

Architektur-Refactoring der

Produktionsplanungs-Software
EVOPRO

Patrick Kehrli

Masterarbeit

MAS in Software Engineering

2023 – 2025

Ostschweizer Fachhochschule (OST)

Referent: Stefan Kapferer

Co-Referent: Thomas Memmel

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

2 11. September 2025

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit im MAS Software

Engineering mit dem Titel «Architektur-Refactoring der Produktionsplanungs-Software

EVOPRO» selbstständig und ohne unerlaubte fremde Hilfe angefertigt, keine anderen

als die angegebenen Quellen und Hilfsmittel verwendet und die den verwendeten

Quellen und Hilfsmitteln wörtlich oder inhaltlich entnommenen Stellen als solche

kenntlich gemacht haben. Weiterhin erkläre ich, dass ich keine durch Copyright

geschützten Materialien (z.B. Bilder) in dieser Arbeit in unerlaubter Weise verwendet

haben und in dieser Arbeit keine Adressen, Telefonnummern und andere persönliche

Daten von Personen, die nicht zum Kernteam gehören, publiziere.

Ich erkläre zudem, dass ich für die Erstellung dieser Arbeit den KI-gestützten

Schreibassistenten ChatGPT (GPT-5, OpenAI) als Hilfsmittel zur sprachlichen

Überarbeitung, Strukturierung und Formulierungshilfe eingesetzt habe. Die inhaltliche

Ausarbeitung, Analyse und Bewertung der Ergebnisse stammen vollständig von mir.

Darüber hinaus erkläre ich, dass ich für das Refactoring, insbesondere für die

Unterstützung bei der Code-Erstellung und Überarbeitung, die KI-gestützten

Werkzeuge Junie und ChatGPT verwendet habe.

 Ort, Datum _____________________________________

Name, Unterschrift: ___________________________

Weinfelden, 11.09.2025

Patrick Kehrli,

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

3 11. September 2025

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

Diese Arbeit untersucht die Neugestaltung der über Jahre gewachsenen

Produktionsplanungssoftware EVOPRO mit dem Ziel, Wartbarkeit, Erweiterbarkeit und

Testbarkeit zu verbessern. Ausgangslage war ein monolithisches System mit unklarer

Trennung der Verantwortlichkeiten, hoher Kopplung zwischen Fachbereichen und

geringer Testabdeckung. Dies führte zu Instabilitäten nach Releases und langen

Umsetzungszeiten bei neuen Features.

Im Projekt wurden die Architektur und die geforderten Qualitätseigenschaften

analysiert. Auf Basis etablierter Architekturmuster – insbesondere Modularen

Monolithen und Clean Architecture – entstanden modulare Strukturen mit klaren

Verantwortlichkeiten und Schnittstellen. Fachlogik wurde in Use Cases gebündelt und

die Architektur durch automatisierte ArchUnit-Tests abgesichert. Zudem entstand ein

schrittweiser Plan zur Umsetzung des Refactorings.

Die prototypische Implementierung ausgewählter Module zeigt, wie die Architektur

schrittweise modernisiert werden kann. Durch die Trennung von Fachlogik und

Infrastruktur, Use-Case-zentriertes Design und automatisierte Tests konnten

Abhängigkeiten reduziert und die Testbarkeit gesteigert werden. Das Vorgehen ist auf

weitere Module übertragbar und bildet die Grundlage einer nachhaltigen

Modernisierung von EVOPRO.

Verfasser: Patrick Kehrli

Referent: Stefan Kapferer

Co-Referent: Thomas Memmel

Veröffentlichung (Jahr): 15.09.2025

Zitation: Patrick Kehrli, 2025, Architektur-Refactoring der

Produktionsplanungs-Software EVOPRO, OST-

Ostschweizer Fachhochschule: Masterarbeit MAS

Software Engineering

Schlagwörter: Refactoring, Softwarearchitektur, Monolith, PPS

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

4 11. September 2025

Management Summary

Ausgangslage

Die Produktionsplanungssoftware EVOPRO wurde über mehrere Jahre kontinuierlich

erweitert und stark an individuelle Kundenanforderungen angepasst. Fehlende

Architekturleitlinien führten zu enger Kopplung, redundanten Strukturen und geringer

Testabdeckung. Dies erschwerte Wartung, Erweiterung und Betrieb.

Relevanz des Themas

In industriellen Produktionsbetrieben ist eine stabile, wartbare und erweiterbare

Softwarearchitektur entscheidend für zuverlässige Abläufe. Das Refactoring von

EVOPRO dient als Beispiel, wie ein bestehendes, komplexes System strukturell

erneuert und langfristig zukunftsfähig gemacht werden kann.

Einsatzumfeld und Ziel

EVOPRO wird von Produktionsunternehmen zur automatisierten Planung von

Aufträgen und Ressourcen eingesetzt. Ziel der Arbeit war die Überführung der

bestehenden Architektur in eine modulare, entkoppelte Struktur, die Erweiterbarkeit,

Testbarkeit und Zuverlässigkeit erhöht.

Zentrale Fragestellung

Wie kann eine historisch gewachsene, stark gekoppelte Anwendung in eine modulare

Architektur überführt werden, die sowohl den betrieblichen Anforderungen der Kunden

als auch den Entwicklungszielen des Herstellers entspricht?

Vorgehen

Die Arbeit umfasste eine Analyse des Ist-Zustands, die Definition einer Zielarchitektur

auf Basis von Clean Architecture und modularer Monolith-Struktur sowie die

prototypische Umsetzung ausgewählter Module. Als Methoden kamen Architektur- und

NFA-Analysen, das C4-Modell, sowie Metriken aus SonarQube zum Einsatz.

Technologien waren u.a. Spring Boot, Vaadin, MongoDB, Docker und Azure DevOps.

Erreichte Ziele und Erkenntnisse

Durch die Modularisierung der Module Ressourcen, Produkt und Order sowie die

Einführung von Use Cases konnte eine klare Schichtung erreicht werden. ArchUnit-

Tests sichern die Einhaltung der Architekturprinzipien. Die Code-Duplizierung wurde

reduziert, Security-Hotspots eliminiert und eine vollständige Testabdeckung der Use

Cases erzielt. Damit wurden die definierten Qualitätsziele weitgehend erfüllt. Das

Refactoring zeigt, dass auch gewachsene Systeme erfolgreich in eine zukunftsfähige

Architektur überführt werden können.

Literaturquellen

Die Arbeit stützt sich auf bewährte Konzepte aus der Fachliteratur, insbesondere Clean

Architecture (Robert C. Martin), Domain-Driven Design (Eric Evans) und Software

Architecture for Developers (Simon Brown). Ergänzend wurden praxisnahe Quellen wie

die SonarQube- und ArchUnit-Dokumentation sowie Herstellerdokumentationen der

eingesetzten Technologien berücksichtigt.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

5 11. September 2025

Inhaltsverzeichnis
1 Einleitung ... 6

1.1 Hintergrund & Kontext .. 6

1.2 Motivation & Problemstellung ... 6

1.3 Zielsetzung der Arbeit .. 7

1.4 Aufbau der Arbeit ... 7

2 Analyse .. 9

2.1 Stakeholder Analyse .. 9

2.2 Architekturanalyse ... 13

2.3 Performance Analyse ... 20

2.4 Code-Qualitätsanalyse ... 21

2.5 Fazit der Analyse ... 23

3 Zieldefinition .. 24

3.1 Übergeordnetes Projektziel .. 24

3.2 Architektonisches Ziel .. 24

3.3 Qualitätsziele ... 28

3.4 Abgrenzung ... 29

3.5 Erfolgskontrolle .. 29

3.6 Fazit der Zieldefinition .. 29

4 Vorgehensweise .. 31

4.1 Methodisches Vorgehen .. 31

4.2 Umsetzungsschritte ... 32

4.3 Risiken und Massnahmen .. 33

4.4 Erfolgskontrolle .. 34

4.5 Fazit Vorgehensweise .. 34

5 Umsetzung .. 35

5.1 Modul Ressourcen ... 35

5.2 Modul Produkt .. 40

5.3 Modul Auftrag .. 46

6 Ergebnisse und Fazit ... 50

6.1 Erreichung der Zielarchitektur .. 50

6.2 Erfüllung der Qualitätsziele .. 51

7 Schlusswort ... 53

8 Literaturverzeichnis.. 54

9 Abbildungsverzeichnis ... 54

10 Tabellenverzeichnis ... 54

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

6 11. September 2025

1 Einleitung

Diese Masterarbeit beschäftigt sich mit dem Architektur-Refactoring der

Produktionsplanungssoftware EVOPRO, um deren Stabilität, Wartbarkeit und

Erweiterbarkeit zu verbessern und damit den steigenden Anforderungen von Kunden

und Entwicklungsteams gerecht zu werden.

1.1 Hintergrund & Kontext

EVOPRO ist eine webbasierte, Produktionsplanung und -steuerung Software (kurz

PPS) respektive ein Advanced Planning and Scheduling System (kurz APS) für kleine

und mittlere Unternehmen in der Fertigung. Ihren Ursprung hat die Lösung in einer

Simulation mit KI-gestützter Optimierung, um Produktionspläne zu berechnen und zu

optimieren. Um diese Kernfunktion für Anwender nutzbar zu machen, wurde

schrittweise eine Webanwendung entwickelt, die den Optimierungskern um

Benutzeroberflächen, Datenhaltung, Integrationsschnittstellen und weitere Funktionen

ergänzt.

Die Software unterstützt Unternehmen dabei, ihre Produktionsplanung zu optimieren,

Ressourcen effizient einzusetzen und auf kurzfristige Änderungen im

Fertigungsprozess flexibel zu reagieren. Dabei kombiniert EVOPRO die Funktionalität

klassischer PPS-Systeme mit modernen Optimierungs- und Analyseverfahren.

Technologisch basiert die Anwendung auf einem modernen Stack mit Vaadin1 für das

User Interface (kurz UI), Spring Boot2 im Backend, Docker3 für die Containerisierung

und Azure DevOps4 für die Build- und Deployment-Prozesse.

1.2 Motivation & Problemstellung

Die Architektur von EVOPRO ist über mehrere Jahre organisch gewachsen. Neue

Funktionen und Kundenanpassungen wurden schrittweise ergänzt, ohne dass eine

durchgängige, übergeordnete Architekturstrategie verfolgt wurde. Dies führte zu einer

hohen Kopplung zwischen den einzelnen Komponenten und einer unklaren Trennung

fachlicher Verantwortlichkeiten. Fachliche Logik verteilte sich teilweise bis in die

1 Vaadin ist ein Java-basiertes Webframework: https://vaadin.com/

2 Spring Boot ist ein Java Framework, dass die Entwicklung von Applikationen

vereinfacht: https://spring.io/

3 Docker ist eine Container-Plattform, die Anwendungen und ihre Abhängigkeiten

isoliert verpackt und so portabel und skalierbar macht: https://www.docker.com/

4 Azure DevOps ist eine Plattform von Microsoft, die integrierte Tools für

Softwareentwicklungsteams bereitstellt: Azure DevOps

https://vaadin.com/
https://spring.io/projects/spring-boot
https://www.docker.com/
https://learn.microsoft.com/de-de/azure/devops/user-guide/what-is-azure-devops?view=azure-devops

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

7 11. September 2025

Benutzeroberfläche, und zentrale Geschäftsprozesse wurden vorwiegend durch

CRUD-orientierte Services (Create, Read, Update, Delete) abgebildet.

Diese gewachsene Struktur brachte mehrere Nachteile mit sich:

• Erhöhtes Risiko von Seiteneffekten: Änderungen in einem Bereich wirkten

sich häufig auf fachlich nicht verwandte Teile der Anwendung aus.

• Erschwerte Testbarkeit: Die fehlende Testabdeckung und die Vermischung

von Logik und Infrastruktur erschwerten die gezielte Absicherung von

Änderungen.

• Begrenzte Erweiterbarkeit: Neue Anforderungen oder kundenspezifische

Erweiterungen konnten nur mit hohem Aufwand und Risiko umgesetzt werden.

Die Motivation für das Architektur-Refactoring entstand einerseits aus den gestiegenen

Kundenanforderungen, andererseits aus den im MAS-Studium im Bereich Software

Engineering gewonnenen Erkenntnissen, wie eine klar strukturierte, modulare und

testgetriebene Architektur gestaltet werden kann.

1.3 Zielsetzung der Arbeit

Ziel dieser Masterarbeit ist es, die bestehende Softwarearchitektur von EVOPRO zu

analysieren, deren Schwachstellen zu identifizieren und auf dieser Basis ein

Architektur-Refactoring durchzuführen. Das Ergebnis soll eine moderne und wartbare

Architektur sein, die den langfristigen Betrieb sichert und eine flexible Anpassung an

die Bedürfnisse verschiedener Produktionsbetriebe ermöglicht.

Im industriellen Umfeld, in dem EVOPRO eingesetzt wird, sind Zuverlässigkeit und

Stabilität zentrale Anforderungen. Daher beinhaltet das Refactoring neben der

strukturellen Neuorganisation auch die Erhöhung der Testabdeckung sowie die

Verbesserung der allgemeinen Code-Qualität. Die neuen Architekturprinzipien sollen

gewährleisten, dass Erweiterungen und Anpassungen künftig stabiler und effizienter

umgesetzt werden können.

