohe Code-Qualitat mit einheitlichen Standards und geringem Anteil an
Duplikationen.

® Hohe Testabdeckung zur Sicherstellung von Stabilitat und Vermeidung von
Regressionen.

3.2 Architektonisches Ziel

Ziel des Refactorings ist es, EVOPRO so zu restrukturieren, dass eine klar gegliederte,
wartbare und langfristig erweiterbare Architektur entsteht. Dabei wird die Software nicht
vollstandig neu entwickelt, sondern in ihrer Struktur so angepasst, dass Anderungen
sicherer und isoliert durchgefiihrt werden kénnen. Grundlage bilden bewahrte
Architekturstile wie der Modulare Monolith (Brown, Modular Monoliths, 2018) und die
Clean Architecture (Martin, 2018).

3.2.1 Modularisierung in vertikale Einheiten

Die Codebasis wird in fachlich klar abgegrenzte Module tberfihrt, die jeweils alle fiir
ihren Funktionsbereich bengtigten Schichten beinhalten. Diese Aufteilung orientiert
sich am im Komponentenmodell in Abbildung 10 dargestellten Aufbau.

Als Leitprinzip dient der Modulare Monolith nach Simon Brown (Brown, Modular
Monoliths, 2018). Dieses Architekturkonzept kombiniert die Vorteile einer
monolithischen Anwendung — Einfachheit, gemeinsame Deployment-Pipeline,
konsistente Datenhaltung — mit den Vorteilen einer internen Modularisierung. Jedes
Modul ist weitgehend unabh&ngig, Anderungen in einem Modul sollen keine
unbeabsichtigten Auswirkungen auf andere Module haben.

Die Modularisierung folgt dabei den fachlichen Verantwortlichkeiten, wie sie im
Komponentenmodell abgebildet sind. Beispiele fir eigenstadndige Module sind etwa
Auftrag, Produkt, Ressourcen, Planung, Finanzen, Reporting, User und die ERP-

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Integration. Jedes dieser Module kapselt seine eigene Logik, seine Datenzugriffe sowie
eine klar definierte Schnittstelle zu anderen Modulen.

Produktionsleiter Produktions-

/ N . \ /
¥ < x N ~ < » ¥

Planung Modul . .
Produkt Modul Auftrag Modul Resourcen Modul .mpg...m‘ Finanzen Modul Reporting Modul
Cemgerent jaal tcampanere ovct [En—— e [Etm—— (Comgenent kol
2 inkl. Ui, Grehestriert Finanzverwakiung inkl. U, Use Analyse und Berichtserstellung 2t
Use Cases und Domairlogik die Auftrage. Mitarbeiter und Cases und Damainiogik Basis von KPIs
achi

on i
Praduktionsprozess und Sticklisten Use Cases und Domainicgik

g
Berutzer- und Rollenerwaltung.

ERP Integration Modul
[

Synchronisation von Mitarbelter
und Auftragsdaten

b A 4

i JAM
et e acbrete | Optimient und plart Auftrige [—
-auromatisch.

e o LOAK.

Asmn

PROFFIX
FORTERRO

Abbildung 10: EVOPRO Soll-Kkomponentenmodell

3.2.2 Horizontale Schichtung nach Clean Architecture

Innerhalb jedes Moduls wird die Architektur nach den Prinzipien der Clean Architecture
(Martin, 2018) gestaltet. Die Schichten sind klar voneinander getrennt und tibernehmen
spezifische Rollen. Das Naming im Code ist teilweise abweichend zum Clean
Architecture Konzept. Die Abbildung 11 zeigt in Klammer den jeweilige Clean
Architecture Namen, die im folgenden beschrieben werden:

o Domain: entspricht der Entitaten-Schicht. Hier werden die zentralen fachlichen
Klassen modelliert, die keinerlei Abhangigkeiten zu externen Frameworks
aufweisen.

e Application: entspricht der UseCase-Schicht. Hier sind die Anwendungsfalle
definiert, welche die fachliche Logik kapseln.

e Application.in: Interfaces fir die Use-Case-Eingabeports, Uber die Use Cases
von aussen angesteuert werden (z. B. vom Controller).

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

o Application.out: Interfaces fiir die Use-Case-Ausgabeports, tiber die externe
Ressourcen wie die Datenbank angebunden werden.

o Repository: Implementiert die Out-Ports und entspricht dem Gateway. Hier
werden DAOs, Mappings und die konkreten Datenbankzugriffe realisiert.

o Controller: tbernimmt die Rolle der Eingabeschicht. Er ruft die definierten Use
Cases an und dient als Bindeglied zwischen Webebene und Application Layer.

e Web: entspricht der Prasentationsschicht. Diese wird zweigeteilt umgesetzt:

o Ul realisiert mit Vaadin, stellt die grafische Benutzeroberflache bereit
und kommuniziert ausschliesslich tGber Controller mit den Use Cases.

o REST: implementiert die RESTful API mit Spring Boot, stellt Endpunkte
fir den externen Zugriff bereit und bindet ebenfalls nur die Controller-
Schicht an.

Die zentrale Regel der Clean Architecture wird strikt eingehalten: Domain- und
Application-Schichten haben keine Abhangigkeiten zu externen Bibliotheken. Sie
arbeiten ausschliesslich mit Plain Java Objekten und definierten Schnittstellen.

Zulassig sind lediglich Abhangigkeiten zum Common-Modul innerhalb derselben
Abstraktionsebene oder tiefer. So darf z. B. eine Klasse aus der Domain-Schicht auf
eine abstrakte Klasse im Common-Domain-Bereich zugreifen oder ein Use Case in
Application auf eine abstrakte Definition im Common-Application-Bereich.
Querabhangigkeiten tber unterschiedliche Ebenen hinweg sind hingegen nicht erlaubt.

Durch diese klare Strukturierung wird die Trennung von Fachlogik und technischer
Infrastruktur gewahrleistet, die Testbarkeit erhdht und die langfristige Unabhangigkeit
von spezifischen Frameworks sichergestellt.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

IST-Architektur Soll-Architektur
- PATLVeR — PO-AL TRt
Modul
= 1
WEB
Ul / RESTful APl Ul / RESTful API

[P

[

Controller DtoMapper

uses uses

Application

(UseCases) US%°

(Eingabe-Port]
<<interface>>=
UseCase
[

- |
Service Data implements Domain
(Entities)

Service Domain Service Domain

\ -

uses

Out
(Ausgabe-Port;

<<interface>>
uses uses Repository

implefments
Repository

repositol
e o (Gateway)

Repository Reposil s DaoM

! l

<<interface>>
MongoReposoitory Dao

<<interface>>
MongoReposoitory

Abbildung 11: Vergleich Ist- und Soll-Architektur

3.2.3 Use-Case zentrierte Modulkommunikation

Mit der neuen Architektur rlckt die fachliche Logik konsequent ins Zentrum der
Anwendung und wird als klar abgegrenzte, zentrale Ressource innerhalb jedes Moduls
behandelt. Anstelle der bisherigen, vorwiegend CRUD-getriebenen
Servicekommunikation werden die Module kiinftig ausschliesslich Uber klar definierte
Anwendungsfalle (Use Cases) angesprochen, die vollstandige fachliche Ablaufe
abbilden. Dadurch verschiebt sich der Fokus weg von rein datenorientierten
Operationen hin zu einer doméanenzentrierten Arbeitsweise, bei der die Absicht (,Was
soll passieren?“) wichtiger ist als die konkrete Datenmanipulation.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Die Benutzeroberflache tbernimmt in diesem Modell ausschliesslich die Rolle eines
Prasentations- und Interaktionslayers. Sie enthélt keinerlei Geschéftslogik mehr,
sondern konsumiert ausschliesslich die im Modul bereitgestellten Anwendungsfalle.
Diese klare Trennung sorgt dafur, dass Anderungen an der Ul nicht zu
unbeabsichtigten Eingriffen in die Fachlogik fiihren — und umgekehrt.

Auch die Kommunikation zwischen den Modulen erfolgt Uber diese eindeutigen, lose
gekoppelten Schnittstellen. Diese Form der Schnittstellendefinition reduziert
Abhangigkeiten, erhéht die Austauschbarkeit von Implementierungen und stellt sicher,
dass fachliche Details klar innerhalb ihres Moduls verbleiben. Dadurch wird verhindert,
dass interne Logik unkontrolliert in andere Bereiche des Systems ubergreift und dort
unerwinschte Abhangigkeiten erzeugt.

Da die zentrale Fachlogik in den Use Cases innerhalb der jeweiligen fachlichen
Domane gebundelt ist, verbessert sich auch die Test- und Wartbarkeit: Use Cases
lassen sich isoliert testen, unabhangig von Ul, Datenbank oder externen Integrationen.
So wird die langfristige Pflege und Weiterentwicklung der Anwendung erleichtert.