Die Umsetzung erfolgt exemplarisch an ausgewählten Modulen, um die

Übertragbarkeit der Architekturprinzipien auf das Gesamtsystem zu demonstrieren. Die

Arbeit orientiert sich dabei an bewährten Konzepten wie dem Modularen Monolithen

(Brown, Modular Monoliths, 2018) und der Clean Architecture (Martin, 2018) und

kombiniert diese mit praxisorientierten Massnahmen zur Erhöhung der Wartbarkeit und

Qualität.

1.4 Aufbau der Arbeit

Im Weiteren ist die Arbeit wie folgt strukturiert.

Kapitel 2 analysiert die bestehende Architektur und identifiziert deren Schwachstellen.

Dabei werden sowohl technische als auch strukturelle Defizite betrachtet, die eine

Grundlage für die spätere Zieldefinition bilden.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

8 11. September 2025

Kapitel 3 definiert die übergeordneten und architektonischen Ziele des Refactorings. Es

beschreibt die Leitlinien, Architekturprinzipien und Qualitätsziele, die bei der

Umsetzung berücksichtigt werden.

Kapitel 4 erläutert das methodische Vorgehen. Es beschreibt die gewählte

Vorgehensweise, die Umsetzungsschritte pro Modul sowie die Massnahmen zur

Qualitätssicherung und Erfolgskontrolle.

Kapitel 5 dokumentiert die praktische Umsetzung des Refactorings anhand

ausgewählter Module. Für jedes Modul werden Ausgangslage, durchgeführte Schritte,

technische Herausforderungen, erzielte Ergebnisse und ein Fazit dargestellt.

Kapitel 6 fasst die wichtigsten Ergebnisse zusammen, bewertet das Erreichen der

gesetzten Ziele und gibt einen Ausblick auf mögliche zukünftige Weiterentwicklungen.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

9 11. September 2025

2 Analyse

Ziel dieser Analyse ist es, die fachlichen und technischen Grundlagen des Systems

strukturiert zu erfassen und auf dieser Basis eine fundierte Bewertung und

Weiterentwicklung zu ermöglichen.

Die Analyse orientiert sich an bewährten Methoden aus dem Requirements

Engineering, der Softwarearchitektur und der nicht-funktionalen Anforderungsanalyse.

Sie dient als Grundlage für die Konzeption einer Zielarchitektur, die den aktuellen und

zukünftigen Anforderungen an das System gerecht wird.

Im Verlauf der Analyse werden folgende Aspekte betrachtet:

• Die Erhebung und Strukturierung fachlicher und technischer Anforderungen

• Die Definition und Abgrenzung des Systemkontexts

• Die Modellierung der Domäne zur Verdeutlichung zentraler Begriffe und

Zusammenhänge

• Die Bewertung der bestehenden Architektur mit Fokus auf Stärken, Schwächen

und Verbesserungspotenzialen

• Die Identifikation und Bewertung nicht-funktionaler Anforderungen (NFA)

Die Ergebnisse dieser Analyse bieten eine belastbare Basis für

Architekturentscheidungen, Refaktorierungen oder Erweiterungen des Systems.

Darüber hinaus unterstützen sie die Kommunikation zwischen Fachexperten,

Entwicklerteams und weiteren Stakeholdern.

2.1 Stakeholder Analyse

Die Stakeholder Analyse dient dazu, alle relevanten Anspruchsgruppen zu

identifizieren, ihre Interessen und Ziele zu verstehen sowie ihren Einfluss auf das

Projekt einzuschätzen. Sie bildet die Grundlage dafür, Entwicklungsentscheidungen so

zu treffen, dass die unterschiedlichen Erwartungen in Einklang gebracht werden.

Im Fokus steht dabei der Kunde, dessen Anforderungen an Stabilität, Performance und

Benutzerfreundlichkeit massgeblich für den Projekterfolg sind. Gleichzeitig werden

interne Stakeholder berücksichtigt, deren Ziel es ist, durch eine wartbare und

erweiterbare Architektur langfristig die Produktqualität zu sichern, den Supportaufwand

zu reduzieren und Raum für Innovationen zu schaffen.

2.1.1 Stakeholdergruppen

Produktionsleitung (Kunde)

Die Produktionsleitung ist verantwortlich für die operative Planung und Steuerung der

Fertigung. Sie nutzt EVOPRO täglich und in vollem Funktionsumfang, um

Produktionspläne zu erstellen, zu optimieren und bei Bedarf kurzfristig anzupassen.

Ihre Arbeit ist stark abhängig von kurzen Lade- und Reaktionszeiten, einer stabilen

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

10 11. September 2025

Lauffähigkeit und einer verlässlichen Terminplanung. Schon geringe Verzögerungen

oder Systemausfälle wirken sich unmittelbar auf die Produktionsleistung aus und

können zu Terminüberschreitungen, ineffizienter Ressourcennutzung und

Kundenunzufriedenheit führen.

In der aktuellen Situation führen komplexe Planungsprozesse teilweise zu langen

Ladezeiten, die den Arbeitsfluss verlangsamen und Entscheidungen verzögern.

Zusätzlich kommt es nach Software-Updates vereinzelt vor, dass einzelne Funktionen

nicht mehr ordnungsgemäss arbeiten und Fehler verursachen. Diese Probleme

beeinträchtigen die Zuverlässigkeit der Anwendung, erhöhen den Abstimmungsbedarf

zwischen den Beteiligten und können im ungünstigsten Fall zu fehlerhaften Planungen

führen.

Produktionsmitarbeiter (Kunde)

Produktionsmitarbeiter sind die Endanwender der in EVOPRO erstellten Arbeitspläne.

Sie greifen täglich auf die Anweisungen und Auftragsinformationen zu, die über die

Software bereitgestellt werden. Für sie steht eine einfache, klare und konsistente

Bedienoberfläche im Vordergrund, um ihre Arbeit ohne unnötige Unterbrechungen

durchführen zu können.

Aus Sicht der Produktionsmitarbeiter läuft die Anwendung stabil und zuverlässig. Die

Ansichten sind übersichtlich gestaltet, und Systemunterbrechungen treten nur sehr

selten auf, sodass der Arbeitsfluss in der Regel nicht beeinträchtigt wird.

Geschäftsleitung (Kunde)

Die Geschäftsleitung auf Kundenseite nutzt EVOPRO in der Regel nicht selbst

operativ, ist jedoch auf die von der Software bereitgestellten Kennzahlen angewiesen,

um strategische Entscheidungen zu treffen. Hohe Verfügbarkeit, ausreichender Schutz

sensibler Unternehmensdaten und eine schnelle Erstellung aussagekräftiger Reports

sind dabei zentral.

Derzeit stehen die benötigten Auswertungen und Reports in angemessener Zeit zur

Verfügung. Von Seiten der Geschäftsleitung werden gelegentlich kleinere

Funktionsanpassungen gewünscht, die jedoch nicht kritisch für den laufenden Betrieb

sind.

Geschäftsleitung (Eula Software AG)

Die Geschäftsleitung der Eula Software AG, Herstellerin von EVOPRO, definiert die

strategische Ausrichtung des Produkts und priorisiert Entwicklungsressourcen. Ihr Ziel

ist es, ein stabiles, wettbewerbsfähiges Produkt anzubieten, das langfristig

Kundenzufriedenheit sichert und gleichzeitig wirtschaftlich nachhaltig ist.

Ein stabiler und wartbarer Systemkern reduziert den Supportaufwand, verkürzt

Entwicklungszyklen und schafft Raum für Innovationen. Aktuell führen häufige Hotfixes

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

11 11. September 2025

und ungeplante Wartungsarbeiten zu einem erhöhten Ressourcenverbrauch, was die

Umsetzung neuer Produktideen verzögert.

Entwicklungsteam (Eula Software AG)

Das Entwicklungsteam ist für die Wartung, Weiterentwicklung und technische Qualität

von EVOPRO verantwortlich. Es verfolgt das Ziel, eine modulare, klar strukturierte

Architektur zu schaffen, die eine schnelle, stabile Umsetzung neuer Funktionen

ermöglicht. Hohe Testabdeckung, klare Schnittstellen und lose Kopplung zwischen

Modulen sind wesentliche Anforderungen, um langfristig Wartbarkeit und

Erweiterbarkeit sicherzustellen.

Gegenwärtig leidet die Entwicklung unter einer stark gekoppelten Codebasis, die

Änderungen erschwert und das Risiko von unbeabsichtigten Nebenwirkungen erhöht.

Die fehlende oder unvollständige Automatisierung von Tests verstärkt dieses Problem.

Die Folge sind zeitintensive Fehlerbehebungen, die Ressourcen für Neuentwicklungen

blockieren.

Vertrieb (Eula Software AG & Vertriebs-Partner)

Der Vertrieb ist massgeblich für die Markterschliessung und Kundengewinnung

verantwortlich. Während der interne Vertrieb der Eula Software AG in engem

Austausch mit der Entwicklung steht und auch technische Machbarkeiten

berücksichtigt, konzentrieren sich die Vertriebspartner stärker auf die Präsentation von

Funktionen und die Vermarktung.

Hauptziele sind eine überzeugende Feature-Pipeline und reibungslose Produktdemos.

Technische Stabilität wird dann relevant, wenn Probleme in Kundengesprächen

sichtbar werden – etwa durch fehlerhafte Live-Demos oder fehlende Funktionen.

Verzögerte Releases können Verkaufschancen mindern und die Glaubwürdigkeit

gegenüber Bestandskunden beeinträchtigen.

2.1.2 Ziele der Stakeholdergruppen

In der Tabelle 1 werden die Ziele und aktuellen Herausforderungen nach

Stakeholdergruppe beschrieben:

Stakeholder Anforderungen Aktuelle Herausforderungen

Produktionsleitung

(Kunde)

Kurze Ladezeiten, stabile

Lauffähigkeit, zuverlässige

Planung

Lange Ladezeiten, Stabilität

nach neuen Releases

Produktionsmitarbeiter

(Kunde)

Intuitive Bedienung,

zuverlässiger Zugriff auf

Aufträge

keine

Geschäftsleitung

(Kunde)

Verfügbarkeit, Datensicherheit,

schnelles Reporting,

Anbindung an ERP-Systeme

Flexibel neue Reports erstellen

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

12 11. September 2025

Entwicklungsteam

(Eula)

Wartbarkeit, Testbarkeit,

modulare Architektur, einfacher

Deployment-Prozess

Enge Kopplung im Code,

geringe Testabdeckung, zu viele

Hotfix

Geschäftsleitung (Eula) Schneller Onboarding-

Prozess, geringer

Supportaufwand, hohe

Innovationsfähigkeit

Hoher Ressourcenverbrauch für

Hotfixes, schleppende

Entwicklung neuer Features

Vertrieb (intern &

Partner)

Feature-Vielfalt, störungsfreie

Demos

Release-Verzögerungen, Demo-

Probleme

Tabelle 1: Ziele nach Stakeholdergruppe

2.1.3 Stakeholder Kategorisierung

Die Einfluss-/Interesse-Matrix in Abbildung 1 zeigt die Positionierung der identifizierten

Stakeholdergruppen bezogen auf das geplante Refactoring der EVOPRO Software.

Abbildung 1: Interesse-Einfluss Matrix der Stakeholdergruppen

Auffällig ist, dass die Kunden – insbesondere Produktionsleitung und Geschäftsleitung

– trotz ihres hohen Interesses am Projekterfolg mit einem eher geringen Einfluss

kategorisiert sind.

Dies liegt nicht daran, dass ihre Bedürfnisse für das Projekt weniger wichtig wären – im

Gegenteil: Das Refactoring hat zum Ziel, die von den Kunden geforderte Stabilität,

Zuverlässigkeit und Flexibilität zu erreichen. Der geringe Einfluss bezieht sich

ausschliesslich auf die operative Umsetzung des Refactorings. Entscheidungen über

die konkrete Architektur, die Priorisierung der Massnahmen und die technische

Vorgehensweise liegen primär beim Entwicklungsteam und der Geschäftsleitung der

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

13 11. September 2025

Eula Software AG. Diese Stakeholdergruppen verfügen sowohl über das notwendige

Fachwissen als auch über die Entscheidungskompetenz, um die Umsetzung inhaltlich

zu steuern.

Damit macht die Matrix deutlich: Die Kunden stehen im Zentrum der Motivation für das

Refactoring, üben aber keinen direkten Einfluss auf die technische Ausgestaltung aus.

Die Verantwortung liegt bei den internen Stakeholdern, die im Sinne der Kunden die

Architektur nachhaltig verbessern.

2.1.4 Fazit Stakeholder Analyse

Die Stakeholder Analyse verdeutlicht, dass insbesondere die Produktionsleitung der

Kunden ein hohes Interesse am Refactoring von EVOPRO hat. Für sie sind vor allem

Ladezeiten, Stabilität und Erweiterbarkeit entscheidend, um im täglichen Betrieb

zuverlässig arbeiten und auf neue Anforderungen reagieren zu können. Aufgrund ihrer

operativen Rolle verfügt die Produktionsleitung jedoch nur über geringen Einfluss auf

die technische Umsetzung und ist daher auf die Initiative der Eula Software AG

angewiesen.

Aus Sicht aller beteiligten Anspruchsgruppen besteht der grösste Handlungsbedarf in

der Verbesserung der drei nicht-funktionalen Anforderungen Wartbarkeit, Testbarkeit

und Erweiterbarkeit. Es zeigt sich, dass eine spürbare Steigerung der Performance

ebenfalls hohe Relevanz besitzt, um Ladezeiten zu reduzieren und Arbeitsprozesse

effizienter zu gestalten.

Das Refactoring bietet damit die Gelegenheit, genau diese Kernaspekte gezielt zu

adressieren und so nicht nur die Kundenzufriedenheit zu erhöhen, sondern auch den

internen Entwicklungs- und Supportaufwand nachhaltig zu reduzieren.

2.2 Architekturanalyse

2.2.1 Systemkontext

EVOPRO ist ein webbasiertes APS (Advanced Planning System), das

Produktionsbetriebe bei der termin- und ressourcengerechten Planung unterstützt. Das

System wird von unterschiedlichen Rollen im Kundenunternehmen genutzt (v. a.

Produktionsleitung und Produktionsmitarbeitende) und steht im Austausch mit externen

Diensten für die Authentifizierung sowie mit betrieblichen Drittsystemen (z. B.

Enterprise-Resource-Planning, kurz ERP). Die Anwendung läuft in einer

Cloud-Umgebung und speichert Daten in einer verwalteten Datenbank.

Abbildung 2 zeigt den Kontext gemäss C4 Modellierung (Brown, Software Architecture

for Developers Vol. 2, 2016) auf einen Blick: zentrale Benutzergruppen, angebundene

Fremdsysteme und die wichtigsten Kommunikationsbeziehungen.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

14 11. September 2025

Abbildung 2: EVOPRO Systemkontext

Akteure und externe Systeme (Überblick):

• Benutzergruppen: Produktionsleitung (Planung und Steuerung),

Produktionsmitarbeitende (Abarbeitung/Aktualisierung), Geschäftsleitung

(Auswertungen/Entscheidungen), EVOPRO-Vertrieb (Demo/Inbetriebnahme),

EVOPRO-Entwicklung (Entwicklung/Wartung)

• Externe Services:

– Identity & Access Management: z. B. Keycloak für Anmeldung und Rollen.

– ERP-System: Austausch von Stammdaten und Aufträgen (Import/Export via

RESTful API über HTTPS).

Zentrale Datenflüsse:

Die Benutzer melden sich über ein externes Identity-&-Access-Management (IAM) an,

das für Authentifizierung und rollenbasierte Autorisierung zuständig ist. Nach

erfolgreicher Anmeldung greifen sie auf die verschiedenen Funktionen von EVOPRO

zu. Für den Austausch betriebsrelevanter Informationen wie Stammdaten oder

Aufträge kommuniziert EVOPRO direkt mit dem ERP-System der Kunden über

standardisierte Web-Schnittstellen (RESTful API über HTTPS). Dabei werden Daten

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

15 11. September 2025

bidirektional übertragen, sodass sowohl EVOPRO als auch das ERP jederzeit auf

aktuelle Informationen zugreifen können.

2.2.2 Container-Diagramm

Das Containerdiagramm (Brown, Software Architecture for Developers Vol. 2, 2016) in

Abbildung 3 zeigt die zentralen Bausteine von EVOPRO und deren Interaktion

innerhalb des Systems. Die Architektur ist auf dieser Ebene in klar abgegrenzte

Container unterteilt, die jeweils für eine definierte Aufgabe zuständig sind und über

wohldefinierte Schnittstellen miteinander kommunizieren.

Abbildung 3: EVOPRO Container-Diagramm

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

16 11. September 2025

Applikation (Spring Boot & Vaadin)

Die zentrale Webanwendung bündelt sowohl die Benutzeroberfläche (Vaadin) als auch

die Backend-Logik (Spring Boot). Sie stellt sämtliche Funktionen für die Planung,

Auftragserfassung, Rückmeldungen und Auswertungen bereit. Darüber hinaus

koordiniert sie den Datenaustausch mit den internen Komponenten, delegiert

Planungsaufgaben und steuert alle Lese- und Schreibzugriffe auf die Datenbank.

Planung

Eine spezialisierte Komponente, die Planungsaufträge entgegennimmt und

automatisch optimierte Produktionspläne erstellt. Die Berechnungslogik ist vom

restlichen System entkoppelt, sodass Änderungen oder Erweiterungen an der

Planungsfunktionalität unabhängig von der Hauptanwendung umgesetzt werden

können.

MongoDB

Die persistente Speicherung sämtlicher fachlicher und technischer Daten erfolgt in

einer MongoDB-Instanz. Sie verwaltet unter anderem Stammdaten, Planungsstände,

Konfigurationen und Rückmeldungen. Der Zugriff erfolgt ausschliesslich über die

Applikations- oder Planungskomponente, wodurch Datenkonsistenz und

Zugriffskontrolle gewährleistet werden.

Betriebshinweis

Die Applikation und Planungs‑Komponente werden als Docker‑Container in Azure

betrieben (pro Kunde eine Instanz). Die Datenhaltung liegt zentral in MongoDB Atlas,

wobei der Zugriff verschlüsselt und mandantenspezifisch getrennt ist.

2.2.3 Komponentenmodell

Das aktuelle Komponentenmodell (Brown, Software Architecture for Developers Vol. 2,

2016) von EVOPRO in Abbildung 4 zeigt eine monolithische Webanwendung auf Basis

von Spring Boot und Vaadin, die in klassische technische Schichten unterteilt ist. Diese

Schichtung – bestehend aus UI, Service, Domain/Data, Repository, technischen

Hilfskomponenten und Konfiguration – ist grundsätzlich sinnvoll, wurde im Laufe der

Zeit jedoch durch pragmatische Erweiterungen und das Fehlen verbindlicher Leitlinien

teilweise inkonsistent umgesetzt.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

17 11. September 2025

Abbildung 4: EVOPRO Ist-Komponentenmodell

Ein zentrales Problem besteht darin, dass Domänenobjekte unkontrolliert durch

sämtliche Schichten „wandern“. Die gleiche Klasse wird in UI, Service und

Persistenzschicht verwendet, was zu hoher Kopplung führt und Änderungen an einem

Ort häufig unerwartete Nebeneffekte in anderen Bereichen auslöst. Die Services selbst

bilden nur selten vollständige Anwendungsfälle ab, sondern erfüllen überwiegend

CRUD-Funktionen. Fachliche Logik verteilt sich so auf mehrere Klassen und dringt

teilweise bis in die Frontend-Implementierung vor, was gezieltes Testen erschwert und

das Risiko von Regressionen bei Änderungen erhöht.

Hinzu kommt, dass der separate Planungsservice fachlich eng an den Monolithen

gekoppelt ist, dabei aber angepasste Kopien zentraler Domänenklassen enthält. Diese

Redundanz steigert den Pflegeaufwand und birgt ein erhöhtes Inkonsistenzrisiko.

Technische Komponenten wie die MongoDB-Converter – die in erster Linie der

Schema-Migration dienen, etwa bei der Umstellung von primitiven Typen auf Value

Objects – sind ein nützliches Werkzeug, werden aktuell jedoch ohne klar definierten

Decommission-Plan eingesetzt. Dadurch besteht das Risiko, dass temporär gedachte

Konverter langfristig im System verbleiben und die Komplexität unnötig erhöhen.

In der Praxis führen diese strukturellen Schwächen dazu, dass kleine Änderungen

grosse Auswirkungen haben, neue Releases instabil werden können und

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

18 11. September 2025

Performanceprobleme auftreten, etwa wenn synchrone ERP-Abfragen direkt im UI-

Flow ausgeführt werden. Trotz dieser Herausforderungen bietet die bestehende

Schichtung eine solide Grundlage, deren Potenziale aktuell jedoch nicht vollständig

ausgeschöpft werden.

2.2.4 Domänen- / Klassenmodell

Das aktuelle Domänenmodell von EVOPRO dargestellt in Abbildung 5 orientiert sich

stark an den im Produktionsumfeld benötigten fachlichen Entitäten. Es umfasst

zentrale Konzepte wie Aufträge, Produkte mit zugehörigen Stücklisten, Ressourcen wie

Maschinen und Mitarbeitende, Prozesse und Operationen, sowie ergänzende

Strukturen zur Abbildung von Kunden, Adressen und Rollen. Die Modellierung bildet

die fachlichen Anforderungen grundsätzlich vollständig ab und deckt sowohl

produktionsrelevante als auch betriebswirtschaftliche Aspekte ab.

Die Entitäten sind in einem objektorientierten Klassenmodell dargestellt, das im

Wesentlichen als Datenstruktur dient und in allen Schichten der Anwendung

wiederverwendet wird. Domänenobjekte enthalten neben den Attributen teilweise auch

fachliche Logik, werden jedoch ohne klare Abgrenzung zwischen interner

Repräsentation, Persistenzmodell und externen Schnittstellen eingesetzt. Dadurch

werden dieselben Klassen sowohl im UI als auch in den Services und Repositories

verwendet.

Ein auffälliges Merkmal ist die enge Verflechtung zwischen einzelnen

Domänenobjekten. Beziehungen wie zwischen Aufträgen, Produkten, Prozessen und

Ressourcen sind direkt modelliert und führen zu einer starken Kopplung. Diese

Kopplung erhöht die Komplexität bei Änderungen, da Anpassungen an einer Entität

häufig Anpassungen an mehreren weiteren Klassen erforderlich machen.

Zudem spiegeln einzelne Teile des Domänenmodells Strukturen wieder, die auch im

Planungsservice vorhanden sind. Hierbei handelt es sich jedoch nicht um gemeinsame

zentrale Modelle, sondern um teilweise angepasste Kopien, die inhaltlich eng verwandt

sind. Diese Duplizierung birgt die Gefahr von Inkonsistenzen, wenn Änderungen nicht

synchron in allen betroffenen Bereichen erfolgen.

Insgesamt zeigt das Domänenmodell eine breite Abdeckung der relevanten

Geschäftsobjekte, weist jedoch eine sehr enge Kopplung und eine fehlende Trennung

zwischen den verschiedenen Verwendungskontexten auf. Dies erschwert die gezielte

Weiterentwicklung, die Einführung neuer Funktionen und kann bei Änderungen zu

unbeabsichtigten Seiteneffekten führen.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

19 11. September 2025

Abbildung 5: EVOPRO Ist-Klassenmodell

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

20 11. September 2025

2.2.5 Fazit Architekturanalyse

Insgesamt zeigt die Architekturanalyse von EVOPRO ein System, das auf einer

prinzipiell soliden technischen Schichtung und einem umfassenden Domänenmodell

basiert, dessen Potenzial jedoch durch gewachsene Strukturen und fehlende

Abgrenzungen zwischen den Schichten eingeschränkt wird. Die Analyse der

Komponentenebene verdeutlicht, dass Domänenobjekte ohne klare Schnittstellen über

alle Schichten hinweg verwendet werden und Services nur selten vollständige

Anwendungsfälle abbilden. Dies führt zu hoher Kopplung, erschwert gezieltes Testen

und erhöht das Risiko von Instabilitäten und Performanceproblemen. Auf Ebene des

Domänenmodells wird diese Kopplung durch direkte, teils komplexe Beziehungen

zwischen den Entitäten verstärkt, während redundante Modellteile im Planungsservice

zusätzlich Inkonsistenzrisiken bergen. Diese strukturellen Gegebenheiten erklären,

warum Änderungen am System oftmals weitreichende Auswirkungen haben und neue

Releases vereinzelt zu unerwarteten Fehlern oder Leistungsverlusten führen.

2.3 Performance Analyse

Die Analyse der Serverreaktionszeiten in Abbildung 6 in zwei unterschiedlichen

Systeminstanzen zeigt deutliche Unterschiede in der Performance. Während in System

A (ohne ERP-Anbindung) die meisten Ansichten nahezu verzögerungsfrei geladen

werden, treten in System B (mit ERP-Anbindung) spürbare Verzögerungen auf.

Besonders auffällig ist dies in der Mitarbeiterübersicht, die in System B über drei

Sekunden benötigt und damit rund 20-mal länger lädt als in System A, obwohl dort

weniger Mitarbeitende verwaltet werden.

Die Ursache für diese Abweichungen liegt in der Architektur der Anwendung: In

System B werden beim Öffnen der Mitarbeiteransicht direkte Abfragen an das ERP-

System ausgeführt, um aktuelle Mitarbeiter- und Produktdaten zu laden. Diese

synchrone Kopplung verlängert nicht nur die Antwortzeiten erheblich, sondern wirkt

sich auch negativ auf die Skalierbarkeit und Wartbarkeit der Anwendung aus.