3.2.4 Klare Schnittstellen zu externen Systemen

Ein zentrales Ziel des Refactorings ist die Neugestaltung der Anbindung externer
Systeme, insbesondere des ERP-Systems. In der bestehenden Architektur erfolgt der
Zugriff synchron direkt aus der Benutzeroberflache: Beim Offnen bestimmter Ansichten
werden ERP-Daten in Echtzeit abgefragt. Diese enge Kopplung fiihrt zu langen
Ladezeiten und macht die Anwendung anfallig fir Ausfalle oder Verzégerungen im
angebundenen System.

Klnftig werden externe Systeme uber ein eigenstéandiges Integrationsmodul
angebunden, das unabhéngig von Ul und Fachlogik arbeitet. Dieses Modul Gbernimmt
den bidirektionalen Datenaustausch mit dem ERP-System asynchron, sodass
Informationen nicht mehr wahrend der Ul-Interaktion geladen werden muissen.
Stattdessen werden Anderungen ereignisgesteuert synchronisiert und lokal in
EVOPRO zwischengespeichert.

Durch diese Architektur entsteht eine flexible Integrationsschicht, die sowohl die
Stabilitat als auch die Performance verbessert: Die Kernlogik von EVOPRO bleibt von
externen Systemen entkoppelt, Benutzeroberflachen reagieren schneller und das
Gesamtsystem bleibt robuster gegentiber Stérungen in angebundenen Diensten.

3.3 Qualitatsziele

Die Erreichung der in dieser Zieldefinition beschriebenen Architekturprinzipien wird
anhand folgender messbarer Kriterien Uberprift:

e Architekturentkopplung: Mindestens drei vollstandig entkoppelte fachliche
Module mit klar definierten Schnittstellen.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

e Testabdeckung: Bei jedem umgesetzten Modul ist die Use Case Test-
Abdeckung bei 100%. Dies beinhaltet sowohl die Doménen-, als auch die
Applicaiton-Klassen. Die Infrastruktur- und Ul-Schichten werden nicht explizit
getestet, sondern lediglich Uber Integrations- oder Funktionstests indirekt
abgesichert.

e Code-Duplizierung: Reduktion der Code-Duplizierung auf < 1,4 % gemass
SonarQubes.

e Sicherheitsaspekte: Beseitigung aller aktuell bestehenden Security Hotspots
sowie aller Maintainability-Issues mit hoher Auswirkung.

e Performance: Ladezeiten von ERP-abhangigen Ansichten maximal gleich wie
bei einer Instanz ohne ERP-Anbindung.

3.4 Abgrenzung

Nicht Teil dieser Arbeit sind:

e Funktionale Erweiterungen des Systems lber den bestehenden
Funktionsumfang hinaus.

e Performance-Optimierungen einzelner Ansichten, deren Ursache nicht in der
Architektur liegt (z. B. komplexe Renderprozesse der Planungsubersicht).

e Einfihrung einer Microservice-Architektur oder vollstandige Umsetzung der
Clean Architecture in allen Details.

3.5 Erfolgskontrolle
Der Projekterfolg wird auf Basis objektiver Kriterien Gberprift:

e Technische Metriken: Auswertung der SonarQube-Analyse und
Testabdeckung vor und nach dem Refactoring.

e Architekturvalidierung: Fir jedes Modul ist ein ArchUnit-Test zu definieren,
der erfolgreich durchlaufen werden muss und die jeweiligen
Architekturrestriktionen (z. B. Schichtentrennung, Zugriffsbeschrankungen)
Uberprift.

e Leistungstests: Vergleichsmessungen der Ladezeiten vor und nach der
Umsetzung.

3.6 Fazit der Zieldefinition

Mit der beschriebenen Zieldefinition wird eine klare Ausrichtung fiir das Architektur-
Refactoring von EVOPRO geschaffen. Die Kombination aus modularer horizontaler
Struktur, strikter vertikaler Schichtung, Use-Case-zentrierter Kommunikation und klar
definierten Schnittstellen zu externen Systemen legt die Grundlage fir ein wartbares,
erweiterbares und qualitativ hochwertiges System. Durch die festgelegten
Qualitatsziele und die prazise Abgrenzung des Projektumfangs ist der Rahmen fir die
Umsetzung klar gesteckt. Die definierten Erfolgskriterien, einschliesslich der

6 SonarSource: SonarQube Dokumentation, https://docs.sonarsource.com

11. September 2025

https://docs.sonarsource.com/

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

automatisierten Architekturvalidierung per ArchUnit’-Tests, ermdglichen eine objektive
Uberprifung der Zielerreichung. Damit ist sichergestellt, dass das Refactoring nicht nur
kurzfristige Verbesserungen bringt, sondern die langfristige Stabilitat und
Weiterentwicklung des Systems unterstutzt.

7 ArchUnit: ArchUnit Dokumentation, https://www.archunit.org/

11. September 2025

https://www.archunit.org/

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

4 Vorgehensweise

Um die in der Zieldefinition definierten Ziele zu erreichen, wird ein strukturiertes und
schrittweises Vorgehen gewahlt. Dabei liegt der Fokus darauf, die bestehenden
Strukturen kontrolliert zu verandern, um Risiken zu minimieren und jederzeit einen
lauffahigen Systemzustand sicherzustellen. Die Umsetzung erfolgt in klar
abgegrenzten Arbeitspaketen, die jeweils aufeinander aufbauen und nach jedem
Schritt Gberprifbare Zwischenergebnisse liefern. Neben der technischen Umsetzung
werden begleitend Massnahmen zur Qualitatssicherung, Dokumentation und
Architekturvalidierung durchgefiihrt, um sicherzustellen, dass die angestrebte Soll-
Architektur konsequent umgesetzt wird.

4.1 Methodisches Vorgehen

Die Umsetzung des Architektur-Refactorings erfolgt in einem iterativen
Vorgehensmodell, das sich am Grundgedanken von Scrum orientiert, jedoch an die
Rahmenbedingungen des Projekts angepasst ist. Die Arbeit wird in zweiwdchige
Sprints unterteilt, auf die jeweils eine zwei- bis vierwtchige Pause folgt. Dieser Vier- bis
Sechswochenrhythmus ermdglicht es, in den Umsetzungsphasen fokussiert technische
Anpassungen vorzunehmen und in den Pausen Feedback auszuwerten, Tests zu
erganzen und die nachsten Schritte zu planen.

Zeitplan fiir die Masterarbeit

Besprechung der Arbeit
Start

Sprint 1 (2W) RE, Design, Analyse

Sprint 2 (2W)| | | ‘ D Rei’actoring ('Resou}ces) ‘ |

Sprint 3 (2W) C] Refactoring (Produkt)

Sprint 4 (2w)| | | ‘ | D Refac*oring (Auftrag) |

<> Zwischenreview
D Dokumentation
Abschluss
<> Abgabe
Prdsentation <>
Oct 2025

Abbildung 12: Umsetzungszeitplan Refactoring EVOPRO

Fur die Planung und Nachverfolgung der Arbeitspakete wird ein Kanban-Board in Jira
(Abbildung 13) eingesetzt. Der Quellcode wird versioniert und tiber GitHub verwaltet,
wahrend die bestehende Build- und Deployment-Pipeline in Azure DevOps integriert
ist. Zur Sicherstellung der Codequalitat und Einhaltung der Architekturprinzipien
werden statische SonarQube-Analysen ausgefihrt und die ArchUnit-Tests dienen der
kontinuierlichen Uberpriifung der architekturellen Restriktionen in jedem Modul.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Projects

& Masterarbeit Patrick Kehrli 23 -+

@ Summary = Timeline @D Board [Calendar M List = Forms (@ Goals Allwork </> Development
ch board o & =
Q, Search board Ay = Filter
ToDo 2 IN PROGRESS 1 DONE 3 +
Dokumentation Tests for Products ProcessView
- 9 CREATE MODUL PRODUCT CREATE MODUL PRODUCT
MPK-34 3 ’:' &) MPk32 v ’:'
Process Creator fertigstellen
CREATE MODUL PRODUCT PartslistView
— g;,' CREATE MODUL PRODUCT
[MPK-33 v 8B
+ Create
Product UI (Grid & Form)
CREATE MODUL PRODUCT

Q, View done work items

Abbildung 13: Ausschnitt des Kanban-Boards in Jira
4.2 Umsetzungsschritte

Die Umsetzung erfolgt pro Modul in mehreren aufeinander aufbauenden Phasen, die
sich an den in Kapitel 3 definierten, architektonischen Zielen orientieren. Jedes Modul
wird dabei vollstandig durch alle Schritte gefihrt, bevor das nachste Modul beginnt.
Dadurch lassen sich Anderungen kontrolliert umsetzen und friihzeitig Erfahrungen aus
den ersten Modulen auf weitere Ubertragen.