Die Vergleichbarkeit der beiden Systeme ist insofern eingeschränkt, als System A

mehr aktive Aufträge und Mitarbeitende, dafür aber deutlich weniger Maschinen und

Produkte aufweist wie in Tabelle 2 dargestellt wird. Dennoch ist der

Performanceunterschied signifikant, da die betroffene Ansicht in System B trotz

geringerer Datenmenge erheblich langsamer reagiert.

Hinweis
Ohne ERP-Anbindung

(System A)

Mit ERP-Anbindung

(System B)

Aktive Aufträge 87 19

Mitarbeitende 38 16

Maschinen 2 40

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

21 11. September 2025

Hinweis
Ohne ERP-Anbindung

(System A)

Mit ERP-Anbindung

(System B)

Produkte 45 291

Tabelle 2:Vergleich der zwei Systeme

Ein weiterer Befund betrifft die Ansicht der Produktionsplanung: Diese benötigt in

beiden Systemen zwischen fünf und sechs Sekunden Ladezeit. Die Ursache hierfür

liegt in der aufwendigen Generierung der Ansicht und ist nicht unmittelbar in der

Architektur begründet. Daher steht diese Optimierung nicht im Fokus der vorliegenden

Arbeit.

Abbildung 6: Server Response Time der aktuelle EVOPRO Applikation

2.4 Code-Qualitätsanalyse

Die statische Codeanalyse mit SonarQube5 in Abbildung 7 zeigt, dass EVOPRO in

Bezug auf Sicherheit ein sehr gutes Ergebnis erreicht (Rating A, keine offenen Issues).

5 Vgl. Quelle: Offizielle Dokumentation: https://www.sonarsource.com

https://www.sonarsource.com/

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

22 11. September 2025

Abbildung 7: Übersicht der SonarQube Qualitäts Analyse

Auch die Maintainability wird insgesamt mit A bewertet, weist jedoch 757 offene

Maintainability-Issues auf, die sich in Summe zu einer geschätzten technischen Schuld

von mehreren Arbeitstagen addieren. Die Analyse der Maintainability Overview in

Abbildung 8 verdeutlicht, dass der Grossteil der Klassen im grünen Bereich liegt,

jedoch einzelne Klassen mit deutlich höherem Wartungsaufwand existieren. Besonders

grosse Klassen mit über 300 Zeilen Code sind dabei häufiger betroffen und

verursachen jeweils mehrere Stunden potenziellen Korrekturaufwand.

Abbildung 8: Maintainability Overview der SonarQube Qualitätsanalyse

In der Kategorie Reliability wird die Codebasis mit D bewertet, was auf 13 offene

Issues zurückzuführen ist. Diese sind über verschiedene Module verteilt und weisen

überwiegend einen geringen bis mittleren Behebungsaufwand auf. Die Reliability

Overview in Abbildung 9 zeigt, dass vor allem mittelgrosse Klassen mit 100 bis 250

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

23 11. September 2025

Zeilen Code in diesem Bereich auffallen und überwiegend in den gelben bis orangen

Bewertungsbereich fallen.

Abbildung 9: Reliability Overview der Sonar Qube Qualitäts Analyse

Auffällig ist die vollständige Abwesenheit automatisierter Tests im analysierten

Quellcode (0 % Test Coverage bei rund 12 000 zu testenden Zeilen). Dies bedeutet,

dass mögliche Regressionen oder Seiteneffekte bei Änderungen nur schwer

automatisiert erkannt werden können. Darüber hinaus weist der Code einen moderaten

Anteil an Duplikationen auf (2,8 % bei rund 32 000 Zeilen Code).

Im Bereich Security Hotspots wurden elf Stellen identifiziert, die potenziell

sicherheitsrelevant sein könnten, jedoch nicht zwingend Sicherheitslücken darstellen.

Hierbei handelt es sich um Codeabschnitte, die in einem sicherheitskritischen Kontext

stehen und manuell geprüft werden müssen.

Insgesamt bestätigen die Ergebnisse, die in der Architekturanalyse identifizierten,

strukturellen Schwächen: eine teilweise hohe Komplexität einzelner Klassen, Code-

Duplizierungen und fehlende Testabdeckung. Diese Faktoren wirken sich direkt auf die

Wartbarkeit und Stabilität der Anwendung aus.

2.5 Fazit der Analyse

Die Analyse verdeutlicht, dass EVOPRO zwar auf einer soliden technischen Basis

steht, jedoch durch enge Kopplungen, fehlende Schichtentrennung und mangelnde

Testabdeckung in seiner Wartbarkeit und Stabilität eingeschränkt ist. Besonders

kritisch wirken sich die synchrone ERP-Anbindung und die fehlenden automatisierten

Tests aus. Damit wird klar, dass die Hauptursachen für Instabilitäten und hohen

Wartungsaufwand weniger in den Funktionen selbst, sondern in strukturellen

Schwächen der Architektur liegen.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

24 11. September 2025

3 Zieldefinition

3.1 Übergeordnetes Projektziel

Das Architektur-Refactoring von EVOPRO verfolgt das Ziel, eine zukunftsfähige,

modulare und wartbare Architektur zu schaffen, die langfristig den Betrieb sichert, die

schnelle Umsetzung neuer Kundenanforderungen ermöglicht und den Wartungs- und

Supportaufwand deutlich reduziert.

Wesentliche Leitlinien dabei sind:

• Klare Entkopplung von Komponenten und Schichten, um Abhängigkeiten zu

minimieren und Änderungen sicherer umzusetzen.

• Saubere Trennung von Verantwortlichkeiten durch eindeutige Architektur- und

Code-Strukturen.

• Hohe Code-Qualität mit einheitlichen Standards und geringem Anteil an

Duplikationen.

• Hohe Testabdeckung zur Sicherstellung von Stabilität und Vermeidung von

Regressionen.

3.2 Architektonisches Ziel

Ziel des Refactorings ist es, EVOPRO so zu restrukturieren, dass eine klar gegliederte,

wartbare und langfristig erweiterbare Architektur entsteht. Dabei wird die Software nicht

vollständig neu entwickelt, sondern in ihrer Struktur so angepasst, dass Änderungen

sicherer und isoliert durchgeführt werden können. Grundlage bilden bewährte

Architekturstile wie der Modulare Monolith (Brown, Modular Monoliths, 2018) und die

Clean Architecture (Martin, 2018).

3.2.1 Modularisierung in vertikale Einheiten

Die Codebasis wird in fachlich klar abgegrenzte Module überführt, die jeweils alle für

ihren Funktionsbereich benötigten Schichten beinhalten. Diese Aufteilung orientiert

sich am im Komponentenmodell in Abbildung 10 dargestellten Aufbau.

Als Leitprinzip dient der Modulare Monolith nach Simon Brown (Brown, Modular

Monoliths, 2018). Dieses Architekturkonzept kombiniert die Vorteile einer

monolithischen Anwendung – Einfachheit, gemeinsame Deployment-Pipeline,

konsistente Datenhaltung – mit den Vorteilen einer internen Modularisierung. Jedes

Modul ist weitgehend unabhängig, Änderungen in einem Modul sollen keine

unbeabsichtigten Auswirkungen auf andere Module haben.

Die Modularisierung folgt dabei den fachlichen Verantwortlichkeiten, wie sie im

Komponentenmodell abgebildet sind. Beispiele für eigenständige Module sind etwa

Auftrag, Produkt, Ressourcen, Planung, Finanzen, Reporting, User und die ERP-

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

25 11. September 2025

Integration. Jedes dieser Module kapselt seine eigene Logik, seine Datenzugriffe sowie

eine klar definierte Schnittstelle zu anderen Modulen.

Abbildung 10: EVOPRO Soll-Komponentenmodell

3.2.2 Horizontale Schichtung nach Clean Architecture

Innerhalb jedes Moduls wird die Architektur nach den Prinzipien der Clean Architecture

(Martin, 2018) gestaltet. Die Schichten sind klar voneinander getrennt und übernehmen

spezifische Rollen. Das Naming im Code ist teilweise abweichend zum Clean

Architecture Konzept. Die Abbildung 11 zeigt in Klammer den jeweilige Clean

Architecture Namen, die im folgenden beschrieben werden:

• Domain: entspricht der Entitäten-Schicht. Hier werden die zentralen fachlichen

Klassen modelliert, die keinerlei Abhängigkeiten zu externen Frameworks

aufweisen.

• Application: entspricht der UseCase-Schicht. Hier sind die Anwendungsfälle

definiert, welche die fachliche Logik kapseln.

• Application.in: Interfaces für die Use-Case-Eingabeports, über die Use Cases

von aussen angesteuert werden (z. B. vom Controller).

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

26 11. September 2025

• Application.out: Interfaces für die Use-Case-Ausgabeports, über die externe

Ressourcen wie die Datenbank angebunden werden.

• Repository: Implementiert die Out-Ports und entspricht dem Gateway. Hier

werden DAOs, Mappings und die konkreten Datenbankzugriffe realisiert.

• Controller: übernimmt die Rolle der Eingabeschicht. Er ruft die definierten Use

Cases an und dient als Bindeglied zwischen Webebene und Application Layer.

• Web: entspricht der Präsentationsschicht. Diese wird zweigeteilt umgesetzt:

o UI: realisiert mit Vaadin, stellt die grafische Benutzeroberfläche bereit

und kommuniziert ausschliesslich über Controller mit den Use Cases.

o REST: implementiert die RESTful API mit Spring Boot, stellt Endpunkte

für den externen Zugriff bereit und bindet ebenfalls nur die Controller-

Schicht an.

Die zentrale Regel der Clean Architecture wird strikt eingehalten: Domain- und

Application-Schichten haben keine Abhängigkeiten zu externen Bibliotheken. Sie

arbeiten ausschliesslich mit Plain Java Objekten und definierten Schnittstellen.

Zulässig sind lediglich Abhängigkeiten zum Common-Modul innerhalb derselben

Abstraktionsebene oder tiefer. So darf z. B. eine Klasse aus der Domain-Schicht auf

eine abstrakte Klasse im Common-Domain-Bereich zugreifen oder ein Use Case in

Application auf eine abstrakte Definition im Common-Application-Bereich.

Querabhängigkeiten über unterschiedliche Ebenen hinweg sind hingegen nicht erlaubt.

Durch diese klare Strukturierung wird die Trennung von Fachlogik und technischer

Infrastruktur gewährleistet, die Testbarkeit erhöht und die langfristige Unabhängigkeit

von spezifischen Frameworks sichergestellt.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

27 11. September 2025

Abbildung 11: Vergleich Ist- und Soll-Architektur

3.2.3 Use-Case zentrierte Modulkommunikation

Mit der neuen Architektur rückt die fachliche Logik konsequent ins Zentrum der

Anwendung und wird als klar abgegrenzte, zentrale Ressource innerhalb jedes Moduls

behandelt. Anstelle der bisherigen, vorwiegend CRUD-getriebenen

Servicekommunikation werden die Module künftig ausschliesslich über klar definierte

Anwendungsfälle (Use Cases) angesprochen, die vollständige fachliche Abläufe

abbilden. Dadurch verschiebt sich der Fokus weg von rein datenorientierten

Operationen hin zu einer domänenzentrierten Arbeitsweise, bei der die Absicht („Was

soll passieren?“) wichtiger ist als die konkrete Datenmanipulation.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

28 11. September 2025

Die Benutzeroberfläche übernimmt in diesem Modell ausschliesslich die Rolle eines

Präsentations- und Interaktionslayers. Sie enthält keinerlei Geschäftslogik mehr,

sondern konsumiert ausschliesslich die im Modul bereitgestellten Anwendungsfälle.

Diese klare Trennung sorgt dafür, dass Änderungen an der UI nicht zu

unbeabsichtigten Eingriffen in die Fachlogik führen – und umgekehrt.

Auch die Kommunikation zwischen den Modulen erfolgt über diese eindeutigen, lose

gekoppelten Schnittstellen. Diese Form der Schnittstellendefinition reduziert

Abhängigkeiten, erhöht die Austauschbarkeit von Implementierungen und stellt sicher,

dass fachliche Details klar innerhalb ihres Moduls verbleiben. Dadurch wird verhindert,

dass interne Logik unkontrolliert in andere Bereiche des Systems übergreift und dort

unerwünschte Abhängigkeiten erzeugt.

Da die zentrale Fachlogik in den Use Cases innerhalb der jeweiligen fachlichen

Domäne gebündelt ist, verbessert sich auch die Test- und Wartbarkeit: Use Cases

lassen sich isoliert testen, unabhängig von UI, Datenbank oder externen Integrationen.

So wird die langfristige Pflege und Weiterentwicklung der Anwendung erleichtert.

3.2.4 Klare Schnittstellen zu externen Systemen

Ein zentrales Ziel des Refactorings ist die Neugestaltung der Anbindung externer

Systeme, insbesondere des ERP-Systems. In der bestehenden Architektur erfolgt der

Zugriff synchron direkt aus der Benutzeroberfläche: Beim Öffnen bestimmter Ansichten

werden ERP-Daten in Echtzeit abgefragt. Diese enge Kopplung führt zu langen

Ladezeiten und macht die Anwendung anfällig für Ausfälle oder Verzögerungen im

angebundenen System.

Künftig werden externe Systeme über ein eigenständiges Integrationsmodul

angebunden, das unabhängig von UI und Fachlogik arbeitet. Dieses Modul übernimmt

den bidirektionalen Datenaustausch mit dem ERP-System asynchron, sodass

Informationen nicht mehr während der UI-Interaktion geladen werden müssen.

Stattdessen werden Änderungen ereignisgesteuert synchronisiert und lokal in

EVOPRO zwischengespeichert.

Durch diese Architektur entsteht eine flexible Integrationsschicht, die sowohl die

Stabilität als auch die Performance verbessert: Die Kernlogik von EVOPRO bleibt von

externen Systemen entkoppelt, Benutzeroberflächen reagieren schneller und das

Gesamtsystem bleibt robuster gegenüber Störungen in angebundenen Diensten.

3.3 Qualitätsziele

Die Erreichung der in dieser Zieldefinition beschriebenen Architekturprinzipien wird

anhand folgender messbarer Kriterien überprüft:

• Architekturentkopplung: Mindestens drei vollständig entkoppelte fachliche

Module mit klar definierten Schnittstellen.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

29 11. September 2025

• Testabdeckung: Bei jedem umgesetzten Modul ist die Use Case Test-

Abdeckung bei 100%. Dies beinhaltet sowohl die Domänen-, als auch die

Applicaiton-Klassen. Die Infrastruktur- und UI-Schichten werden nicht explizit

getestet, sondern lediglich über Integrations- oder Funktionstests indirekt

abgesichert.

• Code-Duplizierung: Reduktion der Code-Duplizierung auf ≤ 1,4 % gemäss

SonarQube6.

• Sicherheitsaspekte: Beseitigung aller aktuell bestehenden Security Hotspots

sowie aller Maintainability-Issues mit hoher Auswirkung.

• Performance: Ladezeiten von ERP-abhängigen Ansichten maximal gleich wie

bei einer Instanz ohne ERP-Anbindung.

3.4 Abgrenzung

Nicht Teil dieser Arbeit sind:

• Funktionale Erweiterungen des Systems über den bestehenden

Funktionsumfang hinaus.

• Performance-Optimierungen einzelner Ansichten, deren Ursache nicht in der

Architektur liegt (z. B. komplexe Renderprozesse der Planungsübersicht).

• Einführung einer Microservice-Architektur oder vollständige Umsetzung der

Clean Architecture in allen Details.

3.5 Erfolgskontrolle

Der Projekterfolg wird auf Basis objektiver Kriterien überprüft:

• Technische Metriken: Auswertung der SonarQube-Analyse und

Testabdeckung vor und nach dem Refactoring.

• Architekturvalidierung: Für jedes Modul ist ein ArchUnit-Test zu definieren,

der erfolgreich durchlaufen werden muss und die jeweiligen

Architekturrestriktionen (z. B. Schichtentrennung, Zugriffsbeschränkungen)

überprüft.

• Leistungstests: Vergleichsmessungen der Ladezeiten vor und nach der

Umsetzung.

3.6 Fazit der Zieldefinition

Mit der beschriebenen Zieldefinition wird eine klare Ausrichtung für das Architektur-

Refactoring von EVOPRO geschaffen. Die Kombination aus modularer horizontaler

Struktur, strikter vertikaler Schichtung, Use-Case-zentrierter Kommunikation und klar

definierten Schnittstellen zu externen Systemen legt die Grundlage für ein wartbares,

erweiterbares und qualitativ hochwertiges System. Durch die festgelegten

Qualitätsziele und die präzise Abgrenzung des Projektumfangs ist der Rahmen für die

Umsetzung klar gesteckt. Die definierten Erfolgskriterien, einschliesslich der

6 SonarSource: SonarQube Dokumentation, https://docs.sonarsource.com

https://docs.sonarsource.com/

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

30 11. September 2025

automatisierten Architekturvalidierung per ArchUnit7-Tests, ermöglichen eine objektive

Überprüfung der Zielerreichung. Damit ist sichergestellt, dass das Refactoring nicht nur

kurzfristige Verbesserungen bringt, sondern die langfristige Stabilität und

Weiterentwicklung des Systems unterstützt.

7 ArchUnit: ArchUnit Dokumentation, https://www.archunit.org/

https://www.archunit.org/

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

31 11. September 2025

4 Vorgehensweise

Um die in der Zieldefinition definierten Ziele zu erreichen, wird ein strukturiertes und

schrittweises Vorgehen gewählt. Dabei liegt der Fokus darauf, die bestehenden

Strukturen kontrolliert zu verändern, um Risiken zu minimieren und jederzeit einen

lauffähigen Systemzustand sicherzustellen. Die Umsetzung erfolgt in klar

abgegrenzten Arbeitspaketen, die jeweils aufeinander aufbauen und nach jedem

Schritt überprüfbare Zwischenergebnisse liefern. Neben der technischen Umsetzung

werden begleitend Massnahmen zur Qualitätssicherung, Dokumentation und

Architekturvalidierung durchgeführt, um sicherzustellen, dass die angestrebte Soll-

Architektur konsequent umgesetzt wird.

4.1 Methodisches Vorgehen

Die Umsetzung des Architektur-Refactorings erfolgt in einem iterativen

Vorgehensmodell, das sich am Grundgedanken von Scrum orientiert, jedoch an die

Rahmenbedingungen des Projekts angepasst ist. Die Arbeit wird in zweiwöchige

Sprints unterteilt, auf die jeweils eine zwei- bis vierwöchige Pause folgt. Dieser Vier- bis

Sechswochenrhythmus ermöglicht es, in den Umsetzungsphasen fokussiert technische

Anpassungen vorzunehmen und in den Pausen Feedback auszuwerten, Tests zu

ergänzen und die nächsten Schritte zu planen.

Abbildung 12: Umsetzungszeitplan Refactoring EVOPRO

Für die Planung und Nachverfolgung der Arbeitspakete wird ein Kanban-Board in Jira

(Abbildung 13) eingesetzt. Der Quellcode wird versioniert und über GitHub verwaltet,

während die bestehende Build- und Deployment-Pipeline in Azure DevOps integriert

ist. Zur Sicherstellung der Codequalität und Einhaltung der Architekturprinzipien

werden statische SonarQube-Analysen ausgeführt und die ArchUnit-Tests dienen der

kontinuierlichen Überprüfung der architekturellen Restriktionen in jedem Modul.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

32 11. September 2025

Abbildung 13: Ausschnitt des Kanban-Boards in Jira

4.2 Umsetzungsschritte

Die Umsetzung erfolgt pro Modul in mehreren aufeinander aufbauenden Phasen, die

sich an den in Kapitel 3 definierten, architektonischen Zielen orientieren. Jedes Modul

wird dabei vollständig durch alle Schritte geführt, bevor das nächste Modul beginnt.

Dadurch lassen sich Änderungen kontrolliert umsetzen und frühzeitig Erfahrungen aus

den ersten Modulen auf weitere übertragen.

1. Analysephase

Zu Beginn wird der bestehende Code hinsichtlich seiner Struktur und Abhängigkeiten

untersucht. Dabei werden insbesondere Stellen identifiziert, an denen eine

Entkopplung erforderlich ist. Weiter werden die fachlichen Modulgrenzen festgelegt.

Parallel dazu werden die bestehenden Integrationen zu externen Systemen analysiert.

2. Modularisierung in vertikale Einheiten

Die Codebasis wird gemäss dem Soll-Komponentenmodell in fachlich abgegrenzte

Module überführt.

Die Kommunikation zwischen den Modulen erfolgt ausschliesslich über deren

Controller. Andere Module greifen somit nicht direkt auf Anwendungsfälle oder interne

Klassen zu, sondern nutzen die im Controller bereitgestellten Schnittstellen, welche die

jeweiligen Use Cases aufrufen. Dadurch bleiben die internen Strukturen gekapselt, und

die Module können unabhängig voneinander weiterentwickelt werden.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

33 11. September 2025

Zur Entkopplung werden bestehende Objektbeziehungen angepasst. Anstelle ganzer

Objekte werden nur deren IDs gespeichert. So verwaltet jedes Modul ausschliesslich

die eigenen Entitäten, während zugleich zyklische Abhängigkeiten und unnötige

Kopplung vermieden werden.

3. Horizontale Schichtung nach Clean Architecture

Innerhalb der Module wird die Schichtung nach den Clean-Architecture-Prinzipien

eingeführt. Jedes Modul erhält eine eigene interne Struktur mit Web, Controller,

Application, Domain und Repository. Domain- und Application-Layer werden von

externen Bibliotheken entkoppelt, und die Kommunikation zwischen den Schichten

erfolgt ausschliesslich über Interfaces.

4. Einführung Use-Case-zentrierter Modulkommunikation

CRUD-basierte Service-Aufrufe werden durch fachliche Use Cases ersetzt. Die

öffentlichen Inbound-Ports eines Moduls definieren dessen API, die sowohl von

internen UI-Controllern als auch von anderen Modulen verwendet wird.

5. Integration externer Systeme

Die bisherige synchrone Kopplung zu externen Systemen (z. B. ERP) wird durch ein

eigenständiges Integrationsmodul ersetzt. Dieses Modul übernimmt den

Datenaustausch asynchron und ist vollständig von UI und Fachlogik entkoppelt.

Dadurch bleibt die Kernanwendung auch bei Verzögerungen oder Ausfällen externer

Systeme stabil, während die Anbindung flexibel und erweiterbar gestaltet werden kann.

6. Qualitätssicherung und Architekturvalidierung

Parallel zu allen Schritten werden automatisierte Unit- und ArchUnit-Tests

implementiert. SonarQube-Analysen begleiten jede Entwicklungsphase, um

Codequalität und Einhaltung der Architekturregeln zu überprüfen.

4.3 Risiken und Massnahmen

Das Refactoring einer bestehenden, produktiv genutzten Anwendung birgt technische

und organisatorische Risiken. Diese werden im Vorfeld identifiziert und durch gezielte

Massnahmen minimiert.

Komplexität der Architekturänderungen

Bei der Umsetzung der geplanten Entkopplung und horizontalen Schichtung besteht

die Gefahr, dass bestehende Abhängigkeiten übersehen und nicht vollständig entfernt

werden.

Massnahmen: Sorgfältige Analyse des Moduls vor der Umsetzung, konsequente

Anwendung der in Kapitel 3 definierten Architekturprinzipien sowie Einsatz von

ArchUnit-Tests zur automatisierten Überprüfung der Einhaltung.

Unklare Modulgrenzen

Werden die fachlichen Verantwortlichkeiten nicht klar getrennt, können

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

34 11. September 2025

Querverbindungen zwischen Modulen bestehen bleiben, was die Wartbarkeit

beeinträchtigt.

Massnahmen: Verbindliche Festlegung der Modulgrenzen im Komponentenmodell

sowie Review der geplanten Schnittstellen vor Beginn der Umsetzung.

Unzureichende Testabdeckung

Neue Strukturen ohne ausreichende Testabdeckung gefährden die Überprüfbarkeit

und Qualität der Umsetzung.

Massnahmen: Klare Teststrategie mit Fokus auf Unit-, Integrations- und ArchUnit-

Tests, verbindliche Zielwerte für die Testabdeckung gemäss den in Kapitel 3.3

definierten Qualitätszielen.

4.4 Erfolgskontrolle

Die Überprüfung des Umsetzungserfolgs erfolgt anhand der in Kapitel 3.3 und 3.5

definierten Qualitätsziele und Metriken.

Für jedes umgesetzte Modul werden folgende Punkte kontrolliert:

• Einhaltung der Architekturprinzipien

Überprüfung der Modulstruktur und Schichtentrennung anhand der ArchUnit-

Tests. Diese müssen für jedes Modul erfolgreich durchlaufen und die

definierten Architekturrestriktionen abbilden.

• Testabdeckung

Messung der automatisierten Testabdeckung auf Domain- und Application-

Ebene gemäss den festgelegten Zielwerten.

• Codequalität

Analyse der Codebasis mit SonarQube, um die Einhaltung der Vorgaben zu

Code-Duplizierung, Sicherheitsaspekten und Maintainability sicherzustellen.

Die Ergebnisse der Erfolgskontrolle werden am Ende der Masterarbeit in einer

Gesamtbewertung zusammengefasst, um den Grad der Zielerreichung transparent

darzustellen.

4.5 Fazit Vorgehensweise

Das gewählte Vorgehen kombiniert eine modulweise Umsetzung mit klar definierten

Arbeitsschritten, kontinuierlicher Qualitätssicherung und automatisierter

Architekturvalidierung. Durch diese strukturierte Herangehensweise wird sichergestellt,

dass die in Kapitel 3 definierten Ziele schrittweise, überprüfbar und nachhaltig erreicht

werden können. Die modulare Vorgehensweise erlaubt es zudem, Erfahrungen aus

den ersten Umsetzungen direkt in die weiteren Module zu übertragen und so Effizienz

und Qualität im Projektverlauf kontinuierlich zu steigern.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

35 11. September 2025

5 Umsetzung

Aufbauend auf der in Kapitel 3 definierten Zielarchitektur und dem in Kapitel 0

beschriebenen Vorgehensmodell wird in diesem Kapitel die konkrete Umsetzung des

Architektur-Refactorings beschrieben. Die Umsetzung erfolgt pro Modul und orientiert

sich an den definierten Arbeitsschritten, um eine schrittweise und überprüfbare

Transformation der bestehenden Codebasis zu gewährleisten.