1. Analysephase

Zu Beginn wird der bestehende Code hinsichtlich seiner Struktur und Abhangigkeiten
untersucht. Dabei werden insbesondere Stellen identifiziert, an denen eine
Entkopplung erforderlich ist. Weiter werden die fachlichen Modulgrenzen festgelegt.
Parallel dazu werden die bestehenden Integrationen zu externen Systemen analysiert.

2. Modularisierung in vertikale Einheiten

Die Codebasis wird gemass dem Soll-Komponentenmodell in fachlich abgegrenzte
Module Uberfuhrt.

Die Kommunikation zwischen den Modulen erfolgt ausschliesslich tiber deren
Controller. Andere Module greifen somit nicht direkt auf Anwendungsfélle oder interne
Klassen zu, sondern nutzen die im Controller bereitgestellten Schnittstellen, welche die
jeweiligen Use Cases aufrufen. Dadurch bleiben die internen Strukturen gekapselt, und
die Module kénnen unabh&ngig voneinander weiterentwickelt werden.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Zur Entkopplung werden bestehende Objektbeziehungen angepasst. Anstelle ganzer
Objekte werden nur deren IDs gespeichert. So verwaltet jedes Modul ausschliesslich
die eigenen Entitaten, wahrend zugleich zyklische Abhangigkeiten und unnétige
Kopplung vermieden werden.

3. Horizontale Schichtung nach Clean Architecture

Innerhalb der Module wird die Schichtung nach den Clean-Architecture-Prinzipien
eingefuihrt. Jedes Modul erhélt eine eigene interne Struktur mit Web, Controller,
Application, Domain und Repository. Domain- und Application-Layer werden von
externen Bibliotheken entkoppelt, und die Kommunikation zwischen den Schichten
erfolgt ausschliesslich tber Interfaces.

4. Einfuhrung Use-Case-zentrierter Modulkommunikation

CRUD-basierte Service-Aufrufe werden durch fachliche Use Cases ersetzt. Die
offentlichen Inbound-Ports eines Moduls definieren dessen API, die sowohl von
internen Ul-Controllern als auch von anderen Modulen verwendet wird.

5. Integration externer Systeme

Die bisherige synchrone Kopplung zu externen Systemen (z. B. ERP) wird durch ein
eigenstandiges Integrationsmodul ersetzt. Dieses Modul Gbernimmt den
Datenaustausch asynchron und ist vollstandig von Ul und Fachlogik entkoppelt.
Dadurch bleibt die Kernanwendung auch bei Verzégerungen oder Ausféllen externer
Systeme stabil, wahrend die Anbindung flexibel und erweiterbar gestaltet werden kann.

6. Qualitatssicherung und Architekturvalidierung

Parallel zu allen Schritten werden automatisierte Unit- und ArchUnit-Tests
implementiert. SonarQube-Analysen begleiten jede Entwicklungsphase, um
Codequalitat und Einhaltung der Architekturregeln zu tUberprufen.

4.3 Risiken und Massnahmen

Das Refactoring einer bestehenden, produktiv genutzten Anwendung birgt technische
und organisatorische Risiken. Diese werden im Vorfeld identifiziert und durch gezielte
Massnahmen minimiert.

Komplexitat der Architekturdnderungen

Bei der Umsetzung der geplanten Entkopplung und horizontalen Schichtung besteht
die Gefahr, dass bestehende Abhangigkeiten Ubersehen und nicht vollstandig entfernt
werden.

Massnahmen: Sorgféltige Analyse des Moduls vor der Umsetzung, konsequente
Anwendung der in Kapitel 3 definierten Architekturprinzipien sowie Einsatz von
ArchUnit-Tests zur automatisierten Uberpriifung der Einhaltung.

Unklare Modulgrenzen
Werden die fachlichen Verantwortlichkeiten nicht klar getrennt, kbnnen

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Querverbindungen zwischen Modulen bestehen bleiben, was die Wartbarkeit
beeintrachtigt.

Massnahmen: Verbindliche Festlegung der Modulgrenzen im Komponentenmodell
sowie Review der geplanten Schnittstellen vor Beginn der Umsetzung.

Unzureichende Testabdeckung

Neue Strukturen ohne ausreichende Testabdeckung gefahrden die Uberpriifbarkeit
und Qualitat der Umsetzung.

Massnahmen: Klare Teststrategie mit Fokus auf Unit-, Integrations- und ArchUnit-
Tests, verbindliche Zielwerte fir die Testabdeckung gemass den in Kapitel 3.3
definierten Qualitatszielen.

4.4 Erfolgskontrolle

Die Uberprifung des Umsetzungserfolgs erfolgt anhand der in Kapitel 3.3 und 3.5
definierten Qualitatsziele und Metriken.
Fur jedes umgesetzte Modul werden folgende Punkte kontrolliert:

e Einhaltung der Architekturprinzipien
Uberprifung der Modulstruktur und Schichtentrennung anhand der ArchUnit-
Tests. Diese mussen fir jedes Modul erfolgreich durchlaufen und die
definierten Architekturrestriktionen abbilden.

e Testabdeckung
Messung der automatisierten Testabdeckung auf Domain- und Application-
Ebene gemass den festgelegten Zielwerten.

e Codequalitat
Analyse der Codebasis mit SonarQube, um die Einhaltung der Vorgaben zu
Code-Duplizierung, Sicherheitsaspekten und Maintainability sicherzustellen.

Die Ergebnisse der Erfolgskontrolle werden am Ende der Masterarbeit in einer
Gesamtbewertung zusammengefasst, um den Grad der Zielerreichung transparent
darzustellen.

4.5 Fazit Vorgehensweise

Das gewahlte Vorgehen kombiniert eine modulweise Umsetzung mit klar definierten
Arbeitsschritten, kontinuierlicher Qualitatssicherung und automatisierter
Architekturvalidierung. Durch diese strukturierte Herangehensweise wird sichergestellt,
dass die in Kapitel 3 definierten Ziele schrittweise, Uberprifbar und nachhaltig erreicht
werden kénnen. Die modulare Vorgehensweise erlaubt es zudem, Erfahrungen aus
den ersten Umsetzungen direkt in die weiteren Module zu Gbertragen und so Effizienz
und Qualitat im Projektverlauf kontinuierlich zu steigern.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

5 Umsetzung

Aufbauend auf der in Kapitel 3 definierten Zielarchitektur und dem in Kapitel 0
beschriebenen Vorgehensmodell wird in diesem Kapitel die konkrete Umsetzung des
Architektur-Refactorings beschrieben. Die Umsetzung erfolgt pro Modul und orientiert
sich an den definierten Arbeitsschritten, um eine schrittweise und Gberprifbare
Transformation der bestehenden Codebasis zu gewahrleisten.

Fur jedes bearbeitete Modul werden zunachst die relevante Ausgangslage und die
identifizierten Schwachstellen dargestellt. Anschliessend wird erlautert, welche
Anderungen vorgenommen wurden, um die horizontalen und vertikalen
Architekturprinzipien umzusetzen, die Use-Case-zentrierte Kommunikation einzufiihren
und externe Schnittstellen Gber Adapter zu entkoppeln. Besonderes Augenmerk liegt
dabei auf der konsequenten Einhaltung der Architekturregeln, die durch automatisierte
Tests wie ArchUnit validiert werden.

5.1 Modul Ressourcen

Das Modul Ressourcen bildet in EVOPRO die Grundlage fur die Verwaltung von
Maschinen, Personal und Werkzeugen, die in der Produktionsplanung eingesetzt
werden. In der bestehenden Architektur war dieses Modul stark mit anderen Bereichen
verknlpft und wies keine klaren Modulgrenzen auf, was die Wartung und
Weiterentwicklung erschwerte.

In den folgenden Abschnitten werden zunachst die Ausgangslage und die
identifizierten Probleme beschrieben. Anschliessend wird dargestellt, welche konkreten
Massnahmen zur Umsetzung der Zielarchitektur ergriffen wurden, welche technischen
Herausforderungen dabei zu bewaéltigen waren und welche Ergebnisse erzielt werden
konnten. Abschliessend wird das Fazit flr dieses Modul gezogen.

5.1.1 Ausgangslage

Das Modul Ressourcen bildet den Grundstein fir die Produktionsplanung. Ohne die
darin verwalteten Maschinen, Werkzeuge, Mitarbeiter und weiteren Kapazitaten
konnen keine Produkte hergestellt werden. In der bisherigen Architektur war dieses
Modul stark mit den Prozessen und Produkten verknupft, die wiederum direkt mit den
Bestellungen verbunden waren. Anderungen an Ressourcen hatten dadurch haufig
ungewollte Seiteneffekte bis in die Planungsansicht und Auswertungen hinein, was die
Pflege und Weiterentwicklung erschwerte.

Das Domanenmodell in Abbildung 14 zeigt die Verknipfung der Ressourcen vor dem
Refactoring. Die meisten Entitdten entsprechen auch nach der Umstrukturierung den
urspringlichen Klassen, jedoch wurden die direkten Verbindungen zu Produkten und
Prozessen inzwischen entfernt. In der Ist-Situation werden die Entitaten unverandert
direkt in der Datenbank gespeichert und enthalten persistenzspezifische Annotationen
wie @Id. Eine saubere Trennung zwischen Doméanen-Logik und Persistenzschicht ist

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

somit nicht gegeben. Zudem existiert fur dieses Modul keinerlei automatisierte
Testabdeckung, wie bereits in Kapitel 3 beschrieben, was die Verlasslichkeit von
Anderungen zusatzlich beeintrachtigt.

s

Abbildung 14: Ressourcen im IST-Domanenmodell

5.1.2 Durchgefihrte Schritte

Zu Beginn wurde das Modul Ressourcen als eigenstéandige Einheit angelegt und mit
den vorgesehenen Schichten Domain, Application, Controller, Repository und Web
strukturiert. Anschliessend erfolgte die Migration der bestehenden Klassen aus der
bisherigen Struktur: Die Entitdten wurden aus dem alten Data- bzw. Domain-Ordner in
die neue Domain-Schicht verschoben, Repository-Klassen in die Repository-Schicht
tberfiihrt und die bisherigen Service-Klassen der Application-Schicht zugeordnet.

Nachdem alle relevanten Klassen im Modul verortet waren, wurde die Domain-Schicht
bereinigt: Persistenzspezifische Annotationen wie @Id wurden entfernt und die
Klassen, soweit sinnvoll, als Records oder immutable Klassen umgesetzt. Ziel war eine
vollstandige Unabh&ngigkeit der Domain von externen Bibliotheken ausserhalb des
Java-Basisumfangs.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Darauf aufbauend wurden aus den bisherigen Service-Klassen fachlich abgegrenzte
Use Cases definiert. Die alten Service-Klassen wurden so angepasst, dass auch sie
keine Abhangigkeiten zu Spring Boot oder anderen Frameworks mehr besitzen und
ausschliesslich mit den Use-Case-Interfaces arbeiten.

Im nachsten Schritt folgte die Neugestaltung der Datenbankanbindung. In der
application.out-Schicht wurden Repository-Interfaces definiert, die in der Repository-
Schicht implementiert werden. Hierflr wurden DAO-Klassen erstellt sowie
entsprechende Mapper-Funktionen zur Transformation zwischen Domain-Objekten und
Datenbankmodellen entwickelt.

Anschliessend wurde die Controller-Schicht implementiert, die die definierten Use
Cases aufruft und die notwendigen DTOs sowie zugehdrige Mapper bereitstellt. Zum
Abschluss wurde die Web-Schicht mit den Controllern verbunden und das
Zusammenspiel aller Schichten getestet.

Da die Application-Schicht keine Framework-Annotationen mehr verwendet, wurde
eine eigene Konfigurationsklasse (RessourceConfig) erstellt, die die notwendigen
UseCases instanziiert und deren Abhangigkeiten zu den Repository-
Implementierungen bereitstellt. Diese manuelle Orchestrierung stellt sicher, dass die
Abhangigkeitsrichtung gewahrt bleibt und die Application-Schicht
frameworkunabhangig bleibt.

Nach erfolgreicher Funktionspriifung erfolgte die Implementierung von Unit-Tests fur
die Domain- und Application-Schicht unter Verwendung von JUnit in IntelliJ. Damit
wurde eine erste automatisierte Testbasis fur das Modul geschaffen.

Neben der grundsétzlichen Umstrukturierung wurde das Modul Ressourcen in mehrere
Submodule gegliedert. Dadurch konnten fachliche Verantwortlichkeiten noch klarer
abgegrenzt werden. Die Submodule umfassen Employee, Machine und Tool sowie ein
gemeinsames Common-Submodul, in dem Ubergreifende Konzepte wie Abteilungen,
Arbeitszeiten, Instandhaltung und das Ressourcentracking zusammengefasst sind.
Diese Aufteilung tragt zur besseren Verstandlichkeit bei und erleichtert die
Weiterentwicklung einzelner Bereiche, ohne dass Anderungen ungewollte
Auswirkungen auf andere Teile des Moduls haben.

Abbildung 15: ArchUnit-Test das die Doméane keine Abhangigkeiten kennt

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Zur Sicherstellung der Einhaltung der Architekturprinzipien wurden drei ArchUnit-Tests
eingefiihrt. Abbildung 15 zeigt den ArchUnit-Test der sicherstellt, dass die Domain-
Schicht nur Abhangigkeiten zu sich selbst, zur Java-Basis-Bibliothek und zur
common.domain und im Fall von Ressourcen zum resources.common.domian hat.
Analog dazu gibt es einen Test fiir die Application-Schicht (Abbildung 16), der
sicherstellt, dass keine Abhangigkeiten zu Klassen ausserhalb der Application-Schicht
besteht ausser zur Domain-Schicht und den entsprechenden Common- und Sub-
Common-Modulen.

Abbildung 16: ArchUnit-Test flr den Application-Layer

Der dritte ArchUnit-Test stellt sicher, das nur tber die Interfaces im In- und Out-Ordner
auf die Application-Schicht zugegriffen wird. Abbildung 17 zeigt das fur das Resourcen-
Modul. Hier ist auch die Ausnahme ersichtlich, dass die ResourcenConfig-Klasse fir
die Orchstrierung Zugriff auf die Application-Schicht benétigt.

Abbildung 17: ArchUnit-Test fur den Zugriff auf die Application-Schicht

Durch diese automatisierte Architekturvalidierung wird gewéahrleistet, dass die
aufgestellten Regeln auch bei zukinftigen Erweiterungen eingehalten werden und die
Struktur des Systems konsistent bleibt.

5.1.3 Technische Herausforderungen

Eine der grossten Herausforderungen bestand darin, samtliche bestehenden
Abhangigkeiten zu Frameworks wie Spring aus der Domain- und Application-Schicht

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

zu entfernen. Viele Klassen waren urspringlich stark mit Infrastrukturkomponenten und
anderen Modulen verflochten, sodass diese Abh&ngigkeiten zunéchst identifiziert,
aufgel6st und durch Schnittstellen ersetzt werden mussten. Um die Funktionalitét
wahrend des Refactorings aufrechtzuerhalten, waren an mehreren Stellen temporéare
Workarounds erforderlich, beispielsweise die schrittweise Entkopplung von Services
und deren Ubergang in klar definierte UseCases.

Auch die Einfihrung der ResourceConfig-Klasse zur manuellen Instanziierung der
UseCases brachte zuséatzlichen Aufwand mit sich, da alle benétigten Abhangigkeiten
explizit verdrahtet werden mussten. Trotz des Mehraufwands bietet dieser Ansatz
langfristig eine héhere Flexibilitat und Unabhangigkeit von spezifischen Frameworks.

Ein weiterer signifikanter Aufwand entstand durch das wiederholte Mapping zwischen
den verschiedenen Reprasentationen der Daten: vom DAO zur Domain, von der
Domain zu DTOs und in umgekehrter Richtung. Dieser Prozess stellte sich als
zeitintensiv und fehleranfallig heraus und fuihrte wahrend der Umsetzung mehrfach zu
der Frage, ob dieser zusatzliche Aufwand durch die gewonnene Schichtentrennung
tatsachlich gerechtfertigt ist. Hier zeigte sich deutlich, dass eine saubere Architektur
zwar strukturelle Vorteile bringt, diese aber mit einem erhdhten Implementierungs- und
Pflegeaufwand verbunden sind.

5.1.4 Ergebnis

Durch die Umstrukturierung des Moduls Ressourcen konnte eine klare Trennung der
Schichten gemass der in Kapitel 3 definierten Zielarchitektur umgesetzt werden. Die
Domane ist nun vollstandig von Frameworks und externen Bibliotheken entkoppelt, und
alle fachlichen Operationen werden Uber klar definierte UseCases abgewickelt. Die
Datenbankanbindung erfolgt ausschliesslich tber Repository-Interfaces in der
application.out-Schicht, deren Implementierungen in der Repository-Schicht gekapselt
sind.