Für jedes bearbeitete Modul werden zunächst die relevante Ausgangslage und die

identifizierten Schwachstellen dargestellt. Anschliessend wird erläutert, welche

Änderungen vorgenommen wurden, um die horizontalen und vertikalen

Architekturprinzipien umzusetzen, die Use-Case-zentrierte Kommunikation einzuführen

und externe Schnittstellen über Adapter zu entkoppeln. Besonderes Augenmerk liegt

dabei auf der konsequenten Einhaltung der Architekturregeln, die durch automatisierte

Tests wie ArchUnit validiert werden.

5.1 Modul Ressourcen

Das Modul Ressourcen bildet in EVOPRO die Grundlage für die Verwaltung von

Maschinen, Personal und Werkzeugen, die in der Produktionsplanung eingesetzt

werden. In der bestehenden Architektur war dieses Modul stark mit anderen Bereichen

verknüpft und wies keine klaren Modulgrenzen auf, was die Wartung und

Weiterentwicklung erschwerte.

In den folgenden Abschnitten werden zunächst die Ausgangslage und die

identifizierten Probleme beschrieben. Anschliessend wird dargestellt, welche konkreten

Massnahmen zur Umsetzung der Zielarchitektur ergriffen wurden, welche technischen

Herausforderungen dabei zu bewältigen waren und welche Ergebnisse erzielt werden

konnten. Abschliessend wird das Fazit für dieses Modul gezogen.

5.1.1 Ausgangslage

Das Modul Ressourcen bildet den Grundstein für die Produktionsplanung. Ohne die

darin verwalteten Maschinen, Werkzeuge, Mitarbeiter und weiteren Kapazitäten

können keine Produkte hergestellt werden. In der bisherigen Architektur war dieses

Modul stark mit den Prozessen und Produkten verknüpft, die wiederum direkt mit den

Bestellungen verbunden waren. Änderungen an Ressourcen hatten dadurch häufig

ungewollte Seiteneffekte bis in die Planungsansicht und Auswertungen hinein, was die

Pflege und Weiterentwicklung erschwerte.

Das Domänenmodell in Abbildung 14 zeigt die Verknüpfung der Ressourcen vor dem

Refactoring. Die meisten Entitäten entsprechen auch nach der Umstrukturierung den

ursprünglichen Klassen, jedoch wurden die direkten Verbindungen zu Produkten und

Prozessen inzwischen entfernt. In der Ist-Situation werden die Entitäten unverändert

direkt in der Datenbank gespeichert und enthalten persistenzspezifische Annotationen

wie @Id. Eine saubere Trennung zwischen Domänen-Logik und Persistenzschicht ist

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

36 11. September 2025

somit nicht gegeben. Zudem existiert für dieses Modul keinerlei automatisierte

Testabdeckung, wie bereits in Kapitel 3 beschrieben, was die Verlässlichkeit von

Änderungen zusätzlich beeinträchtigt.

Abbildung 14: Ressourcen im IST-Domänenmodell

5.1.2 Durchgeführte Schritte

Zu Beginn wurde das Modul Ressourcen als eigenständige Einheit angelegt und mit

den vorgesehenen Schichten Domain, Application, Controller, Repository und Web

strukturiert. Anschliessend erfolgte die Migration der bestehenden Klassen aus der

bisherigen Struktur: Die Entitäten wurden aus dem alten Data- bzw. Domain-Ordner in

die neue Domain-Schicht verschoben, Repository-Klassen in die Repository-Schicht

überführt und die bisherigen Service-Klassen der Application-Schicht zugeordnet.

Nachdem alle relevanten Klassen im Modul verortet waren, wurde die Domain-Schicht

bereinigt: Persistenzspezifische Annotationen wie @Id wurden entfernt und die

Klassen, soweit sinnvoll, als Records oder immutable Klassen umgesetzt. Ziel war eine

vollständige Unabhängigkeit der Domain von externen Bibliotheken ausserhalb des

Java-Basisumfangs.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

37 11. September 2025

Darauf aufbauend wurden aus den bisherigen Service-Klassen fachlich abgegrenzte

Use Cases definiert. Die alten Service-Klassen wurden so angepasst, dass auch sie

keine Abhängigkeiten zu Spring Boot oder anderen Frameworks mehr besitzen und

ausschliesslich mit den Use-Case-Interfaces arbeiten.

Im nächsten Schritt folgte die Neugestaltung der Datenbankanbindung. In der

application.out-Schicht wurden Repository-Interfaces definiert, die in der Repository-

Schicht implementiert werden. Hierfür wurden DAO-Klassen erstellt sowie

entsprechende Mapper-Funktionen zur Transformation zwischen Domain-Objekten und

Datenbankmodellen entwickelt.

Anschliessend wurde die Controller-Schicht implementiert, die die definierten Use

Cases aufruft und die notwendigen DTOs sowie zugehörige Mapper bereitstellt. Zum

Abschluss wurde die Web-Schicht mit den Controllern verbunden und das

Zusammenspiel aller Schichten getestet.

Da die Application-Schicht keine Framework-Annotationen mehr verwendet, wurde

eine eigene Konfigurationsklasse (RessourceConfig) erstellt, die die notwendigen

UseCases instanziiert und deren Abhängigkeiten zu den Repository-

Implementierungen bereitstellt. Diese manuelle Orchestrierung stellt sicher, dass die

Abhängigkeitsrichtung gewahrt bleibt und die Application-Schicht

frameworkunabhängig bleibt.

Nach erfolgreicher Funktionsprüfung erfolgte die Implementierung von Unit-Tests für

die Domain- und Application-Schicht unter Verwendung von JUnit in IntelliJ. Damit

wurde eine erste automatisierte Testbasis für das Modul geschaffen.

Neben der grundsätzlichen Umstrukturierung wurde das Modul Ressourcen in mehrere

Submodule gegliedert. Dadurch konnten fachliche Verantwortlichkeiten noch klarer

abgegrenzt werden. Die Submodule umfassen Employee, Machine und Tool sowie ein

gemeinsames Common-Submodul, in dem übergreifende Konzepte wie Abteilungen,

Arbeitszeiten, Instandhaltung und das Ressourcentracking zusammengefasst sind.

Diese Aufteilung trägt zur besseren Verständlichkeit bei und erleichtert die

Weiterentwicklung einzelner Bereiche, ohne dass Änderungen ungewollte

Auswirkungen auf andere Teile des Moduls haben.

Abbildung 15: ArchUnit-Test das die Domäne keine Abhängigkeiten kennt

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

38 11. September 2025

Zur Sicherstellung der Einhaltung der Architekturprinzipien wurden drei ArchUnit-Tests

eingeführt. Abbildung 15 zeigt den ArchUnit-Test der sicherstellt, dass die Domain-

Schicht nur Abhängigkeiten zu sich selbst, zur Java-Basis-Bibliothek und zur

common.domain und im Fall von Ressourcen zum resources.common.domian hat.

Analog dazu gibt es einen Test für die Application-Schicht (Abbildung 16), der

sicherstellt, dass keine Abhängigkeiten zu Klassen ausserhalb der Application-Schicht

besteht ausser zur Domain-Schicht und den entsprechenden Common- und Sub-

Common-Modulen.

Abbildung 16: ArchUnit-Test für den Application-Layer

Der dritte ArchUnit-Test stellt sicher, das nur über die Interfaces im In- und Out-Ordner

auf die Application-Schicht zugegriffen wird. Abbildung 17 zeigt das für das Resourcen-

Modul. Hier ist auch die Ausnahme ersichtlich, dass die ResourcenConfig-Klasse für

die Orchstrierung Zugriff auf die Application-Schicht benötigt.

Abbildung 17: ArchUnit-Test für den Zugriff auf die Application-Schicht

Durch diese automatisierte Architekturvalidierung wird gewährleistet, dass die

aufgestellten Regeln auch bei zukünftigen Erweiterungen eingehalten werden und die

Struktur des Systems konsistent bleibt.

5.1.3 Technische Herausforderungen

Eine der grössten Herausforderungen bestand darin, sämtliche bestehenden

Abhängigkeiten zu Frameworks wie Spring aus der Domain- und Application-Schicht

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

39 11. September 2025

zu entfernen. Viele Klassen waren ursprünglich stark mit Infrastrukturkomponenten und

anderen Modulen verflochten, sodass diese Abhängigkeiten zunächst identifiziert,

aufgelöst und durch Schnittstellen ersetzt werden mussten. Um die Funktionalität

während des Refactorings aufrechtzuerhalten, waren an mehreren Stellen temporäre

Workarounds erforderlich, beispielsweise die schrittweise Entkopplung von Services

und deren Übergang in klar definierte UseCases.

Auch die Einführung der ResourceConfig-Klasse zur manuellen Instanziierung der

UseCases brachte zusätzlichen Aufwand mit sich, da alle benötigten Abhängigkeiten

explizit verdrahtet werden mussten. Trotz des Mehraufwands bietet dieser Ansatz

langfristig eine höhere Flexibilität und Unabhängigkeit von spezifischen Frameworks.

Ein weiterer signifikanter Aufwand entstand durch das wiederholte Mapping zwischen

den verschiedenen Repräsentationen der Daten: vom DAO zur Domain, von der

Domain zu DTOs und in umgekehrter Richtung. Dieser Prozess stellte sich als

zeitintensiv und fehleranfällig heraus und führte während der Umsetzung mehrfach zu

der Frage, ob dieser zusätzliche Aufwand durch die gewonnene Schichtentrennung

tatsächlich gerechtfertigt ist. Hier zeigte sich deutlich, dass eine saubere Architektur

zwar strukturelle Vorteile bringt, diese aber mit einem erhöhten Implementierungs- und

Pflegeaufwand verbunden sind.

5.1.4 Ergebnis

Durch die Umstrukturierung des Moduls Ressourcen konnte eine klare Trennung der

Schichten gemäss der in Kapitel 3 definierten Zielarchitektur umgesetzt werden. Die

Domäne ist nun vollständig von Frameworks und externen Bibliotheken entkoppelt, und

alle fachlichen Operationen werden über klar definierte UseCases abgewickelt. Die

Datenbankanbindung erfolgt ausschliesslich über Repository-Interfaces in der

application.out-Schicht, deren Implementierungen in der Repository-Schicht gekapselt

sind.

Die zuvor bestehenden direkten Abhängigkeiten zu Produkten und Prozessen wurden

entfernt, indem nur noch deren IDs referenziert werden. Dadurch sind Ressourcen

nicht länger direkt mit Objekten anderer Module verknüpft, sondern lediglich über

stabile Identifikatoren. Auf diese Weise verursachen Änderungen an den Ressourcen

keine unbeabsichtigten Seiteneffekte mehr in der Planungsansicht oder in

Auswertungen. Die neue Architektur, wie in Abbildung 18 ersichtlich, erleichtert es,

Änderungen an der fachlichen Logik isoliert vorzunehmen und gezielt zu testen.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

40 11. September 2025

Abbildung 18: Neues Ressourcen Domain-Modell

Mit der Einführung von ArchUnit-Tests ist eine automatisierte Prüfung der

Architekturprinzipien etabliert, die langfristig sicherstellt, dass die Schichtentrennung

eingehalten wird. Zusätzlich wurden erstmals Unit-Tests für die Domain- und

Application-Schicht erstellt, wodurch eine grundlegende Testbasis für künftige

Anpassungen vorhanden ist.

5.1.5 Fazit

Mit der Umsetzung im Modul Ressourcen wurde ein wesentlicher Schritt in Richtung

der angestrebten Soll-Architektur erreicht. Die klare Schichtentrennung, die

Entkopplung von externen Bibliotheken und die Einführung von UseCases als zentrale

fachliche Schnittstellen haben die Struktur deutlich verbessert und die Grundlage für

eine nachhaltige Weiterentwicklung geschaffen.

Die Auflösung der direkten Abhängigkeiten zu Produkten und Prozessen reduziert

potenzielle Seiteneffekte und erhöht die Stabilität bei Änderungen. Durch die

etablierten ArchUnit-Tests und die neu eingeführte Testabdeckung ist eine dauerhafte

Sicherung der Architektur- und Qualitätsziele gewährleistet.

Trotz des zusätzlichen Aufwands, insbesondere durch das umfangreiche Mapping

zwischen DAO, Domain und DTO, überwiegen die Vorteile in Bezug auf Wartbarkeit,

Testbarkeit und langfristige Flexibilität des Systems. Die in diesem Modul gesammelten

Erfahrungen bilden eine wertvolle Grundlage für die Umsetzung der weiteren Module.