Die zuvor bestehenden direkten Abhéngigkeiten zu Produkten und Prozessen wurden
entfernt, indem nur noch deren IDs referenziert werden. Dadurch sind Ressourcen
nicht langer direkt mit Objekten anderer Module verknupft, sondern lediglich tber
stabile Identifikatoren. Auf diese Weise verursachen Anderungen an den Ressourcen
keine unbeabsichtigten Seiteneffekte mehr in der Planungsansicht oder in
Auswertungen. Die neue Architektur, wie in Abbildung 18 ersichtlich, erleichtert es,
Anderungen an der fachlichen Logik isoliert vorzunehmen und gezielt zu testen.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Resources

ResourceTracking PublicHoliday Machine

d: String -id. String nome: Siring - name: Strng
name: Siring

g

- String - E
e, =i escription: Sring description’ String

- fromDals: LocalDale active: bodl
actve: bool
- iDate: LocalDate I

processabieProducts: Set<Siring>

P OAN \\u |
v AR
~IoeaDatETIme: LocaDateTme / \ 4 \ \
\
A

~man
- products: Sat<Strin

- < o
. |) ,
- smount lang # - productivity: double N / /
' | 3 |

1 2y \ / ’ \\

\ . / \\
\ \ / f \
/ (/ D‘l \ / ! ?F' \\:
/ /

Skl service Vvacation Deparnment WorkingHours MachineType Depanment MachineBadelnfo Maintenancs

1
|
AmountTracking

-t String - it String -id- String - id: String -id. String -id: Stng - maxCapacty: Gapacity -id: String

- neme: String - neme: String - name: String - name: String [- name: String - name: String - minFilCapaciy. Capacily - start: LocalDate

- ackve: Booiean - actve: Baoiean - active: Boolean - active: Bookean H - dsscripton: Stng

- deseription: String - descripiion: Sitrng - fromDate: LocalDale - description: Siring - Gascription: Siring - description: Siring - maxJobDena: Duration
Baolea - ilDate: LocaiDate - aclive: Boolean
| o

performadsy: Sting
o 2
\ |

ServiceType ‘acationType TimePeriod
-id- String -id: String - id: String
name: String name: String fromWeekDay: int
deserption: STmg descnption STNg fromHour: Int
- aclive: Boolean - aclive: Boolean - fromhainute: int

Abbildung 18: Neues Ressourcen Domain-Modell

Mit der Einfuhrung von ArchUnit-Tests ist eine automatisierte Prufung der
Architekturprinzipien etabliert, die langfristig sicherstellt, dass die Schichtentrennung
eingehalten wird. Zusatzlich wurden erstmals Unit-Tests fir die Domain- und
Application-Schicht erstellt, wodurch eine grundlegende Testbasis fur kiinftige
Anpassungen vorhanden ist.

5.1.5 Fazit

Mit der Umsetzung im Modul Ressourcen wurde ein wesentlicher Schritt in Richtung
der angestrebten Soll-Architektur erreicht. Die klare Schichtentrennung, die
Entkopplung von externen Bibliotheken und die Einfilhrung von UseCases als zentrale
fachliche Schnittstellen haben die Struktur deutlich verbessert und die Grundlage fur
eine nachhaltige Weiterentwicklung geschaffen.

Die Auflésung der direkten Abhangigkeiten zu Produkten und Prozessen reduziert
potenzielle Seiteneffekte und erhéht die Stabilitat bei Anderungen. Durch die
etablierten ArchUnit-Tests und die neu eingefiihrte Testabdeckung ist eine dauerhafte
Sicherung der Architektur- und Qualitatsziele gewahrleistet.

Trotz des zusatzlichen Aufwands, insbesondere durch das umfangreiche Mapping
zwischen DAO, Domain und DTO, Uberwiegen die Vorteile in Bezug auf Wartbarkeit,
Testbarkeit und langfristige Flexibilitat des Systems. Die in diesem Modul gesammelten
Erfahrungen bilden eine wertvolle Grundlage fur die Umsetzung der weiteren Module.

5.2 Modul Produkt

5.2.1 Ausgangslage

Das Modul Produkt bildet gemeinsam mit den Prozessen den fachlichen Kern von
EVOPRO. Es verwaltet nicht nur Produktstammdaten, sondern definiert auch den
zugrunde liegenden Produktionsprozess, der massgeblich die Ablaufplanung und

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Auswertungen beeinflusst. Im bestehenden System war dieses Bereich stark mit
anderen Klassen verknupft, wie Abbildung 19 zeigt, und wurde in diversen Ul-
Ansichten verwendet, wie beispielweise der Produktionsplanung und den
Auswertungen.

Artastacetee, p—

Abbildung 19: Produkt im IST-Domain-Modell

Zudem war die Entitat Process, die die zentralen fachlichen Ablaufe modellieren sollte,
in der bisherigen Implementierung nur unzureichend strukturiert. Ihre Modellierung war
weder fachlich klar abgegrenzt noch technisch sauber umgesetzt, was zu einer
Vielzahl an Abhangigkeiten innerhalb und ausserhalb des Bereichs fiihrte. Anderungen
an diesen Klassen hatten daher oft weitreichende Auswirkungen auf andere Module
und Ul-Komponenten.

Durch die hohe Zahl an Querverbindungen und die fehlende Trennung der
Verantwortlichkeiten lag die Komplexitat deutlich héher als urspringlich erwartet, was
insbesondere die Umgestaltung der Process-Entitat zu einer zeitintensiven Aufgabe
machte.

5.2.2 Durchgefiihrte Schritte

Das Modul Produkt wurde nach dem gleichen Schema wie zuvor das Modul
Ressourcen aufgebaut. Dazu wurde zuné&chst die Modulstruktur mit den Schichten
Domain, Application, Controller, Repository und Web angelegt und die relevanten
Klassen aus der bisherigen Codebasis in die entsprechenden Schichten verschoben.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Die Domain wurde neu strukturiert und um die fachlichen Entitaten wie Product,
Process, ProcessStep, ProcessDetails, ProcessConnection und ProcessResources
erganzt. Dabei wurden die Beziehungen zwischen den Entitdten neu definiert und die
Modellierung an die Zielarchitektur angepasst. Das nheue Domain Model ist in
Abbildung 20 dargestellt.

Product

Product
- id: Domainid
- nr: String
- name: String

- followUpProduct: Product

Process Drawing PartsListHistory
- id: Domainid
- file: File
PartsList
ProcessStep - validFrom: LocalDateTime
-id: Domainld
(| -postiorcint L
— | !
1 |
‘ ProcessRessources ! \1 ProcessDetails Parts
- neededParts: Set<DomainiD> FrocessConnection - duration: Duration -id- Domainld
- neededTools: Set<DomainiD> - previousStep: Set<DomainiD> _ amountOEmployees: double ~ position: int
- partsForOptionalCondition: Set<Domain|D= - connectedStep: Set<DomainiD> - parallelization” double - amount: double
- quantityDependent: boolean - unit: MeasureUnit
- asAppointment: boolean - product: Product
0.+
!
Operation
- id: Domainid
- name: String
- number: String
- skilligs: Set<Domainid>
- machineType: Set<Domainid=
- color: String
- active: Bool
OperationRate

- id- Domainld

- costPerHourHistroy: Set<TimedPrice>
0

1

‘OperationRate Type
- id- Domainid
- name: String
- description: Siring

- aclive: Bool

Abbildung 20: Neues Produkt Domain-Modell

Das im Product-Modul neu eingesetzte Architekturpattern wird in Abbildung 21 am
Beispiel der ProductType-Entitat dargestellt. Anstatt fiir jede Doméanenklasse ein
eigenes Set von UseCase-, Repository- und Controller-Implementierungen
bereitzustellen, wurde ein generischer Ansatz gewahlt, der sowohl die
Datenbankanbindung als auch die Webschnittstelle umfasst.

Dazu wurden die generischen Interfaces CrudUseCase<T> und GenericRepository<T>
definiert. Sie bilden die zentrale Schnittstelle fur die Geschéftslogik bzw. die
Datenpersistenz. Die abstrakte Klasse AbstractCrudService<T> implementiert das

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Interface CrudUseCase<T> und nutzt gleichzeitig das GenericRepository<T>, wodurch
eine einheitliche Grundlage fir CRUD-Operationen geschaffen wird.

Da auch die konkrete Umsetzung dieser Standardoperationen haufig identisch ist,
wurden weitere Abstraktionen eingefihrt:

o Persistenzschicht: AbstractRepositorylmpl<DOMAIN, DAO> biindelt die
generische Implementierung fur den Datenbankzugriff.

o Webschicht: AbstractController<DOMAIN, DTO> stellt die generische
Anbindung an die Webschnittstelle bereit.

Uber spezialisierte Mapper (DtoMapperinterface, DaoMapperinterface) werden
Domain-Objekte, DTOs und DAOSs in Controller und Repository-Implementierungen
zusammengefihrt. Damit reduziert sich der Implementierungsaufwand fir neue CRUD-
basierte Entitaten erheblich: Im Regelfall miussen lediglich die Domain-, DTO- und
DAO-Klassen sowie die zugehérigen Mapper erstellt werden. Service-, Repository- und
Controller-Klassen enthalten in solchen Fallen keine eigene Logik mehr, sondern
lediglich die Instanziierung der generischen Infrastruktur.

Die gewahlte Losung verfolgt zwei zentrale Ziele:

1. Wiederverwendbarkeit durch Generik — die CRUD-Funktionalitat wird nur
einmal bereitgestellt und kann Uber Typparameter beliebig auf neue
Domanenobjekte angewendet werden.

2. Reduktion von Abhangigkeiten — die fachliche Logik bleibt klar von
Infrastruktur- und Frameworkcode getrennt, sodass die Doméane langfristig
robust, modular und erweiterbar bleibt.

Dieses Muster schafft eine Balance zwischen Generik und Entkopplung und bildet
damit eine nachhaltige Grundlage fur die Weiterentwicklung. Es erleichtert sowohl die
Einflhrung neuer Entitaten als auch die Evolution bestehender Module und tragt
wesentlich zur Wartbarkeit und Konsistenz des Gesamtsystems bei.

11. September 2025

AbstractRepositorylmpl<DOMAIN, DAO>

- repository: DefauliMongoRepository<DAO>
- daoMapper: DaoMapperinterface<DOMAIN, DAO>

+ findByld: Optional<DOMAIN>

+ delete: void

+ saveAll: void

+ save: void

+ findAlIByActiveTrue: List=DOMAIN=

+ findAll List=DOMAIN>

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

GenericRepository<T>
<<Interface>>

AbstractCrudServcie<T>

DaoMapperinterface<Domain, Dac>
<<Interface>>

ProductTypeRepositorylmpl

+ toDao(Domain): Dao

+ toDomain(Dao). Domain

+ findByld: Optional<T=
+findAll: List<T>
+findAlIByActiveTrue: List<T=>
+ save: void

+ saveAll void

+ delete: void

- repository: GenericRepository<T=

+ findByld: OptionalT=

+ findByld: Optional<T>

ProductTypeDaoMapper

+ toDao: ProduciTypeDao

!

ProductTypeMongoRepository
<<Interface>>

DefaultMongoRepository<DAO>
<<interface>>

+ findByld: Opfional<DAQ=

Repository (Gateway)

+ toDomain: ProductType
+ toDaoSet: Set<ProductTypeDao>

+ toDomainSet: Set=ProduciType=

ProductTypeDao

- id: Objectid
- name: String
- description: Sring

- active: Boolean

MongoRepository<DAQ, String=
- <<Interface>>

DB: Spring Data - DB Framework

Abbildung 21: Generische Clean-Code-Architektur am Beispiel ProductType

ProductTypeService

ProductType

- id: Domainid

-name: String

CrudUseCase<T>
<<Interface>>

+ findByld: Optional<T>

+ findAll List<T>

+ findAlIByActiveTrue: List<T=
+ save: void

+ saveAll: void

+ delete: void

AbstractController<DOMAIN, DTO>

DtoMapperinterface<Domain, Dto>

<<Interface>>

+ toDto(Domain): Dto

+ toDomain(Dto). Domain

&

ProductTypeDtoMapper

+ toDTo: ProduciTypeDto

- description: String

- active: Boolean

+ equals: Boolean

Domain
(Entities)

Application (UseCases)

- crudUseCase: CrudUseCase<DOMAIN>

- dioMapper: DioMapperinterfaces<DOMAIN>

+findAll List<DTO>
+ findAllByActiveTrue: List=DTO=
+ delete(DTO): void

+ save(DTO): void

ProductTypeControlier

+ toDomainSet:

+ toDomain: ProduciType

tType:

+ toDtoSet Set<ProductTypeDto=

|

ProductTypeDto

- id: String
- name: String
- description: String

- active: Boolean

Controller

ProductTypeCrud

Web: Vaadin - Web Framework

11. September 2025

44

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Wie im Modul Ressourcen wurden auch hier nebst dem CrudUseCase weitere
UseCases definiert, die die fachliche Logik kapseln und als 6ffentliche APl des Moduls
dienen. Erganzend wurden Unit-Tests sowie die drei ArchUnit-Tests implementiert, um
die Einhaltung der Architekturprinzipien automatisiert zu prifen.

5.2.3 Technische Herausforderungen

Eine wesentliche Herausforderung im Modul Produkt war die Neugestaltung der Entitat
Process und die damit verbundene Auflésung zahlreicher Abhéngigkeiten zu anderen
Teilen des Systems. Die urspriingliche Struktur war stark vernetzt und erforderte eine
prazise Analyse, um fachliche Verantwortlichkeiten klar abzugrenzen und Beziehungen
zwischen den beteiligten Entitédten neu zu ordnen.

Hinzu kam die Einfilhrung des neu eingesetzten Architekturpatterns mit einem
generischen Ansatz. Gerade in der Anfangsphase erwies sich dies als anspruchsvoll,
da die abstraktere Modellierung mehr Konzeptionsarbeit erfordert als eine direkte,
spezifische Implementierung. Es mussten geeignete Abstraktionen fir UseCases,
Services, Repositories und Controller definiert werden, die einerseits breit genug fur
die Wiederverwendung, andererseits schlank genug fiir die konkrete Umsetzung
blieben. Dieser anfangliche Mehraufwand zahilt sich jedoch langfristig aus: Neue
Entitaten kdnnen mit deutlich geringerem Implementierungsaufwand integriert werden,
und die fachliche Logik bleibt klar von technischen Details entkoppelt.

5.2.4 Ergebnis

Mit der Umsetzung des Moduls Produkt konnte die Doméne klar strukturiert und von
unndtigen Abhéangigkeiten befreit werden. Die neu gestaltete Entitdt Process und ihre
zugehdrigen Strukturen sind nun fachlich und technisch sauber abgegrenzt, wodurch
die Wartung und Weiterentwicklung deutlich vereinfacht wird.

Die Einfliihrung des generischen Architekturpatterns erméglicht eine einheitliche
Handhabung von CRUD-Operationen und reduziert Code-Duplizierungen. Gleichzeitig
bleibt die Implementierung flexibel und erweiterbar fir verschiedene Produkttypen.

Besonders deutlich traten in diesem Modul die Vorteile der klar definierten UseCases
zutage. Komplexe fachliche Ablaufe wie die Erstellung eines Prozesses, das Kopieren
eines Produkts oder die Ubernahme eines bestehenden Prozesses lassen sich nun
vollsténdig in UseCases kapseln. Dadurch konnte die Logik zentral gebundelt, von der
Ul entkoppelt und ein konsistentes Vorgehen tber verschiedene Anwendungsfélle
hinweg etabliert werden.

5.2.5 Fazit

Die Umsetzung des Moduls Produkt hat gezeigt, dass selbst hochvernetzte und
komplexe fachliche Bereiche erfolgreich in die Zielarchitektur tberfiihrt werden kénnen.
Durch die Neugestaltung der Process-Struktur, die Einfihrung klar definierter

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Modulgrenzen und den Einsatz generischer Repository-Implementierungen konnte
eine deutlich hthere Wartbarkeit und Flexibilitt erreicht werden.

Die konsequente Kapselung komplexer Ablaufe in UseCases hat nicht nur die
Trennung von Fachlogik und Prasentationsebene gestarkt, sondern auch eine klare,
wiederverwendbare und testbare Struktur geschaffen. Die in diesem Modul
gewonnenen Erkenntnisse — insbesondere im Umgang mit komplexen Abhangigkeiten
— bilden eine wertvolle Grundlage fur die Bearbeitung weiterer zentraler Module im
System.

5.3 Modul Auftrag

5.3.1 Ausgangslage

Das Modul Order bildet mit dem Product das Herzstiick der Anwendung, da es die
Kundenauftrage verwaltet und damit Ausgangspunkt flr nahezu alle weiteren Prozesse
ist — von der Ressourcenplanung Uber die Produktionsprozesse bis hin zu
Auswertungen. In der urspriinglichen Architektur war Order stark mit zahlreichen
anderen Entitaten verknipft, darunter Product, Process, Customer, PartsList und
Employee wie in Abbildung 22 dargestellt ist. Diese enge Vernetzung fuhrte dazu, dass
Anderungen an der Auftragslogik haufig unbeabsichtigte Auswirkungen in anderen
Bereichen nach sich zogen.

Abbildung 22: Order im IST-Domain-Modell

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

5.3.2 Durchgefiihrte Schritte

Bei der Umsetzung des Moduls Order wurde zunachst die Modulstruktur nach dem in
den vorangehenden Kapiteln etablierten Muster aufgebaut. Die bisherigen Klassen und
Entitaten wurden den Schichten Domain, Application, Repository, Controller und Web
zugeordnet.

Ein wesentlicher Schwerpunkt lag auf der Neugestaltung der Prozesslogik. Anstelle der
direkten Verknipfung von Order und Process wurde eine neue Task-Struktur
eingefuhrt. Auf Basis eines bestehenden Process lasst sich nun ein Ablauf (TaskList)
erzeugen, der die fur einen Auftrag relevanten Arbeitsschritte kapselt. Diese
Entkopplung ermdglicht eine klare Trennung zwischen der produktbezogenen
Prozessdefinition und der auftragsspezifischen Ausfuhrung.