5.2 Modul Produkt

5.2.1 Ausgangslage

Das Modul Produkt bildet gemeinsam mit den Prozessen den fachlichen Kern von

EVOPRO. Es verwaltet nicht nur Produktstammdaten, sondern definiert auch den

zugrunde liegenden Produktionsprozess, der massgeblich die Ablaufplanung und

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

41 11. September 2025

Auswertungen beeinflusst. Im bestehenden System war dieses Bereich stark mit

anderen Klassen verknüpft, wie Abbildung 19 zeigt, und wurde in diversen UI-

Ansichten verwendet, wie beispielweise der Produktionsplanung und den

Auswertungen.

Abbildung 19: Produkt im IST-Domain-Modell

Zudem war die Entität Process, die die zentralen fachlichen Abläufe modellieren sollte,

in der bisherigen Implementierung nur unzureichend strukturiert. Ihre Modellierung war

weder fachlich klar abgegrenzt noch technisch sauber umgesetzt, was zu einer

Vielzahl an Abhängigkeiten innerhalb und ausserhalb des Bereichs führte. Änderungen

an diesen Klassen hatten daher oft weitreichende Auswirkungen auf andere Module

und UI-Komponenten.

Durch die hohe Zahl an Querverbindungen und die fehlende Trennung der

Verantwortlichkeiten lag die Komplexität deutlich höher als ursprünglich erwartet, was

insbesondere die Umgestaltung der Process-Entität zu einer zeitintensiven Aufgabe

machte.

5.2.2 Durchgeführte Schritte

Das Modul Produkt wurde nach dem gleichen Schema wie zuvor das Modul

Ressourcen aufgebaut. Dazu wurde zunächst die Modulstruktur mit den Schichten

Domain, Application, Controller, Repository und Web angelegt und die relevanten

Klassen aus der bisherigen Codebasis in die entsprechenden Schichten verschoben.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

42 11. September 2025

Die Domain wurde neu strukturiert und um die fachlichen Entitäten wie Product,

Process, ProcessStep, ProcessDetails, ProcessConnection und ProcessResources

ergänzt. Dabei wurden die Beziehungen zwischen den Entitäten neu definiert und die

Modellierung an die Zielarchitektur angepasst. Das neue Domain Model ist in

Abbildung 20 dargestellt.

Abbildung 20: Neues Produkt Domain-Modell

Das im Product-Modul neu eingesetzte Architekturpattern wird in Abbildung 21 am

Beispiel der ProductType-Entität dargestellt. Anstatt für jede Domänenklasse ein

eigenes Set von UseCase-, Repository- und Controller-Implementierungen

bereitzustellen, wurde ein generischer Ansatz gewählt, der sowohl die

Datenbankanbindung als auch die Webschnittstelle umfasst.

Dazu wurden die generischen Interfaces CrudUseCase<T> und GenericRepository<T>

definiert. Sie bilden die zentrale Schnittstelle für die Geschäftslogik bzw. die

Datenpersistenz. Die abstrakte Klasse AbstractCrudService<T> implementiert das

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

43 11. September 2025

Interface CrudUseCase<T> und nutzt gleichzeitig das GenericRepository<T>, wodurch

eine einheitliche Grundlage für CRUD-Operationen geschaffen wird.

Da auch die konkrete Umsetzung dieser Standardoperationen häufig identisch ist,

wurden weitere Abstraktionen eingeführt:

• Persistenzschicht: AbstractRepositoryImpl<DOMAIN, DAO> bündelt die

generische Implementierung für den Datenbankzugriff.

• Webschicht: AbstractController<DOMAIN, DTO> stellt die generische

Anbindung an die Webschnittstelle bereit.

Über spezialisierte Mapper (DtoMapperInterface, DaoMapperInterface) werden

Domain-Objekte, DTOs und DAOs in Controller und Repository-Implementierungen

zusammengeführt. Damit reduziert sich der Implementierungsaufwand für neue CRUD-

basierte Entitäten erheblich: Im Regelfall müssen lediglich die Domain-, DTO- und

DAO-Klassen sowie die zugehörigen Mapper erstellt werden. Service-, Repository- und

Controller-Klassen enthalten in solchen Fällen keine eigene Logik mehr, sondern

lediglich die Instanziierung der generischen Infrastruktur.

Die gewählte Lösung verfolgt zwei zentrale Ziele:

1. Wiederverwendbarkeit durch Generik – die CRUD-Funktionalität wird nur

einmal bereitgestellt und kann über Typparameter beliebig auf neue

Domänenobjekte angewendet werden.

2. Reduktion von Abhängigkeiten – die fachliche Logik bleibt klar von

Infrastruktur- und Frameworkcode getrennt, sodass die Domäne langfristig

robust, modular und erweiterbar bleibt.

Dieses Muster schafft eine Balance zwischen Generik und Entkopplung und bildet

damit eine nachhaltige Grundlage für die Weiterentwicklung. Es erleichtert sowohl die

Einführung neuer Entitäten als auch die Evolution bestehender Module und trägt

wesentlich zur Wartbarkeit und Konsistenz des Gesamtsystems bei.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

44 11. September 2025

Abbildung 21: Generische Clean-Code-Architektur am Beispiel ProductType

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

45 11. September 2025

Wie im Modul Ressourcen wurden auch hier nebst dem CrudUseCase weitere

UseCases definiert, die die fachliche Logik kapseln und als öffentliche API des Moduls

dienen. Ergänzend wurden Unit-Tests sowie die drei ArchUnit-Tests implementiert, um

die Einhaltung der Architekturprinzipien automatisiert zu prüfen.

5.2.3 Technische Herausforderungen

Eine wesentliche Herausforderung im Modul Produkt war die Neugestaltung der Entität

Process und die damit verbundene Auflösung zahlreicher Abhängigkeiten zu anderen

Teilen des Systems. Die ursprüngliche Struktur war stark vernetzt und erforderte eine

präzise Analyse, um fachliche Verantwortlichkeiten klar abzugrenzen und Beziehungen

zwischen den beteiligten Entitäten neu zu ordnen.

Hinzu kam die Einführung des neu eingesetzten Architekturpatterns mit einem

generischen Ansatz. Gerade in der Anfangsphase erwies sich dies als anspruchsvoll,

da die abstraktere Modellierung mehr Konzeptionsarbeit erfordert als eine direkte,

spezifische Implementierung. Es mussten geeignete Abstraktionen für UseCases,

Services, Repositories und Controller definiert werden, die einerseits breit genug für

die Wiederverwendung, andererseits schlank genug für die konkrete Umsetzung

blieben. Dieser anfängliche Mehraufwand zahlt sich jedoch langfristig aus: Neue

Entitäten können mit deutlich geringerem Implementierungsaufwand integriert werden,

und die fachliche Logik bleibt klar von technischen Details entkoppelt.

5.2.4 Ergebnis

Mit der Umsetzung des Moduls Produkt konnte die Domäne klar strukturiert und von

unnötigen Abhängigkeiten befreit werden. Die neu gestaltete Entität Process und ihre

zugehörigen Strukturen sind nun fachlich und technisch sauber abgegrenzt, wodurch

die Wartung und Weiterentwicklung deutlich vereinfacht wird.

Die Einführung des generischen Architekturpatterns ermöglicht eine einheitliche

Handhabung von CRUD-Operationen und reduziert Code-Duplizierungen. Gleichzeitig

bleibt die Implementierung flexibel und erweiterbar für verschiedene Produkttypen.

Besonders deutlich traten in diesem Modul die Vorteile der klar definierten UseCases

zutage. Komplexe fachliche Abläufe wie die Erstellung eines Prozesses, das Kopieren

eines Produkts oder die Übernahme eines bestehenden Prozesses lassen sich nun

vollständig in UseCases kapseln. Dadurch konnte die Logik zentral gebündelt, von der

UI entkoppelt und ein konsistentes Vorgehen über verschiedene Anwendungsfälle

hinweg etabliert werden.

5.2.5 Fazit

Die Umsetzung des Moduls Produkt hat gezeigt, dass selbst hochvernetzte und

komplexe fachliche Bereiche erfolgreich in die Zielarchitektur überführt werden können.

Durch die Neugestaltung der Process-Struktur, die Einführung klar definierter

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

46 11. September 2025

Modulgrenzen und den Einsatz generischer Repository-Implementierungen konnte

eine deutlich höhere Wartbarkeit und Flexibilität erreicht werden.

Die konsequente Kapselung komplexer Abläufe in UseCases hat nicht nur die

Trennung von Fachlogik und Präsentationsebene gestärkt, sondern auch eine klare,

wiederverwendbare und testbare Struktur geschaffen. Die in diesem Modul

gewonnenen Erkenntnisse – insbesondere im Umgang mit komplexen Abhängigkeiten

– bilden eine wertvolle Grundlage für die Bearbeitung weiterer zentraler Module im

System.

5.3 Modul Auftrag

5.3.1 Ausgangslage

Das Modul Order bildet mit dem Product das Herzstück der Anwendung, da es die

Kundenaufträge verwaltet und damit Ausgangspunkt für nahezu alle weiteren Prozesse

ist – von der Ressourcenplanung über die Produktionsprozesse bis hin zu

Auswertungen. In der ursprünglichen Architektur war Order stark mit zahlreichen

anderen Entitäten verknüpft, darunter Product, Process, Customer, PartsList und

Employee wie in Abbildung 22 dargestellt ist. Diese enge Vernetzung führte dazu, dass

Änderungen an der Auftragslogik häufig unbeabsichtigte Auswirkungen in anderen

Bereichen nach sich zogen.

Abbildung 22: Order im IST-Domain-Modell

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

47 11. September 2025

5.3.2 Durchgeführte Schritte

Bei der Umsetzung des Moduls Order wurde zunächst die Modulstruktur nach dem in

den vorangehenden Kapiteln etablierten Muster aufgebaut. Die bisherigen Klassen und

Entitäten wurden den Schichten Domain, Application, Repository, Controller und Web

zugeordnet.

Ein wesentlicher Schwerpunkt lag auf der Neugestaltung der Prozesslogik. Anstelle der

direkten Verknüpfung von Order und Process wurde eine neue Task-Struktur

eingeführt. Auf Basis eines bestehenden Process lässt sich nun ein Ablauf (TaskList)

erzeugen, der die für einen Auftrag relevanten Arbeitsschritte kapselt. Diese

Entkopplung ermöglicht eine klare Trennung zwischen der produktbezogenen

Prozessdefinition und der auftragsspezifischen Ausführung.

Zur Umsetzung wurden spezifische UseCases definiert, welche die Erstellung und

Verwaltung von Aufträgen übernehmen. Ein zentraler UseCase erzeugt beispielsweise

eine TaskList aus einem über den ProductController bereitgestellten ProcessDto. Die

Geschäftslogik liegt damit vollständig im Application-Layer und ist unabhängig von UI

oder Datenhaltung.

Das neue Domain-Modell (Abbildung 23) zeigt die überarbeitete Struktur mit den

Entitäten Order, OrderPosition, TaskList und Task sowie deren Unterstrukturen wie

TaskDetails, TaskConnection oder TaskStatus. Damit ist die bisherige enge Kopplung

mit Process aufgelöst und durch eine eigenständige, auftragszentrierte Modellierung

ersetzt.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

48 11. September 2025

Abbildung 23: Neues Order Domain-Modell

5.3.3 Technische Herausforderungen

Die grösste Herausforderung bei der Umsetzung des Moduls Order bestand in der

extremen Verflechtung mit anderen Teilen der Anwendung. In der ursprünglichen

Architektur war die Auftragslogik eng an Produkte, Prozesse, Ressourcen und

Auswertungen gekoppelt. Jede Änderung an der Order-Entität hatte daher potenziell

weitreichende Seiteneffekte, was eine saubere Entkopplung besonders anspruchsvoll

machte.

Ein weiterer schwieriger Punkt war die Neugestaltung der Prozesslogik. Da Process im

ursprünglichen Modell zentral mit Aufträgen verknüpft war, musste eine Lösung

gefunden werden, die einerseits die Verbindung zu produktdefinierten Prozessen

erhält, andererseits aber eine eigenständige Auftragsabwicklung erlaubt. Dies wurde

durch die Einführung der Task-Struktur erreicht. Die Definition, wie Tasks erzeugt,

verbunden und mit Statusinformationen versehen werden, erforderte eine präzise

Modellierung und eine klare Trennung der Verantwortlichkeiten.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

49 11. September 2025

5.3.4 Ergebnis

Mit der Umsetzung des Moduls Order konnte eine klare Entkopplung der Auftragslogik

von den übrigen Bereichen der Anwendung erreicht werden. Durch die Einführung der

neuen Task-Struktur wurde die bisher direkte Abhängigkeit von Process aufgelöst und

in eine eigenständige Modellierung überführt. Damit lässt sich die auftragsbezogene

Abwicklung unabhängig von der produktdefinierten Prozessbeschreibung steuern.

Die Abbildung zentraler Geschäftsabläufe in UseCases hat sich besonders in diesem

Modul als vorteilhaft erwiesen. Komplexe Vorgänge wie die Generierung eines

Auftragsablaufs aus einem Produktprozess oder die Verwaltung von

Auftragspositionen lassen sich nun in klar abgegrenzten Schnittstellen abbilden.

Dadurch ist die Fachlogik konsistent gebündelt, besser testbar und vom UI vollständig

entkoppelt.

Die neue Struktur hat die Wartbarkeit deutlich verbessert und ermöglicht eine flexiblere

Weiterentwicklung des Order-Moduls. Änderungen an Prozessen oder Produkten

wirken sich nicht mehr unmittelbar auf die Auftragsebene aus, wodurch die Risiken von

Seiteneffekten erheblich reduziert wurden.

5.3.5 Fazit

Das Modul Order stellt durch seine zentrale Rolle in der Anwendung besonders hohe

Anforderungen an Konsistenz und Stabilität. Mit der Neugestaltung konnte gezeigt

werden, dass selbst stark verflochtene Strukturen durch eine klare

Domänenmodellierung und UseCase-zentrierte Architektur erfolgreich entkoppelt

werden können. Die neu eingeführte Task-Logik bildet dabei eine robuste Grundlage

für die Auftragsabwicklung und stärkt zugleich die Modularität des Gesamtsystems.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

50 11. September 2025

6 Ergebnisse und Fazit

Im Rahmen des Architektur-Refactorings von EVOPRO wurden verschiedene Module

exemplarisch überarbeitet und anhand definierter Kriterien bewertet. Ziel war es, die in

Kapitel 3 beschriebenen architektonischen Leitlinien und Qualitätsziele praktisch

umzusetzen und deren Wirkung messbar nachzuweisen.

Die Ergebnisse stützen sich dabei sowohl auf automatisierte Analysen (SonarQube,

ArchUnit-Tests, Testabdeckung) als auch auf funktionale Validierungen der

refaktorierten Module. Neben der rein technischen Bewertung wurde besonderes

Augenmerk daraufgelegt, wie gut die gesetzten architektonischen Ziele –

Modularisierung, saubere Schichtentrennung und Use-Case-zentrierte Logik – in der

Praxis umgesetzt werden konnten.

Im Folgenden werden die Ergebnisse in vier Schritten dargestellt: zunächst die

Beurteilung der architektonischen Zielerreichung, anschliessend die Bewertung der

Qualitätsziele, gefolgt von der Erfolgskontrolle anhand messbarer Kriterien und

schliesslich einer Gesamtbewertung der Wirksamkeit des Refactorings.

6.1 Erreichung der Zielarchitektur

Ein zentrales Ziel des Refactorings war es, die ursprünglich stark gekoppelte

monolithische Struktur von EVOPRO in eine klar gegliederte, modular aufgebaute

Architektur zu überführen. Grundlage dafür bildeten die Prinzipien des Modularen

Monolithen sowie der Clean Architecture.

Mit der Umsetzung der Module Ressourcen, Produkt und Auftrag konnte die geplante

Trennung von Verantwortlichkeiten weitgehend erreicht werden. Jedes Modul verfügt

nun über eine eigene Struktur mit Domain-, Application-, Repository-, Controller- und

UI-Schicht, wodurch die fachliche Logik eindeutig vom technischen Rahmen

abgegrenzt ist. Die Einführung von UseCases als zentrale Schnittstellen zur Fachlogik

hat dabei wesentlich zur Entkopplung beigetragen: Fachliche Abläufe sind nun in klar

definierten Operationen gebündelt, während UI und externe Systeme lediglich über

diese Schnittstellen interagieren.

Besonders hervorzuheben ist die durchgehende Entkopplung der Domain- und

Application-Schicht von externen Frameworks. Persistenz-Annotationen und Spring-

Abhängigkeiten wurden aus der Fachlogik entfernt, wodurch eine langfristige

Unabhängigkeit und Testbarkeit gewährleistet ist. Die Anwendung von ArchUnit-Tests

stellt sicher, dass diese Trennung auch bei zukünftigen Anpassungen eingehalten wird.

Trotz der erzielten Fortschritte ist das architektonische Ziel noch nicht vollständig

erreicht. Zentrale Bereiche wie die Planungsansicht, das Reporting sowie die ERP-

Integration verbleiben bislang in der alten Struktur. Diese Module wurden im Rahmen

dieser Arbeit grösstenteils durch Auskommentieren entkoppelt und sind daher aktuell

nicht funktionsfähig. Diese Massnahme war notwendig, da der zeitliche Rahmen der

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

51 11. September 2025

Masterarbeit begrenzt ist und die umfassende Neugestaltung der Module Order und

Product einen erheblichen Aufwand beanspruchte.

Insgesamt zeigt sich jedoch, dass die gewählte Vorgehensweise tragfähig ist: Die

exemplarisch refaktorierten Module belegen, dass das definierte Architekturziel

umsetzbar ist und eine robuste Basis für die sukzessive Überführung des gesamten

Systems in die Soll-Architektur bietet.

6.2 Erfüllung der Qualitätsziele

Die in Kapitel 3.3 definierten Qualitätsziele bildeten die Grundlage für die Bewertung

des Refactorings. Ihre Erfüllung wurde anhand objektiver Metriken mittels SonarQube

Test in Abbildung 24, automatisierter Architekturvalidierungen (ArchUnit) sowie

gezielter Funktionstests überprüft. Im Folgenden werden die Ergebnisse pro

Zielbereich dargestellt.

Abbildung 24: SonarQube-Test nach dem Refactoring der 3 Modulen

Architekturentkopplung

Durch die Einführung klar abgegrenzter Module (Ressourcen, Produkt, Auftrag) konnte

die gewünschte Entkopplung erreicht werden. Direkte Querverbindungen zwischen den

Modulen wurden aufgelöst, sodass die Fachlogik nur noch über UseCases

angesprochen wird. ArchUnit-Tests validieren die Einhaltung der Modulgrenzen und

bestätigen die Umsetzung der vorgesehenen Schichtentrennung.

Testabdeckung

Die Kernlogik der refaktorierten Module wurde vollständig durch Unit-Tests abgesichert

(100 % Abdeckung der UseCases). Auf Gesamtsystemebene beträgt die Abdeckung

nun 14.3 % – ein deutlicher Fortschritt gegenüber dem Ausgangszustand von 0 %,

wenngleich der Ausbau auf weitere Module noch aussteht.

Code-Duplizierung

Die Duplizierungsrate konnte durch den Einsatz generischer Repository-

Implementierungen und eine klare Trennung von Domain, DTOs und DAOs von 2,8 %

auf 1,2 % reduziert werden. Damit wurde der definierte Zielwert von ≤ 1,4 % sogar

unterschritten und eine deutliche Verbesserung erzielt.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

52 11. September 2025

Sicherheit und Zuverlässigkeit

Alle ursprünglich vorhandenen 11 Security Hotspots sowie 13 Reliability Issues wurden

eliminiert. Die verbesserte Schichtentrennung und der Einsatz klarer Schnittstellen

erleichtern zudem die langfristige Absicherung sicherheitskritischer Funktionen.

SonarQube bestätigt den stabilen Zustand mit den Bewertungen A in Sicherheit und

Maintainability.

Maintainability

Die Anzahl der Maintainability-Issues wurde von 757 auf 660 reduziert. Besonders

wirksam erwies sich die klare Trennung von DTOs (für Serialisierung) und DAOs (für

Persistenz), wodurch systematische Konflikte – etwa zwischen UI und Datenbanklogik

– langfristig vermieden werden.

Performance

Die Ladezeiten konnten nur eingeschränkt bewertet werden. Da die Planungsansicht

noch nicht refaktoriert wurde, blieben die ursprünglich bestehenden

Performanceprobleme bestehen. Eine signifikante Verbesserung der ERP-abhängigen

Ansichten steht damit noch aus und bleibt ein Thema für weitere Projektphasen.

Gesamtbewertung

Die Erfolgskontrolle zeigt, dass die wesentlichen Qualitätsziele – insbesondere

Modularität, Testbarkeit und Wartbarkeit – nachweislich erreicht wurden. Teilerfolge

wurden bei Code-Duplizierung und Maintainability erzielt, während die Performance-

Optimierung noch aussteht. Insgesamt konnte damit eine solide Grundlage geschaffen

werden, auf der die weitere Transformation des Gesamtsystems in die Soll-Architektur

erfolgen kann.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

53 11. September 2025

7 Schlusswort

Mit dem in dieser Arbeit durchgeführten Architektur-Refactoring konnte gezeigt werden,

dass selbst eine über Jahre gewachsene, stark gekoppelte Software erfolgreich in eine

klar strukturierte und langfristig wartbare Architektur überführt werden kann. Am

Beispiel der Module Ressourcen, Produkt und Order wurde demonstriert, wie durch

Modularisierung, horizontale Schichtung und die konsequente Abbildung fachlicher

Abläufe in Use Cases eine robuste Basis für die Weiterentwicklung geschaffen werden

kann.

Die mit SonarQube durchgeführten Analysen bestätigen die erzielten Verbesserungen:

Code-Duplizierungen und Maintainability-Issues wurden reduziert, Security-Hotspots

beseitigt und in den bearbeiteten Modulen eine vollständige Testabdeckung der Use

Cases erzielt. Damit sind die in Kapitel 3 definierten Qualitätsziele weitgehend erfüllt

und die Wirksamkeit der Massnahmen objektiv nachweisbar.

Zugleich wurde deutlich, dass ein Refactoring dieser Grössenordnung im laufenden

Betrieb eine besondere Herausforderung darstellt. Der notwendige Fokus auf die

Architekturmodernisierung führte zeitweise dazu, dass neue Features nicht parallel

integriert werden konnten. Diese Erfahrung unterstreicht die Schwierigkeit,

Produktweiterentwicklung und strukturelle Verbesserungen gleichzeitig umzusetzen.

Insgesamt bietet das Refactoring eine stabile Grundlage für die Weiterentwicklung von

EVOPRO. Künftige Arbeiten können darauf aufbauen, indem die neuen

Architekturprinzipien sukzessive auf weitere Module übertragen, die Testabdeckung

systematisch ausgebaut und ergänzende Massnahmen wie Monitoring und

Performance-Optimierung vorangetrieben werden. Damit ist ein wichtiger Schritt in

Richtung einer nachhaltigen, erweiterbaren und qualitativ hochwertigen

Softwarearchitektur getan.

Architektur-Refactoring der Produktionsplanungs-Software EVOPRO

54 11. September 2025

8 Literaturverzeichnis

Brown, S. (2016). Software Architecture for Developers Vol. 2.

Brown, S. (2018). Modular Monoliths. GOTO 2018.

Evans, E. (2003). Domain-Driven Design.

Martin, R. C. (2018). Clean Architecture. A Craftsman’s Guide to Software Structure

and Design.

9 Abbildungsverzeichnis

Abbildung 1: Interesse-Einfluss Matrix der Stakeholdergruppen ________________ 12
Abbildung 2: EVOPRO Systemkontext____________________________________ 14
Abbildung 3: EVOPRO Container-Diagramm _______________________________ 15
Abbildung 4: EVOPRO Ist-Komponentenmodell ____________________________ 17
Abbildung 5: EVOPRO Ist-Klassenmodell _________________________________ 19
Abbildung 6: Server Response Time der aktuelle EVOPRO Applikation __________ 21
Abbildung 7: Übersicht der SonarQube Qualitäts Analyse _____________________ 22
Abbildung 8: Maintainability Overview der SonarQube Qualitätsanalyse __________ 22
Abbildung 9: Reliability Overview der Sonar Qube Qualitäts Analyse ____________ 23
Abbildung 10: EVOPRO Soll-Komponentenmodell __________________________ 25
Abbildung 11: Vergleich Ist- und Soll-Architektur ____________________________ 27
Abbildung 12: Umsetzungszeitplan Refactoring EVOPRO ____________________ 31
Abbildung 13: Ausschnitt des Kanban-Boards in Jira_________________________ 32
Abbildung 14: Ressourcen im IST-Domänenmodell__________________________ 36
Abbildung 15: ArchUnit-Test das die Domäne keine Abhängigkeiten kennt _______ 37
Abbildung 16: ArchUnit-Test für den Application-Layer _______________________ 38
Abbildung 17: ArchUnit-Test für den Zugriff auf die Application-Schicht __________ 38
Abbildung 18: Neues Ressourcen Domain-Modell ___________________________ 40
Abbildung 19: Produkt im IST-Domain-Modell ______________________________ 41
Abbildung 20: Neues Produkt Domain-Modell ______________________________ 42
Abbildung 21: Generische Clean-Code-Architektur am Beispiel ProductType ______ 44
Abbildung 22: Order im IST-Domain-Modell________________________________ 46
Abbildung 23: Neues Order Domain-Modell ________________________________ 48
Abbildung 24: SonarQube-Test nach dem Refactoring der 3 Modulen ___________ 51

10 Tabellenverzeichnis

Tabelle 1: Ziele nach Stakeholdergruppe __________________________________ 12
Tabelle 2:Vergleich der zwei Systeme ____________________________________ 21

		2025-09-11T12:24:33+0200
	Foxit Software
	Electronic Signature completed successfully via Foxit eSign