Zur Umsetzung wurden spezifische UseCases definiert, welche die Erstellung und
Verwaltung von Auftragen tbernehmen. Ein zentraler UseCase erzeugt beispielsweise
eine TaskList aus einem Uber den ProductController bereitgestellten ProcessDto. Die
Geschaéftslogik liegt damit vollstandig im Application-Layer und ist unabhéangig von Ul
oder Datenhaltung.

Das neue Domain-Modell (Abbildung 23) zeigt die Uberarbeitete Struktur mit den
Entitaten Order, OrderPosition, TaskList und Task sowie deren Unterstrukturen wie
TaskDetails, TaskConnection oder TaskStatus. Damit ist die bisherige enge Kopplung
mit Process aufgel®st und durch eine eigenstandige, auftragszentrierte Modellierung
ersetzt.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software

EVOPRO

Order
Order
Customer
- Stiing
-or- String
- startDate: LoaciDate
name: String y————————0.
- endDate: LoaciDate
- email. Sting
- salosman: Domainig
—g.1— - phoneNumber. Phonehumber P
! 0.+ - projectvanager: DomainiD
i ~ .
‘ / 1
0- e
i 7
ContactPerson i
i
name: St
. OrderPosition
lasiName. Sting - ramber: Sting
- phaneNumber: PhoneNumber amount Amount E—
; 3 —
ot endDste: LocalDate fem 3
product: Domainid
Adaress stale: SimulationState
L —— - number Sting 0
-street Sting Expense

streethumber: Sring

TaskList
- piz sy
- city- String |
p
- country: Sring |
.
i
Task

TaskDetails TaskConnection

operation: TaskOperation - previousTaskc Set<DomainiD=
duration: Duration - connectedTask: Set<DomainiD>

amountOEmployees: double

- parsllelization: double
quantityDependent boolean

asAppointment boolean

‘ TaskStatusAppointment

TaskOperation -start LocalDaleTime
0 Domainia end LocaiDateTime
- hame: String

- number. String
- skl os: Set<Domainic
machineType: Set<Domainid>
- color. Sning

- active: Baol

TaskStatus
<interface>

- expenseType: ExpenseType
- curmency: Curency

1

o
TimedExpense
cumency: Curtency
- amount. BigDecimel

- cateTime: LocaiDateTime

T~
T
~—_
~_
N, ~—
. ~_
TaskRessources TaskAssignment
neededParts: Set-DomainiD=

- listFixedEmployee: List<Domainid>
- needadTools: Set<DomainiD>

- partsForOptionaiCondition: Set<DemsiniD>

TaskstatusDuration ‘

- duration: StatusDuration

ListOpenHours: List<StatusDuration>

- ListProducedHours: List<StalusDuraion=

o=

StatusDuration

Abbildung 23: Neues Order Domain-Modell

5.3.3 Technische Herausforderungen

Die grosste Herausforderung bei der Umsetzung des Moduls Order bestand in der
extremen Verflechtung mit anderen Teilen der Anwendung. In der urspriinglichen
Architektur war die Auftragslogik eng an Produkte, Prozesse, Ressourcen und
Auswertungen gekoppelt. Jede Anderung an der Order-Entitat hatte daher potenziell
weitreichende Seiteneffekte, was eine saubere Entkopplung besonders anspruchsvoll

machte.

Ein weiterer schwieriger Punkt war die Neugestaltung der Prozesslogik. Da Process im
urspriinglichen Modell zentral mit Auftragen verknipft war, musste eine Losung
gefunden werden, die einerseits die Verbindung zu produktdefinierten Prozessen
erhalt, andererseits aber eine eigenstandige Auftragsabwicklung erlaubt. Dies wurde
durch die Einfuhrung der Task-Struktur erreicht. Die Definition, wie Tasks erzeugt,

verbunden und mit Statusinformationen verse

hen werden, erforderte eine prazise

Modellierung und eine klare Trennung der Verantwortlichkeiten.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

5.3.4 Ergebnis

Mit der Umsetzung des Moduls Order konnte eine klare Entkopplung der Auftragslogik
von den Ubrigen Bereichen der Anwendung erreicht werden. Durch die Einfihrung der
neuen Task-Struktur wurde die bisher direkte Abh&ngigkeit von Process aufgeltst und
in eine eigenstandige Modellierung Uberfuhrt. Damit I&sst sich die auftragsbezogene
Abwicklung unabhangig von der produktdefinierten Prozessbeschreibung steuern.

Die Abbildung zentraler Geschéftsablaufe in UseCases hat sich besonders in diesem
Modul als vorteilhaft erwiesen. Komplexe Vorgange wie die Generierung eines
Auftragsablaufs aus einem Produktprozess oder die Verwaltung von
Auftragspositionen lassen sich nun in klar abgegrenzten Schnittstellen abbilden.
Dadurch ist die Fachlogik konsistent gebtindelt, besser testbar und vom Ul vollstandig
entkoppelt.

Die neue Struktur hat die Wartbarkeit deutlich verbessert und erméglicht eine flexiblere
Weiterentwicklung des Order-Moduls. Anderungen an Prozessen oder Produkten
wirken sich nicht mehr unmittelbar auf die Auftragsebene aus, wodurch die Risiken von
Seiteneffekten erheblich reduziert wurden.

5.3.5 Fazit

Das Modul Order stellt durch seine zentrale Rolle in der Anwendung besonders hohe
Anforderungen an Konsistenz und Stabilitdt. Mit der Neugestaltung konnte gezeigt
werden, dass selbst stark verflochtene Strukturen durch eine klare
Doméanenmodellierung und UseCase-zentrierte Architektur erfolgreich entkoppelt
werden kénnen. Die neu eingefiihrte Task-Logik bildet dabei eine robuste Grundlage
fur die Auftragsabwicklung und stéarkt zugleich die Modularitat des Gesamtsystems.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

6 Ergebnisse und Fazit

Im Rahmen des Architektur-Refactorings von EVOPRO wurden verschiedene Module
exemplarisch Uberarbeitet und anhand definierter Kriterien bewertet. Ziel war es, die in
Kapitel 3 beschriebenen architektonischen Leitlinien und Qualitatsziele praktisch
umzusetzen und deren Wirkung messbar nachzuweisen.

Die Ergebnisse stutzen sich dabei sowohl auf automatisierte Analysen (SonarQube,
ArchUnit-Tests, Testabdeckung) als auch auf funktionale Validierungen der
refaktorierten Module. Neben der rein technischen Bewertung wurde besonderes
Augenmerk daraufgelegt, wie gut die gesetzten architektonischen Ziele —
Modularisierung, saubere Schichtentrennung und Use-Case-zentrierte Logik — in der
Praxis umgesetzt werden konnten.

Im Folgenden werden die Ergebnisse in vier Schritten dargestellt: zun&chst die
Beurteilung der architektonischen Zielerreichung, anschliessend die Bewertung der
Qualitatsziele, gefolgt von der Erfolgskontrolle anhand messbarer Kriterien und
schliesslich einer Gesamtbewertung der Wirksamkeit des Refactorings.

6.1 Erreichung der Zielarchitektur

Ein zentrales Ziel des Refactorings war es, die urspringlich stark gekoppelte
monolithische Struktur von EVOPRO in eine klar gegliederte, modular aufgebaute
Architektur zu tberfihren. Grundlage dafir bildeten die Prinzipien des Modularen
Monolithen sowie der Clean Architecture.

Mit der Umsetzung der Module Ressourcen, Produkt und Auftrag konnte die geplante
Trennung von Verantwortlichkeiten weitgehend erreicht werden. Jedes Modul verfligt
nun Gber eine eigene Struktur mit Domain-, Application-, Repository-, Controller- und
UI-Schicht, wodurch die fachliche Logik eindeutig vom technischen Rahmen
abgegrenzt ist. Die Einfiihrung von UseCases als zentrale Schnittstellen zur Fachlogik
hat dabei wesentlich zur Entkopplung beigetragen: Fachliche Ablaufe sind nun in klar
definierten Operationen gebundelt, wahrend Ul und externe Systeme lediglich Uber
diese Schnittstellen interagieren.

Besonders hervorzuheben ist die durchgehende Entkopplung der Domain- und
Application-Schicht von externen Frameworks. Persistenz-Annotationen und Spring-
Abhangigkeiten wurden aus der Fachlogik entfernt, wodurch eine langfristige
Unabhangigkeit und Testbarkeit gewabhrleistet ist. Die Anwendung von ArchUnit-Tests
stellt sicher, dass diese Trennung auch bei zukinftigen Anpassungen eingehalten wird.

Trotz der erzielten Fortschritte ist das architektonische Ziel noch nicht vollstandig
erreicht. Zentrale Bereiche wie die Planungsansicht, das Reporting sowie die ERP-
Integration verbleiben bislang in der alten Struktur. Diese Module wurden im Rahmen
dieser Arbeit grésstenteils durch Auskommentieren entkoppelt und sind daher aktuell
nicht funktionsfahig. Diese Massnahme war notwendig, da der zeitliche Rahmen der

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Masterarbeit begrenzt ist und die umfassende Neugestaltung der Module Order und
Product einen erheblichen Aufwand beanspruchte.

Insgesamt zeigt sich jedoch, dass die gewdahlte Vorgehensweise tragfahig ist: Die
exemplarisch refaktorierten Module belegen, dass das definierte Architekturziel
umsetzbar ist und eine robuste Basis fir die sukzessive Uberfiihrung des gesamten
Systems in die Soll-Architektur bietet.

6.2 Erfullung der Qualitatsziele

Die in Kapitel 3.3 definierten Qualitatsziele bildeten die Grundlage flr die Bewertung
des Refactorings. lhre Erfullung wurde anhand objektiver Metriken mittels SonarQube
Test in Abbildung 24, automatisierter Architekturvalidierungen (ArchUnit) sowie
gezielter Funktionstests Uberprift. Im Folgenden werden die Ergebnisse pro
Zielbereich dargestellt.

Security Reliability Maintainability

0 Open issues A 0 Open issues A 660 Open issues A
Accepted issues Coverage Duplications

-~ -
0 ® 14.3%) 1.2% o
Valid issues that were not fixed On 14k lines to cover On 43k lines
Security Hotspots
0 A

Abbildung 24: SonarQube-Test nach dem Refactoring der 3 Modulen

Architekturentkopplung

Durch die Einfuhrung klar abgegrenzter Module (Ressourcen, Produkt, Auftrag) konnte
die gewlinschte Entkopplung erreicht werden. Direkte Querverbindungen zwischen den
Modulen wurden aufgeldst, sodass die Fachlogik nur noch Uber UseCases
angesprochen wird. ArchUnit-Tests validieren die Einhaltung der Modulgrenzen und
bestatigen die Umsetzung der vorgesehenen Schichtentrennung.

Testabdeckung

Die Kernlogik der refaktorierten Module wurde vollstéandig durch Unit-Tests abgesichert
(100 % Abdeckung der UseCases). Auf Gesamtsystemebene betragt die Abdeckung
nun 14.3 % — ein deutlicher Fortschritt gegentiber dem Ausgangszustand von 0 %,
wenngleich der Ausbau auf weitere Module noch aussteht.

Code-Duplizierung

Die Duplizierungsrate konnte durch den Einsatz generischer Repository-
Implementierungen und eine klare Trennung von Domain, DTOs und DAOSs von 2,8 %
auf 1,2 % reduziert werden. Damit wurde der definierte Zielwert von < 1,4 % sogar

unterschritten und eine deutliche Verbesserung erzielt.
11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Sicherheit und Zuverlassigkeit

Alle urspringlich vorhandenen 11 Security Hotspots sowie 13 Reliability Issues wurden
eliminiert. Die verbesserte Schichtentrennung und der Einsatz klarer Schnittstellen
erleichtern zudem die langfristige Absicherung sicherheitskritischer Funktionen.
SonarQube bestatigt den stabilen Zustand mit den Bewertungen A in Sicherheit und
Maintainability.

Maintainability

Die Anzahl der Maintainability-Issues wurde von 757 auf 660 reduziert. Besonders
wirksam erwies sich die klare Trennung von DTOs (fur Serialisierung) und DAOs (fur
Persistenz), wodurch systematische Konflikte — etwa zwischen Ul und Datenbanklogik
— langfristig vermieden werden.

Performance

Die Ladezeiten konnten nur eingeschrankt bewertet werden. Da die Planungsansicht
noch nicht refaktoriert wurde, blieben die urspriinglich bestehenden
Performanceprobleme bestehen. Eine signifikante Verbesserung der ERP-abhangigen
Ansichten steht damit noch aus und bleibt ein Thema flir weitere Projektphasen.

Gesamtbewertung

Die Erfolgskontrolle zeigt, dass die wesentlichen Qualitétsziele — insbesondere
Modularitat, Testbarkeit und Wartbarkeit — nachweislich erreicht wurden. Teilerfolge
wurden bei Code-Duplizierung und Maintainability erzielt, wahrend die Performance-
Optimierung noch aussteht. Insgesamt konnte damit eine solide Grundlage geschaffen
werden, auf der die weitere Transformation des Gesamtsystems in die Soll-Architektur
erfolgen kann.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

7 Schlusswort

Mit dem in dieser Arbeit durchgefihrten Architektur-Refactoring konnte gezeigt werden,
dass selbst eine Uber Jahre gewachsene, stark gekoppelte Software erfolgreich in eine
Klar strukturierte und langfristig wartbare Architektur Gberfihrt werden kann. Am
Beispiel der Module Ressourcen, Produkt und Order wurde demonstriert, wie durch
Modularisierung, horizontale Schichtung und die konsequente Abbildung fachlicher
Ablaufe in Use Cases eine robuste Basis fur die Weiterentwicklung geschaffen werden
kann.

Die mit SonarQube durchgefiihrten Analysen bestatigen die erzielten Verbesserungen:
Code-Duplizierungen und Maintainability-Issues wurden reduziert, Security-Hotspots
beseitigt und in den bearbeiteten Modulen eine vollstandige Testabdeckung der Use
Cases erzielt. Damit sind die in Kapitel 3 definierten Qualitéatsziele weitgehend erflillt
und die Wirksamkeit der Massnahmen objektiv nachweisbar.

Zugleich wurde deutlich, dass ein Refactoring dieser Gréssenordnung im laufenden
Betrieb eine besondere Herausforderung darstellt. Der notwendige Fokus auf die
Architekturmodernisierung flhrte zeitweise dazu, dass neue Features nicht parallel
integriert werden konnten. Diese Erfahrung unterstreicht die Schwierigkeit,
Produktweiterentwicklung und strukturelle Verbesserungen gleichzeitig umzusetzen.

Insgesamt bietet das Refactoring eine stabile Grundlage fir die Weiterentwicklung von
EVOPRO. Kinftige Arbeiten kénnen darauf aufbauen, indem die neuen
Architekturprinzipien sukzessive auf weitere Module Ubertragen, die Testabdeckung
systematisch ausgebaut und erganzende Massnahmen wie Monitoring und
Performance-Optimierung vorangetrieben werden. Damit ist ein wichtiger Schritt in
Richtung einer nachhaltigen, erweiterbaren und qualitativ hochwertigen
Softwarearchitektur getan.

11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

8 Literaturverzeichnis

Brown, S. (2016). Software Architecture for Developers Vol. 2.
Brown, S. (2018). Modular Monoliths. GOTO 2018.
Evans, E. (2003). Domain-Driven Design.

Martin, R. C. (2018). Clean Architecture. A Craftsman’s Guide to Software Structure

and Design.

9 Abbildungsverzeichnis

Abbildung 1:
Abbildung 2:
Abbildung 3:
Abbildung 4:
Abbildung 5:
Abbildung 6:
Abbildung 7:
Abbildung 8:
Abbildung 9:

Abbildung 10:
Abbildung 11:
Abbildung 12:
Abbildung 13:
Abbildung 14:
Abbildung 15:
Abbildung 16:
Abbildung 17:
Abbildung 18:
Abbildung 19:
Abbildung 20:
Abbildung 21:
Abbildung 22:
Abbildung 23:
Abbildung 24:

10 Tabe

Tabelle 1: Ziele nach Stakeholdergruppe
Tabelle 2:Vergleich der zwei Systeme

Interesse-Einfluss Matrix der Stakeholdergruppen

EVOPRO Systemkontext

EVOPRO Container-Diagramm

EVOPRO Ist-Komponentenmodell

EVOPRO Ist-Klassenmodell

Server Response Time der aktuelle EVOPRO Applikation
Ubersicht der SonarQube Qualitats Analyse

Maintainability Overview der SonarQube Qualitdtsanalyse
Reliability Overview der Sonar Qube Qualitats Analyse

EVOPRO Soll-Kkomponentenmodell

Vergleich Ist- und Soll-Architektur

Umsetzungszeitplan Refactoring EVOPRO

Ausschnitt des Kanban-Boards in Jira

Ressourcen im IST-Domanenmodell

ArchUnit-Test das die Domane keine Abhangigkeiten kennt
ArchUnit-Test fir den Application-Layer

ArchUnit-Test fur den Zugriff auf die Application-Schicht
Neues Ressourcen Domain-Modell

Produkt im IST-Domain-Modell

Neues Produkt Domain-Modell

Generische Clean-Code-Architektur am Beispiel ProductType
Order im IST-Domain-Modell

Neues Order Domain-Modell

SonarQube-Test nach dem Refactoring der 3 Modulen

llenverzeichnis

12
14
15
17
19
21
22
22
23
25
27
31
32
36
37
38
38
40
41
42
44
46
48
51

12
21

11. September 2025

		2025-09-11T12:24:33+0200
	Foxit Software
	Electronic Signature completed successfully via Foxit eSign

